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Abstract This paper considers the problem of estimation of a low-rank matrix when
most of its entries are not observed and some of the observed entries are corrupted.
The observations are noisy realizations of a sum of a low-rank matrix, which we
wish to estimate, and a second matrix having a complementary sparse structure such
as elementwise sparsity or columnwise sparsity. We analyze a class of estimators
obtained as solutions of a constrained convex optimization problem combining the
nuclear norm penalty and a convex relaxation penalty for the sparse constraint. Our
assumptions allow for simultaneous presence of random and deterministic patterns in
the sampling scheme. We establish rates of convergence for the low-rank component
from partial and corrupted observations in the presence of noise and we show that
these rates are minimax optimal up to logarithmic factors.

Mathematics Subject Classification 62G05 · 62J02 · 62G35

1 Introduction

In the recent years, there have been a considerable interest in statistical inference
for high-dimensional matrices. One particular problem is matrix completion where
one observes only a small number N � m1m2 of the entries of a high-dimensional
m1 × m2 matrix L0 of rank r and aims at inferring the missing entries. In general,
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recovery of a matrix from a small number of observed entries is impossible, but, if the
unknown matrix has low rank, then accurate and even exact recovery is possible. In
the noiseless setting, [7,14,22] established the following remarkable result: assuming
that thematrix L0 satisfies some low coherence condition, this matrix can be recovered
exactly by a constrained nuclear norm minimization with high probability from only
N � r max{m1,m2} log2(m1 + m2) entries observed uniformly at random. A more
common situation in applications corresponds to the noisy setting in which the few
available entries are corrupted by noise. Noisymatrix completion has been in the focus
of several recent studies (see, e.g., [5,12,17,18,20,21,23]).

Thematrix completion problem ismotivated by a variety of applications. An impor-
tant question in applications is whether or not matrix completion procedures are robust
to corruptions. Suppose that we observe noisy entries of A0 = L0+ S0 where L0 is an
unknown low-rank matrix and S0 corresponds to some gross/malicious corruptions.
We wish to recover L0 but we observe only few entries of A0 and, among those, a
fraction happens to be corrupted by S0. Of course, we do not know which entries are
corrupted. It has been shown empirically that uncontrolled and potentially adversarial
gross errors affecting only a small portion of observations can be particularly harmful.
For example, Xu et al. [16] showed that a very popular matrix completion procedure
using nuclear norm minimization can fail dramatically even if S0 contains only a
single nonzero column. It is particularly relevant in applications to recommendation
systems where malicious users try to manipulate the outcome of matrix completion
algorithms by introducing spurious perturbations S0. Hence, there is a need for new
matrix completion techniques that are robust to the presence of corruptions S0.

With this motivation, we consider the following setting of robust matrix comple-
tion. Let A0 ∈ R

m1×m2 be an unknown matrix that can be represented as a sum
A0 = L0 + S0 where L0 is a low-rank matrix and S0 is a matrix with some low
complexity structure such as entrywise sparsity or columnwise sparsity. We consider
the observations (Xi ,Yi ), i = 1, . . . , N , satisfying the trace regression model

Yi = tr(XT
i A0)+ ξi , i = 1, . . . , N , (1)

where tr(M) denotes the trace ofmatrixM.Here, the noise variables ξi are independent
and centered, and Xi are m1 × m2 matrices taking values in the set

X = {e j (m1)e
T
k (m2), 1 ≤ j ≤ m1, 1 ≤ k ≤ m2}, (2)

where el(m), l = 1, . . . ,m, are the canonical basis vectors in R
m . Thus, we observe

some entries of matrix A0 with random noise. Based on the observations (Xi ,Yi ), we
wish to obtain accurate estimates of the components L0 and S0 in the high-dimensional
setting N � m1m2. Throughout the paper, we assume that (X1, . . . , Xn) is indepen-
dent of (ξ1, . . . , ξn).

We assume that the set of indices i of our N observations is the union of two disjoint
components� and �̃. The first component� corresponds to the “non-corrupted” noisy
entries of L0, i.e., to the observations, for which the entry of S0 is zero. The second
set �̃ corresponds to the observations, for which the entry of S0 is nonzero. Given an
observation, we do not knowwhether it belongs to the corrupted or non-corrupted part
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of the observations and we have |�| + |�̃| = N , where |�| and |�̃| are non-random
numbers of non-corrupted and corrupted observations, respectively.

A particular case of this setting is the matrix decomposition problem where
N = m1m2, i.e., we observe all entries of A0. Several recent works consider thematrix
decomposition problem, mostly in the noiseless setting, ξi ≡ 0. Chandrasekaran et
al. [8] analyzed the case when the matrix S0 is sparse, with small number of non-zero
entries. They proved that exact recovery of (L0, S0) is possible with high probability
under additional identifiability conditions. Thismodel was further studied byHsu et al.
[15] who give milder conditions for the exact recovery of (L0, S0). Also in the noise-
less setting, Candes et al. [6] studied the same model but with positions of corruptions
chosen uniformly at random. Xu et al. [16] studied a model, in which the matrix S0 is
columnwise sparse with sufficiently small number of non-zero columns. Their method
guarantees approximate recovery for the non-corrupted columns of the low-rank com-
ponent L0. Agarwal et al. [1] consider a general model, in which the observations are
noisy realizations of a linear transformation of A0. Their setup includes the matrix
decomposition problem and some other statistical models of interest but does not cover
thematrix completion problem.Agarwal et al. [1] state a general result on approximate
recovery of the pair (L0, S0) imposing a “spikiness condition” on the low-rank com-
ponent L0. Their analysis includes as particular cases both the entrywise corruptions
and the columnwise corruptions.

The robust matrix completion setting, when N < m1m2, was first considered by
Candes et al. [6] in the noiseless case for entrywise sparse S0. Candes et al. [6] assumed
that the support of S0 is selected uniformly at random and that N is equal to 0.1m1m2
or to some other fixed fraction of m1m2. Chen et al. [9] considered also the noiseless
case but with columnwise sparse S0. They proved that the same procedure as in [8] can
recover the non-corrupted columns of L0 and identify the set of indices of the corrupted
columns. This was done under the following assumptions: the locations of the non-
corrupted columns are chosen uniformly at random; L0 satisfies some sparse/low-rank
incoherence condition; the total number of corrupted columns is small and a sufficient
number of non-corrupted entries is observed. More recently, Chen et al. [10] and Li
[27] considered noiseless robust matrix completion with entrywise sparse S0. They
proved exact recovery of the low-rank component under an incoherence condition on
L0 and some additional assumptions on the number of corrupted observations.

To the best of our knowledge, the present paper is the first study of robust matrix
completion with noise. Our analysis is general and covers in particular the cases
of columnwise sparse corruptions and entrywise sparse corruptions. It is important
to note that we do not require strong assumptions on the unknown matrices, such
as the incoherence condition, or additional restrictions on the number of corrupted
observations as in the noiseless case. This is due to the fact that we do not aim at
exact recovery of the unknown matrix. We emphasize that we do not need to know
the rank of L0 nor the sparsity level of S0. We do not need to observe all entries of A0
either. We only need to know an upper bound on the maximum of the absolute values
of the entries of L0 and S0. Such information is often available in applications; for
example, in recommendation systems, this bound is just the maximum rating. Another
important point is that our method allows us to consider quite general and unknown
sampling distribution. All the previous works on noiseless robust matrix completion
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assume the uniform sampling distribution. However, in practice the observed entries
are not guaranteed to follow the uniform scheme and the sampling distribution is not
exactly known.

We establish oracle inequalities for the cases of entrywise sparse and columnwise
sparse S0. For example, in the case of columnwise corruptions, we prove the following
bound on the normalized Frobenius error of our estimator (L̂, Ŝ) of (L0, S0): with high
probability

‖L̂ − L0‖22
m1m2

+ ‖S0 − Ŝ‖22
m1m2

� r max(m1,m2)+ |�̃|
|�| + s

m2

where the symbol � means that the inequality holds up to a multiplicative absolute
constant and a factor, which is logarithmic in m1 and m2. Here, r denotes the rank of
L0, and s is the number of corrupted columns. Note that, when the number of corrupted
columns s and the proportion of corrupted observations |�̃|/|�| are small, this bound
implies that O(r max(m1,m2)) observations are enough for successful and robust
to corruptions matrix completion. We also show that, both under the columnwise
corruptions and entrywise corruptions, the obtained rates of convergence are minimax
optimal up to logarithmic factors.

This paper is organized as follows. Section 2.1 contains the notation and definitions.
We introduce our estimator in Sect. 2.2 and we state the assumptions on the sampling
scheme inSect. 2.3. Section3presents a general upper bound for the estimation error. In
Sects. 4 and 5, we specialize this bound to the settings with columnwise corruptions
and entrywise corruptions, respectively. In Sect. 6, we prove that our estimator is
minimax rate optimal up to a logarithmic factor. The Appendix contains the proofs.

2 Preliminaries

2.1 Notation and definitions

2.1.1 General notation

For any set I , |I | denotes its cardinality and Ī its complement. We write a ∨ b =
max(a, b) and a ∧ b = min(a, b).

For amatrix A, Ai is its i th column and Ai j is its (i, j)th entry. Let I ⊂ {1, . . .m1}×
{1, . . .m2} be a subset of indices. Given a matrix A, we denote by AI its restriction on
I , that is, (AI )i j = Ai j if (i, j) ∈ I and (AI )i j = 0 if (i, j) /∈ I . In what follows, Id
denotes the matrix of ones, i.e., Idi j = 1 for any (i, j) and 0 denotes the zero matrix,
i.e., 0i j = 0 for any (i, j).

For any p ≥ 1, we denote by ‖ · ‖p the usual l p−norm. Additionally, we use the
following matrix norms: ‖A‖∗ is the nuclear norm (the sum of singular values), ‖A‖
is the operator norm (the largest singular value), ‖A‖∞ is the largest absolute value
of the entries:

‖A‖∞ = max
1≤ j≤m1,1≤k≤m2

|A jk |,
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the norm ‖A‖2,1 is the sum of l2 norms of the columns of A and ‖A‖2,∞ is the largest
l2 norm of the columns of A:

‖A‖2,1 =
m2∑

k=1
‖Ak‖2 and ‖A‖2,∞ = max

1≤k≤m2
‖Ak‖2.

The inner product of matrices A and B is defined by 〈A, B〉 = tr(AB�).

2.1.2 Notation related to corruptions

We first introduce the index sets I and Ĩ. These are subsets of {1, . . . ,m1} ×
{1, . . . ,m2} that are defined differently for the settings with columnwise sparse and
entrywise sparse corruption matrix S0.

For the columnwise sparse matrix S0, we define

Ĩ = {1, . . . ,m1} × J (3)

where J ⊂ {1, . . . ,m2} is the set of indices of the non-zero columns of S0. For the
entrywise sparse matrix S0, we denote by Ĩ the set of indices of the non-zero elements
of S0. In both settings, I denotes the complement of Ĩ.

LetR : Rm1×m2 → R+ be a norm that will be used as a regularizer relative to the
corruption matrix S0. The associated dual norm is defined by the relation

R∗(A) = sup
R(B)≤1

〈A, B〉. (4)

Let |A| denote the matrix whose entries are the absolute values of the entries of matrix
A. The norm R(·) is called absolute if it depends only on the absolute values of the
entries of A:

R(A) = R(|A|).

For instance, the l p-norm and the ‖·‖2,1-norm are absolute. We callR(·)monotonic if
|A| ≤ |B| impliesR(A) ≤ R(B). Here and below, the inequalities between matrices
are understood as entry-wise inequalities. Any absolute norm is monotonic and vice
versa (see, e.g., [3]).

