
Probab. Theory Relat. Fields (2017) 167:555–614
DOI 10.1007/s00440-016-0752-y

Compact Brownian surfaces I: Brownian disks

Jérémie Bettinelli1 · Grégory Miermont2

Received: 19 October 2015 / Revised: 12 December 2016 / Published online: 17 February 2017
© Springer-Verlag Berlin Heidelberg 2017

Abstract We show that, under certain natural assumptions, large random plane
bipartite maps with a boundary converge after rescaling to a one-parameter family
(BDL , 0 < L < ∞) of random metric spaces homeomorphic to the closed unit disk
of R

2, the space BDL being called the Brownian disk of perimeter L and unit area.
These results can be seen as an extension of the convergence of uniform plane quadran-
gulations to the Brownian map, which intuitively corresponds to the limit case where
L = 0. Similar results are obtained for maps following a Boltzmann distribution, in
which the perimeter is fixed but the area is random.
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1 Introduction

1.1 Motivation

Random maps are a natural discrete version of random surfaces. It has been shown in
recent years that their scaling limits can provide “canonical” models of randommetric
spaces homeomorphic to a surface of a given topology.More precisely, given a random
map M , one can consider it as a random finite metric space by endowing its vertex set
with the usual graphmetric, andmultiply this graphmetric by a suitable renormalizing
factor that converges to 0 as the size of the map M is sent to infinity. One is then
interested in the convergence in distribution of the resulting sequence of rescaledmaps,
in the Gromov–Hausdorff topology [23] (or pointed Gromov–Hausdorff topology if
one is interested in non-compact topologies), to some limiting random metric space.

Until now, the topology for which this program has been carried out completely
is that of the sphere, for a large (and still growing) family of different random maps
models, see [1,2,7,12,30,38], including for instance the case of uniform triangulations
of the sphere with n faces, or uniform random maps of the sphere with n edges. The
limitingmetric space, called the Brownianmap, turns out not only to have the topology
of the sphere [32,37], as can be expected, but also to be independent (up to a scale
constant) of the model of randommaps that one chooses, provided it is, in some sense,
“reasonable.” See however [3,31] for natural models of random maps that converge
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to qualitatively different metric spaces. These two facts indeed qualify the Brownian
map as being a canonical random geometry on the sphere. Note that a non-compact
variant of the Brownian map, called the Brownian plane, has been introduced in [21]
and shown to be the scaling limit of some natural models of random quadrangulations.

However, for other topologies allowing higher genera and boundary components,
only partial results are known [8–11].Although subsequential convergence results have
been obtained for rescaled random maps in general topologies, it has not been shown
that the limit is uniquely defined and independent of the choice of the extraction. The
goal of this paper and its companion [13] is to fill in this gap by showing convergence
of a natural model of random maps on a given compact surface S to a random metric
space with same topology, which one naturally can call the “Brownian S.”

This paper will focus exclusively on the particular case of the disk topology, which
requires quite specific arguments, and indeed serves as a building block to construct
the boundaries of general compact Brownian surfaces in [13].

1.2 Maps

To state our results, let us recall some important definitions and set some notation. We
first define the objects that will serve as discrete models for a metric space with the
disk topology.

A plane map is an embedding of a finite connected multigraph into the 2-
dimensional sphere, and considered up to orientation-preserving homeomorphisms
of the latter. The faces of the map are the connected components of the complement
of edges, and can be then shown to be homeomorphic to 2-dimensional open disks.
For every oriented edge e, with origin vertex v, we can consider the oriented edge e′
that follows e in counterclockwise order around v, and define the corner incident to
e as a small open angular sector between e and e′. It does not matter how we choose
these regions as long as they are pairwise disjoint. The number of corners contained
in a given face f is called the degree of that face; equivalently, it is the number of
oriented edges to the left of which f lies—we say that f is incident to these oriented
edges, or to the corresponding corners. We let V(m), E(m), F(m) denote the sets of
vertices, edges and faces of a map m, or simply V, E, F when the mention of m is
clear from the context.

If m is a map, we can view it as a metric space (V(m), dm), where dm is the graph
metric on the set V(m) of vertices of m. For simplicity, we will sometimes denote
this metric space by m as well and, if a > 0, we denote by am the metric space
(V(m), adm).

For technical reasons, the maps we consider will always implicitly be rooted, which
means that one of the corners (equivalently, one of the oriented edges) is distinguished
and called the root. The face f∗ incident to the root is called the root face. Since we
want to consider objects with the topology of a disk, we insist that the root face is
an external face to the map, whose incident edges forms the boundary of the map,
and call its degree the perimeter of the map. By contrast, the non-root faces are called
internal faces. Note that the boundary of the external face is in general not a simple
curve (see Fig. 1). As a result, the topological space obtained by removing the external
face from the surface in which the map is embedded is not necessarily a surface with a
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Fig. 1 A quadrangulation from Q23,19. The root is the corner indicated by the red arrow (color figure
online)

boundary, in the sense that every point does not have a neighborhood homeomorphic
to some open set of R×R+. However, removing any Jordan domain from the external
face does of course result in a surface with a boundary, which is homeomorphic to the
2-dimensional disk.

1.3 The case of quadrangulations

The first part of the paper is concerned exclusively with a particular family of maps,
for which the results are the simplest to obtain and to state. A quadrangulation with a
boundary is a rooted plane map whose internal faces all have degree 4. It is a simple
exercise to see that this implies in fact that the perimeter is necessarily an even number.
For l, n ∈ N, we let Ql,n be the set of quadrangulations with a boundary having n
internal faces and perimeter 2l.

Our main result in the context of random quadrangulations is the following.

Theorem 1 Let L ∈ [0,∞) be fixed, and (ln, n ≥ 1) be a sequence of integers such
that ln/

√
2n → L as n → ∞. Let Qn be uniformly distributed over Qln ,n. There

exists a random compact metric space BDL such that

(
9

8n

)1/4

Qn
(d)−→

n→∞ BDL

where the convergence holds in distribution for the Gromov–Hausdorff topology.

The randommetric spaceBDL is called theBrownian diskwith perimeter L and unit
area. We will give in Sect. 2 an explicit description of BDL (as well as versions BDL ,A

with general areas A > 0, see also Sect. 1.5) in terms of certain stochastic processes,
and the convention for the scaling constant (9/8)1/4 is here to make the description of
these processes simpler. We note that from the construction, BDL ,A comes naturally
with a distinguished point x∗, as well as a natural “uniform” measure, such that x∗
can be seen as a random point chosen according to this measure. See Lemma 21 for a
precise statement. We will in fact prove that Theorem 1 holds in the pointed Gromov–
Hausdorff space, when Qn is equipped with a uniformly chosen random vertex v∗ and
when BDL is equipped with x∗; see the comment before Proposition 16 below.

Themain properties ofBDL are the following; they follow from [10,Theorems1–3].
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Proposition 2 Let L > 0 be fixed. Almost surely, the space BDL is homeomorphic to
the closed unit disk of R

2. Moreover, almost surely, the Hausdorff dimension of BDL

is 4, while that of its boundary ∂BDL is 2.

We stress that the case L = 0, corresponding to the situation where ln = o(
√
n), is

the statement of [10, Theorem 4], which says that BD0 is the so-called Brownian map.
Since the Brownian map is a.s. homeomorphic to the sphere [32], this means that the
boundaries of the approximating random maps are too small to be seen in the limit.
This particular case generalizes the convergence of uniform random quadrangulations,
obtained in [30,38], corresponding to the case where ln = 2 for every n ≥ 1.

The case where ln/
√
n → ∞ is also of interest, and is the object of [10, Theo-

rem 5], showing that, in this case, (2ln)−1/2Qn converges to the so-called Brownian
Continuum Random Tree [4,5]. This means that the boundary takes over the planar
geometry and folds the map into a tree-shaped object.

We will prove our result by using the already studied case of plane maps without
boundary, together with some surgical methods. Heuristically, we will cut Qn along
certain geodesics into elementary pieces of planar topology, to which we can apply
a variant of the convergence of random spherical quadrangulations to the Brownian
map. The idea of cutting into slices quadrangulations with a boundary along geodesics
appears in Bouttier and Guitter [16,17]. The use of these slices (also called maps
with a piecewise geodesic boundary) plays an important role in Le Gall’s approach
[30] to the uniqueness of the Brownian map in the planar case, which requires to
introduce the scaling limits of these slices. The previously cited works are influential
to our approach. It however requires to glue an infinite number of metric spaces along
geodesic boundaries, which could create potential problems when passing to the limit.

1.4 Universal aspects of the limit

Another important aspect is that of universality of the spaces BDL . Indeed, we expect
these spaces to be the scaling limit of many other models of random maps with a
boundary, as in the case of the Brownian map, which corresponds to L = 0. In the
latter case, it has indeed been proved, starting in LeGall’s work [30], that the Brownian
map is the unique scaling limit for a large family of natural models of discrete random
maps, see [1,2,7,12]. The now classical approach to universality developed in [30]
can be generalized to our context, as we illustrate in the case of critical bipartite
Boltzmann maps.

1.4.1 Boltzmann random maps

Let B be the set of bipartite rooted plane maps, that is, the set of rooted plane maps
with faces all having even degrees (equivalently, this is the set of maps whose internal
faces all have even degrees). For l ∈ Z+, let Bl be the set of bipartite maps m ∈ B
with perimeter1 2l. Note that when l = 1, meaning that the root face has degree 2,

1 By convention, the vertexmap ◦ consisting of no edges and only one vertex, “bounding” a face of degree 0,
is considered as an element of B, so that B0 = {◦}. It will only appear incidentally in the analysis.
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there is a natural bijection between B1 and B\B0, consisting in gluing together the
two edges of the root face into one edge.

Let q = (q1, q2, . . .) be a sequence of non-negativeweights.We assume throughout
that qi > 0 for at least one index i ≥ 2. The Boltzmann measure associated with the
sequence q is the measure W (q; ·) on B defined by

W (q; m) =
∏

f ∈F(m)\{ f∗}
qdeg( f )/2.

This defines a non-negative, σ -finite measure, and by convention the vertex-map
receives a weight W (q, ◦) = 1. In what follows, the weight sequence q is con-
sidered fixed and its mention will be implicit, so that we denote for example
W (m) = W (q; m), and likewise for the variants of W to be defined below.

We aim at understanding various probability measures obtained by conditioning
W with respect to certain specific subsets of B. It is a simple exercise to check that
W (Bl) is non-zero for every l ∈ N (because Bl contains all rooted plane trees with l
edges, which all receive a weight 1), and that W (Bl) is finite for one value of l > 0 if
and only if it is finite for all values of l > 0. To see this, pick i ≥ 2 so that qi > 0, and
let A be a map composed of k degree 2i-faces arranged into some annulus and two
other faces (the boundary components of the annulus) of degree 2l and 2l ′. Gluing A
to the boundary of a map with perimeter 2l ′ turns it into a map with perimeter 2l. This
shows that qki W (Bl ′) ≤ W (Bl).

If W (Bl) < ∞, which we will assume throughout the paper, it makes sense to
define the Boltzmann probability measures

Wl = W (· | Bl) = W (· ∩ Bl)

W (Bl)
, l ≥ 0.

A random map with distribution Wl has a root face of fixed degree 2l, but a random
number of vertices, edges and faces.

Likewise, we can consider conditioned versions ofW given both the perimeter and
the “size” of the map, where the size can be alternatively the number of vertices, edges
or internal faces.2 We let BV

l,n , BE
l,n , BF

l,n be the subsets of Bl consisting of maps with
respectively n+ 1 vertices, n edges and n internal faces. (The choice of n+ 1 vertices
instead of a more natural choice of n vertices is technical and will make the statements
simpler.)

In all the statements involving a given weight sequence q and a symbol S ∈
{V, E, F} (for “size”), it will always be tacitly imposed that (l, n) belongs to the
set

ES(q) =
{
(l, n) ∈ Z

2+ : W
(

BS
l,n

)
> 0

}
.

2 We could also consider other ways to measure the size of a map m, e.g. considering combinations of the
form xV|V(m)|+ xE|E(m)|+ xF|F(m)| for some xV, xE, xF ≥ 0 with sum 1 as is done for instance in [42]
(in fact, due to the Euler formula, there is really only one degree of freedom rather than two). We will not
address this here but we expect our results to hold in this context as well.
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Note that for (l, n) ∈ ES(q), it holds that W (BS
l,n) < ∞ since W (Bl) < ∞. In this

way, we can define the distribution

W
S
l,n(·) = W

(
· | BS

l,n

)
.

It will be useful in the following to knowwhat the set ES(q) looks like.More precisely,
let

ES
l (q) = {n ≥ 0 : (l, n) ∈ ES(q)}. (1)

As above,when theweight sequence q is unequivocally fixed,wewill drop themention
of it from the notation and write ES and ES

l .
Define three numbers hV, hE, hF by

hV = gcd({n ≥ 1 : qn+1 > 0}), hE = gcd({n ≥ 1 : qn > 0}), hF = 1 . (2)

Thenwehave the following lemma,which is a slight generalizationof [42,Lemma6.1].

Lemma 3 Let q be a weight sequence, and let S be one of the three symbols V,
E, F. There exists an integer βS ≥ 0 such that for every l ≥ 1, there exists a set
RS
l ⊆ {0, 1, . . . , lβS − 1} such that

ES
l (q) = RS

l ∪
(
lβS + hS

Z+
)

.

In fact, note that EF
l (q) = Z+, which amounts to the fact that, for any q and any

n ≥ 0, l ≥ 1, there is at least one map m with n internal faces and perimeter 2l such
that W (q; m) > 0. As a consequence, we can always take βF = 0. We will prove this
lemma later in Sect. 6.2.

1.4.2 Admissible, regular critical weight sequences

Let us introduce some terminology taken from [34]. Let

fq(x) =
∑
k≥0

xk
(
2k + 1

k

)
qk+1, x ≥ 0.

This defines a totally monotone function with values in [0,∞].
Definition 4 We say that q is admissible if the equation

fq(z) = 1 − 1

z
(3)

admits a solution z > 1. We also say that q is regular critical if moreover this solution
satisfies

z2 f ′
q(z) = 1

and if there exists ε > 0 such that fq(z + ε) < ∞.
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Note that q being regular criticalmeans that the graphs of fq and of x �→ 1−1/x are
tangent at the point of abscissa z, and in particular, by convexity of fq , the solution z
to (3) is unique. We denote by

Zq = z

this solution, which will play an important role in the discussion to come.
To give a little more insight into this definition, let us introduce at this point a mea-

sure onmaps that might look less natural at first sight than the BoltzmannmeasureWl ,
but which will turn out to be better-behaved from the bijective point of view on which
this work relies. Let B• be the set of pairs (m, v∗) where m ∈ B is a rooted bipartite
map and v∗ ∈ V(m) is a distinguished vertex. We also let B•

l be the subset of B•
consisting of the maps having perimeter 2l. We let W •(q; ·) be the measure on B•
defined by

W •(q; {(m, v∗)}) = W (m), (m, v∗) ∈ B•, (4)

as well as the probability measures W
•
l , defined by conditioning W • (we will usually

omit the mention of q) on B•
l , whenever this makes sense. Similarly to the above, for

S ∈ {V, E, F}, we let B•,S
l,n be the set of pointed maps (m, v∗) ∈ B• such that m ∈ BS

l,n

and, when 0 < W •(B•,S
l,n ) < ∞ we define

W
•,S
l,n = W • (· ∣∣B•,S

l,n

)
. (5)

Note that, if φ(m, v∗) = m denotes the map from B• to B that forgets the marked
vertex, then Wl is absolutely continuous with respect to φ∗W

•
l , with density function

given by

dWl(m) = Kl

|V|d(φ∗W
•
l )(m), (6)

where |V| should be understood as the random variable m �→ |V(m)| giving the
number of vertices of the map, and Kl = W

•
l [1/|V|]−1. This fact will be useful later.

Proposition 1 in [34] shows that the sequence q of non-negative weights is admis-
sible if and only if W •(q; B•

1) < ∞ (this is in fact the defining condition of
admissibility in [34]). We see that this clearly implies that W (q; B1) < ∞, and
even that W •(q; B•

l ) < ∞ and W (q; Bl) < ∞ for every l ≥ 1, by the same trick
as in Sect. 1.4.1 of gluing an annular map to a (pointed) map with perimeter 2l to
turn it into a map with perimeter 2. Moreover, in this case, the constant Zq has a nice
interpretation in terms of the pointed measures. Namely, it holds that

Zq = 1 + W •(B•
1)/2. (7)

From now on, our attention will be exclusively focused on regular critical weight
sequences. It is not obvious at this point how to interpret the definition, which will
become clearer when we see how to code maps with decorated trees. However, let us
explain now in which context this property typically intervenes, and refer the reader to
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the upcoming Sect. 1.4.3 for two applications. For instance, if one wants to study uni-
form random quadrangulations with a boundary and with n faces as we did in the first
part of this paper, it is natural to consider the sequence q◦ = δ2 = (0, 1, 0, 0, . . .) and
to note thatWF

l,n(q
◦; ·) is the uniform distribution onQl,n . Here, note that the sequence

q◦ is not admissible, but the probability measureW
F
l,n(q

◦; ·) does make sense because

0 < W (BF
l,n) < ∞, due to the fact that there are finitely many quadrangulations with

a boundary of perimeter 2l, and with n internal faces. Now, it can be checked that
q = 12−1q◦ is admissible and regular critical, and that W

F
l,n(q; ·) = W

F
l,n(q

◦; ·) is
still the uniform distribution on Ql,n . This way of transforming a “naturally given”
weight sequence q◦ into a regular weight sequence while leaving W

S
l,n invariant is

common and very useful.
The main result is the following. Let q be a regular critical weight sequence. Define

ρq = 2 + Z3
q f ′′

q (Zq) and let σE, σV, σF be the non-negative numbers with squares

σE
2 = ρq

Zq
, σV

2 = ρq , σF
2 = ρq

Zq − 1
. (8)

For L > 0, we denote by S S
L the set of sequences (lk, nk)k≥0 ∈ (ES)N such that lk ,

nk → ∞ with lk ∼ LσS
√
nk as k → ∞.

Theorem 5 Let q be a regular critical weight sequence. Let S denote one of the
symbols V, E, F, and (lk, nk)k≥0 ∈ S S

L for some L > 0. For k ≥ 0, denote by Mk a
random map with distribution W

S
lk ,nk

. Then

(
4σS

2

9
nk

)−1/4

Mk
(d)−→

k→∞ BDL

in distribution for the Gromov–Hausdorff topology. Similarly, if M•
k denotes a pointed

random map with distribution W
•,S
lk ,nk

, then

(
4σS

2

9
nk

)−1/4

M•
k

(d)−→
k→∞ BDL

in distribution for the pointed Gromov–Hausdorff topology, if BDL is equipped with
the distinguished point x∗.

