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Abstract We study a stochastically perturbed mean curvature flow for graphs in R
3

over the two-dimensional unit-cube subject to periodic boundary conditions. The sto-
chastic perturbation is a one dimensional white noise acting uniformly in all points
of the surface in normal direction. We establish the existence of a weak martingale
solution. The proof is based on energy methods and therefore presents an alterna-
tive to the stochastic viscosity solution approach. To overcome difficulties induced by
the degeneracy of the mean curvature operator and the multiplicative gradient noise
present in the model we employ a three step approximation scheme together with
refined stochastic compactness and martingale identification methods.
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1 Introduction

Motion by mean curvature of embedded hypersurfaces inRN+1 is an important proto-
type of a geometric evolution law and has been intensively studied in the past decades,
see for example the surveys [1–3] or [4]. Mean curvature flow is characterized as a
steepest descent evolution for the surface area energy (with respect to an L2 met-
ric) and constitutes a fundamental relaxation dynamics for many problems where the
interface size contributes to the systems energy. In physics it arises for example as an
asymptotic reduction of the Allen–Cahn model for the motion of phase boundaries in
binary alloys [5].

One of the main difficulties in the mathematical treatment of mean curvature flow
is the appearance of topological changes and singularities in finite time, for example
by the development of corners and a collapse of parts of the surfaces onto a line in the
evolution of a thin dumbbell-shape surface in R

3. Only in particular situations such
events are excluded: in the case of initial surfaces given by entire graphs overRN clas-
sical solutions exist for all times [6]; initially smooth, compact, convex hypersurfaces
become round and shrink to a point in finite time [7].

In order to deal with singularity formation and topological changes generalized
formulations have been developed. In his pioneering work Brakke [8] employed a
geometric measure theory approach to obtain a general global in time existence result.
Level set approaches and viscosity solutions were introduced by Evans and Spruck
[9–12] and Chen et al. [13]. Evolutions beyond singularity formation and topological
changes can also be obtained by De Giorgi’s barrier method [14,15], approximation
by the Allen–Cahn equation [16–18], time-discretization [19,20] and by elliptic reg-
ularization [21]. Several of these approaches have been applied also to more general
geometric evolution laws and for perturbations by various forcing terms.

Stochastic mean curvature flow was proposed in [22] as a refined model incorpo-
rating the influence of thermal noise. As a result one may think of a random evolution
(Mt )t>0 of surfaces in R

N+1 given by immersions φt : M → R
N+1, where M is a

smooth manifold, and where the increments are given by

dφt (x) = �H(x, t)dt + W (ν(x, t), φt (x), ◦dt), x ∈ M, (1.1)

where �H(x, t) denotes the mean curvature vector of Mt in φt (x), ν(x, t) is the unit
normal field onMt andW : SN×R

N+1×R
+ → R

N+1 is amodel specific randomfield
withW (θ, y, ◦dt) being its Stratonovich differential (here one could even allow for an
additional dependence of W on Mt ). As an example consider W (θ, y, t) = θ ϕ(y)βt

for ϕ ∈ C∞(RN+1) with a standard real Brownian motion β, inducing the dynamics

dφt (x) = ν(x, t)
(
κ(x, t)dt + ϕ(φt (x)) ◦ dβt

)
, (1.2)

where κ(x, t) := �H(x, t) · ν(x, t) denotes the scalar mean curvature. As in the deter-
ministic case (1.2) can be formulated as a level set equation. Here the evolution of a
function f : RN+1 × R

+ → R is prescribed whose level sets all evolve according to
(1.2). This leads to a stochastic partial differential equation (SPDE) of the form
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d f (x, t) = |∇ f |(x, t) div
( ∇ f

|∇ f |
)

(x, t) dt + ϕ(x, f (x, t))|∇ f |(x, t) ◦ dβt . (1.3)

We stress that the choice of the Stratonovich differential instead of an Itô term is
necessary to retain the geometric meaning of the equation and to make it invariant
under reparametrization of the level set function [23].

If we restrict ourselves to random evolutions of graphs, scalar mean curvature,
normal vector, and velocity of an evolution u : RN × R

+ → R and the associated
graphs are given by

κ = div

( ∇u
√
1 + |∇u|2

)
, ν = 1

√
1 + |∇u(x, t)|2 (−∇u, 1)T ,

dφt · ν = 1
√
1 + |∇u(x, t)|2 du.

Equation (1.2) then reduces to the SPDE

du(x, t) =
√
1 + |∇u(x, t)|2 div

( ∇u
√
1 + |∇u|2

)
(x, t)dt

+
√
1 + |∇u(x, t)|2ϕ(x, u(x)) ◦ dβt . (1.4)

Note that we naturally obtain the factor
√
1 + |∇u|2 in front of the noise term and

that (1.3) reduces to (1.4) for f (x, y) = y − u(x), (x, y) ∈ R
N × R. Vice versa,

following the approach of Evans and Spruck [9] one could approximate (1.3) by a
problem for rescaled graphs (inRN+2), which leads to an equation similar to (1.4) but
with

√
1 + |∇u|2 replaced by

√
ε2 + |∇u|2, ε > 0 a small parameter.

We further observe that the first term on the right-hand side of (1.4) can be rewritten
as

√
1 + |∇u|2 div

( ∇u
√
1 + |∇u|2

)
=

(
Id− ∇u

√
1 + |∇u|2 ⊗ ∇u

√
1 + |∇u|2

)
: D2u

(1.5)

and that this term corresponds to a degenerate quasilinear elliptic differential operator
of second order in the spatial variable.

Even though we circumvent problems with topological changes by restricting our-
selves to graphs, substantial mathematical difficulties are still present in the stochastic
case. Most importantly, one has to deal with the multiplicative noise with nonlinear
gradient dependence and with the degeneracy in the quasilinear elliptic term, which
makes a rigorous treatment challenging. In particular, a general well-posedness theory
seems still to bemissing.Motivated by the deterministic counterpart of (1.3) Lions and
Souganidis introduced a notion of stochastic viscosity solutions [24–27], but certain
technical details of this approach are still being investigated [28–30]. The model (1.2)
with constant ϕ = ε > 0 was also studied independently in N = 1 by Souganidis and
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Yip [31] resp. Dirr et al. [32], proving a ‘stochastic selection principle’ for ε tending
to zero.1

Several approaches to construct generalized solutions to other versions of (1.1) can
be found in the literature, such as by Yip [33] who selects subsequential limits along
tight approximations of a scheme that combines a time-discrete mean curvature flow
and a stochastic flow of diffeomorphism of the ambient space. More recently, extend-
ing the rigorous analysis of the sharp interface limit of the 1-dimensional stochastic
Allen–Cahn equation by Funaki [34] in [35] tightness of solutions for an Allen–Cahn
equation perturbed by a stochastic flow was proved. However, both in [33] and in
[35] a characterization of the limiting evolution law has not been given. Finally, it
was shown in [36] that several variants of (1.1) in dimension 1 + 1 can be solved
in the variational SPDE framework (see also [37,38] for refinements resp. numerical
analysis), but this approach is not applicable in higher dimensions. For completeness
let us also mention that the analysis of associated formal large deviation functionals
was started in [39] and remains an active research field to date.

