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Abstract Consider a sample of a centered random vector with unit covariance matrix.
We show that under certain regularity assumptions, and up to a natural scaling, the
smallest and the largest eigenvalues of the empirical covariance matrix converge,
when the dimension and the sample size both tend to infinity, to the left and right
edges of the Marchenko–Pastur distribution. The assumptions are related to tails of
norms of orthogonal projections. They cover isotropic log-concave random vectors as
well as random vectors with i.i.d. coordinates with almost optimal moment conditions.
The method is a refinement of the rank one update approach used by Srivastava and
Vershynin to producenon-asymptotic quantitative estimates. In otherwordsweprovide
a new proof of the Bai and Yin theorem using basic tools from probability theory and
linear algebra, together with a new extension of this theorem to random matrices with
dependent entries.
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1 Introduction

Let N = {1, 2, . . .} and let (Xn)n∈N be a sequence of random vectors where for each
n ∈ N the random vector Xn takes values in R

n , is centered, with unit covariance
(isotropy):

E(Xn) = 0 and E(Xn ⊗ Xn) = In (1.1)

where In is the n × n identity matrix. Let (mn)n∈N be a sequence in N such that

0 < ρ := lim inf
n→∞

n

mn
≤ lim sup

n→∞
n

mn
=: ρ < ∞. (1.2)

For every n ∈ N, let X (1)
n , . . . , X (mn)

n be i.i.d. copies of Xn . Their empirical covariance
matrix is the n × n symmetric positive semidefinite random matrix

̂�n := 1

mn

mn
∑

k=1

X (k)
n ⊗ X (k)

n . (1.3)

If Xn denotes the mn × n rectangular random matrix with i.i.d. rows X (1)
n , . . . , X (mn)

n
then

̂�n = 1

mn
X

�
n Xn .

Note that Ê�n = E(Xn ⊗ Xn) = In . For convenience we define the random matrix

An := mn̂�n = X
�
n Xn =

mn
∑

k=1

X (k)
n ⊗ X (k)

n . (1.4)

123



On the convergence of the extremal eigenvalues… 849

The eigenvalues of An are squares of the singular values of Xn , and in particular

λmax(An) = smax(Xn)
2 = max‖x‖=1

‖Xnx‖2 = ‖Xn‖2.

When mn ≥ n then the smallest eigenvalue of An satisfies

λmin(An) = smin(Xn)
2 = min‖x‖=1

‖Xnx‖2 = ‖X
−1
n ‖−2,

where byX
−1
n we denote the inverse linear operator forXn defined on the image ofXn .

Of course, the last formula holds only when Xn is invertible (impossible if mn < n).
Above and in the sequel we denote by ‖x‖ = (x21 + · · · + x2n )

1/2 the Euclidean norm
of x ∈ R

n .
Let us denote by (Xn,k)1≤k≤n the components of the random vector Xn . If the

random variables (Xn,k)n≥1,1≤k≤n are i.i.d. standard Gaussians, then the law of the
random matrix ̂�n is known as the real Wishart law, and constitutes a sort of a matrix
version of the χ2(n) law. The law of the eigenvalues of ̂�n is then called the Laguerre
Orthogonal Ensemble, a Boltzmann–Gibbs measure with density on {λ ∈ [0,∞)m :
λ1 ≥ · · · ≥ λn} proportional to

λ 
→ exp

⎛

⎝−mn

2

n
∑

k=1

λk + mn − n + 1

2

n
∑

k=1

log(λn) +
∑

i< j

log
∣

∣λi − λ j
∣

∣

⎞

⎠ ,

see [38, (7.4.2) p. 192]. This exactly solvable Gaussian model allows to deduce sharp
asymptotics for the empirical spectral distribution as well as for the extremal eigen-
values of ̂�n . The famous Marchenko–Pastur theorem [35,38] states that if

n

mn
−→
n→∞ ρ with ρ ∈ (0,∞)

then almost surely as n → ∞, the empirical spectral distribution of ̂�n tends weakly
with respect to continuous and bounded test functions to a non-random distribution,
namely

a.s.
1

mn

n
∑

k=1

δλk (̂�n)

Cb−→
n→∞ μρ (1.5)

where μρ is the Marchenko–Pastur distribution on [a−, a+] with a± = (1 ± √
ρ)2

given by

μρ(dx) = ρ − 1

ρ
1ρ>1δ0 +

√

(a+ − x)(x − a−)

ρ2πx
1[a−,a+](x)dx .

It is a mixture between a Dirac mass at point 0 and an absolutely continuous law. The
atom at 0 disappears when ρ ≤ 1 and is a reminiscence of the rank of ̂�n . The asymp-
totic phenomenon (1.5) holds beyond the Gaussian case. In particular it was shown by
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Pajor and Pastur [36] that it holds if for every n ∈ N the distribution of the isotropic
random vector Xn is log-concave. Recall that a probability measure μ on R

n with
density ϕ is log-concave when ϕ = e−V with V convex, see [18,20]. Log-concavity
allows some kind of geometric dependence but imposes sub-exponential tails. The
asympotitic phenomenon (1.5) also holds if (Xn,k)n≥1,1≤k≤n are i.i.d. with finite sec-
ond moment [9,38]. An extension to various other models can be found in Bai and
Zhou [13], Pastur and Shcherbina [38], Adamczak [1], and Adamczak and Chafaï [3].

The weak convergence (1.5) does not provide much information at the edge on the
behavior of the extremal atoms, and what one can actually extract from (1.5) is that

a.s. lim sup
n→∞

λmin(̂�n) ≤ (1 − √
ρ)2 ≤ (1 + √

ρ)2 ≤ lim inf
n→∞ λmax(̂�n) (1.6)

where the first inequality is considered only in the case where mn ≥ n. If
(Xn,k)n≥1,1≤k≤n are i.i.d. with finite fourth moment then it was shown by Bai and
Yin [11,12,53] using combinatorics that the convergence in (1.6) holds:

a.s. (1 − √
ρ)2 = lim

n→∞ λmin(̂�n) ≤ lim
n→∞ λmax(̂�n) = (1 + √

ρ)2, (1.7)

where the first equality is considered only in the case where mn ≥ n. The conver-
gence of the largest eigenvalue in the right hand side of (1.7) does not take place
if (Xn,k)n≥1,1≤k≤n are i.i.d. with infinite fourth moment, see [9]. It was understood
recently that the convergence of the smallest eigenvalue in the left hand side of (1.7)
holds actually as soon as (Xn,k)n≥1,1≤k≤n are i.i.d. with finite second moment, see
Tikhomirov [49].

An analytic proof of (1.7) based on the resolvent is also available, and we refer to
Bordenave [17] for the i.i.d. case, and toBai and Silverstein [8], Pillai andYin [41], and
Richard and Guionnet [42] for more sophisticated models still not including the case
in which the law of Xn is log-concave for every n ∈ N. Note that the analytic approach
was also used for various models of random matrices by Haagerup and Thorbjørnsen
[28], Schultz [45], and by Capitaine and Donati-Martin [21].

The study of quantitative high dimensional non-asymptotic properties of the small-
est and of the largest eigenvalues of empirical covariance matrices was the subject of
an intense line of research in the recent years; in connection with log-concavity, see
for instance Adamczak et al. [5,6], Rudelson and Vershynin [44], Koltchinskii and
Mendelson [32], and references therein.

Non-asymptotic estimates for (1.7) were obtained by Srivastava and Vershynin
[48] using a rank one update strategy which takes advantage of the decomposition
(1.4). This approach is an elementary interplay between probability and linear algebra,
which is remarkably neither analytic nor combinatorial. The outcome is that with high
probability

(

1 − c−
√

n

mn

)2

≤ λmin(̂�n) ≤ λmax(̂�n) ≤
(

1 + c+
√

n

mn

)2

, (1.8)

where the first inequality is considered only in the case where mn ≥ n. Here c± > 0
are constants, and thus one cannot deduce (1.7) from (1.8). The approach of Srivastava
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On the convergence of the extremal eigenvalues… 851

and Vershynin is a randomization of the spectral sparsification method developed by
Batson et al. [14,15]; the idea of using rank one updates can also be found in the
works of Benaych-Georges and Nadakuditi [16]. This approach requires the control
of tails of norms of projections of Xn , a condition which is satisfied by log-concave
distributions thanks to the thin-shell phenomenon. This condition is also satisfied if
(Xn,k)n≥1,1≤k≤n are i.i.d. with a finite moment of order 2 + ε for the lower bound on
the smallest eigenvalue in (1.7) and i.i.d. with a finite moment of order 4 + ε for the
upper bound on the largest eigenvalue in (1.7). This method was also used recently by
Yaskov [51,52].

Our main results below lie between the original Bai–Yin theorem and the more
recent work of Srivastava and Vershynin. Our contribution is to show that the non-
asymptotic approach of Srivastava and Vershynin is indeed suitable to prove and
extend the sharp Bai–Yin theorem, which is an asymptotic result, under fairly general
assumptions on tails of norms of projections of Xn , which allow heavy tailed i.i.d. as
well as log-concavity! When the coordinates of Xn are i.i.d. our approach reaches the
(almost) optimal moment condition: finite second moment for the smallest eigenvalue
and finite fourth moment for the largest.

Our results are based on the following tail conditions on the norm of projections.

Definition 1.1 (Weak Tail Projection property (WTP)) Let Xn , n ∈ N, be as in (1.1).
We say that the Weak Tail Projection (WTP) property holds when the following is
true:

(a) The family (〈Xn, y〉2)n∈N,y∈Sn−1 is uniformly integrable, in other words

lim
M→∞ sup

n∈N
y∈Sn−1

E

(

〈Xn, y〉21{〈Xn ,y〉2≥M}
)

= 0, (WTP-a)

where Sn−1 := {y ∈ R
n : ‖y‖ = 1} denotes the unit sphere of R

n ;
(b) There exist two functions f : N → [0, 1] and g : N → R+ such that f (r) → 0

and g(r) → 0 as r → ∞ and for every n ∈ N and any orthogonal projection
P : R

n → R
n with P �= 0,

P

(

‖PXn‖2 − rankP ≥ f (rankP)rankP
)

≤ g(rankP). (WTP-b)

This can be less formally written as P
(‖PXn‖2 − r ≥ o(r)

) ≤ o(1) where r :=
rankP and where the “o” are with respect to r and are uniform in n.

Definition 1.2 (Strong Tail Projection property (STP)) Let Xn , n ∈ N, be as in (1.1).
We say the Strong Tail Projection (STP) property holds when there exist f : N →
[0, 1] and g : N → R+ such that f (r) → 0 and g(r) → 0 as r → ∞, and for
every n ∈ N, for any orthogonal projection P : R

n → R
n with P �= 0, for any real

t ≥ f (rankP)rankP we have

P

(

‖PXn‖2 − rankP ≥ t
)

≤ g(rankP)rankP

t2
. (STP)
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852 D. Chafaï, K. Tikhomirov

This can be less formally written as P(‖PXn‖2 − r ≥ t) ≤ o(r)t−2 where t ≥ o(r)
and r := rankP and where the “o” are with respect to r and are uniform in n.

Note that E(‖PXn‖2) = rankP since Xn is isotropic. The properties (WTP) and
(STP) were inspired by the “strong regularity assumption” used by Srivastava and
Vershynin [48]. They are specially designed to obtain a sharp Bai–Yin type asymptotic
result in the i.i.d. case with (almost) optimal moment assumptions, as well as in the
log-concave case.

It is easy to see that (STP) implies that for any ε > 0, the 4 − ε moments of
1-dimensional marginals of Xn’s are uniformly bounded; in particular, in this case
the vectors (Xn)n∈N satisfy condition (WTP-a). Next, condition (WTP-b) is clearly
weaker than (STP); thus, (STP) implies (WTP), hence the qualifiers “Strong” and
“Weak” for these properties.

