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Abstract TheBrownianmotion (UN
t )t≥0 on the unitary group converges, as a process,

to the free unitary Brownian motion (ut )t≥0 as N → ∞. In this paper, we prove that
it converges strongly as a process: not only in distribution but also in operator norm.
In particular, for a fixed time t > 0, we prove that the unitary Brownian motion
has a spectral edge: there are no outlier eigenvalues in the limit. We also prove an
extension theorem: any strongly convergent collection of random matrix ensembles
independent from a unitary Brownian motion also converge strongly jointly with the
Brownian motion. We give an application of this strong convergence to the Jacobi
process.
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1 Introduction

This paper is concerned with convergence of the noncommutative distribution of the
standard Brownian motion on unitary groups. Let MN denote the space of N × N
complex matrices, and let Tr(A) = ∑N

j=1 A j j denote the (usual) trace. It will be

convenient throughout to use the normalized trace, and sowe use the symbol tr = 1
N Tr

(with a lower-case t) for this purpose. We denote the unitary group in MN as UN .
The Brownian motion on UN is the diffusion process (UN

t )t≥0 started at the identity
with infinitesimal generator 1

2�UN , where �UN is the left-invariant Laplacian on UN .
(This is uniquely defined up to a choice of N -dependent scale; see Sect. 2.1 for precise
definitions, notation, and discussion.)

For each fixed t ≥ 0,UN
t is a random unitary matrix, whose spectrum spec(UN

t )

consists of N eigenvalues λ1(UN
t ), . . . , λN (UN

t ). The empirical spectral distribution,
also known as the empirical law of eigenvalues, of UN

t (for a fixed t ≥ 0) is the
random probability measure LawUN

t
on the unit circleU1 that puts equal mass on each

eigenvalue (counted according to multiplicity):

LawUN
t

= 1

N

N∑

j=1

δλ j (UN
t ).

In other words: Law
U
N
t
is the randommeasure determined by the characterization that

its integral against a test function f ∈ C(U1) is given by

∫

U1

f dLawUN
t

= 1

N

N∑

j=1

f (λ j (U
N
t )). (1.1)

It is customary to realize all of the processes {UN
t : N ∈ N} on a single probability

space in order to talk about almost sure convergence of LawUN
t

as N → ∞. The
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The spectral edge of unitary Brownian motion 51

standard realization is to declare that UN
t and UM

s are independent for all s, t ≥ 0
and all N �= M . (To be clear, though, none of the results stated below depend on this
particular realization, and indeed hold for any coupling.)

In [4], Biane showed that the random measure LawUN
t

converges weakly almost
surely to a deterministic limit probability measure νt ,

lim
N→∞

∫

U1

f dLawUN
t

=
∫

U1

f dνt a.s. f ∈ C(U1). (1.2)

The measure νt can be described as the spectral measure of a free unitary Brownian
motion (cf. Sect. 2.3). For t > 0, νt possesses a continuous density that is symmetric
about 1 ∈ U1, and is supported on an arc strictly contained in the circle for 0 < t < 4;
for t ≥ 4, supp νt = U1.

The result of (1.2) is a bulk result: it does not constrain the behavior of eigen-
values near the edge. The additive counterpart is the classical Wigner’s semicircle
law. Let XN be a Gaussian unitary ensemble (GUEN ), meaning that the joint den-
sity of entries of XN is proportional to exp(− N

2 Tr(X
2)). Alternatively, XN may be

described as a Gaussian Wigner matrix, meaning it is Hermitian, and otherwise has
i.i.d. centered Gaussian entries of variance 1

N . Wigner’s law states that the empirical
spectral distribution converges weakly almost surely to a limit: the semicircle distri-
bution 1

2π

√
(4 − x2)+ dx , supported on [−2, 2] (cf. [50]). This holds for all Wigner

matrices, independent of the distribution of the entries, cf. [2]. But this does not imply
that the spectrum of XN converges almost surely to [−2, 2]; indeed, it is known that
this spectral edge phenomenon occurs iff the fourth moments of the entries of XN are
finite (cf. [3]).

Our first major theorem is a spectral edge result for the empirical law of eigenvalues
of theBrownianmotionUN

t . Since the spectrum is contained in the circleU1, instead of
discussing the ill-defined “largest” eigenvalue, we characterize convergence in terms
of Hausdorff distance dH : the Hausdorff distance between two compact subsets A, B
of a metric space is defined to be

dH (A, B) = inf{ε ≥ 0 : A ⊆ Bε & B ⊆ Aε},

where Aε is the set of points within distance ε of A. It is easy to check that the
spectral edge theorem for Wigner ensembles is equivalent to the statement that
dH (spec(XN ), [−2, 2]) → 0 a.s. as N → ∞; for a related discussion, see Corol-
lary 3.3 and Remark 3.4 below.

Theorem 1.1 Let N ∈ N, and let (UN
t )t≥0 be a Brownian motion on UN . Fix t ≥ 0.

Denote by νt the law of the free unitary Brownian motion, cf. Theorem 2.5. Then

dH (spec(UN
t ), supp νt ) → 0 a.s. as N → ∞.

Remark 1.2 When t ≥ 4, supp νt = U1, and Theorem 1.1 is immediate; the content
here is that, for 0 ≤ t < 4, for large N all the eigenvalues are very close to the arc
defined in (2.7) (Fig. 1).
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52 B. Collins et al.

Fig. 1 The spectrum of the unitary Brownian motion UN
t with N = 400 and t = 1. These figures were

produced from 1000 trials. On the left is a plot of the eigenvalues, while on the right is a 1000-bin histogram
of their complex arguments. The argument range of the data is [−1.9392, 1.9291], as compared to the
predicted large-N limit range (to four digits) [−1.9132, 1.9132], cf. (2.7)

To prove Theorem 1.1, our method is to prove sufficiently tight estimates on the
rate of convergence of the moments of UN

t . We record the main estimate here, since
it is of independent interest.

Theorem 1.3 Let N , n ∈ N, and fix t ≥ 0. Then

∣
∣
∣
∣Etr

[
(UN

t )n
]−

∫

U1

wn νt (dw)

∣
∣
∣
∣ ≤

t2n4

N 2 . (1.3)

Theorems 1.1 and 1.3 are proved in Sect. 3.
The second half of this paper is devoted to a multi-time, multi-matrix extension

of this result. Biane’s main theorem in [4] states that the process (UN
t )t≥0 converges

(in the sense of finite-dimensional noncommutative distributions) to a free unitary
Brownian motion (ut )t≥0. To be precise: for any k ∈ N and times t1, . . . , tk ≥ 0,
and any noncommutative polynomial P ∈ C〈X1, . . . , X2k〉 in 2k indeterminates, the
random trace moments of (UN

t j )1≤ j≤k converge almost surely to the corresponding
trace moments of (ut j )1≤ j≤k :

lim
N→∞ tr

(
P(UN

t1 , (UN
t1 )∗, . . . ,UN

tk , (UN
tk )∗)

)
= τ

(
P(ut1 , u

∗
t1 , . . . , utk , u

∗
tk )
)

a.s.

(Here τ is the tracial state on the noncommutative probability space where (ut )t≥0
lives; cf. Sect. 2.3.) This is the noncommutative extension of a.s. weak convergence
of the empirical spectral distribution. The corresponding strengthening to the level of
the spectral edge is strong convergence: instead of measuring moments with the linear
functionals tr and τ , we insist on a.s. convergence of polynomials in operator norm.
See Sect. 2.2 for a full definition and history.

Theorem 1.1 can be rephrased to say that, for any fixed t ≥ 0,UN
t converges

strongly to ut (cf. Corollary 3.3). Our second main theorem is the extension of this to
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The spectral edge of unitary Brownian motion 53

any finite collection of times. In fact, we prove a more general extension theorem, as
follows.

Theorem 1.4 For each N , let (UN
t )t≥0 be aBrownianmotion onUN . Let AN

1 , . . . , AN
n

be random matrix ensembles in MN all independent from (UN
t )t≥0, and suppose

that (AN
1 , . . . , AN

n ) converges strongly to (a1, . . . , an). Let (ut )t≥0 be a free unitary
Brownian motion freely independent from {a1, . . . , an}. Then, for any k ∈ N, and any
t1, . . . , tk ≥ 0,

(AN
1 , . . . , AN

n ,UN
t1 , . . . ,UN

tk ) converges strongly to (a1, . . . , an, ut1 , . . . , utk ).

Theorem 1.4 is proved in Sect. 4.
We conclude the paper with an application of these strong convergence results to

the empirical spectral distribution of the Jacobi process, in Theorem 5.7. We proceed
now with Sect. 2, laying out the basic concepts, preceding results, and notation we
will use throughout.

2 Background

Here we set notation and briefly recall some main ideas and results we will need
to prove our main results. Section 2.1 introduces the Brownian motion (UN

t )t≥0 on
UN . Section 2.2 discusses noncommutative distributions (which generalize empirical
spectral distributions to collections of noncommuting random matrix ensembles, and
beyond) and associated notions of convergence, including strong convergence. Finally,
Sect. 2.3 reviews key ideas from free probability and free stochastic calculus, leading
up to the definition of free unitary Brownian motion and its spectral measure νt .

2.1 Brownian motion on UN

Throughout, UN denotes the unitary group of rank N ; its Lie algebra Lie(UN ) = uN
consists of the skew-Hermitian matrices in MN , uN = {X ∈ MN : X∗ = −X}. We
define a real inner product on uN by scaling the Hilbert–Schmidt inner product

〈X,Y 〉N ≡ −NTr(XY ), X,Y ∈ uN .

Asexplained in [20], this is the unique scaling that gives ameaningful limit as N → ∞.
Any vector X ∈ uN gives rise to a unique left-invariant vector field on UN ; we

denote this vector field as ∂X (it ismore commonly called X̃ in the geometry literature).
That is: ∂X is a left-invariant derivation on C∞(UN ) whose action is

(∂X f )(U ) = d

dt

∣
∣
∣
∣
t=0

f (UetX )

where et X denotes the usual matrix exponential (which is the exponential map for the
matrix Lie groupUN ; in particular et X ∈ UN whenever X ∈ uN ). The Laplacian�UN

on UN (determined by the metric 〈·, ·〉N ) is the second-order differential operator
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54 B. Collins et al.

�UN ≡
∑

X∈βN

∂2X

where βN is any orthonormal basis for uN ; the operator does not depend on which
orthonormal basis is used. The Laplacian is a negative definite elliptic operator; it is
essentially self-adjoint in L2(UN ) takenwith respect to theHaarmeasure (cf. [41,45]).

The unitary Brownian motion U N = (UN
t )t≥0 is the Markov diffusion process on

UN with generator 1
2�UN , with UN

0 = IN . In particular, this means that the law of
UN
t at any fixed time t ≥ 0 is the heat kernel measure on UN . This is essentially by

definition: the heat kernel measure ρN
t is defined weakly by

EρN
t
( f ) ≡

∫

UN

f dρN
t =

(
e

t
2�UN f

)
(IN ), f ∈ C(UN ). (2.1)

We mention here the fact that the heat kernel measure is symmetric: it is invariant
under U → U−1 (this is true on any Lie group).

There are (at least) two more constructive ways to understand the Brownian motion
UN directly. The first is as a Lévy process: UN is uniquely defined by the following
properties.

• Continuity: The paths t → UN
t are a.s. continuous.

• Independent Multiplicative Increments: For 0 ≤ s ≤ t , the multiplicative
increment (UN

s )−1UN
t is independent from the filtration up to time s (i.e. from all

random variables measurable with respect to the entires of UN
r for 0 ≤ r ≤ s).

• Stationary Heat- Kernel Distributed Increments: For 0 ≤ s ≤ t , the
multiplicative increment (UN

s )−1UN
t has the distribution ρN

t−s .

In particular, sinceUN
t is distributed according to ρN

t , we typically write expectations
of functions on UN with respect to ρN

t as

EρN
t
( f ) = E[ f (UN

t )].

For the purpose of computations, the best representation ofUN is as the solution to
a stochastic differential equation. Let XN be a GUEN -valued Brownian motion: that
is, XN is Hermitian where the random variables [XN ] j j ,Re[XN ] jk, Im[XN ] jk for
1 ≤ j < k ≤ N are all independent Brownian motions (of variance t/N on the main
diagonal and t/2N above it). ThenUN is the solution of the Itô stochastic differential
equation

dUN
t = iU N

t dXN
t − 1

2
UN
t dt, UN

0 = IN . (2.2)

We will use this latter definition ofUN
t , via the SDE in terms of GUEN -valued Brow-

nian motion, almost exclusively throughout this paper.
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The spectral edge of unitary Brownian motion 55

2.2 Noncommutative distributions and convergence

Let (A , τ ) be a W ∗-probability space: a von Neumann algebra A equipped with
a faithful, normal, tracial state τ . Elements a ∈ A are referred to as (noncommu-
tative) random variables. The noncommutative distribution of any finite collection
a1, . . . , ak ∈ A is the linear functional μ(a1,...,ak ) on noncommutative polynomials
defined by

μ(a1,...,ak ) : C〈X1, . . . , Xk〉 → C

P → τ(P(a1, . . . , ak)). (2.3)

Some authors explicitly include moments in a j , a∗
j in the definition of the distribu-

tion; we will instead refer to the ∗-distribution as the noncommutative distribution
μ(a1,a∗

1 ,...,ak ,a∗
k ) explicitly when needed. Note, when a ∈ A is normal, μa,a∗ is deter-

mined by a unique probability measure Lawa , the spectral measure of a, on C in the
usual way:

∫

C

f (z, z̄)Lawa(dzdz̄) = μa,a∗( f ), f ∈ C[X, X∗]

(i.e. when normal it suffices to restrict the noncommutative distribution to ordinary
commuting polynomials). In this case, the support supp Lawa is equal to the spectrum
spec(a). If u ∈ A is unitary, Lawu is supported in the unit circle U1. For example: a
Haar unitary is a unitary operator in (A , τ ) whose spectral measure is the uniform
probability measure on U1 (equivalently τ(un) = δn0 for n ∈ Z). In general, however,
for a collection of elements a1, . . . , ak (normal or not) that do not commute, the
noncommutative distribution is not determined by any measure on C.

