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Abstract We study the performance of empirical risk minimization in prediction and
estimation problems that are carried out in a convex class and relative to a sufficiently
smooth convex loss function. The framework is based on the small-ball method and
thus is suited for heavy-tailed problems. Moreover, among its outcomes is that a
well-chosen loss, calibrated to fit the noise level of the problem, negates some of
the ill-effects of outliers and boosts the confidence level—leading to a gaussian like
behaviour even when the target random variable is heavy-tailed.

Mathematics Subject Classification 62G99 · 60G25 · 68T05

1 Introduction

Prediction and estimation problems play a major role in modern mathematical statis-
tics. The aim is to approximate, in one way or another, an unknown random variable Y
by a function from a given class F , defined on a probability space (�,μ). The given
data is a random sample (Xi ,Yi )Ni=1, distributed according to the N -product of the
joint distribution of μ and Y , endowed on the product space (� × R)N .

The notion of approximation may change from problem to problem. It is reflected
by different choices of loss functions, which put a price tag on predicting f (X) instead
of Y . Although it is not the most general form possible, we also assume throughout
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460 S. Mendelson

this article that if � is the loss function, the cost of predicting f (X) instead of Y is
�( f (X) − Y ):

Definition 1.1 A loss is a real-valued function that is even, increasing in R+ and
convex, and vanishes at 0. We will assume that it is sufficiently smooth—for example,
that it has a second derivative, except, perhaps at ±x0 for some fixed x0—although,
as will be clear from what follows, this assumption can be relaxed further.

Once the loss is selected, one can define the best element in the class, namely, a
function in F that minimizes the average loss, or risk,E�( f (X)−Y ) (with the obvious
underlying assumption that the minimizer exists). We denote that minimizer by f ∗.

Next, one may choose a procedure that uses the data (Xi ,Yi )Ni=1 to produce a
(random) function f̂ ∈ F . The effectiveness of f̂ may be measured in several ways,
and the two we focus on here lead to the notions of prediction and estimation.

Problem 1.2 Given a procedure f̂ , find the ‘smallest’ functions Ep and Ee possible for
which the following holds. If F ⊂ L2(μ) is a class of functions and Y is the unknown
target, then with probability at least 1 − δ over samples (Xi ,Yi )Ni=1,

E

(
�( f̂ (X) − Y )

∣∣(Xi ,Yi )
N
i=1

)
≤ inf

f ∈F E�( f (X) − Y ) + Ep.

Alternatively, with probability at least 1 − δ,
∥∥∥ f̂ − f ∗

∥∥∥
2

L2
= E

(
( f̂ − f ∗)2(X)

∣∣(Xi ,Yi )
N
i=1

)
≤ Ee.

The functions Ep and Ee may depend on the structure of F, the sample size N, the
confidence level δ, some ‘global’ properties of Y (e.g., its Lq norm), etc.

The prediction error Ep measures the ‘predictive capabilities’ of f̂ , specifically
whether f̂ is likely to be almost as effective as the best possible in the class—the
latter being f ∗. The estimation error Ee measures the distance between f̂ and f ∗,
with respect to the underlying L2(μ) metric.

Literature devoted to the study of prediction and estimation is extensive and
goes well beyond what can be reasonably surveyed here. We refer the reader to the
manuscripts [2,4,6,9,15,24,25] as possible starting points for information on the his-
tory of Problem 1.2, as well as for more recent progress.

The procedure we focus on here is empirical risk minimization (ERM), in which
f̂ is selected to be a function in F that minimizes the empirical risk

PN� f ≡ 1

N

N∑
i=1

�( f (Xi ) − Yi );

here, and throughout the article, PN denotes the empirical mean associated with the
random sample (Xi ,Yi )Ni=1.

Since it is impossible to obtain nontrivial information on the performance of any
procedure, including ERM, without imposing some assumptions on the class F , the
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Learning without concentration for general loss functions 461

target Y and the loss �, one has to select a framework that, on the one hand, is general
enough to include natural problems that one would like to study, but on the other, still
allows one to derive significant results on prediction and estimation. Unfortunately,
some of the assumptions that are commonly used in literature are highly restrictive,
though seemingly benign. And among the more harmful assumptions are that the loss
is a Lipschitz function and that functions in F and Y are uniformly bounded.

The origin of these assumptions is technical: they are an outcome of the ‘classical’
method of analysis used to tackle Problem 1.2. Themethod itself is based on tools from
empirical processes theory, most notably, on contraction and concentration arguments
that are simply false without imposing the right assumptions on the class, the target
and the loss. However, these assumptions leave a large number of natural problems
out of reach.

To explain why concentration and contraction arguments are so appealing, let us
outline the standard method of analyzing data driven procedures like ERM.

The basic underlying assumption behind such procedures, and in particular, behind
ERM, is that sampling mimics reality. Since one’s goal is to identify the function f ∗
which minimizes in F the functional f → E�( f (X) − Y ), a natural course of action
is to compare empirical means of the loss functional to the actual means in the hope
that an empirical minimizer will be close to the true minimizer.

To that end, one may consider the excess loss functional associated with f ∈ F

L f (X,Y ) = �( f (X) − Y ) − �( f ∗(X) − Y ),

observe that for every f ∈ F , EL f ≥ 0 and that if f ∗ is unique, equality is achieved
only by f ∗. Also, since L f ∗ = 0, it is evident that the empirical minimizer f̂ satisfies
that PNL f̂ ≤ 0; thus, for every sample, the empirical minimizer belongs to the random
set {

f ∈ F : PNL f ≤ 0
}
. (1.1)

The key point in the analysis of ERM is that the random set of potential minimizers
consists of functions for which sampling behaves in an a-typical manner: PNL f ≤ 0
whileEL f > 0. The hope is that onemay identify the set by exploiting the discrepancy
between the ‘empirical’ and ‘actual’ behaviour ofmeans. For example, a solution to the
prediction problem follows if the set (1.1) consists only of functions with ‘predictive
capabilities’ that are close to the optimal in F , while the estimation problem may be
resolved if (1.1) consists only of functions that are close to f ∗ with respect to the L2
distance.

What makes the nature of the set { f : PNL f ≤ 0} rather elusive is not only
the fact that it is random, but also that one has no real knowledge of the functions
� f = �( f (X) − Y ) and L f = � f − � f ∗ : the two have unknown components—the
target Y and the true minimizer f ∗.

Concentration and contraction help in identifying the set (1.1). By applying con-
centration results to a well-chosen subset of excess loss functions {L f : f ∈ F ′}, one
may show that there is a large subset F ′ ⊂ F , on which PNL f cannot be too far from
EL f (or, for more sophisticated results, that the ratios PNL f /EL f cannot be too far
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from 1). Since EL f > 0 if f 
= f ∗, this forces f → PNL f to be positive on F ′ and
thus f̂ ∈ F\F ′.

Naturally, concentration results come at a cost, and for estimates such as

sup
f ∈F ′

∣∣PNL f − EL f
∣∣ < ε or sup

f ∈F ′

∣∣∣∣
PNL f

EL f
− 1

∣∣∣∣ < ε (1.2)

to hold with high probability requires strong assumptions on the random variables
involved—for example, that functions in F and Y are uniformly bounded (see the
books [3,11] for more details on concentration of measure phenomena).

Finally, andwhat is possibly themost costly step in the classical method of analysis,
is contraction. The contraction argument is based on the fact that classmembers and the
target are uniformly bounded functions and that the loss is Lipschitz on the ranges of
the functions f (X)−Y . It implies that the supremum of the empirical process indexed
by the (unknown!) excess loss class may be controlled in terms of the supremum of an
empirical process indexed by functions of the form f − f ∗ (see, for example, [1,9,18]
for more details).

One result that is based on the classical method and that utilizes the full strength of
the two assumptions—that class members and the target are uniformly bounded and
that the loss is Lipschitz—is Theorem 1.3 below, proved originally in [1]. It serves as
a preliminary benchmark for our discussion.

Assume that F is a class of functions that are bounded by 1 and let Y be the target
random variable that is also bounded by 1. Let � be a Lipschitz function with constant
‖�‖lip on [−2, 2], which is an interval containing all the ranges of f (X)−Y . Assume
further that f ∗ exists and is unique and that for every f ∈ F , ‖ f − f ∗‖2L2

≤ BEL f ,
which is the significant part of the so-called Bernstein condition (see, e.g., [13,16,17]).

A standard example in which all these conditions hold is when F is a closed, convex
class consisting of functions into [−1, 1], Y also maps into [−1, 1], and �(t) = t2. In
that case it is straightforward to show that B = 1 and ‖�‖lip = 4.

Let D f ∗ be the L2(μ) ball of radius 1, centred at f ∗. Thus, { f ∈ F : ‖ f − f ∗‖L2 ≤
r} = F ∩ r D f ∗ . For every r > 0, let

kN (r) = sup
f ∈F∩r D f ∗

∣∣∣∣∣
1√
N

N∑
i=1

εi ( f − f ∗)(Xi )

∣∣∣∣∣ , (1.3)

and

k̄N (r) = E sup
f ∈F∩r D f ∗

∣∣∣∣∣
1√
N

N∑
i=1

εi ( f − f ∗)(Xi )

∣∣∣∣∣ . (1.4)

Here (εi )
N
i=1 are independent, symmetric, {−1, 1}-valued random variables that are

independent of (Xi )
N
i=1 and the expectation is taken with respect to both (Xi )

N
i=1 and

(εi )
N
i=1. Finally, set

k∗
N (γ, δ) = inf

{
r > 0 : Pr

(
kN (r/ ‖�‖lip) ≤ γ r2

√
N
)

≥ 1 − δ
}
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and

k̄∗
N (γ ) = inf

{
r > 0 : k̄N (r/ ‖�‖lip) ≤ γ r2

√
N
}

.

Theorem 1.3 There exist absolute constants c1 and c2 for which the following holds.
If F, Y and � are as above, then for every 0 < δ < 1, with probability at least 1 − δ

EL f̂ ≤ c1 max

{(
k∗
N

(
c2
(
B ‖�‖lip

)−1
, δ
))2

,
‖�‖2lip B

N

}
, (1.5)

and

EL f̂ ≤ c1 max

{(
k̄∗
N

(
c2(B ‖�‖lip)−1

))2
, (‖�‖2lip B)

log(1/δ)

N

}
. (1.6)

Recalling that ‖ f − f ∗‖2L2
≤ BEL f for every f ∈ F , analogous results hold for

the estimation problem.
The proof of Theorem 1.3 and results of a similar nature may be found in [1,9,18].
Although Theorem 1.3 is one of the main benchmarks of the performance of ERM,

it truly requires rather restrictive assumptions, as do all the results that are based on
the concentration-contraction mechanism. For example, Theorem 1.3 cannot be used
to tackle one of the most fundamental problems in Statistics—linear regression in Rn

relative to the squared loss and with independent additive gaussian noise:

Example 1.4 Let �(x) = x2. Given T ⊂ R
n , set FT = {〈t, ·〉 : t ∈ T

}
to be the class

of linear functionals on R
n associated with T . Let μ be a probability measure on R

n

and set X to be a random vector distributed according to μ. Let W be a standard
gaussian variable that is independent of X and the target is Y = 〈t0, ·

〉+ W for some
fixed but unknown t0 ∈ T .

Observe that

• Y is not bounded (because of the gaussian noise).
• Unless μ is supported in a bounded set in Rn , functions in FT are not bounded.
• The loss �(x) = x2 satisfies a Lipschitz condition in [−a, a] with a constant 2a.
Unless μ has a bounded support and Y is bounded, � does not satisfy a Lipschitz
condition on an interval containing the ranges of the functions f (X) − Y .

Each one of these observations is enough to place linear regressionwith independent
additive gaussian noise outside the scope of Theorem 1.3, andwhat is equally alarming
is that the same holds even if μ is the standard gaussian measure on Rn , regardless of
T , the choice of noise or even its existence.

An additional downside of Theorem 1.3 is that even in situations that do fall within
its scope, resulting bounds are often less than satisfactory (see, for example, the dis-
cussion in [19]).

The suboptimal behaviour of Theorem 1.3 and, in fact, of the entire concentration-
contraction mechanism, happens to be endemic: it is caused by the nature of the
complexity parameter used to govern the rates Ep and Ee. Indeed, when considering
likely sources of error in prediction and estimation problems, two generic reasons
come to mind:
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• (X1, .., XN ) is merely a sample and two functions in F can coincide on that sample
but still be far from one another in L2(μ). This leads to the notion of the version
space: a random subset of F , defined by

{
f ∈ F : f (Xi ) = f ∗(Xi ) for every 1 ≤ i ≤ N

}

and which measures the way a random sample can be used to distinguish between
class members. Clearly, the L2(μ) diameter of the version space is an intrinsic
property of the class F and has nothing to do with the noise1 ξ = f ∗(X) − Y .
Standard arguments show (see, e.g. [10]) that even in noise-free problems, when
Y = f0(X) for some f0 ∈ F , it is impossible to construct a learning procedure
whose error rate consistently outperforms the L2 diameter of the version space.

• Measurements are noisy: one does not observe f ∗(Xi ) but ratherYi . Known results
aswell as common sense indicate that the ‘closer’Y is to F , the better the behaviour
of Ep and Ee should be. Thus, it stands to reason that Ep and Ee should depend on
the ‘noise level’ of the problem, i.e., on a natural distance between the target and
the class.

With that in mind, it is reasonable to conjecture that Ep and Ee exhibit two regimes,
captured by two different complexity parameters. Firstly, a ‘low noise’ regime, in
which the ‘noise’ ξ = f ∗(X) − Y is sufficiently close to zero in the right sense,
and the behaviour of ERM is similar to its behaviour in the noise-free problem—
essentially the L2 diameter of the version space. Secondly, a ‘high noise’ regime, in
which mistakes occur because of the way the loss affects the interaction between class
members and the noise.

Theorem 1.3 yields only one regime, and that regime is governed by a single com-
plexity parameter. This parameter does not depend on the noise ξ = f ∗(X) − Y ,
except via a trivial L∞ bound; rather, it depends on the correlation of the set
{( f (Xi ))

N
i=1 : f ∈ F} (the so-called random coordinate projection of F) with a

generic random noise model, represented by a random point in {−1, 1}N . Obviously,
the generic noise may have nothing to do with the actual noise one faces.