Proposition 1.3 below, proved in Sect. 2, implies that if (Xn)n∈N is as in (1.1) and
if Xn is log-concave for every n ∈ N then properties (WTP) and (STP) are satisfied.
It is a consequence of the thin-shell and sub-exponential tails phenomena for these
distributions.

Proposition 1.3 (Log-concave random vectors) Let Xn, n ∈ N, be as in (1.1), and
suppose that the centered isotropic random vector Xn is log-concave for any n ∈ N.
Then a stronger form of (STP) holds with

{‖PXn‖2 − rankP ≥ t} replaced by {|‖PXn‖2 − rankP| ≥ t}.

The next proposition, proved in Sect. 2, implies that if (Xn,k)n≥1,1≤k≤n are i.i.d.
then property (WTP) holds, and if moreover these i.i.d. random variables have finite
fourth moment then property (STP) holds.

Proposition 1.4 (Random vectors with i.i.d. coordinates) Let Xn, n ∈ N, be as in
(1.1), and suppose that the coordinates (Xn,k)n≥1,1≤k≤n are i.i.d. distributed as a real
random variable ξ with zero mean and unit variance. Then, denoting r := rankP,

• a stronger version of (WTP) holds, with, in (WTP-b),

{‖PXn‖2 − r ≥ f (r)r} replaced by {|‖PXn‖2 − r | ≥ f (r)r};

• if moreover E(ξ4) < ∞ then a stronger version of (STP) holds, with

{‖PXn‖2 − r ≥ t} replaced by {|‖PXn‖2 − r | ≥ t}.

The next proposition, proved in Sect. 2, was suggested by an anonymous referee.

Proposition 1.5 (Marchenko–Pastur law holds under (WTP)) Let Xn, n ∈ N, be as
in (1.1). If limn→∞ n

mn
= ρ with ρ ∈ (0, 1), in other words ρ = ρ ∈ (0, 1), and if

(WTP-a) and (WTP-b) are satisfied, then the Marchenko–Pastur law (1.5) holds.

Our main results are stated in the following couple of theorems and corollaries.
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On the convergence of the extremal eigenvalues… 853

Theorem 1.6 (Smallest eigenvalue) Let Xn, mn, and An, n ∈ N, be as in (1.1), (1.2),
and (1.4) respectively. If ρ < 1 (in particular mn > n for n � 1), and if (WTP-a)
and (WTP-b) are satisfied then

lim inf
n→∞

E(λmin(An))

(
√
mn − √

n)2
≥ 1.

If additionally limn→∞ n
mn

= ρ with ρ ∈ (0, 1), in other words ρ = ρ ∈ (0, 1), then

λmin(̂�n)
P−→

n→∞ (1 − √
ρ)2.

Theorem 1.6 is proved in Sect. 3. The second part, which is the Bai–Yin edge
convergence (1.7) of the smallest eigenvalue in probability, is obtained by com-
bining the first part of the theorem with the Marchenko–Pastur bound (1.6) for
the smallest eigenvalue obtained from the Marchenko–Pastur law (1.5) provided by
Proposition 1.5.

Combining Theorem 1.6 with Propositions 1.3 and 1.4, we obtain the following
corollary.

Corollary 1.7 (Smallest eigenvalue convergence) Let Xn, mn, ̂�n, and An, n ∈ N,
be as in (1.1), (1.2), (1.3), and (1.4) respectively. If ρ < 1 (in particular mn > n for
n � 1) and if the centered isotropic random vector Xn is log-concave for every n ∈ N

or if (Xn,k)n≥1,1≤k≤n are i.i.d. then

lim inf
n→∞

E(λmin(An))

(
√
mn − √

n)2
≥ 1.

If additionally limn→∞ n
mn

= ρ with ρ ∈ (0, 1), in other words ρ = ρ ∈ (0, 1), then

λmin(̂�n)
P−→

n→∞ (1 − √
ρ)2.

Theorem 1.8 (Largest eigenvalue) Let Xn, mn, and An, n ∈ N, be as in (1.1), (1.2),
and (1.4) respectively. If (STP) holds then

lim sup
n→∞

E(λmax(A))

(
√
mn + √

n)2
≤ 1.

If additionally limn→∞ n
mn

= ρ with ρ ∈ (0,∞) in other words ρ = ρ ∈ (0,∞),
then

λmax(̂�n)
P−→

n→∞ (1 + √
ρ)2.

Theorem 1.8 is proved in Sect. 4. Again, the second part uses theMarchenko–Pastur
bound (1.6) obtained from the Marchenko–Pastur law (1.5) provided by Proposi-
tion 1.5.
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Combining Theorem 1.8 with Propositions 1.3 and 1.4, we obtain the following
statement:

Corollary 1.9 (Largest eigenvalue convergence) Let Xn, mn, ̂�n and An, n ∈ N, be
as in (1.1), (1.2), (1.3), and (1.4) respectively. If the centered isotropic random vector
Xn is log-concave for every n ∈ N or if (Xn,k)n≥1,1≤k≤n are i.i.d. with finite 4th
moment then

lim sup
n→∞

E(λmax(An))

(
√
mn + √

n)2
≤ 1.

If additionally limn→∞ n
mn

= ρ with ρ ∈ (0,∞) in other words ρ = ρ ∈ (0,∞),
then

λmax(̂�n)
P−→

n→∞ (1 + √
ρ)2.

1.1 Outline of the argument and novelty

Assume we are given a random matrix

A =
m
∑

k=1

X (k) ⊗ X (k),

where X (k) are i.i.d. isotropic random vectors. As we already mentioned above, the
key ingredient in estimating the extremal eigenvalues of A is the following rank one
update formula known as the Sherman–Morrison formula:

(M + xx�)−1 = M−1 − M−1xx�M−1

1 + x�M−1x
,

which is valid for any non-singular n×nmatrixM and a vector x with 1+x�M−1x �=
0. Using the above identity and assuming that M is symmetric, the restriction on R

of the Cauchy–Stieltjes transform of the spectral distribution of M + xxT , which is
defined as an appropriately scaled trace of (u − M − xx�)−1, u ∈ R, can be in a
simple way expressed in terms of the Cauchy–Stieltjes transform of M . To be more
precise, setting

A(0) := 0 and A(k) := A(k−1) + X (k) ⊗ X (k), k = 1, . . . ,m,

we get, for any k = 1, . . . ,m and any u ∈ R,

tr(u − A(k))−1 = tr(u − A(k−1))−1 + X (k)�(u − A(k−1))−2X (k)

1 − X (k)�(u − A(k−1))−1X (k)
. (1.9)

A crucial observation, made already in [15] and further developed in [48] is that
the Cauchy–Stieltjes transform on the real line can be efficiently used to control the

123



On the convergence of the extremal eigenvalues… 855

extreme eigenvalues of a positive semi-definite matrix. In our setting, starting with
some specially chosen non-random number u0 �= 0, we inductively define a sequence
of random numbers uk (k ≤ m) in such a way that all uk’s stay on the same side of the
spectra of A(k)’s (k ≤ m), at the same time not departing too far from the spectrum.
Then the expectation of the corresponding extreme eigenvalue of A = A(m) can be
estimated by Eum . The increments uk − uk−1 are defined with help of (1.9) as certain
functions of A(k−1), uk−1 and X (k), and their expectations are controlled using the
information about the distribution of X (k) as well as certain induction hypotheses. At
this level, the approach used in the present paper is similar to [48].

On the other hand, as our result is asymptotically sharp and covers the i.i.d. case
with almost optimal moment conditions, the technical part of our argument differs
significantly from [48]. In particular, we introduce the “regularity shifts”, which are
designed in such a way that uk’s stay “sufficiently far” from the spectrum of A(k)’s,
which guarantees validity of certain concentration inequalities, whereas at the same
time not departing “too far” so that one still gets a satisfactory estimate of the expec-
tation of the spectral edges. The shifts (which we denote by δkR and �k

R) are defined
in Sects. 3.3 and 4.3 (see, in particular, Lemmas 3.5 and 4.7).

Let us emphasize once more that the proofs we obtain are simpler and shorter than
the original combinatorial approach of Bai–Yin and the analytic approach based on
the resolvent (more precisely the Cauchy–Stieltjes transform on the complex plane
outside the real axis), while the class of distributions covered in our paper is larger. In
particular, Theorem 1.6 of the present paper essentially recovers a recent result [49].
In must be noted, however, that in our paper we replace convergence almost surely
with the weaker convergence in probability.

1.2 Discussion and extensions

In this note we restrict our analysis to random vectors with real coordinates because we
think that this is simply more adapted to geometric dependence such as log-concavity.
It is likely that the method remains valid for random vectors with complex entries.
The Bai–Yin theorem is also available for random symmetric matrices (which are the
sum of rank two updates which are no longer positive semidefinite) but it is unclear
to us if one can adapt the method to this situation. One can ask in another direction
if the method remains usable for non-white population covariance matrices, and for
the so-called information plus noise covariance matrices, two models studied at the
edge by Bai and Silverstein [8,10] among others. One can ask finally if the method
allows to extract at least the scaling of the Tracy–Widom fluctuation at the edge. For
the Tracy–Widom fluctuation at the edge of empirical covariance matrices we refer
to Johansson [29], Johnstone [30], Borodin and Forrester [19], Soshnikov [47], Péché
[39], Feldheim and Sodin [23], Pillai and Yin [41], and references therein. It was
shown by Lee and Yin [33] that for centered Wigner matrices the finiteness of the
fourth moment is more than enough for the Tracy–Widom fluctuation of the largest
eigenvalue. One can ask the same for the largest eigenvalue of the empirical covariance
matrix of random vectors with i.i.d. entries, and one can additionally ask if a finite
secondmoment is enough for the Tracy–Widomfluctuation of the smallest eigenvalue.
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1.3 Structure

The rest of the article is structured as follows. Section 2 provides the proof of Propo-
sitions 1.3 and 1.4. In Sects. 3 and 4 we prove Theorems 1.6 and 1.8, respectively.

1.4 Notations

We set ‖v‖ :=
√

v21 + · · · + v2n and ‖v‖∞ := max(|v1|, . . . , |vn|) for any vector
v ∈ R

n . We denote ‖ f ‖∞ := supx∈S | f (x)| for any function f : S → R. We often
use the notation |S| := card(S) for a set S. Further, we denote by

λmax(M) := λ1(M) ≥ · · · ≥ λn(M) =: λmin(M)

the eigenvalues of a symmetric n × n matrix M ∈ Mn(R). We denote by In the n × n
identity matrix. For any real number u we sometimes abridge uIn into u in matrix
expressions such as in M − uIn = M − u.

2 Proof of Propositions 1.3–1.5

Proof of Proposition 1.3 Assume X is a centered isotropic log-concave vector in R
n

and P : R
n → R

n is a non-zero orthogonal projection. The random vector PX is log-
concavewithmean zero and covariancematrix PP� = P2 = P. Restricted to the image
of P, the vector Y = PX is log-concave with covariance matrix Ir where r = rankP.
The so-called thin-shell phenomenon [7] states that “most” of the distribution of Y
is supported in a thin-shell around the Euclidean sphere of radius

√
r . Quantitative

estimates have beenobtainednotably byKlartag [31], Fleury [25],Guédon andMilman
[27], see also Guéon [26]. On the other hand, it is also known that the tail of the of
norm of Y is sub-exponential, see Paouris [37], and also Admaczak et al. [4]. The
following inequality, taken from [27, Theorem 1.1], captures both phenomena: there
exist absolute constants c,C ∈ (0,∞) such that for any real u ≥ 0,

P
(∣

∣‖Y‖ − √
r
∣

∣ ≥ u
√
r
) ≤ C exp

(

−c
√
r min(u, u3)

)

.