2.1.3 Specific notation

• We set d = m1 + m2, m = m1 ∧ m2, and M = m1 ∨ m2.
• Let {εi }ni=1 be a sequence of i.i.d. Rademacher random variables. We define the
following random variables called the stochastic terms:

�R = 1

n

∑

i∈�

εi Xi , � = 1

N

∑

i∈�

ξi Xi , and W = 1

N

∑

i∈�

Xi .
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• We denote by r the rank of matrix L0.
• We denote by N the number of observations, and by n = |�| the number of non-
corrupted observations. The number of corrupted observations is |�̃| = N − n.
We set æ = N/n.

• We use the generic symbol C for positive constants that do not depend on
n,m1,m2, r, s and can take different values at different appearances.

2.2 Convex relaxation for robust matrix completion

For the usual matrix completion, i.e., when the corruption matrix S0 = 0, one of
the most popular methods of solving the problem is based on constrained nuclear
norm minimization. For example, the following constrained matrix Lasso estimator is
introduced in [18]:

Â ∈ arg min
‖A‖∞≤a

{
1

n

n∑

i=1
(Yi − 〈Xi , A〉)2 + λ‖A‖∗

}
,

where λ > 0 is a regularization parameter and a is an upper bound on ‖L0‖∞.
To account for the presence of non-zero corruptions S0, we introduce an addi-

tional norm-based penalty that should be chosen depending on the structure of S0. We
consider the following estimator (L̂, Ŝ) of the pair (L0, S0):

(L̂, Ŝ) ∈ arg min
‖L‖∞≤a‖S‖∞≤a

{
1

N

N∑

i=1
(Yi − 〈Xi , L + S〉)2 + λ1‖L‖∗ + λ2R(S)

}
. (5)

Here λ1 > 0 and λ2 > 0 are regularization parameters and a is an upper bound on
‖L0‖∞ and ‖S0‖∞. Note that this definition and all the proofs can be easily adapted
to the setting with two different upper bounds for ‖L0‖∞ and ‖S0‖∞ as it can be the
case in some applications. Thus, the results of the paper extend to this case as well.

For the following two key examples of sparsity structure of S0, we consider specific
regularizers R.

• Example 1. Suppose that S0 is columnwise sparse, that is, it has a small number
s < m2 of non-zero columns. We use the ‖ · ‖2,1-norm regularizer for such a
sparsity structure:R(S) = ‖S‖2,1. The associated dual norm isR∗(S) = ‖S‖2,∞.

• Example 2. Suppose now that S0 is entrywise sparse, that is, that it has s � m1m2
non-zero entries. The usual choice of regularizer for such a sparsity structure is
the l1 norm: R(S) = ‖S‖1. The associated dual norm isR∗(S) = ‖S‖∞.

In these two examples, the regularizerR is decomposablewith respect to a properly
chosen set of indices I . That is, for any matrix A ∈ R

m1×m2 we have

R(A) = R(AI )+R(AĪ ). (6)
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For instance, the ‖ · ‖2,1-norm is decomposable with respect to any set I such that

I = {1, . . . ,m1} × J (7)

where J ⊂ {1, . . . ,m2}. The usual l1 norm is decomposable with respect to any subset
of indices I .

2.3 Assumptions on the sampling scheme and on the noise

In the literature on the usual matrix completion (S0 = 0), it is commonly assumed
that the observations Xi are i.i.d. For robust matrix completion, it is more realistic to
assume the presence of two subsets in the observed Xi . The first subset {Xi , i ∈ �}
is a collection of i.i.d. random matrices with some unknown distribution on

X ′ = {e j (m1)e
T
k (m2), ( j, k) ∈ I}. (8)

These Xi ’s are of the same type as in the usual matrix completion. They are the X -
components of non-corrupted observations (recall that the entries of S0 corresponding
to indices inI are equal to zero). On this non-corrupted part of observations, we require
some assumptions on the sampling distribution (see Assumptions 1, 2, 5, and 9 below).

The second subset {Xi , i ∈ �̃} is a collection of matrices with values in

X ′′ = {e j (m1)e
T
k (m2), ( j, k) ∈ Ĩ}.

These are the X -components of corrupted observations. Importantly, we make no
assumptions on how they are sampled. Thus, for any i ∈ �̃, we have that the index
of the corresponding entry belongs to Ĩ and we make no further assumption. If we
take the example of recommendation systems, this partition into {Xi , i ∈ �} and
{Xi , i ∈ �̃} accounts for the difference in behavior of normal and malicious users.

As there is no hope for recovering the unobserved entries of S0, one should consider
only the estimation of the restriction of S0 to �̃. This is equivalent to assume that we
estimate the whole S0 when all unobserved entries of S0 are equal to zero, cf. [9]. This
assumption will be done throughout the paper.

For i ∈ �, we suppose that Xi are i.i.d realizations of a random matrix X having
distribution � on the set X ′. Let π jk = P(X = e j (m1)eTk (m2)) be the probability to
observe the ( j, k)th entry. One of the particular settings of this problem is the case
of the uniform on X ′ distribution �. It was previously considered in the context of
noiseless robust matrix completion, see, e.g., [9]. We consider here a more general
sampling model. In particular, we suppose that any non-corrupted element is sampled
with positive probability:

Assumption 1 There exists a positive constant μ ≥ 1 such that, for any ( j, k) ∈ I,

π jk ≥ (μ|I|)−1.
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If � is the of uniform distribution on X ′ we have μ = 1. For A ∈ R
m1×m2 set

‖A‖2L2(�) = E(〈A, X〉2).

Assumption 1 implies that

‖A‖2L2(�) ≥ (μ |I|)−1 ‖AI‖22. (9)

Denote by π·k =∑m1
j=1 π jk the probability to observe an element from the kth column

and by π j · =∑m2
k=1 π jk the probability to observe an element from the j th row. The

following assumption requires that no column and no row is sampled with too high
probability.

Assumption 2 There exists a positive constant L ≥ 1 such that

max
i, j

(π·k, π j ·) ≤ L/m.

This assumption will be used in Theorem 1 below. In Sects. 4 and 5, we apply The-
orem 1 to the particular cases of columnwise sparse and entrywise sparse corruptions.
There, we will need more restrictive assumptions on the sampling distribution (see
Assumptions 5 and 9).

We assume below that the noise variables ξi are sub-gaussian:

Assumption 3 There exist positive constants σ and c1 such that

max
i=1,...,nE exp(ξ2i /σ 2) < c1.

3 Upper bounds for general regularizers

In this section we state our main result which applies to a general convex program (5)
whereR is an absolute norm and a decomposable regularizer. In the next sections, we
consider in detail two particular choices,R(·) = ‖ · ‖1 andR(·) = ‖ · ‖2,1. Introduce
the notation:


1 = μ2 m1m2 r (æ2λ21 + a2 (E (‖�R‖))2)+ a2 μ

√
log(d)

n
,


2 = μ aR(Id�̃)

(
λ2 a
λ1

E (‖�R‖)+ æλ2 + aE
(R∗(�R)

))
,


3 = μ |�̃| (a2 + σ 2 log(d)
)

N

(
aE (‖�R‖)

λ1
+ aE (R∗(�R))

λ2
+ æ

)
+ a2|Ĩ|

m1m2
,
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4 = μ a2
√
log(d)

n
+ μ aR(Id�̃)[æ λ2 + aE(R∗(�R))]

+
[
aE (R∗(�R))

λ2
+ æ

]
μ |�̃|(a2 + σ 2 log(d))

N
(10)

where d = m1 + m2.

Theorem 1 LetR be an absolute norm and a decomposable regularizer. Assume that
‖L0‖∞ ≤ a, ‖S0‖∞ ≤ a for some constant a and let Assumptions 1–3 be satisfied.
Let λ1 > 4 ‖�‖, and λ2 ≥ 4 (R∗(�)+ 2aR∗(W )). Then, with probability at least
1− 4.5 d−1,

‖L0 − L̂‖22
m1m2

+ ‖S0 − Ŝ‖22
m1m2

≤ C {
1 +
2 +
3} (11)

where C is an absolute constant. Moreover, with the same probability,

‖ŜI‖22
|I| ≤ C
4. (12)

The term 
1 in (11) corresponds to the estimation error associated with matrix com-
pletion of a rank r matrix. The second and the third terms account for the error induced
by corruptions. In the next two sections we apply Theorem 1 to the settings with the
entrywise sparse and columnwise sparse corruption matrices S0.

4 Columnwise sparse corruptions

In this section, we assume that that S0 has at most s non-zero columns, and s ≤ m2/2.
We use here the ‖ · ‖2,1-norm regularizerR. Then, the convex program (5) takes form

(L̂, Ŝ) ∈ arg min
‖L‖∞≤a‖S‖∞≤a

{
1

N

N∑

i=1
(Yi − 〈Xi , L + S〉)2 + λ1‖L‖1 + λ2‖S‖2,1

}
. (13)

Since S0 has at most s non-zero columns, we have |Ĩ| = m1s. Furthermore, by the

Cauchy–Schwarz inequality, ‖Id�̃‖2,1 ≤
√
s|�̃|. Using these remarks we replace 
2,


3 and 
4 by the larger quantities


 ′
2 = μ a

√
s|�̃|

(
a λ2

λ1
E (‖�R‖)+ æλ2 + aE‖�R‖2,∞

)
,


 ′
3 =

μ |�̃| (a2 + σ 2 log(d)
)

N

(
aE (‖�R‖)

λ1
+ aE‖�R‖2,∞

λ2
+ æ

)
+ a2s

m2
,
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 ′
4 = μ a2

√
log(d)

n
+ μ a

√
s|�̃| [æ λ2 + aE‖�R‖2,∞

]

+
[
aE‖�R‖2,∞

λ2
+ æ

]
μ |�̃| (a2 + σ 2 log(d)

)

N
.

Specializing Theorem 1 to this case yields the following corollary.

Corollary 4 Assume that ‖L0‖∞ ≤ a and ‖S0‖∞ ≤ a. Let the regularization para-
meters (λ1, λ2) satisfy

λ1 > 4 ‖�‖ and λ2 ≥ 4
(‖�‖2,∞ + 2a‖W‖2,∞

)
.

Then, with probability at least 1 − 4.5 d−1, for any solution (L̂, Ŝ) of the convex
program (13) with such regularization parameters (λ1, λ2) we have

‖L0 − L̂‖22
m1m2

+ ‖S0 − Ŝ‖22
m1m2

≤ C
{

1 +
 ′

2 +
 ′
3

}
.

where C is an absolute constant. Moreover, with the same probability,

‖ŜI‖22
|I| ≤ C
 ′

4.

In order to get a bound in a closed form, we need to obtain suitable upper bounds
on the stochastic terms �, �R and W . We derive such bounds under an additional
assumption on the column marginal sampling distribution. Set π(2)

·,k =
∑m1

j=1 π2
jk .

Assumption 5 There exists a positive constant γ ≥ 1 such that

max
k

π
(2)
·,k ≤

γ 2

|I|m2
.

This condition prevents the columns from being sampled with too high probability
and guarantees that the non-corrupted observations are well spread out among the
columns. Assumption 5 is clearly less restrictive than assuming that � is uniform as
it was done in the previous work on noiseless robust matrix completion. In particular,
Assumption 5 is satisfied when the distribution� is approximately uniform, i.e., when
π jk � 1

m1(m2−s) . Note that Assumption 5 implies the following milder condition on
the marginal sampling distribution:

max
k

π·k ≤
√
2 γ

m2
. (14)

Condition (14) is sufficient to control ‖�‖2,∞ and ‖�R‖2,∞ while to we need a
stronger Assumption 5 to control ‖W‖2,∞.