The main goal of this article is to address Problem 1.2 by showing that Ep and
Ee indeed have two regimes. Each one of those regimes is captured by a different
parameter: firstly, an ‘intrinsic parameter’ that governs low-noise problems (when Y
is sufficiently close to F) and depends only on the class and not on the target or on the
loss; secondly, an external parameter that captures the interaction of the class with the
noise and with the loss, and dominates in high-noise situations, when Y is far from F .

Moreover, a solution to Problem 1.2 has to hold without the restrictive assumptions
of the concentration-contraction mechanism, namely:

• The class F need not be bounded in L∞, but rather satisfies significantly weaker
tail conditions.

• The target Y need not be bounded (in fact, Y ∈ L2 suffices in most cases).

1 We refer to f ∗(X)−Y as the noise of the problem. This namemakes perfect sense when Y = f0(X)−W
for a mean-zero random variable W that is independent of X , and we use the term ‘noise’ even when the
target does not have that particular form.
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• The loss function � need not be Lipschitz on an interval containing the ranges of
f (X) − Y .

The problem of ERM’s estimation error relative to the squared loss was studied in
[19], leading to a satisfactory solution in that case. The aim here is to explore more
general loss functions, not merely for the sake of generality, but because of a real
side-effect of the squared loss: the combination of its rapid growth with heavy-tailed
sampling inevitably leads to outliers. Roughly put, outliers are sample points that
are misleading because they capture some a-typical behaviour of the sampled object.
Outliers occur more frequently when dealing with heavy-tailed functions, and have
a significant impact on ERM when the loss grows quickly. It is highly desirable to
find a way of removing the ill-effects of outliers, and thanks to the general theory we
develop here we are able to do just that: we show that if one chooses a loss that is
calibrated to fit the noise level and the intrinsic structure of the underlying class, the
ill-effects of outliers caused by the ‘noise’ are removed.

1.1 Basic definitions and some notation

Throughout the article, absolute constants are denoted by c1, c2, . . .; their values may
change from line to line. We write A � B if there is an absolute constant c1 for which
A ≤ c1B, and A ∼ B if c1A ≤ B ≤ c2A for absolute constants c1 and c2. A �r B
or A ∼r B means that the constants depend on some parameter r . κ0, κ1,…, denote
constants whose values remain unchanged.

Given a probability measure μ, set D = B(L2(μ)) to be the unit ball of L2(μ), let
r D be the L2(μ) ball of radius r and put r D f to be the L2(μ) ball centred at f and of
radius r ; S(L2) denotes the unit sphere in L2(μ). From this point onward we do not
specify the L2 space to which the functions in question belong, as that will be clear
from the context.

Given 1 ≤ p < ∞, let Bn
p = {x ∈ R

n : ∑n
i=1 |xi |p ≤ 1} be the unit ball in the

space �np = (Rn, ‖ ‖p), with the obvious modification when p = ∞; set Sn−1 to be
the Euclidean unit sphere in Rn .

Let {G f : f ∈ F} be the canonical gaussian process indexed by F with a covariance
structure endowed by L2(μ) (see, e.g., [7] for a detailed survey on gaussian processes)
and set

E ‖G‖F = sup

{
E sup

h∈H
Gh : H ⊂ F, H is finite

}
.

Put dF (L2) = sup f ∈F ‖ f ‖L2 and let

kF =
(
E ‖G‖F
dF (L2)

)2
,

which is an extension of the celebrated Dvoretzky–Milman dimension of a convex
body in Rn . We refer the reader to [22,23] for more details on the Dvoretzky–Milman
dimension and its role in asymptotic geometric analysis.
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For α ≥ 1, Lψα is the Orlicz space of all measurable functions for which the ψα

norm, defined by

‖ f ‖ψα
= inf

{
c > 0 : E exp

(| f/c|α) ≤ 2
}
,

is finite. Some basic facts on Orlicz spaces may be found, for example, in [25].
The most important Orlicz norm in our context is the ψ2 norm, which calibrates

the subgaussian tail behaviour of a function. A class is L-subgaussian if the ψ2 and
L2 norms are L-equivalent on F , that is, if for every f, h ∈ F ∪ {0}, ‖ f − h‖ψ2 ≤
L‖ f − h‖L2 . In particular, such norm equivalence implies that there are absolute
constants c1 and c2 such that for every p ≥ 2, ‖ f − h‖L p ≤ c1L

√
p‖ f − h‖L2 and

for u ≥ 1, Pr(| f − h| > c2uL‖ f − h‖L2) ≤ 2 exp(−u2/2).
A class of functions H is star-shaped around 0 if for every h ∈ H and every

λ ∈ [0, 1], λh ∈ H . In other words, if h ∈ H then H contains the entire interval
connecting h to 0.

It is straightforward to verify that if F is convex and f ∈ F then H f = F − f =
{h − f : h ∈ F} is star-shaped around 0.

A class that is star-shaped around zero has some regularity. The star-shape property
implies that if r < ρ, then H∩r S(L2) contains a ‘scaled-down’ version of H∩ρS(L2).
Indeed, if h ∈ H∩ρS(L2) and since r/ρ ∈ [0, 1], it follows that (r/ρ)h ∈ H∩r S(L2).
In particular, normalized ‘layers’ of a star-shaped class become richer the closer the
layer is to zero.

Finally, if A is a finite set, we denote by |A| its cardinality.

2 Beyond the squared loss

As noted previously, our goal is to extend the results established in [19] from the
squared loss �(t) = t2 to a general smooth convex loss. For reasons we clarify later,
themost interesting choices of loss functions satisfy some strong convexity property—
either globally or in a neighbourhood of 0.

Definition 2.1 A function � is strongly convex with a constant c0 > 0 in the interval
I if

�(y) ≥ �(x) + �′(x)(y − x) + c0
2

(y − x)2

for every x, y ∈ I .

Note that if inf x∈R �′′(x) ≥ c > 0 then � is strongly convex in R with a constant c,
and one such example is the squared loss �(t) = t2.

If one wishes the loss to be convex, as we do, its growth from any point must be
at least linear. Therefore, it seems natural to consider loss functions that are strongly
convex in an interval around zero, thus mimicking the local behaviour of the squared
loss, while away from zero exhibit a linear, or almost linear growth, hopefully limiting
the negative effect of outliers.
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Typical examples of such losses are the Huber loss with parameter γ , defined by

�γ (t) =
{

1
2 t

2 if |t | ≤ γ

γ |t | − γ 2

2 if |t | > γ,
(2.1)

and a version of the log-loss2

�(t) = − log

(
4 exp(t)

(1 + exp(t))2

)
, (2.2)

which is strongly convex in any bounded interval, but with a constant that decays
exponentially to zero with the interval’s length (because �′′(t) = 2 exp(t)/(exp(t) +
1)2).

As noted previously, the analysis of ERM is usually based on exclusion: showing
that a large (random) part of the class cannot contain the empirical minimizer because
the empirical risk functional is positive on functions that belong to that part. Strong
convexity properties of the loss come in handy when exploring the decomposition of
L f (X,Y )via aTaylor expansion—adecomposition that leads naturally to an exclusion
argument:

If � has a second derivative then for every (X,Y ) there is a mid-point Z for which

L f (X,Y ) = �( f (X) − Y ) − �
(
f ∗(X) − Y

)

= �′(ξ)( f − f ∗)(X) + 1

2
�′′(Z)( f − f ∗)2(X) = (1) + (2).

One may exclude H ⊂ F by showing that the empirical mean of the quadratic term
(2) is positive on H , while the empirical mean of the multiplier component (1) cannot
be very negative there. For such functions, PNL f > 0, implying that f̂ ∈ F\H .

If � does not have a second derivative everywhere, one may modify this decompo-
sition by noting that for every x1 and x2,

�(x2) − �(x1) =
∫ x2

x1
�′(w)dw = �′(x1)(x2 − x1) +

∫ x2

x1

(
�′(w) − �′(x1)

)
dw.

Therefore, when applied to (X,Y ) and a fixed f ∈ F , and setting ξ = f ∗(X) − Y ,
the quadratic component in the decomposition is

∫ ξ+( f − f ∗)(X)

ξ

(
�′(w) − �′(ξ)

)
dw.

2 The log-loss is more commonly used in the context of binary classification problems rather than in the
type of real-valued problems we study here. However, because of its convexity properties it is an interesting
example of the phenomenon we explore.
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In particular, it is straightforward to show that if � is twice differentiable in R,
except, perhaps, at ±x0, then for every X,Y one has

L f (X,Y ) ≥ �′(ξ)( f − f ∗)(X) + 1

16
�′′(Z)( f − f ∗)2(X)

for a well-chosen midpoint Z .

Definition 2.2 For every f, f ∗ ∈ F and (X,Y ), set

M f − f ∗(X,Y ) = �′(ξ)( f − f ∗)(X),

and put

Q f − f ∗(X,Y ) =
∫ ξ+( f− f ∗)(X)

ξ

(
�′(w) − �′(x)

)
dw,

representing the multiplier and quadratic components of the excess loss L f (X,Y ).

Observe that a nontrivial, uniform, lower bound on �′′ significantly simplifies the
question of lower bounding the empirical means of the quadratic component. In fact, in
such a case the problem reverts to the study of the quadratic component of the squared
loss, explored in [19]. Our focus is on situations in which no such lower bound exists.

2.1 The exclusion argument in prediction and estimation

A structural assumption that is needed throughout this exposition is the following:

Assumption 2.1 Assume that for every f ∈ F ,

E�′(ξ)( f − f ∗)(X) ≥ 0.

Assumption 2.1 is not really restrictive:

• If ξ(X,Y ) = f ∗(X) − Y is independent of X (e.g., when Y = f0(X) − W for
some unknown f0 ∈ F and an independent, mean-zero random variable W ), then
E�′(ξ)( f − f ∗)(X) = 0, because �′ is odd.

• If F is a convex class of functions and � satisfies minimal integrability conditions,
then E�′(ξ)( f − f ∗)(X) ≥ 0 for every f ∈ F . Indeed, if there is some f1 ∈ F for
which E�′(ξ)( f1 − f ∗)(X) < 0, then by considering fλ = λ f1 + (1− λ) f ∗ ∈ F
for λ close to 0,

E� ( fλ(X) − Y ) < E�
(
f ∗(X) − Y

)
,

which is impossible.
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Under Assumption 2.1, if � is twice differentiable then given a sample (Xi ,Yi )Ni=1
and f ∈ F , there are mid-points Zi that belong to the interval whose end points are
f ∗(Xi ) − Yi and f (Xi ) − Yi = ( f − f ∗)(Xi ) + ξi , such that

PNL f = 1

N

N∑
i=1

�( f (Xi ) − Yi ) − �
(
f ∗(Xi ) − Yi

)

≥ 1

N

N∑
i=1

�′(ξi )( f − f ∗)(Xi ) + 1

2N

N∑
i=1

�′′(Zi )( f − f ∗)2(Xi )

≥ −
∣∣∣∣∣
1

N

N∑
i=1

�′(ξi )( f − f ∗)(Xi ) − E�′(ξ)( f − f ∗)
∣∣∣∣∣+ E�′(ξ)( f − f ∗)

+ 1

2N

N∑
i=1

�′′(Zi )( f − f ∗)2(Xi ). (2.3)

Assume that on a high-probability event A, for every f ∈ F ,

∣∣∣∣∣
1

N

N∑
i=1

�′(ξi )( f − f ∗)(Xi ) − E�′(ξ)( f − f ∗)(X)

∣∣∣∣∣ ≤
θ

4
max

{∥∥ f − f ∗∥∥2
L2

, r2M

}
,

for well chosen values rM and θ . Assume further that on a high probability event B,
for every f ∈ F with ‖ f − f ∗‖L2 ≥ rQ ,

1

N

N∑
i=1

�′′(Zi )( f − f ∗)2(Xi ) ≥ θ
∥∥ f − f ∗∥∥2

L2
.

Theorem 2.3 If F satisfies Assumption 2.1, then on the event A ∩ B, ‖ f̂ − f ∗‖L2 ≤
max{rM , rQ}.
Proof By Assumption 2.1 and (2.3),

PNL f ≥ 1

2N

N∑
i=1

�′′(Zi )( f − f ∗)2(Xi )

−
∣∣∣∣∣
1

N

N∑
i=1

�′(ξi )( f − f ∗)(Xi ) − E�′(ξ)( f − f ∗)(X)

∣∣∣∣∣ .

Hence, on the eventA∩B, if ‖ f − f ∗‖L2 ≥ max{rM , rQ} then PNL f ≥ (θ/4)‖ f −
f ∗‖2L2

> 0, and f cannot be an empirical minimizer. ��
Theorem 2.3 implies that to bound the performance of ERM in the estimation

problem it suffices to identify rM and rQ for which the event A ∩ B is sufficiently
large.
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Turning to the prediction problem, there is an additional assumption that is needed,
namely, that EQ f− f ∗ does not increase too quickly when f is close to f ∗.

Assumption 2.2 Assume that there is a constant β for which, for every f ∈ F with
‖ f − f ∗‖L2 ≤ max{rM , rQ}, one has

EQ f − f ∗ ≤ β
∥∥ f − f ∗∥∥2

L2
.

Clearly, if �′ is a Lipschitz function, one may take β = ‖�′‖lip; hence, if �′′ exists
everywhere and is a bounded function, β ≤ ‖�′′‖L∞ . Moreover, even when �′′ is not
bounded, such a β exists if the functions f − f ∗ have well behaved tails relative to
the growth of �′′. Since the analysis required in these cases is rather obvious, we will
not explore this issue further.

Theorem 2.4 Assume that the loss � is twice differentiable and satisfies Assump-
tion 2.1 and Assumption 2.2. Using the notation introduced above, on the eventA∩B
one has

EL f̂ ≤ 2(θ + β)max
{
r2M , r2Q

}
.

Proof Fix a sample inA∩B. By Theorem 2.3, ‖ f̂ − f ∗‖L2 ≤ max{rM , rQ}. Thus, it
suffices to show that if ‖ f − f ∗‖L2 ≤ max{rM , rQ} andEL f ≥ 2(θ+β)max{r2M , r2Q},
then PNL f > 0; in particular, such a function cannot be an empirical minimizer.