This is more than enough for our needs. Namely, let β ∈ (0, 1/20), and let u =
u(r) ∈ (0,∞) and α = α(r) ∈ (0, 1) be such that α ≥ (1 + r)−β and u ≥ max((1 +
r)−β, 2α/(1 − α2)). Note that 2α/(1 − α2) ∈ (0, 1) when α ∈ (0,

√
2 − 1), and that

2α/(1 − α2) → 0 as α → 0. Now, using the inequality exp(−2t) ≤ t−4 for t > 0,
we get, if αu ∈ (0, 1],

P(‖Y‖2 − r ≥ u2r) = P(‖Y‖ ≥
√

r + u2r)

≤ P(‖Y‖ ≥ √
r + αu

√
r)

≤ C exp
(

−c
√
r(αu)3

)

≤ 24C

c4(u2r)2α12u8
= o(r)

(u2r)2
,
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while if αu ∈ [1,∞) we get

P(‖Y‖2 − r ≥ u2r) ≤ · · · ≤ C exp
(−c

√
rαu

) ≤ 24C

c4(u2r)2α4 = o(r)

(u2r)2
.

Similarly, for an arbitraryβ ∈ (0, 1/20), let u = u(r) ∈ (0,∞) andα = α(r) ∈ (0, 1)
be such that α ≥ (1 + r)−β and u ≥ max((1 + r)−β, 2α/(1 + α2)). If u > 1 then
necessarily

P(‖Y‖2 − r ≤ −u2r) = 0.

Otherwise, αu ∈ (0, 1] and using again the inequality exp(−2t) ≤ t−4 for t > 0, we
get

P(‖Y‖2 − r ≤ −u2r) ≤ P(‖Y‖ ≤
√

r − u2r)

≤ P(‖Y‖ ≤ √
r − αu

√
r)

≤ C exp
(

−c
√
r(αu)3

)

≤ 24C

c4(u2r)2α12u8
= o(r)

(u2r)2
.

Thus, we obtain P
(∣

∣‖Y‖2 − r
∣

∣ ≥ t
) ≤ o(r)t−2 for t ≥ o(r) as expected. ��

Proof of Proposition 1.4

• Proof of the first part (uniform integrability (WTP-a)) Recall that we are given a
random variable ξ with zero mean and unit variance and that for every n ∈ N the
coordinates of Xn are independent copies of ξ . We want to show that

lim
M→∞ sup

n∈N
y∈Sn−1

E

(

〈Xn, y〉21{〈Xn ,y〉2≥M}
)

= 0.

For every x ∈ R
n , we define fn(x) := 〈Xn, x〉. Clearly, E( f 2n (x)) = ‖x‖2 since

Xn is isotropic. Let us start with some comments to understand the problem. The
random variables ( f 2n (y))n∈N,y∈Sn−1 belong to the unit sphere of L1. If ξ has finite

fourth moment B := E(ξ4) < ∞ then by expanding and using isotropy we get
E( f 4n (y)) ≤ max(B, 3)which shows that the family ( f 2n (y))n∈N,y∈Sn−1 is bounded

in L2 and thus uniformly integrable. How to proceed when ξ does not have a finite
fourth moment? If y belongs to the canonical basis of R

n then fn(y) is distributed
as ξ and has thus the same integrability. On the other hand, if y is far from being
sparse, say y = (n−1/2, . . . , n−1/2), then fn(y) is distributed asn−1/2(ξ1+· · ·+ξn)

where the ξi ’s are independent copies of ξ , which is close in distribution to the
standard Gaussian law N (0, 1) by the Central Limit Theorem (CLT).

We will use the following uniform quantitative CLT. Even though it probably exists
somewhere in the literature, we provide a short proof for convenience. It can probably
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858 D. Chafaï, K. Tikhomirov

also be proved using the classical Fourier analytic smoothing inequality [24, equation
(3.13) XVI.3 p. 538] which is the basis of many uniform CLT estimates.

Lemma 2.1 (Uniform quantitative CLT) Let ξ be a random variable with zero mean
and unit variance and let � be the cumulative distribution of the standard real Gaus-
sian law N (0, 1) of zero mean and unit variance. For any ε > 0 there exists δ > 0
depending only on ε and the law of ξ with the following property: if n ∈ N and
y ∈ Sn−1 is such that ‖y‖∞ ≤ δ, then the cumulative distribution function Fn of
∑n

i=1 yiξi satisfies

‖Fn − �‖∞ ≤ ε.

Proof of Lemma 2.1 To prove the lemma, let us assume the contrary. Then there exists
ε > 0 and a sequence (ym)m≥1 in �2(N) such that ‖ym‖ = 1 and ‖ym‖∞ ≤ 1/m for
every m ∈ N, and such that ‖Fm − �‖∞ > ε where Fm is the cumulative distribution
function of Sm :=∑∞

i=1 ym,iξi . Let ϕm be the characteristic function of Sm . We have
ϕm(t) = ∏∞

i=1 ϕ(ym,i t) where ϕ is the characteristic function of ξ . Fix any t ∈ R.

By assumption on ξ , we get ϕ(t) = 1 − t2
2 + o(t2). Hence, using the identities

‖ym‖2 := ∑∞
i=1 y

2
m,i = 1 and ‖ym‖∞ := maxi∈N |ym,i | ≤ 1/m together with the

formula (valid for m → ∞):

ϕm(t) =
∞
∏

i=1

(

1 − y2m,i t
2

2
+ o

((

y2m,i t
2
))

)

= exp

(

− t2

2

∞
∑

i=1

y2m,i +
∞
∑

i=1

o
(

y2m,i t
2
)

)

,

we get limm→∞ ϕm(t) = e−t2/2. By the Lévy theorem for characteristic functions, it
follows that Fm → � pointwise as m → ∞, which yields Sm → N (0, 1) weakly as
m → ∞, contradicting to our initial assumption. ��

Let us continue with the proof of the uniform integrability. Since ξ2 ∈ L1 we get,
by dominated convergence,

h(M) := E

(

ξ21{ξ2≥M}
)

−→
M→∞ 0.

Let ε > 0, and let δ > 0 be defined from ε and the law of ξ as in the above lemma (we
can, of course, assume that δ → 0 with ε → 0). Let M > 0 and n ∈ N and y ∈ Sn−1.

Let us write y = w + z where wi := yi1|yi |≤δ2 and zi := yi1|yi |>δ2 for any
i = 1, . . . , n (here, one can recall decomposition of the unit sphere into sets of “close
to sparse” and “far from sparse” vectors, employed, in particular, in [34,43]). Then it
is easily seen that

• supp(z) ∩ supp(w) = ∅;
• ‖w‖ ≤ 1 and ‖w‖∞ ≤ δ2;
• ‖z‖ ≤ 1 and |supp(z)| ≤ 1/δ4,
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where supp(x) := {i : xi �= 0}. Now we have f 2n (y) ≤ 2( f 2n (w) + f 2n (z)) and

E

(

f 2n (y)1{ f 2n (y)≥M}
)

≤ 2E

(

(

f 2n (w) + f 2n (z)
)

(

1{
f 2n (w)≥ M

4

} + 1{
f 2n (z)≥ M

4

}

))

≤ 2‖z‖2P
(

f 2n (w) ≥ 1
4M
)

+ 2‖w‖2P
(

f 2n (z) ≥ 1
4M
)

+ 2E

(

f 2n (z)1{
f 2n (z)≥ M

4

}

)

+ 2E

(

f 2n (w)1{
f 2n (w)≥ M

4

}

)

=: (∗) + (∗∗) + (∗ ∗ ∗) + (∗ ∗ ∗∗).

Now, by Markov’s inequality

(∗) + (∗∗) ≤ 16

M
.

Second, using that f 2n (x) ≤ ‖Px Xn‖2, valid for any x ∈ R
n with ‖x‖ ≤ 1 and

orthogonal projection Px onto its support, we obtain

(∗ ∗ ∗) ≤ 2E

⎛

⎝

⎛

⎝

∑

i :zi �=0

ξ2i

⎞

⎠

∑

i :zi �=0

1{
ξ2i ≥ δ8M

4

}

⎞

⎠

= 2E

⎛

⎝

∑

i, j∈supp(z)
ξ2i 1{

ξ2j ≥ δ8M
4

}

⎞

⎠

≤ 2

⎛

⎝

1

δ8

4

δ8M
+

h
(

δ8M
4

)

δ4

⎞

⎠ = 8

δ16M
+

2h
(

δ8M
4

)

δ4
,

where in the third line we used Markov’s inequality. Third, we write

(∗ ∗ ∗∗) = 2E

(

f 2n (w)
)

− 2E

(

f 2n (w)1{
f 2n (w)< M

4

}

)

.

Now if ‖w‖ ≤ δ then (∗ ∗ ∗∗) ≤ 2δ2. Suppose in contrast that ‖w‖ > δ, and denote
w∗ := w/‖w‖. Then ‖w∗‖∞ ≤ δ, and therefore, by the CLT of Lemma 2.1, the
distribution of fn(w∗) is ε-close to N (0, 1), and in particular, there exist M∗(ε) > 0
and ρ(ε) > 0 depending only on ε such that ρ(ε) → 0 as ε → 0 and

E

(

f 2n (w∗)1{ f 2n (w∗)<M∗(ε)}
)

≥ 1 − ρ(ε).

Thus, having in mind that f 2n (w∗) = f 2n (w)/‖w‖2, we get

(∗ ∗ ∗∗) ≤ 2‖w‖2ρ(ε) ≤ 2ρ(ε)
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provided that M ≥ 4M∗(ε). So, in all cases, as long as M is sufficiently large,

(∗ ∗ ∗∗) ≤ 2δ2 + 2ρ(ε).

Finally, take any M > 0 such that M ≥ max(16/ε, 8/(δ16ε), 4M∗(ε)) and such
that 2h(δ8M/4)/δ14 ≤ ε; then the desired result follows from

(∗) + (∗∗) + (∗ ∗ ∗) + (∗ ∗ ∗∗) ≤ 4ε + 2δ2 + 2ρ(ε).

Remark 2.2 (Alternative proof of (WTP-a)) An anonymous referee has suggested
the following alternative proof of (WTP-a), which is shorter, but relies on a non-
elementary inequality. For any n ≥ 1 and any y = (y1, . . . , yn) ∈ Sn−1, Petrov’s
inequality [40, §2.6.26 p. 83]—a consequence of Fuk and Nagaev’s inequality [40,
(2.33) p. 61]—yields:

E(w(〈Xn, y〉)) ≤
n
∑

k=1

E(w(2yk Xn,k)) + 2e2
∫ ∞

0

dw(x)
(

1 + 1
2 x

2
)2

for any even function w : R → R+ which is non-decreasing on R+ with w(0) = 0.
Now take w(x) := x21{x2>M} where M > 0 is fixed. Then, on the one hand, for any
1 ≤ k ≤ n, as yk ∈ [0, 1], we have, denoting Xn,k the k-th component of Xn ,

E(w(2yk Xn,k)) = 4y2kE

(

X2
n,k1{(2yk Xn,k )

2>M}
)

≤ 4y2kE

(

X2
n,k1{(2Xn,k )

2>M}
)

while on the other hand,

∫ ∞

0

dw(x)
(

1 + 1
2 x

2
)2 = M

(

1 + 1
2M
)2 +

∫ ∞
√
M

dx2
(

1 + 1
2 x

2
)2 ≤ 4

M
+ 4

M + 2
≤ 8

M
,

and we obtain the following inequality:

E

(

〈Xn, y〉21{〈Xn ,y〉2>M}
)

≤ 4 max
1≤k≤n

E

(

X2
n,k1{

X2
n,k>

M
4

}

)

+ 8

M
.

This implies that the family {〈Xn, y〉2 : n ≥ 1, y ∈ Sn−1} is uniformly integrable.