The following lemma gives the order of magnitude of the stochastic terms driving
the rates of convergence.
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Lemma 6 Let the distribution � on X ′ satisfy Assumptions 1, 2 and 5. Let also
Assumption 3 hold. Assume that N ≤ m1m2, n ≤ |I|, and logm2 ≥ 1. Then, there
exists an absolute constant C > 0 such that, for any t > 0, the following bounds on
the norms of the stochastic terms hold with probability at least 1− e−t , as well as the
associated bounds in expectation.

(i) ‖�‖ ≤ Cσ max

(√
L(t + log d)

æ Nm
,
(logm)(t + log d)

N

)
and

E ‖�R‖ ≤ C

(√
L log(d)

nm
+ log2 d

N

)
;

(ii) ‖�‖2,∞ ≤ Cσ

(√
γ (t + log(d))

æNm2
+ t + log d

N

)
and

E ‖�‖2,∞ ≤ Cσ

(√
γ log(d)

æNm2
+ log d

N

)
;

(iii) ‖�R‖2,∞ ≤ C

(√
γ (t + log(d))

nm2
+ t + log d

n

)
and

E ‖�R‖2,∞ ≤ C

(√
γ log(d)

nm2
+ log d

n

)
;

(iv)
‖W‖2,∞ ≤ C

⎛

⎝γ (t + logm2)
1/4

√
æNm2

(
1+

√
m2(t + logm2)

n

)1/2

+ t + logm2

N

⎞

⎠

E‖W‖2,∞ ≤ C

⎛

⎝γ log1/4(d)√
æNm2

(
1+

√
m2 log d

n

)1/2

+ log d

N

⎞

⎠ .

Let

n∗ = 2 log(d)

(
m2

γ
∨ m log2 m

L

)
. (15)

Recall that æ = N
n ≥ 1. If n ≥ n∗, using the bounds given by Lemma 6, we can chose

the regularization parameters λ1 and λ2 in the following way:

λ1 = C (σ ∨ a)

√
L log(d)

Nm
and λ2 = C γ (σ ∨ a)

√
log(d)

Nm2
, (16)

where C > 0 is a large enough numerical constant.
With this choice of the regularization parameters, Corollary 4 implies the following

result.
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Corollary 7 Let the distribution� onX ′ satisfy Assumptions 1, 2 and 5. Let Assump-
tion 3 hold and ‖L0‖∞ ≤ a, ‖S0‖∞ ≤ a. Assume that N ≤ m1m2 and n∗ ≤ n. Then,
with probability at least 1 − 6/d for any solution (L̂, Ŝ) of the convex program (13)
with the regularization parameters (λ1, λ2) given by (16), we have

‖L0 − L̂‖22
m1m2

+ ‖S0 − Ŝ‖22
m1m2

≤ Cμ,γ,L(σ ∨ a)2 log(d)æ
r M + |�̃|

n
+ a2s

m2
(17)

where Cμ,γ,L > 0 can depend only on μ, γ, L. Moreover, with the same probability,

‖ŜI‖22
|I| ≤ Cμ,γ,L

æ(σ ∨ a)2 |�̃| log(d)

n
+ a2s

m2
.

Remarks 1. The upper bound (17) can be decomposed into two terms. The first
term is proportional to rM/n. It is of the same order as in the case of the usual
matrix completion, see [18,20]. The second term accounts for the corruption. It is
proportional to the number of corrupted columns s and to the number of corrupted
observations |�̃|. This term vanishes if there is no corruption, i.e., when S0 = 0.

2. If all entries of A0 are observed, i.e., the matrix decomposition problem is consid-
ered, the bound (17) is analogous to the corresponding bound in [1]. Indeed, then
|�̃| = sm1, N = m1m2, æ ≤ 2 and we get

‖L0 − L̂‖22
m1m2

+ ‖S0 − Ŝ‖22
m1m2

� &(σ ∨ a)2
(

r M

m1m2
+ s

m2

)
.

The estimator studied in [1] for matrix decomposition problem is similar to our
program (13). The difference between these estimators is that in (13) the mini-
mization is over ‖ · ‖∞-balls while the program of [1] uses the minimization over
‖ · ‖2,∞-balls and requires the knowledge of a bound on the norm ‖L0‖2,∞ of the
unknown matrix L0.

3. Suppose that the number of corrupted columns is small (s � m2). Then, Corol-
lary 7 guarantees, that the prediction error of our estimator is small whenever the
number of non-corrupted observations n satisfies the following condition

n � (m1 ∨ m2)rank(L0)+ |�̃| (18)

where |�̃| is the number of corrupted observations. This quantifies the sample size
sufficient for successful (robust to corruptions) matrix completion. When the rank
r of L0 is small and s � m2, the right hand side of (18) is considerably smaller
than the total number of entries m1m2.

4. By changing the numerical constants, one can obtain that the upper bound (17) is
valid with probability 1− 6d−α for any α ≥ 1.
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5 Entrywise sparse corruptions

We assume now that S0 has s non-zero entries but they do not necessarily lay in a small
subset of columns. We will also assume that s ≤ m1m2

2 . We use now the l1-regularizer
R. Then the convex program (5) takes the form

(L̂, Ŝ) ∈ arg min
‖L‖∞≤a‖S‖∞≤a

{
1

N

N∑

i=1
(Yi − 〈Xi , L + S〉)2 + λ1‖L‖∗ + λ2‖S‖1

}
. (19)

The support Ĩ = {( j, k) : (S0) jk �= 0} of the non-zero entries of S0 satisfies |Ĩ| = s.
Also, ‖Id�̃‖1 = |�̃| so that 
2, 
3, and 
4 take form


 ′′
2 = μ a |�̃|

(
a λ2

λ1
E (‖�R‖)+ æλ2 + aE‖�R‖2,∞

)
,


 ′′
3 =

μ |�̃|(a2 + σ 2 log(d))

N

(
aE (‖�R‖)

λ1
+ aE‖�R‖2,∞

λ2
+ æ

)
+ a2s

m1m2
,


 ′′
4 = μ a2

√
log(d)

n
+ μ a |�̃| [æ λ2 + aE‖�R‖2,∞

]

+
[
aE‖�R‖2,∞

λ2
+ æ

]
μ |�̃| (a2 + σ 2 log(d)

)

N
.

Specializing Theorem 1 to this case yields the following corollary:

Corollary 8 Assume that ‖L0‖∞ ≤ a and ‖S0‖∞ ≤ a. Let the regularization para-
meters (λ1, λ2) satisfy

λ1 > 4 ‖�‖ and λ2 ≥ 4 (‖�‖∞ + 2a‖W‖∞) .

Then, with probability at least 1 − 4.5 d−1, for any solution (L̂, Ŝ) of the convex
program (19) with such regularization parameters (λ1, λ2) we have

‖L0 − L̂‖22
m1m2

+ ‖S0 − Ŝ‖22
m1m2

≤ C
{

1 +
 ′′

2 +
 ′′
3

}

where C is an absolute constant. Moreover, with the same probability,

‖ŜI‖22
|I| ≤ C
 ′′

4 .

In order to get a bound in a closed form we need to obtain suitable upper bounds
on the stochastic terms �,�R and W . We provide such bounds under the following
additional assumption on the sampling distribution.
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Assumption 9 There exists a positive constant γ ≥ 1 such that

max
i, j

πi j ≤ μ1

|I| .

This assumption prevents any entry from being sampled too often and guarantees
that the observations arewell spread out over the non-corrupted entries. Assumptions 1
and 9 imply that the sampling distribution � is approximately uniform in the sense
that π jk � 1

|I| . In particular, since |I| ≤ m1m2
2 , Assumption 9 implies Assumption 2

for L = 2μ1.

Lemma 10 Let the distribution � on X ′ satisfy Assumptions 1, and 9. Let also
Assumption 3 hold. Then, there exists an absolute constant C > 0 such that, for any
t > 0, the following bounds on the norms of the stochastic terms hold with probability
at least 1− e−t , as well as the associated bounds in expectation.

(i)
‖W‖∞ ≤ C

(
μ1

æm1m2
+
√

μ1 (t + log d))

æNm1m2
+ t + log d

N

)
and

E‖W‖∞ ≤ C

(
μ1

æm1m2
+
√

μ1 log d

æNm1m2
+ log d

N

)
;

(ii) ‖�‖∞ ≤ Cσ

(√
μ1(t + log d)

æNm1m2
+ t + log d

N

)
and

E ‖�‖∞ ≤ Cσ

(√
μ1 log d

æNm1m2
+ log d

N

)
;

(iii) ‖�R‖∞ ≤ C

(√
μ1(t + log d)

n m1m2
+ t + log d

n

)
and

E ‖�R‖∞ ≤ C

(√
μ1 log d

n m1m2
+ log d

n

)
.

Using Lemma 6(i), and Lemma 10, under the conditions

m1m2 log d

μ1
≥ n ≥ 2m log(d) log2(m)

L
(20)

we can choose the regularization parameters λ1 and λ2 in the following way:

λ1 = C(σ ∨ a)

√
μ1 log(d)

Nm
and

λ2 = C(σ ∨ a)
log(d)

N
. (21)

With this choice of the regularization parameters, Corollary 8 and Lemma 10 imply
the following result.
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Corollary 11 Let the distribution � onX ′ satisfy Assumptions 1, and 9. Let Assump-
tion 3 hold and ‖L0‖∞ ≤ a, ‖S0‖∞ ≤ a. Assume that N ≤ m1m2 and that
condition (20) holds. Then, with probability at least 1 − 6/d for any solution (L̂, Ŝ)

of the convex program (19) with the regularization parameters (λ1, λ2) given by (21),
we have

‖L0 − L̂‖22
m1m2

+ ‖S0 − Ŝ‖22
m1m2

≤ Cμ,μ1æ(σ ∨ a)2 log(d)
r M + |�̃|

n
+ a2s

m1m2
(22)

where Cμ,μ1 > 0 can depend only on μ and μ1. Moreover, with the same probability

‖ŜI‖22
|I| ≤ Cμ,μ1

æ(σ ∨ a)2|�̃| log(d)

n
+ a2s

m1m2
.

Remarks 1. As in the columnwise sparsity case, we can recognize two terms in the
upper bound (22). The first term is proportional to rM/n. It is of the same order as
the rate of convergence for the usual matrix completion, see [18,20]. The second
term accounts for the corruptions and is proportional to the number s of nonzero
entries in S0 and to the number of corrupted observations |�̃|. We will prove in
Sect. 6 below that these error terms are of the correct order up to a logarithmic
factor.

2. If s � n < m1m2, the bound (22) implies that one can estimate a low-rank
matrix from a nearly minimal number of observations, even when a part of the
observations has been corrupted.

3. If all entries of A0 are observed, i.e., the matrix decomposition problem is consid-
ered, the bound (22) is analogous to the corresponding bound in [1]. Indeed, then
|�̃| ≤ s, N = m1m2, æ ≤ 2 and we get

‖L0 − L̂‖22
m1m2

+ ‖S0 − Ŝ‖22
m1m2

� &(σ ∨ a)2
(

r M

m1m2
+ s

m1m2

)
.

6 Minimax lower bounds

In this section, we prove the minimax lower bounds showing that the rates attained
by our estimator are optimal up to a logarithmic factor. We will denote by inf

(L̂,Ŝ)

the infimum over all pairs of estimators (L̂, Ŝ) for the components L0 and S0 in
the decomposition A0 = L0 + S0 where both L̂ and Ŝ take values in R

m1×m2 . For
any A0 ∈ R

m1×m2 , let PA0 denote the probability distribution of the observations
(X1,Y1, . . . , Xn,Yn) satisfying (1).

