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Abstract Finite sample properties of random covariance-type matrices have been the
subject of much research. In this paper we focus on the “lower tail” of such a matrix,
and prove that it is sub-Gaussian under a simple fourth moment assumption on the
one-dimensional marginals of the random vectors. A similar result holds for more
general sums of random positive semidefinite matrices, and our (relatively simple)
proof uses a variant of the so-called PAC-Bayesian method for bounding empirical
processes. Using this bound, we obtain a nearly optimal finite-sample result for the
ordinary least squares estimator under random design.
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1 Introduction

Let X1, . . . , Xn be i.i.d. random (column) vectors in Rp with finite second moments.
This paper contributes to the problem of obtaining finite-sample concentration bounds
for the random covariance-type operator
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1176 R. I. Oliveira

̂Σn := 1

n

n
∑

i=1

Xi X
T
i (1)

with mean Σ := E
[

X1XT
1

]

. This problem has received a great deal of attention
recently, and has important applications to the estimation of covariance matrices [15,
22], to the analysis of methods for least squares problems [10] and to compressed
sensing and high dimensional, small sample size statistics [2,18,21].

The most basic problem is computing how many samples are needed to bring ̂Σn

close to Σ . In general one needs at least n ≥ p to bring ̂Σn close to Σ , so that the
ranks of the twomatrices canmatch. A basic problem is to find conditions under which
n ≥ C(ε) p samples are enough for guaranteeing

Pr(∀v ∈ R
p, (1 − ε)vTΣv ≤ vT ̂Σn v ≤ (1 + ε) vTΣ v) ≈ 1, (2)

where C(ε) depends only on ε > 0 and on moment assumptions on the Xi ’s.
A well known bound by Rudelson [17,20] implies C(ε) p log p samples are nec-

essary and sufficient if the vectors Σ−1/2Xi/
√
p have uniformly bounded norms.

Removing the log p factor is relatively easy for sub-Gaussian vectors Xi , but even
the seemingly nice case of log-concave random vectors (which have sub-exponential
moments) had to wait for the breakthrough papers by Adamczak et al. [1,3]. A series
of results [9,12,15,22] have proven similar results under finite-moment conditions
on the one-dimensional marginals plus a (necessary) a high probability bound on
maxi≤n |Xi |2.

1.1 The sub-Gaussian lower tail

In this paper we focus on concentration properties of the lower tail of ̂Σn . As it turns
out, information about the lower tail is sufficient for many applications, including
the analysis of regression-type problems (see Theorem 1.2 below for an example).
Moreover, the asymmetry between upper and lower tails is interesting from a purely
mathematical perspective.

Our main result is the following theorem.

Theorem 1.1 (Proven in Sect. 4) Let X1, . . . , Xn be i.i.d. copies of a random vector
X ∈ R

p with finite fourth moments. Define Σ := E
[

XXT
]

and assume

∀v ∈ R
p :

√

E
[

(vT X)4
] ≤ h vTΣ v (3)

for some h ∈ (1,+∞). Set

̂Σn := 1

n

n
∑

i=1

Xi X
T
i as in (1).
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The lower tail of random quadratic forms with... 1177

Then, if the number n of samples satisfies

n ≥ 81h2 (p + 2 ln(2/δ))/ε2,

we have the bound

Pr(∀v ∈ R
p : vT ̂Σn v ≥ (1 − ε) vTΣ v) ≥ 1 − δ. (4)

Notice that the sample size n in Theorem 1.1 depends on p/ε2, which is optimal if
X1 has i.i.d. entries due to the Bai-Yin theorem [5]. Moreover, the dependence of
n on ln(1/δ)/ε2 shows that the sample size depends on the confidence level δ in a
sub-Gaussian fashion. More precisely, Theorem 1.1 implies that

V := 1 − inf
vT Σ v=1

vT ̂Σn v

has a Gaussian-like right tail

Pr

(

V ≥ C h

√

p

n
+ r

)

≤ e−r2n/Ch2 (r ≥ 0),

with C > 0 universal. We observe that Theorem 1.1 has a more general version
involvinggeneral sumsof i.i.d. positive semidefinite randommatrices; seeTheorem4.1
below for details.

Themain assumption inTheorem1.1 is (3). This is afinite-moment assumption, and,
from a theoretical perspective, it seems remarkable that one can obtain sub-Gaussian
concentration from it. From the perspective of applications, there are reasonably nat-
ural settings where (3) is a sensible assumption.

1. Assume first X = (X [1], X [2], . . . , X [p])T has diagonal Σ and satisfies a near
unbiasedness assumption: for all (i1, i2, i3, i4) ∈ {1, . . . , p}4,

i4 /∈ {i1, i2, i3} ⇒ E [X [i1] X [i2] X [i3] X [i4]] = 0.

This is true if X [1], X [2], . . . , X [p] are mean-zero four-wise independent random
variables, or if X [1], X [2], . . . , X [p] is unconditional (i.e. its law is preserved
when each coordinate is multiplied by a sign). From this assumption we may
obtain (3) with

h := 6 max

⎧

⎨

⎩

√

E
[

X [i]4]

E
[

X [i]2] : i = 1, 2, . . . , p, E
[

X2[i]
]

> 0

⎫

⎬

⎭

.