Remark 1 The intuitive meaning for these renormalization constants is the follow-
ing: in a large random map with Boltzmann distribution, it can be checked that the
numbers |V| and |F| of vertices and faces are of order |E|/Zq and |E|(1 − 1/Zq)

respectively, where |E| is the number of edges, and that conditioning on having n
edges is asymptotically the same as conditioning on having (approximately) n/Zq

vertices, or n (1 − 1/Zq) faces.

Remark 2 In fact, the above result is also valid in the case where L = 0, with the
interpretation that BD0 is the Brownian map. The proof of this claim can be obtained
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564 J. Bettinelli, G. Miermont

by following ideas similar to [10, Section 6.1]. However, a full proof requires the
convergence of a map with lawW

S
1,n , rescaled by (4σS

2n/9)1/4, to the Brownian map,
and this has been explicitly done only in the case where S = V in [30, Section 9].
In fact, building on the existing literature [34,36], it is easy to adapt the argument to
work for S = F in the same way, while the case S = E, which is slightly different,
can be tackled by the methods of [1]. Writing all the details would add a consequent
number of pages to this already lengthy paper, so we will omit the proof.

1.4.3 Applications

Let us give two interesting specializations of Theorem 5. If p ≥ 2 is an integer, a
2p-angulation with a boundary is a map whose internal faces all have degree 2p. The
computations of the various constants appearing in the statement of Theorem 5 have
been performed in Section 1.5.1 of [34]. These show that the weight sequence

q = (p − 1)p−1

pp
(2p−1

p

) δp

is regular critical, that W
F
l,n is the uniform law on the set of 2p-angulations with n

faces and perimeter 2l in this case, and that the constants are

Zq = p

p − 1
, ρq = p, σE

2 = p − 1, σV
2 = p, σF

2 = p(p − 1).

Therefore, in this situation, Theorem 5 for S = F gives the following result, that
clearly generalizes Theorem 1.

Corollary 6 Let L ∈ (0,∞) be fixed, (ln, n ≥ 1) be a sequence of integers such
that ln ∼ L

√
p(p − 1)n as n → ∞, and Mn be uniformly distributed over the set

of 2p-angulations with n internal faces and with perimeter 2ln. Then the following
convergence holds in distribution for the Gromov–Hausdorff topology:(

9

4p(p − 1) n

)1/4

Mn
(d)−→

n→∞ BDL .

Next, consider the case where qk = a−k , k ≥ 1 for some a > 0. In this case, for
every m ∈ B, a simple computation shows that

W (m) = a−|E(m)|+l

so that W
E
l,n is the uniform distribution over bipartite maps with n edges and a

perimeter 2l. It was shown in [34, Section 1.5.2] (and implicitly recovered in [1,
Proposition 2]) that choosing a = 1/8 makes q regular critical and that, in this case,

Zq = 3

2
, ρq = 27

4
, σE

2 = 9

2
.

Thus, one deduces the following statement, that should be compared to [1, Theorem 1].
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Corollary 7 Let Mn be a uniform randombipartitemapwith n edges andwith perime-
ter 2ln, where ln ∼ 3L

√
n/2 for some L > 0. Then the following convergence holds

in distribution for the Gromov–Hausdorff topology:

(2n)−1/4Mn
(d)−→

n→∞ BDL .

1.5 Convergence of Boltzmann maps

The models we have presented so far consist in taking a random map with a fixed size
and perimeter and letting both these quantities go to infinity in an appropriate regime.
However, it is legitimate to ask about the behavior of a typical random map with law
Wl or W

•
l when l → ∞, so that the perimeter is fixed and large, while the total size

is left free.
For every L ≥ 0 and A > 0, we define a random metric space BDL ,A, which

we interpret as the Brownian disk with area A and perimeter L . The definition is
postponed to Sect. 2.3 but, for concreteness, we can note the important scaling property
stating that the space BDL ,A has same distribution as A1/4 BDA−1/2L . This property
is a simple consequence of the definition, but can also be derived from Theorem 1
by noting that BDL ,1 has same distribution as BDL and that, if Qn is a uniform
random element in Q�L√

2n�,�An�, then (8n/9)−1/4Qn converges in distribution for the
Gromov–Hausdorff topology to BDL ,A, by virtue of Theorem 1. See also Remark 3
in Sect. 2.3 below.

Let A• be a stable random variable with index 1/2, with distribution given by

P(A• ∈ dA) = 1√
2π A3

exp

(
− 1

2A

)
dA 1{A>0}.

Note that E[1/A•] = 1, so that the formula

P(A• ∈ dA)

A
= 1√

2π A5
exp

(
− 1

2A

)
dA 1{A>0}

also defines a probability distribution, and we let A be a random variable with this
distribution. We define the free Brownian disk with perimeter 1 to be a space with
same law as BD1,A, where this notation means that conditionally givenA = A, it has
same distribution as BD1,A. Likewise, the free pointed Brownian disk with perimeter
1 has same distribution as BD1,A• , and, as the name suggests, it is seen as a pointed
metric space by distinguishing the point x∗.

For future reference, for L > 0, it is natural to define the law of the free Brownian
disk (resp. free pointed Brownian disk) with perimeter L by scaling, setting it to be the
lawof

√
L BD1,A or equivalently ofBDL ,L2A (resp.

√
L BD1,A• =(d) BDL ,L2A• ).We

let FBDL (resp. FBD•
L ) stand for the free Brownian disk (resp. free pointed Brownian

disk) with perimeter L .

Theorem 8 Let q be a regular critical weight sequence. For l ∈ N, let Bl (resp. B•
l )

be distributed according to Wl(q; ·) (resp. W
•
l (q; ·)). Then
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(
2l

3

)−1/2

Bl
(d)−→

l→∞ FBD1

in distribution for the Gromov–Hausdorff topology, and respectively

(
2l

3

)−1/2

B•
l

(d)−→
l→∞ FBD•

1

in distribution for the pointed Gromov–Hausdorff topology.

It is remarkable that the renormalization in this theorem does not involve q what-
soever!

1.6 Further comments and organization of the paper

The very recent preprint [39] by Miller and Sheffield aims at providing an axiomatic
characterization of the Brownian map in terms of elementary properties. In this work,
certain measures on random disks play a central role. We expect that these measures,
denoted by μ

k,L
DISK for k ∈ {0, 1} and L > 0, are respectively the laws of the free

Brownian disk (k = 0) and the pointed free Brownian disk (k = 1) with perimeter
L > 0. Miller and Sheffield define these measures directly in terms of the metric
balls in certain versions of the Brownian map, and it is not immediate, though it is
arguably very likely, that this definition matches the one given in the present paper.
Establishing such a connection would be interesting from the perspective of [39] since,
for example, it is not established that μ

k,L
DISK is supported on compact metric spaces,

due to the possibly wild behavior of the boundary from a metric point of view. We
hope to address such questions in future work.

Note also that [39] introduces another measure on metric spaces, called μL
MET,

which intuitively corresponds to the law of a variant of a metric ball in the Brownian
map, with a given boundary length. A description of this measure in terms of slices
is given in [39], which is very much similar to the one we describe in the current
work. However, there is a fundamental difference, which is that μL

MET does not satisfy
the invariance under re-rooting that is essential to our study of random disks. In a
few words, in a random disk with distribution μL

MET, all points of the boundary are
equidistant from some special point (the center of the ball), while it is very likely that
no such point exists a.s. in BDL ,A, or under the law μ

k,L
DISK.

It would be natural to consider the operation that consists in gluing Brownian disks,
say with same perimeter, along their boundaries, hence constructing what should
intuitively be a random sphere with a self-avoiding loop. However, this operation is
in general badly behaved from a metric point of view (in the sense of [18, Chapter 3]
say), and it is not clear that the resulting space has the same topology as the topological
gluing. The reason for this difficulty is that we require to glue along curves that are not
Lipschitz, since the boundaries of the spaces BDL have Hausdorff dimension 2 (by
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contrast, the gluings considered in Sect. 5 of the present paper are all along geodesics.)
At present, such questions remain to be investigated.3

The rest of the paper is organized as follows. In Sect. 2, we give a self-standing
definition of the limiting objects. As in many papers on random maps, we rely on
bijective tools, and Sect. 3 introduces these tools. Section 4 gives a technical result
of convergence of slices, which are the elementary pieces from which the Brownian
disks are constructed. Section 5 is dedicated to the proof of Theorem 1. In Sects. 6–8,
we address the question of universality and prove Theorems 5 and 8.

2 Definition of Brownian disks

Recall that theBrownianmapBD0 is defined ([28], see also [35] and Sect. 4.1 below) in
terms of a certain stochastic process called the normalized Brownian snake. Likewise,
the spaces BDL , L > 0 of Theorem 1 are defined in terms of stochastic processes, as
we now discuss.

2.1 First-passage bridges and random continuum forests

The first building blocks of the Brownian disks are first-passage bridges of Brownian
motion. Informally, given A, L > 0, the first-passage bridge at level −L and time A
is a Brownian motion conditioned to first hit −L at time A. To be more precise,
let us introduce some notation. We let X be the canonical continuous process, and
Gs = σ(Xu, u ≤ s) be the associated canonical filtration. Denote by P the law of
standard Brownian motion, and by P

A the law of standard Brownian motion killed at
time A > 0. For L ≥ 0, let TL = inf{s ≥ 0 : Xs = −L} be the first hitting time of
−L . We denote the density function of its law by

jL(A) = P(TL ∈ dA)

dA
= L√

2π A3
exp

(
− L2

2A

)
. (9)

With this notation, the law F
A
L of the first-passage bridge at level −L and at time A

can informally be seen as P
A( · | TL = A). It is best defined by an absolute continuity

relation with respect to P
A. Namely, for every s ∈ (0, A) and every non-negative

random variable G that is measurable with respect to Gs , we let

F
A
L (G) = P

A
[
G 1{TL>s}

jL+Xs (A − s)

jL(A)

]
. (10)

It can be seen [19] that this definition is consistent and uniquely extends to a law F
A
L

on GA, such that F
A
L (TL = A) = 1.

3 The very recent preprints [24,25] seem however to provide a decisive step towards the solution of this
problem.There, the authors consider the similar problemof gluing twoBrownian half-planes, a non-compact
version of the Brownian disk introduced in [6] and [26], along their boundaries.
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An alternative description of first-passage bridges, which will be useful to us later,
is the following.

Proposition 9 Let A, L > 0. Then for every y ∈ (0, L) and for every non-negative
random variable G that is measurable with respect to GTy , we have

F
A
L [G] = P

A
[
G 1{Ty<A}

jL−y(A − Ty)

jL(A)

]
. (11)

Moreover, this property characterizes F
A
L among all measures on GA.

Proof The consistency of (10) as s varies implies that the process M = (1{TL>s}
jL+Xs (A − s)/jL(A), 0 ≤ s < A) is a (Gs, 0 ≤ s < A)-martingale under P

A.
Therefore, for every stopping time T such that T < A a.s. under F

A
L , and for every

E ∈ GT , we have

F
A
L (E) = lim

s↑A P
A[1E∩{T≤s}Ms] = lim

s↑A P
A[1E∩{T≤s}PA[Ms |GT ]]

= lim
s↑A P

A[1E∩{T≤s}MT ],

and this is equal to P
A[1EMT ]. The formula is obtained by applying this result to

T = Ty .
The fact that F

A
L is characterized by these formulas comes from the following

observation. Suppose F̃
A
L is a probability measure on GA for which (11) holds for every

y ∈ (0, L). Then for every s < A, F̃
A
L (Ty < s) = P

A[1{Ty<s} jL−y(A − Ty)/jL(A)],
and this clearly converges to 0 as y ↑ L . Therefore, Ty converges F̃

A
L -a.s. to A as

y ↑ L . Then for every s < A and E ∈ Gs , similar manipulations to the above ones
show that

F̃
A
L (E) = lim

y↑L F̃
A
L (E ∩ {Ty > s}) = lim

y↑L P
A [1E∩{Ty>s}MTy

]

= lim
y↑L P

A [1E∩{Ty>s}Ms
]

and this is limy↑L F
A
L (E ∩ {Ty > s}) = F

A
L (E). This implies that F̃

A
L and F

A
L have the

same finite-dimensional marginal distributions, so that they are equal. ��
It is convenient to view a first-passage bridge as encoding a random continuum

forest. This is a classical construction that can be summarized as follows, see for
instance [40]. Here we work under F

A
L . For 0 ≤ s ≤ s′ ≤ A, define Xs,s′ = inf{Xu :

s ≤ u ≤ s′} and let

dX (s, s′) = Xs + Xs′ − 2Xs∧s′,s∨s′ s, s′ ∈ [0, A]. (12)

The function dX on [0, A]2 is a pseudo-metric, to which one can associate a random
metric space F A

L = [0, A]/{dX = 0}, endowed with the quotient metric induced
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from dX . This metric space is a.s. a compact R-tree, that is, a compact geodesic metric
space into which S

1 cannot be embedded. It comes with a distinguished geodesic of
length L , which is the image of the first hitting times {Ty, 0 ≤ y ≤ L} under the
canonical projection pX : [0, A] → F A

L . It is convenient to view this segment as the
floor of a forest of R-trees, these trees being exactly of the form Ty = pX ((Ty−, Ty]),
corresponding to the excursions of X above its past infimum. One should imagine that
theR-tree Ty is grafted at the point pX (Ty) of the floor lying at distance y from pX (0).

2.2 Snakes

We now enrich the random “real forest” described above by assigning labels to it.
Informally speaking, the trees of the forest are labeled by independent Brownian
snakes [22,27], while the floor of the forest is labeled by a Brownian bridge with
variance factor 3.

More precisely, let X be a first-passage bridge with law F
A
L . Conditionally given

X , we let (Z0
s , 0 ≤ s ≤ A) be a centered Gaussian process with covariance function

Cov
(
Z0
s , Z

0
s′
)

= inf
u∈[s∧s′,s∨s′]

(Xu − Xu) s, s′ ∈ [0, A], (13)

where Xu = inf0≤v≤u Xv is the past infimum of X . Note in particular that Z0
s and

Z0
s′ are independent if s, s′ belong to two different excursion intervals of X above

X . It is classical [27] that Z0 admits a continuous modification, see also [8] for a
discussion in the current context. For this modification, we a.s. have Z0

Ty
= 0 for

every y ∈ [0, L] (for a given y, this comes directly from the variance formula). The
process Z0 is sometimes called the head of the Brownian snake driven by the process
X − X , the reason being that it can be obtained as a specialization of a path-valued
Markov process called the Brownian snake [27] driven by X − X . The process Z0

itself is not Markov.
Independently of Z0, let also b be a standard Brownian bridge of duration L , so

that

Cov (by, by′) = y(L − y′)
L

, 0 ≤ y ≤ y′ ≤ L .

We define the process Z to be

Zs = Z0
s + √

3 b−Xs
, 0 ≤ s ≤ A. (14)

We abuse notation and still denote by F
A
L the law of the pair (X, Z) thus defined, so

that F
A
L is seen as a probability distribution on the space C([0, A], R)2. In the same

spirit, we will still denote by Gt the natural filtration σ({(Xs, Zs), 0 ≤ s ≤ t}).
We use a similar extended notation for P

A, defining Z in the same way under this
probability measure. Note that the absolute continuity relations (10) and (11) are still
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valid verbatim with these extended notation and, in particular, the density function
involves only X and not Z .

It is classical that a.s. under F
A
L , Z is a class function on [0, A] for the equivalence

relation {dX = 0}, so that Z can also be seen as a function on the forest F A
L . Note

that −XTy = y for every 0 ≤ y ≤ L , which corresponds to the fact that, in the above

depiction of the random forest, the point pX (Ty) receives label
√
3 by .

It is a simple exercise to check that the above definition of Z is equivalent to the
following quicker (but more obscure) one. Conditionally given X , we have that Z is
Gaussian, centered, with covariance function

Cov (Zs, Zs′) = Xs,s′ − Xs′ − 3Xs(L + Xs′)/L 0 ≤ s ≤ s′ ≤ A .

Similarly as (12), we define a pseudo-metric using the process Z instead of X , but
with an extra twist. As above, let Zs,s′ = inf{Zu : u ∈ [s, s′]} for 0 ≤ s ≤ s′ ≤ A,
and this time we extend the definition to 0 ≤ s′ < s ≤ A by setting

Zs,s′ = inf{Zu : u ∈ [s, A] ∪ [0, s′]} = Zs,A ∧ Z0,s′ ,

so if we see [0, A] as a circle by identifying 0 with A, Zs,s′ is the minimum of Z on
the directed arc from s to s′. We let

dZ (s, s′) = Zs + Zs′ − 2max(Zs,s′ , Zs′,s) s, s′ ∈ [0, A] . (15)

2.3 Brownian disks

We are now ready to give the definition of Brownian disks. Consider the (random) set
D of all pseudo-metrics d on [0, A] satisfying the two properties

{
{dX = 0} ⊆ {d = 0} ;
d ≤ dZ .

(16)

The setD is nonempty (it contains the zero pseudo-metric) and contains a maximal
element D∗ defined by

D∗(s, s′)

= inf

{
k∑

i=1

dZ (si , ti ) : k ≥ 1, t1, s2, t2, . . . , sk ∈ [0, A], s1 = s, tk = s′,
dX (ti , si+1) = 0 for every i ∈ {1, . . . , k − 1}

}
,

(17)

see [18, Chapter 3]. The Brownian disk BDL ,A with area A and perimeter L is the
quotient set [0, A]/{D∗ = 0}, endowed with the quotient metric induced from D∗
(which we still denote by D∗ for simplicity), and considered under the law F

A
L . In the

case A = 1, we drop the second subscript and write BDL = BDL ,1.
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Finally, we let x∗ = p∗(s∗), where p∗ : [0, A] → [0, A]/{D∗ = 0} is the canonical
projection, and s∗ is the (a.s. unique [10, Lemma 11]) point in [0, 1] at which Z reaches
its global minimum. The point x∗ is the naturally distinguished point that was alluded
to in the introduction.

Remark 3 Observe that, by usual scaling properties of Gaussian random variables,
under the lawF

A
L , the scaled pair ((λ

1/2Xs/λ, 0 ≤ s ≤ λA), (λ1/4Zs/λ, 0 ≤ s ≤ λA))

has law F
λA
λ1/2L

, from which we deduce that the randommetric space λ−1/4BDλ1/2 L ,λA
has the same distribution as BDL ,A.

The reason why we say that BDL ,A has “area” A is that it naturally comes with a
non-negative measure of total mass A, which is the image of the Lebesgue measure
on [0, A] by the canonical projection p : [0, A] → BDL ,A. It will be justified later
that BDL ,A is a.s. homeomorphic to the closed unit disk, so that the term area makes
more sense in this context. Furthermore, the boundary ∂BDL ,A will be shown to be
equal to p({Ty : 0 ≤ y ≤ L}), so that it can be endowed with a natural non-negative
measure with total mass L , which is the image of the Lebesgue measure on [0, L] by
y �→ p(Ty). This justifies the term “perimeter.”