We begin with the case of columnwise sparsity. For any matrix S ∈ R
m1×m2 , we

denote by ‖S‖2,0 the number of nonzero columns of S. For any integers 0 ≤ r ≤
min(m1,m2), 0 ≤ s ≤ m2 and any a > 0, we consider the class of matrices

AGS(r, s, a) =
{
A0 = L0 + S0 ∈ R

m1×m2 : rank(L0) ≤ r, ‖L0‖∞ ≤ a,

and ‖S0‖2,0 ≤ s , ‖S0‖∞ ≤ a
}

(23)
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and define

ψGS(N , r, s) = (σ ∧ a)2
(
Mr + |�̃|

n
+ s

m2

)
.

The following theorem gives a lower bound on the estimation risk in the case of
columnwise sparsity.

Theorem 2 Suppose that m1,m2 ≥ 2. Fix a > 0 and integers 1 ≤ r ≤ min(m1,m2)

and 1 ≤ s ≤ m2/2. Let Assumption 9 be satisfied. Assume that Mr ≤ n, |�̃| ≤ sm1
andæ ≤ 1+s/m2. Suppose that the variables ξi are i.i.d. GaussianN (0, σ 2), σ 2 > 0,
for i = 1, . . . , n. Then, there exist absolute constants β ∈ (0, 1) and c > 0, such that

inf
(L̂,Ŝ)

sup
(L0,S0)∈AGS(r,s,a)

PA0

(
‖L̂ − L0‖22

m1m2
+ ‖Ŝ − S0‖22

m1m2
> cψGS(N , r, s)

)
≥ β.

We turn now to the case of entrywise sparsity. For any matrix S ∈ R
m1×m2 ,

we denote by ‖S‖0 the number of nonzero entries of S. For any integers 0 ≤ r ≤
min(m1,m2), 0 ≤ s ≤ m1m2/2 and any a > 0, we consider the class of matrices

AS(r, s, a) = {A0 = L0 + S0 ∈ R
m1×m2 : rank(L0) ≤ r,

‖S0‖0 ≤ s, ‖L0‖∞ ≤ a, ‖S0‖∞ ≤ a}

and define

ψS(N , r, s) = (σ ∧ a)2
{
Mr + |�̃|

n
+ s

m1m2

}
.

We have the following theorem for the lower bound in the case of entrywise sparsity.

Theorem 3 Assume that m1,m2 ≥ 2. Fix a > 0 and integers 1 ≤ r ≤ min(m1,m2)

and 1 ≤ s ≤ m1m2/2. Let Assumption 9 be satisfied. Assume that Mr ≤ n and there
exists a constant ρ > 0 such that |�̃| ≤ ρ r M. Suppose that the variables ξi are i.i.d.
Gaussian N (0, σ 2), σ 2 > 0, for i = 1, . . . , n. Then, there exist absolute constants
β ∈ (0, 1) and c > 0, such that

inf
(L̂,Ŝ)

sup
(L0,S0)∈AS(r,s,a)

PA0

(‖L̂ − L0‖22
m1m2

+ ‖Ŝ − S0‖22
m1m2

> cψS(N , r, s)

)
≥ β.

(24)
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Appendix A: Proofs of Theorem 1 and of Corollary 7

A.1: Proof of Theorem 1

The proofs of the upper bounds have similaritieswith themethods developed in [18] for
noisy matrix completion but the presence of corruptions in our setting requires a new
approach, in particular, for proving ”restricted strong convexity property” (Lemma 15)
which is the main difficulty in the proof.

Recall that our estimator is defined as

(L̂, Ŝ) ∈ arg min
‖L‖∞≤a‖S‖∞≤a

{
1

N

N∑

i=1
(Yi − 〈Xi , L + S〉)2 + λ1‖L‖∗ + λ2R(S)

}

and our goal is to bound from above the Frobenius norms ‖L0 − L̂‖22 and ‖S0 − Ŝ‖22.
(1) SetF(L , S) = 1

N

∑N
i=1 (Yi − 〈Xi , L + S〉)2+λ1‖L‖∗+λ2R(S),�L = L0− L̂

and �S = S0 − Ŝ. Using the inequality F(L̂, Ŝ) ≤ F(L0, S0) and (1) we get

1

N

N∑

i=1
(〈Xi ,�L +�S〉 + ξi )

2 + λ1‖L̂‖∗ + λ2R(Ŝ)

≤ 1

N

N∑

i=1
ξ2i + λ1‖L0‖∗ + λ2R(S0).

After some algebra this implies

1

N

∑

i∈�

〈Xi ,�L +�S〉2 ≤ 2

N

∑

i∈�̃

|〈ξi Xi ,�L +�S〉| − 1

N

∑

i∈�̃

〈Xi ,�L +�S〉2

︸ ︷︷ ︸
I

+ 2 |〈�,�L〉| + λ1

(
‖L0‖∗ − ‖L̂‖∗

)

︸ ︷︷ ︸
II

+ 2 |〈�,�SI〉| + λ2

(
R(S0)−R(Ŝ)

)

︸ ︷︷ ︸
III

(25)

where � = 1
N

∑
i∈� ξi Xi and we have used the equality 〈�,�S〉 = 〈�,�SI〉.

We now estimate each of the three terms on the right hand side of (25) separately.
This will be done on the random event

U =
{
max
1≤i≤N

|ξi | ≤ C∗σ
√
log d

}
(26)
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where C∗ > 0 is a suitably chosen constant. Using a standard bound on the
maximum of sub-gaussian variables and the constraint N ≤ m1m2 we get that
there exists an absolute constant C∗ > 0 such that P(U) ≥ 1 − 1

2d . In what
follows, we take this constant C∗ in the definition of U .

We start by estimating I. On the event U , we get

I ≤ 1

N

∑

i∈�̃

ξ2i ≤
C σ 2|�̃| log(d)

N
. (27)

Now we estimate II. For a linear vector subspace S of a euclidean space, let PS
denote the orthogonal projector on S and let S⊥ denote the orthogonal complement
of S. For any A ∈ R

m1×m2 , let u j (A) and v j (A) be the left and right orthonormal
singular vectors of A, respectively . Denote by S1(A) the linear span of {u j (A)},
and by S2(A) the linear span of {v j (A)}. We set

P⊥A (B) = PS⊥1 (A)BPS⊥2 (A) and PA(B) = B − P⊥A (B).

By definition of P⊥L0
, for any matrix B the singular vectors of P⊥L0

(B) are
orthogonal to the space spanned by the singular vectors of L0. This implies that∥∥∥L0 + P⊥L0

(�L)

∥∥∥∗ = ‖L0‖∗ +
∥∥∥P⊥L0

(�L)

∥∥∥∗. Thus,

‖L̂‖∗ = ‖L0 +�L‖∗
=
∥∥∥L0 + P⊥L0

(�L)+ PL0(�L)

∥∥∥∗
≥
∥∥∥L0 + P⊥L0

(�L)

∥∥∥∗ −
∥∥PL0(�L)

∥∥∗

= ‖L0‖∗ +
∥∥∥P⊥L0

(�L)

∥∥∥∗ −
∥∥PL0(�L)

∥∥∗ ,

which yields

‖L0‖∗ − ‖L̂‖∗ ≤
∥∥PL0(�L)

∥∥∗ −
∥∥∥P⊥L0

(�L)

∥∥∥∗ . (28)

Using (28) and the duality between the nuclear and the operator norms, we obtain

II ≤ 2‖�‖‖�L‖∗ + λ1

(∥∥PL0(�L)
∥∥∗ −

∥∥∥P⊥L0
(�L)

∥∥∥∗

)
.

The assumption that λ1 ≥ 4‖�‖ and the triangle inequality imply

II ≤ 3

2
λ1
∥∥PL0(�L)

∥∥∗ ≤
3

2
λ1
√
2r ‖�L‖2 (29)

where r = rank(L0) and we have used that rank(PL0(�L)) ≤ 2 rank(L0).
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For the third term in (25), we use the duality between the R and R∗, and the
identity �SI = −ŜI :

III ≤ 2R∗(�)R(ŜI)+ λ2(R(S0)−R(Ŝ)).

This and the assumption that λ2 ≥ 4R∗(�) imply

III ≤ λ2R(S0). (30)

Plugging (29), (30) and (27) in (25) we get that, on the event U ,

1

n

∑

i∈�

〈Xi ,�L +�S〉2 ≤ 3æ λ1√
2

√
r ‖�L‖2 + æλ2R(S0)+ Cσ 2|�̃| log(d)

n

(31)

where æ = N/n.
(2) Second,wewill show that a kind of restricted strong convexity holds for the random

sampling operator given by (Xi ) on a suitable subset of matrices. In words, we
prove that the observation operator captures a substantial component of any pair
of matrices L , S belonging to a properly chosen constrained set (cf. Lemma 15(ii)
below for the exact statement). This will imply that, with high probability,

1

n

∑

i∈�

〈Xi ,�L +�S〉2 ≥ ‖�L +�S‖2L2(�) − E (32)

with an appropriate residual E , whenever we prove that (�L ,�S) belongs to the
constrained set. This will be a substantial element of the remaining part of the
proof. The result of the theorem will then be deduced by combining (31) and (32).

We start by defining our constrained set. For positive constants δ1 and δ2, we first
introduce the following set of matrices where �S should lie:

B(δ1, δ2) = {B ∈ R
m1×m2 : ‖B‖2L2(�) ≤ δ21 and R(B) ≤ δ2}. (33)

The constants δ1 and δ2 define the constraints on the L2(�)-norm and on the sparsity
of the component S. The error term E in (32) depends on δ1 and δ2. We will specify
the suitable values of δ1 and δ2 for the matrix �S later. Next, we define the following
set of pairs of matrices:

D(τ, κ) =
{
(A, B) ∈ R

m1×m2 : ‖A + B‖2L2(�) ≥
√

64 log(d)

log (6/5) n
,

‖A + B‖∞ ≤ 1, ‖A‖∗ ≤
√

τ ‖AI‖2 + κ

}
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where κ and τ < m1∧m2 are some positive constants. This will be used for A = �L
and B = �S. If the L2(�)-norm of the sum of two matrices is too small, the right
hand side of (32) is negative. The first inequality in the definition ofD(τ, κ) prevents
from this. Condition ‖A‖∗ ≤

√
τ ‖AI‖2 + κ is a relaxed form of the condition

‖A‖∗ ≤
√

τ ‖A‖2 satisfied by matrices with rank τ . We will show that, with high
probability, the matrix �L satisfies this condition with τ = C rank(L0) and a small
κ . To prove it, we need the bound R(B) ≤ δ2 on the corrupted part.

Finally, define our constrained set as the intersection

D(τ, κ) ∩ {Rm1×m2 × B(δ1, δ2)
}
.

We now return to the proof of the theorem. To prove (11), we bound separately the
norms ‖�L‖2 and ‖�S‖2. Note that

‖�L‖22 ≤ ‖�LI‖22 + ‖�L Ĩ‖22 ≤ ‖�LI‖22 + 4a2|Ĩ|
≤ μ|I|‖�LI‖2L2(�) + 4a2|Ĩ| (34)

and similarly,

‖�S‖22 ≤ μ|I|‖�SI‖2L2(�) + 4a2|Ĩ|.

In view of these inequalities, it is enough to bound the quantities ‖�SI‖2L2(�) and

‖�LI‖22. A bound on ‖�SI‖2L2(�) with the rate as claimed in (11) is given in

Lemma 14 below. In order to bound ‖�LI‖2L2(�) (or ‖�LI‖22 according to cases),
we will need the following argument.