This paper is concerned with Eq. (1.4) in the simplest non-trivial case of a one-
dimensional stochastic forcing when ϕ = 1, and graphs over the unit cube in R

N

with periodic boundary condition, that is over the flat torus TN . This yields the SPDE
initial-boundary-value problem

du = H(∇u) div

( ∇u

H(∇u)

)
dt + H(∇u) ◦ dW,

u(0) = u0, t ∈ (0, T ), x ∈ T
N , (1.6)

where H(∇u) = √
1 + |∇u|2, W is a real-valued one-dimensional Wiener process

and ◦ denotes the Stratonovich product.
We emphasize that this case is contained in the theory famously announced by

Lions and Souganidis in [24–27]. In this paper, however, our aim is to introduce an
alternative approach that is based on energy methods and that yields the existence
of weak martingale solutions to (1.6). Even if we consider here a more restrictive
setting, we believe that our approach can be extended to more general situations (see
e.g. Remark 2.4 below) and might be very helpful in problems where a comparison
principle and viscosity solution formulations are not available.

The use of energy methods is motivated by the gradient flow structure of the deter-
ministic mean curvature flow.We prove that also in the case of (1.6) we retain a control
over the surface area energy and over the times-space integral of the squaredmean cur-
vature, see Proposition 5.1. In the deterministic case, in addition one often can prove
an L∞ bound for the gradient (see for example [6]) and consequently the uniform
ellipticity of the mean curvature operator. Such a bound is typically obtained from
an evolution equation derived for the function

√
1 + |∇u|2 and cannot be expected

for the stochastic equation (1.6). In contrast, our approach is based on an L2 bound

1 This means for ε → 0 the level sets the solutions f ε
t to (1.3) converge a.s. to some solution of mean

curvature flow even in cases when f 0t develops ’fattening’, i.e. has zero level sets of positive Lebesgue
measure.
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for ∇u, see Proposition 4.1. These bounds are carefully exploited in a three step
approximation and corresponding passages to the limit. Several refined and original
tightness and identification arguments together with compensated compactness and
Young measures techniques are required, that we believe are of independent interest.

We do not use here any more refined monotonicity properties that are often
employed in the deterministic case (in particular to study singularities), most notably
Huisken’s monotonicity formula [1,7]. Such formulas are deduced from the time
derivative of the surface integral over particular test functions (typically backward
heat kernels). In our case the corresponding time differential comes with quite some
additional terms from the Itô–Stratonovich correction and the Itô formula. It is not
clear that appropriate cancellation properties allow to control such terms. Therefore,
it is only the monotonicity property (in the corresponding deterministic equation) of
the total area that we use here (or rather the control of the total area that still holds
for (1.6)). A pure PDE approach that also does not rely on any refined monotonicity
formulas (but crucially on the decrease of total area) has been used in [9] to prove the
existence of level set solutions to mean curvature flow. We use here some ingredients
of their work (in particular a compensated compactness argument) but have to deal
with some additional difficulties, such as the fact that no maximum estimate for the
gradient is available in our case.

2 Mathematical framework and main results

Our main result is the existence of weak martingale solutions to the Itô form of (1.6)
in the case N = 2. By a direct calculation one can verify that the Itô–Stratonovich
correction corresponding to the stochastic integral in (1.6) is

1

2

∇u

H(∇u)
⊗ ∇u

H(∇u)
: D2u dt

and hence, in view of (1.5), Eq. (1.6) rewrites as

du = 1

2

u dt + 1

2
H(∇u) div

( ∇u

H(∇u)

)
dt + H(∇u) dW,

u(0) = u0, t ∈ (0, T ), x ∈ T
N , (2.1)

or equivalently

du = 
u dt − 1

2

∇u

H(∇u)
⊗ ∇u

H(∇u)
: D2u dt + H(∇u) dW,

u(0) = u0, t ∈ (0, T ), x ∈ T
N . (2.2)

As we aim at establishing existence of a solution to (2.1) that is weak in both proba-
bilistic and PDEs sense, let us introduce these two notions. From the point of view of
the theory of PDEs, we consider solutions that satisfy (2.1) in the sense of distributions
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and that fulfill a suitable surface area energy inequality. This implies in particular that
the mean curvature belongs to L2 with respect to the surface area measure H(∇u).

From the probabilistic point of view, two concepts of solution are typically con-
sidered in the theory of stochastic evolution equations, namely, pathwise (or strong)
solutions andmartingale (or weak) solutions. In the former notion the underlying prob-
ability space as well as the driving process is fixed in advance while in the latter case
these stochastic elements become part of the solution of the problem. Clearly, exis-
tence of a pathwise solution is stronger and implies existence of a martingale solution.
In the present work we establish existence of a martingale solution to (2.1). Due to the
classical Yamada–Watanabe-type argument (see e.g. [40,41]), existence of a pathwise
solution would then follow if pathwise uniqueness held true, however, uniqueness
for (2.1) is out of the scope of the present article. In hand with this issue goes the
way how the initial condition is posed: we are given a Borel probability measure on
H1(TN ), hereafter denoted by �, that fulfills some further assumptions specified in
Theorem 2.3 and plays the role of an initial law for (2.1), that is, we require that the
law of u(0) coincides with �.

Definition 2.1 Let � be a Borel probability measure on H1(TN ). Then

(
(�,F , (Ft ),P), u,W

)

is called a weak martingale solution to (2.1) with the initial law � provided

(i) (�,F , (Ft ),P) is a stochastic basis with a complete right-continuous filtration,
(ii) W is a real-valued (Ft )-Wiener process,
(iii) u ∈ L2(� × [0, T ],P, dP ⊗ dt; H1(TN )),2

(iv) the area measure H(∇u) belongs to L1(�, L∞(0, T ; L1(TN ))),
(v) the mean curvature

v = div

( ∇u

H(∇u)

)

belongs to L2
(
� × [0, T ] × T

N , H(∇u) dP ⊗ dt ⊗ dx
)
,

(vi) there exists aF0-measurable random variable u0 such that � = P ◦ u−1
0 and for

every ϕ ∈ C∞(TN ) it holds true for a.e. t ∈ [0, T ] a.s.

〈u(t), ϕ〉 = 〈u0, ϕ〉 − 1

2

∫ t

0
〈∇u,∇ϕ〉ds

+1

2

∫ t

0
〈H(∇u)v, ϕ〉ds +

∫ t

0
〈H(∇u)dW, ϕ〉.

Remark 2.2 According to Definition 2.1(vi), Eq. (2.1) is satisfied in H−1(TN ). In
particular, the solution u regarded as a class of equivalence in

L2(� × [0, T ],P, dP ⊗ dt; H1(TN ))

2 P denotes the predictable σ -algebra on � × [0, T ] associated to (Ft )t≥0.
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has a representative ū with almost surely continuous trajectories in H−1(TN ) and
moreover ū(0) = u0.

With this definition at hand we can formulate our main result.