3 The Schaeffer bijection and two variants

This work strongly relies on powerful encodings of discrete maps by trees and related
objects. In this section we present the encodings we will need: the original Cori–
Vauquelin–Schaeffer bijection [20,41], a variant for so-called slices [30] and a variant
for plane quadrangulations with a boundary (particular case of [15]). We only give the
constructions from the encoding objects to the considered maps and refer the reader
to the aforementioned works for converse constructions and proofs.

3.1 The original Cori–Vauquelin–Schaeffer bijection

Let (t, �) be a well-labeled tree with n edges. Recall that this means that t is a rooted
plane treewith n edges, and � : V(t) → Z is a labeling function such that �(u)−�(v) ∈
{−1, 0, 1} whenever u and v are neighboring vertices in t. It is usual to “normalize” �

in such a way that the root vertex of t gets label 0, but we will also consider different
conventions: in fact, all our discussion really deals with the function � up to addition
of a constant. For simplicity, in the following, we let �∗ = min{�(v) : v ∈ V(t)} − 1.

Note Throughout this paper, whenever a function f is defined at a vertex v, we extend
its definition to any corner c incident to v by setting f (c) = f (v). In particular, the
label �(c) of a corner is understood as the label of the incident vertex.

Let c0, c1, …, c2n−1 be the sequence of corners of t in contour order, starting from
the root corner. We extend the list of corners by periodicity, setting c2n+i = ci for
every i ≥ 0, and adding one corner c∞ incident to a vertex v∗ not belonging to t, with
label �(c∞) = �(v∗) = �∗. Once this is done, we define the successor functions by
setting
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s(i) = inf{ j > i : �(c j ) = �(ci ) − 1} ∈ Z+ ∪ {∞}, i ∈ {0, 1, . . . , 2n − 1},

and s(ci ) = cs(i). The Cori–Vauquelin–Schaeffer construction consists in linking ci
with s(ci ) by an arc, in a non-crossing fashion, for every i ∈ {0, 1, . . . , 2n − 1}. The
embedded graph q with vertex set V(t) ∪ {v∗} and edge set the set of arcs (excluding
the edges of t) is then a quadrangulation, which is rooted according to some convention
(we omit details here as this point is not important for our purposes), and is naturally
pointed at v∗. Moreover, the labels on V(q) inherited from those on t (and still denoted
by �) are exactly the relative distances to v∗ in q:

dq(v, v∗) = �(v) − �∗, v ∈ V(q).

(This entirely determines � as soon as the value �(v0) is known for some specific v0,
but recall that in general we do not want to fix the normalization of �.) See Fig. 2 for
an example of the construction.

For every corner c of t, there is an associated path in q that follows the arcs between
the consecutive successors c, s(c), s(s(c)),…, c∞. This path is a geodesic path between
the vertex incident to c and v∗, it is called the maximal geodesic from c to v∗, it can
be seen as the geodesic path to v∗, with first step the arc from c to s(c), and that turns
as much as possible to the left.

Following these paths provides a very useful upper-bound for distances in q. Let
us denote by vi the vertex incident to the corner ci , and let �(i) = �(vi ) to simplify
notation. Let �̌(i, j) is the minimal value of �(r) for r between i and j in cyclic order
modulo 2n, that is

�̌(i, j) =
{
min{�(r), r ∈ [i, j]} if i ≤ j
min{�(r), r ∈ [i, 2n] ∪ [0, j]} otherwise.

Then it holds that

dq(vi , v j ) ≤ �(i) + �( j) − 2max{�̌(i, j), �̌( j, i)} + 2. (18)

The interpretation of this is as follows. Consider the maximal geodesics from the
corners ci and c j to v∗. These two geodesics coalesce at a first corner ck , and the upper
bound is given by the length of the concatenation of the geodesic from ci to ck with
the segment of the geodesic from ck to c j . This path will be called themaximal wedge
path from ci to c j .

3.2 Slices

We now follow [30] and describe a modification of the previous construction that,
roughly speaking, cuts open the maximal geodesic of q from c0 to v∗. See Fig. 3 for
an example, and compare with Fig. 2.

Rather than appending to t a single corner c∞ incident to a vertex v∗, we add a
sequence of vertices incident to corners c′1, c′2,…, c′�(c0)−�∗−1, c

′
�(c0)−�∗ = c∞, and set
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0

1 −1

−1

−2 0 −2

0

1 −1

−1

−2 0 −2

−3

?

?

(t, �)
q

v∗

Fig. 2 The Cori–Vauquelin–Schaeffer bijection. There are two possible rootings of q: they are indicated
with question marks. The maximal geodesic from the corner c0 to v∗ has been magnified

0

1 −1

−1

−2 0 −2

0

1 −1

−1

−2 0 −2

−3

−1

−2

v∗

(t, �)
q̃

Fig. 3 A map with geodesic boundary is associated with a well-labeled tree via the modified Schaeffer
bijection. The maximal geodesic is represented in red on the left and the shuttle is the green chain on the
right (color figure online)

labels �(c′i ) = �(c0)− i so, in particular, this is consistent with the label we already set
for c∞. Also, instead of extending the sequence c0, c1,…, c2n−1 by periodicity, we add
an extra corner c2n to the right of c0 andwe let c2n+i = c′i for i ∈ {1, 2, . . . , �(c0)−�∗}.
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The definition of the successor

s(i) = inf{ j > i : �(c j ) = �(ci ) − 1}, s(ci ) = cs(i) (19)

then makes sense for i ∈ {0, 1, . . . , 2n + �(c0) − �∗ − 1}, and we can draw the arcs
from ci to s(ci ) for every i ∈ {0, 1, . . . , 2n + �(c0) − �∗ − 1}. In particular, note that
the arcs link c2n with c′1, c′2, …, c′�(c0)−�∗−1, c∞ into a chain, which we call shuttle,
and to which are connected the arcs ci → s(ci ) with i ≤ 2n − 1 and s(i) > 2n − 1.
Let q̃ be the map obtained by this construction. It is called the slice coded by (t, �).

This map contains two distinguished geodesic chains, which are, on the one hand,
the maximal geodesic from c0 to v∗ made of arcs between consecutive successors
c0, s(c0), s(s(c0)), …, c∞ and, on the other hand, the shuttle linking c2n , c′1, c′2,
…, c′�(c0)−�∗−1, c∞. Note that both chains indeed have the same length (number of
edges), equal to �(c0)−�∗. In particular, we have dq̃(c0, c∞) = dq(c0, c∞) = �(c0)−
�∗, where q is the quadrangulation from the previous section, constructed from the
same well-labeled tree (t, �). These two chains are incident to a face of q̃ of degree
2dq(c0, c∞), and all other faces have degree 4. Observe that the maximal geodesic and
the shuttle only intersect at the root vertex of the tree and v∗; as a result, the boundary
of the degree 2dq(c0, c∞)-face is a simple curve.

Finally, the quadrangulation q can then be obtained from q̃ by identifying one by
one the edges of the maximal geodesic with the edges of the shuttle, in the same order.
More precisely, we note that there is a natural projection p from E(q̃) to E(q) defined
by p(e) = e for every edge e that is not an edge of the shuttle, and p(e′i ) = ei if ei is
the i-th edge on the maximal geodesic, and e′i is the i-th edge of the shuttle, starting
from c0. In particular, p−1(e) contains two edges of q̃ if and only if e is an edge of
the maximal geodesic of q. The projection p induces also a projection, still denoted
by p, from V (q̃) onto V (q) such that, if u, v are the extremities of e, then p(u), p(v)

are the extremities of p(e). For this reason, any path in q̃ projects into a path in q via
p, and the graph distances satisfy the inequality

dq(p(u), p(v)) ≤ dq̃(u, v), u, v ∈ V (q̃).

Using the same idea as in the preceding section, we obtain another useful bound
for distances in q̃, as follows. Again, let vi be the vertex incident to the corner ci , and
�(i) = �(vi ). Then

dq̃(vi , v j ) ≤ �(i) + �( j) − 2�̌(i ∧ j, i ∨ j) + 2, (20)

where �̌(i, j) is again defined as the minimal value of � between i and j . Again, this
upper bound corresponds to the length of a concatenation of maximal geodesics from
ci , c j to v∗ up to the point where they coalesce. In words, the difference is that by
taking systematically �̌(i ∧ j, i ∨ j) in the definition rather than the maximum of
{�̌(i, j), �̌( j, i)}, we do not allow to “jump” from the shuttle to the maximal geodesic
boundary (or vice-versa), which would result in a path present in q but not in q̃.
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3.3 Plane quadrangulations with a boundary

We now present the variant for plane quadrangulations with a boundary, which is a
particular case of the Bouttier–Di Francesco–Guitter bijection [15]. We rather use the
presentation of [11], better fitted to our situation.

The encoding object of a plane quadrangulation with a boundary having n internal
faces and perimeter 2l is a forest f = (t1, . . . , tl) of l trees with n edges in total,
together with a labeling function � : V(f) = ⊔

i V(ti ) → Z satisfying the following:

• for 1 ≤ i ≤ l, the tree ti equipped with the restriction of � to V (ti ) is a well-labeled
tree;

• for 1 ≤ i ≤ l, we have �(ρi+1) ≥ �(ρi )− 1, where ρi denotes the root vertex of ti
and setting �(ρl+1) = �(ρ1) by convention.

Note that the condition on the labels of the root vertices is different from the condition
on the labels of neighboring vertices of a given tree. The reader familiar with the
Bouttier–Di Francesco–Guitter bijection may recognize the label condition for faces
of even degree more than 4. We will come back to this during Sect. 6.

Here and later, it will be convenient to normalize � by asking that �(ρ1) = 0. As
before, we define �∗ = min{�(v) : v ∈ V(f)}−1.We identify f with the map obtained
by adding l edges linking the roots ρ1, ρ2, …, ρl of the successive trees in a cycle.
This map has two faces, one of degree 2n + l (the bounded one on Fig. 4) and one
of degree l (the unbounded one on Fig. 4). We then follow a procedure similar to
that of Sect. 3.1. We let c0, c1, …, c2n+l−1 be the sequence of corners of the face of
degree 2n + l in contour order, starting from the root corner of t1. We extend this list
by periodicity and add one corner c∞ incident to a vertex v∗ lying inside the face of
degree 2n + l, with label �(c∞) = �(v∗) = �∗. We define the successor functions

v∗

0

−1

3

0

1
2

0

−1

2

0

0 −1

−1

2

2

−2(f , �)

0

−1

2

2

3

0

1

1
2

0

−1

2

0

0 −1

0

−1

q

t5

ρ5

ρ6

ρ1

ρ2

ρ3

ρ4

t6

t1

t2

t3

t4

1

0

Fig. 4 The bijection for a plane quadrangulation with a boundary. The l edges we added to f are represented
by dotted lines and the root edge of q is represented in red. Note that we used for � the normalization given
by �(ρ1) = 0 (color figure online)
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by (19) and draw an arc from ci to s(ci ) for every i ∈ {0, 1, . . . , 2n + l − 1}, in such
a way that this arc does not cross the edges of f , or other arcs.

The embedded graph q with vertex set V(f)∪ {v∗} and edge set given by the added
arcs is a plane quadrangulation with a boundary, whose external face is the degree-2l
face corresponding to the face of degree l. It is rooted at the corner of the unbounded
face that is incident to the root vertex of t1, and it is naturally pointed at v∗. See Fig. 4.

The above mapping is a bijection between previously described labeled forests and
the set of pointed plane quadrangulations (q, v∗) with a boundary having n internal
faces and perimeter 2l that further satisfy the property that dq(e+∗ , v∗) = dq(e−∗ , v∗)+
1, where e∗ denotes the root edge of q, that is, the oriented edge incident to the root
face that directly precedes the root corner in the contour order (see Fig. 4). In words,
the pointed quadrangulations that are in the image of the above mapping are those
whose root edge points away from the distinguished vertex v∗.

The requirement that the root edge is directed away from the distinguished vertex
is not a serious issue, as we can dispose of this constraint simply by re-rooting along
the boundary:

Lemma 10 Let (Q, v∗) be uniformly distributed in the set Q•,+
l,n of rooted and pointed

quadrangulations such that Q ∈ Ql,n and such that the root edge e∗ points away from
v∗. Let c′ be a uniformly chosen random corner incident to the root face of Q, and let
Q′ be the map Q re-rooted at c′. Then Q′ is a uniform random element of Ql,n.

Proof The probability that Q′ is a given rooted map q′ is equal

P(Q′ = q′) = 1

2l

∑
v∈V(q′)

+∑
c

P((Q, v∗) = (q, v)) = 1

2l

∑
v∈V(q′)

+∑
c

1

|Q•,+
l,n | ,

where the factor 1/2l is the probability that c′ is chosen to be the root corner of q′,
the symbol

∑+
c stands for the sum over all corners incident to the root face of q′ that

point away from v, and q is the map q′ re-rooted at the corner c.
Now fix the vertex v ∈ V(q′). Due to the bipartite nature of q′, among the 2l

oriented edges incident to the root face, l are pointing away from v, and l are pointing
toward v. Indeed, let c̃0 be the root corner of Q, and c̃1, c̃2, …, c̃2l−1, c̃2l = c̃0 be the
corners incident to the root face in cyclic order. The sequence (dq′(c̃i , v∗), 0 ≤ i ≤ 2l)
takes integer values, varies by ±1 at every step as q′ is bipartite, and takes the same
value at times 0 and 2l. This means that l of its increments are equal to +1 and l are
equal to−1, respectively corresponding to edges that point away from v and toward v.

Therefore, the sum
∑+

c contains exactly l elements. Noting that every map in Ql,n

has n + l + 1 vertices, by the Euler characteristic formula, this gives

P(Q′ = q′) = n + l + 1

2 |Q•,+
l,n | ,

which depends only on n, l and not on the particular choice of q′. ��
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4 Scaling limit of slices

In this section, we elaborate on Proposition 3.3 and Proposition 9.2 in [30], by showing
that uniform random slices converge after rescaling to a limiting metric space, which
can be called theBrownianmapwith a geodesic boundary. Such a property was indeed
shown in [30], but with a description of the limit that is different from the one we will
need.

4.1 Subsequential convergence

Let (Tn, �n) be a random variable that is uniformly distributed over the set of well-
labeled trees with n edges. With this random variable, we can associate two pointed
and rooted random maps (Qn, v∗) and (Q̃n, v∗) by the constructions of Sects. 3.1 and
3.2 respectively. We use the same notation for the distinguished vertex v∗ since Qn

and Q̃n share naturally the same vertex set, except for the extra vertices on the shuttle
of Q̃n .

Let c0, c1, …, c2n−1, c2n = c0 be the sequence of corners of Tn in contour order
starting from the root corner, and let vni be the vertex incident to ci in Tn . We let Cn(i)
be the distance in Tn between the vertices vn0 and vni , so that Cn(i) can be seen as the
height of vni in the tree Tn rooted at c0. The process (Cn(i), 0 ≤ i ≤ 2n), extended
to a continuous random function on [0, 2n] by linear interpolation between integer
values, is called the contour process of Tn . Similarly, we let �n(i) = �n(v

n
i ) and call

the process (�n(i), 0 ≤ i ≤ 2n), which we also extend to [0, 2n] in a similar fashion,
the label process of (Tn, �n).

For 0 ≤ i, j ≤ 2n, let Dn(i, j) = dQn (v
n
i , v

n
j ) and D̃n(i, j) = dQ̃n

(i, j). We

extend Dn , D̃n to continuous functions on [0, 2n]2 by “bilinear interpolation,” writing
{s} = s − �s� for the fractional part of s and then setting

Dn(s, t) = (1 − {s})(1 − {t})Dn(�s�, �t�) + {s}(1 − {t})Dn(�s� + 1, �t�)
+ (1 − {s}){t}Dn(�s�, �t� + 1) + {s}{t}Dn(�s� + 1, �t� + 1), (21)

and similarly for D̃n . We define the renormalized versions of Cn , �n , Dn and D̃n by

C(n)(s) = Cn(2ns)√
2n

, �(n)(s) =
(

9

8n

)1/4

�n(2ns),

and

D(n)(s, t) =
(

9

8n

)1/4

Dn (2ns, 2nt) , D̃(n)(s, t) =
(

9

8n

)1/4

D̃n (2ns, 2nt)

for every s, t ∈ [0, 1].
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From [30, Proposition 3.1], it holds that up to extraction, one has the joint conver-
gence

(C(n), �(n), D(n), D̃(n))
(d)−→

n→∞ (e, Z , D, D̃), (22)

where e is the normalized Brownian excursion, Z is the head of the snake driven by e
(which is defined as the process Z0 around (13), with e in place of X ) and D, D̃ are
two random pseudo-metrics on [0, 1] such that D ≤ D̃. In the rest of this section, we
are going to fix one extraction along which this convergence holds, and always assume
that the values of n that we consider belong to this particular extraction. Moreover,
by a use of the Skorokhod representation theorem, we may and will assume that the
convergence holds in fact in the a.s. sense.

For s, s′ ∈ [0, 1], define de(s, s′) = es + es′ − 2 infs∧s′≤u≤s∨s′ eu , dZ (s, s′) as in
formula (15) (with A = 1), and let

d̃Z (s, s′) = Zs + Zs′ − 2Zs∧s′,s∨s′ ,

so that clearly one has dZ ≤ d̃Z . The quotient space S = [0, 1]/{D = 0} endowed
with the distance induced by D (and still denoted by D), is the so-called Brownian
map. Likewise, we set S̃ = [0, 1]/{D̃ = 0} and endow it with the induced distance still
denoted by D̃. We let p : [0, 1] → S, p̃ : [0, 1] → S̃ denote the canonical projections,
which are continuous since D, D̃ are continuous functions on [0, 1]2. Note that, since
D ≤ D̃, there exists a unique continuous (even 1-Lipschitz) projection π : S̃ → S
such that p = π ◦ p̃.

The main result of [30,38] states that a.s., for every s, t ∈ [0, 1], D(s, t) is given
by the explicit formula

D(s, t) = inf

⎧⎨
⎩

k∑
j=1

dZ (s j , t j ) : k ≥ 1, t1, s2, t2, . . . , sk ∈ [0, 1], s1 = s, tk = t,
de(t j , s j+1) = 0 for every j ∈ {1, . . . , k − 1}

⎫⎬
⎭.

(23)

The main goal of this section is to show that the following analog formula holds for
D̃. First, we recall from [30] that D̃ ≤ d̃Z and that {de = 0} ⊆ {D̃ = 0}. Note that
the first of these two properties results from a simple passage to the limit in the bound
(20). We let D̃∗ be the largest pseudo-metric on [0, 1] such that these two facts are
verified, that is,

D̃∗(s, t) = inf

⎧⎨
⎩

k∑
j=1

d̃Z (s j , t j ) : k ≥ 1, t1, s2, t2, . . . , sk ∈ [0, 1], s1 = s, tk = t,
de(t j , s j+1) = 0 for every j ∈ {1, . . . , k − 1}

⎫⎬
⎭.