Case 1 Suppose that ‖�L +�S‖2L2(�) < 16a2
√

64 log(d)

log (6/5) n
. Then a straightforward

inequality

‖�L +�S‖2L2(�) ≥
1

2
‖�L‖2L2(�) − ‖�S‖2L2(�) (35)

together with Lemma 14 below implies that, with probability at least 1− 2.5/d,

‖�L‖2L2(�) ≤ �1 (36)

where

�1 = C
4/μ = C

{
a2
√
log(d)

n
+ aR(Id�̃)

[
æ λ2 + aE

(R∗(�R)
)]

+
(
aE (R∗(�R))

λ2
+ æ

) |�̃| (a2 + σ 2 log(d)
)

N

}
.
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Note also that 
4 ≤ C(
1 + 
2 + 
3). In view of (34), (36) and of fact that |I| ≤
m1m2, the bound on ‖�L‖22 stated in the theorem holds with probability at least
1− 2.5/d.

Case 2 Assume now that ‖�L +�S‖2L2(�) ≥ 16a2
√

64 log(d)

log (6/5) n
. We will show that

in this case and with an appropriate choice of δ1, δ2, τ and κ , the pair 1
4a (�L ,�S)

belongs to the intersection D(τ, κ) ∩ {Rm1×m2 × B(δ1, δ2)}.
Lemma 13 below and (27) imply that, on the event U ,

‖�L‖∗ ≤ 4
√
2r‖�L‖2 + λ2 a

λ1
R(Id�̃)+ Cσ 2|�̃| log(d)

Nλ1

≤ 4
√
2r‖�LI‖2 + 8a

√
2r |Ĩ| + λ2 a

λ1
R(Id�̃)+ Cσ 2|�̃| log(d)

Nλ1
. (37)

Lemma 14 yields that, with probability at least 1− 2.5 d−1,

�S

4a
∈ B

(√
�1

4a
, 2R(Id�̃)+ C |�̃| (a2 + σ 2 log(d)

)

4aNλ2

)
= B̄.

This property and (37) imply that 1
4a (�L ,�S) ∈ D(τ, κ) ∩ {Rm1×m2 × B̄} with

probability at least 1− 2.5 d−1, where

τ = 32r and κ = 2
√
2r |Ĩ| + λ2

4λ1
R(Id�̃)+ Cσ 2|�̃| log(d)

4a Nλ1
.

Therefore, we can apply Lemma 15(ii). From Lemma 15(ii) and (31) we obtain that,
with probability at least 1− 4.5 d−1,

1

2
‖�L +�S‖2L2(�) ≤

3æ λ1√
2

√
r ‖�L‖2 + CE (38)

where

E = μ a2 r |I| (E (‖�R‖))2 + 8a2
√
2r |Ĩ|E (‖�R‖)

+ λ2R(Id�̃)

(
a2E (‖�R‖)

λ1
+ aæ

)

+ |�̃|
(
a2 + σ 2 log(d)

)

N

(
aE (‖�R‖)

λ1
+ aE (R∗(�R))

λ2
+ æ

)
+�1. (39)
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Using an elementary argument and then (34) we find

3æ√
2
λ1
√
r ‖�L‖2 ≤

9æ2 μm1 m2 r λ21

2
+ ‖�L‖22

4μm1m2

≤ 9æ2 μm1 m2 r λ21

2
+ ‖�LI‖22

4μm1m2
+ a2|Ĩ|

μm1m2
.

This inequality and (38) yield

‖�L +�S‖2L2(�) ≤
9æ2 μm1m2 r λ21

4
+ ‖�LI‖22

4μm1m2
+ a2|Ĩ|

μm1m2
+ CE .

Using again (35), Lemma 14, (9) and the bound |I| ≤ m1m2 we obtain

‖�LI‖22
μm1m2

≤ C

{
æ2 μm1 m2 r λ21 +

a2|Ĩ|
μm1m2

+ E
}

.

This and the inequality
√
2r |Ĩ|E (‖�R‖) ≤ |Ĩ|

μm1m2
+μm1m2 r (E (‖�R‖))2 imply

that, with probability at least 1− 4.5 d−1,

‖�LI‖22
m1m2

≤ C {
1 +
2 +
3} . (40)

In view of (40) and (34), ‖�L‖22 is bounded by the right hand side of (11) with
probability at least 1− 4.5 d−1. Finally, inequality (12) follows from Lemma 14, (9)
and the identity �SI = −ŜI .

Lemma 12 Assume that λ2 ≥ 4 (R∗(�)+ 2aR∗(W )). Then, we have

R(�SI) ≤ 3R(�S�̃)+ 1

Nλ2

⎡

⎣4a2|�̃| +
∑

i∈�̃

ξ2i

⎤

⎦

Proof Let ∂‖ · ‖∗, and ∂R denote the subdifferentials of ‖ · ‖∗ and ofR, respectively.
By the standard condition for optimality over a convex set (see [2, Chapter 4, Section 2,
Corollary 6]), we have

− 2

N

N∑

i=1
(Yi − 〈Xi , L̂ + Ŝ〉)〈Xi , L + S − L̂ − Ŝ〉

+λ1〈∂‖L̂‖∗, L − L̂〉 + λ2〈∂R(Ŝ), S − Ŝ〉 ≥ 0 (41)
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for all feasible pairs (L , S). In particular, for (L̂, S0) we obtain

− 2

N

N∑

i=1
(Yi − 〈Xi , L̂ + Ŝ〉)〈Xi ,�S〉 + λ2〈∂R(Ŝ),�S〉 ≥ 0,

which implies

− 2

N

N∑

i=1
〈Xi ,�S〉2 − 2

N

∑

i∈�̃

〈Xi ,�L〉 〈Xi ,�S〉 − 2

N

∑

i∈�̃

ξi 〈Xi ,�S〉

− 2

N

∑

i∈�

〈Xi ,�L〉 〈Xi ,�S〉 − 2 〈�,�S〉 + λ2〈∂R(Ŝ),�S〉 ≥ 0.

Using the elementary inequality 2ab ≤ a2+ b2 and the bound ‖�L‖∞ ≤ 2a we find

− 2

N

N∑

i=1
〈Xi ,�S〉2 − 2

N

∑

i∈�̃

〈Xi ,�L〉 〈Xi ,�S〉 − 2

N

∑

i∈�̃

ξi 〈Xi ,�S〉

≤ 1

N

∑

i∈�̃

〈Xi ,�L〉2 + 1

N

∑

i∈�̃

ξ2

≤ 4a2|�̃|
N

+ 1

N

∑

i∈�̃

ξ2i .

Combining the last two displays we get

λ2〈∂R(Ŝ), Ŝ − S0〉 ≤ 2

∣∣∣∣∣

〈
1

N

∑

i∈�

〈Xi ,�L〉 Xi ,�S

〉∣∣∣∣∣+ 2 |〈�,�S〉|

+ 4a2|�̃|
N

+ 1

N

∑

i∈�̃

ξ2i

≤ 2R∗
(
1

N

∑

i∈�

〈Xi ,�L〉 Xi

)
R(�S)+ 2R∗(�)R(�S)

+ 4a2|�̃|
N

+ 1

N

∑

i∈�̃

ξ2i . (42)

By Lemma 18,

R∗
(
1

N

∑

i∈�

〈Xi ,�L〉 Xi

)
≤ 2aR∗(W ) (43)
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where W = 1
N

∑
i∈� Xi . On the other hand, the convexity of R(·) and the definition

of subdifferential imply

R(S0) ≥ R(Ŝ)+ 〈∂R(Ŝ),�S〉. (44)

Plugging (43) and (44) in (42) we obtain

λ2(R(Ŝ)−R(S0)) ≤ 4aR∗(W )R(�S)+ 2R∗(�)R(�S)+ 4a2|�̃|
N

+ 1

N

∑

i∈�̃

ξ2i .

Next, the decomposability of R(·), the identity (S0)I = 0 and the triangle inequality
yield

R(S0 −�S)−R(S0) = R ((S0 −�S)Ĩ
)+R ((S0 −�S)I)−R ((S0)Ĩ

)

≥ R ((�S)I)−R ((�S)Ĩ
)
.

Since λ2 ≥ 4 (2aR∗(W )+R∗(�)) the last two displays imply

λ2
(R ((�S)I)−R ((�S)Ĩ

))

≤ λ2

2

(R (�SĨ
)+R ((�S)I)

)+ 4a2|�̃|
N

+ 1

N

∑

i∈�̃

ξ2i .

Thus,

R (�SI) ≤ 3R (�SĨ
)+ 1

Nλ2

⎡

⎣4a2|�̃| +
∑

i∈�̃

ξ2i

⎤

⎦ . (45)

Since we assume that all unobserved entries of S0 are zero, we have (S0)Ĩ = (S0)�̃.

On the other hand, SĨ = Ŝ�̃ as R(·) is a monotonic norm. Indeed, adding to S
a non-zero element on the non-observed part increases R(S) but does not modify
1
N

∑N
i=1 (Yi − 〈Xi , L + S〉)2. To conclude, we have �SĨ = �S�̃, which together

with (45), implies the Lemma. ��
Lemma 13 Suppose that λ1 ≥ 4‖�‖ and λ2 ≥ 4R∗(�). Then,

∥∥∥P⊥L0
(�L)

∥∥∥∗ ≤ 3
∥∥PL0(�L)

∥∥∗ +
λ2 a
λ1

R(Id�̃)+ 1

Nλ1

∑

i∈�̃

ξ2i .

Proof Using (41) for (L , S) = (L0, S0) we obtain

− 2

N

N∑

i=1
〈Xi ,�S +�L〉2 − 2

N

∑

i∈�̃

〈ξi Xi ,�L +�S〉

−2 〈�, (�S)I〉 − 2 〈�,�L〉 + λ1〈∂‖L̂‖∗,�L〉 + λ2〈∂R(Ŝ),�S〉 ≥ 0. (46)
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The convexity of ‖ · ‖∗ and ofR(·) and the definition of the subdifferential imply

‖L0‖∗ ≥ ‖L̂‖∗ + 〈∂‖L̂‖∗,�L〉
R(S0) ≥ R(Ŝ)+ 〈∂R(Ŝ),�S〉.

Together with (46), this yields

λ1(‖L̂‖∗ − ‖L0‖∗)+ λ2(R(Ŝ)−R(S0)) ≤ 2‖�‖‖�L‖∗ + 2R∗(�)R (�SI)

+ 1

N

∑

i∈�̃

ξ2i .

Using the conditions λ1 ≥ 4‖�‖, λ2 ≥ 4R∗(�), the triangle inequality and (28) we
get

λ1

(∥∥∥P⊥L0
(�L)

∥∥∥∗ −
∥∥PL0(�L)

∥∥∗
)
+ λ2(R(Ŝ)−R(S0))

≤ λ1

2

(∥∥∥P⊥L0
(�L)

∥∥∥∗ +
∥∥PL0(�L)

∥∥∗
)
+ λ2

2
R(ŜI)+ 1

N

∑

i∈�̃

ξ2i .

Since we assume that all unobserved entries of S0 are zero, we obtain R(S0) ≤
aR(Id�̃). Using this inequality in the last display proves the lemma. ��

Lemma 14 Let n > m1 and λ2 ≥ 4 (R∗(�)+ 2aR∗(W )). Suppose that the distrib-
ution � on X ′ satisfies Assumptions 1 and 2. Let ‖S0‖∞ ≤ a for some constant a and
let Assumption 3 be satisfied. Then, with probability at least 1− 2.5 d−1,

‖�S‖2L2(�) ≤ C
4/μ, (47)

and

R(�S) ≤ 8aR(Id�̃)+ |�̃|(4a
2 + Cσ 2 log(d))

Nλ2
. (48)

Proof Using the inequality F(L̂, Ŝ) ≤ F(L̂, S0) and (1) we obtain

1

N

N∑

i=1
(〈Xi ,�L +�S〉 + ξi )

2 + λ2R(Ŝ)

≤ 1

N

N∑

i=1
(〈Xi ,�L〉 + ξi )

2 + λ2R(S0)
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which implies

1

N

∑

i∈�

〈Xi ,�S〉2 + 1

N

∑

i∈�̃

〈Xi , �S〉2 + 2

N

∑

i∈�̃

〈Xi , �L〉 〈Xi , �S〉 + 2

N

∑

i∈�̃

〈ξi Xi , �S〉

+ 2

N

∑

i∈�

〈Xi , �L〉 〈Xi , �SI
〉+ 2

〈
�, �SI

〉+ λ2R(Ŝ) ≤ λ2R(S0).