As a prominent example, let AN be a normal random matrix ensemble in MN : i.e.
AN is a random variable defined on some probability space (�,F , P), taking values
in MN . The distribution of AN as a random variable is a measure on MN ; but for each
instance ω ∈ �, the matrix AN (ω) is a noncommutative random variable in the W ∗-
probability space MN , whose unique tracial state is tr. In this interpretation, the law
LawAN (ω) determined by its noncommutative distribution is precisely the empirical
spectral distribution

LawAN (ω) = 1

N

N∑

j=1

δλ j (AN (ω)),

where λ1(AN (ω)), . . . , λn(AN (ω)) are the (random) eigenvalues of AN .
Let (AN

1 , . . . , AN
n ) be a collection of random matrix ensembles, viewed as (ran-

dom) noncommutative random variables in (MN , tr). We will assume that the entries
of AN are in L∞−(�,F , P), meaning that they have finite moments of all orders.
The noncommutative distribution μ(AN

1 ,...,AN
n ) is thus a random linear functional

C〈X1, . . . , Xn〉 → C; its value on a polynomial P is the (classical) random vari-
able tr(P(AN

1 , . . . , AN
n )), cf. (2.3). Now, let (A , τ ) be a W ∗-probability space, and
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56 B. Collins et al.

let a1, . . . , an ∈ A . Say that (AN
1 , . . . , AN

n ) converges in noncommutative distribu-
tion to a1, . . . , an almost surely if μ(AN

1 ,...,AN
n ) −→ μ(a1,...,an) almost surely in the

topology of pointwise convergence. That is to say: convergence in noncommutative
distribution means that all (random) mixed tr moments of the ensembles AN

j converge
a.s. to the same mixed τ moments of the a j . Later, a stronger notion of convergence
emerged.

Definition 2.1 Let AN = (AN
1 , . . . , AN

n ) be random matrix ensembles in (MN , tr),
and let a = (a1, . . . , an) be random variables in a W ∗-probability space (A , τ ). Say
thatAN converges strongly to a ifAN converges to a almost surely in noncommutative
distribution, and additionally

‖P(AN
1 , . . . , AN

n )‖MN → ‖P(a1, . . . , an)‖A a.s. ∀ P ∈ C〈X1, . . . , Xn〉.

(Here ‖ · ‖MN denotes the usual operator norm on MN , and ‖ · ‖A denotes the operator
norm on A .)

This notion first appeared in the seminal paper [24] of Haagerup and Thorbjørnsen,
where they showed that if XN

1 , . . . , XN
n are independent GUEN randommatrices, then

they converge strongly to free semicircular random variables (x1, . . . , xn). The notion
was formalized into Definition 2.1 in the dissertation of Male (cf. [35]).

Remark 2.2 It should be noted that the choice of terminology strong convergence is at
oddswith the standard notion of strong topology in functional analysis, which certainly
does not involve the operator norm! While this may be jarring to some readers, the
terminology is now standard in free probability circles.

Male’s paper [35] also proved the following generalization: an extension property
of strong convergence).

Theorem 2.3 (Male [35]) Let AN = (AN
1 , . . . , AN

n ) be a collection of randommatrix
ensembles that converges strongly to some a = (a1, . . . , an) in a W ∗-probability
space (A , τ ). Let XN = (XN

1 , . . . , XN
k ) be independent Gaussian unitary ensembles

independent from AN , and let x = (x1, . . . , xk) be freely independent semicircular
random variables in A all free from a. Then (AN , XN ) converges strongly to (a, x).

(For a brief definition and discussion of free independence, see Sect. 2.3 below.) Later,
together with the present first author in [13], Male proved a strong convergence result
for Haar distributed random unitary matrices (which can be realized as limt→∞ UN

t ).

Theorem 2.4 (Collins and Male [13]) Let AN = (AN
1 , . . . , AN

n ) be a collection of
random matrix ensembles that converges strongly to some a = (a1, . . . , an) in a
W ∗-probability space (A , τ ). Let U N be a Haar-distributed random unitary matrix
independent from AN , and let u be a Haar unitary operator in A freely independent
from a. Then (AN ,UN , (UN )∗) converges strongly to (a, u, u∗).

(The convergence in distribution in Theorem 2.4 is originally due to Voiculescu [47];
a simpler proof of this result was given in [10].) Note that, for any matrix A ∈ MN

and any operator a ∈ A ,
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The spectral edge of unitary Brownian motion 57

‖A‖MN = lim
p→∞(tr[(AA∗)p/2])1/p, and ‖a‖A = lim

p→∞(τ [(aa∗)p/2])1/p.

These hold because the states tr and τ are faithful. These are the noncommutative L p-
norms on L p(MN , tr) and L p(A , τ ) respectively. The norm-convergence statement
of strong convergence can thus be rephrased as an almost sure interchange of limits:
if AN converges a.s. to a in noncommutative distribution, then AN converges to a
strongly if and only if

P

(

lim
N→∞ lim

p→∞ ‖P(AN )‖L p(MN ,tr) = lim
p→∞ ‖P(a)‖L p(A ,τ )

)

= 1,

∀ P ∈ C〈X1, . . . , Xn〉. (2.4)

If we fix p instead of sending p → ∞, the corresponding notion of “L p-strong
convergence” of the unitary Brownian motion (UN

t )t≥0 to the free unitary Brownian
motion (ut )t≥0 was proved in the third author’s paper [30]. Thisweaker notion of strong
convergence does not have the same important applications as strong convergence,
however. As a demonstration of the power of true strong convergence, we give an
application to the eigenvalues of the Jacobi process in Sect. 5: the principal angles
between subspaces randomly rotated by UN

t evolve a.s. with finite speed for all large
N .

2.3 Free probability, free stochastics, and free unitary Brownian motion

We briefly recall basic definitions and constructions here, mostly for the sake of fix-
ing notation. The uninitiated reader is referred to the monographs [38,49], and the
introductions of the authors’ previous papers [12,30,32] for more details.

Let (A , τ ) be a W ∗-probability space. Unital subalgebras A1, . . . ,Am ⊂ A are
called free or freely independent if the following property holds: given any sequence of
indices k1, . . . , kn ∈ {1, . . . ,m} that are consecutively-distinct (meaning k j−1 �= k j
for 1 < j ≤ n) and random variables a j ∈ Ak j , if τ(a j ) = 0 for 1 ≤ j ≤ n
then τ(a1 · · · an) = 0. We say random variables a1, . . . , am are freely independent if
the unital ∗-subalgebras A j ≡ 〈a j , a∗

j 〉 ⊂ A they generate are freely independent.
Freeness is a moment factorization property: by centering random variables a →
a − τ(a)1A , freeness allows the (recursive) computation of any joint moment in free
variables as a polynomial in the moments of the separate random variables. In other
words: the distributionμ(a1,...,ak ) of a collection of free random variables is determined
by the distributions μa1 , . . . , μak separately.

A noncommutative stochastic process is simply a one-parameter family a = (at )t≥0
of random variables in some W ∗-probability space (A , τ ). It defines a filtration:
an increasing (by inclusion) collection At of subalgebras of A defined by At ≡
W ∗(as : 0 ≤ s ≤ t), the von Neumann algebras generated by all the random variables
as for s ≤ t . Given such a filtration (At )t≥0, we call a process b = (bt )t≥0 adapted if
bt ∈ At for all t ≥ 0.

A free additive Brownianmotion is a selfadjoint noncommutative stochastic process
x = (xt )t≥0 in a W ∗-probability space (A , τ ) with the following properties:
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58 B. Collins et al.

• Continuity: The map R+ → A : t → xt is weak∗-continuous.
• Free Increments: For 0 ≤ s ≤ t , the additive increment xt − xs is freely
independent from As (the filtration generated by x up to time s).

• Stationary Increments: For 0 ≤ s ≤ t, μxt−xs = μxt−s .

It follows from the free central limit theorem that the increments must have the
semicircular distribution: Lawxt = 1

2π t

√
(4t − x2)+ dx . Voiculescu (cf. [46,47,49])

showed that free additive Brownian motions exist: they can be constructed in anyW ∗-
probability space rich enough to contain an infinite sequence of freely independent
semicircular random variables (where x can be constructed in the usual way as an
isonormal process).

In pioneering work of Biane and Speicher [6,7] (and many subsequent works such
as the third author’s joint paper with Nourdin, Peccati, and Speicher [32]), a theory
of stochastic analysis built on x was developed. Free stochastic integrals with respect
to x are defined precisely as in the classical setting: as L2(A , τ )-limits of integrals
of simple processes, where for constant a ∈ A ,

∫ t
0 1[t−,t+](s)a dxs is defined to be

a · (xt+ − xt−). Using the standard Picard iteration techniques, it is known that free
stochastic integral equations of the form

at = a0 +
∫ t

0
φ(s, as) ds +

∫ t

0
σ(s, as) dxs (2.5)

have unique adapted solutions for drift φ and diffusion σ coefficient functions that
are globally Lipschitz. Note: due to the noncommutativity, the kinds of processes one
should really use in the stochastic integral are biprocesses:βt ∈ A ⊗A . The stochastic
integral against a single free Brownian motion xt is then denoted βt#dxt , where this is
defined so that, if βt = at ⊗ bt is a pure tensor state, then βt#dxt = atdxtbt , allowing
the process to act on both sides of the Brownian motion. (See [6,32] for details.) A
one-sided process like the one in (2.5) is typically not self-adjoint, which limits φ, σ to
be polynomials, and ergo linear polynomials due to the Lipschitz constraint. That will
suffice for our present purposes.) Equations like (2.5) are often written in “stochastic
differential” form as

dat = φ(t, at ) dt + σ(t, at ) dxt .

Given a free additive Brownian motion x , the associated free unitary Brownian motion
u = (ut )t≥0 is the solution to the free SDE

dut = iut dxt − 1

2
ut dt, u0 = 1. (2.6)

This precisely mirrors the (classical) Itô SDE (2.2) that determines the Brownian
motion (UN

t )t≥0 on UN .
The free unitary Brownian motion (ut )t≥0 was introduced by Biane in [4] via the

above definition. In that paper, with more details in Biane’s subsequent [5], together
with independent statements of the same type in [40], Lawut was computed. Since ut
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is unitary, this distribution is determined by a measure νt that is supported on the unit
circle U1. This measure is described as follows.

Theorem 2.5 (Biane [5, Proposition 10 and Lemma 11]) For t > 0, νt has a contin-
uous density �t with respect to the normalized Haar measure on U1. For 0 < t < 4,
its support is the connected arc

supp νt =
{

eiθ : |θ | ≤ 1

2

√
t (4 − t) + arccos

(

1 − t

2

)}

, (2.7)

while supp νt = U1 for t ≥ 4. The density �t is real analytic on the interior of the arc.
It is symmetric about 1, and is determined by �t (eiθ ) = Re κt (eiθ ) where z = κt (eiθ )
is the unique solution (with positive real part) to

z − 1

z + 1
e

t
2 z = eiθ .

Note that the arc (2.7) is the spectrum spec(ut ) for 0 < t < 4; for t ≥ 4, spec(ut ) =
U1.

With this description, one can also give a characterization of the free unitary Brow-
nian motion similar to the invariant characterization of the Brownian motion (UN

t )t≥0
on page 5. That is, (ut )t≥0 is the unique unitary-valued process that satisfies:

• Continuity: The map R+ → A : t → ut is weak∗ continuous.
• Freely Independent Multiplicative Increments: For 0 ≤ s ≤ t , the multi-
plicative increment u−1

s ut is independent from the filtration up to time s (i.e. from
the von Neumann algebra As generated by {ur : 0 ≤ r ≤ s}).

• Stationary Increments with Distribution ν: For 0 ≤ s ≤ t , the multi-
plicative increment u−1

s ut has distribution given by the law νt−s .

3 The edge of the spectrum

This section is devoted to the proof of our spectral edge theorem for a single time
marginalUN

t . We begin by showing how Theorem 1.1 follows from Theorem 1.3, and
recast the conclusion as a strong convergence statement in Corollary 3.3. Section 3.2
is then devoted to the proof of the moment growth bound of Theorem 1.3.

3.1 Strong convergence and the proof of Theorem 1.1

We begin by briefly recalling some basic Fourier analysis on the circle U1. For f ∈
L2(U1), its Fourier expansion is

f (w) =
∑

n∈Z
f̂ (n)wn, where f̂ (n) =

∫

U1

f (w)w−n dw,

123



60 B. Collins et al.

where dw is the normalized Lebesgue measure on U1. For p > 0, the Sobolev space
Hp(U1) is defined to be

Hp(U1) =
{

f ∈ L2(U1) : ‖ f ‖2Hp
≡
∑

n∈Z
(1 + n2)p| f̂ (n)|2 < ∞

}

. (3.1)

If � > k ≥ 1 are integers, and � ≥ p ≥ k + 1
2 , then C�(U1) ⊂ Hp(U) ⊂ Ck(U1);

it follows that H∞(U1) ≡ ⋂
p≥0 Hp(U1) = C∞(U1). These are standard Sobolev

imbedding theorems (that hold for smooth manifolds); for reference, see [22, Chap-
ter 5.6] and [42, Chapter 3.2].

Theorem1.3yields the following estimate onmoment growth tested against Sobolev
functions disjoint from the limit support.

Proposition 3.1 Fix 0 ≤ t < 4. Let f ∈ H5(U1) have support disjoint from supp νt .
There is a constant C( f ) > 0 such that, for all N ∈ N,

|Etr[ f (UN
t )]| ≤ t2C( f )

N 2 . (3.2)

Proof Denote byνN
t (n)≡ Etr[(UN

t )n] andνt (n)≡ ∫
U1

wn νt (dw)= limN→∞ νN
t (n).

Expanding f as a Fourier series, we have

Etr[ f (UN
t )] =

∑

n∈Z
f̂ (n)Etr[(UN

t )n] =
∑

n∈Z
f̂ (n)νN

t (n). (3.3)

By the assumption that supp f is disjoint from supp νt , we have

0 =
∫

U1

f dνt =
∑

n∈Z
f̂ (n)

∫

U1

wn νt (dw) =
∑

n∈Z
f̂ (n)νt (n). (3.4)

Combining (3.3) and (3.4) with Theorem 1.3 yields

|Etr[ f (UN
t )]| ≤

∑

n∈Z
| f̂ (n)||νN

t (n) − νt (n)| ≤
∑

n∈Z
| f̂ (n)| · t

2n4

N 2 .