• Proof of the first part (improved (WTP-b)) As before, we assume that ξ is a random
variable with zero mean and unit variance, and denote by (ξi ) a sequence of i.i.d.
copies of ξ . Let us recall a kind of the weak law of large numbers for weighted
sums, taken from [49, Lemma 5], which can be seen as a consequence of Lévy’s
continuity theorem for characteristic functions: if (ηi )i∈I is a sequence (finite or
infinite) of i.i.d. real random variables with zero mean then for every ε > 0 there
exists δ > 0 which may depend on the law of the random variables with the
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following property: for every deterministic sequence (ti )i∈I in [0,∞) such that
‖t‖1 :=∑i∈I ti = 1 and ‖t‖∞ := maxi∈I ti ≤ δ, we have

P

(∣

∣

∣

∣

∣

∑

i∈I
tiηi

∣

∣

∣

∣

∣

> ε

)

< ε.

Setting ηi := ξ2i − 1, it follows that there exists h : (0, 1] → (0, 1] such that,
given any ε > 0 and a sequence (ti )i∈I in [0,∞)with ‖t‖1 = 1 and ‖t‖∞ ≤ h(ε),
we have

P

(∣

∣

∣

∣

∣

∑

i∈I
tiξ

2
i − 1

∣

∣

∣

∣

∣

> ε

)

≤ ε. (2.1)

Without loss of generality, one can take h strictly monotone (i.e. invertible).

We now proceed similarly to [48, Proposition 1.3]. Fix n ∈ N and let P be a non-
zero orthogonal projection of R

n of rank r . Let X = (ξk)1≤k≤n be a random vector of
R
n with ξ1, . . . , ξn i.i.d. copies of ξ . We have

‖PX‖2 = 〈X,PX〉.

Let us also denote the matrix of P in the canonical basis as P. We have P2 = P = P�
and tr(P) = rank(P) = r . Let P0 be the matrix obtained from P by zeroing the
diagonal. We have P−P0 = diag(P). A standard decoupling inequality proved in [50]
(see also the book [22]) states that for any convex function F ,

E(F(〈X,P0X〉)) ≤ E(F(4〈X,P0X
′〉)), (2.2)

where X ′ is an independent copy of X . In particular the choice F(u) = u2 gives

E(〈X,P0X〉2) ≤ 16E(〈X,P0X
′〉2).

Now recall that if Z is a centered random vector ofR
n with covariance matrix � and if

B is a n×n matrix then E(〈Z , BZ〉) = tr(�B�). Seeing X and X ′ as column vectors,

E(〈X,P0X
′〉2) = E

(

X ′�P0XX�P0X ′)

= E

(

X ′�P0E(XX�)P0X
′)

= E

(

X ′�P20X ′)

= tr
(

P20
)

≤ 2tr
(

(P − P0)
2
)

+ 2tr(P2)

≤ 2tr(P2) + 2tr(P2)

= 4r.
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Therefore
E

(

〈X,P0X〉2
)

≤ 64r

and by Markov’s inequality we get

P

(

|〈X,P0X〉| > r3/4
)

≤ 64√
r
. (2.3)

Next note that

〈X, (P − P0)X〉 =
n
∑

i=1

Pi,iξ
2
i

with 0 ≤ Pi,i ≤ 1 and
∑n

i=1 Pi,i = r . Hence taking ti = Pi,i/r and ε := h−1(1/r)
with ε := 1 if 1/r is outside of the range of h, we get, using (2.1),

P(|〈X, (P − P0)X〉 − r | > εr) ≤ ε.

Finally, by combining with (2.3) we obtain

P

(

|〈X,PX〉 − r | >
(

ε + r−1/4
)

r
)

≤ ε + 64√
r

and this implies the desired result, namely

P(|〈X,PX〉 − r | > o(r)) = o(1).

• Proof of the second part (improved (STP)) Let ξ be a random variable with zero
mean, unit variance and a finite fourth moment. Further, let P = (Pi j ), P0 and r
have the same meaning as before, and X = (ξk)1≤k≤n , where ξk’s are i.i.d. copies
of ξ . For any u > 0 we have

P

(∣

∣

∣‖PX‖2 − r
∣

∣

∣ > u
)

≤ P(|〈X,P0X〉| > u/2) + P(|〈X, (P − P0)X〉 − r | > u/2)

=: (∗) + (∗∗).

Let us estimate the last two quantities (∗) and (∗∗) separately. In both cases we
will compute selected moments and use Markov’s inequality. Set B := E(ξ4k ).
Note that B ≥ 1 since Eξ2 = 1. Since ξk’s are independent, we get, for any unit
vector y = (yk)1≤k≤n ,

E(〈X, y〉4) =
∑

i

E

(

ξ4i

)

y2i y
2
i + 3

∑

i �= j

E

(

ξ2i

)

E

(

ξ2j

)

y2i y
2
j ≤ max(B, 3). (2.4)

The decoupling inequality (2.2) with F(u) = u4 gives

E(〈X,P0X〉4) ≤ 256E(〈X,P0X
′〉4),
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where X ′ is an independent copy of X . Next, in view of (2.4), we get

E(〈X,P0X
′〉4) ≤ E(‖P0X ′‖4) max‖y‖=1

E(〈X, y〉4) ≤ max(B, 3)E(‖P0X ′‖4).

Since X ′ has independent coordinates of zero mean and unit variance, we get

E(‖P0X ′‖4) ≤ 8E(‖PX ′‖4) + 8E(‖(P − P0)X
′‖4)

= 8E

⎛

⎝

∑

i, j

Pi jξiξ j

⎞

⎠

2

+ 8E

(

n
∑

i=1

ξ2i Pi i
2

)2

≤ 8max(B, 2)
∑

i, j

Pi j
2 + 8

∑

i �= j

Pi iP j j + 8B
∑

i, j

Pi i
2P j j

2

≤ 8max(B, 2)r + 8r2 + 8Br2

≤ 32Br2.

Hence, E(〈X,P0X〉4) ≤ (256Br)2, and applying Markov’s inequality, we get the
following bound for (∗):

(∗) ≤ (1024Br)2

u4
.

Let us turn to estimating (∗∗). We will use symmetrization, truncation, and con-
centration. Let ˜X = (˜ξk)1≤k≤n be an independent copy of X . Note that

E((〈˜X , (P − P0)˜X〉 − r)2) = E

⎛

⎝

(

n
∑

k=1

Pkk(˜ξ
2
k − 1)

)2
⎞

⎠ ≤ Br,

so, using the independence of X and ˜X and applying Markov’s inequality, we get

(∗∗) ≤ 2P

(

∣

∣〈X, (P − P0)X〉 − 〈˜X , (P − P0)˜X〉∣∣ > u/2 − √
2Br

)

= 2P

(∣

∣

∣

∣

∣

n
∑

k=1

Pkk
(

ξk
2 −˜ξ2k

)

∣

∣

∣

∣

∣

> u/2 − √
2Br

)

.

Clearly, the variables ξk
2 −˜ξ2k (1 ≤ k ≤ n) are symmetrically distributed, with the

variance bounded from above by 2B. Let h : R+ → R+ be a function defined as

h(t) := E

(

(

ξk
2 −˜ξ2k

)2
χt

)

,
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where χt denotes the indicator of the event {|ξk2 −˜ξ2k | ≥ t}. Clearly, h(t) → 0 when
t tends to infinity. Note that, by Hoeffding’s inequality, we have

P

(∣

∣

∣

∣

∣

n
∑

k=1

Pkk
(

ξk
2 −˜ξ2k

)

(

1 − χr1/4
)

∣

∣

∣

∣

∣

> u/4

)

≤ 2 exp

(

− 2u2

16
√
r

(

4
∑

k
Pkk

2
)−1
)

≤ 2 exp
(

−u2/(32r
√
r)
)

.

On the other hand, since the random variable (ξk
2 −˜ξ2k )χr1/4 has zero mean, we have

E

⎛

⎝

(

n
∑

k=1

Pkk
(

ξk
2 −˜ξ2k

)

χr1/4

)2
⎞

⎠ ≤ rh(r1/4).

Applying Markov’s inequality, we get for all u > 4
√
2Br ,

P

(∣

∣

∣

∣

∣

n
∑

k=1

Pkk
(

ξk
2 −˜ξ2k

)

χr1/4

∣

∣

∣

∣

∣

> u/4 − √
2Br

)

≤ rh(r1/4)

(u/4 − √
2Br)2

.

Combining the estimates, we obtain

(∗∗) ≤ 2P

(∣

∣

∣

∣

∣

n
∑

k=1

Pkk
(

ξk
2 −˜ξ2k

)

(1 − χr1/4)

∣

∣

∣

∣

∣

> u/4

)

+ 2P

(∣

∣

∣

∣

∣

n
∑

k=1

Pkk
(

ξk
2 −˜ξ2k

)

χr1/4

∣

∣

∣

∣

∣

> u/4 − √
2Br

)

≤ 4 exp
(

−u2/(32r
√
r)
)

+ 128rh(r1/4)

u2
for all u > 8

√
2Br .

Finally, grouping together the bounds for (∗) and (∗∗), we get for all u > 8
√
2Br ,

P

(∣

∣

∣‖PX‖2 − r
∣

∣

∣ > u
)

≤ (1024Br)2

u4
+ 4 exp

(

−u2/(32r
√
r)
)

+ 128rh(r1/4)

u2
.

Set α ∈ (0, 1/6). For any u > 8
√
2Br1−α = o(r), using the inequality e−2t ≤ 1/t4

for t > 0, the right hand side of the last equation above is bounded above by

r

u2
(1024B)2r

u2
+ r

u2
4
644r5

u6
+ r

u2
128h(r1/4) = o(r)

u2
.
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This proves the desired result. We note that the proof can be shortened and simplified
under the stronger assumption that E(|ξ1|p) < ∞ for some p > 4, see also [48,
Proposition 1.3] for thin-shell estimates in the same spirit. ��
Proof of Proposition 1.5 This proof was suggested by an anonymous referee. Let Xn ,
n ∈ N, be as in (1.1) and assume that limn→∞ n

mn
= ρ with ρ ∈ (0, 1), in other words

that ρ = ρ ∈ (0, 1). It is known—see [2, Theorem 2.4]—that a sufficient condition
for the Marchenko–Pastur theorem (1.5) to hold is

lim
n→∞ sup

A

1

n
E

∣

∣

∣X�
n AXn − tr(A)

∣

∣

∣ = 0

where the supremumruns over alln×n complexmatrices such that‖A‖ ≤ 1 (let us note
that a similar condition was exploited in [36]). Recall that ‖A‖ = max‖x‖=1 ‖Ax‖ =
smax(A). Note that the mapping A 
→ v�Av−tr(A) is linear for any v ∈ R

n . Actually,
as ‖�A‖, ‖�A‖ ≤ ‖A‖, one can consider only real matrices in the above condition.
Moreover, as v�Av = 0 = tr(A) when A is antisymmetric, it is enough to verify the
condition for real symmetric matrices. Furthermore, by splitting the spectrum it can
be shown that one can consider only real symmetric positive semi-definite matrices.
Now, if A �= 0 is a real symmetric positive semi-definite matrix, then A/‖A‖ can be
represented as a convex linear combination of some orthogonal projectors. Indeed,
write

A

‖A‖ =
n
∑

k=1

λkvkv
�
k

= λn

n
∑

k=1

vkv
�
k + (λn−1 − λn)

n−1
∑

k=1

vkv
�
k + · · · + (λ1 − λ2)v1v

�
1

=: λn�
(n) + (λn−1 − λn)�

(n−1) + · · · + (1 − λ2)�
(1),

where (vk)1≤k≤n is an orthonormal basis of eigenvectors of A/‖A‖ associated to the
eigenvalues λ1, . . . , λn ordered as 0 ≤ λn ≤ λn−1 ≤ · · · ≤ λ1 = 1. Now, due to the
convexity of the L1-norm, we get that a sufficient condition for the Marchenko–Pastur
theorem to hold is

lim
n→∞ sup

�

1

n
E

∣

∣

∣X�
n �Xn − tr(�)

∣

∣

∣ = 0,

where the supremum runs over all orthogonal projectors in R
n . In turn, the latter is

equivalent to

lim
n→∞

1

n
E

∣

∣

∣X�
n �n Xn − tr(�n)

∣

∣

∣ = 0 (2.5)

for any sequence (�n)n≥1 where �n is an orthogonal projector in R
n for every n ≥ 1.