From Lemma 18 and the duality between R and R∗ we obtain

1

N

∑

i∈�

〈Xi ,�S〉2 ≤ 2(2aR∗(W )+R∗(�))R(�SI)+ λ2(R(S0)−R(Ŝ))

+ 2

N

∑

i∈�̃

〈Xi ,�L〉2 + 2

N

∑

i∈�̃

ξ2.

Since here �SI = −ŜI and λ2 ≥ 4 (R∗(�)+ 2aR∗(W )) it follows that

1

N

∑

i∈�

〈Xi ,�S〉2 ≤ λ2R (S0)+ 2

N

∑

i∈�̃

〈Xi ,�L〉2 + 2

N

∑

i∈�̃

ξ2. (49)

Now, Lemma 12 and the bound ‖�S‖∞ ≤ 2a imply that, on the event U defined
in (26),

R(�S) ≤ 4R(�S�̃)+ |�̃|(4a
2 + Cσ 2 log(d))

Nλ2

≤ 8aR(Id�̃)+ |�̃|(4a
2 + Cσ 2 log(d))

Nλ2
. (50)

Thus, (48) is proved. To prove (47), consider the following two cases.

Case I ‖�S‖2L2(�) < 4a2
√

64 log(d)
log(6/5) n . Then (47) holds trivially.

Case II ‖�S‖2L2(�) ≥ 4a2
√

64 log(d)
log(6/5) n . Then inequality (50) and the bound ‖�S‖∞ ≤

2a imply that, on the event U ,

�S

2a
∈ C

(
4R(Id�̃)+ |�̃| (8a2 + Cσ 2 log(d)

)

2a Nλ2

)

where, for any δ > 0, the set C(δ) is defined as:

C(δ) =
{
A ∈ R

m1×m2 : ‖A‖∞ ≤ 1, ‖A‖2L2(�) ≥
√

64 log(d)

log (6/5) n
,R(A) ≤ δ

}
. (51)
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Thus, we can apply Lemma 15(i) below. In view of this lemma, the inequali-
ties (49), (27), ‖�L‖∞ ≤ 2a and R (S0) ≤ aR(IdĨ) imply that (47) holds with
probability at least 1− 2.5 d−1. ��
Lemma 15 Let the distribution � on X ′ satisfy Assumptions 1 and 2. Let δ, δ1, δ2, τ ,
and κ be positive constants. Then, the following properties hold.

(i) With probability at least 1− 2

d
,

1

n

∑

i∈�

〈Xi , S〉2 ≥ 1

2
‖S‖2L2(�) − 8δE(R∗(�R))

for any S ∈ C(δ).

(ii) With probability at least 1− 2

d
,

1

n

∑

i∈�

〈Xi , L + S〉2 ≥ 1

2
‖L + S‖2L2(�) − {360μ |I| τ (E (‖�R‖))2

+4δ21 + 8δ2 E(R∗(�R))+ 8κE (‖�R‖)}

for any pair (L , S) ∈ D(τ, κ) ∩ {Rm1×m2 × B(δ1, δ2)}.
Proof We give a unified proof of (i) and (ii). Let A = S for (i) and A = L + S for
(ii). Set

E =
{
8δE (R∗(�R)) for (i)
360μ |I| τ (E (‖�R‖))2 + 4δ21 + 8δ2 E (R∗(�R))+ 8κE (‖�R‖) for (ii)

and

C =
{C(δ) for (i)
D(τ, κ) ∩ (Rm1×m2 × B(δ1, δ2)) for (ii).

To prove the lemma it is enough to show that the probability of the random event

B =
{
∃ A ∈ C such that

∣∣∣∣∣
1

n

∑

i∈�

〈Xi , A〉2 − ‖A‖2L2(�)

∣∣∣∣∣ >
1

2
‖A‖2L2(�) + E

}

is smaller than 2/d. In order to estimate the probability ofB, we use a standard peeling
argument. Set ν =

√
64 log(d)

log (6/5) n
and α = 6

5
. For l ∈ N, define

Sl = {A ∈ C : αl−1ν ≤ ‖A‖2L2(�) ≤ αlν}.
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If the event B holds, there exist l ∈ N and a matrix A ∈ C ∩ Sl such that

∣∣∣∣∣
1

n

∑

i∈�

〈Xi , A〉2 − ‖A‖2L2(�)

∣∣∣∣∣ >
1

2
‖A‖2L2(�) + E

>
1

2
αl−1ν + E

= 5

12
αlν + E . (52)

For each l ∈ N, consider the random event

Bl =
{
∃ A ∈ C′(αlν) :

∣∣∣∣∣
1

n

∑

i∈�

〈Xi , A〉2 − ‖A‖2L2(�)

∣∣∣∣∣ >
5

12
αlν + E

}

where

C′(T ) = {A ∈ C : ‖A‖2L2(�) ≤ T }, ∀T > 0.

Note that A ∈ Sl implies that A ∈ C′(αlν). This and (52) grant the inclusion B ⊂
∪∞l=1 Bl . By Lemma 16, P (Bl) ≤ exp(−c5 n α2lν2) where c5 = 1/128. Using the
union bound we find

P (B) ≤
∞∑

l=1
P (Bl)

≤
∞∑

l=1
exp(−c5 n α2l ν2)

≤
∞∑

l=1
exp(−(2 c5 n log(α) ν2)l)

where we have used the inequality ex ≥ x . We finally obtain, for ν =
√

64 log(d)

log (6/5) n
,

P (B) ≤ exp
(−2 c5 n log(α) ν2

)

1− exp
(−2 c5 n log(α) ν2

) = exp (− log(d))

1− exp (− log(d))
.

��
Let

ZT = sup
A∈C′(T )

∣∣∣∣∣
1

n

∑

i∈�

〈Xi , A〉2 − ‖A‖2L2(�)

∣∣∣∣∣ .
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Lemma 16 Let the distribution � on X ′ satisfy Assumptions 1 and 2. Then,

P

(
ZT >

5

12
T + E

)
≤ exp(−c5 n T 2)

where c5 = 1

128
.

Proof We follow a standard approach: first we show that ZT concentrates around its
expectation and then we bound from above the expectation. Since ‖A‖∞ ≤ 1 for
all A ∈ C′(T ), we have |〈Xi , A〉| ≤ 1. We use first a Talagrand type concentration
inequality, cf. [4, Theorem 14.2], implying that

P

(
ZT ≥ E (ZT )+ 1

9

(
5

12
T

))
≤ exp(−c5 n T 2) (53)

where c5 = 1

128
. Next, we bound the expectation E (ZT ). By a standard symmetriza-

tion argument (see e.g. [19, Theorem 2.1]) we obtain

E (ZT ) = E

(
sup

A∈C′(T )

∣∣∣∣∣
1

n

∑

i∈�

〈Xi , A〉2 − E(〈X, A〉2)
∣∣∣∣∣

)

≤ 2E

(
sup

A∈C′(T )

∣∣∣∣∣
1

n

∑

i∈�

εi 〈Xi , A〉2
∣∣∣∣∣

)

where {εi }ni=1 is an i.i.d. Rademacher sequence. Then, the contraction inequality (see
e.g. [19]) yields

E (ZT ) ≤ 8E

(
sup

A∈C′(T )

∣∣∣∣∣
1

n

∑

i∈�

εi 〈Xi , A〉
∣∣∣∣∣

)
= 8E

(
sup

A∈C′(T )

|〈�R, A〉|
)

where �R = 1

n

∑n
i=1εi Xi . Now, to obtain a bound on E(supA∈C′(T ) |〈�R, A〉|) we

will consider separately the cases C = C(δ) and C = D(τ, κ)∩{Rm1×m2 ×B(δ1, δ2)}.
Case I A ∈ C(δ) and ‖A‖2L2(�) ≤ T . By the definition of C(δ) we have R(A) ≤ δ.

Thus, by the duality between R and R∗,

E (ZT ) ≤ 8E

(
sup

R(A)≤δ

|〈�R, A〉|
)
≤ 8δ E

(R∗(�R)
)
.

This and the concentration inequality (53) imply

P

(
ZT >

5

12
T + E

)
≤ exp(−c5 n T 2)

with c5 = 1

128
and E = 8δ E (R∗(�R)) as stated.
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Case II A = L + S where (L , S) ∈ D(τ, κ), S ∈ B(δ1, δ2), and ‖L + S‖2L2(�) ≤ T .
Then, by the definition of B(δ1, δ2), we have R(S) ≤ δ2. On the other hand, the
definition of D(τ, κ) yields

‖L‖∗ ≤ √τ‖LI‖2 + κ

and

‖L‖L2(�) ≤ ‖L + S‖L2(�) + ‖S‖L2(�) ≤
√
T + δ1.

The last two inequalities imply

‖L‖∗ ≤
√

μ |I| τ(
√
T + δ1)+ κ := �1.

Therefore we can write

E

(
sup

A∈C′(T )

|〈�R, A〉|
)
≤ 8E

(
sup

‖L‖∗≤�1

|〈�R, L〉| + sup
R(S)≤δ2

|〈�R, S〉|
)

≤ 8
{
�1 E (‖�R‖)+ δ2 E

(R∗(�R)
)}

.

Combining this bound with the following elementary inequalities:

1

9

(
5

12
T

)
+ 8
√

μ |I| τ T E (‖�R‖) ≤
(
1

9
+ 8

9

)
5

12
T + 44μ |I| τ (E (‖�R‖))2 ,

δ1
√

μ |I| τ ,E (‖�R‖) ≤ μ |I| τ (E (‖�R‖))2 + δ21

2

and using the concentration bound (53) we obtain

P

(
ZT >

5

12
T + E

)
≤ exp(−c5 n T 2)

with c5 = 1

128
and

E = 360μ |I| τ (E (‖�R‖))2 + 4δ21 + 8δ2 E
(R∗(�R)

)+ 8κE (‖�R‖) (54)

as stated. ��
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A.2: Proof of Corollary 7

With λ1 and λ2 given by (16) we obtain


1 = μ2æ2(σ ∨ a)2
M r log d

N
,


 ′
2 ≤ μ2æ2(σ ∨ a)2 log(d)

|�̃|
N
+ a2s

m2
,


 ′
3 =

μæ|�̃|(a2 + σ 2 log(d))

N
+ a2s

m2


 ′
4 ≤

μæ2|�̃|(a2 + σ 2 log(d))

N
+ a2

√
log(d)

n
+ a2s

m2
.

Appendix B: Proof of Theorems 2 and 3

Note that the assumption æ ≤ 1+ s/m2 implies that

|�̃|
n
≤ s

m2
. (55)

Assume w.l.o.g. that m1 ≥ m2. For a γ ≤ 1, define

L̃ =
{
L̃ = (li j ) ∈ R

m1×r : li j ∈
{
0, γ (σ ∧ a)

(rM
n

)1/2}
, ∀1 ≤ i ≤ m1, 1 ≤ j ≤ r

}
,

and consider the associated set of block matrices

L = {L = (L̃ · · · L̃ O) ∈ R
m1×m2 : L̃ ∈ L̃},

where O denotes them1× (m2− r�m2/(2r)�) zero matrix, and �x� is the integer part
of x .