2. Assume now that some X satisfying (3) is replaced by AX + μ for some linear
map A ∈ R

p×p′
and some μ ∈ R

p′
. The new vector still satisfies h < +∞,

although hmay change by a universal constant factor. Note that the matrix A may
be singular and/or that one may have p′ > p, in which case AX + μ will have
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1178 R. I. Oliveira

highly correlated components. This is allowed if X “comes from a vector with
uncorrelated entries”.

3. The property h < +∞ is also preserved when X is multiplied by an independent
scalar ξ , as long as E

[

ξ4
]

/E
[

ξ2
]2

is bounded by an absolute constant. As noted
in [22], this is strictly weaker than what is needed for two-sided concentration as
in (2).

4. An assumption not covered by our theorem is that of bounded designs:
Σ−1/2X1/

√
p a.s. bounded. This is verified when the coordinates X are a ortho-

normal functions such as the Fourier basis over [0, 1] (in this case Σ = Ip×p).
We note that this bounded design case is optimally covered by Rudelson’s afore-
mentioned bound [17,20].

One further attraction of Theorem 1.1 is its proof method, which is based on a
PAC-Bayesian argument. The main feature of this method is that it provides a way
to control empirical processes via entropic inequalities, as opposed to usual chaining
methods. Further details about this method are given in Sect. 3 below. Although our
application of this method is indebted to previous work by Audibert/Catoni [4] and
Langford/Shawe-Taylor [13], we believe that this technique hasmuch greater potential
than what has been explored so far in the literature.

Remark 1 (Recent developments in lower tails) Many developments on variants of
Theorem 1.1 have appeared since the first version of this paper. Almost simultaneously
with us, Koltchinskii and Mendelson [11] obtained analogues of Theorem 1.1 under
the assumption of q > 4 moments on the one dimensional marginals of X1. They also
obtained results under our assumption (3), albeit with suboptimal dependence on p
and ε. Later, Yaskov [24,25] obtained bounds under the assumption of uniform bounds
for the weak Lq norms of one dimensional marginals, where q ≥ 2 is arbitrary. For
each value of q > 2, he obtains the optimal exponent αq > 0 so that n = �(p/εαq )

samples are necessary and sufficient for (4) (with δ = e−p). His theorem is thus
stronger Theorem 4.1 except possibly for the dependence of n on δ. However, the first
part of [8, Theorem 3.1] by van de Geer and Muro achieves similar bounds as Yaskov,
with the same dependence on δ as our own Theorem 1.1. There has also been some
related progress in checking lower- and upper-tail properties that are relevant in the
p � n setting [9].

1.2 Application to ordinary least squares with random design

Theorem 1.1 will be illustrated with an application to random design linear regression
when n � p � 1. In this setting one is given data in the form of n i.i.d. copies
(Xi ,Yi )ni=1 of a random pair (X,Y ) ∈ R

p ×R, where X is a vector of covariates and
Y is a response variable. The goal is to find a vector ̂βn that depends solely on the data
so that the square loss

	(β) := E

[

(Y − XTβ)2
]
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The lower tail of random quadratic forms with... 1179

is as small as possible. This setting of random design should be contrasted with the
technically simpler case of fixed design, where the Xi are non-random. Fixed design
results are not informative about out-of-sample prediction, which is important in many
routine applications of OLS e.g. in Statistical Learning and in Linear Aggregation.

We show below that the usual ordinary least squares (OLS) estimator

̂βn ∈ argminβ∈Rp
1

n

n
∑

i=1

(Yi − βT Xi )
2,

achieves error rates ≈ σ 2 (p + ln(1/δ))/n in the random design setting, where σ 2

measures the magnitude of “errors”. The formal theorem (modulo some definitions in
Sect. 5.1) is as follows.

Theorem 1.2 (Proven in Sect. 5.2) Define (X,Y ), (X1,Y1), . . . , (Xn,Yn) as above.
Let βmin denote a minimizer of 	 and let η := Y −βT

minX . DefineΣ := E
[

XXT
]

, and
let Σ−1/2 be the Moore-Penrose pseudoinverse of Σ1/2. Also set Z := η Σ−1/2X .
Let h, σ 2,h∗ > 0 and q > 2 and assume that, for all v ∈ R

p,

√

E
[

(vT X)4
] ≤ h vTΣ v; (5)

E

[

(vT Z)2
]

≤ σ 2 |v|22; and (6)

q
√

E
[|Z |q2

] ≤ h∗ σ
√
p. (7)

Then for any ε ∈ (0, 1/2), there exists C > 0 depending only on h∗, ε and q such
that, when δ ∈ (C/nq/2−1, 1) and

n ≥ Ch2 (p + 2 ln(4/δ)),

then

Pr

(

	(̂βn) − inf
β∈Rp

	(β) ≤ (1 + ε) σ 2

n

(√
p + C

√

ln(4/δ)
)2
)

≥ 1 − δ.