Theorem 2.3 Assume N = 2 and that the initial law � satisfies3

∫

H1
x

‖∇z‖2L2
x
d�(z) < ∞. (2.3)

Then there exists a weak martingale solution to (2.1) with the initial law �.

Our proof relies on a three step approximation scheme. Themean curvature operator

Lu = H(∇u) div
( ∇u
H(∇u)

)
is elliptic but not uniformly elliptic. As key approximation

step we therefore add an artificial viscosity term ε
u. This viscous approximation of
the target equation (1.6) might be interesting also in its own right. Existence is still not
immediate as the equation is quasilinear and the nonlinearities in the equation are not
Lipschitz. We therefore add two further regularizations and firstly increase the order
of the equation by adding a term −η
2K u, K ∈ N sufficiently large, which in turn
yields a semilinear (nondegenerate) parabolic SPDE.We secondly replaceD2u in (1.5)
by a suitable uniformly bounded truncation �R(D2u), such that the corresponding
nonlinearity is Lipschitz. For the resulting equation existence of a uniquemild solution
is deduced by semigroup arguments.

To obtain the existence of the original equation we pass to the limit with the respec-
tive regularizations. Convergence with R → ∞ can be performed via a stopping time
argument (Theorem 3.1). Using the stochastic compactness method, in Sect. 4 we
let η → 0. In particular, in Theorem 4.7 we obtain existence of a strong martingale
solution to the viscous approximation of (1.6) in any space dimension.

The most challenging part is the passage to the limit ε → 0 in Sect. 5. In Propo-
sition 5.1 we first derive a crucial uniform estimate for the surface area and mean
curvature. It is this step where we need to restrict ourselves to spatial dimension
N = 2; at some point we need a cancellation property of terms that originate from
the Stratonovich-Itô correction and the Itô chain rule, respectively. This property uses
a Gauss–Bonnet type formula that is only valid for surfaces (here we also exploit the
periodic boundary condition). Still, to pass to the limit ε → 0 we have to overcome
several substantial difficulties. In particular, the only available estimate for higher
order derivatives is given by the mean curvature bound. However, both the L2 gra-
dient bound and the bound on area and mean curvature are not available for higher
moments.

Therefore, in order to identify the limit of the nonlinear terms in the equation, we
proceed in several steps. First, in Proposition 5.6, it is not enough to prove tightness
for the approximate solutions only so we also include some (nonlinear) functionals of
their gradients. This leads us to the Jakubowski–Skorokhod representation theorem
(see [42]), which is valid in a large class of topological spaces that are not neces-
sarily metrizable but retain several important properties of Polish spaces. However,

3 Here and in the sequel, we write L2x for L2(TN ) and similarly for other spaces.
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the implied convergence still does not suffice hence in Proposition 5.8 we employ
compensated compactness and Young measure arguments to deduce a crucial strong
convergence property of the gradients in suitable L p-spaces.Note that a similarmethod
was already used in the context of mean curvature flow in [12] (although rather for
the convergence towards the level set formulation).

Finally, in Sect. 5.3, we employ a refined identification procedure for the stochastic
integral. It is based on a general method of constructing martingale solutions in the
absence of suitable martingale representation theorems introduced in [43] as well as a
method of densely definedmartingales from [44] and a local martingale approach from
[45]. More precisely, the method of densely defined martingales which was developed
in [44] is applied in order to deal with martingales that are only defined for almost all
times and no continuity properties are a priori known (see [44, Theorem 4.13, Appen-
dix]). In that case, the corresponding quadratic variations are not well defined and the
approach of Sect. 4.2 does not apply directly. Second, the local martingales approach
of [45] is invoked to overcome the difficulty in the passage to the limit.

Both issues originate in the lack of uniform moment estimates for ∇u. Indeed,
on the one hand, we are not able to obtain tightness of the approximate solutions in
any space of continuous (or weakly continuous) functions in time and consequently
the passage to the limit in the corresponding martingales can be performed only for
a.e. t . On the other hand, we are only able to establish the strong convergence of the
gradients in L p

ω,t,x for p ∈ [1, 2) and the convergence in L2
ω,t,x remains weak, which

is not enough to pass to the limit in the quadratic variation.
Let us also mention that, since we are dealing with solutions that are weak in the

PDE sense, the classical infinite dimensional Itô formula (see for instance [46]) does
not apply and hence, in order to establish the a priori estimates rigorously, one is led
to a suitable generalized version. Several times throughout the paper we therefore
refer to [47, Proposition A.1] which provides such a generalization for a wide class
of quasilinear parabolic SPDEs. In the same spirit one can justify the computations in
the present paper.

Remark 2.4 Theorem 2.3 remains true in the slightly generalized case of the SPDE

du = H(∇u) div

( ∇u

H(∇u)

)
dt + √

ρ H(∇u) ◦ dW,

provided the parameter ρ > 0 modeling the strength of the noise is not too large, i.e.
ρ < 2. This is in perfect agreement with the corresponding well posedness result in
1D obtained by completely different means in [36, Theorem 3.3]. Indeed, in the Itô
representation the SPDE above reads

du = ρ

2

udt +

(
1 − ρ

2

)
Lu dt + √

ρ H(∇u)dW,

where Lu = H(∇u) div
( ∇u
H(∇u)

)
is the mean curvature operator. Note that for ρ > 0

the drift is uniformly elliptic. Moreover, in the crucial gradient energy estimate the
first term in the drift exactly dissipates the influx of the energy through the noise
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term. In the simplified case when L is replaced by zero this can immediately be seen
from the corresponding Itô formula. (Full details for our case involving L are given
in Proposition 4.1 below.) In particular, the gradient ∇u is controlled in L2 such that
the solution remains a graph.

It would be interesting to consider the case of a more general noise term of the form

K∑

i=1

ηi (x)H(∇u) ◦ dWi

for independent Wiener processes {Wi , i = 1, . . . , K }, under appropriate bounded-
ness conditions on the smooth coefficient functions {ηi , i = 1, . . . , K }. If one proceeds
by similarmeans as for (1.6) even in the case K = 1 computations quickly becomevery
involved, and it is not clear whether similar cancellation properties hold in this case.

3 Regularized equation

To begin with, let (�,F , (Ft )t≥0,P) be a stochastic basis with a complete, right-
continuous filtration and let W be a real-valued Wiener process relative to (Ft ).
In order to prepare the initial data for the first approximation layer, let u0 be a
(F0)-measurable random variable with the law � and for ε ∈ (0, 1) let uε

0 be an
approximation of u0 such that for all p ∈ [2, 4)

E‖uε
0‖p

Hk
x

≤ Cε

where we fixed k ∈ N such that k > 2+N/2. Let the law of uε
0 on Hk(TN ) be denoted

by �ε. Then according to (2.3) the following estimate holds true uniformly in ε
∫

H1
x

‖∇z‖2L2
x
d�ε(z) = E‖∇uε

0‖2L2
x

≤ C (3.1)

and �ε ∗
⇀ � in the sense of measures on H1(TN ).