We define similarly the set of matrices

S̃ = {S̃ = (si j ) ∈ R
m1×s : si j ∈

{
0, γ (σ ∧ a)

}
, ∀1 ≤ i ≤ m1, 1 ≤ j ≤ s},

and

S = {S = (Õ S̃) ∈ R
m1×m2 : S̃ ∈ S̃},

where Õ is the m1 × (m2 − s) zero matrix. We now set

A = {A = L + S : L ∈ L, S ∈ S} .

Remark 2 In the case m1 < m2, we only need to change the construction of the low
rank component of the test set. We first introduce a matrix L̃ = ( L̄ O

) ∈ R
r×m2
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where L̄ ∈ R
r×(m2/2) with entries in {0, γ (σ ∧ a)( rMn )1/2} and then we replicate this

matrix to obtain a block matrix L of size m1 × m2

L =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

L̃

...

L̃

O

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

By construction, any element of A as well as the difference of any two elements
of A can be decomposed into a low rank component L of rank at most r and a group
sparse component S with at most s nonzero columns. In addition, the entries of any
matrix in A take values in [0, a]. Thus, A ⊂ AGS(r, s, a).

We first establish a lower bound of the order rM/n. Let Ã ⊂ A be such that for any
A = L+S ∈ Ãwehave S = 0. TheVarshamov–Gilbert bound (cf. Lemma2.9 in [25])
guarantees the existence of a subsetA0 ⊂ Ãwith cardinality Card(A0) ≥ 2(rM)/8+1
containing the zero m1×m2 matrix 0 and such that, for any two distinct elements A1
and A2 of A0,

||A1 − A2||22 ≥
Mr

8

(
γ 2(σ ∧ a)2

Mr

n

)⌊m2

r

⌋
≥ γ 2

16
(σ ∧ a)2 m1m2

Mr

n
. (56)

Since ξi ∼ N (0, σ 2)we get that, for any A ∈ A0, the Kullback–Leibler divergence
K
(
P0,PA

)
between P0 and PA satisfies

K
(
P0,PA

) = |�|
2σ 2 ‖A‖2L2(�) ≤

μ1γ
2 Mr

2
(57)

where we have used Assumption 9. From (57) we deduce that the condition

1

Card(A0)− 1

∑

A∈A0

K (P0,PA) ≤ 1

16
log
(
Card(A0)− 1

)
(58)

is satisfied if γ > 0 is chosen as a sufficiently small numerical constant. In view of
(56) and (58), the application of Theorem 2.5 in [25] implies

inf
(L̂,Ŝ)

sup
(L0,S0)∈AGS(r,s,a)

PA0

(
‖L̂ − L0‖22

m1m2
+ ‖Ŝ − S0‖22

m1m2
>

C(σ ∧ a)2 Mr

n

)
≥ β

(59)

for some absolute constants β ∈ (0, 1).
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We now prove the lower bound relative to the corruptions. Let Ā ⊂ A such that for
any A = L + S ∈ Ā we have L = 0. The Varshamov–Gilbert bound (cf. Lemma 2.9
in [25]) guarantees the existence of a subset A0 ⊂ Ā with cardinality Card(A0) ≥
2(sm1)/8 + 1 containing the zero m1 ×m2 matrix 0 and such that, for any two distinct
elements A1 and A2 of A0,

||S1 − S2||22 ≥
sm1

8
(γ 2(σ ∧ a)2) = γ 2 (σ ∧ a)2 s

8m2
m1m2. (60)

For any A ∈ A0, the Kullback–Leibler divergence between P0 and PA satisfies

K
(
P0,PA

) = |�̃|
2σ 2 γ 2(σ ∧ a)2 ≤ γ 2 m1s

2

which implies that condition (58) is satisfied if γ > 0 is chosen small enough. Thus,
applying Theorem 2.5 in [25] we get

inf
(L̂,Ŝ)

sup
(L0,S0)∈AGS(r,s,a)

PA0

(
‖L̂ − L0‖22

m1m2
+ ‖Ŝ − S0‖22

m1m2
>

C(σ ∧ a)2 s
m2

)
≥ β

(61)

for some absolute constant β ∈ (0, 1). Theorem 2 follows from inequalities (55), (59)
and (61).

The proof of Theorem 3 follows the same lines as that of Theorem 2. The only
difference is that we replace S̃ by the following set

{S = (si j ) ∈ R
m1×m2 : si j ∈ {0, γ (σ ∧ a)}, ∀1 ≤ i ≤ m1, �m2/2� + 1 ≤ j ≤ m2}.

We omit further details here.

Appendix C: Proof of Lemma 6

Part (i) of Lemma 6 is proved in Lemmas 5 and 6 in [18].

Proof of (ii) For the sake of brevity, we set Xi ( j, k) = 〈Xi , e j (m1)ek(m2)
�〉. By

definition of � and ‖ · ‖2,∞, we have

‖�‖22,∞ = max
1≤k≤m2

m1∑

j=1

(
1

N

∑

i∈�

ξi Xi ( j, k)

)2

.
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For any fixed k, we have

m1∑

j=1

(
1

N

∑

i∈�

ξi Xi ( j, k)

)2

= 1

N 2

∑

i1,i2∈�

ξi1ξi2

m1∑

j=1
Xi1( j, k)Xi2( j, k)

= ��Ak�, (62)

where � = (ξ1, . . . , ξn)
� and Ak ∈ R

|�|×|�| with entries

ai1i2(k) =
1

N 2

m1∑

j=1
Xi1( j, k)Xi2( j, k).

We freeze the Xi and we apply the version of Hanson–Wright inequality in [24] to get
that there exists a numerical constant C such that with probability at least 1− e−t

|��Ak�− E[��Ak�|Xi ]| ≤ Cσ 2
(
‖Ak‖2

√
t + ‖Ak‖t

)
. (63)

Next, we note that

‖Ak‖22 =
∑

i1,i2

a2i1i2(k) ≤
1

N 4

∑

i1i2

⎛

⎝
m1∑

j1=1
X2
i1( j1, k)

⎞

⎠

⎛

⎝
m1∑

j1=1
X2
i2( j1, k)

⎞

⎠

≤ 1

N 4

⎡

⎣
∑

i1

m1∑

j1=1
X2
i1( j1, k)

⎤

⎦
2

=
⎡

⎣ 1

N 2

∑

i1

m1∑

j1=1
Xi1( j1, k)

⎤

⎦
2

,

where we have used the Cauchy–Schwarz inequality in the first line and the relation
X2
i ( j, k) = Xi ( j, k).
Note that Zi (k) :=∑m1

j=1 Xi ( j, k) follows a Bernoulli distribution with parameter
π·k and consequently Z(k) =∑i∈� Zi (k) follows aBinomial distribution B(|�|, π·k).
We apply Bernstein’s inequality (see, e.g., [4, page 486]) to get that, for any t > 0,

P

(
|Z(k)− E[Z(k)]| ≥ 2

√|�|π·k t + t
)
≤ 2e−t .

Consequently, we get with probability at least 1− 2e−t that

‖Ak‖22 ≤
( |�|π·k + 2

√|�|π·k t + t

N 2

)2

and, using ‖Ak‖ ≤ ‖Ak‖2, that

‖Ak‖ ≤ |�|π·k + 2
√|�|π·k t + t

N 2 .
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Note also that

E[��Ak�
∣∣Xi ] = σ 2

N 2 Z(k).

Combining the last three displays with (63) we get, up to a rescaling of the constants,
with probability at least 1− e−t that

m1∑

j=1

⎛

⎝ 1

N

∑

i∈�r

ξi Xi ( j, k)

⎞

⎠
2

≤ C
σ 2

N 2

(
|�|π·k + 2

√|�|π·k t + t
)

(1+√t + t).

Replacing t by t + logm2 in the above display and using the union bound gives that,
with probability at least 1− e−t ,

‖�‖2,∞ ≤ C
σ

N

(
|�|π·k + 2

√|�|π·k(t + logm2)+ (t + logm2)
)1/2

× (1+√t + logm2 + t + logm2)
1/2

= C
σ

N

(√|�|π·k +
√
t + logm2

) (
1+√t + logm2

)
.

Assuming that logm2 ≥ 1 we get with probability at least 1− e−t that

‖�‖2,∞ ≤ C
σ

N

(√|�|π·k(t + logm2)+ (t + logm2)
)

.

Using (14), we get that there exists a numerical constant C > 0 such with probability
at least 1− e−t

‖�‖2,∞ ≤ C
σ

N

⎛

⎝
√

γ 1/2n(t + logm2)

m2
+ (t + logm2)

⎞

⎠ .

Finally, we use Lemma 17 to obtain the required bound on E‖�‖2,∞.

Proof of (iii) We follow the same lines as in the proof of part (ii) above. The only
difference is to replace ξi by εi , σ by 1 and N by n.

Proof of (iv) We need to establish the bound on

‖W‖22,∞ = max
1≤k≤m2

m1∑

j=1

(
1

N

∑

i∈�

Xi ( j, k)

)2

.
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For any fixed k, we have

m1∑

j=1

(
1

N

∑

i∈�

Xi ( j, k)

)2

= 1

N 2

∑

i∈�

m1∑

j=1
X2
i ( j, k)+

1

N 2

∑

i1 �=i2

m1∑

j=1
Xi1( j, k)Xi2( j, k).

The first term on the right hand side of the last display can be written as

1

N 2

∑

i∈�

m1∑

j=1
X2
i ( j, k) =

1

N 2

∑

i∈�

m1∑

j=1
Xi ( j, k) = Z(k)

N 2 .

Using the concentration bound on Z(k) in the proof of part (ii) above, we get that,
with probability at least 1− e−t ,

1

N 2

∑

i∈�

m1∑

j=1
X2
i ( j, k) ≤

|�|
N 2 π·k + 2

√|�|π·k t
N 2 + t

N 2 . (64)

Next, the random variable

U2 = 1

N 2

∑

i1 �=i2

m1∑

j=1
[Xi1( j, k)Xi2( j, k)− π2

j,k]

is a U-statistic of order 2. We use now a Bernstein-type concentration inequality for
U-statistics. To this end, we set Xi (·, k) = (Xi (1, k), . . . , Xi (m1, k))� and

h(Xi1(·, k), Xi2(·, k)) =
m1∑

j=1
[Xi1( j, k)Xi2( j, k)− π2

j,k].

Let e0(m1) = 0m1 be the zero vector in R
m1 . Note that Xi (·, k) takes values in

{e j (m1), 0 ≤ j ≤ m1}. For any function g : {e j (m1), 0 ≤ j ≤ m1}2 → R, we set
‖g‖L∞ = max0≤ j1, j2≤m1 |g(e j1(m1), e j2(m1))|.