So for n � p � 1 the excess loss of OLS is bounded by (1 + o (1)) σ 2 p/n, with
high probability. This can be shown to be tight; cf. the end of Sect. 5.1 for details.
An important point is that Theorem 1.2 makes minimal assumptions on the data,
and works in a completely model-free, non-parametric, heteroskedastic setting. Our
moment assumptions are reasonable e.g. when those of Theorem 1.1 are reasonable
and Z = η Σ−1/2X is not too far from isotropic. For instance, if the “noise” term
η is independent from X , this property follows from suitable moment assumptions
on the noise and on the one-dimensional marginals of X . Even when there is no
independence, one only needs higher moment assumptions on X and η (thanks to
Hölder’s inequality).

Theorem 1.2 extends recent papers Hsu et al. [10] and Audibert and Catoni [4]. Hsu
et al. prove a variant of Theorem 1.2 where they assume an independent noise model
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1180 R. I. Oliveira

with sub-Gaussian properties, as well as bounds on Σ−1/2Xi/
√
p. Their bound does

have the advantage of working up to much smaller values of δ. Audibert and Catoni
obtain bounds for δ ≥ 1/n, albeit with worse constants and only by assuming that
(vT X1)

2 ≤ B vTΣ v almost surely for some B > 0. To the best of our knowledge, no
excess loss bounds of optimal order were known under finite moment assumptions.
We do note, however, that Theorem 1.2 is a simple consequence of our main result,
Theorem 1.1, and a Fuk-Nagaev bound by Einmahl and Li [7, Theorem 4].

1.3 Organization

The remainder of the paper is organized as follows. Section 2 reviews some prelimi-
naries and defines our notation. Section 3 discusses our PAC-Bayesian proof method,
and Sect. 4 contains the proof of the sub-Gaussian lower tail (cf. Theorem 1.1). Some
facts about OLS and our proof of Theorem 1.2 are presented in Sect. 5. The final
Section contains some further remarks and open problems.

2 Notation and preliminaries

The coordinates of a vector v ∈ R
p are denoted by v[1], v[2], . . . , v[p].We denote the

space of matrices with p rows, p′ columns and real entries by Rp×p′
. A is symmetric

if it equals its own transpose AT . Given A ∈ R
p×p, we let tr(A) denote the trace of A

and λmax(A) denote its largest eigenvalue. Also, diag(A) is the diagonal matrix whose
diagonal entries match those of A. The p × p identity matrix is denoted by Ip×p. We
identify R

p with the space of column vectors Rp×1, so that the standard Euclidean
inner product of v,w ∈ R

p is vTw. The Euclidean norm is denoted by |v|2 := √
vT v.

We say that A ∈ R
p×p is positive semidefinite, and write A  0, if it is symmetric

and vT Av ≥ 0 for all v ∈ R
p. In this case one can easily show that

vT Av = 0 ⇔ vT A = 0 ⇔ Av = 0. (8)

The 2 → 2 operator norm of A ∈ R
p×p′

is

|A|2→2 := max
v∈Rp′ : |v|2=1

|Av|2.

For symmetric A ∈ R
p×p this is the largest absolute value of its eigenvalues.Moreover,

if A is positive semidefinite |A|2→2 = λmax(A) is the largerst eigenvalue, and (when
A is invertible)

|A−1|2→2 = 1

minv∈Rp : |v|2=1 vT Av
. (9)

Finally, we write A  B if A − B  0.
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The lower tail of random quadratic forms with... 1181

Throughout the paper we use big-oh and little-oh notation informally, mostly as
shorthand. For instance, a = O (b) means that a is at most of the same order of
magnitude as b, whereas a = o (b) or a � b means a is much smaller than b.

3 The PAC-Bayesian method

In this section we give an overview of the PAC-Bayesian method as applied to our
problem. The actual proof of Theorem 1.1 is presented in Sect. 4 below.

At first sight it may seem odd that we can obtain strong concentration as in Theo-
rem 1.1 from finite moment assumptions. The key point here is that, for any v ∈ R

p,
the expression

vT ̂Σnv = 1

n

n
∑

i=1

(XT
i v)2

is a sum of random variables which are independent, identically distributed and non
negative. Such sums are well known to have sub-Gaussian lower tails under weak
assumptions; this follows e.g. Lemma A.1 below.

This fact may be used to show concentration of vT ̂Σn v for any fixed v ∈ R
p. It is

less obvious how to turn this into a uniform bound. The standard techniques for this,
such as chaining, involve looking at a discretized subsets of Rp and moving from this
finite set to the whole space. In our case this second step is problematic, because it
requires upper bounds on vT ̂Σn v, and we know that our assumptions are not strong
enough to obtain this.

What we use instead is the so-called PAC-Bayesian method [6] for controlling
empirical processes. At a very high level, this method replaces chaining and union
bounds with arguments based on the relative entropy. What this means in our case is
that a “smoothed-out” version of the process vT ̂Σn v (v ∈ R

p), where v is averaged
over a Gaussian measure, automatically enjoys very strong concentration properties.
This implies that the original process is also well behaved as long as the effect of
the smoothing can be shown to be negligible. Many of our ideas come from Audibert
and Catoni [4], who in turn credit Langford and Shawe-Taylor [13] for the idea of
Gaussian smoothing.

To make our ideas more definite, we present a technical result that encapsulates the
main ideas in our PAC-Bayesian approach. This requires some conditions.