In particular, D̃ ≤ D̃∗. We will show that D̃ = D̃∗ a.s., and in particular, the conver-
gence in (22) holds without having to extract a subsequence. Results by Le Gall [30,
Propositions 3.3 and 9.2] provide yet another formula for D̃, which is expressed in
terms of cutting the space (S, D) along a certain distinguished geodesic. However, it
is not clear that this formula is equivalent to D̃ = D̃∗.
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Theorem 11 Almost surely, it holds that for every s, t ∈ [0, 1], D̃(s, t) = D̃∗(s, t).
Moreover, we have for every x, y ∈ S̃,

D̃(x, y) = inf

{
lengthD(π ◦ γ ) : γ : [0, 1] → S̃ continuous

γ (0) = x, γ (1) = y

}

where S̃ is endowed with the quotient topology of [0, 1]/{D̃ = 0}.
Here, the length function is defined as follows. If (M, d) is a metric space (or a

pseudo-metric space), and γ : [0, 1] → M is a continuous path, we let

lengthd(γ ) = sup
k∑

i=1

d (γ (ri−1), γ (ri )) ,

where the supremum is taken over all partitions 0 = r0 < r1 < · · · < rk−1 < rk = 1of
[0, 1].We invite the reader to compare the last formula for D̃(x, y)with Proposition 3.3
in [30], which describes with some care a space isometric to (S̃, D̃). Our formulation
avoids describing more explicitly the topology on S̃.

4.2 Basic properties of the limit spaces

We will need some more properties of the distances D, D̃, D̃∗. An important fact
that we will need is the following identification of the sets {D = 0}, {D̃ = 0},
{D̃∗ = 0}, which is a reformulation of [28, Theorem 4.2], [32, Lemma 3.2] and [30,
Proposition 3.1] in our setting. Point (iii) comes from [33, Proposition 2.5] and [30,
Proposition 3.2].

Lemma 12 (i) Almost surely, for every s, t ∈ [0, 1] such that s �= t , it holds that
D(s, t) = 0 if and only if either de(s, t) = 0 or dZ (s, t) = 0, these two cases being
mutually exclusive, with the only exception of {s, t} = {0, 1}.
(ii) Likewise, almost surely, for every s, t ∈ [0, 1] such that s �= t , it holds that
D̃(s, t) = 0 if and only if either de(s, t) = 0 or d̃Z (s, t) = 0, and these two cases are
mutually exclusive.
(iii)There is only one time s∗ ∈ [0, 1] such that Zs∗ = inf [0,1] Z.Moreover, D(0, s∗) =
D̃(0, s∗) = −Zs∗ .

This implies that the equivalence relations {D̃ = 0} and {D̃∗ = 0} coincide, since
D̃ ≤ D̃∗ ≤ d̃Z and {de = 0} ⊆ {D̃∗ = 0} by definition. In particular, we see that
S̃ = [0, 1]/{D̃∗ = 0} endowed with the induced metric D̃∗ is homeomorphic to
(S̃, D̃).

Note that (i) and (ii) in the last statement are very closely related. One sees that the
points s < t such that D(s, t) = 0 but D̃(s, t) �= 0 are exactly the points such that

Zs = inf[0,s] Z = inf[t,1] Z = Zt and (s, t) �= (0, 1).

123



580 J. Bettinelli, G. Miermont

Indeed, the previous equalities imply that dZ (s, t) = 0 and that inf [s,t] Z < Zs , by (iii),
so that d̃Z (s, t) > 0; furthermore, dZ (s, t) = 0 and (s, t) �= (0, 1) imply by (i) that
de(s, t) > 0. This entails that, for s < t of this form, one has that x = p(s) = p(t) ∈ S
has two preimages π−1(x) = {p̃(s), p̃(t)} ∈ S̃, while for any other point x ∈ S,
π−1(x) is a singleton.

More precisely, let 
 = D(0, s∗) = D̃(0, s∗) and, for r ∈ [0,
], let
�0(r) = inf{s ≥ 0 : Zs = −r}, and �1(r) = sup{s ≥ 0 : Zs = −r}.

We also let γi (r) = p̃(�i (r)) for i ∈ {0, 1} and r ∈ [0,
], and γ (r) = p(�0(r)) =
p(�1(r)). We let

◦
γ 0 = γ0((0,
)) and we define

◦
γ 1 and

◦
γ in a similar fashion.

Corollary 13 It holds that
◦
γ 0 ∩ ◦

γ 1 = ∅. Moreover, the projection π is one-to-one

from S̃\( ◦
γ 0 ∪ ◦

γ 1) onto S\ ◦
γ , while π−1(γ (r)) = {γ0(r), γ1(r)} for every r ∈ [0,
],

and the latter is a singleton if and only if r ∈ {0,
}.
Next, we say that a metric space (M, d) is a length space if for every x , y ∈ M ,

d(x, y) = inf lengthd(γ ) where the infimum is taken over all continuous paths γ :
[0, 1] → M with γ (0) = x and γ (1) = y. A path γ for which the infimum is attained
is called a geodesic, and a geodesic metric space is a length space (M, d) such that
every pair of points is joined by a geodesic. A compact length space is a geodesic
space by [18, Theorem 2.5.23].

Lemma 14 The spaces (S, D), (S̃, D̃) and (S̃, D̃∗) are compact geodesic metric
spaces.

Proof Weonly sketch the proof of this lemma. Recall that the property of being a com-
pact geodesic metric space is preserved by taking Gromov–Hausdorff limits, by [18,
Theorem 7.5.1]. Now, we use the fact that (S, D), (S̃, D̃) are Gromov–Hausdorff lim-
its of the metric spaces (V (Qn), (9/8n)1/4dQn ) and (V (Q̃n), (9/8n)1/4dQ̃n

), which

in turn are at distance less than (9/8n)1/4 from metric graphs obtained by linking any
two adjacent vertices by an edge of length (9/8n)1/4, the latter being geodesic metric
spaces. For (S̃, D̃∗), this comes from the fact that D̃∗ is a quotient pseudo-metric of
the space ([0, 1]/{d̃Z = 0}, d̃Z ) with respect to the equivalence relation induced on
[0, 1]/{d̃Z = 0} by {de = 0}. Since ([0, 1]/{d̃Z = 0}, d̃Z ) is a length space (it is
indeed an R-tree), the quotient pseudo-metric (S̃, D̃∗) is also a length space, hence a
geodesic space since it is compact. See the discussion after Exercise 3.1.13 in [18].

��
We conclude by mentioning that the mappings r �→ γ0(r) and r �→ γ1(r) are

geodesics in (S̃, D̃) and that r �→ γ (r) is a geodesic in (S, D). This follows easily
from approximations (γ0 is the continuum counterpart to the maximal geodesic in
Sect. 3.2, and γ1 to the shuttle) and is discussed in [30].

4.3 Local isometries between S̃ and S

In the following, if (M, d) is a metric space or a pseudo-metric space, and if x ∈ M ,
A ⊆ M , we let d(x, A) = inf{d(x, y) : y ∈ A}. For i ∈ {0, 1}, we also use the
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shorthand �i , γi to designate the image sets {�i (r), 0 ≤ r ≤ 
} and {γi (r), 0 ≤ r ≤

}.
Lemma 15 The following holds almost surely. Fix ε > 0, i ∈ {0, 1}, and let s,
t ∈ [0, 1] be such that D̃(s, �i )∧ D̃(t, �i ) > ε and D̃(s, t) < ε/2. Then, it holds that
D̃(s, t) = D(s, t) = D̃∗(s, t).

Proof Assume that i = 0. Let in , jn ∈ {0, 1, . . . , 2n} be such that in/2n → s and
jn/2n → t as n → ∞. Recall that, throughout this section, we have fixed an extraction
along which (22) holds and that n → ∞ is understood along this extraction. Then,

(
9

8n

)1/4

dQn

(
vnin , v

n
jn

)
−→
n→∞ D(s, t),

(
9

8n

)1/4

dQ̃n

(
vnin , v

n
jn

)
−→
n→∞ D̃(s, t) .

From the fact that D̃(s, �0) > ε we deduce that for every n large enough, the vertex
vnin is at dQ̃n

-distance at least (8n/9)1/4ε from the maximal geodesic in Q̃n . Indeed, if
this were not the case, then for infinitelymany values of n, we could find a vertex vnkn of

the maximal geodesic with dQ̃n
(vnkn , v

n
in

) ≤ (8n/9)1/4ε. By definition of the maximal
geodesic, it must hold that �n(kn) = inf{�n(i) : 0 ≤ i ≤ kn}, and by passing to the
limit up to further extraction, we may assume that kn/2n converges to some u such
that Zu = inf{Zs, 0 ≤ s ≤ u}, so that p̃(u) ∈ γ0 and D̃(u, s) ≤ ε, a contradiction
with the fact that D̃(s, �0) > ε.

Fix η > 0. By (23), there exist s = s1, t1, …, sk , tk = t such that de(tm, sm+1) = 0
for 1 ≤ m ≤ k − 1, and

D(s, t) ≥
k∑

m=1

dZ (sm, tm) − η.

Then, we can choose integers in(m), jn(m), 1 ≤ m ≤ k such that in(m)/2n → sm
and jn(m)/2n → tm as n → ∞, and we can also require that vnjn(m) = vnin(m+1) for all
m ∈ {1, . . . , k − 1}. Indeed, this last property amounts to the fact that Cn( jn(m)) =
Cn(in(m + 1)) and that Cn is greater than or equal to this common value on [ jn(m) ∧
in(m+1), jn(m)∨ in(m+1)]; we can require this as a simple consequence of the fact
that de(tm, sm+1) = 0 and of the convergence of C(n) to e. For every m ∈ {1, . . . , k},
let gn,m be the maximal wedge path in Qn from cin(m) to c jn(m), as defined at the
end of Sect. 3.1. The length of this path is given by the upper-bound of (18) for
� = �n , i = in(m) and j = jn(m) and, after renormalization by (8n/9)1/4, this length
converges to dZ (sm, tm). Therefore, if we let gn be the concatenation of the paths gn,1,
gn,2,…, gn,k , then the length of gn is asymptotically (8n/9)1/4

∑
1≤m≤k dZ (sm, tm) ≤

(8n/9)1/4(D(s, t) + η).
If gn does not intersect the maximal geodesic from the root c0 to v∗ in Qn , then gn

is also a path in Q̃n (meaning that it can be lifted via the projection p from Q̃n to Qn ,
as defined in Sect. 3.2). In this case, this also means that the maximal wedge paths
gn,m are also paths in Q̃n , entailing that their lengths are given by the upper-bounds in
(20). If, for infinitely many n’s, gn does not intersect the maximal geodesic from the
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root c0 to v∗ in Qn then, by passing to the limit, we obtain dZ (sm, tm) = d̃Z (sm, tm).
We immediately get

D̃(s, t) ≤ D̃∗(s, t) ≤
k∑

m=1

d̃Z (sm, tm) =
k∑

m=1

dZ (sm, tm) ≤ D(s, t) + η.

Since η was arbitrary we obtain D̃(s, t) ≤ D̃∗(s, t) ≤ D(s, t), but since D ≤ D̃, we
conclude that this must be an equality all along.

Suppose now that, for infinitely many n’s, the path gn does intersect the maximal
geodesic from c0 to v∗ in Qn . For such an n fixed, let a, b be the minimal and maximal
integers such that gn(a), gn(b) belong to this path. Clearly, we can modify the path
gn by replacing it if necessary by the arc of the maximal geodesic between gn(a) and
gn(b) without increasing its length. Now, the vertices gn(0), gn(1), . . . , gn(a− 1) are
vertices of Qn that are not in the maximal geodesic, so they lift via the projection p to
a path in Q̃n , with same length. The edge between gn(a−1) and gn(a) also lifts into an
edge of Q̃n , and it arrives at a point g′

n(a) ∈ p−1(gn(a))which is either on themaximal
geodesic or on the shuttle of Q̃n . However, the first case is impossible for large n’s,
since the maximal geodesic is at dQ̃n

-distance at least (8n/9)1/4ε from vnin = gn(0)

and dQ̃n
(gn(0), g′

n(a)) ≤ dQ̃n
(vnin , v

n
jn
) ≤ (8n/9)1/4ε/2. The same argument applies

to the path gn(b), gn(b+ 1), …, vnjn , which can be viewed as a path in Q̃n leaving the
vertex g′

n(b) of the shuttle and going to vnjn . Moreover, since the shuttle projects to a
geodesic path in Qn , the length b− a of gn(a), gn(a + 1), …, gn(b− 1), gn(b) is not
smaller than the length of the segment of the shuttle between the vertices g′

n(a) and
g′
n(b).
Therefore, we see that, if gn intersects the maximal geodesic from c0 to v∗ in Qn ,

we can construct from it a path in Q̃n with same length, going from vnin to g′
n(a), then

taking the segment of the shuttle from g′
n(a) to g′

n(b), then going from g′
n(b) to vnjn .

This path is still a concatenation of maximal wedge paths that are now in Q̃n , so by
a new passage to the limit (possibly up to a new extraction), we can find k′ ≤ k and
s = s′1, t ′1, …, s′k′ , t ′k′ = t such that, for every m,

d̃Z
(
s′m, t ′m

) = dZ
(
s′m, t ′m

)
, de

(
t ′m, s′m+1

) = 0,

and such that

D(s, t) + η ≥
k∑

m=1

dZ (sm, tm) ≥
k′∑

m=1

dZ
(
s′m, t ′m

)

=
k′∑

m=1

d̃Z
(
s′m, t ′m

) ≥ D̃∗(s, t) ≥ D̃(s, t).

Again, since η was arbitrary, this yields D(s, t) = D̃∗(s, t) = D̃(s, t).
We obtain the same result with �1 replaced by �0 by a similar reasoning. ��
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4.4 Proof of Theorem 11

We now turn the “local” lemma that we just proved into a “global” result, which is the
content of Theorem 11.

Proof of Theorem 11 Fix two points x , y ∈ S̃, and a continuous, injective path f :
[0, 1] → S̃ going from x to y.

For every r ∈ [0, 1], let F(r) ∈ [0, 1] be an arbitrary point such that p̃(F(r)) =
f (r). Suppose first that f does not visit the points p̃(0) and p̃(s∗). Then for every
r ∈ [0, 1], p̃(F(r)) is either not in γ0, or not in γ1. Assume for the moment that we
are in the first case. It means that we can find a neighborhood Vr of r in [0, 1] and
εr > 0 such that D̃(F(r ′), F(r)) < εr/2 and D̃(F(r ′), �0) > εr for every r ′ ∈ Vr .
In the second case, a similar property holds with �1 instead of �0. By taking a finite
subcover, and applying Lemma 15, we obtain the existence of ε > 0 depending on f
such that for every r , r ′ ∈ [0, 1], |r − r ′| ≤ ε implies

D̃
(
F(r), F(r ′)

) = D̃∗ (F(r), F(r ′)
) = D

(
F(r), F(r ′)

)
.

Hence, for every partition 0 = r0 < r1 < · · · < rk = 1 such that |ri+1 − ri | < ε for
every i ∈ {0, . . . , k − 1},

k−1∑
i=0

D̃ (F(ri ), F(ri+1)) =
k−1∑
i=0

D̃∗ (F(ri ), F(ri+1)) =
k−1∑
i=0

D (F(ri ), F(ri+1)) ,

which implies that

lengthD̃( f ) = lengthD̃∗( f ) = lengthD(π ◦ f ). (24)

Wenowuse the easy fact that for anymetric space (M, d) and every continuous path γ :
[0, 1] → M , the function r �→ lengthd(γ |[0,r ]) is a non-decreasing, left-continuous
function from [0, 1] to [0,∞]. Moreover, the length function is additive in the sense
that lengthd(γ ) = lengthd(γ |[0,r ]) + lengthd(γ |[r,1]) for every r ∈ [0, 1]. These two
properties together clearly imply that (24) is still valid if the injective, continuous path
f is allowed to visit p̃(0), p̃(s∗), or both. Taking the infimum over all such functions
from a point x to y, and using Lemma 14, we finally get D̃(x, y) = D̃∗(x, y), and
that this quantity is the infimum of lengthD(π ◦ f ) over all injective continuous paths
from x to y in S̃, hence over all continuous paths from x to y in S̃, not necessarily
injective. This last fact follows from the fact that a path-connected (separable) space
is also arc-connected, see e.g. Section 31 in [43]. ��

5 Proof of Theorem 1

5.1 Subsequential convergence

We now move to quadrangulations with boundaries, which are our main object of
interest. Recall the construction of Sect. 3.3 and consider an encoding labeled forest
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C
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(f , �)
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−1
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Fig. 5 The contour and label processes associated with the labeled forest of Fig. 4. The extra vertex-tree ρ7
and the edges linking the roots are represented with a dashed line. Note that the normalization we chose
for the labels is equivalent to imposing �(0) = 0

(f, �) for a quadrangulation with a boundary. As in the preceding section, we will
further encode it by a pair of real-valued functions. Before we proceed, it will be con-
venient to add an extra vertex-tree ρl+1 with label �(ρl+1) = �(ρ1) to the forest. This
extra vertex does not really play a part but its introduction will make the presentation
simpler. We also add l edges between ρi and ρi+1, for 1 ≤ i ≤ l. See Fig. 5.

We let c0, c1, …, c2n+l−1 be as in Sect. 3.3 and we add to this list the corner c2n+l

incident to the extra vertex-tree ρl+1. We define the contour and label processes on
[0, 2n + l] by

C( j) = df (c j , ρl+1) − l and �( j) = �(c j ), 0 ≤ j ≤ 2n + l

and by linear interpolation between integer values.
Let us fix L ∈ (0,∞) and a sequence (ln, n ≥ 1) such that ln ∼ L

√
2n as n → ∞.

We let (Fn, �n) be uniformly distributed over the set of labeled forests of ln trees with
n edges in total, and let (Qn, v∗) be the random pointed quadrangulation4 associated
with Fn via the bijection of Sect. 3.3. Note that up to re-rooting Qn at a uniform corner
incident to the root face, we may assume that Qn is uniform in Qln ,n by Lemma 10.

We let Cn , �n be the associated contour and label processes, and we define their
renormalized versions

C(n)(s) = Cn ((2n + ln)s)√
2n

, �(n)(s) =
(

9

8n

)1/4

�n ((2n + ln)s) , 0 ≤ s ≤ 1.