By assumption f ∈ H5(U1), and so

∑

n∈Z
n4| f̂ (n)| =

∑

n∈Z\{0}

1

n
· n5| f̂ (n)| ≤

⎛

⎝
∑

n∈Z\{0}

1

n2

⎞

⎠

1/2 (
∑

n∈Z
n10| f̂ (n)|2

)1/2

≤ π√
3
‖ f ‖H5 < ∞.

Taking C( f ) = π√
3
‖ f ‖H5 concludes the proof. ��
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We now use Proposition 3.1 to give an improved variance estimate related to [34,
Propositions 6.1, 6.2].

Proposition 3.2 Fix 0 ≤ t < 4. Let f ∈ C6(U1) with support disjoint from supp νt .
There is a constant C ′( f ) > 0 such that, for all N ∈ N,

Var[Tr( f (UN
t ))] ≤ t3C ′( f )

N 2 .

Proof In the proof of [34, Proposition 3.1] (on p. 3179), and also in [9, Proposi-
tion 4.2 & Corollary 4.5], the desired variance is shown to have the form

Var[Tr( f (UN
t ))] =

∫ t

0
Etr[ f ′(UN

s V N
t−s) f

′(UN
s W N

t−s)] ds (3.5)

where UN , V N ,WN are three independent Brownian motions on UN . For fixed s ∈
[0, t], we apply the Cauchy–Schwarz inequality twice and use the equidistribution of
UN
s V N

t−s and U
N
s W N

t−s to yield

|Etr[ f ′(UN
s V N

t−s) f
′(UN

s W N
t−s)]| ≤ E[|tr[ f ′(UN

s V N
t−s)

2]|1/2 · |tr[ f ′(UN
s W N

t−s)
2]|1/2]

≤ Etr[ f ′(UN
s V N

t−s)
2].

Since UN and V N are independent, (UN
s , V N

t−s) has the same distribution as
(UN

s , (UN
s )−1UN

t ) (as the increments are independent and stationary). Thus Etr[ f ′
(UN

s V N
t−s)

2] = Etr[ f ′(UN
t )2], and so, integrating, we find

Var[Tr( f (UN
t ))] ≤ tEtr[ f ′(UN

t )2]. (3.6)

Since f ∈ C6(U1), the function ( f ′)2 is C5 ⊂ H5, and the result now follows from
Proposition 3.1, with C ′( f ) = C(( f ′)2). ��

This brings us to the proof of the spectral edge theorem.

Proof of Theorem 1.1 assuming Theorem 1.3 Fix a closed arc α ⊂ U1 that is disjoint
from supp νt . Let f be a C∞ bump function with values in [0, 1] such that f |α = 1
and supp f ∩ supp νt = ∅. Then

P(spec(UN
t ) ∩ α �= ∅) ≤ P(Tr[ f (UN

t )] ≥ 1). (3.7)

We now apply Chebyshev’s inequality, in the following form: let Y = Tr[ f (UN
t )].

Then, assuming 1 − E(Y ) > 0, we have

P(Y ≥ 1) = P(Y − E(Y ) ≥ 1 − E(Y )) ≤ Var(Y )

(1 − E(Y ))2
.
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In our case, we have |E(Y )| = |ETr[ f (UN
t )]| = N |Etr[ f (UN

t )]| ≤ t2C( f )
N by Propo-

sition 3.1. Thus, there is N0 (depending only on f and t) so that (1−ETr[ f (UN
t )])2 ≥

1
2 for N ≥ N0. Combining this with (3.7) yields

P(spec(UN
t ) ∩ α �= ∅) ≤ 2Var[Tr( f (UN

t ))] for N ≥ N0.

Now invoking Proposition 3.2, we find that this is≤ 2t3C ′( f )
N2 whenever N ≥ N0. It thus

follows from the Borel–Cantelli lemma that the probability that spec(UN
t ) ∩ α �= ∅

for infinitely many N is 0; i.e. with probability 1, for all sufficiently large N ,UN
t has

no eigenvalues in α.
Thus, we have shown that, for any closed arc α disjoint from supp νt , with probabil-

ity 1, spec(UN
t ) is contained in U1\α for all large N . In particular, fixing any open arc

β ⊂ U1 containing supp νt , this applies to α = U1\β. I.e. spec(UN
t ) is a.s. contained

in any neighborhood of supp νt for all sufficiently large N . This suffices to prove the
theorem: because LawUN

t
converges weakly almost surely to the measure νt which

possesses a strictly positive continuous density on its support, any neighborhood of
the spectrum of UN

t eventually covers supp νt . ��
Thus, we have proved Theorem 1.1 under the assumption that Theorem 1.3 is

true. Before turning to the proof of this latter result, let us recast Theorem 1.1 in the
language of strong convergence, as we will proceed to generalize this to the fully
noncommutative setting in Sect. 4.

Corollary 3.3 For N ∈ N, let (UN
t )t≥0 be a Brownian motion on UN . Let (ut )t≥0 be

a free unitary Brownian motion. Then for any fixed t ≥ 0, (UN
t , (UN

t )∗) converges
strongly to (ut , u∗

t ).

Proof Since UN
t → ut in noncommutative distribution, strong convergence is the

statement that

‖P(UN
t , (UN

t )∗)‖ → ‖P(ut , u
∗
t )‖

in operator norms. Fix a noncommutative polynomial P in two variables, and let p be
the unique Laurent polynomial in one variable so that P(U,U∗) = p(U ) for every
unitary operator U . Since UN

t is normal, ‖p(UN
t )‖ = max{|λ| : λ ∈ p(spec(UN

t ))};
similarly, ‖p(ut )‖ = max{|λ| : λ ∈ p(supp νt )} where supp νt is the arc in (2.7).

Let �N
p = |p|(spec(UN

t )), and let �p = |p|(supp νt ). (Here |p| denotes the
modulus of the polynomial function, |p|(u) = |p(u)|.) Since spec(UN

t ) converges to
supp νt in Hausdorff distance and all the sets are compact, it follows easily from the
continuity of |p| (on the unit circle) that �N

p converges to �p in Hausdorff distance
as well. In particular, for any ε > 0, there is some N0 ∈ N so that, for all N ≥
N0, (�

N
p )ε ⊆ �p and (�p)ε ⊆ �N

p . It follows that max�p − ε ≤ max�N
p ≤

max�p + ε. This shows that ‖p(UN
t )‖ = max�N

p → max�p = ‖p(ut )‖, as
desired. ��
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Remark 3.4 In fact, the converse of Corollary 3.3 also holds: strong convergence of
UN
t → ut (for a fixed t < 4) implies convergence of the spectrum in Hausdorff

distance. Indeed, suppose we know strong convergence. In particular, taking the poly-
nomial P(U ) = U − 1, we then have ‖UN

t − IN‖ → ‖ut − 1‖. Since the spectrum of
ut is an arc symmetric about 1, spec(ut ) = B‖ut−1‖(1) ∩ U1 (here BR(1) denotes the
ball {z ∈ C : |z − 1| < R} ). Note that ‖UN

t − IN‖ = maxk ‖λk(t) − 1‖; this shows
that all eigenvalues λk(t) are in an arc very close to spec(ut ) for large N . This shows
that spec(UN

t ) is eventually contained in any neighborhood of supp νt ; the other half
of the convergence in Hausdorff distance follows from the convergence in distribution
(and strict positivity of the limit density νt on supp νt ).

When t ≥ 4, supp νt = U1, and strong convergence becomes vacuously equivalent
to the known convergence in distribution.

3.2 The proof of Theorem 1.3

This section is devoted to the proof of themainmoment growth bound, i.e. (1.3). Before
proceeding with our proof which is quite involved, it is worth noting a key feature. The
bound (1.3) on the speed of convergence νN

t (n) → νt (n) depends polynomially on n;
this is crucial to the proof of Theorem 1.1. If one only requires the O( 1

N2 ) bound of
this estimate without much regard for the dependence on n, a much simpler (though
still nontrivial) approach can be found in the third author’s paper [30, Section 3.3],
which provides a bound of the form K (t, n)/N 2, where K (t, n) ∼ tn2

2 exp( tn
2

2 ). This
growth in n ismuch too large to get control over test functions that are only in a Sobolev
space, or even in C∞(U1); the largest class of functions for which this Fourier series
is summable is an ultra-analytic Gevrey class. That blunter estimate does not suffice
for our present purposes; showing polynomial dependence on n turns out to require
very careful analysis so as not to ignore the many cancellations in the complicated
expansions for the moments.

Remark 3.5 We note that the blunter bound in [30] was proved not only for UN , but
for a family of diffusions on GLN including both UN and the Brownian motion on
GLN . It remains open whether a polynomial bound like (1.3) holds for this wider class
of diffusions.

The proof of the weaker bound described above relied on an explicit decomposition
of the Laplacian onUN in the form D+ 1

N2 L , which was exploited in the third author’s
papers [30,31] and joint work with Driver and Hall [20] (and Cébron’s independent
work [8]), in the complementary work of the second author [14] and preceding paper
of T. Lévy [33], and in some form also in the preceding work of Rains [40], Sengupta
[43], and others. In that approach, the idea was to decompose the relevant space of
functions (polynomials in traces of powers of the matrix) into a nested family of
finite-dimensional subspaces all invariant under the Laplacian, and then appropriately
estimate the distortion between the norm of exp(D) and exp(D + 1

N2 L) on each such
space. While an approach of that nature might conceivably yield bounds similar to
(1.3), our present approach is quite different.
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To begin: we will actually prove the following Cauchy sequence growth estimate.
We again use the notation νN

t (n) = E[tr(UN
t )n].

Proposition 3.6 Let N , n ∈ N, and fix t ≥ 0. Then

|νN
t (n) − ν2Nt (n)| ≤ 3t2n4

4N 2 . (3.8)

This is the main technical result of the first part of the paper, and its proof will occupy
most of this section. Let us first show how Theorem 1.3 follows from Proposition 3.6.

Proof of Theorem 1.3 assuming Proposition 3.6 Since limN→∞ νN
t (n) = νt (n), we

have the following convergent telescoping series:

|νN
t (n) − νt (n)| =

∣
∣
∣
∣
∣

∞∑

k=0

(
νN2k
t (n) − νN2k+1

t (n)
)
∣
∣
∣
∣
∣
≤

∞∑

k=0

∣
∣
∣νN2k

t (n) − νN2k+1

t (n)

∣
∣
∣ .

Now apply (3.8) with N replaced by N2k , we find

∣
∣
∣νN2k

t (n) − νN2k+1

t (n)

∣
∣
∣ ≤ 3

4

t2n4

(N2k)2
= 3

4

1

4k
t2n4

N 2 .

Summing the geometric series proves the theorem. ��

3.2.1 Outline of the proof of Proposition 3.6

Theproposition requires comparisonof amoment νN
t (n)of an N×N unitaryBrownian

motion with a moment ν2Nt (n) of a 2N × 2N unitary Brownian motion. To compare
them, we need to choose a coupling between the two processes in different spaces.
As such, fix a Brownian motion U 2N on U2N , along with two Brownian motions
UN ,1,UN ,2 on UN , so that the processes U 2N ,UN ,1,UN ,2 are all independent. For
t ≥ 0, let B2N

t ∈ U2N denote the block diagonal random matrix

B2N
t =

[
UN ,1
t 0
0 UN ,2

t

]

∈ U2N .

We will hold t fixed through; let us fix the notation

A2N
s = U 2N

t−s B
2N
s .

This process will be used very often in what follows.
Setting s = 0, we have A2N

0 = U 2N
t ; on the other hand, setting s = t , we have

A2N
t = B2N

t . Hence

Etr[(A2N
0 )n] = Etr[(U 2N

t )n] = ν2Nt (n), while
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Etr[(A2N
t )n] = Etr[(B2N

t )n] = 1

2N
E

(
Tr[(UN ,1

t )n] + Tr[(UN ,2
t )n]

)

= Etr[(UN ,1
t )n] = νN

t (n).

Therefore, setting

F(s) = Etr[(A2N
s )n] = Etr[(U 2N

t−s B
2N
s )n] (3.9)

we see that the quantity νN
t (n) − ν2Nt (n) to be estimated in Proposition 3.6 is equal

to

νN
t (n) − ν2Nt (n) = F(t) − F(0).

The main approach of the proof will be to show that F ∈ C1[0, t], so that the Funda-
mental Theorem of Calculus allows us to express

νN
t (n) − ν2Nt (n) =

∫ t

0
F ′(s) ds (3.10)

and then appropriately estimate |F ′(s)| to achieve the desired bound of (3.8).
Due to the nonlinearity (for n > 1) of the trace moment F(s) = Etr[(A2N

s )n]
as a function of A2N

s , it is useful to multilinearize this quantity in what follows.
To do so, we will work in the n-fold tensor product of M2N , essentially replacing
a power An with a tensor power A⊗n = A ⊗ A ⊗ · · · ⊗ A ∈ (M2N )⊗n ; since
we could identify this space with M2Nn , we will still refer to such tensor product
operators as matrices. To recover the original quantity (in terms of the trace of An),
we cannot simply take the trace of A⊗n (which would produce [Tr(A)]n); instead, we
must involve an action of the symmetric group Sn . To any permutation σ ∈ Sn , we
associate a matrix [σ ] ∈ (M2N )⊗n by permuting the tensor indices: for any vector
v1 ⊗ · · · ⊗ vn ∈ (C2N )⊗n ,

[σ ](v1 ⊗ · · · ⊗ vn) = vσ−1(1) ⊗ · · · ⊗ vσ−1(n). (3.11)

Remark 3.7 This representation of Sn on (C2N )⊗n is sometimes called the Schur–Weyl
representation. In general, for any vector space V , the Schur–Weyl representation of
Sn on V⊗n is faithful whenever dimV ≥ n, and since we hold n fixed and send
N → ∞, we may always safely assume the representation is faithful; i.e. the map
σ → [σ ] may be assumed to be one-to-one.