Note that for every f ∈ F , L f = M f − f ∗ + Q f − f ∗ and thus either EL f ≤
2EM f − f ∗ = 2E�′(ξ)( f − f ∗)(X) or EL f ≤ 2EQ f − f ∗ .

However, if f satisfies the above, only the first option is possible; indeed, ifEQ f− f ∗
is dominant, then by Assumption 2.2,

EL f ≤ 2EQ f− f ∗ ≤ 2β
∥∥ f − f ∗∥∥2

L2
≤ 2β max

{
r2M , r2Q

}
,

which is impossible by the choice of f . Therefore, it suffices to treat the case in which
EL f ≤ 2E�′(ξ)( f − f ∗)(X).

Fix such an f ∈ F . Since � is convex, PNL f ≥ 1
N

∑N
i=1 ξi ( f − f ∗)(Xi ), and on

A ∩ B,

PNL f ≥E�′(ξ)( f − f ∗)(X) −
∣∣∣∣∣
1

N

N∑
i=1

�′(ξ)( f − f ∗)(Xi ) − E�′(ξ)( f − f ∗)(X)

∣∣∣∣∣

≥ 1

2
EL f − θ

4
max

{
r2M ,

∥∥ f − f ∗∥∥2
L2

}

≥ (θ + β)max
{
r2M , r2Q

}
− θ

4
max

{
r2M , r2Q

}
> 0.

��
Remark 2.5 When � is twice differentiable except perhaps at ±x0, then Theorem 2.3
and Theorem 2.4 are still true though with modified constants.
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In the following sections we develop the necessary machinery leading to a uniform
lower estimate on the quadratic term f → PNQ f − f ∗ and to an upper estimate on the
multiplier term f → PNM f − f ∗ . Combining the two, we identify the values rQ and
rM , as well as the right choice of θ .

3 Preliminary estimates

Let (Zi )
N
i=1 be independent copies of a random variable Z and set (Z∗

i )
N
i=1 to be

the monotone non-increasing rearrangement of (|Zi |)Ni=1. Below we obtain upper
and lower estimates on various functions of (Z∗

i )
N
i=1. All the estimates we present

are straightforward applications of either a concentration inequality for {0, 1}-valued
random variables (selectors) with mean δ, or, alternatively, a rather crude binomial
estimate. Indeed, given a property P set δi = 1{Zi∈P}—the characteristic function of
the event that Zi satisfies property P . Let δ = Pr(Z ∈ P) and note that |{i : Zi ∈
P}| =∑N

i=1 δi . By Bernstein’s inequality (see, for example, [3,25]),

Pr

(∣∣∣∣∣
1

N

N∑
i=1

δi − δ

∣∣∣∣∣ ≤ t

)
≥ 1 − 2 exp

(
−cN min

{
t2/δ, t

})

for a suitable absolute constant c. Hence, taking t = uδ,

Nδ(1 − u) ≤ |{i : Zi ∈ P}| ≤ Nδ(1 + u) (3.1)

with probability at least 1 − 2 exp(−cNδmin{u2, u}).
The binomial estimate we employ is equally simple: it is based on the fact that

Pr (|{i : Zi ∈ P}| ≥ k) ≤
(
N

k

)
Prk(Z ∈ P) ≤

(
eN

k
· Pr(Z ∈ P)

)k
.

3.1 Tail-based upper estimates

Assume that one has information on ‖Z‖Lq for some q > 2 and set L =
‖Z‖Lq /‖Z‖L2 . Applying Chebyshev’s inequality,

Pr
(|Z | ≥ w ‖Z‖L2

) ≤ E |Z |q
‖Z‖qL2

wq
= Lq

wq
.

Hence, if P = {|Z | < w‖Z‖L2} it follows that Pr(Z ∈ P) ≥ 1 − (L/w)q , which
can be made arbitrarily close to 1 by selectingw that is large enough. This observation
implies that with high probability, an arbitrary large proportion of {|Z1|, . . . , |ZN |}
are not very large.
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Lemma 3.1 There exists absolute constants c1 and c2 for which the following holds.
Let Z ∈ L2. For every 0 < ε < 1, with probability at least 1 − 2 exp(−c1εN ) there
exists a subset I ⊂ {1, . . . , N }, |I | ≥ (1 − ε)N, and for every i ∈ I ,

|Zi | ≤ c2ε
−1/2 ‖Z‖L2 .

Proof Fix ε as above and note that Pr(|Z | ≥ 2‖Z‖L2/
√

ε) ≤ ε/4. Hence, by a
binomial estimate,

Pr
(∣∣{i : |Zi | ≥ 2 ‖Z‖L2 /

√
ε
}∣∣ ≥ Nε

) ≤
(
N

εN

)
PrεN (|Z | ≥ 2 ‖Z‖L2 /

√
ε
)

≤
(e
ε

)Nε ·
(ε

4

)Nε ≤ exp (−cNε) ,

for a suitable absolute constant c. ��

Given a vector a = (ai )Ni=1, the Lq norm of a, when considered as a function on
� = {1, . . . , N } endowed with the uniform probability measure, is

‖a‖LN
q

=
(
1

N

N∑
i=1

|ai |q
)1/q

.

The weak-Lq norm of the vector a is

‖a‖LN
q,∞ = inf

{
c > 0 : da(t) ≤ (c/t)q for every t > 0

}
,

where da(t) = N−1|{i : |ai | > t}|.
The next observation is that sampling preserves the Lq structure of Z , in the sense

that if Z ∈ Lq , then with high probability, ‖(Zi )
N
i=1‖LN

q,∞ � ‖Z‖Lq .

Lemma 3.2 Let 1 ≤ q ≤ r . If Z ∈ Lr , u ≥ 2 and 1 ≤ k ≤ N/2, then

Z∗
k ≤ u(N/k)1/q ‖Z‖Lr

with probability at least 1 − u−kr
( eN

k

)−k((r/q)−1)
.

In particular, with probability at least 1 − 2u−r N−((r/q)−1),

‖(Zi )‖LN
q,∞ ≤ u ‖Z‖Lr .

Proof Let η = (r/q) − 1, fix 1 ≤ k ≤ N/2 and set v > 0 to be named later. The
binomial estimate implies that
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Pr
(
Z∗
k ≥ v(eN/k)(1+η)/r ‖Z‖Lr

)
≤
(
N

k

)
Prk

(
|Z | ≥ v(eN/k)(1+η)/r ‖Z‖Lr

)

≤
(
eN

k

)k ( k

eN

)(1+η)k

· v−kr =
(
eN

k

)−ηk

v−kr .

In particular, for v = u(eN/k)1/q−(1+η)/r ,

Z∗
k ≤ u(N/k)1/q ‖Z‖Lr

with probability at least

1 − u−kr
(
eN

k

)k((r/q)−1)

.

The second part of the claim follows by summing up the probabilities for k ≤ N/2,
using that Z∗

k ≤ Z∗
N/2 for k ≥ N/2 and that (u−kr )

N/2
k=1 is a geometric progression. ��

Remark 3.3 Note that similar statements to Lemma 3.2 are true if one simply assumes
that Pr(|Z | ≥ t) < ε, even without moment assumptions. Of course, under such
an assumption one has no information whatsoever on the largest εN coordinates of
(|Z1|, . . . , |ZN |), but rather, only on a certain proportion that is slightly smaller than
(1 − ε)N of the smallest coordinates.

Also, observe that ‖(Z∗
i )i≥ j‖LN

q,∞ � ‖Z‖Lq with a probability estimate that
improves exponentially in j .

3.2 Lower estimates using a small-ball property

A similar line of reasoning to the one used above is true for lower estimates, and is
based on a small-ball condition:

Definition 3.4 A random variable Z satisfies a small-ball condition with constants
κ > 0 and 0 < ε < 1 if

Pr
(|Z | ≥ κ ‖Z‖L2

) ≥ ε.

A class of functions F satisfies a small-ball property with constants κ and 0 < ε < 1
if for every f ∈ F ,

Pr
(| f | ≥ κ ‖ f ‖L2

) ≥ ε.

Remark 3.5 Because the applications considered below require that many of the |Zi |’s
are at least of the order of ‖Z‖L2 , the L2 norm is used as a point of reference in
the definition of the small-ball condition—though the notion of ‘small-ball’ can be
modified to fit other norms, as well as in situations in which Z need not even be
integrable.
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This small-ball condition was introduced in the context of estimation problems in
[19], and is the most important feature of our presentation. It is a rather weak assump-
tion that is almost universally satisfied and eliminates the need to guarantee two-sided
concentration, which is a far-more restrictive phenomenon. Unlike concentration, a
small-ball condition captures that behaviour of a random variable close to zero: by
considering h = Z/‖Z‖L2 , it quantifies the weight that h assigns to a neighbourhood
of zero. In particular, if Z ∈ L2 and Z 
≡ 0, then it satisfies a small-ball condition for
some constants ε and κ . It is also important to emphasize that a small-ball condition
has nothing to do with the tail behaviour of Z (other than the obvious assumption that
Z is square-integrable). For example, if Z is mean-zero, variance 1, random variable
that has a density bounded by M , it satisfies a small-ball condition with constants that
depend only on M—though it is possible that Z does not have any moment beyond
the second one.

The proofs we present below are based on the assumption that the class satisfies a
small-ball property, which is simply a small-ball condition with fixed constants that
holds for every function in the class3.

Naturally, for such an approach to be of any use, one must show that there are
enough natural situations in which a small-ball property holds, and as indications let
us describe several cases involving classes of linear functionals on Rn .

Let μ be a probability measure on R
n and let X be distributed according to μ. If

there are constants κ and ε such that for every t ∈ R
n ,

Pr
(∣∣〈t, X 〉∣∣ ≥ κ

∥∥〈t, X 〉∥∥L2

)
≥ ε (3.2)

then it immediately follows that any class of functions {〈t, ·〉 : t ∈ T } satisfies the
small-ball property with constants κ and ε.

The simplest situation in which (3.2) holds for every t ∈ R
n is when there is some

q > 2 for which the Lq and L2 norms of linear functionals are equivalent; that is,

sup
t∈Sn−1

∥∥〈t, X 〉∥∥Lq∥∥〈t, X 〉∥∥L2

≤ L . (3.3)

A straightforward application of the Paley-Zygmund inequality (see, e.g. [5]) shows
that (3.2) holds for constants κ and ε that depend only on q and L , and in particular,
are independent of the dimension n of the underlying space. As an extreme example,
if 0 < α ≤ 2 and X is a �α random vector in R

n (e.g., if X is subgaussian or log-
concave) then (3.2) holds—though this is an obvious overkill: a small-ball condition
like in (3.2) is true under aminimal norm equivalence like (3.3) and does not require the
high moment equivalence ‖〈X, t

〉‖L p ≤ cp1/α‖〈X, t
〉‖L2 that is ensured by a �α − L2

norm equivalence.
To indicate yet again the clear difference between a small-ball condition and tail

estimates, let us construct random vectors that need not have any moment beyond the

3 Let us mention that it is possible to modify the arguments and tackle situations in which the constants κ

and ε are not uniform, but to keep this article at a reasonable length we defer this to future work.
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second one and still satisfy (3.2). One way of generating such random vectors is based
on the following observation:

Lemma 3.6 There are absolute constants c0 and c1 for which the following holds.

(1) Let z be a random variable that satisfies a small-ball condition with constants κ

and ε. Let z1, . . . , zn to be independent copies of z and put Z = (zi )ni=1. Then
for every t ∈ R

n,
〈
t, Z
〉
satisfies a small-ball condition with constants c0

√
εκ and

c1ε.
(2) Let Z = (z1, . . . , zn) be an unconditional random vector (that is, Z has the same

distribution as (εi zi )ni=1 for any choice of signs (εi )
n
i=1). Assume that for every

1 ≤ i ≤ n, Ez2i = 1 and |zi | ≤ M almost surely. Then, for every t ∈ R
n,
〈
t, Z
〉

satisfies a small-ball condition with constants c2 and c3 depending only on M.

The proof of Lemma 3.6 is rather standard and we only sketch it for the sake
of completeness. The idea is that for every t ∈ Sn−1, the random variable

〈
t, Z
〉 =∑n

i=1 ti zi has the same distribution as
∑n

i=1 εi |ti zi |, where (εi )
n
i=1 are independent

random signs that are also independent of (zi )ni=1. Note that conditioned on (zi )ni=1,∑n
i=1 εi |ti zi | satisfies a small-ball condition with absolute constants; indeed, this is

an immediate outcome of the Paley-Zygmund inequality and the fact that there is
an absolute constant L such that for every fixed (ai )ni=1 ∈ R

n , ‖∑n
i=1 εi ai‖L2 ≤

L‖∑n
i=1 εi ai‖L1 . Therefore, there are constants c1(L) and c2(L) such that

Prε

⎛
⎝∣∣

n∑
i=1

εi |ti zi |
∣∣ > c1

(
n∑

i=1

t2i z
2
i

)1/2
⎞
⎠ ≥ c2

and all that remains is to show that with nontrivial probability,
∑n

i=1 t
2
i z

2
i ≥

c
∑n

i=1 t
2
i Ez

2
i .

In (2), let w =∑n
i=1 t

2
i z

2
i . By the L∞ bound on the zi ’s and since Ez2i = 1,

Ew2 = E

(
n∑

i=1

t2i z
2
i

)2

≤ M4

(
n∑

i=1

t2i

)2

= M4

(
E

(
n∑

i=1

t2i z
2
i

))2

= M4 (E |w|)2 .

Hence‖w‖L2 ≤ M2‖w‖L1 and the required estimate follows from thePaley-Zygmund
inequality.

In (1), by the small-ball property of the zi ’s,

n∑
i=1

t2i z
2
i ≥ κ2

n∑
i=1

t2i (Ez2i ) · 1{z2i ≥κEz2i
} = κ2

n∑
i=1

t2i (Ez2i ) · δi ,

where (δi )
n
i=1 independent selectors with mean at least ε. Again, one concludes by

invoking the Paley-Zygmund inequality for
∑n

i=1 t
2
i (Ez2i ) · δi . ��

Lemma 3.7 There exists an absolute constant c for which the following holds. Assume
that Z satisfies a small-ball condition with constants κ and ε and let (Zi )

N
i=1 be
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independent copies of Z. Then, with probability at least 1 − 2 exp(−cNε), there
is a subset I of {1, . . . , N } of cardinality at least (3/4)εN and for every i ∈ I ,
|Zi | ≥ κ‖Z‖L2 .