As the first step in the proof of existence for (2.1), we consider its equivalent form
(2.2) and approximate in the following way4

du = (1 + ε)
u dt − 1

2

(∇u)∗

H(∇u)
D2u

∇u

H(∇u)
dt − η
2K u dt + H(∇u) dW,

u(0) = uε
0. (3.2)

Our aim here is to establish an existence result for ε, η fixed and K sufficiently large.

Theorem 3.1 Let k, K ∈ N be such that 2 + N/2 < k < 2K and let p > 2.
Assume that uε

0 ∈ L p(�; Hk). Then for any ε, η ∈ (0, 1) there exists u ∈ L p(� ×
[0, T ],P, dP ⊗ dt; Hk) that is the unique mild solution to (3.2).

4 Here and in the sequel, A∗ denotes the transpose of a matrix A.
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Proof In order to guarantee the Lipschitz property of the nonlinear second order term
in (3.2), let R ∈ N and consider the truncated problem

du = (1 + ε)
u dt − 1

2

(∇u)∗

H(∇u)
�R(D2u)

∇u

H(∇u)
dt − η
2K u dt + H(∇u) dW,

u(0) = uε
0, (3.3)

where �R : RN×N → R
N×N is a truncation, i.e. for A = (ai j ) ∈ R

N×N we define
�R(A) = (

θ R(ai j )ai j
)
where θ R : R → [0, 1] is a smooth truncation satisfying

θ R(ξ) =
{
1, |ξ | ≤ R/2

0, |ξ | ≥ R.

Let S denote the semigroup generated by the strongly elliptic differential operator
η
2K − (1+ ε)
. LetH = L p(�×[0, T ],P, dP⊗ dt; Hk) and define the mapping

Ku(t) =S(t)uε
0 − 1

2

∫ t

0
S(t − s)

(∇u)∗

H(∇u)
�R(D2u)

∇u

H(∇u)
ds

+
∫ t

0
S(t − s)H(∇u) dW.

ThenKmapsH intoH and it is a contraction. Indeed, using the regularization property
of the semigroup and Young’s inequality for convolutions we obtain for any u ∈ H
(provided k < 2K )

∥∥∥∥

∫ ·

0
S(· − s)

(∇u)∗

H(∇u)
�R(D2u)

∇u

H(∇u)
ds

∥∥∥∥

p

H

≤ E

∫ T

0

(∫ t

0

∥∥∥∥S(t − s)
(∇u)∗

H(∇u)
�R(D2u)

∇u

H(∇u)

∥∥∥∥
Hk

ds

)p

dt

≤ C E

∫ T

0

( ∫ t

0
(t − s)−k/4K

∥∥∥∥
(∇u)∗

H(∇u)
�R(D2u)

∇u

H(∇u)

∥∥∥∥
L2
ds

)p

dt

≤ CT p(1−k/4K )‖u‖p
H, (3.4)

and similarly for the stochastic term where we apply the Burkholder–Davis–Gundy
inequality first (see e.g. [48])

∥∥
∥∥

∫ ·

0
S(· − s)H(∇u) dW

∥∥
∥∥

p

H
≤ C

∫ T

0
E

(∫ t

0

∥
∥S(t − s)H(∇u)

∥
∥2
Hkds

)p/2

dt

≤ C E

∫ T

0

( ∫ t

0
(t − s)−k/2K

∥∥H(∇u)
∥∥2
L2ds

)p/2

dt

≤ CT p/2(1−k/2K )‖u‖p
H.
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In order to verify the contraction property, we observe that for any u, v ∈ H
∥
∥∥∥

(∇u)∗

H(∇u)
�R(D2u)

∇u

H(∇u)
− (∇v)∗

H(∇v)
�R(D2v)

∇v

H(∇v)

∥
∥∥∥
L2

≤ ∥∥D2u − D2v
∥∥
L2 + CR

∥∥∇u − ∇v
∥∥
L2 ≤ CR‖u − v‖Hk

hence by a similar approach as above

∥∥
∥∥

∫ ·

0
S(· − s)

(
(∇u)∗

H(∇u)
�R(D2u)

∇u

H(∇u)
− (∇v)∗

H(∇v)
�R(D2v)

∇v

H(∇v)

)
ds

∥∥
∥∥

p

H

≤ CR E

∫ T

0

( ∫ t

0
(t − s)−k/4K ‖u − v‖Hkds

)p

dt ≤ CR T p(1−k/4K )‖u − v‖p
H

and

∥∥∥
∥

∫ ·

0
S(· − s)

(
H(∇u) − H(∇v)

)
dW

∥∥∥
∥

p

H

≤ C E

∫ T

0

( ∫ t

0
(t − s)−k/2K

∥∥H(∇u) − H(∇v)
∥∥2
L2ds

)p/2

dt

≤ CT p/2(1−k/2K )‖u − v‖p
H.

Therefore, if T is small enough then K has unique fixed point u in H which is the
mild solution of (3.3). Furthermore, by a standard use of the factorization lemma (see
[46]), it has continuous trajectories with values in Hk provided K is large enough,
i.e. it belongs to L p(�;C([0, T ]; Hk)). Therefore, the condition on T can be easily
removed by considering the equation on smaller intervals [0, T̃ ], [T̃ , 2T̃ ], etc.

As a consequence, for any R ∈ N there exists a unique mild solution to (3.3), let
it be denoted by uR . Furthermore, since k > N

2 + 2, it follows from the Sobolev
embedding theorem that

E sup
0≤t≤T

∥∥D2uR
∥∥
L∞ ≤ C, (3.5)

where the constant on the right hand side is independent of R (this can be seen from
the fact that the growth estimates for the nonlinear second order term in (3.3) do not
depend on R, cf. (3.4)). Hence

τR = inf
{
t > 0; ∥∥D2uR

∥∥
L∞ ≥ R/2

}

(with the convention inf ∅ = T ) defines an (Ft )-stopping time and uR is a solution to
(3.2) on [0, τR). Besides, due to uniqueness, if R′ > R then τR′ ≥ τR and uR′ = uR

on [0, τR). Moreover, the blow up cannot occur in a finite time by (3.5) so

τ = sup
R∈N

τR = T a.s.
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and therefore the process u which is uniquely defined by u := uR on [0, τR) is the
unique mild solution to (3.2) on [0, T ]. ��

4 Viscous approximation

Having Theorem 3.1 in hand it is necessary to find sufficient estimates uniform in η in
order to justify the passage to the limit as η → 0 and obtain a martingale solution to

du = (1 + ε)
u dt − 1

2

(∇u)∗

H(∇u)
D2u

∇u

H(∇u)
dt + H(∇u) dW (4.1)

with the initial law �. Let us fix ε > 0 and denote by uη the solution to (3.2) given
by Theorem 3.1. Recall that P ◦ uη(0)−1 = �ε for all η ∈ (0, 1) and the uniform
estimate (3.1) holds true.

Proposition 4.1 For any p ∈ [2, 2(1 + ε)] it holds true

E‖∇uη(t)‖p
L2 + p(2(1 + ε) − p)

2
E

∫ t

0
‖∇uη‖p−2

L2 ‖
uη‖2L2 ≤ E‖∇uε
0‖p

L2 ≤ C,

(4.2)

where the constant C is independent of η and if p = 2 then it is also independent of ε.