Since Xn is isotropic for every n ≥ 1, it turns out that the latter is in turn equivalent to

1

n
(X�

n �n Xn − tr(�n))
P−→

n→∞ 0 (2.6)
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for any sequence (�n)n≥1 where �n is an orthogonal projector in R
n for every n ≥ 1.

To see that (2.5) and (2.6) are equivalent, consider variables Zn := 1
n (X�

n �n Xn −
tr(�n)) + 1 ≥ 0 which satisfy E(Zn) = 1 for every n ≥ 1. Note that, assuming

condition (2.6), we have Zn
P→ 1, and then use the fact that if a sequence (Zn)n≥1

satisfies Zn
P→ Z , E(|Zn|) → E(|Z |), and E(|Z |) < ∞ then E(|Zn − Z |) → 0, see

for instance [46, Problem 18, p. 211].
Let us show now that (WTP) implies (2.6). We may assume without loss of gener-

ality that rank(�n) → ∞ asE(X�
n �n Xn) = rank(�n) = tr(�n). By (WTP-b), there

exists a sequence (εn)n≥1 such that εn → 0 and, denoting Pn := 1
rank(�n)

X�
n �n Xn ,

we have

lim
n→∞ P(Pn > 1 + εn) = 0.

We only need to show that Pn
P→ 1. For every fixed real number M > 1, we have

1 = E(Pn) = E(Pn1{Pn≤1+εn}) + E(Pn1{1+εn<Pn≤M}) + E(Pn1{Pn>M}).

First note that E(Pn1{1+εn<Pn≤M}) ≤ MP(Pn > 1 + εn) −→
n→∞ 0. Now by (WTP-a),

the family A := {〈Xn, y〉2 : n ≥ 1, y ∈ Sn−1} is uniformly integrable. Hence, the
family

B :=
⋃

n≥1

{

X�
n �Xn

rank(�)
: � �= 0 is an orthogonal projector in R

n
}

is also uniformly integrable, because, denoting by (vk)1≤k≤n the orthonormal basis of
eigenvectors of �,

X�
n �Xn

rank(�)
= 1

rank(�)

rank(�)
∑

k=1

〈Xn, vk〉2

is a convex linear combination of some elements of A.
Next, the uniform integrability ofB implies that limM→∞ supn≥1 E(Pn1{Pn>M}) =

0 and then

lim
n→∞

E(Pn1{Pn≤1+εn}) ≥ 1.

The latter is possible only if E(Pn1{Pn≤1+εn}) → 1. This yields Pn
P→ 1. ��

3 Proof of Theorem 1.6

As in [14,48], for every n × n symmetric matrix S and t ∈ R \ {λ1(S), . . . , λn(S)},
we set
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mS(t) := tr((S − tIn)
−1) =

n
∑

k=1

1

λk(S) − t

The function t 
→ mS(t) is positive and strictly increasing on (−∞, λn(S)). We note
that n−1mS is the restriction on R of the Cauchy–Stieltjes transform of the empirical
spectral distribution of S.

Let us give an overview of the proof. Assume that n ≤ m and B := ∑m
k=1 X

(k) ⊗
X (k), and let

B(0) := 0 and B(k) := B(k−1) + X (k) ⊗ X (k), k = 1, . . . ,m,

where X (k) (k ≤ m) are independent isotropic random vectors in R
n . We want to

find a good lower bound for λmin(B). As was mentioned in the introduction, we
define inductively a sequence of numbers u0, u1, . . . , um such that uk < λmin(B(k))

(k ≤ m) with probability one, implying Eλmin(B) ≥ Eum . More precisely, we set
u0 := n − √

mn < 0, and for every k ≤ m, define uk := uk−1 + δk − δkR , where both
δk and δkR are random non-negative numbers. The quantities δk and δkR are designed
so that 1) uk−1 + δk (whence, uk) stays on the left of the spectrum of B(k) with prob-
ability one, and 2) the sum of expectations

∑m
k=1(δ

k − δkR) is close to m − √
mn,

implying that Eum is close to the (scaled) left edge of the Marchenko–Pastur distribu-
tion (

√
m − √

n)2. The numbers δk , in a non-random “rank one update” setting, are
defined in Lemma 3.2 below. The definition is quite technical, and even the inequality
uk−1 + δk < λmin(B(k)) is not immediately clear. To take care of this condition, we
utilize the concept of a feasible lower shift which was previously applied in [48].
With help of an auxiliary Lemma 3.1, based on the Sherman–Morrison formula,
we verify that our δk is a feasible lower shift, meaning that condition 1 is satis-
fied.

Up to this point, the argument is quite similar to [48]. Still, let us note that the
formula for δk which we use in our paper is different from the one in [48] (the reader
might compare Lemma 3.2 with [48, Lemma 2.3]). Indeed, unlike in [48], here we are
interested in getting a sharp limiting result; hence, our estimates for the expectation
(condition 2) must be more precise than in [48]. However, just “tuning” the definition
of δk from [48] turns our to be insufficient to reach our goal; that is the reason for
introducing regularity shifts δkR which are the main technical novelty of the proof. We
set

δkR :=min
{

� ∈ {0, 1, . . .} : mB(k) (uk−1 + δk − �)

−mB(k) (uk−1 + δk − � − 1) ≤ 1

εn

}

,

where ε > 0 is a parameter which can be made arbitrarily small. The impact of the
regularity shifts might seem counter-intuitive at first glance since they move uk’s in
the direction away from the spectrum increasing the gap between uk and λmin(B(k)).
For every k < m, the purpose of δkR is to guarantee at the next step some concentration
inequalities for the quadratic form
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(X (k+1))�(B(k) − uk)
−1X (k+1)

(this form will appear below as q1). The nature of this concentration property is
revealed in Lemma 3.3, which in turn enables us to obtain a satisfactory estimate
for the expectation of δk in Lemma 3.4. In fact, the condition (3.4) in Lemma 3.3 is
exactly what is provided by δkR’s. Note that the regularity shifts stay useful only if
their cumulative effect is of lower order of magnitude compared to (

√
m − √

n)2. In
Lemma 3.5, we show that

m
∑

k=1

δkR ≤ εn2√
mn − n

deterministically; thus, taking ε arbitrarily small, we can estimate the left edge of the
spectrum of B with the required precision.

We find it useful to separate deterministic (linear algebraic) arguments from prob-
abilistic estimates. In Sect. 3.1 below, we work with a non-random matrix A and a
fixed vector x , thus performing a non-random rank one update to A + xx�. The shift
δk is defined deterministically as a function of the matrix and the vector. In the next
Sect. 3.2, we replace the fixed vector x with a random isotropic vector X , but the
matrix A stays non-random. Finally, in Sect. 3.3, we make the setting “fully random”
(the way it was described above, but with matrices A(k) in place of B(k)’s).

3.1 Feasible lower shift

Let A be an n×n positive semi-definite non-randommatrix with eigenvalues λmax :=
λ1 ≥ · · · ≥ λn =: λmin ≥ 0 and a corresponding orthonormal basis of eigenvectors
(xi )ni=1, and let u < λmin. Further, assume that x is a (non-random) vector in R

n . We
are interested in those numbers δ ≥ 0 that (deterministically) satisfy

λmin > u + δ and mA+xx�(u + δ) ≤ mA(u). (3.1)

Following [48], any value of δ satisfying (3.1), will be called a feasible lower shift
with respect to A, x and u. The following statement is taken from [48]; we provide its
proof for reader’s convenience.

Lemma 3.1 (Feasible lower shift—[48, Lemma 2.2]) Let δ ≥ 0 be such that u + δ <

λmin. Let us define

q1(δ) := x�(A − u − δ)−1x =
n
∑

i=1

〈x, xi 〉2
λi − u − δ

q2(δ) := x�(A − u − δ)−2x

tr((A − u − δ)−2)
=
(

n
∑

i=1

(λi − u − δ)−2

)−1 n
∑

i=1

〈x, xi 〉2
(λi − u − δ)2

.

Then a sufficient condition for (3.1) to be satisfied is q2(δ) ≥ δ(1 + q1(δ)).
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Proof If S is a symmetric matrix and if x is a vector, and if both S and S + xx� are
invertible, then 1 + x�S−1x �= 0 since x�S−1x = −1 gives (S + xx�)S−1x = 0.
Moreover the inverse (S + xx�)−1 of the rank one update S + xx� of S can be
expressed as

(S + xx�)−1 = S−1 − S−1xx�S−1

1 + x�S−1x
. (3.2)

This is known as the Sherman–Morrison formula. This allows to write

mA+xx�(u + δ) = tr((A − u − δ + xx�)−1)

= tr((A − u − δ)−1) − x�(A − u − δ)−2x

1 + x�(A − u − δ)−1x

= mA(u) + tr((A − u − δ)−1 − (A − u)−1)

− x�(A − u − δ)−2x

1 + x�(A − u − δ)−1x
.

Now since A − (u + δ)In is positive definite, it follows that

δ(A − u − δ)−2 − ((A − u − δ)−1 − (A − u)−1)

is positive definite, and therefore

mA+xx�(u + δ) − mA(u) ≤ δtr((A − u − δ)−2) − x�(A − u − δ)−2x

1 + x�(A − u − δ)−1x
.

Finally it can be checked that the right hand side is ≤ 0 if δ(1+q1(δ))−q2(δ) ≤ 0. ��
Lemma 3.2 (Construction of the feasible shift) Let A, x, u and q1, q2 be as above,
ε ∈ (0, 1) and assume that

λmin − u ≥ 2/ε2.

Then the quantity

δ := (1 − ε)1{q1(1/ε)≤(1+ε)mA(u)+ε}
(1 + ε)(1 + mA(u))

(

n
∑

i=1

(λi − u)−2

)−1 n
∑

i=1

〈x, xi 〉21{〈x,xi 〉2≤1/ε}
(λi − u)2

satisfies δ ≤ 1/ε and is a feasible lower shift w.r.t. A, x and u, i.e. λmin > u + δ and
q2(δ) ≥ δ(1 + q1(δ)).

Proof First, note that the condition λmin − u ≥ 2/ε2 immediately implies that

ε(λi − u)2 − 2(λi − u)

ε
+ 1

ε2
≥ 0, i = 1, . . . , n,
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which is in turn equivalent to the relation

1

(1 − ε) (λi − u)2
≥ 1

(λi − u − 1/ε)2
, i = 1, . . . , n. (3.3)

Now, let us return to δ. The inequality δ ≤ 1/ε follows directly from its definition.
Next, since q1(·) is an increasing function on [0, λmin − u), we have

(1 + q1(δ))1{q1(1/ε)≤(1+ε)mA(u)+ε}
(1 + ε)(1 + mA(u))

≤ (1 + q1(1/ε))1{q1(1/ε)≤(1+ε)mA(u)+ε}
(1 + ε)(1 + mA(u))

≤ 1.

Thus, we obtain

δ(1 + q1(δ)) ≤ (1 − ε)q2(0).

Finally, note that by the definition of q2 and in view of relation (3.3), we have

q2(δ) =
(

n
∑

i=1

(λi − u − δ)−2

)−1 n
∑

i=1

〈x, xi 〉2
(λi − u − δ)2

≥
(

n
∑

i=1

(λi − u − 1/ε)−2

)−1 n
∑

i=1

〈x, xi 〉2
(λi − u − δ)2

≥
(

(1 − ε)−1
n
∑

i=1

(λi − u)−2

)−1 n
∑

i=1

〈x, xi 〉2
(λi − u − δ)2

≥
(

(1 − ε)−1
n
∑

i=1

(λi − u)−2

)−1 n
∑

i=1

〈x, xi 〉2
(λi − u)2

= (1 − ε)q2(0),

and the statement follows. ��

3.2 Randomization and control of expectations

Let, as before, A be an n×n non-random positive semidefinitematrix with eigenvalues
λ1 ≥ · · · ≥ λn ≥ 0, and let u < λn . We define a (random) quantity δ as in Lemma 3.2,
replacing the fixed vector x with a random isotropic vector X .