Assumption 1 {Zθ : θ ∈ R
p} is a family of random variables defined on a common

probability space (Ω,F ,P). We assume that the map

θ �→ Zθ (ω) ∈ R

is continuous for each ω ∈ Ω . Given v ∈ R
p and an invertible, positive semi-

definite C ∈ R
p×p, we let �v,C denote the Gaussian probability measure over Rp

with mean v and covariance matrix C . We will also assume that for all ω ∈ Ω the
integrals
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1182 R. I. Oliveira

(�v,C Zθ ) (ω) :=
∫

Rp
Zθ (ω) �v,C (dθ)

are well defined and depend continuously on v. We will use the notation �v,C fθ to
denote the integral of fθ (whichmay also depend on other parameters) over the variable
θ with the measure �v,C .

Proposition 3.1 (PAC-Bayesian Proposition) Assume the above setup, and also that
C is invertible and E

[

eZθ
] ≤ 1 for all θ ∈ R

d . Then for any t ≥ 0,

Pr

(

∀v ∈ R
p : �v,C Zθ ≤ t + |C−1/2v|22

2

)

≥ 1 − e−t .

In the next subsection we will apply this to prove Theorem 4.1. Here is a brief
overview: we will perform a change of coordinates under which Σ = Ip×p. We will
then define Zθ as

Zθ = ξ |θ |22 − ξθT ̂Σn θ + (other terms)

where ξ > 0 will be chosen in terms of t and the “other terms” will ensure that
E
[

eZθ
] ≤ 1. Taking C = γ Ip×p will result in

�v,C Zθ = ξ |v|22 − ξvT ̂Σn v + ξ Sv + (other terms)

where

Sv := γ p − γ tr(̂Σn)

is a new term introduced by the“smoothing operator” �v,γC . The choice γ = 1/p will
ensure that this term is small, and the “other terms”will also turn out to bemanageable.
The actual proof will be slightly complicated by the fact that we need to truncate the
operator ̂Σn to ensure that Sv is highly concentrated.

Proof As a preliminary step, we note that under our assumptions the map:

ω ∈ Ω �→ sup
v∈Rp

{

�v,C Zθ (ω) − |C−1/2v|22
2

}

∈ R ∪ {+∞}

is measurable, since (by continuity) we may take the supremum over v ∈ Q
p, which

is a countable set. In particular, the event in the statement of the proposition is indeed
a measurable set.

To continue, recall the definition ofKullback Leiber divergence (or relative entropy)
for probability measures over a measurable space (�,G):

K (μ1|μ0) :=
{

∫

�
ln
(

dμ1
dμ0

)

dμ1, if μ1 � μ0;
+∞, otherwise.

(10)
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The lower tail of random quadratic forms with... 1183

A variational principle [14, eqn. (5.13)] implies that for any measurable function
h : � → R:

∫

h dμ1 ≤ ln

(∫

eh dμ0

)

+ K (μ1|μ0). (11)

We apply this when � = R
d with G equal to the Borel σ -field B(Rd), μ1 = �v,C ,

μ0 = �0,C and h = Zθ . In this case it is well-known that the relative entropy of the
two measures is |C−1/2v|22/2 [19, Appendix A.5]. This implies:

sup
v∈Rp

(

�v,C Zθ − |C−1/2v|22
2

)

≤ ln
(

�0,C eZθ

)

.

To finish, we prove that:

Pr(�0,C eZθ ≥ et ) ≤ e−t .

But this follows from Markov’s inequality and Fubini’s Theorem:

Pr
(

�0,C eZθ ≥ et
)

≤ e−t
E

[

�0,C eZθ

]

= e−t �0,CE

[

eZθ

]

≤ e−t ,

because E
[

eZθ
] ≤ 1 for any fixed θ . ��

4 The sub-Gaussian lower tail

The goal of this section is to discuss and prove the following slight generalization of
Theorem 1.1.

Theorem 4.1 Assume A1, . . . , An ∈ R
p×p are i.i.d. random self-adjoint, positive

semidefinite matrices whose coordinates have bounded second moments. DefineΣ :=
E [A1] (this is an entrywise expectation) and

̂Σn := 1

n

n
∑

i=1

Ai .

Assume h ∈ (1,+∞) satisfies
√

E
[

(vT A1 v)2
]
1/2

≤ h vT Σv for all v ∈ R
p. Then

for any δ ∈ (0, 1):

Pr

(

∀v ∈ R
p : vT ̂Σn v ≥

(

1 − 9h

√

p + 2 ln(2/δ)

n

)

vTΣv

)

≥ 1 − δ.
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1184 R. I. Oliveira

Theorem 1.1 is recoveredwhenwe set Ai = Xi XT
i , check that themoment assump-

tion on vT A1 v translates into (3), and note that

n ≥ 81h2
(

p + 2 ln(2/δ)

ε2

)

⇒ 9h

√

p + 2 ln(2/δ)

n
≤ ε.

Theorem 4.1 is proved in several steps over the next subsections.