We let Dn(i, j) be the distance in Qn between the vertices incident to the i-th and j-th
corner of Fn , for i, j ∈ {0, 1, . . . , 2n+ ln}. We extend Dn to a continuous function on
[0, 2n+ ln]2 by the exact same formula as (21), and we finally define its renormalized
version

D(n)(s, t) =
(

9

8n

)1/4

Dn ((2n + ln) s, (2n + ln) t) , 0 ≤ s, t ≤ 1. (25)

4 We will use notation like Qn ,Cn , �n , Dn , D with a different meaning from the preceding section in order
to keep exposition lighter.
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It is shown in [10] that, from every increasing family of positive numbers, one can
extract a further subsequence along which

(
C(n), �(n), D(n)

) (d)−→
n→∞ (X, Z , D) (26)

in distribution in the space C([0, 1])×C([0, 1])×C([0, 1]2). (At this moment, the need
of extracting a subsequence is caused by the last coordinate D(n) and the convergence
without extraction holds if one drops this coordinate.) Here, D is a random pseudo-
metric on [0, 1] and (X, Z) has law5

F
1
L defined in Sect. 2, so that X is a first-passage

bridge, attaining level −L for the first time at time 1, and Z is the associated snake
process.

Proposition 16 [10] Almost surely, the space D = [0, 1]/{D = 0} is a topological
disk whose boundary ∂D satisfies

p−1(∂D) = {s ∈ [0, 1] : Xs = Xs}, (27)

where p : [0, 1] → D is the canonical projection. Almost surely, the Hausdorff
dimension of D is 4, and that of ∂D is 2.

Recall definition (16) of the set D, as well as the definition of s∗, the unique
element of [0, 1] at which Z reaches its minimum. The following is classical, see e.g.
Equation (11) and Section 4.2 in [10].

Lemma 17 The following properties hold almost surely.

• D ∈ D.
• D(s, s∗) = Zs − Zs∗ for every s ∈ [0, 1].
Let now x∗ = p(s∗). Note that the definition is different from that in Sect. 2.3:

for now we have to use this definition, but we will see in a moment, in Theorem
20 that D = D∗ so that the two definitions do coincide. Recall that v∗ is a uniform
random vertex in Qn , conditionally given the latter. From this observation, we obtain
an invariance under re-rooting property of (D, D, x∗), along the same lines as [29].

Lemma 18 LetU, V beuniform randomvariables in [0, 1], independent of (X, Z , D).
Then the two doubly pointed spaces (D, D, p(U ), p(V )) and (D, D, x∗, p(U )) have
the same distribution.

Finally, the following lemma is an easy consequence of the study of geodesics done
in [11].

Lemma 19 Almost surely, for every x ∈ D\∂D, each geodesic from x to x∗ does not
intersect ∂D. Moreover, there is only one geodesic from x to x∗ for μ-almost every
x ∈ D, where μ = p∗(Leb[0,1]).

5 This is of course an abuse of notation since (X, Z) previously denoted the canonical process, however
we did not want to introduce a further specific notation at this point.
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Proof For s ∈ [0, 1], we define the path �s : [0, D(s∗, s)] → D by

�s(w) = p
(
sup

{
r : Zr,s = Zs∗ + w

})
, 0 ≤ w ≤ D(s∗, s) = Zs − Zs∗ .

It is shown in [11, Proposition 23] that the path�s is a geodesic from x∗ top(s) inD and
that a.s. all the geodesics from x∗ are of this form. We call increase point of a function
a point t such that the function is greater than its value at t on a small interval of the
form [t − ε, t] or [t, t + ε] for some ε > 0. Clearly, for 0 ≤ w < D(s∗, s), the point
sup

{
r : Zr,s = Zs∗ + w

}
is an increase point of the process Z , which is furthermore

different from 0. On the other hand, the expression (27) shows that p−1(∂D) is made
only of increase points of X , togetherwith the point 0.Moreover, [11, Lemma18] states
that, a.s., the processes X and Z do not share any increase points. As a consequence,
�s may only intersect ∂D at its endpoint p(s) and the first statement follows.

In addition, [11, Proposition 17] entails that, for 0 ≤ s ≤ t ≤ 1, D(s, t) = 0 if and
only if one of the following occurs:

Xs = Xt = Xs,t or, equivalently, dX (s, t) = 0; (28a)

Zs = Zt = Zs,t or Zs = Zt = Zt,s or, equivalently, dZ (s, t) = 0. (28b)

Moreover, for s �= t , only one of the previous situations can happen. In some sense, this
can be thought of as a continuous version of the bijection from Sect. 3.3: point (28a)
constructs the continuous random forest and drawing an arc between a corner and its
successor becomes, in the limit, identifying points with the same label and such that
the labels visited in between in the contour order are all larger (point (28b)). Standard
properties of the process Z then allow us to conclude that Leb[0,1]({s : ∃t �= s :
D(s, t) = 0}) = 0, so that, for μ-almost every x ∈ D, the set p−1(x) is a singleton
{s} and the only geodesic from x∗ to x is thus �s . ��

Combining Lemmas 18 and 19, we see that the conclusion of the latter is still valid
if x∗ is replaced by a uniformly chosen point in D, that is, a random point of the form
p(U ) as in the first lemma.

5.2 Identification of the limit

Recall the notation D∗ from Sect. 2.3 (here we are interested in the case A = 1). In
this section, we show the following analog to the first part of Theorem 11.

Theorem 20 Almost surely, it holds that D = D∗.

Theorem 1 is an immediate consequence of this. Indeed, since D∗ is a measurable
function of (X, Z), this shows that D∗ is the only possible subsequential limit of D(n).
This, combined with the tightness of the sequence (D(n), n ≥ 1) that we alluded to
above, implies that D(n) converges in distribution to D∗.

In turn, this convergence implies that of (9/8n)1/4Qn to BDL = (D, D∗) in the
Gromov–Hausdorff sense and even that of the pointed space ((9/8n)1/4Qn, v∗) to
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(BDL , x∗). Let us recall how to prove this fact. First, one can assume that the con-
vergence of (C(n), �(n), D(n)) to (X, Z , D∗) is almost-sure, by using Skorokhod’s
representation theorem.Thenwedefine a correspondenceRn between Qn andBDL by

Rn =
{(

vn�(2n+ln)s�, p(s)
)

: s ∈ [0, 1]
}

∪ {(v∗, p(s∗))},

where, as before, vni is the vertex of Qn incident to the i-th corner ci . It is elementary
to see from the uniform convergence of D(n) to D∗ that the distortion of Rn with
respect to the metrics (9/8n)1/4dQn and D∗ converges to 0 as n → ∞.

Combinedwith Lemma18, Theorem20 immediately yields the following corollary.

Corollary 21 Let U, V be uniform random variables in [0, 1], independent of (X, Z).
Then the random variables D∗(s∗,U ) and D∗(U, V ) have the same distribution.

This corollary will play a very important part in the proof of the invariance principle
(Sect. 8). It is the analog in our setting to Le Gall’s observation at the heart of his proof
of the universality of the Brownian map [30, Sections 8.3 and 9.1].

Recall that [a, b] is an excursion interval of X above X ifa < b and Xa = Xb = Xb.
Let us arrange the excursion intervals of X above X as [ai , bi ], i ≥ 1 in decreasing
order of length. For a given i , the excursion interval [ai , bi ] encodes a slice in the
sense of Sect. 4. Namely, for s, t ∈ [ai , bi ], let diZ (s, t) = Zs + Zt − 2Zs∧t,s∨t , and

D̃i (s, t) = inf

⎧⎨
⎩

k∑
j=1

diZ (s j , t j ) : k ≥ 1, t1, s2, t2, . . . , sk ∈ [ai , bi ], s1 = s, tk = t,
dX (t j , s j+1) = 0 for every j ∈ {1, . . . , k − 1}

⎫⎬
⎭ .

We also extend D̃i by the formula D̃i (s, t) = D̃i ((s ∨ ai ) ∧ bi , (t ∨ ai ) ∧ bi )
into a continuous function on [0, 1]2. By simple scaling properties and excursion
theory, conditionally given the excursion lengths (bi − ai ), i ≥ 1, the spaces
Si = [ai , bi ]/{D̃i = 0}, equipped with the induced distance, still denoted by D̃i ,
are independent versions of the Brownian slices of Sect. 4, with distances rescaled
by (bi − ai )1/4 respectively. The next key lemma states that the distance D can be
identified as a metric gluing of these slices along their boundaries. This guides the
intuition of its proof, which will partly consist in going back to the discrete slices
that compose the quadrangulations with a boundary of which we took the limit. For
convenience, we set for s, t ∈ [0, 1],

D̃♦(s, t) =
{
D̃i (s, t) if s, t ∈ [ai , bi ] for some i ≥ 1 ;
∞ otherwise.

Lemma 22 For almost every (s, t) ∈ [0, 1]2 with respect to the Lebesgue measure, it
holds that

D(s, t) = inf

⎧⎨
⎩

k∑
j=1

D̃♦(s j , t j ) : k ≥ 1, t1, s2, t2, . . . , sk ∈ [0, 1], s1 = s, tk = t,
dZ (t j , s j+1) = 0 for every j ∈ {1, . . . , k − 1}

⎫⎬
⎭

and, moreover, that the above infimum is in fact a minimum.
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p(U) = x1
p(V ) = x10

γ

℘i
l ℘r

i

p([ai, bi])

x2

x3 x4

x5

x6

x7

x8

x9

Fig. 6 The geodesic γ from p(U ) to p(V ) only visits a finite number of slices (Claim 1), and every piece
of slice boundary that is visited is visited during a connected interval of times (Claims 2 and 3). It can thus
be broken down to small segments satisfying (31a) or (31b)

Proof Clearly, D(s, t) ≤ dZ (s, t) ≤ diZ (s, t) whenever s, t ∈ [ai , bi ], so that
D(s, t) ≤ D̃♦(s, t) for any s, t ∈ [0, 1] and, as a consequence, the left-hand side
is smaller than the right-hand side for every s, t ∈ [0, 1]. We then only need to prove
the converse inequality for almost every s, t in [0, 1]. To this end, by Fubini’s theo-
rem, it suffices to show the claimed formula when s, t are replaced by two independent
uniform random variables U , V in [0, 1], independent of the other random variables
considered so far.

Let γ : [0, D(U, V )] → D be the geodesic in (D, D) from p(U ) to p(V ), which
by Lemmas 18 and 19 is unique and does not intersect ∂D, a.s. Let also Im(γ ) =
γ ([0, D(U, V )]) denote its image and define

I (U, V ) =
{
i ≥ 1 : p−1(Im(γ )) ∩ [ai , bi ] �= ∅

}

the set of indices of the slices that γ visits. We invite the reader to use Fig. 6 as a visual
aid for the remaining of the proof.

Claim 1 The set I (U, V ) is almost surely finite.

Proof Let us argue by contradiction, assuming that I (U, V ) is infinite with positive
probability. Then it holds that, still with positive probability, there is an increasing
integer sequence (in)n≥1 and a sequence (rn)n≥1 with values in [0, D(U, V )] such
that γ (rn) ∈ p([ain , bin ]). Then, up to extraction, the sequence (rn) converges to some
limit r , and if sn ∈ [ain , bin ] is a choice of a given element in p−1(γ (rn)), then, again
up to possibly further extraction, (sn) converges to a limit s with p(s) = γ (r). By
construction, s is not in

⋃
i≥1(ai , bi ), since the intervals in this union are pairwise

disjoint. This implies that Xs = Xs , meaning that γ (r) = p(s) ∈ ∂D, which is the
contradiction we were looking for. ��

Let ℘i
l , ℘i

r denote the left and right “geodesic boundaries” of the space
([ai , bi ]/diZ , diZ ), defined by
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℘i
l (t) = p

(
inf{s ∈ [ai , bi ] : Zs = Zai − t}) , (29)

℘i
r (t) = p

(
sup{s ∈ [ai , bi ] : Zs = Zai − t}) , (30)

where t ranges over [0, Zai − Zai ,bi ] (recall that Zai = Zbi ). Those are geodesic paths
in (D, D) from p(ai ) to p(s∗i ), where s∗i is the (a.s. unique [33]) time in [ai , bi ] at
which Z attains its infimum on that same interval. Alternatively, these paths are parts
of the geodesics �ai and �bi introduced earlier. Note also that Im(℘i

l ) ∩ Im(℘i
r ) is

not necessarily reduced to {p(ai ), p(s∗i )}. In fact, on the interval [ai , bi ] � s∗, this
intersection contains a whole segment of Im(℘i

l ) near x∗.

Claim 2 It is not possible to findr1 < r2 < r3 and some i ≥ 1 such thatγ (r1), γ (r3) ∈
Im(℘i

l ) and γ (r2) /∈ Im(℘i
l ). The same statement is valid for ℘i

r instead of ℘i
l .

Proof Indeed, such a situation would clearly violate the uniqueness of the geodesic
γ , since we could replace it between times r1 and r3 by the arc of ℘i

l from γ (r1) to
γ (r3), and still obtain a geodesic from p(U ) to p(V ), distinct from γ . ��
Claim 3 Almost surely, for every i ≥ 1, the topological boundary of p([ai , bi ]) in
(D, D) is included in Im(℘i

l ) ∪ Im(℘i
r ).

Proof This statement is relatively obvious with the interpretation that ([ai , bi ]/{D̃i =
0}, D̃i ) is a space with geodesic boundaries given by ℘i

l , ℘i
r , but since we are not

referring explicitly to these spaces, let us give a complete proof. In fact, the topological
boundary of p([s, t]) for any ai ≤ s ≤ t ≤ bi is given by [11, Lemma 21] but, as
the proof is quite short, we restate the arguments here. Note that p([ai , bi ]) is closed
so that every point in ∂p([ai , bi ]) is of the form p(s′) for some s′ ∈ [ai , bi ] and is a
limit of a sequence of points of the form p(sn), n ≥ 1, where sn /∈ [ai , bi ] for every
n ≥ 1. Up to extraction, (sn) converges to a limit s /∈ (ai , bi ) such that D(s, s′) = 0. If
s ∈ {ai , bi } then the claim follows immediately. Otherwise, s �= s′ and, as mentioned
during the proof of Lemma 19, this implies dX (s, s′) = 0 (28a) or dZ (s, s′) = 0 (28b).
It cannot hold that dX (s, s′) = 0 because s′ ∈ [ai , bi ]while s /∈ [ai , bi ], so necessarily
dZ (s, s′) = 0. Assuming for instance that Zs = Zs′ = Zs,s′ , so that Zu ≥ Zs′ for
every u ∈ [ai , s′], this implies that dZ (s, inf{u ∈ [ai , bi ] : Zu = Zs) = 0. Finally, we
get that p(s) = ℘i

l (Zai − Zs) ∈ Im(℘i
l ). Similarly, if Zs = Zs′ = Zs′,s , we obtain

that p(s) ∈ Im(℘i
r ). ��

From the three claims above, we obtain that there exists a finite number of pairwise
distinct points x1, x2, …, xk+1 ∈ D and integers i1, …, ik with x1 = p(U ), xk+1 =
p(V ), such that γ visits the points x1, x2, …, xk+1 in this order, and such that the
segment of γ between x j and x j+1 is

either included in Im(℘
i j
l ) or included in Im(℘

i j
r ) (31a)

or included in p([ai j , bi j ]) and such that its intersection with Im(
℘
i j
l

)
∪ Im(℘

i j
r ) is a subset of {x j , x j+1}. (31b)
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Indeed, Claims 1 and 2 entail that Im(γ ) ∩ (
⋃

i Im(℘i
l ) ∪ Im(℘i

r )) is a finite union
of segments satisfying (31a) and the arcs of γ linking two successive such segments
satisfy (31b), by Claim 3. Note that, in (31b), we cannot impose that the intersection

with Im(℘
i j
l ) ∪ Im(℘

i j
r ) be equal to {x j , x j+1} as the extremities (x1 and xk+1) of γ

are a priori not included in
⋃

i Im(℘i
l ) ∪ Im(℘i

r ).
For j ∈ {1, . . . , k}, since the segment of γ between x j and x j+1 is included in

p([ai j , bi j ]) in either case, we may choose s j , t j ∈ [ai j , bi j ] such that x j = p(s j ) and
x j+1 = p(t j ). For any such choice,

D(U, V ) =
k∑
j=1

D(s j , t j ).

Wewill soon justify that a.s. we can choose such s j , t j satisfying the extra property
that D(s j , t j ) = D̃i j (s j , t j ). For convenience, we set s0 = U , t0 = s1, sk+1 = tk and
tk+1 = V . By definition, for any 0 ≤ j ≤ k, we have p(t j ) = p(s j+1), which entails
that dX (t j , s j+1) = 0 (28a) or dZ (t j , s j+1) = 0 (28b). The former case implies that
D̃♦(t j , s j+1) = 0 so that, by the triangle inequality, D̃♦(s j , t j ) + D̃♦(s j+1, t j+1) ≥
D̃♦(s j , t j+1). We remove the pairs (t j , s j+1) for which dX (t j , s j+1) = 0 from the
list s0, t0, s1, t1, …, sk+1, tk+1 and rewrite the resulting list as s′1, t ′1, …, s′p, t ′p. We

obtain that D(U, V ) is bounded from below by the sum
∑p

j=1 D̃
♦(s′j , t ′j ), where we

now have dZ (t ′j , s′j+1) = 0 for every j ∈ {1, . . . , p − 1}. This shows that D(U, V ) is
greater than or equal to the infimum appearing in the statement of Lemma 22 for s = U
and t = V . As mentioned at the beginning of the proof, D(U, V ) is also smaller than
this quantity so that equality actually holds, and the infimum is in fact a minimum.
This concludes the proof of Lemma 22, provided we can justify the possibility of
choosing s j , t j as claimed.

To this end, note that if the segment of γ between x j and x j+1 satisfies (31a), then
we may impose that s j and t j are both of the form appearing in the argument of p
in (29) or both of the form appearing in the argument of p in (30), as x j and x j+1 both

belong to Im(℘
i j
l ) or both belong to Im(℘

i j
r ). The claim then readily follows from

Lemma 17, as

D(s j , t j ) ≥ |D(s j , s∗) − D(t j , s∗)| = |Zs j − Zt j | = d
i j
Z (s j , t j ) ≥ D̃i j (s j , t j )

and the converse inequality always holds.
It remains to deal with the situation where the segment of γ between x j and x j+1

satisfies (31b). At this point we need to go back to the discrete setting, and, in partic-
ular, to define the discrete analogs to the functions D̃i . We consider the i-th largest
tree t of Fn and we suppose that it is visited between times ani and bni in the contour
order of Fn . For j , k ∈ {ani , . . . , bni }, we let D̃i

n( j, k) be the distance in the slice
corresponding to t between the vertices vnj and vnk incident to the j-th and k-th corner

of Fn . In other words, D̃i
n( j, k) is the length of a shortest path linking vnj to vnk and

that does not “traverse” the images in Qn of the maximal geodesic and shuttle of the
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aforementioned slice. We then extend D̃i
n to a continuous function on [ani , bni ]2 by

bilinear interpolation, and then to a continuous function on [0, 2n + ln]2 by the for-
mula D̃i

n(s, t) = D̃i
n((s ∨ ani )∧ bni , (t ∨ ani )∧ bni ). Finally we define its renormalized

version D̃i
(n) on [0, 1]2 by the analog of (25). We define D̃i

(n) arbitrarily for i > ln .
As a simple consequence of Theorem 11 and of the convergence (22), reformulated

in the context of the excursion intervals [ani , bni ], we obtain the joint convergence
in distribution of (C(n), �(n), (D̃i

(n))i≥1) to (X, Z , (D̃i )i≥1). Together with (26), we
conclude that

(
C(n), �(n), D(n),

(
D̃i

(n)

)
i≥1

)
−−−→
n→∞

(
X, Z , D,

(
D̃i
)
i≥1

)
(32)

in distribution in the space C([0, 1])× C([0, 1])× C([0, 1]2)× C([0, 1]2)N, and along
an appropriate extraction (due to the third coordinate). Applying Skorokhod’s repre-
sentation theorem, we also assume from now on that this convergence holds in the
almost sure sense.