Proof Since mild solution is a weak solution, we consider the function f (∇v) =
‖∇v‖p

L2 and apply similar arguments as in the generalized Itô formula [47, Proposi-
tion A.1] to obtain

E‖∇uη(t)‖p
L2 = E‖∇uε

0‖p
L2 + p(1 + ε)E

∫ t

0
‖∇uη‖p−2

L2

〈∇uη,∇
uη
〉
ds

− pηE
∫ t

0
‖∇uη‖p−2

L2

〈∇uη,∇
2K uη
〉
ds

− p

2
E

∫ t

0
‖∇uη‖p−2

L2

〈
∇uη,∇

(
(∇uη)∗

H(∇uη)
D2uη ∇uη

H(∇uη)

)〉
ds

+ p

2
E

∫ t

0
‖∇uη‖p−2

L2

∥∥∇H(∇uη)
∥∥2
L2ds

+ p(p − 2)

2
E

∫ t

0
‖∇uη‖p−4

L2

〈∇uη,∇H(∇uη)
〉2ds

= J1 + · · · + J6.

It holds

J2 + J3 ≤ −p(1 + ε)E

∫ t

0
‖∇uη‖p−2

L2 ‖
uη‖2L2ds,

J4 ≤ p

2
E

∫ t

0
‖∇uη‖p−2

L2 ‖
uη‖2L2ds,
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J5 + J6 ≤ p(p − 1)

2
E

∫ t

0
‖∇uη‖p−2

L2 ‖
uη‖2L2ds,

where we used the fact that ‖
uη‖L2 = ‖D2uη‖L2 due to boundary conditions. Hence
the claim follows. ��
Proposition 4.2 It holds true

E‖uη(t)‖2L2 ≤ Cε

(
1 + E‖uε

0‖2L2

) ≤ C,

where the constant C is independent of η.

Proof With regard to Proposition 4.1, the above estimate is a consequence of the Itô
formula applied to the function f (v) = ‖v‖2

L2 :

E‖uη(t)‖2L2 = E‖uε
0‖2L2 + 2(1 + ε)E

∫ t

0

〈
uη,
uη

〉
ds − 2ηE

∫ t

0

〈
uη,
2K uη

〉
ds

− E

∫ t

0

〈
uη,

(∇uη)∗

H(∇uη)
D2uη ∇uη

H(∇uη)

〉
ds + E

∫ t

0

∥
∥H(∇uη)

∥
∥2
L2ds

= J1 + · · · + J5.

Similar arguments as above imply

J2 + J3 ≤ −2(1 + ε)E

∫ t

0
‖∇uη‖2L2ds,

J4 ≤ 1

2
E

∫ t

0
‖uη‖2L2ds + 1

2
E

∫ t

0
‖
uη‖2L2 ,

J5 ≤ E

∫ t

0
‖∇uη‖2L2ds,

hence Proposition 4.1 and the Gronwall lemma completes the proof. ��
Proposition 4.3 Let p ∈ (2, 2(1 + ε)). Then for any α ∈ (1/p, 1/2) there exists
Cε > 0 such that

E‖uη‖p
Cα−1/p([0,T ];H2−4K )

≤ Cε. (4.3)

Proof According to Propositions 4.1 and 4.2, uη ∈ L2(�; L2(0, T ; H2(TN ))) uni-
formly in η (not ε). As a consequence,

(1 + ε)
uη − 1

2

(∇uη)∗

H(∇uη)
D2uη ∇uη

H(∇uη)
− η
2K uη

belongs to L2(�; L2(0, T ; H2−4K )) uniformly in η and

E

∥
∥∥uη −

∫ ·

0
H(∇uη)dW

∥
∥∥
C1/2([0,T ];H2−4K )

≤ Cε.
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Concerning the stochastic integral, we have by factorization and (4.2)

E

∥∥∥∥

∫ ·

0
H(∇uη)dW

∥∥∥∥

p

Cα−1/p([0,T ];L2)

≤ C E

∥∥∥∥

∫ ·

0
(· − s)−αH(∇uη)dW (s)

∥∥∥∥

p

L p(0,T ;L2)

≤ C
∫ T

0
E

(∫ t

0
(t − s)−2α(

1 + ‖∇uη‖2L2

)
ds

)p/2

dt

≤ C T p/2(1−2α)
E

∫ T

0

(
1 + ‖∇uη‖p

L2

)
dt ≤ C

and the claim follows. ��
Now we would like to pass to the limit η ↘ 0.

4.1 Compactness

Let us define the path space X = Xu × Xv × XW , where5

Xu = L2(0, T ; H1(TN )
) ∩ C

([0, T ]; H1−4K (TN )
)
, Xv = (

(L2(0, T ; L2(TN )), w
)
,

XW = C
([0, T ];R)

.

Let us denote by μuη the law of uη on Xu , η ∈ (0, 1), by μvη the law of

vη := div

( ∇uη

H(∇uη)

)

on Xv and by μW the law of W on XW . Their joint law on X is then denoted by μη.

Proposition 4.4 The set {μη; η ∈ (0, 1)} is tight on X .

Proof First, we prove tightness of {μuη ; η ∈ (0, 1)} which follows directly from
Proposition 4.1 and 4.3 by making use of the embeddings

Cα−1/p([0, T ]; H2−4K (TN )) ↪→ Hλ(0, T ; H2−4K (TN )), λ < α − 1/p,

Cα−1/p([0, T ]; H2−4K (TN ))
c

↪→ C([0, T ]; H1−4K (TN )),

L2(0, T ; H2(TN )) ∩ Hλ(0, T ; H2−4K (TN ))
c

↪→ L2(0, T ; H1(TN )), λ > 0.

Here the first embedding follows immediately for the definition of the spaces, the
second one is a consequence of the Arzelà–Ascoli theorem and the third one can be
found in [49]. For R > 0 let us define the set

BR = {
u ∈ L2(0, T ; H2(TN )) ∩ Cα−1/p([0, T ]; H2−4K (TN ));

5 If a topological space X is equipped with the weak topology we write (X, w).
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‖u‖L2(0,T ;H2) + ‖u‖Cα−1/p([0,T ];H2−4K ) ≤ R
}

which is thus relatively compact in Xu . Moreover, by Propositions 4.1, 4.2 and 4.3

μuη

(
BC
R

) ≤ P

(
‖uη‖L2(0,T ;H2) >

R

2

)
+ P

(
‖uη‖Cα−1/p([0,T ];H2−4K ) >

R

2

)

≤ C

R2E‖uη‖2L2(0,T ;H2)
+ C

Rp
E‖uη‖p

Cα−1/p([0,T ];H2−4K )
≤ C

R2

hence given ϑ > 0 there exists R > 0 such that

μuη (BR) ≥ 1 − ϑ

which yields the claim.
Concerning the tightness of {μvη ; η ∈ (0, 1)} we proceed similarly and make use

of the uniform estimate from Proposition 4.1 together with the fact that for R > 0 the
set

BR = {
v ∈ L2(0, T ; L2(TN )); ‖v‖L2(0,T ;L2) ≤ R

}

is relatively compact in Xv .
Since the law μW is tight as being a Radon measure on the Polish space XW , we

conclude that also the set of the joint laws {μη; η ∈ (0, 1)} is tight and the proof is
complete. ��

The path spaceX is not a Polish space and so our compactness argument is based on
the Jakubowski–Skorokhod representation theorem instead of the classical Skorokhod
representation theorem, see [42]. To be more precise, passing to a weakly convergent
subsequenceμn = μηn (and denoting byμ the limit law) we infer the following result.