This representation is dual to the standard representation of GL(V ) on V⊗n—
G · v1 ⊗ · · · ⊗ vn = (Gv1) ⊗ · · · ⊗ (Gvn)—in the sense that the two representations
commute and are in fact mutual centralizers in End(V⊗n). This is the so-called Schur–
Weyl duality, which allows for a lot of useful computations by interchanging the two
representations back and forth. The Schur–Weyl duality plays a central role in T.
Lévy’s approach to the heat kernel on unitary groups, cf. [33]; we will not need much
of that detailed approach here, but we are motivated by it in our present constructions.
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We may readily verify that, if σ ∈ Sn and has cycle decomposition σ = c1 · · · cr
with ck = (i k1 · · · i k�k ), then for A1, . . . , An ∈ M2N ,

Tr(M2N )⊗n ([σ ]A1 ⊗ · · · ⊗ An) = TrM2N (Ai1�1
· · · Ai11

) · · ·TrM2N (Air�r
· · · Air1

)

(3.12)

where we have (in this one instance only) emphasized over which space each trace is
taken. Note, in particular, that if σ = (i1 · · · in) is a cycle, then Tr([σ ]A1⊗· · ·⊗An) =
Tr(Ain · · · Ai1) is a single trace. Hence

F(s) = Etr[(A2N
s )n] = 1

N
ETr([(1 · · · n)](A2N

s )⊗n) (3.13)

where (1 · · · n) denotes the standard full cycle in Sn .
Interchanging the trace and expectation, we can now work with the following sim-

pler tensor-valued function:

G(s) = E[(A2N
s )⊗n]. (3.14)

Then we have F(s) = 1
N Tr ([(1 · · · n)]G(s)), and hence to prove F is C1, it suffices

to prove that G is C1. Computing this derivative is greatly aided by the indepen-
dence of the processes U 2N and B2N : by definition (A2N

s )⊗n = (U 2N
t−s B

2N
s )⊗n =

(U 2N
t−s)

⊗n(B2N
s )⊗n , and by independence we have

G(s) = E[(U 2N
t−s)

⊗n] E[(B2N
s )⊗n]. (3.15)

To concretely express the derivative of G, we introduce a little more notation. First,
due to the block structure of the matrix B2N

s , the two projections

P1 =
[
IN 0
0 0

]

, P2 =
[
0 0
0 IN

]

(3.16)

will play a role in all of what follows. Because the diffusion term in the SDE (2.2)
governing U 2N

s depends linearly on U 2N
s , there is mixing that can be expressed as a

combination of all transpositions in the Schur–Weyl representation. Hence, we intro-
duce the following notation: for any A, B ∈ M2N and 1 ≤ i < j ≤ n, denote by
[A ⊗ B]i, j the following matrix in (M2N )⊗n :

[A ⊗ B]i, j = I⊗i−1 ⊗ A ⊗ I⊗ j−i−1 ⊗ B ⊗ I⊗n− j (3.17)

where I = I2N is the identity matrix in M2N .
With this notation in hand, we can now show that G ∈ C1[0, t], and compute that

its derivative is given by

G ′(s) = 1

2N
G(s)

∑

1≤i< j≤n

[(i j)] (I − 2[P1 ⊗ P1]i, j − 2[P2 ⊗ P2]i, j
)

(3.18)
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where [(i j)] denotes the Schur-Weyl representation of the transposition in Sn , cf.
(3.11). This is proved in Lemma 3.8 in Sect. 3.2.2 below. The computation begins by
writing down SDEs for (U 2N

s )⊗n and(B2N
s )⊗n (following from (2.2)), and then using

the product rule in conjunction with (3.15).
Since F is a linear functional of G, this shows that F is also C1[0, t]. The next

step in the proof is to plug (3.18) into (3.13) to derive an expression for the derivative
F ′(s). The derivative G ′(s) is a sum of

(n
2

)
terms, but after contracting them in the

trace, the derivative F ′(s) can be written as a sum of n − 1 similar terms:

F ′(s) = n

2

n−1∑

p=1

Hp,n−p(s)

where

Hp,q(s) = 1

4N 2 E[Tr((A2N
s )p)Tr((A2N

s )q)]

− 1

2N 2

2∑

�=1

E[Tr((A2N
s )p P�)Tr((A

2N
s )q P�)]. (3.19)

This is proved in Lemma 3.9 below. Combining this with (3.10), we therefore have

νN
t (n) − ν2Nt (n) = n

2

n−1∑

p=1

∫ t

0
Hp,n−p(s) ds. (3.20)

It now behooves us to estimate the terms Hp,n−p(s), cf. (3.19). These terms have an
explicit 1

N2 factor, which appears to be good news for the desired estimate of Propo-
sition 3.6. Note, however, that (3.19) involves expectations of products of pairs of
unnormalized traces of powers of A2N

s . Since A2N
s possesses a large-N limit noncom-

mutative distribution in terms of normalized traces, the leading order contribution of
the first term in Hp,n−p(s) is O(1). In fact, there are many cancellations between the
two terms; this is the key observation of the whole proof. The way we will encapsulate
the cancellations is by first re-expressing Hp,q(s) as a combination of covariances:

N 2Hp,q(s) = 1

4
Cov[Tr((A2N

s )p),Tr((A2N
s )q)]

−Cov[Tr((A2N
s )p P1),Tr((A

2N
s )q P1)]. (3.21)

This is proved in Lemma 3.10, and is a fairly straightforward computation: the P1 and
P2 terms can be combined due to the rotational-invariance of the process A2N

s , and
the remaining product terms cancel between the two covariances.

While the two expectation terms in the expression for N 2Hp,q(s) in (3.19) are each
O(N 2), once the cancellations between them have been taken into account to produce
the covariance expression of (3.21), we find that N 2Hp,q(s) = O(1). In fact, each of
the covariance terms in (3.21) is O(1): the precise estimates are
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|Cov[Tr((A2N
s )p),Tr((A2N

s )n−p)]| ≤ p(n − p)(t + 3s),

|Cov[Tr((A2N
s )p P1),Tr((A

2N
s )n−p P1)]| ≤ p(n − p)(t + 3s) (3.22)

for 0 ≤ s ≤ t . From here, the remainder of the proof is routine: (3.21) shows that
|Hp,n−p(s)| ≤ 5p(n−p)(t+3s)

4N2 ; summing 0 ≤ p ≤ n, and integrating s ∈ [0, t] gives
a cubic in n times a linear factor in t times 1

N2 , and then (3.20) completes the proof.
These details are written out more explicitly at the end of Sect. 3.2.2.

Thus, the proof is completed by proving the covariance estimates (3.22). This is
the most technically challenging part of the proof, and requires several involved steps,
which we outline here.

1. Multilinearize the covariances: as we did in replacing the moment F(s) with
the tensor-valued function G(s), we compute that both covariances in (3.21) can
be expressed as certain contractions of a common covariance tensor Cp,n−p(s),
defined by

Cp,n−p(s) ≡ E((A2N
s )⊗n) − E((A2N

s )⊗p) ⊗ E((A2N
s )⊗(n−p)). (3.23)

The two covariance terms in (3.21) can be expressed in terms of Cp,n−p(s) by
tracing against certain p-dependent permutation and projection matrices. This
computation is the content of Lemma 3.11.

2. Explicitly compute the covariance tensor Cp,n−p(s): using the tensorized SDE
for the unitary Brownian motion (following from (2.2), as used in the computa-
tion (3.18) of G ′(s)) and taking expectations, we compute two explicit matrices
�p, �p ∈ (M2N )⊗n for 0 ≤ p ≤ n such that

Cp,n−p(s) = e− nt
2 [e(t−s)�n es�n − e(t−s)�p es�p ].

The matrices �p and �p are given by certain p-restricted sums of transposi-
tion matrices [(i j)] and the tensorized projection matrices [P� ⊗ P�]i, j , and are
explicitly defined below in (3.36). These computations are done in Lemma 3.12
and Corollary 3.13.

3. Use Duhamel’s formula to produce more cancellations: for any complex matrices
X and Y , Duhamel’s formula asserts that

eX − eY =
∫ 1

0
e(1−u)X (X − Y )euY du. (3.24)

Applying this in telescoping fashion to the above expression for Cp,n−p(s) and
simplifying yields the expression

Cp,n−p(s) =
∫ t−s

0
e(t−s−u)�n (�n − �p)e

u�p es�n du

+
∫ s

0
e(t−s)�p e(s−u)�n (�n − �p)e

u�p du.
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This is helpful because �n − �p and �n − �p yield yet more cancellations. The
resulting expression for Cp,n−p(s) is given in Lemma 3.14.

4. Reinterpret the terms as expectations of products of unitary and projection matri-
ces: since the matrices �p and �p generate (via exponential) the expectations of
tensor powers of U 2N and B2N , it is possible to reinterpret the preceding expres-
sion for Cp,n−p(s) as a sum of expected traces of matrices that are tensor products
of independent copies of U 2N and B2N mixed with certain permutation matrices
and projection matrices (given in the definition (3.36) of �p and �p).
To be more precise, for 0 ≤ p ≤ n and i, j with 1 ≤ i ≤ p and p < j ≤ n, there
are random matrices Rp

i, j (u; t, s), Qp
i, j (u; t, s) ∈ (M2N )⊗n such that

Cp,n−p(s) = 1

2N

∑

1≤i≤p< j≤n

(∫ t−s

0
E[Rp

i, j (u; t, s)] du +
∫ s

0
E[Qp

i, j (u; t, s)] du
)

.

The matrices Rp
i, j (u; t, s) and Qp

i, j (u; t, s) are defined in (3.45) and (3.46); each
is a pure tensor product of matrices built out of independent copies of the processes
U 2N and B2N , together with permutation and projection matrices. This is proved
in Lemma 3.15.

5. Contract Cp,n−p(s) to yield expressions for the desired covariance terms, and use
soft estimates to prove (3.22): the desired covariance terms are related to Cp,n−p(s)
via contraction against certain permutation and projectionmatrices, as explained in
Step 1. Performing these contractionswith the integrand expressions in Step 4 yield
a sum of terms all of which are given as an expected (unnormalized) trace Tr of a
product of unitary and projection matrices. In particular, as each is a contraction,
the modulus of the trace is bounded by 2N (by the Schatten–Hölder inequality),
which cancels the 1

2N factor before the sum in the final expression for Cp,n−p(s).
Integrating and summing then yields the desired estimates (3.22) to complete the
proof. The calculations are performed in Lemmas 3.16 and 3.17.

3.2.2 Proof of Proposition 3.6

We now proceed to fill in the details of the proof outline given in the previous section.
We succinctly restate terminology and notation throughout to make the proof more
readable.We beginwith the computation of the derivative of the tensor-valued function
G.

Lemma 3.8 Fix t > 0 and N , n ∈ N, and let G : [0, t] → (M2N )⊗n denote the
function G(s) = E[(A2N

s )⊗n]. Then G ∈ C1[0, t], and its derivative is given by
(3.18):

G ′(s) = 1

2N
G(s)

∑

1≤i< j≤n

[(i j)] (I − 2[P1 ⊗ P1]i, j − 2[P2 ⊗ P2]i, j
)
.
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Proof To begin, note that U 2N and B2N are independent, and so following (3.15) we
have

G(s) = E[(U 2N
t−s)

⊗n]E[(B2N
s )⊗n] ≡ G1(s)G2(s), (3.25)

where both factors G1,G2 are continuous (since they are expectations of polynomials
in diffusions). Using the SDE (2.2) and applying Itô’s formula to the diffusion B2N

shows that there is an L2-martingale (M2N
s )s≥0 such that

d
(
(B2N

s )⊗n
)

= dM2N
s − n

2
(B2N

s )⊗n ds

− 1

N

∑

1≤i< j≤n
1≤a,b≤N

2∑

�=1

(B2N
s )⊗n · (Ea+�N ,b+�N ⊗ Eb+�N ,a+�N )i, j ds

where Ec,d ∈ M2N is the standard matrix unit (all 0 entries except a 1 in entry (c, d))
with indices written modulo 2N . Using the projection matrices P1 and P2 of (3.16)
and notation (3.17), we can write this SDE in the form

d
(
(B2N

s )⊗n
)

= dM2N
s − n

2
(B2N

s )⊗n ds

− 1

N

∑

1≤i< j≤n

2∑

�=1

(B2N
s )⊗n[(i j)][P� ⊗ P�]i, j ds. (3.26)

It follows that G2 ∈ C1[0, t], and

G ′
2(s) = −n

2
G2(s) − 1

N

∑

1≤i< j≤n

2∑

�=1

E((B2N
s )⊗n[(i j)][P� ⊗ P�]i, j ). (3.27)

At the same time, a similar calculation with Itô’s formula applied with (2.2) shows
that there is an L2-martingale (M̃2N

s )s≥0 such that

d((U 2N
s )⊗n) = d M̃2N

s − n

2
(U 2N

s )⊗n ds − 1

2N

∑

1≤i< j≤n

(U 2N
s )⊗n[(i j)] ds

(3.28)

which, changing s → t − s, implies that G1 is C1[0, t] and

G ′
1(s) = n

2
G1(s) + 1

2N

∑

1≤i< j≤n

E((U 2N
t−s)

⊗n[(i j)]). (3.29)

Combining (3.27) and (3.29), the product rule G ′(s) = G1(s)G ′
2(s)+G2(s)G ′

1(s)
shows that G ∈ C1[0, t]. Using G = G1 · G2 again when recombining, we see that
the n

2 terms cancel; moreover, the same recombination due to independence yields
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G ′(s) = 1

2N

∑

1≤i< j≤n

E((U 2N
t−s)

⊗n[(i j)](B2N
s )⊗n)

− 1

N

∑

1≤i< j≤n

2∑

�=1

E((A2N
s )⊗n[(i j)][P� ⊗ P�]i, j ).