4.1 Preliminaries: normalization and truncation

We first note that we may assume that Σ is invertible. Indeed, if that is not the case,
we can restrict ourselves to the range ofΣ , which is isometric toRp′

for some p′ ≤ p,
noting that Aiv = 0 and vT Ai = 0 almost surely for any v that is orthogonal to the
range (this follows from E

[

vT A1v
] = 0 for v orthogonal to the range, combined with

(8) above).
Granted invertibility, we may define:

Bi := Σ−1/2AiΣ
−1/2 (1 ≤ i ≤ n) (12)

and note that B1, . . . , Bn are i.i.d. positive semidefinite with E [B1] = Ip×p. More-
over,

∀v ∈ R
p :

√

E
[

(vT B1v)2
] =

√

E
[

((Σ−1/2v)T A1 (Σ−1/2v))2
] ≤ h |v|22. (13)

Define

t := ln(2/δ) and ε := 9h

√

p + 2t

n
. (14)

Our goal is to show that the following holds with probability ≥ 1 − 2e−t :

∀w ∈ R
p : wT

̂Σn v ≥ (1 − ε)wTΣ w.

Notice that, by homonegeity, it suffices to consider vectors of the form w = Σ−1/2 v

with |v|2 = 1. Thus our goal may be restated as follows.

Goal: Pr

(

∀v ∈ R
p : |v|2 = 1 ⇒ 1

n

n
∑

i=1

vT Bi v ≥ 1 − ε

)

≥ 1 − δ. (15)

We will make yet another change to our goal. Fix some R > 0 and define (with
hindsight) truncated operators

BR
i :=

(

1 ∧ R

tr(Bi )

)

Bi , (16)

123



The lower tail of random quadratic forms with... 1185

with the convention that this is simply 0 if tr(Bi ) = 0. We collect some estimates for
later use.

Lemma 4.1 We have for all v ∈ R
p with unit norm

1

n

n
∑

i=1

vT BR
i v ≤ 1

n

n
∑

i=1

vT Biv;

E

[

(tr(BR
i ))2

]

≤ E

[

(tr(Bi ))
2
]

≤ (h p)2; and

E

[

vT BR
i v
]

≥
(

1 − h2 p
R

)

.

Proof The first assertion follows from the fact that the are positive semidefinite, so
vT Biv ≥ 0 and vT BR

i v = αi v
T Bib for each i , with αi ∈ [0, 1] a scalar. This same

reasoning implies BR
i � Bi , a fact that we will use below.

To prove the second assertion, we let e1, . . . , ep denote the canonical basis of Rp,
and apply Minkowski’s inequality:

E

[

(tr(BR
i )2)

]

= E

⎡

⎢

⎣

⎛

⎝

p
∑

j=1

eTj B
R
i e j

⎞

⎠

2
⎤

⎥

⎦

(use 0 � BR
i � Bi ) ≤ E

⎡

⎢

⎣

⎛

⎝

p
∑

j=1

eTj Bi e j

⎞

⎠

2
⎤

⎥

⎦

(Minkowski) ≤
⎛

⎝

p
∑

j=1

√

E

[

(eTj Bi e j )
2
]

⎞

⎠

2

(eqn. (13) ≤ (h p)2

To prove the third assertion, we fix some v ∈ R
p with |v|2 = 1. We use again that

vT Bi v ≥ 0 to deduce

1 − E

[

vT BR
i v
]

= E

[

vT (Bi − BR
i ) v

]

≤ E

[

(vT Bi v) χ{tr(Bi )>R}
]

.

Wemay bound the RHS via Cauchy Schwarz, noting that E
[

(vT Bi v)2
] ≤ h2 by (13)

and Pr tr(Bi ) > R ≤ E
[

tr(Bi )2
]

/R2 = (h p/R)2. This gives:

1 − E

[

vT BR
i v
]

≤
√

E
[

(vT Bi v)2
]

Pr tr(Bi ) > R ≤ h2 p
R

.

��

123



1186 R. I. Oliveira

4.2 Applying the PAC-Bayesian method

We continue to use our definitions of B1, . . . , Bn and BR
1 , . . . , BR

n , with the goal of
proving (15). The parameters t and ε are as in (14). We also fix ξ > 0. We intend
apply Proposition 3.1 with C = Ip×p/p and

Zθ := ξ E
[

θT BR
1 θ
]

− ξ2

2n2
E

[

(θT BR
1 θ)2

]

− ξ

n
∑

i=1

θT BR
i θ

n
.

Let us check that the assumptions of the theorem are satisfied. First note that Zθ is
a quadratic form in θ , and is therefore a.s. continuous as a function of θ . The same
argument combined with the square integrability of the normal distribution shows
that �v,C Zθ is continuous in v ∈ R

p. The inequality E
[

eZθ
] ≤ 1 follows from

independence, which implies

E

[

eZθ

]

=
n
∏

i=1

E

[

e
ξ E

[

θT BR
1 θ
]

n − ξθT BR
i θ

n − ξ2

2n2
E
[

(θT BR
i θ)2

]

]

,

plus the fact that, for any non-negative, square-integrable random variable W and any
ξ > 0:

E

[

eξ E[W ]−ξ W− ξ2

2 E
[

W 2
]

]

≤ 1

(this is shown in Lemma A.1 in the Appendix). Therefore all assumptions of Propo-
sition 3.1 are satisfied, and we may deduce from that result that, with probability
≥ 1 − e−t , for all v ∈ R

p:

ξ �v,CE

[

θT BR
1 θ
]

− ξ2

2n
E

[

(θT BR
1 θ)2

]

− ξ

n
∑

i=1

�v,C
θT BR

i θ

n
≤ p|v|22 + 2t

2
.