The proof, which we omit, is an immediate application of Bernstein’s inequality for
the i.i.d. selectors δi = 1{|Zi |≥κ‖Z‖L2 } for the choice of u = 1/4 in (3.1). Naturally, at
a price of a weaker probability estimate the constant 3/4 in Lemma 3.7 can be made
arbitrarily close to 1.

Combining the upper estimate from Lemma 3.1 and lower one from Lemma 3.7
yields the following corollary:

Corollary 3.8 There exist absolute constants c1 and c2 for which the following holds.
Assume that Z ∈ L2 and that it satisfies a small-ball condition with constants κ

and ε. Then, with probability at least 1 − 2 exp(−c1εN ), there is J ⊂ {1, . . . , N },
|J | ≥ εN/2 and for every j ∈ J ,

κ ‖Z‖L2 ≤ ∣∣Z j
∣∣ ≤ c2 ‖Z‖L2 /

√
ε.

Corollary 3.8 allows one to control the behaviour of (Zi )
N
i=1 on a subset of

{1, . . . , N } of cardinality ∼ εN , and with exponentially high probability. Moreover,
by modifying c1 and c2, the cardinality of J can be made arbitrarily close to εN .

Remark 3.9 Note that by the union bound, a version of Corollary 3.8 holds uni-
formly for a collection of exp(c1Nε/2) random variables with probability at least
1 − 2 exp(−c1Nε/2).

3.3 Uniform estimates on a class

Next, we use the estimates obtained above and study the structure of a typical coor-
dinate projection of a class H , Pσ H = {(h(Xi ))

N
i=1 : h ∈ H}. We show that with

high probability, for every function in H of sufficiently large L2 norm, most of the
coordinates of Pσ h are of the order of ‖h‖L2 . Such a result is an extension of Corol-
lary 3.8—from a single function to a class of functions—and the class we focus on in
what follows is H f ∗ = { f − f ∗ : f ∈ F}.

To quantify what is meant by “sufficiently large L2 norm”, recall that for H ⊂
L2(μ), {Gh : h ∈ H} is the canonical gaussian process indexed by H with a covariance
structure endowed by L2(μ).

Definition 3.10 Given a class of functions H ⊂ L2(μ), a sample size N and positive
constants ζ1 and ζ2 set

r1,Q(H, N , ζ1) = inf
{
r > 0 : E ‖G‖H∩r D ≤ ζ1r

√
N
}

, (3.4)

and put

r2,Q(H, N , ζ2) = inf

{
r > 0 : E sup

H∩r D

∣∣∣∣∣
1√
N

N∑
i=1

εi h(Xi )

∣∣∣∣∣ ≤ ζ2r
√
N

}
, (3.5)

where D is, as always, the unit ball of L2(μ).
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When the class H and sample size N are obvious from the context, we denote the
fixed points by r1,Q(ζ1) and r2,Q(ζ2) respectively.

Finally, set

rQ(ζ1, ζ2) = rQ(H, N , ζ1, ζ2) = max
{
r1,Q(ζ1), r2,Q(ζ2)

}
.

If H is star-shaped around 0, it is straightforward to show that when r > r1,Q(ζ1),
one has E‖G‖H∩r D ≤ ζ1r

√
N , while if r < r1,Q(ζ1), E‖G‖H∩r D ≥ ζ1r

√
N . A

similar observation is true for rQ,2(ζ2).

Theorem 3.11 There exist absolute constants c0, c1, c2, c3, c4 and c5 for which the
following holds. Let H be a class of functions that is star-shaped around 0 and that
satisfies a small-ball property with constants κ0 and ε. If ζ1 = c1κ0ε3/2, ζ2 = c2κ0ε
and r > rQ(ζ1, ζ2), there is Vr ⊂ H ∩ r S(L2) and an event �′ of probability at least
1 − 2 exp(−c0ε2N ), such that:

(1) |Vr | ≤ exp(c3εN ) and c3 ≤ 1/1000.
(2) On the event �′, for every v ∈ Vr there is a subset Iv ⊂ {1, . . . , N }, |Iv| ≥ εN/2

and for every i ∈ Iv ,

κ0r ≤ |v(Xi )| ≤ c4r/
√

ε.

(3) On the event �′, for every h ∈ H ∩ r S(L2) there is some v ∈ Vr and a subset
Jh ⊂ Iv , consisting of at least 3/4 of the coordinates of Iv (and in particular,
|Jh | ≥ εN/4), and for every j ∈ Jh,

(κ0/2) ‖h‖L2 ≤ ∣∣h(X j )
∣∣ ≤ c5

(
κ0 + 1/

√
ε
) ‖h‖L2

and

sgn(h(X j )) = sgn(v(X j )).

The idea of the proof is to find an appropriate net in H ∩ r S(L2) (the set Vr ), and
show that each point in the net has many ‘well-behaved’ coordinates in the sense of
(2). Also, if πh denotes the best approximation of h ∈ H ∩ r S(L2) in Vr with respect
to the L2 norm, then

sup
h∈H∩r S(L2)

1

N

N∑
i=1

|h − πh| (Xi )

is not very big, implying that |(h −πh)(Xi )| cannot have too many large coordinates.
Since h(Xi ) = (πh)(Xi )+ (h−πh)(Xi ), the first term is dominant on a proportional
number of coordinates, leading to (3).
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Proof Recall that by Corollary 3.8, if Z ∈ L2 satisfies the small-ball condition with
constants κ0 and ε then with probability at least 1 − 2 exp(−c1εN ), there is I ⊂
{1, . . . , N }, |I | ≥ εN/2 and for every i ∈ I ,

κ0 ‖Z‖L2 ≤ |Zi | ≤ c2 ‖Z‖L2 /
√

ε.

Fix ζ1 and ζ2 to be named later, let r > rQ(ζ1, ζ2) and set c′
1 = min{c1, 1/500}. Let

Vr ⊂ H∩r S(L2) be amaximal separated setwhose cardinality is atmost exp(c′
1εN/2)

and denote its mesh by η. Therefore, by Corollary 3.8 and the union bound, it follows
that with probability at least 1 − 2 exp(−c1εN/2), for every v ∈ Vr there is a subset
Iv as above, i.e., |Iv| ≥ εN/2 and for every i ∈ Iv ,

κ0r = κ0 ‖v‖L2 ≤ |v(Xi )| ≤ c2 ‖v‖L2 /
√

ε = c2r/
√

ε.

Moreover, by Sudakov’s inequality (see, e.g. [7,12,23]) and because r ≥ rQ,1(ζ1), it
follows that

η ≤ c3
E ‖G‖H∩r S(L2)√

c′
1Nε/2

≤ (c4ζ1/√ε
)
r

for c4 = √
2c3/

√
c′
1.

For every h ∈ H ∩ r S(L2), let πh ∈ Vr such that ‖h − πh‖L2 ≤ η, set uh =
1{|h−πh|>κ0r/2} and put

Ur = {uh : h ∈ H ∩ r S(L2)} .

Let φ(t) = t/(κ0r/2) and note that pointwise, for every uh ∈ Ur , uh(X) ≤ φ(|h −
πh|(X)).

Applying the Giné–Zinn symmetrization theorem (see, e.g., [25]) and recalling that
r > rQ,2(ζ2), one has

E sup
uh∈Ur

1

N

N∑
i=1

uh(Xi ) ≤ E sup
h∈H∩r S(L2)

1

N

N∑
i=1

φ (|h − πh| (Xi ))

≤ E sup
h∈H∩r S(L2)

∣∣∣∣∣
1

N

N∑
i=1

φ (|h − πh| (Xi )) − Eφ (|h − πh| (Xi ))

∣∣∣∣∣
+ sup

h∈H∩r S(L2)

Eφ (|h − πh|)

≤ 4

κ0r
·
(
E sup

h∈H∩r S(L2)

∣∣∣∣∣
1

N

N∑
i=1

εi (h − πh)(Xi )

∣∣∣∣∣+ sup
h∈H∩r S(L2)

‖h − πh‖L2

)

≤ 4

κ0r
· (2ζ2r + η) ≤ ε

32
,

provided that ζ1 ∼ κ0ε
3/2 and ζ2 ∼ κ0ε.
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Let ψ(X1, . . . , XN ) = supu∈Ur
1
N

∑N
i=1 u(Xi ). By the bounded differences

inequality (see, for example, [3]), with probability at least 1 − exp(−c5t2),

ψ(X1, . . . , XN ) ≤ Eψ + t√
N

.

Thus, for t = ε
√
N/32, with probability at least 1−exp(−c6ε2N ),ψ(X1, . . . , XN ) ≤

ε/16, implying that for every h ∈ H ∩ r S(L2),

|{i : |h − πh| (Xi ) ≤ (κ0/2)r}| ≥
(
1 − ε

16

)
N .

Recall that πh ∈ Vr and that |Iπh | ≥ εN/2. Let

Jh = { j : |h − πh| (X j ) ≤ (κ0/2)r
} ∩ Iπh

and thus Jh consists of at least 3/4 of the coordinates in Iπh and |Jh | ≥ εN/4.
Moreover, for every j ∈ Jh ,

∣∣h(X j )
∣∣ ≥ ∣∣πh(X j )

∣∣− ∣∣(h − πh)(X j )
∣∣ ≥ κ0r − (κ0/2)r = (κ0/2)r, (3.6)

which also shows that sgn(h(X j )) = sgn(πh(X j )).
The upper estimate follows from a similar argument, using that |h(X j )| ≤

|πh(X j )| + |(h − πh)(X j )|. ��
Remark 3.12 Observe that by the star-shape property of H , if ρ1 > ρ2, then

1

ρ1
(H ∩ ρ1S(L2)) ⊂ 1

ρ2
(H ∩ ρ2S(L2)) .

Therefore, certain features of H ∩ ρ2S(L2) are automatically transferred to H ∩
ρ1S(L2), and in particular, a version of Theorem 3.11 holds uniformly for every
level that is ‘larger’ than 2rQ(ζ1, ζ2). Indeed, assume that one has chosen ρ2 = 2rQ
in Theorem 3.11 and fix h ∈ H ∩ ρ1S(L2). By applying Theorem 3.11 to h′ =
(ρ2/ρ1)h ∈ H ∩ ρ2S(L2) it follows that on the event �′ there is a subset J of
{1, . . . , N } of cardinality at least εN/4 on which

∣∣h(X j )
∣∣ ≥ (κ0/2)ρ1 and sgn(h(X j )) = sgn

(
πh′) (X j ).

Next, let F ⊂ L2 be a convex set, fix f ∗ ∈ F and put H f ∗ = { f − f ∗ : f ∈ F}.
Since H f ∗ is clearly star-shaped around 0 and H f ∗ ⊂ F − F one has:

Corollary 3.13 If F is a convex class of functions, F−F satisfies a small-ball property
with constants κ0 and ε, and r = 2rQ(F − F, N , ζ1, ζ2), then with probability at
least 1 − 2 exp(−c0ε2N ), the following holds. For every f1, f2 ∈ F that satisfy
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‖ f1 − f2‖L2 ≥ r , there is a subset J f1, f2 ⊂ {1, . . . , N } of cardinality at least εN/4
and for every j ∈ J f1, f2 ,

∣∣( f1 − f2)(X j )
∣∣ ≥ (κ0/2) ‖ f1 − f2‖L2

.

In particular, on the same event,

inf{
f ∈F :‖ f− f ∗‖L2≥2rQ

}
1

N

N∑
i=1

(
f − f ∗

‖ f − f ∗‖L2

)2
(Xi ) ≥ εκ2

0

16
.

4 The quadratic component of the loss

Following the path of the exclusion argument, the aim is to show that the quadratic
component of the loss is sufficiently positive. And, although the results are formulated
below in full generality, there are three examples that one should keep in mind: First,
when � is strongly convex; second, when � is a general loss function and Y = f0(X)+
W for some f0 ∈ F and a symmetric random variable W that is independent of X ;
finally, a situation that is, in some sense, a mixture of the two: a loss function that
is guaranteed to be strongly convex only in a neighbourhood of 0 (for example, the
loss functions (2.1) and (2.2)), and without assuming that the noise Y − f ∗(X) is
independent of X .

Throughout this section we assume that F is a convex class of functions and that
F−F = { f −h : f, h ∈ F} satisfies a small-ball property with constants κ0 and ε. Set
rQ = rQ(F − F, N , ζ1, ζ2) with the choice of ζ1 and ζ2 as in Theorem 3.11—namely,
ζ1 ∼ κ0ε

3/2 and ζ2 ∼ κ0ε. Also assume that �′′ exists everywhere except perhaps at
±x0 and set for every 0 < t1 < t2

ρ(t1, t2) = inf
{
�′′(x) : x ∈ [t1, t2], x 
= ±x0

}
. (4.1)

The following lower bound on the quadratic component in the strongly convex
case is an immediate application of Corollary 3.13 and the fact that Q f − f ∗(X,Y ) �
�′′(Z)( f − f ∗)2(X) for an appropriate mid-point Z . Its proof is omitted.

Theorem 4.1 There exists an absolute constant c1 for which the following holds. If
infx∈R\{±x0} �′′(x) ≥ 2c0, then with probability at least 1−2 exp(−c1Nε2), for every
f ∈ F with ‖ f − f ∗‖L2 ≥ 2rQ,

PNQ f − f ∗ ≥ c0εκ2
0

16

∥∥ f − f ∗∥∥2
L2

.

Theorem 4.1 generalizes a similar result from [19] for the squared loss.
Turning to the more difficult (and interesting) problem of a loss that need not be

strongly convex, we begin with the case of independent noise.
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Assumption 4.1 Assume that Y = f0(X) + W for f0 ∈ F and a symmetric random
variable W ∈ L2 that is independent of X and for which

Pr
(|W | ≤ κ1 ‖W‖L2

) ≤ ε/1000. (4.2)

Clearly, f ∗ = f0; moreover, (4.2) is a rather minimal assumption, as a small-ball
condition for a single function at one level holds when the function is absolutely
continuous, by selecting the right value κ1.