Finally, in the first term, notice that [(i j)](B2N
s )⊗n = (B2N

s )⊗n[(i j)] (since the
Schur-Weyl representation of any permutation commutes with any matrix of the form
B⊗n). Hence, we have

E((U 2N
t−s)

⊗n[(i j)](B2N
s )⊗n) = E((U 2N

t−s)
⊗n)E([(i j)](B2N

s )⊗n)

= E((U 2N
t−s)

⊗n)E((B2N
s )⊗n[(i j)]) = G(s)[(i j)].

Similarly factoring out the G(s) from the second term yields the result. ��
This allows us to compute the derivative of F(s) = 1

N Tr ([(1 · · · n)]G(s)), in terms
of the auxiliary functions Hp,q(s) defined in (3.19).

Lemma 3.9 For 0 ≤ s ≤ t,

F ′(s) = n

2

n−1∑

p=1

Hp,n−p(s) (3.30)

where

Hp,q(s) = 1

4N 2 E[Tr((A2N
s )p)Tr((A2N

s )q)]

− 1

2N 2

2∑

�=1

E[Tr((A2N
s )p P�)Tr((A

2N
s )q P�)].

Proof Applying (3.18), we have

F ′(s) = 1

2N
Tr
([(1 · · · n)]G ′(s)

)

= 1

4N 2

∑

1≤i< j≤n

{

Tr ([(1 · · · n)]G(s)[(i j)])

−2
2∑

�=1

Tr
([(1 · · · n)]G(s)[(i j)][P� ⊗ P�]i, j

)
}

.

We now use the trace property in the first term to cyclically reorder the matrices; thus
we must compute [(i j)][(1 · · · n)] = [(i j)(1 · · · n)]. Noting that (i j)(1 · · · n) =
(1, . . . , i − 1, j, . . . , n)(i · · · j − 1), it follows from (3.12) that
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Tr ([(1, . . . , i − 1, j, . . . , n)(i · · · j − 1)]G(s)) = E[Tr((A2Ns ) j−i )Tr((A2Ns )n−( j−i))].

A similar calculation shows that

Tr
([(1 · · · n)]G(s)[(i j)][P� ⊗ P�]i, j

) = E[Tr((A2N
s ) j−i P�)Tr((A

2N
s )n−( j−i)P�)].

Thus, we have

F ′(s) = 1

4N 2

∑

1≤i< j≤n

{

E[Tr((A2N
s ) j−i )Tr((A2N

s )n−( j−i))]

−2
2∑

�=1

E[Tr((A2N
s ) j−i P�)Tr((A

2N
s )n−( j−i)P�)]

}

.

The terms inside the overall summation depend on (i, j) only through j − i ; in other
words, the overall sum has the form

∑

1≤i< j≤n

h j−i,n−( j−i)

for a function h : {1, . . . , n − 1}2 → C which is symmetric in its two variables. For
such a sum in general we have

S ≡
∑

1≤i< j≤n

h j−i,n−( j−i) =
n−1∑

p=1

∑

1≤i< j≤n
j−i=p

h p,n−p =
n−1∑

p=1

(n − p)h p,n−p

since the number of (i, j) with 1 ≤ i < j ≤ n and j − i = p is (n − p). Now using
the symmetry and reindexing by q = n − p we have

2S =
n−1∑

p=1

(n − p)h p,n−p +
n−1∑

q=1

qhn−q,q =
n−1∑

p=1

(n − p)h p,n−p

+
n−1∑

p=1

ph p,n−p = n
n−1∑

p=1

h p,n−p.

Applying this with the above summations yields the result. ��

Having now expressed the desired quantities in terms of Hp,q(s), we proceed to
encapsulate the many cancellations by re-expressing Hp,q(s) as a linear combination
of covariances.
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Lemma 3.10 For s ≥ 0 and p, q ∈ N, Hp,q(s) is given by the linear combination of
covariances in (3.21):

N 2Hp,q(s) = 1

4
Cov[Tr((A2N

s )p),Tr((A2N
s )q)] − Cov[Tr((A2N

s )p P1),Tr((A
2N
s )q P1)].

Proof From (3.19), N 2Hp,q(s) is a difference of two terms. The first is

1

4
E[Tr((A2N

s )p)Tr((A2N
s )q)]

= 1

4
Cov[Tr((A2N

s )p),Tr((A2N
s )q)] + 1

4
E[Tr((A2N

s )p)]E[Tr((A2N
s )q)].

(3.31)

The second term is a sum

−1

2

2∑

�=1

E[Tr((A2N
s )p P�)Tr((A

2N
s )q P�)].

Let R be the block rotation matrix ofC
2N by π

2 in each factor ofC
N , so that RP1R∗ =

P2. Since the distribution of A2N
s is invariant under rotations, it follows that

E[Tr((A2N
s )p P�)] and E[Tr((A2N

s )p P�)Tr((A
2N
s )q P�)]

do not depend on � (as each is a conjugation-invariant polynomial function in A2N
s ).

In particular, the two terms in the �-sum are equal, and so the second term in Hp,q(s)
is

−E[Tr((A2N
s )p P�)Tr((A

2N
s )q P�)]

= −Cov[Tr((A2N
s )p P1),Tr((A

2N
s )q P1)] − E[Tr((A2N

s )p P1)]E[Tr((A2N
s )q P1)].

(3.32)

Moreover, since E[Tr((A2N
s )p P1)] = E[Tr((A2N

s )p P2)] and P1 + P2 = I ,
we have E[Tr((A2N

s )p P1)] = 1
2E[Tr((A2N

s )p)]. Thus, the last term in (3.32) is
− 1

4E[Tr((A2N
s )p)]E[Tr((A2N

s )q)]. Combining this with (3.31) then yields the result.
��

Now, to begin the process of estimating these covariances, we re-express them using
the Schur–Weyl representation, in terms of the two-cycle permutation

γp,q = (1 · · · p)(p + 1 · · · p + q) ∈ Sp+q .

(For present notational convenience, we de-emphasize the role of n, letting q = n− p.)

123



74 B. Collins et al.

Lemma 3.11 Let Cp,q(s) denote the covariance tensor of (3.23),

Cp,q(s) ≡ E((A2N
s )⊗n) − E((A2N

s )⊗p) ⊗ E((A2N
s )⊗q).

Then the two covariance terms in (3.21) are given by

Cov[Tr((A2N
s )p),Tr((A2N

s )q)] = Tr
(Cp,q(s)[γp,q ]

)
, and (3.33)

Cov[Tr((A2N
s )p P1),Tr((A

2N
s )q P1)] = Tr

(Cp,q(s)[P1 ⊗ P1]p,p+q [γp,q ]
)
.

(3.34)

Proof To begin, observe that for any matrix A, (3.12) yields

Tr(Ap)Tr(Aq) = Tr
(
A⊗p ⊗ A⊗q [γp,q ]

)
.

For notational convenience in this proof, denote the full cycle (1 · · · p) ∈ Sp by γp,
so that Tr(Ap) = Tr

(
A⊗p[γp]

)
. It follows that

Cov[Tr((A2N
s )p),Tr((A2N

s )q)]
= E[Tr((A2N

s )p)Tr((A2N
s )q)] − E[Tr((A2N

s )p)]E[Tr((A2N
s )q)]

= ETr((A2N
s )⊗p ⊗ (A2N

s )⊗q [γp,q ]) − ETr((A2N
s )⊗p[γp])ETr((A2N

s )⊗q [γq ])
= Tr(E((A2N

s )⊗(p+q))[γp,q ]) − Tr(E((A2N
s )⊗p) ⊗ E((A2N

s )⊗q)[γp,q ])
= Tr([E((A2N

s )⊗(p+q)) − E((A2N
s )⊗p) ⊗ E((A2N

s )⊗q)][γp,q ])
= Tr(Cp,q(s)[γp,q ])

thus proving (3.33). At the same time, using the fact that the projection P1 is diagonal,
we have for any matrix A ∈ M2N

Tr(ApP1)Tr(A
q P1) = Tr

(
A⊗p ⊗ A⊗q [P1 ⊗ P1]p,p+q [γp,q ]

)
,

where we remind the reader that [P� ⊗ P�]i, j references notation (3.17); here i = p
and j = p + q (the final tensor factor). The derivation of (3.34) follows from here
analogously to the above computations. ��

Thus, from (3.21), (3.33), and (3.34), to estimate Hp,n−p(s) we must understand
the covariance tensor Cp,n−p(s). To that end, we introduce some notation. For 1 ≤
i < j ≤ n, define the matrix Ti, j ∈ (M2N )⊗n by

Ti, j = 2[(i j)] [P1 ⊗ P1 + P2 ⊗ P2]i, j . (3.35)

Additionally, for 1 ≤ p ≤ n, we introduce �p, �p ∈ (M2N )⊗n as follows:

�p = − 1

2N

∑

1≤i< j≤p, or
p<i< j≤n

[(i j)], �p = − 1

2N

∑

1≤i< j≤p, or
p<i< j≤n

Ti, j , (3.36)
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with the understanding that, when p = n, the sum is simply over 1 ≤ i < j ≤ n.

Lemma 3.12 Let p ∈ {1, . . . , n}, and let 0 ≤ s ≤ t . Then

E[(U 2N
s )⊗p] ⊗ E[(U 2N

s )⊗(n−p)] = e− ns
2 es�p , (3.37)

E[(B2N
s )⊗p] ⊗ E[(B2N

s )⊗(n−p)] = e− ns
2 es�p , (3.38)

E[(A2N
s )⊗p] ⊗ E[(A2N

s )⊗(n−p)] = e− nt
2 e(t−s)�p es�p , (3.39)

where, in the case p = n, we interpret the 0-fold tensor product as the identity as
usual.

Proof Returning to the SDEs (3.26) and (3.28), taking expectations we find that

d

ds
E[(U 2N

s )⊗n] = −n

2
E[(U 2N

s )⊗n] − 1

2N
E

⎧
⎨

⎩
(U 2N

s )⊗n ·
∑

1≤i< j≤n

[(i j)]
⎫
⎬

⎭
, (3.40)

d

ds
E[(B2N

s )⊗n] = −n

2
E[(B2N

s )⊗n] − 1

2N
E

⎧
⎨

⎩
(B2N

s )⊗n ·
∑

1≤i< j≤n

Ti, j

⎫
⎬

⎭
. (3.41)

Since the processes B2N and U 2N start at the identity, it is then immediate to verify
that the solutions to these ODEs are

E[(U 2N
s )⊗n] = e− ns

2 exp

⎧
⎨

⎩
− s

2N

∑

1≤i< j≤n

[(i j)]
⎫
⎬

⎭
, and

E[(B2N
s )⊗n] = e− ns

2 exp

⎧
⎨

⎩
− s

2N

∑

1≤i< j≤n

Ti, j

⎫
⎬

⎭
.

Now, for the tensor product, we decompose

E[(U 2N
s )⊗p] ⊗ E[(U 2N

s )⊗(n−p)] = (E[(U 2N
s )⊗p] ⊗ I⊗(n−p)) · (I⊗p ⊗ E[(U 2N

s )⊗(n−p)]).

We can express these expectations as in (3.40), provided we note that (i j) now refers
(alternatively) to the action of Sp or Sn−p on (M2N )⊗n = (M2N )⊗p ⊗ (M2N )⊗(n−p),
either trivially in the first factor or the second. The result is that

E[(U 2N
s )⊗p] ⊗ I⊗(n−p) = e− ps

2 exp

⎧
⎨

⎩
− s

2N

∑

1≤i< j≤p

[(i j)]
⎫
⎬

⎭

I⊗p ⊗ E[(U 2N
s )⊗(n−p)] = e− (n−p)s

2 exp

⎧
⎨

⎩
− s

2N

∑

p<i ′< j ′≤n

[(i ′ j ′)]
⎫
⎬

⎭
.
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Note that all the (i j) terms in the first sum commute with all the (i ′ j ′) terms in the
second sum (since i < j < i ′ < j ′) and taking the product, we can combine to yield

E[(U2N
s )⊗p] ⊗ E[(U2N

s )⊗(n−p)] = e− ns
2 exp

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

− s

2N

∑

1≤i< j≤p, or
p<i< j≤n

[(i j)]

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

= e− ns
2 es�p ,

verifying (3.37). An entirely analogous analysis proves (3.38).
Finally, using independence as in (3.25) to factor

E[(A2N
s )⊗p] ⊗ E[(A2N

s )⊗(n−p)]
=
(
E[(U 2N

t−s)
⊗p] ⊗ E[(U 2N

t−s)
⊗(n−p)]

)
·
(
E[(B2N

s )⊗p] ⊗ E[(B2N
s )⊗(n−p)]

)

(3.42)

and substituting s → t − s in (3.37), (3.39) follows from (3.38) and (3.42). ��
Corollary 3.13 For 0 ≤ p ≤ n and 0 ≤ s ≤ t,

Cp,n−p(s) = e− nt
2 [e(t−s)�n es�n − e(t−s)�p es�p ]. (3.43)

Proof From (3.39), we have

E[(A2N
s )⊗p] ⊗ E[(A2N

s )⊗(n−p)] = e− nt
2 e(t−s)�p es�p

for 0 ≤ p ≤ n. In particular, taking p = n (in which case the second factor is trivial
and omitted) we have

E[(A2N
s )⊗n] = e− nt

2 e(t−s)�n es�n .

Subtracting these two and using the definition (3.23) of Cp,n−p(s) yields the result. ��
The next technical lemma uses Duhamel’s formula to rewrite the expression in

(3.43) in a more complicated, but more computationally useful, way.

Lemma 3.14 For 0 ≤ s ≤ t,

Cp,n−p(s) = e− nt
2

2N

∑

1≤i≤p< j≤n

(∫ t−s

0
e(t−s−u)�n [(i j)]eu�p es�n du

+
∫ s

0
e(t−s)�p e(s−u)�n Ti, j e

u�p du

)

.