This is the same as saying that, with probability ≥ 1 − e−t , the following inequality
holds for all v ∈ R

p with |v|2 = 1:

n
∑

i=1

�v,C
θT BR

i θ

n
≥ �v,CE

[

θT BR
1 θ
]

−
(

ξ

2n
�v,CE

[

(θT BR
1 θ)2

]

+ p + 2t

2ξ

)

.

(17)

4.3 Dealing with the terms

The next step in the proof is to control all the terms involving �v,C that appear in (17).
For v ∈ R

p with |v|2 = 1, explicit calculations reveal
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1

n

n
∑

i=1

�v,C θT BR
i θ = 1

n

n
∑

i=1

vT BR
i v +

n
∑

i=1

tr(BR
i )

pn

(use Lemma 4.1) ≤ 1

n

n
∑

i=1

vT Biv +
n
∑

i=1

tr(BR
i )

pn
; (18)

�v,C E

[

θT BR
1 θ
]

= E

[

vT BR
1 v
]

+ E
[

tr(BR
1 )
]

p

(use Lemma 4.1) ≥ 1 − h2 p
R

+ E
[

tr(BR
1 )
]

p
. (19)

We also need estimates for �v,CE
[

(θT BR
1 θ)2

]

. Standard calculations with the
normal distribution show that:

�v,C (θT BR
1 θ)2 = �0,C (vT BR

1 v + θT BR
1 θ + 2θT BR

1 v)2. (20)

That is, instead of averaging θ over �v,C , we may replace θ by v + θ and then average
over �0,C .

We now consider the RHS of (20). The first two terms inside the brackets in the
RHS are non-negative. By Cauchy Schwarz and the AM/GM inequality, the third term
satisfies

|2θT BR
1 v| ≤ 2

√

(θT BR
1 θ) (vT BR

1 v) ≤ (vT BR
1 v + θT BR

1 θ).

We deduce that

0 ≤ vT BR
1 v + θT BR

1 θ + 2θT BR
1 v ≤ 2 (vT BR

1 v + θT BR
1 θ),

and plugging this into (20) gives

�0,C (vT BR
1 v + θT BR

1 θ + 2θT BR
1 v)2 ≤ 4�0,C [(vT BR

1 v + θT BR
1 θ)2] (21)

(use (a + b)2 ≤ 2a2 + 2b2) ≤ 8 (vT BR
1 v)2 (22)

+ 8�0,C (θT BR
1 θ)2. (23)

We now compute the term in (23) as follows. First of all, since C = Ip×p/p,

Law of θT BR
1 θ under �0,C = Law of

1

p

p
∑

i=1

N 2
i λi ,

where the λ1, . . . , λp ≥ 0 are the eigenvalues of BR
1 and the N1, . . . , Np are inde-

pendent standard Gaussian random variables .We note that E
[

N 2
i N

2
j

]

≤ E
[

N 4
i

] = 3

for all 1 ≤ i, j ≤ p and that the eigenvalues of BR
1 are all real and nonnegative (since

BR
1  0), therefore
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�0,C (θT BR
1 θ)2 ≤ 3tr(BR

i )2

p2
.

We combine this with (21), (22), and (23), then apply Lemma 4.1 and recall |v|2 = 1
to obtain:

�v,CE

[

(θT BR
i θ)2

]

≤ 8h2 + 24

p2
E

[

tr(BR
i )2
]

≤ 32h2. (24)

We plug this last estimate into (17) together with (19) and (18). This results in the
following inequality, which holds with probability ≥ 1 − e−t simultaneously for all
v ∈ R

d with |v|2 = 1:

1

n

n
∑

i=1

vT BR
i v ≥ 1 −

{

h2 p
R

+ 16h2

n
ξ + p + 2t

2ξ
+
(

n
∑

i=1

tr(BR
i ) − E

[

tr(BR
i )
]

pn

)}

.

This holds for any choice of ξ . Optimizing over this parameter shows that, with prob-
ability ≥ 1 − e−t , we have the following inequality simultaneously for all v ∈ R

p

with |v|2 = 1.

n
∑

i=1

vT Biv

n
≥ 1 −

{

h2 p
R

+ 4
√
2 h

√

(p + 2t)

n

}

−
(

n
∑

i=1

tr(BR
i ) − E

[

tr(BR
i )
]

pn

)

. (25)

4.4 The final step: control of the trace

We now take care of the term involving the traces on the RHS. This is precisely the
moment when the truncation of Bi is useful, as it allows for the use of Bernstein’s
concentration inequality [23, Sect. 2.6]. This inequality states that, for independent
random variables Z1, . . . , Zn with E [Zi ] = 0,

∑n
i=1 E

[

Z2
i

] = σ 2 and |Zi | ≤ M for
each 1 ≤ i ≤ n (M > 0 a constant), then

Pr

(

n
∑

i=1

Zi ≥ σ
√
2t + 2Mt

3

)

≤ e−t .