Lemma 3.3 Let ε ∈ (0, 12−3
)

, n ≥ 12/ε4, and let X be a random isotropic vector in
R
n such that

P

(

‖PX‖2 − rankP ≥ εrankP/6
)

≤ ε4
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for any non-zero orthogonal projection P of rank at least ε11n/72. Further, let the non-
random matrix A, the numbers (λi )i≤n and vectors (xi )i≤n be as above, and u ∈ R

be such that λmin − u ≥ 6ε−2 + ε−1. Assume additionally that

n
∑

i=1

1

(λi − u)(λi − u + 1)
≤ 1

εn
. (3.4)

Then, with q1 defined as in Lemma 3.1 (with X replacing the non-random vector x),
we have

P
{

q1(1/ε) + 1 ≥ (1 + ε)(1 + mA(u))
} ≤ 4ε2.

Proof First, note that the lower bound on λmin − u implies that q1(1/ε) ≤ (1 +
ε/6)q1(0) (deterministically). Let us split the index set {1, . . . , n} into several subsets
in the following way: First, let I := {i ≤ n : λi − u ≤ ε4n/12}. Next, we set

J := {i ≤ n : λi − u ≥ 6n/ε3},

so that

{1, . . . , n} \ (I ∪ J ) =
{

i ≤ n : ε4n/12 < λi − u < 6n/ε3
}

.

Note that, by the choice of ε, we have exp(1/(12ε)) ≥ 72/ε7. Hence, the interval
(ln(ε4n/12), ln(6n/ε3)) can be partitioned into �ε−2� subintervals Sk (k ≤ ε−2) of
length at most ε/6 each. Then we let

Ik := {i ≤ n : ln(λi − u) ∈ Sk} , k ≤ ε−2.

Obviously,

q1(0) =
∑

i∈I

〈X, xi 〉2
λi − u

+
∑

i∈J

〈X, xi 〉2
λi − u

+
∑

k≤ε−2

∑

i∈Ik

〈X, xi 〉2
λi − u

= (∗) + (∗∗) + (∗ ∗ ∗).

Let us estimate the three quantities separately.
First, in view of the condition (3.4), the lower bound on n and the definition of I ,

we have

E(∗) =
∑

i∈I

1

λi − u
≤
∑

i∈I

ε4n/12 + 1

(λi − u)(λi − u + 1)
≤ ε3

6
.

Hence, by Markov’s inequality,

P {(∗) ≥ ε/6} ≤ ε2.
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Similarly,

E(∗∗) =
∑

i∈J

1

λi − u
≤ ε3

6
,

whence

P {(∗∗) ≥ ε/6} ≤ ε2.

Now, we consider the quantity (∗∗∗). First, assume that for some k ≤ ε−2 we have
|Ik | ≤ ε11n/72. Since for every i ∈ Ik we have λi − u ≥ ε4n/12, we obtain

E

∑

i∈Ik

〈X, xi 〉2
λi − u

≤ ε7

6
,

whence, by Markov’s inequality,

P

⎧

⎨

⎩

∑

i∈Ik

〈X, xi 〉2
λi − u

≥ ε3/6

⎫

⎬

⎭

≤ ε4.

Now, if for some k ≤ ε−2 we have |Ik | > ε11n/72, then, by the condition on projec-
tions and the definition of Ik , denoting by Pk the orthogonal projection onto the span
of (xi )i∈Ik , we obtain

P

⎧

⎨

⎩

∑

i∈Ik

〈X, xi 〉2
λi − u

≥
∑

i∈Ik

exp(ε/6)(1 + ε/6)

λi − u

⎫

⎬

⎭

≤ P

{

‖Pk X‖2 ≥ (1 + ε/6)rankPk
}

≤ ε4.

Combining all the above estimates together, we get

P
{

q1(1/ε) ≥ (1 + ε/6)
(

ε/2 + exp(ε/6)(1 + ε/6)mA(u)
)}

≤ P
{

(∗) + (∗∗) + (∗ ∗ ∗) ≥ ε/6 + ε/6 + ε/6 + exp(ε/6)(1 + ε/6)mA(u)
}

≤ 4ε2.

It remains to note that

(1 + ε/6)
(

ε/2 + exp(ε/6)(1 + ε/6)mA(u)
)+ 1 ≤ (1 + ε)(1 + mA(u)).

��
Lemma 3.4 (Control of Eδ) Let ε ∈ (

0, 12−3
)

, n ≥ 12/ε4, and let A, (λi )i≤n,
(xi )i≤n, X and δ be the same as in Lemma 3.3 (and satisfy the same conditions).
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Assume additionally that E(〈X, xi 〉21{〈X,xi 〉2≤1/ε}) ≥ r (i ≤ n) for some r ∈ [0, 1].
Then

Eδ ≥ (1 − ε)r

(1 + ε)(1 + mA(u))
− 4ε.

Proof Since

δ = (1 − ε)(1 − 1{q1(1/ε)>(1+ε)mA(u)+ε})
(1 + ε)(1 + mA(u))

×
(

n
∑

i=1

(λi − u)−2

)−1 n
∑

i=1

〈X, xi 〉21{〈X,xi 〉2≤1/ε}
(λi − u)2

,

and in view of the bound δ ≤ 1/ε, we get

Eδ ≥ (1 − ε)

(1 + ε)(1 + mA(u))

(

n
∑

i=1

(λi − u)−2

)−1 n
∑

i=1

E
(〈X, xi 〉21{〈X,xi 〉2≤1/ε}

)

(λi − u)2

− ε−1
P
{

q1(1/ε) > (1 + ε)mA(u) + ε
}

.

Finally, applying Lemma 3.3 to the last expression, we get the result. ��

3.3 Proof of Theorem 1.6, completed

Let (Xn)n∈N be as in the statement of the theorem. Without loss of generality, we
can assume that both functions f, g : N → R+ in the Weak Tail Projection property
(WTP-b) are non-increasing. Additionally let us define

h(M) := sup
n∈N

y∈Sn−1

E

(

〈Xn, y〉21{〈Xn ,y〉2≥M}
)

, M ≥ 0

Note that (WTP-a) gives limM→∞ h(M) = 0.
Take any 0 < ε < min

(

12−3, (ρ−1/2 − 1)2/4
)

, and define nε as the smallest
integer greater than 12/ε4 such that

(a) g(ε11nε/72) ≤ ε4 and f (ε11nε/72) ≤ ε/6 and
(b) for all n ≥ nε we have mn/n ≥ 3ρ−1/4 + 1/4.

Note that condition (b) implies that (
√
mn/n − 1)−1 ≤ 2/(ρ−1/2 − 1), whence

(
√
mn/n − 1)2 ≥ ε for all n ≥ nε. From now on, we fix an n ≥ nε, let m := mn and

let X (1), . . . , X (m) be i.i.d. copies of Xn . We define

A(0) := 0 and A(k) := A(k−1) + X (k) ⊗ X (k), 1 ≤ k ≤ m,
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so that An = A(m). Set

u0 := n − √
mn

and let u1, . . . , um be a collection of random numbers defined inductively as follows:

uk := uk−1 + δk − δkR,

where δk is defined as δ in Lemma 3.2 (with A(k−1), uk−1 and X (k) replacing A, u and
x , respectively) and the regularity shift δkR is defined by

δkR :=min
{

� ∈ {0, 1, . . .} : mA(k) (uk−1 + δk − �)

−mA(k) (uk−1 + δk − � − 1) ≤ 1

εn

}

.

Note that Lemmas 3.1 and 3.2 imply that we have, (deterministically) for all k ≥ 0,

mA(k) (uk) ≤ mA(0) (u0) = n√
mn − n

.

The ultimate purpose of the shift δkR is to guarantee relation (3.4) which was an
important condition in proving the concentration Lemma 3.3. Of course, since δkR
moves uk away from the spectrum, one must make sure that the cumulative impact of
the shifts δkR is small enough and does not destroy the desired asymptotic estimate.

Lemma 3.5 With δkR (1 ≤ k ≤ m) defined above, the following holds deterministi-
cally:

m
∑

k=1

δkR ≤ εn2√
mn − n

.

Proof Take any admissible k ≥ 1. The definition of δkR immediately implies that for
all 0 ≤ � < δkR we have

mA(k) (uk−1 + δk − �) − mA(k) (uk−1 + δk − � − 1) >
1

εn
.

Hence,

mA(k) (uk) = mA(k)

(

uk−1 + δk − δkR

)

≤ mA(k) (uk−1 + δk) − δkR

εn

≤ mA(k−1) (uk−1) − δkR

εn
.
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Thus,mA(k) (uk) ≤ mA(k−1) (uk−1)− δkR
εn for all k ≥ 1, which, together with the relations

0 < mA(m) (um) and mA(0) (u0) = n√
mn−n

implies the result. ��

Now, fix for a moment any k ∈ {1, . . . ,m} and letFk−1 be the σ -algebra generated
by the vectors X (1), . . . , X (k−1), with the convention F0 = {∅,�}. We will first
estimate the conditional expectation E(δk |Fk−1).

Note that, by the definition of uk−1, we have (deterministically)

mA(k−1) (uk−1) − mA(k−1) (uk−1 − 1) ≤ 1

εn

(the above relation holds for k > 1 in view of the definition of δk−1
R and for k = 1 —

because of the definition of nε). Together with the lower bound on n (which implies
the conditions on orthogonal projections assumed in Lemma 3.4) and the condition

mA(k−1) (uk−1) ≤ mA(0) (u0) = n√
mn − n

,

we get from Lemma 3.4 that

E(δk |Fk−1) ≥ (1 − ε)(1 − h(1/ε))

(1 + ε)(1 + mA(0) (u0))
− 4ε

= (1 − ε)(1 − h(1/ε))

1 + ε

(

1 −
√

n

m

)

− 4ε.

Hence, by the definition of uk’s and Lemma 3.5, we obtain

Eum ≥ u0 + (1 − ε)(1 − h(1/ε))

1 + ε

(

m − √
mn
)− 4εm − εn2√

mn − n
.

Since um < λmin(An) (deterministically), we get from the above relation

Eλmin(An) ≥ (
√
m − √

n)2 − (3ε + h(1/ε))
(

m − √
mn
)− 4εm − εn2√

mn − n

≥ (
√
m − √

n)2 − 7εm − h(1/ε)m − 2εn

ρ−1/2 − 1
.

Since the above estimate holds for arbitrarily small ε, and having in mind that
h(1/ε) → 0 with ε → 0, we get the desired result.

4 Proof of Theorem 1.8

As in [14,48], for any n×n symmetric matrix S and every t ∈ R\{λ1(S), . . . , λn(S)},
we set
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mS(t) := tr((tIn − S)−1) =
n
∑

k=1

1

t − λk(S)
.

The function t 
→ mS(t) = −mS(t) is positive and strictly decreasing on
(λ1(S),+∞).

The scheme of the proof of Theorem 1.8 in many respects resembles the proof of
Theorem 1.6 from the previous section. Thus, we prefer to omit a detailed discussion
here. Let us make just a few remarks. The concepts of feasible shifts and regularity
shifts play analogous role. This time, we are talking about feasible upper shifts, again
following [48]. Since the case of the largest eigenvalue is technicallymore complicated,
our feasible upper shift �k is split into two components �k

1 and �k
2, each designed to

guarantee certain conditions on quadratic forms, and their expectations are estimated
separately. As with the smallest eigenvalue, the purpose of regularity shifts �k

R , in
cooperation with the Strong Tail Projection property, is to enable us to apply some
concentration inequalities,which are used to obtain sharp estimates on the expectations
of the shifts �k .