Given a sample (Xi ,Yi )Ni=1 let Wi = Yi − f ∗(Xi ) and set Zi to be the mid-points
in the lower bound on the quadratic component of �—again using the fact that for the
losses in question, Q f − f ∗(Xi ,Yi ) � �′′(Zi )( f − f ∗)2(Xi ).

Theorem 4.2 There exist absolute constants c1, c2, c3 and c4 for which the following
holds. Let F and W be as above. With probability at least 1 − 2 exp(−c1ε2N ), for
every f ∈ F that satisfies ‖ f − f ∗‖L2 ≥ 2rQ one has

PNQ f− f ∗ ≥ c2εκ
2
0ρ(t1, t2)

∥∥ f − f ∗∥∥2
L2

.

where

t1 = κ1 ‖W‖L2 and t2 = c3ε
−1/2 ‖W‖L2 + c4

(
κ0 + ε−1/2

) ∥∥ f − f ∗∥∥
L2

.

The proof of Theorem 4.2 is based on several observations leading to accurate
informationon the ‘location’ of themidpoints Zi in the lower boundonQ f − f ∗(Xi ,Yi ).
For every (X,Y ), the corresponding mid-point belongs to interval whose end-points
are ( f − f ∗)(X)−W and−W . If I f is the set of coordinates on which |( f − f ∗)(Xi )|
is of the order of ‖ f − f ∗‖L2 , and since X andW are independent andW is symmetric,
then on roughly half of these coordinates the signs of ( f − f ∗)(Xi ) coincide with the
signs of −Wi . For those coordinates,

|Zi | ∈ [|Wi | , |Wi | + ∣∣( f − f ∗) (Xi )
∣∣] .

Moreover, by excluding a further, sufficiently small proportion of the coordinates
in I f it follows that |Wi | ∼ ‖W‖L2 , as long as W is not highly concentrated around
zero.

The difficulty is in making this argument uniform, in the sense that it should hold
for every f ∈ F rather than for a specific choice of f . The first step towards such a
uniform result is the following lemma.

Lemma 4.3 Let 1 ≤ k ≤ m/40 and set S ⊂ {−1, 0, 1}m of cardinality at most
exp(k). For every s = (s(i))mi=1 ∈ S set Is = {i : s(i) 
= 0} and assume that
|Is | ≥ 40k. If (εi )

m
i=1 are independent, symmetric {−1, 1}-valued random variables

then with probability at least 1 − 2 exp(−k), for every s ∈ S,

|{i ∈ Is : sgn(s(i)) = εi }| ≥ |Is | /3.
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Proof For every fixed s ∈ S, the event |{i : (s(i))i∈Is = εi }| ≥ � has the same
distribution as |{i ∈ Is : εi = 1}| ≥ �. If (δi )i∈Is are selectors of mean 1/2 then

Pr (|{i ∈ Is : s(i) = εi }| ≥ �) = Pr

⎛
⎝

|Is |∑
i=1

δi ≥ �

⎞
⎠ = (∗).

Applying Bernstein’s inequality for � = |Is |/3,

(∗) ≥ 1 − Pr

⎛
⎝
∣∣∣∣∣∣
1

|Is |
|Is |∑
i=1

δi − 1

2

∣∣∣∣∣∣
≥ 1

6

⎞
⎠ ≥ 1 − 2 exp (− |Is | /20) ,

and by the union bound,

Pr (for every s ∈ S, |{i ∈ Is : s(i) = εi }| ≥ |Is | /3) ≥ 1 − 2 |S| exp (−|Is |/20)
≥ 1 − 2 exp(−k).

��
Let r be as in Theorem 3.11 for the class H f ∗ = F − f ∗ and set �′ to be the event

on which the assertion of Theorem 3.11 holds. Using the notation of that theorem,
consider r = 2rQ and the set Vr . For every v ∈ Vr and a sample (X1, . . . , XN ) ∈ �′,
let Iv = {i : κ0r ≤ |v(Xi )| ≤ c1r/

√
ε},

sv = (sgn(v(Xi )) · 1Iv (Xi )
)N
i=1 and S = {sv : v ∈ Vr } ⊂ {−1, 0, 1}N .

By Theorem 3.11, Pr(�′) ≥ 1 − 2 exp(−c2ε2N ) and on �′,

|S| ≤ exp (εN/1000) and min
v∈V |Iv| ≥ εN/2.

Lemma 4.4 Conditioned on �′, with probability at least 1 − 2 exp(−c0εN ) with
respect to the uniform measure on {−1, 1}N , the following holds. For every h ∈ H f ∗
with ‖h‖L2 ≥ r , there is subset Ih ⊂ {1, . . . , N } of cardinality at least εN/24, and
for every i ∈ Ih,

(κ0/2) ‖h‖L2 ≤ |h(Xi )| ≤ c1
(
κ0 + 1/

√
ε
) ‖h‖L2 and sgn(h(Xi )) = εi .

Proof Fix h ∈ H with ‖h‖L2 = r and let πh = v ∈ Vr be as in Theorem 3.11. Recall
that there is a subset Jh ⊂ Iv consisting of at least 3/4 of the coordinates of Iv , such
that for every j ∈ Jh ,

(κ0/2)r ≤ ∣∣h(X j )
∣∣ ≤ c1

(
κ0 + 1/

√
ε
)
r and sgn(h(X j )) = sgn(v(X j )).

Applying Lemma 4.3 to the set S = {sv : v ∈ Vr } for k = εN/1000, and noting that
for every sv ∈ S, |{i : sv(i) 
= 0}| ≥ εN/2 ≥ 40k, it follows that with probability
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Learning without concentration for general loss functions 483

at least 1 − 2 exp(−c2εN ) (relative to the uniform measure on {−1, 1}N ), for every
v ∈ Vr , sv(i) = εi on at least 1/3 of the coordinates that belong to Iv .

Since the set Jh contains at least 3/4 of the coordinates of Iv and v(Xi ) = εi on at
least a 1/3 of the coordinates of Iv it follows that on the coordinates that belong to the
intersection of these two sets (at least 1/12 of the coordinates in Iv), both conditions
hold, as claimed.

Finally, the claim is positive homogeneous and because H f ∗ is star-shaped around
0, it holds on the same event when ‖h‖L2 ≥ r . ��
Corollary 4.5 There exist absolute constants c0 and c1 for which the following holds.
Let F and W be as above. With probability at least 1 − 2 exp(−c0ε2N ) with respect
to the product measure (X ⊗ W )N , for every f ∈ F with ‖ f − f ∗‖L2 ≥ 2rQ there
is a (random) subset J f ⊂ {1, . . . , N } of cardinality at least εN/100, and for every
j ∈ J f ,

1. (κ0/2)‖ f − f ∗‖L2 ≤ |( f − f ∗)(X j )| ≤ c1(κ0 + 1/
√

ε)‖ f − f ∗‖L2 ,
2. sgn(( f − f ∗)(Xi )) = sgn(−W ), and
3. κ1‖W‖L2 ≤ |Wj | ≤ c2‖W‖L2/

√
ε.

Proof Recall that W is symmetric and therefore it has the same distribution as η|W |
for a symmetric {−1, 1}-valued random variable η that is independent of |W | and of
X .

Considering (ηi |Wi |)Ni=1, a direct application of Lemma 4.4 shows that with
probability at least 1 − 2 exp(−c0ε2N ), if ‖ f − f ∗‖L2 ≥ 2rQ , there is a subset
I f ⊂ {1, . . . , N } of cardinality at least εN/24, and for every i ∈ I f ,

(κ0/2)
∥∥ f − f ∗∥∥

L2
≤ ∣∣( f − f ∗)(X j )

∣∣ ≤ c1
(
κ0 + 1/

√
ε
) ∥∥ f − f ∗∥∥

L2

and

sgn
(
( f − f ∗)(Xi )

) = sgn(−ηi ).

The final component is that for many of the coordinates in I f , |Wi | ∼ ‖W‖L2 .
Indeed, by excluding the largest and smallest εN/200 coordinates of (|Wi |)i∈I f , one
obtains a subset J f ⊂ I f of cardinality at least εN/100, and for every j ∈ J f ,

W ∗
N (1−ε/200) ≤ ∣∣Wj

∣∣ ≤ W ∗
εN/200,

where (W ∗
i )Ni=1 is the non-increasing rearrangement of (|Wi |)Ni=1.

Observe that by Lemma 3.1 applied to ε′ = ε/200, with probability at least 1 −
2 exp(−c2Nε),

W ∗
εN/200 ≤ c3ε

−1/2 ‖W‖L2 .

Moreover, recalling that Pr(|W | ≤ κ1‖W‖L2) ≤ ε/1000, a straightforward applica-
tion of a binomial estimate shows that with probability at least 1 − 2 exp(−c4Nε),
there are at most εN/200Wi ’s that satisfy |Wi | < κ1‖W‖L2 . Therefore, on that event,
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W ∗
(1−ε/200)N ≥ κ1 ‖W‖L2 ,

completing the proof. ��
Proof of Theorem 4.2 The convexity of � implies thatQ f− f ∗ is nonnegative. Consider
the event from Corollary 4.5, and given f ∈ F for which ‖ f − f ∗‖L2 ≥ 2rQ let
J f ⊂ {1, . . . , N } be the set of coordinates as above: that is, for every j ∈ J f ,

(κ0/2)
∥∥ f − f ∗∥∥

L2
≤ ∣∣( f − f ∗)

∣∣ (X j ) ≤ c1
(
κ0 + 1

√
ε
) ∥∥ f − f ∗∥∥

L2

and if j ∈ J f , −Wj and ( f − f ∗)(X j ) share the same sign—say positive. Thus,
the mid-point Z j belongs to the interval whose end-points are t1 = κ1‖W‖L2 and
t2 = c1(κ0 + 1

√
ε)‖ f − f ∗‖L2 + c2‖W‖L2/

√
ε, implying that

PNQ f − f ∗ ≥ 1

N

∑
j∈J f

�′′(Zi )( f − f ∗)2(Xi ) ≥ c3ερ(t1, t2)κ
2
0

∥∥ f − f ∗∥∥2
L2

.

��
Next, consider the general noise scenario, in which ξ = f ∗(X) − Y need not be

independent of X , nor does it necessarily satisfy a small-ball condition.
It is straightforward to verify that the only place in the proof above where the

assumption that ξ and X are independent has been used, was to find a large subset of
{1, . . . , N } on which ( f − f ∗)(Xi ) and ξi share the same sign. Also, the assumption
that the noise satisfies a small-ball condition is only used to show that many of the |ξi |’s
are sufficiently large—at least of the order of ‖ξ‖L2 . Both components are not needed
if one wishes to show that |Zi | ≤ c(κ0, ε)(‖ξ‖L2 + ‖ f − f ∗‖L2) for a proportional
number of coordinates.

Indeed, with high probability, if ‖ f − f ∗‖L2 ≥ 2rQ , there is a subset of {1, . . . , N }
of cardinality at least εN/100 on which

|Zi | �
(
κ0 + 1/

√
ε
) ·
(∥∥ f − f ∗∥∥

L2
+ ‖ξ‖L2

)
.

Formally, one has:

Theorem 4.6 There exist absolute constants c0, c1 and c2 for which the following
holds. Let F be as above, set Y ∈ L2 and put ξ = f ∗(X) − Y . Then, with probability
at least 1 − 2 exp(−c0ε2N ), for every f ∈ F with ‖ f − f ∗‖L2 ≥ 2rQ,

PNQ f − f ∗ ≥ c1εκ
2
0ρ(0, t)

∥∥ f − f ∗∥∥2
L2

,

for t = c2(κ0 + ε−1/2) · (‖ f − f ∗‖L2 + ‖ξ‖L2).

Remark 4.7 (1) The assumption in Theorem 4.2 that the noise is independent of X
allows one to obtain a positive lower bound on t1 of the order of the variance
‖W‖L2 . This is significant when the loss function is not strongly convex in a large
enough neighbourhood of zero (for example, when �(t) = t p for p > 2).
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(2) When F is bounded in L2, one may use the trivial bound ‖ f − f ∗‖L2 ≤
diam(F, L2) and replace t2 by c(ε, κ0)(‖ξ‖L2 + diam(F, L2)). This is of little
importance when �′′ decreases slowly, but matters a great deal when, for example,
it has a compact support. Consider, for example, the Huber loss with parameter γ .
If γ ∼ ‖ξ‖L2 + diam(F, L2) then ρ(0, t2) = 1, but as stated, for a smaller value
of γ , ρ(0, t) = 0 leading to a useless estimate on the quadratic component.
It turns out that one may improve Theorem 4.6 dramatically by ruling-out func-
tions in F for which ‖ f − f ∗‖L2 is significantly larger than ‖ξ‖L2 as potential
empirical minimizers, implying that one may set t = c(κ0, ε)‖ξ‖L2 rather than
t = c(κ0, ε)(‖ξ‖L2 + diam(F, L2)). We present this additional exclusion argu-
ment in Section 5.1.

5 Error estimates and oracle inequalities

Let us explore themultiplier component of the process, defined by f → 1
N

∑N
i=1 �′(ξi )

( f − f ∗)(Xi ).
The following complexity term may be used to control the multiplier process, and

is similar to the one used in [19].

Definition 5.1 Given a loss function �, let φ�
N (r) be the random function

φ�
N (r) = 1√

N
sup{

f ∈F :‖ f − f ∗‖L2≤r
}

∣∣∣∣∣
N∑
i=1

εi�
′(ξi )( f − f ∗)(Xi )

∣∣∣∣∣ .

Note that the randomness of φ�
N (r) is in (ξi )

N
i=1, (Xi )

N
i=1 and the independent random

signs (εi )
N
i=1.

Set

r ′
M (κ, δ) = inf

{
r > 0 : Pr

(
φ�
N (r) ≤ r2κ

√
N
)

≥ 1 − δ
}

,

recall that H f ∗ = F − f ∗, put

r0(κ) = inf

{
r : sup

h∈H f ∗∩r D
∥∥�′(ξ)h(X)

∥∥
L2

≤ √
Nκr2/4

}

and let

rM (κ, δ) = r ′
M (κ, δ) + r0(κ).