Proposition 4.5 There exists a probability space (�̃, F̃ , P̃) with a sequence of X -
valued random variables (ũn, ṽn, W̃ n), n ∈ N, and (ũ, ṽ, W̃ ) such that

(i) the laws of (ũn, ṽn, W̃ n) and (ũ, ṽ, W̃ ) under P̃ coincide with μn and μ, respec-
tively,

(ii) (ũn, ṽn, W̃ n) converges P̃-almost surely to (ũ, ṽ, W̃ ) in the topology of X .

We are immediately able to identify ṽn , n ∈ N, and ṽ.

Corollary 4.6 It holds true that

ṽn = div

( ∇ũn

H(∇ũn)

)
P̃-a.s. ∀n ∈ N,

ṽ = div

( ∇ũ

H(∇ũ)

)
P̃-a.s.
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Proof According to Proposition 4.1, the mapping

suppμun → L2(0, T ; L2(TN )), u �→ div

( ∇u

H(∇u)

)

iswell-defined andmeasurable andhence, thefirst part of the statement follows directly
from the equality of joint laws of (un, vn) and (ũn, ṽn). Identification of the limit ṽ

follows easily using integration by parts together with the strong convergence of ∇ũn

given by Proposition 4.5. ��
Finally, let (F̃t ) be the P̃-augmented canonical filtration of the process (ũ, W̃ ), that

is

F̃t = σ
(
σ
(
�t ũ, �t W̃

) ∪ {
N ∈ F̃ ; P̃(N ) = 0

})
, t ∈ [0, T ],

where �t is the operator of restriction to the interval [0, t] acting on various path
spaces. In particular, if X stands for one of the path spaces Xu or XW and t ∈ [0, T ],
we define

�t : X → X |[0,t], f �→ f |[0,t].

Note that ṽ is also adapted with respect to (F̃t ) due to Corollary 4.6.

4.2 Identification of the limit

The aim of this subsection is to establish existence of a weak martingale solution to
(4.1). Similarly to (2.1) and (2.2), we rewrite (4.1) into a more convenient form given
by

du =
(1
2

+ ε
)

u dt + 1

2
H(∇u) div

( ∇u

H(∇u)

)
dt + H(∇u) dW (4.4)

and

du = ε
u dt + H(∇u) div

( ∇u

H(∇u)

)
dt + 1

2

(∇u)∗

H(∇u)
D2u

∇u

H(∇u)
dt + H(∇u)dW.

(4.5)

Theorem 4.7
(
(�̃, F̃ , (F̃t ), P̃), W̃ , ũ

)
is a strong martingale solution to (4.4) with

the initial law �ε, i.e. P̃ ◦ ũ(0)−1 = �ε and

ũ(t) = ũ(0) +
(1
2

+ ε
) ∫ t

0

ũ ds + 1

2

∫ t

0
H(∇ũ)ṽ ds +

∫ t

0
H(∇ũ) dW̃ , (4.6)

with

ṽ = div

( ∇ũ

H(∇ũ)

)
(4.7)
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holds true for all t ∈ [0, T ], almost everywhere in (ω, x) ∈ �̃ × T
N .

The proof is based on a new general method of constructing martingale solutions
of SPDEs, that does not rely on any kind of martingale representation theorem and
therefore holds independent interest especially in situationswhere these representation
theorems are no longer available.

First, we show that
(
(�̃, F̃ , (F̃t ), P̃), W̃ , ũ

)
is a weak martingale solution to (4.4)

with the initial law �ε, i.e. for every ϕ ∈ C∞(TN )

〈ũ(t), ϕ〉 = 〈ũ(0), ϕ〉 +
(1
2

+ ε
) ∫ t

0
〈ũ,
ϕ〉ds + 1

2

∫ t

0
〈H(∇ũ)ṽ, ϕ〉ds

+
∫ t

0
〈H(∇ũ)dW̃ , ϕ〉, (4.8)

where ṽ was defined in (4.7).
Towards this end, let us define for all t ∈ [0, T ] and a test function ϕ ∈ C∞(TN )

Mn(t) = 〈
un(t), ϕ

〉 − 〈
un0, ϕ

〉 −
(1
2

+ ε
) ∫ t

0
〈un,
ϕ〉ds

− 1

2

∫ t

0
〈H(∇un)vn, ϕ〉ds + ηn

∫ t

0

〈
un,
2Kϕ

〉
ds, n ∈ N,

M̃n(t) = 〈
ũn(t), ϕ

〉 − 〈
ũn(0), ϕ

〉 −
(1
2

+ ε
) ∫ t

0
〈ũn,
ϕ〉ds

− 1

2

∫ t

0
〈H(∇ũn)ṽn, ϕ〉ds + ηn

∫ t

0

〈
ũn,
2Kϕ

〉
ds, n ∈ N,

M̃(t) = 〈
ũ(t), ϕ

〉 − 〈
ũ(0), ϕ

〉 −
(1
2

+ ε
) ∫ t

0
〈ũ,
ϕ〉ds − 1

2

∫ t

0
〈H(∇ũ)ṽ, ϕ〉ds,

we denoted

vn = div

( ∇un

H(∇un)

)
, ṽn = div

( ∇ũn

H(∇ũn)

)
.

Hereafter, times s, t ∈ [0, T ], s ≤ t , and a continuous function

γ : Xu |[0,s] × XW |[0,s] −→ [0, 1]

will be fixed but otherwise arbitrary. The proof is an immediate consequence of the
following two lemmas.

Lemma 4.8 The process W̃ is a (F̃t )-Wiener process.

Proof Obviously, W̃ is a Wiener process and is (F̃t )-adapted. According to the
Lévy martingale characterization theorem, it remains to show that it is also a (F̃t )-
martingale. It holds true

Ẽ γ
(
�s ũ

n, �s W̃
n)[W̃ n(t) − W̃ n(s)

] = E γ
(
�su

n, �sW
)[
W (t) − W (s)

] = 0
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since W is a martingale and the laws of (ũn, W̃ n) and (un,W ) coincide. Next, the
uniform estimate

sup
n∈N

Ẽ|W̃ n(t)|2 = sup
n∈N

E|W (t)|2 < ∞

and the Vitali convergence theorem yields

Ẽ γ
(
�s ũ, �s W̃

)[
W̃ (t) − W̃ (s)

] = 0

which finishes the proof. ��
Lemma 4.9 The processes

M̃, M̃2 −
∫ ·

0

〈
H(∇ũ), ϕ

〉2 dr, M̃W̃ −
∫ ·

0

〈
H(∇ũ), ϕ

〉
dr

are (F̃t )-martingales.