For y ∈ {0, 1/(2n + ln), . . . , 1}, we denote by cn(y) the (2n + ln)y-th corner
of Fn . In what follows, whenever we use the notation cn(y) it will be implicit that y is
chosen in the set for which this notation makes sense. We let ani j and bni j be such that
cn(ani j ) and cn(b

n
i j
) are the first and last corners of the i j -th largest tree of Fn . Standard

properties of Brownian motion and the convergence C(n) → X entail that ani j → ai j
and bni j → bi j .

Now recall that we are assuming that the segment of γ between x j and x j+1
satisfies (31b) and that we aim to justify the existence of s j , t j satisfying x j = p(s j ),
x j+1 = p(t j ) and D(s j , t j ) = D̃i j (s j , t j ). We first take s′j , t ′j ∈ [ai j , bi j ] such that
x j = p(s′j ) and x j+1 = p(t ′j ).

Choose two sequences of numbers snj , t
n
j ∈ [ani j , bni j ] ∩ {0, 1/(2n + ln), . . . , 1}

indexed by n such that snj → s′j and tnj → t ′j , and denote by unj and wn
j the vertices

incident respectively to cn(snj ) and cn(tnj ). We let γ n
j be a geodesic in Qn from unj

to wn
j , and denote by γ n

j (0) = unj , γ
n
j (1), …, γ n

j (dQn (u
n
j , w

n
j )) = wn

j the subsequent
vertices it visits.

We also let Vn
j be the set of vertices of i j -th largest tree of Fn that do not belong

to the maximal geodesic of the slice corresponding to this tree, seen as a subset
of V(Qn). As the portion of γ we consider satisfies (31b), it is intuitive that γ n

j , which
should be a discrete approximation of this portion, is such that Im(γ n

j ) is “mostly
included” in Vn

j . More precisely, we claim that, for any fixed ε ∈ (0, 1/2), the ver-
tices visited by γ n

j between γ n
j (�ε dQn (u

n
j , w

n
j )�) and γ n

j (�(1 − ε) dQn (u
n
j , w

n
j )�) all

belong to Vn
j for large n. Indeed, let us argue by contradiction and assume other-

wise. Then, for infinitely many values of n, we can find real numbers zn /∈ [ani j , bni j ]
such that cn(zn) is at dQn -distance at most 1 from one of the vertices visited by γ n

j
between γ n

j (�ε dQn (u
n
j , w

n
j )�) and γ n

j (�(1−ε) dQn (u
n
j , w

n
j )�). (The “atmost 1” is here

because γ n
j may exit Vn

j by visiting the maximal geodesic, whose vertices are encoded
by corners of [ani j , bni j ] but are at dQn -distance 1 from vertices encoded by corners out-
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side of [ani j , bni j ].) Up to further extraction, we may suppose that zn → z /∈ (ai j , bi j ),
so that p(z) does not belong to the interior of p([ai j , bi j ]). As γ n

j is a geodesic,

we have D(n)(snj , zn) + D(n)(zn, tnj ) = D(n)(snj , t
n
j ) + O(n−1/4), which yields

D(s′j , z) + D(z, t ′j ) = D(s′j , t ′j ). This means that p(z) lies on a geodesic between x j
and x j+1, hence on the portion of γ between x j and x j+1, which is the only geodesic
path between these points, by Lemma 19. By (31b), p(z) belongs to p([ai j , bi j ]), and
thus to the topological boundary of this set, which is included in Im(℘

i j
l )∪ Im(℘

i j
r ) by

Claim 3. Finally, this forces p(z) ∈ {x j , x j+1}, by (31b). This is in contradiction with
the fact that D(n)(snj , zn) ∧ D(n)(zn, tnj ) ≥ εD(n)(snj , t

n
j ) + O(n−1/4), which yields

D(s′j , z) ∧ D(z, t ′j ) ≥ εD(s′j , t ′j ) > 0.
We construct an increasing subsequence (nm)m of the sequence of values

of n we considered so far, in such a way that nm satisfies the above condi-
tion for ε = 1/m. Let snmj,m ∈ [anmi j , bnmi j ] be such that cnm (snmj,m) is incident to

γ
nm
j (�dQnm

(unmj , w
nm
j )/m�) and tnmj,m ∈ [anmi j , bnmi j ] be such that cnm (tnmj,m) is incident

to γ
nm
j (�(1− 1/m) dQnm

(unmj , w
nm
j )�). We extract from (snmj,m)m and (tnmj,m)m two sub-

sequences along which snmj,m → s j ∈ [ai j , bi j ] and tnmj,m → t j ∈ [ai j , bi j ] as m → ∞.
Let us see that s j and t j are as desired.

First, by definition, D(nm)(s
nm
j , snmj,m) = D(nm)(s

nm
j , tnmj )/m + O(nm−1/4), which

yields D(s′j , s j ) = 0, so that x j = p(s j ). Similarly, x j+1 = p(t j ). Finally, as the

portion of γ nm
j between γ

nm
j (�dQnm

(unmj , w
nm
j )/mn�) and γ

nm
j (�(1−1/m) dQnm

(unmj ,

w
nm
j )�) is completely included inside Vnm

j , this path also exists in the corresponding

slice of Qnm (recall that Vnm
j does not contain the maximal geodesic). As a result,

D(nm)(s
nm
j,m, tnmj,m) = D̃

i j
(nm)(s

nm
j,m, tnmj,m) and we obtain D(s j , t j ) = D̃i j (s j , t j ) by (32),

as wanted. This concludes the proof of Lemma 22. ��
Remark that, in the previous proof, it is possible that D(s′j , t ′j ) �= D̃i j (s′j , t ′j ) as

we may have D̃i j (s′j , s j ) > 0 if [ai j , bi j ] is the excursion containing s∗ and x j ∈
Im(℘

i j
l ) ∩ Im(℘

i j
r ).

We now conclude the proof of Theorem 20. First, from the definition of D∗, it
holds that D∗ ≤ D̃♦. From this, together with Lemma 22 and the fact that D∗ ≤ dZ ,
we deduce that D(s, t) ≥ D∗(s, t) for Lebesgue-almost every s, t ∈ [0, 1], so that
equality holds since D ≤ D∗ by Lemma 17. Since D∗ ≤ dZ , which is continuous on
[0, 1]2 and null on the diagonal, we immediately deduce that the pseudo-metrics D, D∗
are continuous when seen as functions on [0, 1]2, and by density we get that D = D∗.
This proves Theorem 20, and hence also Theorem 1.

6 Boltzmann random maps and well-labeled mobiles

6.1 The Bouttier–Di Francesco–Guitter bijection

There is a well-known extension of the Cori–Vauquelin–Schaeffer bijection to general
maps. This extension, due to Bouttier, Di Francesco and Guitter [15], can roughly be
described in the following way. Any bipartite map can be coded by an object called a
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well-labeled mobile. Namely, a mobile is a rooted plane tree t (we usually call e0 its
root edge) together with a bicoloration of its vertices into “white vertices” and “black
vertices.” We denote by V◦(t), V•(t) the corresponding sets of vertices, and ask that
any two neighboring vertices carry different colors, and that e−0 ∈ V◦(t), meaning that
mobiles are rooted at a white vertex.

Moreover, the set V◦(t) carries a label function � : V◦(t) → Z, that satisfies the
following property: if v′ ∈ V•(t) is a black vertex, and if v′

0, v′
1, …, v′

k−1 ∈ V◦(t)
denote the neighbors of v′ arranged in clockwise order around v′ induced by the planar
structure of t (so that k = degt(v

′)), it holds that

�
(
v′
i+1

)− �
(
v′
i

) ≥ −1, ∀ i ∈ {0, 1, . . . , k − 1},

with the convention that v′
k = v′

0. A simple counting argument shows that, as soon as

one of the labels, say �(v′
0), is fixed, there are exactly

(2k−1
k

)
possible choices for the

other labels �(v′
1), …, �(v′

k−1). At this point of the discussion, we do not insist that
the label of any given vertex is fixed, so we really view � as a function defined up an
additive constant, as we did in Sect. 3. We will fix a normalization in the next section.

In our context of maps with a boundary, we use the following conventions. The
objects encoding the bipartite maps with perimeter 2l (maps of Bl ) are forests f =
(t1, . . . , tl) of lmobiles, togetherwith a labeling function � : V◦(f) = ⊔

i V◦(ti ) → Z

satisfying the following:

• for 1 ≤ i ≤ l, the mobile ti equipped with the restriction of � to V◦(ti ) is a
well-labeled mobile;

• for 1 ≤ i ≤ l, we have �(ρi+1) ≥ �(ρi )− 1, where ρi denotes the root vertex of ti
and �(ρl+1) = �(ρ1).

Remark 4 These forests are in simple bijection with the set of mobiles rooted (unusu-
ally) at a black vertex of degree l. But since the external face really plays a different role
from the other faces, we prefer indeed to view those as forests of individual mobiles,
rather than one single mobile.

The BDG bijection is very similar to the construction presented in Sect. 3.3. We
consider a forest f = (t1, . . . , tl) of l mobiles, labeled by � as above and we set
�∗ = min{�(v) : v ∈ V◦(f)}−1. We let NV be its number of white vertices, NF be its
number of black vertices, and NE = NV + NF be its total number of vertices. (The
reason for this notation will become clear in a short moment.)

We identify f with the map obtained by adding l edges linking the roots ρ1, ρ2, …,
ρl of the successive trees in a cycle. This map has one face of degree l incident to the l
added edges and another face f of degree 2NE − l, incident to the l added edges as
well as all the mobiles. It is also a simple exercise to see that NE of the corners of the
face f are incident to white vertices, and we denote by c0, c1, …, cNE−1these corners,
listed in contour order, and starting from the root corner of t1. We extend this list by
periodicity and add one corner c∞ incident to a vertex v∗ lying inside the face f , with
label �(c∞) = �(v∗) = �∗. We define the successor functions by (19) and draw arcs
in a non-crossing fashion from ci to s(ci ) for every i ∈ {0, 1, . . . , NE − 1}. We root
the resulting map at the corner of the face that is incident to the root vertex of t1; note
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594 J. Bettinelli, G. Miermont

that this face turns out to have degree 2l. We obtain a rooted bipartite map m with
perimeter 2l, with vertex set V◦(t) ∪ {v∗}, which is naturally pointed at v∗, and such
that the root edge points away from v∗.

As in Sect. 3.3, the fact that the root edge necessarily points away from v∗ is a bit
unfortunate and we use the same trick in order to overcome this technicality. More
precisely, we consider the map obtained from m by forgetting its root and re-rooting
it at a corner chosen uniformly at random among the 2l corners of the root face.

A noticeable fact about the BDG bijection is that the black vertices of the forest are
in bijectionwith the internal faces of themap.More precisely, if v ∈ V•(f) corresponds
to the face f of m, then degm( f ) = 2 degf (v). Furthermore, the white vertices are
bijectively associated with V(m)\{v∗} (so that we can naturally identify these two
sets), in such a way that the label function � gives distances to v∗ via the formula

dm(v, v∗) = �(v) − �∗. (33)

As a result (and with the help of the Euler characteristic formula), note that NV + 1,
NF and NE respectively correspond to the number of vertices, internal faces, and
edges of m—this explains the notation.

6.2 Random mobiles

We now show how to represent the pointed Boltzmann measures W
•
l of Sect. 1.4.2

in terms of random trees, via the BDG bijection. Let μ◦ be the geometric distribution
with parameter 1/Zq , given by

μ◦(k) = 1

Zq

(
1 − 1

Zq

)k

, k ≥ 0.

Let also

μ•(k) = Zk
q

(2k+1
k

)
qk+1

fq(Zq)
k ≥ 0.

Let Ml be the law of a two-type Bienaymé–Galton–Watson forest, with l independent
tree components, and in which even generations (white vertices) use the offspring dis-
tribution μ◦, while odd generations (black vertices) use the offspring distribution μ•.
Formally, we let Ml = (M1)

⊗l where M1 is defined by

M1({t}) =
∏

u∈V◦(t)
μ◦(ku(t))

∏
u∈V•(t)

μ•(ku(t))

for every tree t, where ku(t) is the number of children of u in t. Next, let ξ1, ξ2, …be
a sequence of i.i.d. random variables with shifted geometric(1/2) distribution

P(ξi = r) = 2−r−2, r ≥ −1, i ≥ 1, (34)
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and let (0,Y1, . . . ,Yk−1) be distributed as the partial sums (0, ξ1, ξ1 + ξ2, . . . , ξ1 +
· · · + ξk−1) conditionally given ξ1 + · · · + ξk = 0. We say that (0,Y1, . . . , Yk−1) is a
discrete bridge with shifted geometric steps, and we let νk be the law of this random
vector. It is simple to see that, if ν0k is the uniform distribution on

{
(x1, . . . , xk) ∈ {−1, 0, 1, 2, . . .}k :

k∑
i=1

xi = 0

}
,

then νk is the image measure of ν0k under (x1, . . . , xk) �→ (
∑ j

i=1 x j , 0 ≤ j ≤ k − 1).
Finally, the white vertices of a forest with law Ml carry random integer labels with

the following law. Conditionally given the forest, if u is a black vertex with parent u0
and children u1, u2, …, uk , then the law of the label differences (�(ui ) − �(u0), 1 ≤
i ≤ k) is given by νk , while those label differences are independent as u ranges
over all black vertices of the forest. The labels of the roots ρ1, …, ρl of the forest
have same law as (0,Y1, . . . ,Yl−1), where (Y1, . . . ,Yl−1) has law νl . These specify
entirely the law of the labels, and in fact, one sees that labels are uniform among all
admissible labelings of the forest, in which the root ρ1 of the first tree carries label 0.
For simplicity, we still denote by Ml the law of the forest of well-labeled mobiles thus
obtained.

Recall the definitions (4) and (5) of the pointed measures W • and W
•,S
l,n .

Proposition 23 Let q be an admissible sequence, and l ≥ 1. Then the image of Ml

under the Bouttier–Di Francesco–Guitter bijection is, after uniform re-rooting on the
boundary, the probability measure W

•
l .

For S ∈ {V, E, F} and a pair (l, n) such that Ml(NS = n) > 0, the same statement
holds if we replace both Ml with Ml( · | NS = n) and W

•
l with W

•,S
l,n .

This is provedby following the same steps as in [34, Proposition 7] andby applying a
straightforward analog of Lemma 10; we omit the details. At this point, we can prove
Lemma 3, which describes the set ES(q) of pairs (l, n) such that W(BS

l,n) > 0 or,

equivalently, such that Ml(NS = n) > 0.

Proof of Lemma 3 Let us fix the symbol S. By Proposition 2.2 in [42], under the law
M1, there exist two constants α, h such that the support of NS is included in α +hZ+,
and moreover, for every m large enough, M1(NS = α + hm) > 0. In particular, there
exists β ∈ α + hZ+ such that M1(NS = β + hm) > 0 for every m ≥ 0. This means
that the support of the law of NS under M1 is equal to R ∪ (β + hZ+), for some
R ⊆ {0, 1, . . . , β − 1} ∩ (α + hZ+). From this, we immediately deduce the similar
result for forests under the distribution Ml . Namely, the support of NS under Ml is
equal to Rl ∪ (βl + hZ+), for some Rl ⊆ {0, 1, . . . , βl − 1}. From this observation
and Proposition 23, using the remark at the end of the preceding section that the image
of NS under the BDG bijection is |S| − 1{S=V}, we obtain that the support of the law
of |S(m)| − 1{S=V} under W

•
l (or under Wl by the absolute continuity relation (6)) is

equal to

Rl ∪ (βl + hZ+).
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The result follows immediately from this, since the explicit form of h was computed
in Lemma 6.1 of [42]. ��

Again, in all the following, when considering pairs (l, n)where l corresponds to the
boundary length of a map, and n to its size (measured with respect to the symbol S),
it will always be implicitly assumed that (l, n) ∈ ES(q), which by Lemma 3 means
that, up to finitely many exceptions,

n = βSl [mod hS].

7 Convergence of the encoding processes

In this section, it will be convenient to consider possibly infinite forests f = (t1, t2, . . .)
equipped with a label function �, rather than finite forests only. Let (f, �) be either a
finite or such an infinite labeled forest.

With it, we associate several exploration processes. Let v0, v1, v2… denote the
vertices of f (black or white), listed in depth-first order, tree by tree. Let H be the
so-called height process associated with f , that is, H(i) denotes the distance between
the vertex vi and the root ρ(i) of the tree to which it belongs. If the forest f is finite,
this process is defined for 0 ≤ i ≤ NE − 1, and we extend it one step further by
letting H(NE) = 0. For 0 ≤ i ≤ NE ∈ N ∪ {∞}, we set �̂(i) = �(vi ), as well as
�̂0(i) = �̂(i) − �(ρ(i)). Note that this notion of label process differs from the one
introduced during Sect. 5; we use the notation with a hat in order to avoid confusion.
Next, let ϒ(i) be the number of fully explored trees at time i , that is, ϒ(i) + 1 = p
whenever vi belongs to the p-th tree of f , that is ρ(i) = ρp. We also let

τl = inf{i ≥ 0 : ϒ(i) = l}

be the number of (black or white) vertices in the first l trees of the forest. Note for
instance that, with the notation of Sect. 6.1, one has NE = τl if f has l trees. Finally,
we extend the definitions of H , �̂0, �̂ and ϒ to R+ by linear interpolation.

Let us now consider an infinite random labeled forest (F, �) with distribution
M∞ = (M1)

⊗N. Under this law, the random labels are defined as explained before
Proposition 23, except that the root labels are all set to 0, so that �̂ = �̂0 in this context.
In fact, the process �̂ will only be of interest under Ml ; we will focus on it later.

7.1 Convergence for an infinite forest

A key result is the following. Recall that Zq is given by (7) and ρq = 2+Z3
q f ′′

q (Zq).
Define

σ 2
q = Zqρq

4
, σE

2 = ρq

Zq
.

Proposition 24 The following joint convergence holds in distribution in C(R+, R
3)

under M∞:
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(
H(m ·)√

m
,
ϒ(m ·)√

m
,
�̂0(m ·)
m1/4

)
(d)−→

m→∞

(
2

σq
(X − X),−σE X ,

√
2σE

3
Z0

)

where (Xt , t ≥ 0) is a standard Brownian motion, Xt = inf0≤s≤t Xs and Z0 is the
Brownian snake with driving process X − X, introduced in Sect. 2.2.