Proof We begin by using Duhamel’s formula (3.24), applied to (3.43) by adding and
subtracting the mixed term e(t−s)�p es�n :

e(t−s)�n es�n − e(t−s)�p es�p

123



The spectral edge of unitary Brownian motion 77

= [e(t−s)�n − e(t−s)�p ]es�n + e(t−s)�p [es�n − es�p ]
=
∫ 1

0
e(1−u)(t−s)�n (t − s)(�n − �p)e

u(t−s)�p du · es�n

+e(t−s)�p

∫ 1

0
e(1−u)s�n s(�n − �p)e

us�p du

=
∫ t−s

0
e(t−s−u)�n (�n − �p)e

u�p es�n du

+
∫ s

0
e(t−s)�p e(s−u)�n (�n − �p)e

u�p du (3.44)

where we have made the substitution u → (t − s)u in the first integral and u → su
in the second. Now, from the definition (3.36) of �p and �p, we have

�p − �n = 1

2N

∑

1≤i≤p< j≤n

[(i j)], and �p − �n = 1

2N

∑

1≤i≤p< j≤n

Ti, j .

Substituting these into (3.44) yields the result. ��

We now reinterpret the exponentials in the integrals as expectations of the processes
U 2N and B2N , using (3.37) and (3.38). The first integrand is

e− nt
2 e(t−s−u)�n [(i j)]eu�p es�n = E[(U 2N

t−s−u)
⊗n] · [(i j)] · E[(U 2N

u )⊗p]
⊗E[(U 2N

u )⊗(n−p)] · E[(B2N
s )⊗n].

By definition U 2N and B2N are independent. Let us introduce two more copies
V 2N ,W 2N of U 2N so the {U 2N , V 2N ,W 2N , B2N } are all independent. Then this
product may be expressed as the expectation of

Rp
i, j (u; s, t) ≡ (U 2N

t−s−u)
⊗n · [(i j)] · (V 2N

u )⊗p ⊗ (W 2N
u )⊗(n−p) · (B2N

s )⊗n .

(3.45)

Similarly, if we introduce independent copies C2N and D2N of B2N so that all the
processes U 2N , V 2N ,W 2N , B2N ,C2N , D2N are independent, the second integrand
can be expressed as the expectation of

Qp
i, j (u; s, t) ≡ (V 2N

t−s)
⊗p ⊗ (W 2N

t−s)
⊗(n−p) · (B2N

s−u)
⊗n

·Ti, j · (C2N
u )⊗p ⊗ (D2N

u )⊗(n−p). (3.46)

To summarize, we have computed the following.
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Lemma 3.15 Let 0 ≤ s ≤ t and p ∈ {1, . . . , n}. Then

Cp,n−p(s) = 1

2N

∑

1≤i≤p< j≤n

(∫ t−s

0
E[Rp

i, j (u; t, s)] du +
∫ s

0
E[Qp

i, j (u; t, s)] du
)

.

(3.47)

Wewill nowuse this, togetherwith (3.21), (3.33), and (3.34), to estimate Hp,n−p(s).
We estimate each of the two covariance terms separately, in the following two lemmas.

Lemma 3.16 For p ∈ {1, . . . , n} and 0 ≤ s ≤ t,

|Cov[Tr((A2N
s )p),Tr((A2N

s )n−p)]| ≤ p(n − p)(t + 3s). (3.48)

Proof From (3.47) together with (3.33), the quantity whose modulus we wish to
estimate is

∑

1≤i≤p< j≤n

(∫ t−s

0

1

2N
ETr(Rp

i, j (u; t, s) · [γp,n−p]) du

+
∫ s

0

1

2N
ETr(Qp

i, j (u; t, s) · [γp,n−p]) du
)

.

For the first term, we note (U 2N
t−s−u)

⊗n[γp,n−p] = [γp,n−p](U 2N
t−s−u)

⊗n (the Schur-
Weyl representation of any permutation in Sn commutes with a matrix of the form
M⊗n). It follows from the trace property that

ETr(Rp
i, j (u; s, t) · [γp,n−p])

= ETr((V 2N
u )⊗p ⊗ (W 2N

u )⊗(n−p) · (B2N
s )⊗n · [γp,n−p] · (U 2N

t−s−u)
⊗n · [(i j)])

= ETr((V 2N
u )⊗p ⊗ (W 2N

u )⊗(n−p) · (B2N
s )⊗n · (U 2N

t−s−u)
⊗n · [γp,n−p] · [(i j)]).

Since i ≤ p < j , the permutation γp,n−p(i j) is a single cycle. Thus, by (3.12), the
⊗n-fold trace reduces to a trace of some p, n, i, j-dependentword inV 2N

u ,W 2N
u , B2N

s ,
and U 2N

t−s−u . This word is a random element of U2N , and hence

1

2N
ETr(Rp

i, j (u; s, t) · [γp,n−p])

= 1

2N
ETr(a random matrix in U2N ) which ∴ has modulus ≤ 1.

Hence, the first integral is

∣
∣
∣
∣

∫ t−s

0

1

2N
ETr

(
Rp
i, j (u; t, s) · [γp,n−p]

)
du

∣
∣
∣
∣ ≤ (t − s). (3.49)
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For the second term, the fact that Ti, j = 2[(i j)][P1 ⊗ P1 + P2 ⊗ P2]i, j only acts
non-trivially in the i, j factors, and i ≤ p < j , shows that (as above) Ti, j commutes
with (C2N

u )⊗p ⊗ (D2N
u )⊗(n−p). Hence, we can express the second integrand as

ETr(Qp
i, j (u; t, s) · [γp,n−p])

= ETr((V 2N
t−s)

⊗p ⊗ (W 2N
t−s)

⊗(n−p) · (B2N
s−u)

⊗n · Ti, j · (C2N
u )⊗p

⊗(D2N
u )⊗(n−p) · [γp,n−p])

= ETr((V 2N
t−s)

⊗p ⊗ (W 2N
t−s)

⊗(n−p) · (B2N
s−u)

⊗n · Ti, j · [γp,n−p] · (C2N
u )⊗p

⊗(D2N
u )⊗(n−p))

= 2
2∑

�=1

ETr((C2N
u )⊗p ⊗ (D2N

u )⊗(n−p) · (V 2N
t−s)

⊗p

⊗(W 2N
t−s)

⊗(n−p) · (B2N
s−u)

⊗n · [P� ⊗ P�]i, j [(i j)] · [γp,n−p]) (3.50)

where we have used the fact that [γp,n−p] commutes with any matrix of the form
C⊗p⊗D⊗(n−p) in the second equality, and then the trace property in the third equality.
As above, each of these terms reduces to a trace of a word, this time of the form

2
2∑

�=1

ETr(U P�VP�)

whereU andV are randommatrices inU2N (depending on p, n, i, j). Since ‖P�‖ ≤ 1,
the modulus of each term is ≤ 2N , giving an overall factor of ≤ 8N . Combining with
the 1

2N in the integral, this gives

∣
∣
∣
∣

∫ s

0

1

2N
ETr

(
Qp

i, j (u; t, s) · [γp,n−p]
)
du

∣
∣
∣
∣ ≤ 4s. (3.51)

Hence, from (3.49) and (3.51), the modulus of the desired covariance is bounded by

∑

1≤i≤p< j≤n

[(t − s) + 2s] = p(n − p)(t + 3s),

yielding (3.48). ��
Lemma 3.17 For p ∈ {1, . . . , n} and 0 ≤ s ≤ t,

|Cov[Tr((A2N
s )p P1),Tr((A

2N
s )n−p P1)]| ≤ p(n − p)(t + 3s). (3.52)

Proof From (3.47) together with (3.34), the quantity whose modulus we wish to
estimate is

∑

1≤i≤p< j≤n

(∫ t−s

0

1

2N
ETr(Rp

i, j (u; t, s) · [P1 ⊗ P1]p,n · [γp,n−p]) du
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+
∫ s

0

1

2N
ETr(Qp

i, j (u; t, s) · [P1 ⊗ P1]p,n · [γp,n−p]) du
)

. (3.53)

For the first term, we expand the integrand, commuting [(i j)] past (U 2N
t−s−u)

⊗n as in
the proof of Lemma 3.16, to give

1

2N
ETr((U 2N

t−s−u)
⊗n · (V 2N

u )⊗p ⊗ (W 2N
u )⊗(n−p)

· (B2N
s )⊗n · [P1 ⊗ P1]p,n · [γp,n−p] · [(i j)]).

As above, since γp,n−p · (i, j) is a single cycle, this trace reduces to a trace over C
2N ,

of the form

1

2N
ETr[U ′P1V ′P1]

where U ′ and V ′ are random unitary matrices in U2N composed of certain i, j, p, n-
dependent words in U 2N

t−s−u, V
2N
u ,W 2N

u , and B2N
s . As ‖P1‖ ≤ 1, it follows that this

normalized trace is ≤ 1, and so the first integral in (3.53) is ≤ (t − s) in modulus, as
in (3.49).

Similarly, we expand the second term as in (3.50), which gives the sum over � ∈
{1, 2} of the expected normalized trace of

(V 2N
t−s)

⊗p ⊗ (W 2N
t−s)

⊗(n−p) · (B2N
s−u)

⊗n · [γp,n−p] · [(i, j)]
· [P� ⊗ P�]i, j · (C2N

u )⊗p ⊗ (D2N
u )⊗(n−p) · [P1 ⊗ P1]p,n .

As in the above cases, since γp,n−p(i, j) is a single cycle, this is equal to a single trace
Tr(A1 · · · An) where A1, . . . , An belong to the set {V 2N

t−s,W
2N
t−s, B

2N
s−u,C

2N
u , D2N

u ,

P�, P1}. As each of these is either a random unitary matrix or a projection, it follows
that the expected normalized trace has modulus ≤ 1, and so the 1

N -weighted sum of 2
terms, each of modulus ≤ 2N , gives a contribution no bigger than 4. The remainder
of the proof is exactly as the end of the proof of Lemma 3.16. ��

Finally, we are ready to conclude this section.

Proof of Proposition 3.6 From (3.20), we have

|νN
t (n) − ν2Nt (n)| ≤ n

2

n−1∑

p=1

∫ t

0
|Hp,n−p(s)| ds.

Lemma 3.10 then gives

|Hp,q(s)| ≤ 1

4N 2

∣
∣
∣Cov[Tr((A2N

s )p),Tr((A2N
s )q)]

∣
∣
∣

+ 1

N 2

∣
∣
∣Cov[Tr((A2N

s )p P1),Tr((A
2N
s )q P1)]

∣
∣
∣ .
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Combining this with (3.48) and (3.52) therefore yields

|Hp,q(s)| ≤ p(n − p)

N 2 · 5
4
(t + 3s).

Integration then gives

|νN
t (n) − ν2Nt (n)| ≤ n

2

n−1∑

p=1

p(n − p)

N 2 · 25
8
t2 = 25t2n

16N 2

n−1∑

p=1

p(n − p).

The sum over p has the exact value 1
6 (n

3 −n) ≤ n3
6 . The blunt estimate 25

96 < 3
4 yields

the result. ��

4 Strong convergence

In this section, we prove Theorem 1.4. We begin by showing (in Sect. 4.1) that the
eigenvalues of the unitary Brownian motion at a fixed time converge to their “classical
locations”, and we use this to prove that the unitary Brownianmotion can be uniformly
approximated by a function of a Gaussian unitary ensemble (for time t < 4). We then
use this, together with Male’s Theorem 2.3, to prove Theorem 1.4.

4.1 Marginals of unitary Brownian motion and approximation by GUEN

We begin with the following general result on convergence of empirical measures.
As usual, for a probability measure μ on R, the cumulative distribution function Fμ

is the nondecreasing function Fμ(x) = μ((−∞, x]) and its right-inverse is the left-
continuous nondecreasing function

F−1
μ (y) = inf{x ∈ R : y ≤ Fμ(x)},

with F−1
μ (0) = −∞. If μ has a density ρ, we may abuse notation and write Fμ = Fρ .

Proposition 4.1 For each N ∈ N, let (xNk )Nk=1 be points in R with xN1 ≤ · · · ≤ xNN .

Let μN = 1
N

∑N
k=1 δxNk

be the associated empirical measures. Suppose the following

hold true.

1. There is a compact interval [a−, a+] and a continuous probability density ρ with
supp ρ = [a−, a+] so that, with μ(dx) = ρ(x) dx, we have μN ⇀ μ weakly as
N → ∞.

2. xN1 → a− and xNN → a+ as N → ∞.

For r ∈ [0, 1], define x∗(r) = F−1
μ (r) if r ∈ (0, 1), and x∗(0) = a−, x∗(1) = a+.

Then, as N → ∞,

max
1≤k≤N

∣
∣
∣xNk − x∗( k

N )

∣
∣
∣→ 0.
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Proof For any N , the right-inverse of FμN satisfies

F−1
μN

(r) = xNk and FμN (F−1
μN

(r)) = k

N
, (4.1)

for any k ∈ {1, . . . , N } and r ∈ ( k−1
N , k

N ]. Since μN converges weakly towards
μ and Fμ is continuous, the sequence FμN converges pointwise towards Fμ. What
is more, using that μ is compactly supported, a variant of Dini’s theorem (cf. [39,
Problem 127 Chapter II]) implies further that FμN → F uniformly on R. Let us
consider � : [0, 1] → [a−, a+], the continuous inverse of the one-to-one map Fμ :
[a−, a+] → [0, 1]. It satisfies �(r) = F−1

μ (r), for any r ∈ (0, 1] and �(Fμ(x)) =
max(a−,min(a+, x)), for any x ∈ R. Combining this latter equality with (4.1), and
using the uniform continuity of � and the uniform convergence of FμN towards Fμ,
implies that max(a−,min(a+, F−1

μN
)) converges uniformly towards � on (0, 1]. The

first equality of (4.1) together with the assumption (2) yield then the claim. ��
For example, if (xNk )Nk=1 are the ordered eigenvalues of a GUEN , then Wigner’s

law (and the corresponding spectral edge theorem) show that the empirical spectral
distribution satisfies the conditions of Proposition 4.1 almost surely, where the limit
measure is the semicircle law μ = σ1 ≡ 1

2π

√
(4 − x2)+ dx . In particular, when

k(N )
N → r , we have xNk(N ) → F−1

σ1
(r). These values are sometimes called the classical

locations of the eigenvalues. In the case of aGUEN , muchmore is known; for example,
[23] showed that the eigenvalues have variance of O(

log N
N2 ) in the bulk and O(N−4/3)

at the edge, and further standardizing them, their limit distribution is Gaussian in the
bulk and Tracy–Widom at the edge. For our purposes, the macroscopic statement of
Proposition 4.1 will suffice.