The function φ�
N (r) and the definition of rM arise naturally from a symmetrization

argument. Indeed, it is well known that
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Pr

(
sup

h∈H f ∗∩r D

∣∣∣∣∣
1

N

N∑
i=1

�′(ξi )h(Xi ) − E�′(ξ)h(X)

∣∣∣∣∣ > x

)

≤ 2Pr

(
sup

h∈H f ∗∩r D

∣∣∣∣∣
1

N

N∑
i=1

εi�
′(ξi )h(Xi )

∣∣∣∣∣ >
x

4

)
, (5.1)

provided that x ≥ 4N−1/2 suph∈H f ∗∩r D ‖�′(ξ)h(X)‖L2 (see, e.g. [8])

Lemma 5.2 If F is a convex class of functions and r = 2rM (κ/4, δ/2) then with
probability at least 1 − δ, for every f ∈ F such that ‖ f − f ∗‖L2 ≥ r , one has

∣∣∣∣∣
1

N

N∑
i=1

�′(ξi )( f − f ∗)(Xi ) − E�′(ξ)( f − f ∗)(X)

∣∣∣∣∣ ≤ κ max
{∥∥ f − f ∗∥∥2

L2
, r2
}

.

Proof The class F is convex and therefore H f ∗ = F − f ∗ is star-shaped around 0.
Also, r ≥ r0, implying that 4N−1/2 suph∈H f ∗∩r D ‖�′(ξ)h(X)‖L2 ≤ κr2. By (5.1) for

x = κr2, one has

Pr

(
sup

h∈H f ∗∩r D

∣∣∣∣∣
1

N

N∑
i=1

�′(ξi )h(Xi ) − E�′(ξ)h(X)

∣∣∣∣∣ > κr2
)

≤ 2Pr

(
φ�
N (r) >

κr2

4

)
≤ δ,

because r > r ′
M (κ/4, δ/2).

Using once again that H f ∗ is star-shaped around 0, it follows that if ‖ f − f ∗‖L2 ≥ r
then r( f − f ∗)/‖ f − f ∗‖L2 ∈ H f ∗ ∩ r S(L2); thus,

∣∣∣∣∣
1

N

N∑
i=1

�′(ξi )( f − f ∗)(Xi ) − E�′(ξ)( f − f ∗)(X)

∣∣∣∣∣ ≤ κ
∥∥ f − f ∗∥∥2

L2
.

��
The function φ�

N (r) is a natural geometric parameter: it is the ‘weighted width’ of
the coordinate projection of H f ∗ ∩ r D in a random direction selected according to
a symmetrized noise vector, which is a point-wise product of a vector that belongs
to the combinatorial cube {−1, 1}N and the ‘noise multipliers’ (�′(ξi ))Ni=1 for ξi =
f ∗(Xi ) − Yi .
The more standard counterparts of φ�

N (r), appearing in Theorem 1.3 and in similar
results of that flavour, are the random function

sup
f ∈F∩r D f ∗

∣∣∣∣∣
1

N

N∑
i=1

εi ( f − f ∗)(Xi )

∣∣∣∣∣ ;
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the conditional expectation—the so-called Rademacher average

Eε

(
sup

f ∈F∩r D f ∗

∣∣∣∣∣
1

N

N∑
i=1

εi ( f − f ∗)(Xi )

∣∣∣∣∣
∣∣(Xi )

N
i=1

)
;

and its expectation with respect to both (εi )
N
i=1 ⊗ (Xi )

N
i=1. Those represent the width

or average width of

Pσ (H f ∗ ∩ r D) =
{(

( f − f ∗)(Xi )
)N
i=1 : f ∈ F,

∥∥ f − f ∗∥∥
L2

≤ r
}

relative to a generic noise model, given by the random vector (εi )
N
i=1 weighted by

the constant ‖�‖lip. A contraction argument shows that the typical width relative to a
‘generic noise’ vector dominates the typical width relative to the natural noise vector
(εi�

′(ξi ))Ni=1, implying that φ�
N is inherently superior to the generic complexity term.

Remark 5.3 It is straightforward to verify thatwhen F consists of heavy-tailed random
variables or if Y is a heavy-tailed random variable then the random sets

{(
�′(ξi )( f − f ∗)(Xi )

)N
i=1 : f ∈ F,

∥∥ f − f ∗∥∥
L2

≤ r
}

are weakly bounded. The unfortunate byproduct is that φ�
N (r) may exhibit rather poor

concentration around its conditional mean or its true mean. This is why rM is defined
using φ�

N rather than by the conditional mean or by its true mean: unlike bounded
problems or subgaussian ones, there might be a substantial gap between the fixed
point defined using φ�

N and the one defined using those means.

Combining the bounds on the quadratic and multiplier terms with Theorems 2.3
and 2.4, one has the following:

Theorem 5.4 For every κ0 and 0 < ε < 1 there exist constants c0, c1, c2 and c3 that
depend only on κ0 and ε, and an absolute constant c4 for which the following holds.
Let F be a convex class of functions and assume that F − F satisfies a small-ball
property with constants κ0 and ε. Set t1 = 0, t2 = c0(κ0, ε)(‖ξ‖L2 + diam(F, L2)),
ζ1 = c1(κ0, ε), ζ2 = c2(κ0, ε) and put θ = c3(κ0, ε)ρ(t1, t2). Then,

• With probability at least 1 − δ − 2 exp(−c4Nε2),

∥∥∥ f̂ − f ∗
∥∥∥
L2

≤ 2max
{
rQ(ζ1, ζ2), rM (θ/16, δ/2)

}
.

• If � satisfies Assumption 2.2 with a constant β, then with the same probability
estimate,

EL f̂ ≤ 2(θ + β)max
{
rQ(ζ1, ζ2), rM (θ/16, δ/2)

}
.
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Proof By Theorem 4.6, there is an absolute constant c0 and an event of probability at
least 1 − 2 exp(−c0ε2N ), on which, if ‖ f − f ∗‖L2 ≥ 2rQ then

PNQ f − f ∗ ≥ θ
∥∥ f − f ∗∥∥2

L2
.

And, by Lemma 5.2, on an event of probability at least 1 − δ, if ‖ f − f ∗‖L2 ≥
2rM (θ/16, δ/2), then

∣∣PNM f − f ∗
∣∣ ≤ (θ/4)

∥∥ f − f ∗∥∥2
L2

.

Using the notation of Theorems 2.3 and 2.4, the first event is B, the second in A and
the claim follow. ��

Theorem 5.4 is close to the result we would like to establish, with one significant
step still missing: t2 is not of the order of ‖ξ‖L2 . This is of little significance in the
strongly convex case, but requires an additional argument when dealing with a general
convex loss. That final step is presented next.

5.1 The main results

Let us begin by showing how to improve the choice of t2 from c(κ0, ε)(‖ξ‖L2 +
diam(F, L2)) to the potentially much smaller 2c(κ0, ε)‖ξ‖L2 . To that end, we show
that with high probability, the empirical minimizer does not belong to the set

{
f ∈ F : ∥∥ f − f ∗∥∥

L2
≥ max

{‖ξ‖L2
, 2rQ

}}
.

Once that is established, the study of ERM in F may be reduced to the set F ∩
max{‖ξ‖L2 , 2rQ}D f ∗ , and in which case, Theorem 5.4 may be used directly, as the
diameter of the class in question is ∼ max{‖ξ‖L2 , rQ}.

Recall that

Q f − f ∗ =
∫ ξ+( f − f ∗)(X)

ξ

(
�′(w) − �′(ξ)

)
dw. (5.2)

Using Theorem 4.6, there are absolute constants c0, c1 and c2 for which, with proba-
bility at least 1 − 2 exp(−c0ε2N ), if ‖ f − f ∗‖L2 ≥ 2rQ , then

PNQ f − f ∗ ≥ c1εκ
2
0ρ(0, t)

∥∥ f − f ∗∥∥2
L2

, (5.3)

where t = c2(κ0 + ε−1/2) · (‖ f − f ∗‖L2 + ‖ξ‖L2).
Let θ = c1εκ2

0ρ(0, t) for t = 2c2(κ0 + ε−1/2)max{‖ξ‖L2 , rQ} and assume further
that

rM (θ/16, δ/2) ≤ max
{‖ξ‖L2

, 2rQ
}
.
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Theorem 5.5 On an event of probability at least 1 − δ − 2 exp(−c0Nε2),

∥∥∥ f̂ − f ∗
∥∥∥
L2

≤ max
{‖ξ‖L2

, 2rQ
}
.

The proof of Theorem 5.5 is based on several observations.
Note that if h ∈ F and ‖h− f ∗‖L2 > R, there is some λ > 1 and f ∈ F for which

‖ f − f ∗‖L2 = R and λ( f − f ∗) = (h − f ∗). Indeed, set λ = ‖h − f ∗‖L2/R > 1
and put f = h/λ + (1 − 1/λ) f ∗; by convexity, f ∈ F . Hence, for every R > 0,

{
h − f ∗ : h ∈ F,

∥∥h − f ∗∥∥
L2

≥ R
}

⊂
{
λ( f − f ∗) : λ ≥ 1, f ∈ F,

∥∥ f − f ∗∥∥
L2

= R
}

. (5.4)

Lemma 5.6 On the event where (5.3) holds, if ‖ f − f ∗‖L2 = max{‖ξ‖L2 , 2rQ} and
λ ≥ 1 then

PNQλ( f − f ∗) ≥ �λ�θ max
{
‖ξ‖2L2

, 4r2Q
}

.

Proof Fix a, x ∈ R and observe that for every λ ≥ 1,

∫ a+λx

a

(
�′(w) − �′(a)

)
dw ≥ �λ�

∫ a+x

a

(
�′(w) − �′(a)

)
dw. (5.5)

To see this, let x > 0 and write

∫ a+λx

a

(
�′(w) − �′(a)

)
dw =

�λ�−1∑
j=0

∫ a+( j+1)x

a+ j x

(
�′(w) − �′(a)

)
dw

+
∫ a+λx

a+�λ�
(
�′(w) − �′(a)

)
dw.

Since �′(w) − �′(a) is an increasing function in w, the first term in the sum is the
smallest and

∫ a+λx

a

(
�′(w) − �′(a)

)
dw ≥ �λ�

∫ a+x

a

(
�′(w) − �′(a)

)
dw.

The case where x < 0 is equally simple.
When (5.5) is applied to (5.2), it follows that pointwise,

Qλ( f − f ∗) =
∫ ξ+λ( f − f ∗)(X)

ξ

(
�′(w) − �′(ξ)

)
dw ≥ �λ�Q f − f ∗ ,

and by the lower bound on PNQ f− f ∗ the claim follows. ��
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Proof of Theorem 5.5 Recall thatwe assume that rM (θ/16, δ/2) ≤ max{‖ξ‖L2 , 2rQ};
hence, with probability at least 1 − δ, if ‖ f − f ∗‖L2 ≤ max{‖ξ‖L2 , 2rQ} then

∣∣PNM f − f ∗
∣∣ =

∣∣∣∣∣
1

N

N∑
i=1

�′(ξi )( f − f ∗)(Xi )

∣∣∣∣∣ ≤ (θ/4)max
{
‖ξ‖2L2

, 4r2Q
}

.

Also, PNM f − f ∗ is linear in f − f ∗ and it follows that for every λ ≥ 1,

∣∣PNMλ( f − f ∗)
∣∣ =
∣∣∣∣∣
1

N

N∑
i=1

�′(ξi )λ( f − f ∗)(Xi )

∣∣∣∣∣ = λ
∣∣PNM f − f ∗

∣∣

≤ λ(θ/4)max
{
‖ξ‖2L2

, 4r2Q
}

.

Combining this with the lower bound on PNQ f− f ∗ shows that with probability at
least 1 − δ − 2 exp(−c0ε2N ), if ‖ f − f ∗‖L2 = max{‖ξ‖L2 , 2rQ} and λ ≥ 1 then

PNQλ( f− f ∗) − ∣∣PNMλ( f− f ∗)
∣∣ ≥ λ(θ/2)max

{
‖ξ‖2L2

, 4r2Q
}

> 0.

Thus, by (5.4), on that event the empirical minimizer belongs to the set

F ∩ max
{‖ξ‖L2

, 2rQ
}
D f ∗ .

��
Now we are finally ready to formulate and prove the main results of the article.

Theorem 5.7 For every κ0 and 0 < ε < 1 there exist constants c0, c1, c2 and c3 that
depend only on κ0 and ε, and an absolute constant c4 for which the following holds.

Let F be a convex class of functions and assume that F − F satisfies the small-ball
property with constants κ0 and ε. Set t1 = 0 and t2 = c0(ε, κ0)‖ξ‖L2 , ζ1 = c1(ε, κ0)
and ζ2 = c2(ε, κ0). Put θ = c3(ε, κ0)ρ(t1, t2).

If rM (θ/16, δ/2) ≤ max{‖ξ‖L2 , 2rQ(ζ1, ζ2)}, then with probability at least 1−δ−
2 exp(−c4Nε2),

• ‖ f̂ − f ∗‖L2 ≤ 2max{rQ(ζ1, ζ2), rM (θ/16, δ/2)}.
• If � satisfies Assumption 2.2 with a constant β then with the same probability
estimate,

EL f̂ ≤ 2(θ + β)max
{
rQ(ζ1, ζ2), rM (θ/16, δ/2)

}
.

• If ξ is independent of X and satisfies a small-ball condition with constants κ1 and
ε, one may take t1 = c5κ1‖ξ‖L2 for a constant c5 = c5(ε), and the two assertions
formulated above hold as well.
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Proof By the preliminary exclusion argument of Theorem 5.5, with probability at
least 1− δ − 2 exp(−c0Nε2), ‖ f̂ − f ∗‖L2 ≤ max{‖ξ‖L2 , 2rQ}. If ‖ξ‖L2 ≤ 2rQ then
Theorem 5.5 suffices to prove the assertion of Theorem 5.7. Otherwise, the assertion
follows from Theorem 5.4, applied to the class F ∩ ‖ξ‖L2D f ∗ . ��

The second main result deals with the case in which � is strongly convex in a
neighbourhood of zero.