Proof Wenote that the two-type branching process with offspring distributionsμ◦,μ•
and alternating types is a critical branching process, inwhich the offspring distributions
have small exponentialmoments (this is the placewherewe use the fact that q is regular
critical), as discussed in Proposition 7 of [34]. Furthermore, the spatial displacements
with distribution νk are centered and carried by [−k, k]k respectively. In particular,
they have moments of all orders, which grow at most polynomially, in the sense that
for every a > 0,

〈νk, | · |a〉 = O(ka),

where | · | is the Euclidean norm in R
k . This is exactly what is needed to apply

Theorems 1 and 3 in [36], which in our particular context stipulate that

(
H(m ·)√

m
,
ϒ(m ·)√

m
,
�̂0(m ·)
m1/4

)
(d)−→

m→∞

(
2

σ
(X − X),− σ

b◦
X , �

√
2

σ
Z0

)
,

where the constants σ , b◦ and � are defined in the following way. The mean matrix
of the two-type Galton–Watson process under consideration is given by

(
0 m◦
m• 0

)
,

where m◦ is the mean of μ◦, and m• is the mean of μ•. Note that m• = m−1◦ as an
immediate consequence of the fact that q is regular critical. This matrix admits a left
invariant vector a = (a◦, a•) normalized to be a probability, namely a◦ = (1+m◦)−1

and a• = (1+m•)−1, and a right invariant b = (b◦, b•) normalized in such a way that
the scalar product a · b = 1, namely b◦ = (1+m◦)/2 and b• = (1+m•)/2. Finally,
with (μ◦, μ•), one can associate a quadratic function Q : R

2 → R
2 given by

Q(x◦, x•) = ((σ 2◦ + m◦(m◦ − 1)) x2• , (σ 2• + m•(m• − 1)) x2◦ ),

where σ 2◦ and σ 2• are the variances ofμ◦ andμ•. Then σ 2 is given by the scalar product

σ 2 = a · Q(b).

Finally, �2 is given by the formula

�2 = 1

2

∑
k≥1

μ•(k)
m•

(�k•)2
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where (�k•)2 = 〈νk, |·|2〉 = k(k+1)/3, as can be checked in [34]. After computations,
which have been performed in Section 3.2 of [34], one obtains in particular

m◦ = Zq − 1, b◦ = Zq

2
, σ 2 = Zqρq

4
, �2 = ρq

6
.

The conclusion follows. ��
We are also going to need the following fact. For every m ≥ 1, let

�V(m) = |{i ∈ {0, 1, . . . ,m − 1} : vi ∈ V◦(f)}| ,
�F(m) = |{i ∈ {0, 1, . . . ,m − 1} : vi ∈ V•(f)}| ,

(35)

be respectively the number of white vertices and the number of black vertices among
the first m vertices of F in depth-first order. For convenience, we also let �E(m) = m
(the number of vertices of either type), so that�S makes sense for every S ∈ {V, E, F}.
Define

aV = Z−1
q , aF = 1 − Z−1

q , aE = 1 . (36)

The first two quantities are the ones that appeared in the proof of Proposition 24,
under the notation aV = a◦ and aF = a•. (Recall that, through the BDG bijection,
V correspond essentially to white vertices, F to black vertices and E to edges of the
mobile, which are in direct bijection with the set of vertices of both colors.)

In the following statement and later, the notation oe(n) stands for a quantity that is
bounded from above by c exp(−c′nc′′) for three positive constants c, c′, c′′, uniformly
in n.

Proposition 25 Fix S ∈ {V, E, F}. Then it holds that

(
�S(m ·)

m

)
−→
m→∞ (aS t, t ≥ 0)

in probability under M∞ for the uniform topology over compact subintervals of R+.
More precisely, for every K > 0, one has the concentration result

M∞
(

max
0≤k≤Km

|�S(k) − aS k| > m3/4
)

= oe(m) .

Proof The result is obvious for S = E, so that we suppose S ∈ {V, F}. We first
note that, since �S(k) ≤ k, it suffices to prove the same bound with the maximum
restricted over indices k ∈ [m1/2, Km]. Now [36, Proposition 6 (ii)] shows that,
if GS

x denotes the number of vertices in depth-first order (of either type) that have
been visited before the �x�-th vertex of type S (white if S = V, black if S = F),
then M∞(|GS

k − a−1
S k| > k3/4) = oe(k). Now |�S(k) − aS k| > m3/4 implies that

GS
aSk+m3/4 ≤ k or GS

(aSk−m3/4)+ ≥ k, the probability of which is bounded from above
by
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M∞
(
|GS

aSk+m3/4 − a−1
S (aS k + m3/4)| ≥ a−1

S m3/4
)

+M∞
(
|GS

(aSk−m3/4)+ − a−1
S (aS k − m3/4)+| ≥ a−1

S m3/4
)

.

Taking the maximum over all k ∈ [m1/2, Km] ∩Z, we see that this quantity is oe(m),
as claimed. ��

7.2 Convergence for a conditioned forest

We now want a conditioned version of Proposition 25. We are going to need the
following estimates. Recall the definition (2) of hS, the definition (9) of jL(A), and
define QS(l, n) = Ml(NS = n). We will also need the notation

τS
l = �S(τl) .

In words, τE
l = τl is the number of vertices in the l first trees of the forest, while τV

l
(resp. τF

l ) is the number of white (resp. black) vertices in these trees.

Lemma 26 Let S ∈ {V, E, F}. Then
sup
n∈ES

l

∣∣∣ l2QS(l, n) − hS j1/σS

( n
l2

)∣∣∣ −→
n→∞ 0.

Proof Suppose first that S = E. In this case, a consequence of the convergence of the
second component in Proposition 24 is that

τl

l2
(d)−→

l→∞ T1/σE ,

where we recall that T1/σE = inf{t ≥ 0 : Xt = −1/σE} is a.s. a continuous function
of X under theWiener measure, due to the fact that X (T1/σE−ε)+ > −1/σE > XT1/σE+ε

a.s. for every ε > 0.Moreover, τl underM∞ is the sum of l i.i.d. random variables with
same law as τ1: these are given by the number of vertices of the first l trees in the infinite
forest of independent randommobiles. Since it iswell known that T1/σE follows a stable
distribution with index 1/2, with a density given by j1/σE , we conclude that τ1 under
M∞ is in the domain of attraction of this law. The statement is then a consequence of
the local limit theorem for stable random variables [14, Theorem 8.4.1].

The remaining two cases S ∈ {V, F} are now direct consequences of the case S = E
and of Proposition 25, which together imply that we have

τS
l

l2
= �S(τl)

l2
= aS τl (1 + oP(1))

l2
, (37)

where oP(1) denotes a quantity that converges to 0 in probability. This yields that

τS
l

l2
(d)−→

l→∞ aST1/σE

(d)= T√
aS/σE = T1/σS ,
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600 J. Bettinelli, G. Miermont

as can be checked using (8) and (36). The conclusion follows by the same arguments
as in the case S = E. ��

In this section, it is convenient to consider processes whose total duration is not
fixed. We letW be the set of real-valued continuous functions f defined on an interval
of the form [0, ζ ] for some ζ = ζ( f ) ∈ [0,∞). This set is endowed with the distance

dist( f, g) = ‖ f (· ∧ ζ( f )) − g(· ∧ ζ(g))‖∞ + |ζ( f ) − ζ(g)|

which makes it a complete separable metric space. For instance, the height process H
under the law Ml is defined as before, by letting H(i) be the distance of the i + 1-th
visited vertex vi to the root of the tree to which it belongs, for 0 ≤ i ≤ τl − 1, and
with the convention that H(τl) = 0. After interpolation between integer values, H is
an element of W with duration ζ(H) = τl = NE.

Recall the definition of S S
L given right after (8).

Proposition 27 Let S ∈ {V, E, F} and (lk, nk)k≥0 ∈ S S
L for some L > 0. Then,

under Mlk ( · | NS = nk), it holds that

⎛
⎝H

(
a−1

S nk ·
)

√
nk

,
ϒ
(
a−1

S nk ·
)

√
nk

,
�̂0
(
a−1

S nk ·
)

nk1/4

⎞
⎠ (d)−→

k→∞
(

2√
aS σq

(X − X),−σS X ,

√
2σS

3
Z0

)
,

in distribution in the space W3 where, in the limit, X, Z0 are understood under the
law F

1
L defined in Sect. 2.2. Note that, on the left-hand side above, all three processes

have duration aSτlk/nk.

Proof For simplicity, let �k denote the triple appearing in the left-hand side of the
convergence. Denote by Fp the σ -field generated by the p first trees of the generic
(canonical process) infinite forest f = (t1, t2, . . .), together with their labels. Let G
be measurable with respect to Fl ′k , with l ′k < lk . Then, by independence of the trees
under Mlk , we have

Mlk

[
G
∣∣ NS = nk

]
= M∞

⎡
⎢⎣G QS

(
lk − l ′k, nk − τS

l ′k

)
QS(lk, nk)

⎤
⎥⎦ , (38)

where it should be understood that the quantity in the expectation is 0 whenever
τS
l ′k

> nk . Note that this is the place where we have to consider the label process �̂0

rather than �̂, which amounts to setting the root labels to zero, in order to be able to
use the claimed independence of the labeled trees.
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Now, we impose that G = �(�′
k) is a continuous, bounded function of the triple

of processes

�′
k =

⎛
⎝H

(
a−1

S nk · ∧τl ′k

)
√
nk

,
ϒ
(
a−1

S nk · ∧τl ′k

)
√
nk

,
�̂0
(
a−1

S nk · ∧τl ′k

)

n1/4k

⎞
⎠ ,

where we assume that l ′k ∼ L ′σS
√
nk for some 0 < L ′ < L . Proposition 24 shows

the convergence in distribution

⎛
⎜⎝H

(
a−1

S nk ·
)

√
a−1

S nk
,
ϒ
(
a−1

S nk ·
)

√
a−1

S nk
,
�̂0
(
a−1

S nk ·
)

(
a−1

S nk
)1/4

⎞
⎟⎠ (d)−→

k→∞
(

2

σq
(X − X),−σE X ,

√
2σE

3
Z0

)
,

where the limit is understood under the law P. Using the convergence of the second
component, the asymptotic behavior of l ′k and the fact that aSσS

2 = σE
2, it follows

that

τl ′k
a−1

S nk

(d)−→
k→∞ TL ′ ,

and that this convergence holds jointly with the previous one. From this, it follows
that �′

k converges in distribution under M∞ to the triple

�′∞ =
(

2√
aS σq

(X − X) · ∧TL′ ,−σS X · ∧TL′ ,

√
2σS

3
Z0· ∧TL′

)

and an application of (37) implies that τS
l ′k
/nk → TL ′ jointly with the above conver-

gence. By the Skorokhod representation theorem, we may assume that the probability
space is chosen in such a way that these convergences hold in the almost-sure sense,
and then (38) together with Lemma 26 implies that

Mlk

[
�(�′

k)
∣∣ NS = nk

]
−→
k→∞ E

⎡
⎢⎢⎣�(�′∞)

L2

(L − L ′)2

j1/σS

(
(1 − TL ′)

σS
2 (L − L ′)2

)

j1/σS

(
1

σS
2L2

)
⎤
⎥⎥⎦

and the limit can be re-expressed as

E

[
�(�′∞)

jL−L ′(1 − TL ′)

jL(1)

]
= F

1
L [�(�′∞)].
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In otherwords, underMlk ( · | NS = nk), the vector�′
k converges in distribution to�′∞,

where, in the limit, X , Z0 are understood under F
1
L . By definition, �(�′∞) is GTL′ -

measurable and, by Galmarino’s test, we have GTL′ = σ(X · ∧TL′ , Z
0· ∧TL′ ), so that, if it

exists, the limit of the triple considered in the statement of the proposition necessarily
has the claimed law, by virtue of Proposition 9.

To conclude the proof, it remains to prove that the laws of the processes under
consideration are tight inW3.We can argue as follows. Let f be a continuous function
defined on an interval I , and J ⊆ I be a subinterval of I . Denote by

ω( f, δ, J ) = sup
s,t∈J, |t−s|≤δ

| f (t) − f (s)|

the modulus of continuity of f restricted to J , and let ω( f, δ) = ω( f, δ, I ).
Here, let Yk denote either of the coordinates of �k . Then, under Mlk ( · | NS = nk),

ω(Yk, δ) ≤ ω
(
Yk, δ, [0, aSτl ′k/nk]

)
+ ω

(
Yk, δ, [aSτl ′k/nk, aSτlk/nk]

)

while the second component has same distribution as

ω
(
Yk, δ, [0, aSτlk−l ′k/nk]

)

by a symmetry argument (the lk trees of the labeled forest are exchangeable). Choosing
l ′k ∼ lk/2, we obtain from the convergence of �′

k (for L
′ = L/2) that

lim sup
k→∞

Mlk

(
ω(Yk, δ) ≥ ε

∣∣ NS = nk
)

≤ lim sup
k→∞

(
Mlk

(
ω
(
Yk, δ, [0, aSτl ′k/nk]

)
≥ ε/2

∣∣ NS = nk
)

+Mlk

(
ω
(
Yk, δ, [0, aSτlk−l ′k/nk]

)
≥ ε/2

∣∣ NS = nk
))

≤ 2F
1
L

(
ω
(
Y∞, δ, [0, TL/2]

) ≥ ε/2
)
,

where Y∞ is the coordinate of the limiting vector of the statement that corresponds
to Yk (for instance Y∞ = 2(X − X)/

√
aS σq if Yk is the first component of �k).

This quantity converges to 0 as δ → 0, for any fixed ε > 0. A similar yet simpler
reasoning gives that the total durations aSτlk/nk , k ≥ 0 considered respectively under
Mlk (· | NS = nk), k ≥ 0 form a tight family. From this, it is an immediate consequence
of the Ascoli–Arzela theorem that the laws of�k , k ≥ 1 are relatively compact inW3.

��
We are now in position to consider the root labels under Ml , that is, to look at the

convergence of the label process �̂ rather than �̂0.

Corollary 28 Let S ∈ {V, E, F} and (lk, nk)k≥0 ∈ S S
L for some L > 0. Then, under

Mlk ( · | NS = nk), it holds that
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⎛
⎝H

(
a−1

S nk ·
)

√
nk

,
ϒ
(
a−1

S nk ·
)

√
nk

,
�̂
(
a−1

S nk ·
)

nk1/4

⎞
⎠ (d)−→

k→∞
(

2√
aS σq

(X − X),−σS X ,

√
2σS

3
Z

)
,

in distribution in the space W3 where, in the limit, X, Z are understood under the
law F

1
L , defined in Sect. 2.2.

Proof It suffices to apply the preceding proposition, noting that one can get the fol-
lowing representation for the label process �̂ in terms of �̂0:

�̂(i) = �̂0(i) + B(ϒ(i)),

where B is a discrete bridge with shifted geometric step, with law νlk defined
in Sect. 6.2, and independent of H , ϒ , �̂0. It holds that, under our hypotheses,
B(σS

√
nk ·)/√2σSn

1/4
k converges in distribution to a Brownian bridge b with dura-

tion L (see [10, Proposition 7]). Putting things together, we obtain that

�̂
(
a−1

S nk ·
)

nk1/4
=

�̂0
(
a−1

S nk ·
)

nk1/4
+

B
(
σS

√
nk (ϒ(a−1

S nk ·)/σS
√
nk)
)

nk1/4
,

which converges in distribution to s �→ √
2σS/3 Z0

s + √
2σS b−Xs

, jointly with the
rescaled processes H and ϒ , with b independent of X , Z0. By definition (14), this
yields the result. ��

Finally, we note that the convergence of �S stated in Proposition 25 still holds for
conditioned forests. Indeed, since the conditioning event {NS = nk} has a probability
QS(lk, nk) = �(l−2

k ) = �(n−1
k ) by Lemma 26, we obtain that for any c′ > 0,

Mlk

(
max

0≤i≤NE
|�S(i) − aS i | > n3/4k | NS = nk

)

≤ cnk M∞
(

max
0≤i≤c′nk

|�S(i) − aS i | > n3/4k

)
+ Mlk (N

E > c′nk | NS = nk).

for some constant c > 0. The first term is oe(nk) by Proposition 25. The second term
is equal to 0 if S = E and c′ > 1. If S = V, it can be bounded by

cnk M∞(�V(c′nk) ≤ nk) = oe(nk),

as soon as c′ is chosen strictly larger than a−1
V , again by Proposition 25. The argu-

ment is the same if S = F. In particular, as �S(NE) = NS, this implies that, under
Mlk ( · | NS = nk), one has
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604 J. Bettinelli, G. Miermont

NS

NE −→ aS

in probability as k → ∞. This implies the following reformulation and refinement of
the preceding corollary.

Corollary 29 Let S ∈ {V, E, F} and (lk, nk)k≥0 ∈ S S
L for some L > 0. Then, under

Mlk ( · | NS = nk), it holds that

(
H(NE ·)√

nk
,
ϒ(NE ·)√

nk
,
�̂(NE ·)
nk1/4

)
(d)−→

k→∞

(
2√
aS σq

(X − X),−σS X ,

√
2σS

3
Z

)
,

in distribution in the space W3, where, in the limit, X, Z are understood under the
law F

1
L . Moreover, one has, still under Mlk ( · | NS = nk),

(
�S(NEt)

NS , 0 ≤ t ≤ 1

)
−→
k→∞ Id[0,1]

in probability.

7.3 Convergence of the white contour and label processes

Finally,we consider a variant of the latest corollarywhere the height process is replaced
by the slightly more convenient contour processes. First, given the forest F with
possibly infinitely many trees, we let C̄ be its contour process, defined as follows. We
first add edges linking the roots of consecutive trees as we did before (see for instance
the left part of Fig. 5). We then let c0, c1… be the list of corners of the trees, arranged
in contour order. The purpose of the added edges linking the roots is to “split in two”
the root corners of the trees: a tree with p edges will thus have 2p+1 corners. Finally,
we let C̄(i) be the distance between ci and the root of the tree to which it belongs. Note
that there is slight difference with the contour function C defined in Sect. 5.1, where
a downstep was separating the contours of successive trees, instead of the horizontal
step we have here. It is a standard fact, proved in [22, Chapter 2.4], that the contour
and height process of a forest are asymptotically similar in the following sense. First,
let f (i) + 1 be the number of distinct vertices incident to the corners c0, c1, …, ci
(these vertices being v0, …, v f (i)). Then it holds that f (i) ≤ i for every i ≥ 0, and
for every m ≥ 0, one has

sup
0≤i≤m

∣∣C̄(i) − H( f (i))
∣∣ ≤ 1 + sup

0≤i≤m
|H(i + 1) − H(i)|

and

max
0≤i≤m

∣∣∣∣ f (i) − i

2

∣∣∣∣ ≤ 1 + 1

2
max
0≤i≤m

Hi . (39)
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From this, and the convergence of the rescaled height process stated in Corollary 29,
it follows easily that under the same hypotheses,

C̄(2NE ·)√
nk

(d)−→
k→∞

2√
aS σq

(X − X),

where X is understood under F
1
L . Now, we want to consider the white contour pro-

cess C̄◦, defined as follows. We let c◦0, c◦1, …, c◦
NE−1

be the list of corners that are

incident to white vertices, arranged in contour order as above. Then 2C̄◦(i) is the
distance between c◦i and the root of the tree to which it belongs (note that this number
is even). In the contour process, white vertices are visited once in every pair of steps,
except at times when one of the trees has been fully explored. The number of such
exceptions is lk = O(

√
nk), so clearly the preceding convergence implies

C̄◦(NE·)√
nk

(d)−→
k→∞

1√
aS σq

(X − X),

where the limit is understood under F
1
L . Define ϒ◦(i) to be the number of completely

explored trees when visiting c◦i , as well as �◦(i) to be the label of c◦i . Beware that the
definitions of C̄◦,ϒ◦ and �◦ involve corners listed in contour order, instead of vertices
listed in depth-first order, as in the definitions of H , ϒ and �̂. Similar arguments entail
the following joint convergence.