Now, fix t ∈ [0, 4). From Theorem 2.5, the law νt of the free unitary Brownian
motion ut has an analytic density �t supported on a closed arc strictly contained in
U1, and has the form �t (eix ) = ρt (x) for some strictly positive continuous probability
density function ρt : (−π, π) → R which is symmetric about 0 and supported in a
symmetric interval [−a(t), a(t)] where a(t) = 1

2

√
t (4 − t) + arccos(1 − t/2); cf.

(2.7). For 0 < r < 1, define that classical locations υ∗(t, r) of the eigenvalues of
unitary Brownian motion as follows:

υ∗(t, r) = exp
(
i F−1

ρt
(r)
)

,

and also set υ∗(t, 0) = e−ia(t) and υ∗(t, 1) = eia(t).

Corollary 4.2 Let 0 ≤ t < 4, and let V N
t be a random unitary matrix distributed

according to the heat kernel on UN at time t (i.e. equal in distribution to the t-
marginal of the unitary Brownian motion U N

t ). Enumerate the eigenvalues of V N
t as

υN
1 (t), . . . , υN

N (t), in increasing order of complex argument in (−π, π). Then,

lim
N→∞ |υN

k (t) − υ∗(t, k
N )| = 0 a.s.
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Proof Let xNk (t) = −i log υN
k (t), where we use the branch of the logarithm cut

along the negative real axis. Note: by Theorem 1.1, for sufficiently large N , υN
k (t) are

outside a t-dependent neighborhood of −1, and so the log function is continuous. The
empirical law of {υN

k (t) : 1 ≤ k ≤ N < ∞} converges weakly a.s. to νt (cf. (1.2)), and
so by continuity, the empirical measure of {xNk (t) : 1 ≤ k ≤ N < ∞} converges a.s.
to the measure with density ρt . Moreover, Theorem 1.1 shows that υN

1 (t) → e−ia(t)

and υN
N (t) → eia(t) a.s., and so xN1 (t) → −a(t) while xNN (t) → a(t) a.s. Hence, by

Proposition4.1,max1≤k≤N |xNk (t)−F−1
ρt

( k
N )| → 0.Taking exp(i ·)of these statements

yields the corollary. ��

Now, let us combine this resultwith the comparable one for theGUEN . Let gt : R →
R be given by gt = F−1

ρt
◦ Fσ1 ; this is an increasing, continuous map that pushes σ1

forward to ρt . Define ft : R → U1 by

ft = exp(igt ), ∴ νt = ( ft )∗(σ1). (4.2)

The main result of this section is that, rather than just pushing the semicircle law
forward to the law of free unitary Brownianmotion, gt in fact pushes a GUEN forward,
asymptotically, to V N

t (for fixed t ∈ [0, 4)).

Proposition 4.3 Let 0 ≤ t < 4, and let V N
t be a random unitary matrix distributed

according to the heat kernel onUN at time t (i.e. equal in distribution to the t-marginal
of the unitary Brownian motion U N

t ). There exists a self-adjoint random matrix X N

with the following properties:
1. XN is a GUEN .
2. The eigenvalues of X N are independent from V N

t , and {V N
t , XN } have the same

eigenvectors.
3. ‖ ft (XN ) − V N

t ‖MN → 0 a.s. as N → ∞.

Proof Let (υN
k (t))Nk=1 denote the eigenvalues of V

N
t in order of increasing argument

in (−π, π), as in Corollary 4.2. It is almost surely true that arg(υN
1 (t)) < · · · <

arg(υN
N (t)), and so we work in this event only. Let E N

k denote the eigenspace of the
eigenvalue υN

k (t). This space has complex dimension 1 a.s., and so we may select
a unit length vector EN

k from this space, with phase chosen uniformly at random
in U1, independently for each of EN

1 , . . . , EN
N . Then, by orthogonality of distinct

eigenspaces, the random matrix EN = [ EN
1 ··· EN

N ] is in UN ; what’s more, since
the distribution of V N

t is invariant under conjugation by unitaries, we may further
assume that EN is Haar distributed on UN . Now, for each N , fix a random vector
μN = (μN

1 , . . . , μN
N ) independent from V N

t with joint density fμN (x1, . . . , xN ) equal
to the known joint density of eigenvalues of a GUEN , i.e. proportional to

fμN (x1, . . . , xn) ∼
N∏

j=1

e− N
2 x

2
j

∏

1≤ j<k≤N

|x j − xk |2.
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Then we define

XN ≡ EN

⎡

⎢
⎢
⎢
⎣

μN
1 0 · · · 0
0 μN

2 · · · 0
...

...
. . .

...

0 0 · · · μN
N

⎤

⎥
⎥
⎥
⎦

(EN )∗.

It is well known (cf. [1,37]) that the distribution of XN is the GUEN , verifying item
(1). Item (2) holds by construction of XN . It remains to see that (3) holds true. Note,
since operator norm is invariant under unitary conjugation, we simply have

‖ ft (X
N ) − V N

t ‖MN = max
1≤k≤N

| ft (μN
k ) − υN

k |. (4.3)

But for any k ∈ {1, . . . , N }, v∗(t, k
N ) = ft (μN

k ) and Corollary 4.2 yields the result. ��

4.2 Strong convergence of the process (UN
t )t≥0

Since theGaussian unitary ensemble is selfadjoint, wemay extendMale’s Theorem2.3
to continuous functions in independent GUEN s.

Lemma 4.4 Let AN = (AN
1 , . . . , AN

n ) be a collection of random matrix ensembles
that converges strongly to some a = (a1, . . . , an) in a W ∗-probability space (A , τ ).
Let XN = (XN

1 , . . . , XN
k ) be independent Gaussian unitary ensembles independent

from AN , and let x = (x1, . . . , xk) be freely independent semicircular random vari-
ables in A all free from a. Let f = ( f1, . . . , fk) : R → C

k be continuous functions,
and let f(XN ) = ( f1(XN

1 ), . . . , fk(XN
k )) and f(x) = ( f1(x1), . . . , fk(xk)). Then

(AN , f(XN )) converges strongly to (a, f(x)).

Proof We begin with the case k = 1. If p is any polynomial, by Theorem 2.3,
(AN , p(XN

1 )) converges strongly to (a, p(x1)) by definition. Now, let ε > 0, and
fix a noncommutative polynomial P in n + 1 indeterminates. Then P(a, y) is a finite
sum of monomials, each of the form

Q0(a)yQ1(a)y · · · Qd−1(a)yQd(a)

for some noncommutative polynomials Q0, . . . , Qd and nonnegative integers d. Let
dP be the “degree” of P: the maximum number of Qk(a) terms that appears in any
monomial in the above expansion of P(a, y). Let M = 1+ the sum of all the products
‖Q0(a)‖ · · · ‖Qd(a)‖ over all monomial terms appearing in P . Given a fixed κ > 2,
by the Weierstrass approximation theorem, for any ε > 0, there is a polynomial p in
one indeterminate so that

‖p − f1‖L∞[−κ,κ] <
ε

8dPM(1 + ‖ f1‖L∞[−κ,κ])dP
. (4.4)
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It follows that, for small enough ε > 0, we also have ‖p‖L∞[−κ,κ] ≤ 1+‖ f1‖L∞[−κ,κ].
Now we break up the difference in the usual manner,

|‖P(AN , f1(X
N
1 ))‖ − ‖P(a, f1(x1))‖| ≤ |‖P(AN , f1(X

N
1 ))‖ − ‖P(AN , p(XN

1 ))‖|
+|‖P(AN , p(XN

1 ))‖ − ‖P(a, p(x1))‖|
+|‖P(a, p(x1))‖ − ‖P(a, f (x1))‖|.

(4.5)

By the known strong convergence of (AN , p(XN
1 )) to (a, p(x1)), the middle term is

< ε
4 for all sufficiently large N . For the first and third terms, we use the reverse triangle

inequality; in the third term this gives

|‖P(a, p(x1))‖ − ‖P(a, f (x1))‖| ≤ ‖P(a, p(x1)) − P(a, f (x1))‖.

Let y = p(x1) and z = f1(x1). We may estimate the norm of the difference using the
triangle inequality summing over all monomial terms; then we have a sum of terms of
the form

‖Q0(a)yQ1(a)y · · · Qd−1(a)yQd(a) − Q0(a)zQ1(a)z · · · Qd−1(a)zQd(a)‖.
(4.6)

By introducing intermediatemixed terms of the form Q0(a)y · · · Qk−1(a)yQk(a)z · · ·
Qd−1(a)zQd(a) to give a telescoping sum, we can estimate the term in (4.6) by

‖Q0(a)‖ · · · ‖Qd(a)‖
d∑

k=1

‖y‖k−1‖z‖d−k‖y − z‖. (4.7)

Since ‖y‖ = ‖p(x1)‖ = ‖p‖L∞[−κ,κ] ≤ 1 + ‖ f1‖L∞[−κ,κ] and ‖z‖ = ‖ f1(x1)‖ ≤
1 + ‖ f1‖L∞[−κ,κ], each term in the previous sum is bounded by

‖y‖k−1‖z‖d−k ≤ (1 + ‖ f1‖L∞[−κ,κ])d−1 ≤ (1 + ‖ f1‖L∞[−κ,κ])dP .

Since ‖y − z‖ = ‖p − f1‖L∞[−κ,κ], combining this with (4.4) shows that the third
term in (4.5) is < ε

4 for all large N .
The first term in (4.5) is handled in an analogous fashion, with the caveat that the

prefactor in (4.7) is replaced by ‖Q0(AN )‖ · · · ‖Qd(AN )‖. Here we use the fact that
XN
1 converges strongly towards x1 to ensure that almost surely, for N large enough,

spec(XN
1 ) ⊂ [−κ, κ],

together with the assumption of strong convergence of AN → a to show that, for all
sufficiently large N ,

‖Q0(AN )‖ · · · ‖Qd(AN )‖ ≤ max{1, 2 · ‖Q0(a)‖ · · · ‖Qd(a)‖}.
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Then we see that the first term in (4.5) is < ε
2 for all large N , and so we have bounded

the sum < ε for all large N , concluding the proof of the lemma in the case k = 1.
Now suppose we have verified the conclusion of the lemma for a given k. We

proceed by induction. Taking (AN , f1(XN
1 ), . . . , fk(XN

k )) as our new input vector,
since fk+1(XN

k+1) is independent from all previous terms, the induction hypothesis
and thepreceding argument in the case k = 1give strong convergenceof the augmented
vector (AN , f1(XN

1 ), . . . , fk(XN
k ), fk+1(XN

k+1)) aswell. Hence, the proof is complete
by induction. ��

This finally brings us to the proof of Theorem 1.4.

Proof of Theorem 1.4 As above, let AN = (AN
1 , . . . , AN

n ) and let a = (a1, . . . , an)
be the strong limit. By reindexing the order of the variables in the noncommutative
polynomial P appearing in the definition of strong convergence, it suffices to prove
the theorem in the case of time-ordered entries:UN

t1 , . . . ,UN
tk with t1 ≤ t2 ≤ · · · ≤ tk .

What’s more, we may assume without loss of generality that the time increments
s1 = t1, s2 = t2 − t1, . . . , sk = tk − tk−1 are all in [0, 4). Indeed, if we know the
theorem holds in this case, then for a list of ordered times with some gaps 4 or larger,
wemay introduce intermediate times until all gaps are< 4; then the restricted theorem
implies strong convergence for this longer list of marginals, which trivially implies
strong convergence for the original list.

Now, set V N
s1 = UN

t1 , and V N
s j = (UN

t j−1
)∗UN

t j for 2 ≤ j ≤ k. As discussed in

Sect. 2.1, these increments of the process are independent, and V N
s j has the same

distribution as UN
s j . Hence, by Proposition 4.3, there are k independent GUEN s

XN
1 , . . . , XN

k , and continuous functions fs j : R → C, so that ‖ fs j (X
N
j )−V N

s j ‖MN →
0 as N → ∞. Since the V N

s j are all independent from AN , so are the XN
j . Hence, by

Lemma 4.4, taking x1, . . . , xk freely independent semicircular random variables all
free from a, it follows that

(AN , fs1(X
N
1 ), . . . , fsk (X

N
k )) converges strongly to (a, fs1(x1), . . . , fsk (xk)).

By the definition of the mapping fs (cf. (4.2)), fs j (x j ) has distribution νs j , and as
all variables in sight are free, (a, fs1(x1), . . . , fsk (xk)) has the same distribution as
(a, vs1 , . . . , vsk ) where (vs)s≥0 is a free unitary Brownian motion, freely independent
from a.

It now follows, since ‖ fs j (X
N
j ) − V N

s j ‖MN → 0, that

(AN , V N
s1 , . . . , V N

sk ) converges strongly to (a, vs1 , . . . , vsk ).

(The proof is very similar to the proof of Lemma 4.4.) Finally, we can recover the
original variables UN

t j = V N
s1 V

N
s2 · · · V N

s j . Therefore

(AN ,UN
t1 , . . . ,UN

tk ) converges strongly to (a, vs1 , vs1vs2 . . . , vs1vs2 · · · vsk ).
The discussion at the end of Sect. 2.3 shows that (vs1 , vs1vs2 , . . . , vs1vs2 · · · vsk ) has
the same distribution as (ut1 , ut2 , . . . , utk ) where (ut )t≥0 is a free unitary Brownian
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motion in the W ∗-algebra generated by (vs)s≥0, and is therefore freely independent
from a. This concludes the proof. ��

5 Application to the Jacobi process

In this final section we combine our main Theorem 1.4 with some of the results of the
first and third authors’ earlier paper [12], to show that the Jacobi process (cf. (5.1) and
(5.2)) has spectral edges that evolve with finite propagation speed.