The term involving traces in (25) is a sum of i.i.d. mean-zero random variables that
(because of the truncation) lie between −R/pn and R/pn. Moreover, the variance of
each term is at most E

[

tr(BR
i )2
]

/p2n2 ≤ h2/n2 by Lemma 4.1. We deduce:

Pr

(

n
∑

i=1

tr(BR
i ) − E

[

tr(BR
i )
]

pn
≤ h

√

2 t

n
+ 2R t

3pn

)

≥ 1 − e−t .

123



The lower tail of random quadratic forms with... 1189

Combining this with (25) implies that, for any t ≥ 0, the following inequality holds
with probability ≥ 1 − 2e−t , simultaneously for all v ∈ R

p with |v|2 = 1:

n
∑

i=1

vT Biv

n
≥ 1 −

{

h2 p
R

+ 4
√
2 h

√

(p + 2t)

n
+ h

√

2t

n
+ 2R t

3pn

}

. (26)

This holds for any R > 0. Optimization over R gives

inf
R>0

h2 p
R

+ 2R t

3pn
= 2h

√

2t

3n
≤ √

2 h

√

2t

n
,

so, with the right choice of R,

{

h2 p
R

+ 4
√
2 h

√

(p + 2t)

n
+ h

√

2 t

n
+ 2R t

3pn

}

≤ (5
√
2 + 1)h

√

(p + 2t)

n
≤ ε,

according to the definition of ε in (14). We obtain

Pr

(

∀v ∈ R
p : |v|2 = 1 ⇒ 1 −

n
∑

i=1

vT Biv

n
≤ ε

)

≥ 1 − 2e−t .

Inequality (15) follows. As noted in Sect. 4.1, (15) implies Theorem 4.1 and finishes
the proof.

5 Applications in random-design linear regression

The main goal of this section is to prove Theorem 1.2.

5.1 Preliminaries

We begin by recalling the general facts about this problem. We assume (X,Y ) ∈
R

p × R is a random pair, with X ∈ R
p a vector of covariates and Y ∈ R a response

variable. We assume E
[|X |22

]

< +∞ and E
[

Y 2
]

< +∞. As in the introduction, we
define the square loss function:

	(β) := E

[

(Y − XTβ)2
]

(β ∈ R
p). (27)

It is not hard to show that 	 has at least oneminimizerβmin ∈ R
p, defined so thatβT

minX
equals the L2 projection of Y onto the linear space generated by the coordinates of X .
In fact, this property uniquely defines the random variable βT

minX , if not necessarily
the vector βmin. It also implies

η := Y − βT
min X satisfies E [η X ] = 0. (28)
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In fact, βmin is a minimizer of 	 if and only if (28) holds. Another calculation shows
that

∀β ∈ R
p : 	(β) − 	(βmin) = |Σ1/2(β − βmin)|22, (29)

where Σ := E
[

XXT
]

. In particular, βmin is the unique minimizer of 	 if and only if
Σ is non-singular.

Our main interest is in the OLS estimator, which satisfies

̂βn ∈ argminβ∈Rp
1

n

n
∑

i=1

(Yi − βT Xi )
2.

If ̂Σn := n−1∑n
i=1 Xi XT

i is invertible, ̂βn is uniquely defined by the formula:

̂βn := ̂Σ−1
n

1

n

n
∑

i=1

Yi Xi . (30)

If ̂Σn is not invertible, we may still define ̂βn by (30) if we let ̂Σ−1
n denote the Moore-

Penrose pseudoinverse of ̂Σn . This definition will be used implicitly below.
An interesting test case for our result is that of a linear model with Gaussian noise

and Gaussian design, where we assume that X is mean-zero Gaussian with covariance
matrix Σ and η is mean zero Gaussian with variance σ 2 and independent of X . Using
the notation of Theorem 1.2, we see that E

[

η2
] = σ 2 is the variance of the noise, and

h∗ does not depend on n or p. An explicit calculation (which we omit) implies that,
for n � p � 1,

|Σ1/2(̂βn − βmin)|22 ≥ (1 − o (1))
σ 2 p

n
with probability 1 − o (1).

Theorem 1.2 guarantees that OLS achieves this error rate under much weaker assump-
tions on the distribution of (X,Y ).

5.2 Proof of Theorem 1.2

Proof We will assume for convenience that Σ is invertible; the general case requires
minor modifications. For each i , define

ηi := Yi − XT
i βmin and (31)

Zi := ηi Σ
−1/2Xi = (Yi − XT

i βmin)Σ−1/2Xi , (32)

We note for later use that the Zi are independent copies of the vector Z in the statement
of Theorem 1.2.
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The assumptions on X of Theorem 1.2 imply those of Theorem 1.1 with ε replaced
by ε/10 and δ replaced by δ/2 (at least when C is a large enough constant). This
implies that the event

Lower :=
{

∀v ∈ R
p : vT ̂Σn v ≥ (1 − ε/10) vTΣv

}

(33)

satisfies Pr (Lower) ≥ 1−δ/2whenever the condition on n in Theorem1.2 is satisfied.
When Lower holds, ̂Σn is also invertible, so

βmin = ̂Σ−1
n
̂Σn βmin = ̂Σ−1

n
1

n

n
∑

i=1

(βT
minXi ) Xi .