4.1 Feasible upper shift

Let A be an n × n positive semi-definite non-random matrix with eigenvalues
λmax := λ1 ≥ · · · ≥ λn =: λmin ≥ 0 and a corresponding orthonormal basis of
eigenvectors (xi )ni=1, and let u > λ1 be such that mA(u) < 1. Further, assume that
x is a (non-random) vector in R

n . In this section, we consider those numbers � ≥ 0
that (deterministically) satisfy

λmax(A + xx�) < u + � and mA+xx�(u + �) ≤ mA(u). (4.1)

Following [48], any value of � satisfying (4.1), will be called a feasible upper shift
with respect to A, x and u. The following statement is taken from [48]; we provide its
proof for completeness.

Lemma 4.1 (Feasible upper shift—[48, Lemma 3.3]) Let u > λ1 and mA(u) < 1.
For any � > 0, define

Q1(�) := x�(u + � − A)−1x =
n
∑

i=1

〈x, xi 〉2
u + � − λi

Q2(�) := x�(u + � − A)−2x

mA(u) − mA(u + �)
= (mA(u) − mA(u + �))−1

n
∑

i=1

〈x, xi 〉2
(u + � − λi )

2 .

Then a sufficient condition for (4.1) to be satisfied is

Q1(�) < 1 and Q2(�) ≤ 1 − Q1(�).
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Proof We can assume without loss of generality that x �= 0, so that Q2(�) > 0. The
Sherman–Morrison formula (3.2) gives

mA+xx�(u + �) = tr((u + �)In − A − xx�)−1

= tr((u + �)In − A)−1 +
∥

∥((u + �)In − A)−1x
∥

∥

2

1 − x� ((u + �)In − A)−1 x

= mA(u + �) +
(

1 −
n
∑

i=1

〈x, xi 〉2
u + � − λi

)−1 n
∑

i=1

〈x, xi 〉2
(u + � − λi )

2 .

Hence, we have mA+xx�(u + �) ≤ mA(u) if and only if

(

1 −
n
∑

i=1

〈x, xi 〉2
u + � − λi

)−1 n
∑

i=1

〈x, xi 〉2
(u + � − λi )

2 ≤ mA(u) − mA(u + �).

But the latter inequality clearly holds if Q1(�) < 1 and Q2(�) ≤ 1 − Q1(�).
Next, the rank one matrix

(u + � − A)−1/2x((u + � − A)−1/2x)� = (u + � − A)−1/2xx�(u + � − A)−1/2

has eigenvalues 0 and ‖(u + � − A)−1/2x‖2. But the condition Q1(�) < 1 implies
‖(u + � − A)−1/2x‖2 = x�(u + � − A)−1x < 1. Therefore the matrix

In − (u + � − A)−1/2xx�(u + � − A)−1/2

is positive definite, implying that

(u + � − A)1/2In(u + � − A)1/2 − xx� = (u + �)In − (A + xx�)

is positive definite (recall that for any two positive definitematrices S and T , thematrix
S1/2T S1/2 is positive definite). Hence, u + � > λmax(A + xx�). ��

Following [48], we will treat the quantities Q1 and Q2 separately: for a specially
chosen number τ ∈ (0, 1), we will take �1 such that Q1(�1) ≤ τ , and �2 such that
Q2(�2) ≤ 1 − τ . Then, in view of monotonicity of Q1 and Q2, the sum �1 + �2
will be a feasible upper shift. In our case, τ shall be close to mA(u).

Let us introduce “level sets” I j as follows:

I j :=
{

i ≤ n : 4 j−1 ≤ u − λi < 4 j
}

, j ∈ N. (4.2)

Note that the condition mA(u) < 1 immediately implies that |I j | < 4 j for all j ≥ 1.
Moreover, if we additionally assume that max�∈N |I�|

16� is sufficiently small then the

following estimate of the ratio
|I j |
4 j is valid:
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Lemma 4.2 Let the sets I j be as above and assume that for some ε ∈ (0, 1] we have

max
�∈N

|I�|
16�

≤ 1

εn
.

Then

|I j |
4 j

≤
√ |I j |

εn
, j ∈ N.

Proof Fix any natural j such that I j �= ∅. Then, obviously,

|I j |
4 j

≤ 4 j

εn
.

Fix for a moment any α > 0. If |I j | ≥ α4 j then

|I j |
4 j

≤ α−1|I j |
εn

.

Otherwise,
|I j |
4 j ≤ α. It remains to choose α :=

√ |I j |
εn . ��

For every j ≥ 1, denote

h j :=
∑

i∈I j
〈x, xi 〉2 − |I j |. (4.3)

Lemma 4.3 (Definition of �1) Let A, x and u be as above, with u > λmax and
mA(u) < 1, and let ε ∈ (0, 1/4] be a real parameter. Define a number �1 as follows:

�1 := �′
1 +

�log4(n/ε2)�
∑

j=1

�1, j ,

where

�′
1 := ε−1/2‖x‖21{ε‖x‖2≥n}

and, for each natural j ≤ log4(n/ε2), we let

�1, j := ε−1h j1{h j>ε22 j
√|I j |}.

Let Q1 be as in Lemma 4.1. Then �1 satisfies

Q1(�1) ≤ mA(u + �1) + 6
√

ε + 8ε
√
n

√

max
�∈N

|I�|
16�

.
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Proof Denote by J the set of all j ≤ log4(n/ε2) such that h j > ε22 j
√|I j | and let J ′

be its complement inside {1, . . . , �log4(n/ε2)�}. Then

Q1(�1) =mA(u + �1) +
∞
∑

j=1

∑

i∈I j

〈x, xi 〉2 − 1

u + �1 − λi

≤mA(u + �1) +
∑

j>log4(n/ε2)

∑

i∈I j

〈x, xi 〉2
u + �1 − λi

+ 4
∑

j∈J ′

h j

�1 + 4 j
+ 4

∑

j∈J

h j

�1 + 4 j

=:mA(u + �1) + (∗) + 4(∗∗) + 4(∗ ∗ ∗).

We shall estimate the last three quantities separately. First, note that

(∗) ≤ 4‖x‖2
�1 + n/ε2

≤ 4
√

ε‖x‖2
‖x‖21{ε‖x‖2≥n} + n/ε3/2

≤ 4
√

ε.

Next,

(∗∗) ≤ ε2
∑

j∈J ′

√ |I j |
4 j

≤ ε2

√

max
�∈N

|I�|
16�

∑

j≤log4(n/ε2)

2 j ≤ 2ε
√
n

√

max
�∈N

|I�|
16�

.

Finally, we have

(∗ ∗ ∗) ≤
∑

j∈J h j
∑

j∈J �1, j
≤ ε.

Summing up the estimates, we get the result. ��
Denote

F2(�) :=
(

n
∑

i=1

1

(u + � − λi )(u − λi )

)−1 n
∑

i=1

〈x, xi 〉2
(u + � − λi )

2 , � ≥ 0

(clearly, F2(�) = �Q2(�) for all � > 0).

Lemma 4.4 (Definition of �2) Let A, u and x be as above, with u > λ1, and let
α > 0 satisfy mA(u) + α < 1. Define �2 according to the following procedure: if

(1 + α)F2(0) ≤ α(u − λ1)(1 − mA(u) − α)

then set

�2 := (1 + α)F2(0)

1 − mA(u) − α
,
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otherwise, take the smallest non-negative integer j such that

Q2

(

2 j (u − λ1)
)

≤ 1 − mA(u) − α

and let

�2 := 2 j (u − λ1).

Then �2 = 0 whenever x = 0, and, for x �= 0, we have �2 �= 0 and

Q2(�2) ≤ 1 − mA(u) − α.

Proof The case x = 0 is trivial, so further we assume that x �= 0 implying �2 �= 0.
First, suppose that

(1 + α)F2(0) ≤ α(u − λ1)(1 − mA(u) − α).

Then, in view of the definition of �2, we have �2 ≤ α(u − λ1), and

F2(�2) ≤
(

n
∑

i=1

1

(u + �2 − λi )(u − λi )

)−1 n
∑

i=1

〈x, xi 〉2
(u − λi )

2

≤ (1 + α)F2(0).

Hence,

Q2(�2) = F2(�2)/�2 ≤ 1 − mA(u) − α.

If

(1 + α)F2(0) > α(u − λ1)(1 − mA(u) − α)

then the statement follows directly from the definition of �2. ��

4.2 Randomization and control of expectations

In this subsection, we “randomize” Lemmas 4.3 and 4.4. Let, as before, A be an n×n
(non-random) positive semidefinite matrix with eigenvalues λ1 ≥ · · · ≥ λn ≥ 0, let
u > λ1 satisfymA(u) < 1.Wedefine (random) quantities�1 and�2 as in Lemmas 4.3
and 4.4, replacing the fixed vector x with a random isotropic vector X . In the following
two lemmas, we will estimate the expectations of �1 and �2.

Lemma 4.5 (Control of E�1) Let ε ∈ (0, 1/4] and let A, λi , u be as above and I j be
defined according to (4.2). Assume additionally that

max
�∈N

|I�|
16�

≤ 1

εn
.
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Further, let X ∈ R
n be an isotropic random vector and K ≥ 1. Assume that for any

non-zero orthogonal projection P : R
n → R

n we have

P

{

‖P(X)‖2 − rankP ≥ t
}

≤ g(rankP)rankP

t2
, t ≥ f (rankP)rankP,

where functions f : N → [0, 1] and g : N → [0, K ] satisfy

g(k) ≤ ε11/2 and f (k) ≤ ε2 ∀k ≥ ε17n.

Define a random variable �1 as in Lemma 4.3 replacing the non-random vector x
with X. Then

E�1 ≤ 32K
√

ε.

Proof Let us estimate separately the expectations of �′
1 and �1, j , ( j ≤ log4(n/ε2)),

where the quantities are defined as in Lemma 4.3. First,

E�′
1 = ε−3/2nP{‖X‖2 ≥ n/ε} +

∫ ∞

ε−3/2n
P{‖X‖2 ≥ √

ετ } dτ

≤ ε4

(ε−1 − 1)2
+
∫ ∞

ε−3/2n−ε−1/2n

ε9/2n

τ 2
dτ

≤ ε4

(ε−1 − 1)2
+ ε5

ε−1 − 1

≤ 4ε6.

Next, fix any natural j ≤ log4(n/ε2) with I j �= ∅. We let h j to be defined as in (4.3),
with the random vector X replacing the non-random x . We have

E�1, j = ε2 j
√|I j |P

{

h j > ε22 j
√|I j |

}

+
∫ ∞

ε2 j
√|I j |

P{h j ≥ ετ } dτ.

Note that h j = ‖P j (X)‖2 − rankP j and |I j | = rankP j , where P j is the orthogonal
projection onto the span of {xi , i ∈ I j }. Let us consider two cases.
1. |I j | ≥ ε17n. Since mA(u) < 1, we have |I j | ≤ 4 j , and ε2|I j | ≤ ε22 j

√|I j |.
Hence, from the above formula for E�1, j and the conditions on projections of X
we obtain

E�1, j ≤ ε5/2
√|I j |
2 j

+ ε5/2
√|I j |
2 j

≤ 2 j+1ε5/2

√

max
�∈N

|I�|
16�

≤ 2 j+1ε2n−1/2.

123



882 D. Chafaï, K. Tikhomirov

2. |I j | < ε17n. Then, in view of Lemma 4.2, |I j | ≤ ε84 j , implying

f (rankP j ) ≤ 1 ≤ |I j | = √|I j |
√|I j | ≤ ε42 j

√|I j | < ε22 j
√|I j |.

Applying again the formula forE�1, j together with the projection conditions and
Lemma 4.2, we obtain

E�1, j ≤ 2K
√|I j |

ε32 j
≤ min

(

2 j+1K

ε7/2
√
n
, 2εK

)

.