Theorem 5.8 For every κ0 and 0 < ε < 1 there exist constants c0, c1, c2 and c3 that
depend only on κ0 and ε, and an absolute constant c4 for which the following holds.

Assume that � is strongly convex in the interval [−γ, γ ] with a constant κ2 and that
‖ξ‖L2 ≤ c0γ .

Assume further that F is a convex class of functions and that F − F satisfies the
small-ball property with constants κ0 and ε. Set ζ1 = c1(κ0, ε), ζ2 = c2(κ0, ε) and
θ = c3(κ0, ε)κ2.

If rM (θ/16, δ/2) ≤ γ , then with probability at least 1 − δ − 2 exp(−c4Nε2),

• ‖ f̂ − f ∗‖L2 ≤ 2max{rQ(ζ1, ζ2), rM (θ/16, δ/2)}.
• If � satisfies Assumption 2.2 with a constant β then with the same probability
estimate,

EL f̂ ≤ 2(θ + β)max
{
rQ(ζ1, ζ2), rM (θ/16, δ/2)

}
.

The proof of Theorem 5.8 is almost identical to that of Theorem 5.7, with one
difference: when γ > 2rQ then instead of considering the preliminary exclusion
argument of Theorem 5.5 at the level ∼ max{‖ξ‖L2 , 2rQ}, one performs preliminary
exclusion at the level γ , and with an identical proof. The rest of the argument remains
unchanged and we omit its details.

At this point, let us return to the rather detailed ‘wish list’ that was outlined in the
introduction regarding the parameters governing prediction and estimation problems
and see where we stand.

Theorems 5.7 and 5.8 lead to bounds on Ep and Ee without assuming that the class
consists of uniformly bounded or subgaussian functions, nor that the target is even
in L p for some p > 2. And, under a minor smoothness assumption, � need not be a
Lipschitz function. Thus, all the restrictions of the classical method and of subgaussian
learning have been bypassed successfully.

As for the complexity parameters involved, rQ is indeed an intrinsic parameter of
the class F and has nothing to do with the choice of the loss or with the target. It does
measure (with the very high probability of 1 − 2 exp(−cε2N )), the L2 diameter of
the version space of F associated with f ∗, and thus corresponds to the solution of the
noise-free problem.

The noise and loss influence the problem in two places. In the quadratic component,
the loss has to be calibrated to fit the noise level: the loss must be strongly convex in
the interval [0, c1(κ0, ε)‖ξ‖L2 ], or, when the noise is independent, it suffices that the
loss is strongly convex in the smaller interval [c2(κ1, ε)‖ξ‖L2 , c1(κ0, ε)‖ξ‖L2 ]. The
strong convexity constant in those intervals also determines the level θ appearing in
the definition of the multiplier component.
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Although the noise and loss affect the quadratic component, their main impact
is seen in the multiplier component, and thus in the external complexity parameter
rM . Indeed, while the quadratic component and the level ∼ θ of a given class will
be exactly the same for any loss that has the same strong convexity constant in the
interval [0, c1(κ0, ε)‖ξ‖L2 ], the difference between losses is ‘coded’ in rM . And, as
expected, the interaction between the class, the noise and the loss is captured by a
single parameter: the correlation (or width) of a random coordinate projection of the
localized class with the random vector (εi�

′(ξi ))Ni=1.
Therefore, the ‘wish list’ is satisfied in full: without any boundedness assump-

tions and for a rather general loss function, prediction and estimation problems
exhibit the expected two-regime behaviour: a ‘low-noise’ regime captured by an
intrinsic parameter and a ‘high-noise’ regime by an external one. The exact nature
of the loss and noise determines the external parameter only through the multi-
plier vector (εi�

′(ξi ))Ni=1, and this random vector also determines where the phase
transition between the high-noise regime, in which the external parameter rM is dom-
inant, and the low-noise one, in which the intrinsic parameter rQ is dominant, takes
place.

The one remaining issue still left open is to show that selecting the loss with some
care may be used to negate the effects of noise related outliers.

6 Loss functions and the removal of outliers

Damaging outliers appear when sample points are far from where one would expect
them to be, and the loss assigns a large value to those points. This combination means
that outliers actually have a true impact on the empirical mean PNL f and therefore
on the identity of the empirical minimizer.

The reason why outliers are not an issue in problems that feature a strong concen-
tration phenomenon is clear: no matter what the loss is (as long as it does not grow
incredibly quickly) only an insignificant fraction of the sample points fall outside the
‘right area’, and thus their impact is negligible.

The situation is different when either the class consists of heavy-tailed functions or
when the noise Y − f ∗(X) is heavy-tailed. In such cases, a more substantial fraction of
a typical sample falls in a potentially misleading location, and if the effect is amplified
by a fast-growing loss, outliers become a problem that has to be contended with. This
problem may be partly resolved by ensuring that the loss is not very big outside the
‘expected area’ of [−c‖ξ‖L2 , c‖ξ‖L2 ], which already hints towards the ‘right choice’
of a loss.

As noted previously, as long as � is strongly convex in [0, c1(κ0, ε)‖ξ‖L2 ] (or in
the smaller interval when the noise is independent of X ) the effects of the loss and the
noise are coded in the vector (εi�

′(ξi ))Ni=1. If � is the squared loss, this vector is likely
to have relatively many large coordinates when ξ is heavy-tailed. However, losses that
grow almost linearly in [a,∞) lead to bounded multipliers because |�′(ξ)| � |�′(a)|.
This results in a better-behaved multiplier component and a smaller fixed point rM .

As examples, we focus on the three losses mentioned earlier: the squared loss, the
log loss (2.2) and the Huber loss (2.1).
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• The squared loss is the canonical example of a strongly convex loss with a bounded
second derivative. However, it is susceptible to the problemof noise related outliers
because it grows rapidly: �′(ξ) ∼ ξ .

• The log-loss (2.2) exhibits a strongly convex behaviour in any bounded interval,
but with a constant that decreases exponentially quickly to zero with the length of
the interval. At the same time, its growth becomes close to linear for large values
(i.e., �′ tends to a constant). Therefore, on the one hand the lower estimate on
the quadratic component becomes trivial as ‖ξ‖L2 increases, but the multiplier
component displays a better behaviour than the squared loss.

• The Huber loss with parameter γ is strongly convex in (−γ, γ ) and grows linearly
outside that interval. Hence, for γ ∼ ‖ξ‖L2 one may hope to get the best of both
worlds—a quadratic component that behaves like its counterpart for the squared
loss, and a multiplier component that behaves as if � were linear.

We show that the three losses respond to outliers in very different ways. Our focus
is on situations when F is subgaussian but ξ is potentially heavy-tailed, and the goal
is to see if despite the heavy-tailed ξ , ERM performs in the same way as if ξ were
subgaussian. To simplify the presentation and to give each loss a level playing field,
we consider targets of the form Y = f0(X) + W for f0 ∈ F and W that is symmetric
an independent of X . The reason for this choice of targets is that for any ‘legal’ loss
function, f ∗ = f0. Indeed, for any f ∈ F ,

E�( f (X) − Y ) − E�( f0(X) − Y ) ≥ E�′(W )( f − f0)(X) = 0,

because �′ is odd and W is symmetric and independent of X . Hence, if the minimizer
is also unique (as we assume), that minimizer must be f0. In particular, for all the
three losses argmin f ∈FE�( f (X) − Y ) = f0.

We first present general estimates on the performance of ERM in terms the param-
eters rQ and rM for a general target Y , and then control the parameters for an arbitrary
convex, L-subgaussian class and a heavy-tailed target. As an example we consider
case of F = {〈t, ·〉 : t ∈ R

n}, which is the class of all linear functionals on Rn .
In what follows F ⊂ L2 is a closed, convex class of functions and F − F satisfies

a small-ball property with constants κ0 and ε. The target one wishes to estimate is
Y ∈ Lq for some q > 2 and for the sake of simplicity we assume at times that q = 4,
though that is not really an essential assumption.

6.1 Some facts on multiplier processes

The following is an upper estimate on multiplier and empirical processes indexed by
a class that is L-subgaussian.

Theorem 6.1 [20] There exists an absolute constant c0 and for every L > 1 there are
constants c1 and c2 that depend only on L and for which the following holds.

Assume that � ∈ Lq for some q > 2 and that F is L-subgaussian. Recall that
kF = (E‖G‖F/dF (L2))

2 and let N ≥ kF . If (Xi ,�i )
N
i=1 are N independent copies

of (X,�) then
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• for u > c0, with probability at least 1 − 2 exp(−c1u2kF ),

sup
f ∈F

∣∣∣∣∣
1

N

N∑
i=1

f (Xi ) − E f

∣∣∣∣∣ ≤ c2u
E ‖G‖F√

N
.

• for u, β > c0, with probability at least 1− 2β−q N−((q/2)−1) − 2 exp(−c1u2kF ),

sup
f ∈F

∣∣∣∣∣
1

N

N∑
i=1

�i f (Xi ) − E� f

∣∣∣∣∣ ≤ c2βu ‖�‖Lq

E ‖G‖F√
N

.

6.2 The squared loss

If �(t) = t2 then for every t1, t2, ρ(t1, t2) = 2. Therefore, by Theorem 5.8 for an
arbitrarily large γ , it follows that with probability at least 1 − δ − 2 exp(−c1ε2N ),

∥∥∥ f̂ − f ∗
∥∥∥
L2

≤ max
{
rQ(ζ1, ζ2), rM (c2/4, δ/2)

}
,

for constants ζ1, ζ2 and c2 that depend only on κ0 and ε.
Clearly, ‖�′′‖L∞ ≤ 2, implying that with the same probability estimate,

EL f̂ ≤ 2(c2 + 1)max
{
r2Q(ζ1, ζ2), r

2
M (c2/4, δ/2)

}
.

When F is, in addition, an L-subgaussian class, onemay identify the parameters rM
and rQ . Recall that ‖ f ‖ψ2 ∼ supp≥2 ‖ f ‖L p/

√
p (which, as noted previously, suffices

to ensure that the small-ball property holds for F − F with constants κ0 and ε that
depend only on L).

Recall that

r2,Q(ζ2) = inf

{
r > 0 : E sup

f ∈F∩r D f ∗

∣∣∣∣∣
1√
N

N∑
i=1

εi ( f − f ∗)(Xi )

∣∣∣∣∣ ≤ ζ2r
√
N

}
;

setting Fr = { f − f ∗ : f ∈ F ∩ r D f ∗}, it follows from Theorem 6.1 that

E sup
f ∈F∩r D f ∗

∣∣∣∣∣
1√
N

N∑
i=1

εi ( f − f ∗)(Xi )

∣∣∣∣∣ ≤ c3E ‖G‖Fr .

Therefore,

rQ(ζ1, ζ2) ≤ inf
{
r > 0 : E ‖G‖Fr ≤ c4 min {ζ1, ζ2} r

√
N
}

.
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Turning to rM , one has to identify

r0 = inf

{
r > 0 : sup

f ∈F∩r D f ∗

∥∥ξ( f − f ∗)(X)
∥∥
L2

≤ √
Nr2(c2/16)

}

and the ‘lowest’ level r for which

Pr

(
1√
N

sup
f ∈F∩r D f ∗

∣∣∣∣∣
N∑
i=1

εiξi ( f − f ∗)(Xi )

∣∣∣∣∣ ≤ r2(c2/4)
√
N

)
≥ 1 − δ.

Applying the L4 − L2 norm equivalence, ‖ f − f ∗‖L4 ≤ 2L‖ f − f ∗‖L2 and

∥∥ξ( f − f ∗)(X)
∥∥
L2

≤ 2L ‖ξ‖L4
r �L

√
Nr2,

provided that r � ‖ξ‖L4/
√
N . Moreover, by Theorem 6.1 for q = 4, it follows that

with probability at least 1 − 2/(β4N ) − 2 exp(−c3(L)u2kFr ),

sup
f ∈Fr

∣∣∣∣∣
1√
N

N∑
i=1

εiξi ( f − f ∗)(Xi )

∣∣∣∣∣ ≤ c4(L)βu ‖ξ‖L4
E ‖G‖Fr .

Fix 0 < δ < 1. If kFr ≥ log(2/δ) one may take u = c5(L) and if the reverse
inequality is satisfied, one may set u ∼L (k−1

Fr
log(2/δ))1/2, leading to a probability

estimate of 1 − δ. Therefore, if

u(r, δ) = c6(L)
(
1 + k−1

Fr
log(2/δ)

)1/2

and

β ∼ max

{
1

(δN )1/4
, 1

}
,

then with probability at least 1 − δ,

sup
f ∈Fr

∣∣∣∣∣
1√
N

N∑
i=1

εiξi ( f − f ∗)(Xi )

∣∣∣∣∣ ≤ c7(L)βu ‖ξ‖L4
E ‖G‖Fr ,

and

rM (c2/4, δ/2) ≤ ‖ξ‖L4√
N

+ inf
{
r > 0 : E ‖G‖Fr ≤ c8(L)

√
N ‖ξ‖−1

L4
(βu)−1r2

}
.

(6.1)
Thus, rM (c2/4, δ/2) dominates rQ(ζ1, ζ2) as long as ‖ξ‖L4 is not very small.
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As a point of reference, consider the case in which the Dvoretzky–Milman dimen-
sion kFr is at least of the order of log(2/δ), and thus the infimum in (6.1) is attained
for a value r for which u(r, δ) = c(L). Therefore,

rM (c2/4, δ/2) ≤ ‖ξ‖L4√
N

+inf
{
r > 0 : E ‖G‖Fr ≤ c9(L)

√
N ‖ξ‖−1

L4
β−1r2

}
. (6.2)

The difference between (6.2) and the analogous estimate in the purely subgaussian
case (see [10]) is the factor β−1. Since β ∼ max{1/(δN )1/4, 1}, it causes a slower
rate when the desired confidence level is high. Indeed, if δ � 1/N , then β � 1
leading to a larger value of rM than in a purely subgaussian problem, and to a weaker
accuracy/confidence tradeoff that one would expect if ξ were subgaussian. This differ-
ent accuracy/confidence tradeoff is caused by the noise-related outliers one encounters
and is the price one pays for using the squared loss in a problem involving a potentially
heavy-tailed noise (ξ ∈ L4 rather than ξ ∈ Lψ2 ). As a result, the accuracy/confidence
tradeoff has a polynomial dependence on 1/δ rather than the logarithmic dependence
ERM exhibits when ξ is subgaussian.