We will need the following quantities to control the tail behavior of U2

A = ‖h‖L∞ ,

B2 = max

⎧
⎨

⎩

∥∥∥∥∥∥

∑

i1

Eh2(Xi1(·, k), ·)
∥∥∥∥∥∥
L∞

,

∥∥∥∥∥∥

∑

i2

Eh2(·, Xi2(·, k))
∥∥∥∥∥∥
L∞

⎫
⎬

⎭ ,

C =
∑

i1 �=i2
E[h2(Xi1(·, k), X ′i2(·, k))] and
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D = sup

⎧
⎨

⎩E
∑

i1 �=i2
h
[
Xi1(·, k), X ′i2(·, k)

]
fi1 [Xi1(·, k)]gi2 [X ′i2(·, k)],

E

∑

i1

f 2i1(Xi1(·, k)) ≤ 1,E
∑

i2

g2i2(X
′
i2(·, k)) ≤ 1

⎫
⎬

⎭ ,

where X ′i (·, k) are independent replications of Xi (·, k) and f , g : Rm1 → R.
We now evaluate the above quantities in our particular setting. It is not hard to see

that A=max{π(2)
·k , 1− π

(2)
·k } ≤ 1 where π

(2)
·k =∑m1

j=1 π2
jk . We also have that

C =
∑

i1 �=i2

⎡

⎢⎣E
[〈
Xi1(·, k), X ′i2(·, k)

〉2]−
⎛

⎝
m1∑

j=1
π2
jk

⎞

⎠
2
⎤

⎥⎦

= |�|(|�| − 1)

⎡

⎢⎣E
[〈
Xi1(·, k), X ′i2(·, k)

〉]−
⎛

⎝
m1∑

j=1
π2
jk

⎞

⎠
2
⎤

⎥⎦

= |�|(|�| − 1)

⎡

⎢⎣
m1∑

j=1
π2
jk −

⎛

⎝
m1∑

j=1
π2
jk

⎞

⎠
2
⎤

⎥⎦ ≤ |�|(|�| − 1)π(2)
·k ,

wherewehaveused in the second line that 〈Xi1(·, k), X ′i2(·, k)〉2=〈Xi1(·, k), X ′i2(·, k)〉
since 〈Xi1(·, k), X ′i2(·, k)〉 takes values in {0, 1}.

We now derive a bound on D. By Jensen’s inequality, we get

∑

i

√
E
[
f 2i (Xi (·, k))

] ≤ |�|1/2
√√√√E

[
∑

i

f 2i (Xi (·, k))
]
≤ |�|1/2

where we used the bound E[∑i f 2i (Xi (·, k))] ≤ 1. Thus, the Cauchy–Schwarz
inequality implies

D ≤
∑

i1 �=i2
E

[
h2(Xi1 , X

′
i2)
]
E
1/2
[
f 2i1(Xi1(·, k))

]
E
1/2
[
g2i2(X

′
i2(·, k))

]

≤ max
i1 �=i2

{
E
1/2
[
h2(Xi1 , X

′
i2)
]}∑

i1,i2

E
1/2
[
f 2i1(Xi1(·, k))

]
E
1/2
[
g2i2(X

′
i2(·, k))

]

≤ max
i1 �=i2

{
E
1/2
[
h2(Xi1 , X

′
i2)
]}
|�|

≤ |�|
⎛

⎝
m1∑

j=1
π2
jk

⎞

⎠
1/2

= |�|
[
π

(2)
·k
]1/2

,
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where we have used the fact that E[h2(Xi1 , X
′
i2
)] ≤ ∑m1

j=1 π2
jk following from an

argument similar to that used to bound C.
Finally, we get a bound on B. Set π0,k = 1− π·,k . Note first that
∥∥∥∥∥∥

∑

i1

Eh2(Xi1(·, k), ·)
∥∥∥∥∥∥
L∞
= |�| max

0≤ j ′≤m1

⎧
⎨

⎩

m1∑

j=0
h2(e j (m1), e j ′(m1))π jk

⎫
⎬

⎭

≤ |�|(π(2)
·k )2 + |�| max

1≤ j ′≤m1
π j ′,k .

By symmetry, we obtain the same bound on ‖∑i2 Eh
2(·, Xi2(·, k))‖L∞ . Thus we have

B ≤ |�|1/2
(

π
(2)
·k + max

1≤ j ′≤m1
π
1/2
j ′,k

)
.

Set nowU2 =∑i1 �=i2 h(Xi1(·, k), Xi2(·, k)).Weapply a decoupling argument (See
for instance Theorem 3.4.1 page 125 in [11]) to get that there exists a constant C > 0,
such that for any u > 0

P

⎛

⎝
∑

i1 �=i2
h
(
Xi1(·, k), Xi2(·, k)

) ≥ u

⎞

⎠ ≤ CP

⎛

⎝
∑

i1 �=i2
h(Xi1(·, k), X

′
i2(·, k)) ≥ u/C

⎞

⎠ ,

where X ′i (·, k) is independent of Xi (·, k) and has the same distribution as Xi (·, k).
Next, Theorem 3.3 in [13] gives that, for any u > 0,

P

⎛

⎝
∑

i1 �=i2
h(Xi1(·, k), X

′
i2(·, k)) ≥ u

⎞

⎠ ≤ C exp

[
− 1

C
min

(
u2

C2 ,
u

D
,
u2/3

B2/3 ,
u1/2

A1/2

)]
,

for some absolute constant C > 0. Combining the last display with our bounds on
A,B,C,D, we get that for any t > 0, with probability at least 1− 2e−t ,
∣∣∣∣∣∣
1

N 2

∑

i1 �=i2

m1∑

j=1
Xi1( j, k)Xi2( j, k)

∣∣∣∣∣∣
≤ |�|(|�| − 1)

N 2 π
(2)
·k

+ C

N 2

(
Ct1/2 + Dt + Bt3/2 + At2

)

≤ |�|(|�| − 1)

N 2 π
(2)
·k

+ C

[ |�|(|�| − 1)

N 2 π
(2)
·k t1/2 + |�|

N 2

(
π

(2)
·k
)1/2

t

+ |�|
1/2

N 2

(
π

(2)
·k + max

1≤ j ′≤m1
π
1/2
j ′,k

)
t3/2 + t2

N 2

]
,
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where C > 0 is a numerical constant. Combining the last display with (64) we get
that, for any t > 0 with probability at least 1− 3e−t ,

m1∑

j=1

(
1

N

∑

i∈�

Xi ( j, k)

)2

≤ |�|(|�| − 1)

N 2 π
(2)
·k

+ C

[( |�|(|�| − 1)

N 2 π
(2)
·k + 2

√|�|π·k
N 2

)
t1/2

+ |�|
N 2 π·k +

( |�|
N 2

(
π

(2)
·k
)1/2 + 1

N 2

)
t

+ |�|
1/2

N 2

(
π

(2)
·k + max

1≤ j ′≤m1
π
1/2
j ′,k

)
t3/2 + t2

N 2

]
.

Set πmax = max1≤k≤m2{π·k} and π
(2)
max = max1≤k≤m2{π(2)

·k }. Using the union bound
and up to a rescaling of the constants, we get that, with probability at least 1− et ,

‖W‖22,∞ ≤
|�|(|�| − 1)

N 2 π(2)
max

+ C

[( |�|(|�| − 1)

N 2 π(2)
max +

2
√|�|πmax

N 2

)
(t + logm2)

1/2

+|�|
N 2 πmax + |�|

N 2

(
π(2)
max

)1/2
(t + logm2)

+|�|
1/2

N 2

(
π(2)
max +max

j,k
{π1/2

jk }
)

(t + logm2)
3/2 + (t + logm2)

2

N 2

]
.

Recall that |�| = n and æ = N/n. Assumption 5 and the fact that n ≤ |I| imply that
there exists a numerical constant C > 0 such that, with probability at least 1− e−t ,

‖W‖22,∞ ≤ C

(
γ 2

æNm2

(√
t + logm2 + (t + logm2)

√
m2

n

)
+ (t + logm2)

2

N 2

)

where we have used that π j,k ≤ π·k ≤
√
2γ /m2. Finally, the bound on the expectation

E‖W‖2,∞ follows from this result and Lemma 17.

Appendix D: Proof of Lemma 10

With the notation Xi ( j, k) = 〈Xi , e j (m1)ek(m2)
�〉 we have

‖�‖∞ = max
1≤ j≤m1,1≤k≤m2

∣∣∣∣∣
1

N

∑

i∈�

ξi Xi ( j, k)

∣∣∣∣∣ .
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Under Assumption 3, the Orlicz norm ‖ξi‖ψ2 = inf{x > 0 : E[(ξi/x)2] ≤ e} satisfies
‖ξi‖ψ2 ≤ cσ for some numerical constant c > 0 and all i . This and the relation (See
Lemma 5.5 in [26]1)

E[|ξi |�] ≤ �

2
�

(
�

2

)
‖ξi‖�ψ2

, ∀� ≥ 1,

imply that N−�
E[|ξi |�X�

i ( j, k)] = N−�
E[Xi ( j, k)]E[|ξi |�] ≤ (�!/2)c2v(cσ/N )�−2

for all � ≥ 2 and v = σ 2μ1
N2m1m2

, where we have used the independence between ξi and
Xi , and Assumption 9. Thus, for any fixed ( j, k), we have

∑

i∈�

E

[
1

N 2 ξ2i X
2
i ( j, k)

]
≤ |�| c

2σ 2μ1

N 2m1m2
= c2μ1σ

2

æNm1m2
=: v1,

and

∑

i∈�

E

[
1

N �
|ξi |�X�

i ( j, k)

]
≤ �!

2
v1

(cσ
N

)�−2
.

Thus, we can apply Bernstein’s inequality (see, e.g. [4, page 486]), which yields

P

⎛

⎝
∣∣∣∣∣
1

N

∑

i∈�

ξi Xi ( j, k)

∣∣∣∣∣ > C

⎛

⎝
√

μ1σ 2t

æNm1m2
+ σ t

N

⎞

⎠

⎞

⎠ ≤ 2e−t

for any fixed ( j, k). Replacing here t by t + log(m1m2) and using the union bound
we obtain

P

(
‖�‖∞ > C

(√
μ1(t + log(m1m2))

æNm1m2
+ (t + log(m1m2))

N

))
≤ 2e−t .

The bound on E[‖�‖∞] in the statement of Lemma 10 follows from this inequality
and Lemma 17. The same argument proves the bounds on ‖�R‖∞ and E‖�R‖∞ in
the statement of Lemma 10. By a similar (and even somewhat simpler) argument, we
also get that

P

(
‖W − E[W ]‖∞ > C

(√
μ1(t + log(m1m2))

æNm1m2
+ t + log(m1m2)

N

))
≤ 2e−t

while Assumption 9 implies that ‖E[W ]‖∞ ≤ μ1
æm1m2

.

1 This statement actually appears as an intermediate step in the proof of this lemma.
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Appendix E: Technical Lemmas

Lemma 17 Let Y be a non-negative random variable. Let there exist A ≥ 0, and
a j > 0, α j > 0 for 1 ≤ j ≤ m, such that

P

⎛

⎝Y > A +
m∑

j=1
a j t

α j

⎞

⎠ ≤ e−t , ∀t > 0.

Then

E[Y ] ≤ A +
m∑

j=1
a jα j�(α j ),

where �(·) is the Gamma function.

Proof Using the change of variable u =∑m
j=1 a jv

α j we get

E[Y ] =
∫ ∞

0
P(Y > t)dt ≤ A +

∫ ∞

0
P(Y > A + u)du

= A +
∫ ∞

0
P(Y > A +

m∑

j=1
a jv

α j )

⎛

⎝
m∑

j=1
a jα jv

α j−1
⎞

⎠ dv

≤ A +
∫ ∞

0

⎛

⎝
m∑

j=1
a jα jv

α j−1
⎞

⎠ e−vdv = A +
m∑

j=1
a jα j�(α j ).

��
Lemma 18 Assume that R is an absolute norm. Then

R∗
(
1

N

∑

i∈�

〈Xi ,�L〉 Xi

)
≤ 2aR∗(W )

where W = 1
N

∑
i∈� Xi .

Proof In view of the definition of R∗,

1

2a
R∗
(
1

N

∑

i∈�

〈Xi ,�L〉 Xi

)
= sup

R(B)≤1

〈
1

N

∑

i∈�

〈Xi ,�L〉
2a

Xi , B

〉

≤ sup
R(B′)≤1

〈
1

N

∑

i∈�

Xi , B
′
〉
= R∗(W ),

where we have used the inequalities 〈Xi ,�L〉 ≤ ‖�L‖∞ ≤ 2a, and the fact that R
is an absolute norm. ��
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