Thus, in any case E�1, j ≤ 2 j+1ε2n−1/2 + min
(

2 j+1K
ε7/2

√
n
, 2εK

)

. Summing over

all j ≤ log4(n/ε2), we get

∑

j≤log4(n/ε2)

E�1, j ≤ 4ε +
∑

j≤log4(ε9n)

2 j+1K

ε7/2
√
n

+ 2K ε(−11 log4 ε + 1)

≤ 4ε + 4K ε + 22K
√

ε + 2K ε,

and the statement follows.

��
The next lemma does not require assumptions on projections of X other than of

rank one.

Lemma 4.6 (Control of E�2) Let A and λi (i ≤ n) be as above and let X
be an isotropic random vector in R

n such that for some κ, K > 0 we have
max‖y‖=1 E|〈X, y〉|2+κ ≤ K, and let u > λ1 and α ∈ (0, 1/2] satisfy mA(u)+α < 1.
Then for

w4.6 := K21+κ/(α1+κ/2(1 − 2−κ/2))

we have

E�2 ≤ 1 + α

1 − mA(u) − α

(

1 + w4.6

(1 − mA(u) − α)κ/2(u − λ1)κ/2

)

,

where �2 is defined as in Lemma 4.4, with X replacing x.

Proof An inspection of the definition of �2 in Lemma 4.4 immediately shows that

�2 ≤ (1 + α)F2(0)

1 − mA(u) − α
+

∞
∑

j=0

2 j (u − λ1)χ j ,

where χ0 is the indicator function of the event

{(1 + α)F2(0) > α(u − λ1)(1 − mA(u) − α)}
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and for each j > 0, χ j is the indicator of the event

{

Q2

(

2 j−1(u − λ1)
)

> 1 − mA(u) − α
}

.

Note that for each fixed number r ≥ 0, F2(r) is a random variable representable in
the form

F2(r) =
n
∑

i=1

βi 〈X, xi 〉2,

where the numbers βi = βi (r) are positive and
∑n

i=1 βi ≤ 1. By the Minkowski
inequality, for any p ≥ 1 we have

(

EF2(r)
p)1/p ≤

n
∑

i=1

(

E(βi 〈X, xi 〉2)p
)1/p

=
n
∑

i=1

βi

(

E|〈X, xi 〉|2p
)1/p ≤ max‖y‖=1

(

E|〈X, y〉|2p
)1/p

.

In particular,EF2(r)1+κ/2 ≤ max‖y‖=1 E|〈X, y〉|2+κ ≤ K . Hence, from the definition
of the indicator functions χ j and applying Markov’s inequality, we get

Eχ0 ≤ K
(

α(1 + α)−1(u − λ1)(1 − mA(u) − α)
)−1−κ/2

,

and for every j ≥ 1:

Eχ j ≤ K
(

2 j−1(u − λ1)(1 − mA(u) − α)
)−1−κ/2

.

Finally, we obtain

E�2 ≤ 1 + α

1 − mA(u) − α

+ K (u − λ1)
(

α(1 + α)−1(u − λ1)(1 − mA(u) − α)
)−1−κ/2

+
∞
∑

j=1

2 j K (u − λ1)
(

2 j−1(u − λ1)(1 − mA(u) − α)
)−1−κ/2

= 1 + α

1 − mA(u) − α
+ K

(1 − mA(u) − α)1+κ/2(u − λ1)κ/2

×
⎛

⎝

(1 + α)1+κ/2

α1+κ/2 +
∞
∑

j=1

21+κ/2−κ j/2

⎞

⎠
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≤ (1 + α)

1 − mA(u) − α

×
⎛

⎝1 + K (1 + α)κ/2

α1+κ/2(1 − mA(u) − α)κ/2(u − λ1)κ/2

∞
∑

j=0

21+κ/2−κ j/2

⎞

⎠ ,

and the result follows. ��

4.3 Proof of Theorem 1.8, completed

Let Xn , mn and An , n ∈ N, be as in (1.1), (1.2), and (1.4), respectively. Without loss
of generality, we can assume that both functions f and g in (STP) are non-increasing.
Denote

γ := inf
n≥1

mn

n
> 0

and fix any α ∈ (0,
√

γ /(1 + √
γ )). Further, let ε := α2/225 and let nε ∈ N be such

that

g(k) ≤ ε11/2 and f (k) ≤ ε2 ∀k ≥ ε17nε

and, additionally,

2(48 + 192g(1))α−3/2

(√
γ /(1 + √

γ ) − α
)3/2 (√

εnε/4
)1/2 ≤ ε

(the last condition will be needed later to simplify the estimate coming from
Lemma 4.6). From now on, we fix n ≥ nε. For convenience, we let m := mn and
X (1), . . . , X (m) be i.i.d. copies of Xn . We define

A(0) := 0 and A(k) = A(k−1) + X (k) ⊗ X (k), 1 ≤ k ≤ m,

so that An = A(m). Set

u0 := n + √
mn

and let u1, . . . , um be a collection of random numbers defined inductively as follows:
For every k = 1, 2, . . . ,m, assuming that uk−1 has already been defined, we let I kj
( j ∈ N) be random subsets of {1, 2, . . . , n} analogous to those given in (4.2), with
A(k−1) and uk−1 replacing A and u, respectively, i.e.

I kj :=
{

i ≤ n : 4 j−1 ≤ uk−1 − λi (A
(k−1)) < 4 j

}

, j ∈ N.
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Then we set

uk := uk−1 + �k
1 + �k

2 + �k
R,

where �k
1 is taken from Lemma 4.3 (with A(k−1), uk−1, X (k) and I kj replacing A, u,

x and I j , respectively); �k
2 is defined as in Lemma 4.4 (again, with A(k−1), uk−1 and

X (k) taking place of A, u and x), and �k
R is the regularity shift defined by

�k
R := min

{

� ∈ N ∪ {0} : mA(k)

(

uk−1 + �k
1 + �k

2 + �
)

−mA(k)

(

uk−1 + �k
1 + �k

2 + � + 1
)

≤ 1

2εn

}

(the factor “2” in front of εn in the above definition does not carry any special meaning,
and introduced for a purely technical reason). The quantities�k

R play a role analogous
to numbers δkR from the section dealing with the smallest eigenvalue.

Before going further, we must make sure that the above definition is consistent, i.e.
mA(k) (uk) + α < 1 and uk > λmax(A(k)) deterministically for all k ∈ {0, 1, . . . ,m}
(otherwise, we would not be able to apply Lemmas 4.1, 4.3, 4.4). We shall verify this
by induction. For k = 0, the inequalities hold by the definition of u0 and α. Now,
let k ≥ 1, and assume that uk−1 has the property that mA(k−1) (uk−1) + α < 1 and
uk−1 > λmax(A(k−1)) deterministically (everywhere on the probability space). Let Q1
and Q2 be defined as in Lemma 4.1, with A(k−1), uk−1 and X (k) replacing A, u and
x . Note that if k = 1 then we have

∞
∑

j=1

|I 1j |
16 j

≤ 16n

u20
<

1

εn
;

and if k > 1 then the summand �k−1
R in the definition of uk−1 makes sure that

∞
∑

j=1

|I kj |
16 j

≤
∞
∑

j=1

2|I kj |
4 j (4 j + 1)

< 2
(

mA(k−1) (uk−1) − mA(k−1) (uk−1 + 1)
) ≤ 1

εn
.

Thus, by Lemma 4.3,

Q1

(

�k
1

)

≤ mA(k−1) (uk−1) + 14
√

ε.

Further, by Lemma 4.4, we have

Q2

(

�k
2

)

≤ 1 − mA(k−1) (uk−1) − α.

The definition of ε and monotonicity of Q1, Q2 then imply that Q1(uk − uk−1) < 1
and Q1(uk −uk−1)+ Q2(uk −uk−1) ≤ 1. Thus, by Lemma 4.1 we havemA(k) (uk) ≤
mA(k−1) (uk−1) < 1 − α and uk > λmax(A(k)) deterministically.
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The following lemma gives an estimate of the cumulative impact of the regularity
shifts:

Lemma 4.7 With �k
R (1 ≤ k ≤ m) defined above, the following holds deterministi-

cally:
m
∑

k=1

�k
R ≤ 2εn.

Proof Take any admissible k ≥ 1. The definition of �k
R immediately implies that for

all 0 ≤ � < �k
R we have

mA(k)

(

uk−1 + �k
1 + �k

2 + �
)

− mA(k)

(

uk−1 + �k
1 + �k

2 + � + 1
)

>
1

2εn
.

Hence,

mA(k) (uk) = mA(k)

(

uk−1 + �k
1 + �k

2 + �k
R

)

≤ mA(k)

(

uk−1 + �k
1 + �k

2

)

− �k
R

2εn

≤ mA(k−1) (uk−1) − �k
R

2εn
.

Thus,mA(k) (uk) ≤ mA(k−1) (uk−1)− �k
R

2εn for all k ≥ 1,which, togetherwith the relations
0 < mA(k) (uk) < 1 (0 ≤ k ≤ m), implies the result. ��

Now, fix for a moment any k ∈ {1, . . . ,m} and letFk−1 be the σ -algebra generated
by the vectors X (1), . . . , X (k−1). We will first estimate the conditional expectation

E

(

�k
1 + �k

2 |Fk−1

)

= E

(

�k
1 |Fk−1

)

+ E

(

�k
2 |Fk−1

)

.

Applying Lemma 4.5, we obtain

∥

∥

∥E

(

�k
1 |Fk−1

)∥

∥

∥∞ ≤ 32g(1)
√

ε.

Next, note that the assumptions on 1-dimensional projections imply that for any
unit vector y we have

E|〈y, Xn〉|3 =
∫ ∞

0
P

{

〈y, Xn〉2 ≥ τ 2/3
}

dτ

≤ √
8 +

∫ ∞
√
8

P

{

〈y, Xn〉2 − 1 ≥ τ 2/3 − 1
}

dτ

≤ √
8 + 4g(1)

∫ ∞
√
8

τ−4/3 dτ

≤ √
8 + 12g(1).
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Next, the upper bound on
|I kj |
16 j implies that I kj = ∅ whenever j ≤ log16(εn), whence

uk−1 − λ1(A
(k−1)) ≥

√
εn

4
.

Then, by Lemma 4.6 (applied with κ := 1), and in view of the inequality
mA(k−1) (uk−1) ≤ mA(0) (u0), we get

∥

∥

∥E(�k
2 |Fk−1)

∥

∥

∥∞ ≤ 1 + α

1 − mA(0) (u0) − α

(

1 + w4.6

(1 − mA(0) (u0) − α)1/2(
√

εn/4)1/2

)

,

where

w4.6 = 4 sup
‖y‖=1

E|〈y, Xn〉|3/
(

α3/2
(

1 − 2−1/2
))

≤ (48 + 192g(1))α−3/2.

It is not difficult to check that for β := (1 + 2
√

γ )α/
(√

γ − (1 + √
γ )α

)

we have

1 + α

1 − mA(0) (u0) − α
≤ 1 + β

1 − mA(0) (u0)
,

and by the choice of nε, we have

w4.6(1 + α)

(1 − mA(0) (u0) − α)3/2(
√

εn/4)1/2
≤ ε.

Hence, we obtain

∥

∥

∥E

(

�k
2 |Fk−1

)∥

∥

∥∞ ≤ (1 + β)

(

1 +
√

n

m

)

+ ε.

Summing up over k ∈ {1, . . . ,m} and applying Lemma 4.7, we get

Eλ1(An) ≤ Eum

≤ n + √
mn + 32g(1)

√
εm + (1 + β)(m + √

mn) + εm + 2εn

= (
√
n + √

m)2 + 32g(1)
√

εm + ε(m + 2n) + β(m + √
mn).

Since α can be chosen arbitrarily small and both β and ε tend to zero with α, we get
the result.
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