There are three classical HermitianGaussian ensembles that have beenwell studied.
The first is the Gaussian Unitary Ensemble described in detail above, whose analysis
was initiated by Wigner [50] and began random matrix theory. The second is the
Wishart Ensemble, also known (through its applications in statistics) as a sample
covariance matrix. Let a ≥ 1, and let X = XN be an N × �aN� matrix all of whose
entries are independent normal random variables of variance 1

N ; then W = XX∗ is a
Wishart ensemble with parameter a. As N → ∞, its empirical spectral distribution
converges almost surely to a law known as the Marchenko–Pastur distribution; this
was proved in [36]. Aswith the Gaussian Unitary Ensemble, it also has a spectral edge,
and the largest eigenvalue when properly renormalized has the Tracy-Widom law.

The third Hermitian Gaussian ensemble is the Jacobi Ensemble. Let Wa and W ′
b

be independent Wishart ensembles of parameters a, b ≥ 1. Then it is known that
Wa + W ′

b is a Wishart ensemble of parameter a + b, and is a.s. invertible (cf. [11,
Lemma 2.1]). The associated Jacobi Ensemble is

J = Ja,b = (Wa + W ′
b)

− 1
2Wa(Wa + W ′

b)
− 1

2 . (5.1)

Such matrices have been studied in the statistics literature for over thirty years; they
play a key role in MANOVA (multivariate analysis of variance) and are sometimes
simply called MANOVA matrices. The joint law of eigenvalues is explicitly known,
but the large-N limit is notoriously harder than the Gaussian Unitary and Wishart
Ensembles. In [11], the present first author made the following discovery which led
to a new approach to the asymptotics of the ensemble: its joint law can be described
by a product of randomly rotated projections, as follows. (For the sake of making the
statement simpler, we assume a, b are such that aN and bN are integers.)

Theorem 5.1 [11, Theorem 2.2]. Let Ja,b = J N
a,b be an N × N Jacobi ensemble with

parameters a, b ≥ 1. Let P, Q ∈ M(a+b)N be (deterministic) orthogonal projections
with rank(P) = bN and rank(Q) = N. Let U ∈ U(a+b)N be a random unitary matrix
sampled from the Haar measure. Then QU∗PUQ, viewed as a random matrix inMN

via the unitary isomorphism MN ∼= QM(a+b)N Q, has the same distribution as Ja,b.

Given two closed subspaces V, W of a Hilbert space H, if P : H → V and
Q : H → W are the orthogonal projections, then the operator QPQ is known as the
operator valued angle between the two subspaces. (Indeed, in the finite-dimensional
setting, the eigenvalues of QPQ are trigonometric polynomials in the principal angles
between the subspaces V and W.) Thus, the law of the Jacobi ensemble records all
the remaining information about the angles between two uniformly randomly rotated
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subspaces of fixed ranks. These observations were used to make significant progress
in understanding the Jacobi Ensemble in statistical applications (cf. [29]), and to gen-
eralize many of these results to the full expected universality class (beyond Gaussian
entries) in the limit (cf. [21]).

In terms of the large-N limit: letting α = b
a+b and β = 1

a+b , we have trP = α and
trQ = β fixed as N grows, and therefore there are limit projections p, q of these same
traces. The chosen Haar distributed unitary matrices converge in noncommutative dis-
tribution to aHaar unitary operatoru freely independent from p, q, and so the empirical
spectral distribution of Ja,b converges to the law of qu∗ puq, which was explicitly
computed in [49] as an elementary example of free multiplicative convolution:

Lawqu∗ puq = (1 − min{α, β})δ0 + max{α + β − 1, 0}δ1
+
√

(r+ − x)(x − r−)

2πx(1 − x)
1[r−,r+] dx,

where r± = α +β − 2αβ ± 2
√

αβ(1 − α)(1 − β). Furthermore, it was shown in [29]
that the Jacobi Ensemble has a spectral edge, the rate of convergence of the largest
eigenvalue is N−2/3 (as with the Gaussian Unitary and Wishart Ensembles), and the
rescaled limit distribution of the largest eigenvalue is the Tracy–Widom law of [44].

Simultaneously to these developments, Voiculescu [48] introduced free liberation.
Given two subalgebras A, B of a W ∗-probability space (A , τ ) and a Haar unitary
operator u ∈ A that is freely independent from A, B, the rotated subalgebra u∗Au
is freely independent from B. If (ut )t≥0 is a free unitary Brownian motion freely
independent from A, B, it is not generally true that u∗

t Aut is free from B for any finite
t (in particular when t = 0 we just have A, B), but since the (strong operator) limit as
t → ∞ of ut is a Haar unitary, this process “liberates” A and B. This concept was used
to define several important regularized versions of measures associated to free entropy
and free information theory, and to this days plays an important role in free probability
theory. The special case that A, B are algebras generated by two projections has been
extensively studied [15–19,25–27], as the best special case where one can hope to
compute all quantities fairly explicitly.

In the first and third authors’ paper [12, Section 3.2], the following was proved.

Theorem 5.2 [12, Lemmas 3.2–3.6] Let p, q be orthogonal projections with traces
α, β, and let (ut )t≥0 be a free unitary Brownian motion freely independent from p, q.
Let μt = Lawqu∗

t put q . Then

μt = (1 − min{α, β})δ0 + max{α + β − 1, 0}δ1 + μ̃t

where μ̃t is a positive measure (of mass min{α, β} − max{α + β − 1, 0}). Let I1, I2
be two disjoint open subintervals of (0, 1). If supp μ̃t0 ⊂ I1 � I2 for some t0 ≥ 0, then
supp μ̃t ⊂ I1 � I2 for |t − t0| sufficiently small; moreover, μ̃t (I1) and μ̃t (I2) do not
vary with t close to t0.

If μ̃t has a continuous density on (0, 1) for t > 0, and xt0 ∈ (0, 1) is a boundary
point of supp μ̃t0 , then for |t − t0| sufficiently small there is a C1 function t → x(t)
with x(t0) = xt0 so that x(t) is a boundary point of supp μ̃t0 .
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Finally, in the special case α = β = 1
2 , for all t > 0, μ̃t possesses a continuous

density which is analytic on the interior of its support.

Remark 5.3 1. It is expected that the final statement, regarding the existence of a
continuous density, holds true for all α, β ∈ (0, 1); at present time, this is only
known for α = β = 1

2 . Nevertheless, the “islands stay separated” result holds in
general.

2. Our method of proof of the regularity of μ̃t involved a combination of free prob-
ability, complex analysis, and PDE techniques. In [28], Izumi and Ueda partly
extended this framework beyond the α = β = 1

2 case; but they were still not able
to prove continuity of the measure. They did, however, give a much simpler proof
of the result in the case α = β = 1

2 : here, μ̃t can be described as the so-called
Szegő transform (from the unit circle to the unit interval) of the law of v0ut , where
v0 is determined by the law of qpq. Via this description, the regularity result is an
immediate consequence of Theorem 2.5 above.

3. Let us note that α = β = 1
2 corresponds to a = b = 1, meaning the “square”

Jacobi ensemble. This is, of course, the case that is least interesting to statisticians:
in MANOVA problems the data sets are typically time series, where there are
many more samples than detection sites, meaning that a, b ≫ 1. In fact, it is
generally questioned whether the Jacobi Ensemble is a realistic regime for real
world applications, rather than building the Wishart Ensembles out of N × M
Gaussian matrices where M

N → ∞.

Thus, it is natural to consider the corresponding finite-t deformation of the Jacobi
Ensemble. The matrix Jacobi process J N

t associated to the projections PN , QN ∈
MN , is given by

J N
t = QN (UN

t )∗PNUN
t QN (5.2)

where (UN
t )t≥0 is a Brownian motion in UN . (Typically PN , QN are deterministic;

they may also be chosen randomly, in which case UN
t must be chosen independent

from them.) This is a diffusion process in M
[0,1]
N : it lives a.s. in the space of matrices

M ∈ MN with 0 ≤ M ≤ 1 (i.e. M is self-adjoint and has eigenvalues in [0, 1]).
Note that the initial value is J N

0 = QN PN QN , the operator-valued angle between the
subspaces in the images of PN , QN . In particular, the Jacobi process records (through
its eigenvalues) the evolution of the principal angles between two subspaces as they
are continuously rotated by a unitary Brownian motion.

In the case N = 1, the process (5.2) precisely corresponds to what is classically
known as the Jacobi process: the Markov process on [0, 1] with generator L =
x(x −1) ∂2

∂x2
− (cx +d) ∂

∂x , where c = 2min{α, β}−1, d = |α−β|. This is where the
name comes from, as the orthogonal polynomials associated to this Markov process
are the Jacobi polynomials, cf. [19].

Remark 5.4 Comparing to Theorem 5.1, we have now compressed the projections and
theBrownianmotion intoMN from the start.We could instead formulate the process as
in that theorem by choosing projections and Brownian motion in a larger space, which
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would have the effect of using a “corner” of a higher-dimensional Brownian motion
instead of UN

t . While this makes a difference for the finite-dimensional distribution,
it does not affect the large-N behavior.

This brings us to our main application. First note that, from our main Theorem 1.4,
the Jacobi process converges strongly.

Corollary 5.5 Let PN , QN be deterministic orthogonal projections in MN , and sup-
pose {PN , QN } converges strongly to {p, q}. Let (ut )t≥0 be a free unitary Brownian
motion freely independent from p, q. Then for each t ≥ 0 the Jacobi process marginal
J N
t converges strongly to jt = qu∗

t putq. What’s more, if f ∈ C[0, 1] is any continu-
ous test function, then ‖ f (J N

t )‖ → ‖ f ( jt )‖ a.s. as N → ∞.

Proof The strong convergence statement is an immediate corollary to Theorem 1.4,
with AN

1 = PN , AN
2 = QN , and n = 2, k = 1. The extension to continuous test func-

tions beyond polynomials is then an elementaryWeierstrass approximation argument.
��

Example 5.6 For fixed k ∈ N, select two orthogonal projections P, Q ∈ Mk . Then
define PN , QN ∈ MkN by PN = P⊗ I N and QN = Q⊗ I N . (Herewe are identifying
Mk ⊗ MN ∼= MkN via the Kronecker product.) If F is a noncommutative polynomial
in two indeterminates, then

F(PN , QN ) = F(P, Q) ⊗ I N

and it follows immediately that {PN , QN } converges strongly to {P, Q} (i.e. the W ∗-
probability space can be taken to be (Mk, tr)). Expanding this space to include a free
unitaryBrownianmotion freely independent from {P, Q} and setting jt = Qu∗

t Put Q,
Corollary 5.5 yields that the Jacobi process J kNt with initial value QN PN QN con-
verges strongly to jt .

Figure 2 illustrates the eigenvalues of J kNt with k = 4, N = 100, and initial
projections given by

P =
[
0.2 0.4
0.4 0.8

]

⊗
[
1 0
0 0

]

+
[
0.8 0.4
0.4 0.2

]

⊗
[
0 0
0 1

]

, Q =
[
1 0
0 0

]

⊗ I2

which have been selected so that the initial operator-valued angle QPQ has non-
trivial eigenvalues 0.2 and 0.8; this therefore holds as well for QN PN QN for all N .
This implies that the subspaces PN (CkN ) and QN (CkN ) have precisely two distinct
principal angles.

As is plainly visible in Fig. 2, for small time, the eigenvalues (which are fixed
trigonometric polynomials in the principal angles) stay close to their initial values.
That is: despite the fact that the diffusion’s measure is fully supported on M

[0,1]
N for

every t, N > 0, the eigenvalues move with finite speed for all large N . That is our
final theorem.
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Fig. 2 The spectral distribution of the Jacobi process JkNt of Example 5.6 with k = 4, N = 100 and times
t = 0.01 (on the left) and t = 0.25 (on the right). The histogramswere made with 1000 trials each, yielding
4 × 105 eigenvalues sorted into 1000 bins

Theorem 5.7 For each N ≥ 1, let (UN
t )t≥0 be a Brownian motion on UN , let V

N

and W
N be subspaces of C

N , and suppose that the orthogonal projections onto these
subspaces converge jointly strongly as N → ∞. Suppose there is a fixed finite set
θ = {θ1, . . . , θk} of angles so that all principal angles between V

N and W
N are in θ

for all N . Fix any open neighborhood O of θ . Then there exists some T > 0 so that,
for all t ∈ [0, T ], with probability 1, all principal angles between U N

t (VN ) and W
N

are in O for all sufficiently large N.

Proof Let PN and QN be the projections onto V
N and W

N . Then there is a fixed list
λ = {λ1, . . . , λk} in [0, 1] so that all eigenvalues of QN PN QN are in λ. (The eigenval-
ues λ j are certain fixed trigonometric polynomials in θ ). Let J N

t be the Jacobi process
associated to PN , QN , and let jt be the associated large-N limit. By Corollary 5.5,
for any t ≥ 0 and any f ∈ C[0, 1], ‖ f (J N

t )‖ → ‖ f ( jt )‖ a.s. as N → ∞.
Applying this at time t = 0, let λi , λ j ∈ λ with λi < λ j such that no elements of

λ are in the interval (λi , λ j ). Now let f be a continuous bump function supported in
(λi , λ j ). Then f (J N

0 ) = 0, and it therefore follows that ‖ f ( j0)‖ = 0. As this holds
for all bump function supported in (λi , λ j ), it follows that spec( j0) does not intersect
(λi , λ j ). Thus j0 has pure point spectrum precisely equal to λ.

Now, fix any ε > 0; by (induction on) Theorem 5.2, for sufficiently small t >

0, spec( jt ) is contained in λε (the union of ε-balls centered at the points of λ). Now,
suppose (for a contradiction) that, for some N0, J

N0
t possesses an eigenvalue λ ∈

(0, 1)\λε . Let g be a bump function supported in (0, 1)\λε that is equal to 1 on a
neighborhood of λ; then ‖g(J N0

t )‖ ≥ 1. But, by Corollary 5.5, we know ‖g(J N
t )‖ →

‖g( jt )‖ = 0 a.s. as N → ∞. Thus, for all sufficiently large N , ‖g(J N
t )‖ < 1, which

implies that λ is not an eigenvalue. As this holds for any point in (0, 1)\λε , it follows
that spec(J N

t ) is almost surely contained in λε for all sufficiently large N .
The result now follows from the fact that the principal angles between UN

t (V) and
W are fixed continuous functions (trigonometric polynomials) in the eigenvalues of
J N
t . ��
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