Corollary 30 Let S ∈ {V, E, F} and (lk, nk)k≥0 ∈ S S
L for some L > 0. Then, under

Mlk ( · | NS = nk), it holds that

(
C̄◦(NE ·)√

nk
,
ϒ◦(NE ·)√

nk
,
�◦(NE ·)
nk1/4

)
(d)−→

k→∞

(
1√
aS σq

(X − X),−σS X ,

√
2σS

3
Z

)
,

in distribution in the space W3, where, in the limit, X, Z are understood under the
law F

1
L .

8 Proof of the invariance principle

In this section, we prove Theorems 5 and 8. The arguments, originating in [30, Sec-
tion 8], are now very standard, and have been applied successfully in [1,2,7,12] in
particular. Our approach is an easy adaptation of the arguments that can be found in
either of these papers, so here we will be a bit sketchy. Let q be a regular critical
sequence as in the previous section.

8.1 Convergence of conditioned pointed maps

The goal of this subsection is to prove the second statement of Theorem 5, dealing
with the laws W

•,S
l,n , defined by (5).
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Fix S ∈ {V, E, F} and (lk, nk)k≥0 ∈ S S
L for some L > 0. For every k ≥ 0,

consider a forest (F, �) of labeled mobiles with law Mlk ( · | NS = nk), and let M•
k be

the pointed random map with distribution W
•,S
lk ,nk

which is the image of (F, �) under
the Bouttier–Di Francesco–Guitter bijection, uniformly re-rooted on the boundary, as
in Proposition 23.

Recall thatwewant to show the convergence in distribution for the pointedGromov–
Hausdorff topology (

4σS
2

9
nk

)−1/4

M•
k

(d)−→
k→∞ BDL , (40)

where BDL is pointed at x∗. The proof follows closely in spirit that of [30, Section 8].
Let

D′
k(i, j) = dM•

k

(
c◦i , c◦j

)
, 0 ≤ i, j ≤ NE

(with the convention that c◦
NE = c◦0) and extend D′

k to a continuous function on

[0, NE]2 by a formula similar to (21). In this way, D′
k satisfies the triangle inequality,

and one has

D′
k(i, j) ≤ �◦(i) + �◦( j) − 2max

(
min[i∧ j,i∨ j] �

◦, min
[i∨ j,NE]∪[0,i∧ j]

�◦
)

+ 2, (41)

see for instance [28, Lemma 3.1] for the special case of p-mobiles (in which black
vertices all have degree p, which corresponds to 2p-angulations via the BDG bijec-
tion), but the proof in this general context is the same. Clearly, it also holds that,
if c◦i and c◦j are incident to the same vertex, which means that C̄◦(i) = C̄◦( j) =
minr∈[i∧ j,i∨ j] C̄◦(r) and ϒ◦(i) = ϒ◦( j) then D′

k(i, j) = 0. This generalizes to all s,
t ∈ [0, NE] rather than just integer values.

Now for s, t ∈ [0, 1] let D′
(k)(s, t) = (4σS

2nk/9)−1/4D′
k(N

Es, NEt). The same
proof as [28, Proposition 3.2] (the key ingredients being (41) and the convergence of
the rescaled labeled process �◦, established in Corollary 30) shows that, underMlk , the
laws of D′

(k) are tight in the space C([0, 1]2, R). Therefore, from any extraction, one
can further extract a subsequence along which one has the following joint convergence
in distribution under Mlk (· | NS = nk),

(
C̄◦(NE ·)√
nk/(

√
aSσq)

,
ϒ◦(NE ·)
σS

√
nk

,
�◦(NE ·)

(4σS
2nk/9)1/4

, D′
(k)

)
(d)−→

k→∞
(
X − X ,−X , Z , D′)

(42)
where D′ is some random continuous function on [0, 1]2, and (X, Z) is the snake
process under the law F

1
L introduced in Sect. 2.2. Recall the definition of the set D

in Sect. 2.3, as well as the definition of s∗, the a.s. unique time in [0, 1] such that
Zs∗ = inf Z . We have the following result, which follows from a simple limiting
argument, based on (41) and the discussion above, as well as (33) for the last point.
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Lemma 31 Almost-surely, it holds that

• the random function D′ is a pseudo-metric on [0, 1], such that D′ ∈ D, and
• for every s ∈ [0, 1], D′(s, s∗) = Zs − Zs∗ .

Let D∗ be the Brownian disk distance defined from the process (X, Z) by (17).
By definition, it holds that D′ ≤ D∗. The conclusion will follow from the following
re-rooting property.

Lemma 32 LetU, V be two independent uniform randomvariables in [0, 1], indepen-
dent of the other random variables under consideration. Then D′(U, V ) and D′(s∗,U )

have the same distribution.

Proof This is again obtained by a limiting argument. The idea is to couple the random
variables U and V with two uniformly chosen vertices of M•

k .
For i ∈ {1, 2, . . . , NV}, let g(i) be the first time j such that c◦j is the i-th white

vertex in depth-first order. We also let g(0) = 0 and extend by linear interpolation g
into a continuous increasing function on [0, NV]. Recall the definition (35) of �V(i)
(for 0 ≤ i ≤ NE), the number of white vertices among v0, …, vi , where v0, v1… are
listed in depth-first order. For i ∈ {1, 2, . . . , NV}, let

K (i) = inf{ j ∈ {0, 1, . . . , NE} : �V( j) = i},

so by definition, vK (i) is the i-th visited white vertex in depth-first order. Recall also
from Sect. 7.3 that f ( j) + 1 is the number of distinct vertices incident to the corners
c0, …, c j . We let

K ′(i) = inf{ j ≥ 0 : f ( j) = i}

be the first time of visit of the vertex vi in contour order. Consequently, K ′(K (i)) is
the first time of visit, in the contour sequence c0, c1…, of vK (i). Finally, since g(i) is
the first index j such that c◦j is incident to vK (i), we have that

g(i) = K ′(K (i))/2 + Rk(i) (43)

where the error term satisfies sup1≤i≤NV |Rk(i)| ≤ lk = O(
√
nk), recalling the dis-

cussion of Sect. 7.3.
It follows from the last part of Corollary 29 and from (39) respectively that

K (NV·)
NE −→

k→∞ Id[0,1],
K ′(NE ·)
2NE −→

k→∞ Id[0,1],

in probability under Mlk ( · | NS = nk). From this and (43), we conclude that

g(NV·)
NE −→

k→∞ Id[0,1], (44)

still in the same sense.

123



608 J. Bettinelli, G. Miermont

Now, if I is a uniform random variable on {1, 2, . . . , NV} independent of the rest,
then vK (I ) is uniformly distributed among the white vertices of the forest, that is,
among the vertices of themapM•

k distinct from the distinguished vertex v∗. Therefore,
if we let v(1) = vK ("NVU#) and v(2) = vK ("NVV #), then v(1), v(2) can be coupled with
two independent uniform vertices v′

(1), v
′
(2) of M

•
k in such a way that the conditional

probability given M•
k that v(i) �= v′

(i), i ∈ {1, 2}, is at most 1/|V(M•
k )|. The latter

quantity, also equal to 1/(NV + 1), converges to 0 in probability under Mlk ( · | NS =
nk) as k → ∞.

Since v∗ is a uniform random vertex of M•
k , we obtain that

dM•
k

(
v∗, v′

(1)

)
(d)= dM•

k

(
v′
(1), v

′
(2)

)
.

Due to the above discussion, outside a set of vanishing probability, we may assume
that v′

(1) = v(1) and v′
(2) = v(2).

Now note that, by (33),

dM•
k
(v∗, v(1)) = �◦ (g("NVU#)

)
− inf �◦ + 1,

and, by definition of D′
k ,

dM•
k
(v(1), v(2)) = D′

k

(
g("NVU#), g("NVV #)

)
.

Using (44), we conclude that

(
4σS

2nk
9

)−1/4

dM•
k
(v∗, v(1))

(d)−→
k→∞ ZU − inf Z = D′(s∗,U ),

while

(
4σS

2nk
9

)−1/4

dM•
k
(v(1), v(2))

(d)−→
k→∞ D′(U, V ).

It follows that D′(U, V ) and D′(s∗,U ) have same distribution, as claimed. ��
To conclude the proof of (40), we note that, by Lemma 32,

E[D′(U, V )] = E[D′(s∗,U )] = E[ZU − inf Z ] = E[D∗(s∗,U )] = E[D∗(U, V )],

whence it follows that D′(U, V ) = D∗(U, V ) a.s. since D′ ≤ D∗. The last equality
comes from Corollary 21; this is in fact the only place where we use the specific study
of Sects. 3 and 5.

This implies, by Fubini’s theorem, that a.s. D′(s, t) = D∗(s, t) for a.e. s, t ∈
[0, 1], so that D′ = D∗ a.s. by a density argument. This identifies D′ uniquely, and
shows that the convergence of D′

(k) to D′ = D∗ holds without having to pass to a
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subsequence. From there, showing the pointed Gromov–Hausdorff convergence of
(4σS

2nk/9)−1/4M•
k under W

•,S
lk ,nk

to BDL (pointed at x∗) is routine, and similar to the
beginning of Sect. 5.2 or [10, Section 3.2].

8.2 De-pointing

Here we show how to dispose of the pointing that intervenes in (40), to obtain the
first statement of Theorem 5. The argument closely follows the last section of [1], see
also [12] for a similar situation.

Similarly to the absolute continuity relation (6), for S ∈ {V, E, F}, we have

dW
S
l,n(m) = K S

l,n

|V| d
(
φ∗W

•,S
l,n

)
(m) (45)

where K S
l,n = W

•,S
l,n [1/|V|]−1 and φ : B• → B is the function defined before (6) that

forgets the distinguished vertex. In particular, WV
l,n = φ∗W

•,V
l,n for every l, n, so in the

case S = V, the statement of Theorem 5 follows from (40).
Now suppose that S ∈ {E, F}. Then, by Propositions 23 and 25, it holds that, for

every ε > 0,

W
•,S
lk ,nk

(∣∣∣∣|V| − aV

aS
nk

∣∣∣∣ > εnk

)
= Mlk

(∣∣∣∣NV + 1 − aV

aS
nk

∣∣∣∣ > εnk

∣∣∣∣ NS = nk

)

= oe(nk) .

(Note that a bound of the form o(1/nk)would suffice for the argument to work.) From
this and the fact that 1/|V| ≤ 1, we obtain that, for every δ > 0,

W
•,S
lk ,nk

[∣∣∣∣ aV nk
aS |V| − 1

∣∣∣∣
]

≤ δ +
(
aV

aS
nk + 1

)
W

•,S
lk ,nk

(∣∣∣∣aV

aS
nk − |V|

∣∣∣∣ > δ |V|
)

= δ + oe(nk),

since

W
•,S
lk ,nk

(∣∣∣∣aV

aS
nk − |V|

∣∣∣∣ > δ |V|
)

≤ W
•,S
lk ,nk

(
|V| ≤ aV

aS

nk
2

)

+ W
•,S
lk ,nk

(∣∣∣∣aV

aS
nk − |V|

∣∣∣∣ > δ
aV

aS

nk
2

)
= oe(nk).

From this it follows that K S
lk ,nk

= aV
aS
nk(1 + o(1)) as k → ∞, and then that

W
•,S
lk ,nk

[∣∣∣∣∣
K S
lk ,nk

|V| − 1

∣∣∣∣∣
]

−→
k→∞ 0.

From this and (45), we obtain the following result.
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610 J. Bettinelli, G. Miermont

Lemma 33 For every S ∈ {E, F}, and every (lk, nk)k≥0 ∈ S S
L , one has

∥∥∥WS
lk ,nk − φ∗W

•,S
lk ,nk

∥∥∥ −→
k→∞ 0,

where ‖ · ‖ is the total variation norm.

Theorem 5 is now a direct consequence of this statement combined with (40).

8.3 Proof of the convergence of Boltzmann maps

This section is dedicated to the proof of Theorem 8. As in the proof of Theorem 5,
we first focus on random maps with distribution W

•
l , which are easier to handle, since

they are directly related by Proposition 23 to random labeled forests with law Ml .
The result follows from the fact that, for any measurable and bounded function �,

W
•
l [�] =

∑
n∈EV

l

W
•
l (|V| = n + 1) W

•,V
l,n [�]

=
∑
n∈EV

l

Ml

(
NV = n

)
W

•,V
l,n [�]. (46)

At this point, recall from Lemma 3 that EV
l = RV

l ∪ (βVl + hV
Z+), where βV ≥ 1

and RV
l ⊆ {0, 1, . . . , βVl − 1}. For simplicity, let us use the notation β = βV and

h = hV. Therefore,

W
•
l [�] =

∑
n≥0

Ml

(
NV = βl + hn

)
W

•,V
l,βl+hn[�] + Rl

=
∫
R+

l2QV
(
l, βl + h�l2A�

)
W

•,V
l,βl+h�l2A�[�] dA + Rl

where |Rl | ≤ ‖�‖∞W
•
l (|V| ≤ βl). Recall that, by Proposition 23 and definition

of Ml , under W
•
l , the random variable |V| − 1 has same distribution as a sum of l

i.i.d. random variables with distribution QV(1, ·). The proof of Lemma 26 yields that,
under W

•
l

|V|
l2

(d)−→
l→∞

1

σV
2A

•

whereA• is a stable random variable with density j1. Clearly, this implies thatRl →
0 as l → ∞. Now assume that � = ϕ((2l/3)−1/2M) where ϕ is a continuous
and bounded function on the pointed Gromov–Hausdorff space. Then one has, by
Theorem 5,
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W
•,V
l,βl+h�l2A�

[
ϕ
(
(2l/3)−1/2M

)]
−→
l→∞ E

[
ϕ
(
(hσV

2A)1/4 BD(hσV2A)−1/2

)]

= E
[
ϕ
(
BD1,hσV

2A

)]
,

where the last equality follows from Remark 3. At this point, we apply Lemma 26,
which implies that for every A > 0,

l2QV
(
l, βl + h�l2A�

)
−→
l→∞ hj1/σV(hA) = hσV

2 j1
(
hσV

2A
)

.

The Scheffé Lemma (in fact a slight generalization, since the functions on the left-
hand side are only sub-probability densities) implies that the latter convergence holds
in fact in L1(dA), and we conclude that

lim
l→∞ W

•
l

[
ϕ
(
(2l/3)−1/2M

)]
=
∫
R+

hσV
2 j1

(
hσV

2A
)

E
[
ϕ
(
BD1,hσV2A

)]
dA

=
∫
R+

j1(A)E[ϕ(BD1,A)] dA

and this is equal to E[ϕ(FBD•
1)]. The second part of Theorem 8 follows.

To obtain the result under Wl instead of W
•
l , note that (6) implies

Wl(|V| = n + 1) = Kl
W

•
l (|V| = n + 1)

n + 1
(47)

where Kl = W
•
l [1/|V|]−1. We then use the following lemma, which is certainly

known, but for which we did not find a proper reference.

Lemma 34 Let X1, X2…be a sequence of i.i.d. r.v.s with values in {1, 2, 3, . . .}, and
such that

P(X1 > k) ∼
k→∞

c

kα

for some constants c ∈ (0,∞) and α ∈ (0, 1). Then

E

[
l1/α

X1 + · · · + Xl

]
−→
l→∞ E

[
1

S

]

where S is the limit in distribution of (X1 + · · · + Xl)/ l1/α as l → ∞ (so that S is a
stable distribution of index α).

Proof By hypothesis and standard facts on stable domains of attractions [14, Chap-
ter 8], our hypotheses imply that as s ↑ 1,

E[sX1 ] = 1 − c′(1 − s)α(1 + o(1))
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612 J. Bettinelli, G. Miermont

for some constant c′ ∈ (0,∞) depending only on c and α. Applying this to s =
exp(−λ) for λ ≥ 0 implies that

E[exp(−λX1)] = 1 − c′λα(1 + o(1))

as λ ↓ 0, so that there exists c′′ ∈ (0,∞) such that for every λ ∈ [0, 1], one has

E[exp(−λX1)] ≤ 1 − c′′λα

≤ exp(−c′′λα). (48)

On the other hand, the assumption that X1 ≥ 1 a.s. implies that E[exp(−λX1)] ≤
exp(−λ) for every λ ≥ 0. This implies that, possibly by choosing c′′ smaller, one can
assume that (48) is valid for every λ ≥ 0, as we supposed α ≤ 1.

Now note that, for every x > 0, one has (using the inequality 1[0,1](u) ≤ e exp(−u)

in the first step)

P

(
X1 + · · · + Xl ≤ xl1/α

)
≤ eE

[
exp

(
−(X1 + · · · + Xl)/(xl

1/α)
)]

≤ eE

[
exp

(
−X1/(xl

1/α)
)]l

≤ e exp(−c′′x−α),

where we used the version of (48) valid for all λ at the last step. This stretched-
exponential tail bound is uniform in l and clearly implies the convergence of all
negative moments. ��

Since, as we observed, |V| − 1 under W
•
l is distributed as a sum of l i.i.d. random

variables satisfying the hypotheses of Lemma 34 with α = 1/2 (by Lemma 26), this
entails that

lim
l→∞

Kl

l2
= E

[
σV

2

A•

]−1

= 1

σV
2 .

Repeating the previous argument, only changingW
•
l (|V| = n+1) byWl(|V| = n+1)

in (46) and applying (47), and then performing the same steps using the asymptotics
we obtained for Kl , we obtain that for φ a continuous bounded function on the (non-
pointed) Gromov–Hausdorff space,

lim
l→∞ Wl

[
ϕ
(
(2l/3)−1/2M

)]
=
∫
R+

hσV
2

hσV
2A

j1
(
hσV

2A
)

E
[
ϕ
(
BD1,hσV2A

)]
dA

and this is E[ϕ(FBD1)], as wanted.
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