Proof Here, we use the same approach as in the previous lemma. For all n ∈ N, the
process

Mn =
∫ ·

0

〈
H(∇un) dW (r), ϕ

〉

is a square integrable (Ft )-martingale by (4.2) and therefore

(Mn)2 −
∫ ·

0

〈
H(∇un), ϕ

〉2 dr, MnW −
∫ ·

0

〈
H(∇un), ϕ

〉
dr

are (Ft )-martingales. Besides, it follows from the equality of laws that

Ẽ γ
(
�s ũ

n, �s W̃
n)[M̃n(t) − M̃n(s)

]

= E γ
(
�su

n, �sW
)[
Mn(t) − Mn(s)

] = 0, (4.9)

Ẽ γ
(
�s ũ

n, �s W̃
n)

[
(M̃n)2(t) − (M̃n)2(s) −

∫ t

s

〈
H(∇ũn), ϕ

〉2 dr
]

= E γ
(
�su

n, �sW
)
[
(Mn)2(t) − (Mn)2(s) −

∫ t

s

〈
H(∇un), ϕ

〉2 dr
]

= 0, (4.10)

Ẽ γ
(
�s ũ

n, �s W̃
n)

[
M̃n(t)W̃ n(t) − M̃n(s)W̃ n(s) −

∫ t

s

〈
H(∇ũn), ϕ

〉
dr

]

= E γ
(
�su

n, �sW
)[

Mn(t)W (t) − Mn(s)W (s) −
∫ t

s

〈
H(∇un), ϕ

〉
dr

]
= 0.

(4.11)
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In order to pass to the limit in (4.9), (4.10) and (4.11), let us first establish the
convergence M̃n(t) → M̃(t) a.s. for all t ∈ [0, T ]. Let us onlymake few comments on
the mean curvature term.We recall that according to Proposition 4.5 and Corollary 4.6
it holds true that

div

( ∇ũn

H(∇ũn)

)
⇀ div

( ∇ũ

H(∇ũ)

)
in L2(0, T ; L2(TN ))) P̃-a.s.

Moreover,

H(∇ũn) → H(∇ũ) in L2(0, T ; L2(TN ))) P̃-a.s.

and therefore

div

( ∇ũn

H(∇ũn)

)
H(∇ũn) ⇀ div

( ∇ũ

H(∇ũ)

)
H(∇ũ)

in L1(0, T ; L1(TN ))) a.s. which yields the desired convergence.
Besides, we observe that according to (4.9), (4.10), (4.11) it follows for every n ∈ N

that

M̃n =
∫ ·

0

〈
H(∇ũn), ϕ

〉
dW̃ n

P̃-a.s.

Therefore, the passage to the limit in (4.9) and in the first terms on the left hand side
of (4.10) and (4.11) (and the same for the right hand side) can be justified by using
the convergence M̃n(t) → M̃(t) together with the uniform integrability given by
Proposition 4.1:

Ẽ
∣
∣M̃n(t)

∣
∣p ≤ C Ẽ

(∫ t

0

〈
H(∇ũn), ϕ

〉2 dt
)p/2

≤ C

(
1 + Ẽ

∫ T

0
‖∇ũn‖p

L2 dt

)
≤ C < ∞.

This estimate also yields the necessary uniform integrability that together with

〈
H(∇ũn), ϕ

〉 → 〈
H(∇ũn), ϕ

〉
a.e. (ω, r)

justifies the passage to the limit in the remaining terms in (4.10) and (4.11) which
completes the proof. ��
Proof of Theorem 4.7 Once the above lemmas established, we infer that

〈〈
M̃ −

∫ ·

0

〈
H(∇ũ) dW̃ , ϕ

〉〉〉 = 0
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and consequently (4.8) holds true. Moreover, we note that the Eq. (4.8) is in fact satis-
fied in a stronger sense: since ũ ∈ L2(�̃; L2(0, T ; H2(TN ))) due to Propositions 4.1
and 4.2 and H(∇ũ)ṽ ∈ L1(�̃; L1(0, T ; L1(TN ))) which follows from the proof of
Lemma 4.9 and therefore (4.6) follows. ��

5 Vanishing viscosity limit

The aim of this final section is to study the limit ε → 0 in (4.4) and complete the
proof of Theorem 2.3. Recall that it was proved in Sect. 4 that for every ε ∈ (0, 1)
there exists

(
(�̃ε, F̃ ε, (F̃ ε

t ), P̃ε), ũε, W̃ ε
)

which is a martingale solution to (4.4) with the initial law �ε. We recall that �ε ∗
⇀ �

in the sense of measures on H1(TN ). It was shown in [42] that it is enough to consider
only one probability space, namely,

(�̃ε, F̃ ε, P̃ε) = ([0, 1],B([0, 1]),L) ∀ε ∈ (0, 1)

where L denotes the Lebesgue measure on [0, 1]. Moreover, we can assume without
loss of generality that there exists one commonWiener processW for all ε. Indeed, one
could perform the compactness argument of the previous section for all the parameters
from any chosen subsequence εn at once by redefining

X =
( ∏

n∈N
Xu

)
× XW

and proving tightness of the joint laws of (uη,ε1 , uη,ε2 , . . . ,W ) for η ∈ (0, 1). In
order to further simplify the notation we also omit the tildas and denote the martingale
solution found in Sect. 4 by

(
(�,F , (Ft ),P), uε,W

)
.

5.1 Estimates

We start with an estimate of the surface area and the mean curvature term. The proof of
the following are bounds requires N = 2. From now on we therefore restrict ourselves
to N = 2 and two-dimensional graphs in R

3.

Proposition 5.1 For any ε > 0 we have the following uniform estimate

E sup
0≤t≤T

∫

T2
H(∇uε) dx + 1

2
E

∫ T

0

∫

T2

∣∣∣∣ div
( ∇uε

H(∇uε)

)∣∣∣∣

2

H(∇uε) dx dt

≤ C E

∫

T2
H(∇uε(0)) dx + K (ε), (5.1)
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where K (ε) → 0 as ε → 0.

Proof We start with some calculations that hold for any N ∈ N. In the first step, it is
necessary to derive the equation satisfied by ∇uε and then apply the Itô formula to the
function p �→ ∫

TN H(p) dx . In order to make the calculation rigorous we make use
of the generalized Itô formula as introduced in [47, Appendix A]. To be more precise,
we consider (4.5) and obtain

d∇uε = ε∇
uε dt + ∇
[
H div

(∇uε

H

)]
dt

+1

2
∇

[
(∇uε)∗

H
D2uε ∇uε

H

]
dt + ∇HdW. (5.2)

(For notational simplicity we do not stress the dependence of H on ∇uε.) Note that
∇uε ∈ L2(�; L2(0, T ; H1(TN ))) according to Proposition 4.1 hence (5.2) can be
rewritten as

d∇uε = ∇F(t)dt + G(t)dW

where F, G ∈ L2(�; L2(0, T ; L2(TN ))). Besides, H ∈ C2(RN ) has bounded
derivatives so the only assumption of [47, Proposition A.1] which is not satisfied
is ∇uε ∈ L2(�;C([0, T ]; L2(TN ))). However, following the proof of [47, Proposi-
tion A.1], one can easily see that under the boundedness hypothesis for DH everything
works well even without it.