Comparing this with the definition of ̂βn in (30), we see that:

̂βn − βmin = ̂Σ−1
n

1

n

n
∑

i=1

(Yi − βT
minXi ) Xi = ̂Σ−1

n Σ1/2

(

1

n

n
∑

i=1

Zi

)

.

Therefore, when Lower holds, the excess loss 	(̂βn) − 	(βmin) satisfies

|Σ1/2(̂βn − βmin)|22 =
∣

∣

∣

∣

∣

(Σ1/2
̂Σ−1
n Σ1/2)

(

1

n

n
∑

i=1

Zi

)∣

∣

∣

∣

∣

2

2

≤
∣

∣
1
n

∑n
i=1 Zi

∣

∣

2
2

(1 − ε/10)2
, (34)

since Lower and (9) imply that the 2 → 2 operator norm of Σ1/2
̂Σ−1
n Σ1/2 is at most

1/(1 − ε/10).
What we have discussed so far shows that (34) holds with probability ≥ 1 − δ/2.

We now show that

Pr

⎛

⎝

∣

∣

∣

∣

∣

1

n

n
∑

i=1

Zi

∣

∣

∣

∣

∣

2

2

≥ (1 + ε/5)2 σ 2

n
(
√
p + C ln(4/δ))

⎞

⎠ ≤ δ

3
(35)

noting that this finishes the proof with some room to spare regarding the dependency
on ε. To do this, we use the Fuk-Nagaev-type inequality by Einmahl and Li in [7,
Theorem 4]. In the Euclidean setting, that result implies that if U1, . . . ,Un are i.i.d.
mean zero random vectors with Λn := nλmax(E

[

U1UT
1

]

), then for any q > 2,
α, φ ∈ (0, 1) one can find D > 0 such that, for any t > 0,

Pr

(∣

∣

∣

∣

∣

n
∑

i=1

Ui

∣

∣

∣

∣

∣

2

≥ (1 + φ)E

[∣

∣

∣

∣

∣

n
∑

i=1

Ui

∣

∣

∣

∣

∣

2

]

+ t

)

≤ e− t2
(2+α) Λn + D n

E
[|U1|q2

]

tq
.

To obtain (35), we apply the previous display withUi = Zi/n, φ = ε/10, α = 1, and

t := σ

√

(ε p/100) ∨ 3 ln(4/δ)

n
.
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1192 R. I. Oliveira

We observe that

E

[∣

∣

∣

∣

∣

n
∑

i=1

Ui

∣

∣

∣

∣

∣

2

]

≤
√

1

n
E
[|Z1|22

] ≤
√

σ 2 p

n
,

Λn ≤ σ 2/n and E
[|U1|q2/tq

] ≤ (100h2∗)q/2/(ε n)q/2 under our assumptions. We
deduce

Pr

∣

∣

∣

∣

∣

n
∑

i=1

Zi

n

∣

∣

∣

∣

∣

2

≥
(

1 + ε

5

) σ√
n

(√
p +√3 ln(4/δ)

)

≤ δ

4
+ D

hq∗
εq/2 nq/2−1 .

This clearly implies (35) after suitably adjusting the constants, at least in the desired
range δ ≥ C/nq/2−1. ��

6 Final remarks

– The PAC-Bayesian method used in this paper seems an efficient alternative to
chaining and other typical empirical processes methods. As such, it would be
interesting to find other applications of it. One interesting question is if some
variant of the method can be used to prove two-sided concentration of ̂Σn .

– Consider the setting of Theorem 4.1. Let Rp
s denote the set of all v ∈ R

p that are
s-sparse, i.e. have at most s nonzero coordinates. Rp

s is a union of
(p
s

) ≤ (ep/s)s

s-dimensional spaces, so if

n ≥ 100h2
s + s ln(ep/s) + 2 ln(2/δ)

ε2

one may apply Theorem 4.1 to these subspaces and deduce that vT ̂Σn v ≥ (1 −
ε) vTΣ v for all v ∈ R

p
s , with probability ≥ 1 − δ. In a companion paper [16]

we show that this result is relevant to prove that ̂Σn satisfies restricted eigenvalue
properties when p � n. This result is relevant to the Compressed Sensing and
High Dimensional Statistics.

Acknowledgments We thank the anonymous referees for their careful reading of the original manuscript,
their many corrections and suggestions on the exposition. We thank them in particular for suggesting the
use of the Fuk-Nagaev inequality from [7] in the analysis of OLS.

A Appendix: a moment generating function bound for non-negative
random variables

Lemma A.1 Let W be a nonnegative random variable with finite second monent.

Then ∀ξ > 0, E
[

e−ξW
] ≤ e−ξ E[W ]+ ξ2

2 E
[

W 2
]

.
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Proof This follows from the fact that

∀x ≥ 0 : e−x ≤ 1 − x + x2

2

applied to x = ξ W . Taking expectations of the resulting inequality gives

E

[

e−ξ W
]

≤ 1 − ξ E [W ] + ξ2

2
E

[

W 2
]

.

The result follows once we apply “1+ y ≤ ey”, valid for all y ∈ R, to y := ξ E [W ]−
ξ2E

[

W 2
]

/2. ��
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