6.3 The log-loss

It is straightforward to verify that for t ≥ 0, �′(t) = 1−2/(exp(t)+1), and in particular
�′(t) ≤ min{2t, 1}. Also, �′′(t) = 2 exp(t)/(exp(t) + 1)2, which is a decreasing
function onR+ and is upper-bounded by 1. Therefore, � satisfies Assumption 2.2, and
one may verify that θ ∼ ρ(t1, t2) ≥ exp(−c1‖ξ‖L2).

Thedifference between the log-loss and the squared loss canbe seen in the behaviour
of rM (θ/16, δ/2). While the multipliers for the squared loss are independent copies of
�′(ξ) = ξ , for the log-loss one has |�′(ξ)| ≤ min{2|ξ |, 1}. This almost linear growth of
the loss outside [0, 1] helps one overcome the issue of noise-related outliers and leads
to an improved accuracy/confidence tradeoff—a logarithmic dependence in 1/δ rather
than the polynomial one exhibited by the squared loss—but only when ‖ξ‖L2 ∼ 1.
The tradeoff deteriorates when ‖ξ‖L2 is small (because of the multiplier component)
and when ‖ξ‖L2 is large (because of the quadratic component).

The improved tradeoff is based on a contraction argument: since |�′(ξ)| ≤ 1,

Pr

(
sup

f ∈F∩r D f ∗

∣∣∣∣∣
1

N

N∑
i=1

εi�
′(ξi )( f − f ∗)(Xi )

∣∣∣∣∣ > t

)

≤ 2Pr

(
sup

f ∈F∩r D f ∗

∣∣∣∣∣
1

N

N∑
i=1

εi ( f − f ∗)(Xi )

∣∣∣∣∣ >
t

4

)
.

Clearly, removing any dependence on the multipliers is a costly step when ‖ξ‖L2

is very small, but when ‖ξ‖L2 ∼ 1 the resulting estimate is a significant improvement
over the estimate for the squared loss: if u(r, δ) is as defined above,
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rM (θ/16, δ/2) ≤ 1√
N

+ inf
{
r > 0 : E ‖G‖Fr � θu(r, δ)

√
Nr2

}
;

hence, if rM ≤ ‖ξ‖L2 , then with probability at least 1 − δ − 2 exp(−c0ε2N ),

∥∥∥ f̂ − f ∗
∥∥∥
L2

� 2max
{
rQ, rM

}
and EL f̂ � max

{
r2Q, r2M

}
.

Again, let us consider the case in which inf{r > 0 : E‖G‖Fr � θu(r, δ)
√
Nr2} is

attained by a value r for which u(r, δ) = c(L). Then,

rM (θ/16, δ/2) ≤ 1√
N

+ inf
{
r > 0 : E ‖G‖Fr � θ

√
Nr2

}
,

which is the same bound on rM one has for the squared loss when ξ is a standard
gaussian random variable that is independent of X , thoughwe only know that ‖ξ‖L2 ∼
1.

The improved accuracy/confidence tradeoff occurs when ‖ξ‖L2 ∼ 1 simply
because the log-loss happens to be calibrated for that noise level. This is a mere
coincidence rather than premeditation, and the accuracy/confidence tradeoff of ERM
relative to the log-loss deteriorates when ‖ξ‖L2 is either very large or very small.

6.4 The Huber loss

Let rQ be as above for suitable constants ζ1 and ζ2. For ζ3 = min{ζ1, ζ2} one has

rQ = inf
{
r > 0 : E ‖G‖Fr ≤ cζ3r

√
N
}

where c = c(L). Without loss of generality, one may assume that cζ3 is smaller than
a fixed constant which will be the constant c3 = c3(L) defined below.

Let �(t) be theHuber loss with parameter γ = c0(L)max{‖ξ‖L2 , rQ} for a constant
c0 to be specified later.

Observe that |�′(t)| = min{|t/2|, γ }, that �′ is a Lipschitz function with constant
1 and that Assumption 2.2 is verified. Moreover, this setup falls within the scope of
Theorem 5.8 for θ = c1(L).

Regarding the multiplier component, note that if ‖ f − f ∗‖L2 ≤ r then

∥∥�′(ξ)( f − f ∗)
∥∥
L2

≤ γ
∥∥ f − f ∗∥∥

L2
≤ γ r ≤ (c1(L)/16)r2

√
N ,

provided that r �L γ /
√
N . Moreover, a contraction argument shows that
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Pr

(
sup

f ∈F∩r D f ∗

∣∣∣∣∣
1

N

N∑
i=1

εi�
′(ξi )( f − f ∗)(Xi )

∣∣∣∣∣ > t

)

≤ 2Pr

(
sup

f ∈F∩r D f ∗

∣∣∣∣∣
1

N

N∑
i=1

εi ( f − f ∗)(Xi )

∣∣∣∣∣ >
t

4γ

)

and if u(r, δ) is as defined above, one has

rM ≤ c2(L)

(
max

{‖ξ‖L2
, rQ
}

√
N

+ inf
{
r > 0 : γE ‖G‖Fr ≤ c1(L)u(r, δ)

√
Nr2

})
.

Again, let us consider the case in which inf{r > 0 : γE‖G‖Fr ≤ c2u(r, δ)
√
Nr2} is

attained for a value r for which u(r, δ) = c′(L). Hence, setting c3 = c1(L)u,

rM ≤ c2

(
c0
max

{‖ξ‖L2
, rQ
}

√
N

+ inf
{
r > 0 : γE ‖G‖Fr ≤ c3

√
Nr2

})
, (6.3)

which matches the estimate on rM for the squared loss when ‖ξ‖ψ2 ∼ ‖ξ‖L2 .
If rQ ≤ ‖ξ‖L2 then γ = c0‖ξ‖L2 , and since c3 ≥ cζ3, r = ‖ξ‖L2 belongs to the

set {r > 0 : c0‖ξ‖L2E‖G‖Fr ≤ c3
√
Nr2} in (6.3). Therefore,

rM ≤ c2

(
1 + c0√

N

)
‖ξ‖L2

≤ c0 ‖ξ‖L2
= γ

as long as N ≥ c4(L) and for a well chosen c0. Hence, the assumption of Theorem 5.8
is verified.

Otherwise, ‖ξ‖L2 ≤ rQ , and in which case, rQ belongs to the set in (6.3) implying
that

rM ≤ c2

(
1 + c0√

N

)
rQ ≤ γ.

Therefore, by Theorem 5.8, with probability at least 1 − δ − 2 exp(−c0ε2N ),

∥∥∥ f̂ − f ∗
∥∥∥
L2

� max
{
rM , rQ

}
and EL f̂ � max

{
r2M , r2Q

}
.

The right choice of γ in the Huber loss leads to the optimal interval of strong
convexity [0, cmax{‖ξ‖L2 , rQ}], and to a far better accuracy/confidence tradeoff than
exhibited by the squared loss for such a heavy-tailed problem. In fact, it matches the
behaviour of the squared loss when ‖ξ‖ψ2 ∼ ‖ξ‖L2 .

Let us present a concrete example inwhich all these rates canbe computed explicitly,
and which shows how the rates are affected by the choice of the loss.

For T ⊂ R
n , set FT = {〈t, ·〉 : t ∈ T } and assume that μ is an isotropic, L-

subgaussianmeasure onRn ; that is, its covariance structure coincideswith the standard
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�n2 distance onR
n (isotropicity), and for every t ∈ Sn−1 and every p ≥ 2, ‖〈X, t

〉‖L p ≤
L
√
p‖〈X, t

〉‖L2 (L-subgaussian). In particular, F − F satisfies a small-ball property
with constants that depend only on L .

We focus on the case T = R
n . Clearly, for every r > 0 and any possible f ∗ ∈ F ,

Fr = r Bn
2 , implying that E‖G‖Fr ∼ r

√
n. Therefore, kFr ∼ √

n and E‖G‖Fr ≤
α
√
Nr2 when r ≥ α−1√n/N .

• The squared loss. It is straightforward to verify that if N ≥ c1(L)n, then with
probability at least 1 − 2 exp(−c2(L)N ), rQ = 0. Also,

u(r, δ) = c3(L)

(
1 +

√
log(1/δ)

N

)
.

Using the definition of rM , it is evident that with probability at least 1 − δ −
2 exp(−c4(L)N ),

‖ f̂ − f ∗‖L2 �L max

{
1

(Nδ)1/4
, 1

}
·
(
1 +

√
log(1/δ)

n

)
· ‖ξ‖L4

√
n

N
, (6.4)

exhibiting once again that the accuracy/confidence tradeoff has a polynomial
dependence in 1/δ.

• The log-loss. Let t2 ∼L ‖ξ‖L2 and therefore, θ ∼L exp(−c1‖ξ‖L2). One has
to take N ≥ c2(θ)n to ensure a nontrivial bound on rQ , and in which case,
rQ = 0. Therefore, and in a similar way to the squared loss, with probability
at least 1 − δ − 2 exp(−c3(L)N )

∥∥∥ f̂ − f ∗
∥∥∥
L2

�L exp
(
c1(L) ‖ξ‖L2

)
(
1 +

√
log(1/δ)

n

)
·
√

n

N
,

which is better than (6.4) in terms of the dependence on δwhen ‖ξ‖L2 is of the order
of a constant and δ � 1/N , but does not scale correctly with ‖ξ‖L2 when the norm
is either very small or very large. This was to be expected from the ‘calibration’
of the log-loss, which only fits a constant noise level, when ‖ξ‖L2 ∼ 1.

• The Huber loss. As noted previously, for a nontrivial bound on rQ one must take
N ≥ c1(L)n, and in which case, rQ = 0.
Fix γ = c2(L)max{‖ξ‖L2 , rQ} = c2(L)‖ξ‖L2 and θ = c2(L). Using the def-
inition of rM (because |�′(ξ)| ≤ γ ), it is evident that with probability at least
1 − δ − 2 exp(−c3(L)N ),

∥∥∥ f̂ − f ∗
∥∥∥
L2

≤ c4(L)

(√
log(1/δ)

n
+ 1

)
· ‖ξ‖L2

√
n

N
.

This is the optimal accuracy/confidence tradeoff for any choice of ‖ξ‖L2 and
coincides with the optimal tradeoff for the squared loss when ξ is gaussian and
independent of X (see, e.g. [10]).
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Unlike the squared loss and the log-loss, the optimal rate is obtained thanks to this
choice of theHuber loss anddespite the noise beingheavy-tailed.This phenomenon
occurs specifically because the Huber loss can be calibrated to fit the noise level
of the problem and the intrinsic complexity of the class. It indicates that the right
choice of loss can be used to effectively remove outliers caused by a heavy-tailed
noise.

7 Final remarks

Because we study general loss functions, one should take care when comparing the
results on the accuracy/confidence tradeoff to the tradeoff exhibited by ERM for the
squared loss. Specifically, one should keep in mind that different loss functions may
lead to different minimizers, and f ∗ = argmin f ∈FE�( f (X)−Y ) need not be the same
as argmin f ∈FE( f (X) − Y )2. As noted previously, one generic situation in which the
‘best in the class’ is the same for every convex loss is when Y = f0(X) + W for
f0 ∈ F and W that is symmetric and independent of X .
Our results indicate that the choice of the Huber loss with parameter γ ∼ ‖ξ‖L2

leads to the removal of outliers—with a dramatic effect when the class is ‘well-
behaved’ and the cause of the outliers is the heavy-tailed noise. The effect is diminished
when F itself happens to consist of heavy-tailed functions: although it is still true that

Pr

(
sup

f ∈F∩r D f ∗

∣∣∣∣∣
1

N

N∑
i=1

εi�
′(ξi )( f − f ∗)(Xi )

∣∣∣∣∣ > t

)

≤ 2Pr

(
sup

f ∈F∩r D f ∗

∣∣∣∣∣
1

N

N∑
i=1

εi ( f − f ∗)(Xi )

∣∣∣∣∣ > t/4γ

)
, (7.1)

the random variable sup f ∈F∩r D f ∗

∣∣∣∑N
i=1 εi ( f − f ∗)(Xi )

∣∣∣ is likely to be large with

a non-negligible probability. As a result, the accuracy/confidence tradeoff exhibited
by ERM is far from the conjectured performance of an optimal procedure, even when
using a well-calibrated Huber loss.

Unfortunately, the suboptimal accuracy/confidence tradeoff of ERM is a fact of
life and not an artifact of the argument we use. The fundamental instability of ERM
is caused by the oscillations in (7.1) and cannot be overcome by a wise choice of a
loss. Thus, the optimal tradeoff has to be based on a different procedure and not on
ERM. Recently, a procedure that attains the optimal accuracy/confidence tradeoff for
the squared loss was introduced in [14], and the optimal tradeoff performance was
guaranteed under minimal assumptions on the class and on the target.

Finally, it is natural to ask whether it is possible to choose the right calibration for
the Huber loss in a data-dependent manner—for example, to use the given data to
identify a suitable upper estimate on ‖ξ‖L2 . For the sake of brevity we will sketch
the method one may use and only consider the case in which the true minimizer
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is the same as for the squared loss4. Data dependent estimates on ‖ξ‖L2 are possible
using arguments similar to those introduced in [21], where a high-probability, uniform,
crude isomorphic estimator of L2 distances was constructed. More precisely, one may
construct a data-dependent functional φ, which, given a function in a class H whose
L2 norm is above a critical level r∗, returns φ(h) such that α‖h‖L2 ≤ φ(h) ≤ β‖h‖L2

for suitable constants α and β, and when ‖h‖L2 ≤ r∗ then φ(h) ≤ βr∗. Such a
functional may be constructed for the class H = { f (X) − Y : f ∈ F}, and by
selecting h̄ = argminh∈Hφ(h) and using a standard median-of-means estimator to
bound Eh2, one may obtain a high probability estimator for ‖ξ‖L2 .
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