Therefore, we arrive at the following Itô formula for the surface measure

d
∫

TN
H dx =

∫

TN

∇u

H
∇[

ε
uε
]
dx dt +

∫

TN

∇uε

H
∇

[
H div

(∇uε

H

)]
dx dt

+ 1

2

∫

TN

∇uε

H
∇

[ (∇uε)∗

H
D2uε ∇uε

H

]
dx dt +

∫

TN

∇uε

H
∇H dx dW

+ 1

2

∫

TN

1

H

(
Id − ∇uε

H
⊗ ∇uε

H

)
:
(
∇H ⊗ ∇H

)
dx dt

= J1 + · · · + J5,

where, for the reader’s convenience we recall that in the formulas above dx stands
for the spatial integration on T

N and dt respectively dW for the time differentials in
Itô sense. It follows from the above consideration that the stochastic integral J4 is a
square integrable martingale so has zero expectation. After integration by parts J2 has
a negative sign. For J1 we have

J1 ≤ 1

2

∫

TN

∣∣∣ div
(∇uε

H

)∣∣∣
2
H dx + ε2

2

∫

TN
|
uε|2 dx .

The first term on the right hand side is controlled by J2 whereas the integral over
� × [0, T ] of the second one vanishes as ε → 0 due to Proposition 4.1. Next, we will
show that J3 + J5 = 0. Here it is convenient to define w := ∇uε

H and to observe that
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1

H

(
Id − ∇uε

H
⊗ ∇uε

H

)
:
(
∇H ⊗ ∇H

)
=

( 1

H

(
Id − ∇uε

H
⊗ ∇uε

H

)
D2uεw

)
· ∇H

= (Dw w) · ∇H.

Using this equality we deduce that

J3 + J5 = −1

2

∫

TN
(divw)

(
w · ∇H

)
dx dt + 1

2

∫

TN
(Dw w) · ∇H dx dt

= −1

2

∫

TN

(
(tr Dw) Id−Dw

)
w · ∇H dx dt.

Wenow restrict ourselves to N = 2. Since (tr A) Id−A = (cof A)T for any A ∈ R
2×2,

since∇ · (Aw) = (∇ · AT ) ·w+ AT : Dw and since cofactor matrices are divergence-
free the last equality further yields

J3 + J5 = −1

2

∫

TN

[
(cof Dw)Tw

] · ∇H dx dt

= 1

2

∫

TN
(cof Dw) : Dw H dx dt.

Now (cof Dw) : Dw = 2 det Dw and we arrive at

J3 + J5 =
∫

TN
det Dw H dx dt.

The integral on the right-hand side is just the integral over the Gaussian curvature of
the graph. In fact, we have K = 1

H4 det D
2u = det Dw, since

Dw = D
(∇u

H

)
= 1

H

(
Id−∇u

H
⊗ ∇u

H

)
D2u,

det Dw = 1

H2 · det
(
Id−∇u

H
⊗ ∇u

H

)
· det D2u = 1

H2 · 1 · 1

H2 det D
2u,

where we have used that the matrix Id−∇u
H ⊗ ∇u

H has eigenvalues 1 and 1
H2 .

Due to our choice of periodic boundary condition the graph has the topology of a torus
and the Gauss–Bonnet Theorem yields that J3 + J5 = 0. This can also be deduced
more directly from the formula

(div h)(w) det(Dw) = div
(
cof(Dw)T · h(w)

)
,

which can be verified by direct computations. Observing that H = (1− |w|2)− 1
2 and

setting

h(z) = 1 − √
1 − |z|2

2|z|2 z
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we obtain div h(z) = (1 − |z|2)− 1
2 and therefore

J3 + J5 =
∫

T2
div

(
cof(Dw)T · h(w)

)
dx dt = 0

and consequently for every t ∈ [0, T ]

E

∫

T2
H

(∇uε(t)
)
dx + 1

2
E

∫ t

0

∫

T2

∣∣
∣∣ div

(∇uε

H

)∣∣
∣∣

2

H dx ds

≤ E

∫

T2
H(∇uε(0)) dx + K (ε).

In order to obtain (5.1) we proceed similarly, the only difference is in the estimate for
the stochastic integral:

E sup
0≤t≤T

∣∣∣∣

∫ t

0

∫

T2
div

(∇uε

H

)
H dx dW

∣∣∣∣

≤ C E

( ∫ T

0

∣
∣∣∣

∫

T2
div

(∇uε

H

)
H dx

∣
∣∣∣

2

dt

)1/2

≤ C E

[(
sup

0≤t≤T

∫

T2
H dx

)( ∫ T

0

∫

T2

∣∣∣
∣ div

(∇uε

H

)∣∣∣
∣

2

H dx dt

)]1/2

≤ 1

2
E sup

0≤t≤T

∫

T2
H dx + C E

∫ T

0

∫

T2

∣
∣∣∣ div

(∇uε

H

)∣
∣∣∣

2

H dx dt

≤ 1

2
E sup

0≤t≤T

∫

T2
H dx + C E

∫

T2
H(∇uε(0)) dx + K (ε)

which completes the proof. ��
As a consequence we deduce an estimate for the L2-norm of the solution.

Corollary 5.2 For any ε > 0 we have the following uniform estimate

E‖uε‖L2(0,T ;L2) ≤ C.

Proof In the first step we show an estimate for the mean value of uε over T2 and then
we apply the Poincaré inequality. Testing (4.4) by ϕ ≡ 1 we obtain

d
∫

T2
uε dx = 1

2

∫

T2
H(∇uε) div

( ∇uε

H(∇uε)

)
dx dt +

∫

T2
H(∇uε) dx dW.

Since the above stochastic integral is a square-integrable martingale, we apply the
Burkholder–Davis–Gundy inequality, Propositions 4.1 and 5.1 and deduce that

E sup
0≤t≤T

∣∣∣
∣

∫

T2
uε(t) dx

∣∣∣
∣ ≤ E

∣∣∣
∣

∫

T2
uε(0) dx

∣∣∣
∣ + C.
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The Poincaré inequality yields

‖uε(t)‖L2(0,T ;L2) ≤ C‖∇uε(t)‖L2(0,T ;L2) + sup
0≤t≤T

∣∣
∣∣

∫

T2
uε(t) dx

∣∣
∣∣

and the claim follows. ��

Finally, we proceed with a uniform estimate for the time derivative of uε.

Proposition 5.3 There exists s, k > 0 and p ∈ [1,∞) such that

E‖uε‖Ws,2(0,T ;W−k,p) ≤ C.

Proof In order to estimate the stochastic term, wemake use of [49, Lemma 2.1] which
gives bounds for fractional time derivatives of a stochastic integrals. We obtain for
s ∈ [0, 1/2) that

E

∥∥
∥∥

∫ ·

0
H(∇uε) dW

∥∥
∥∥

2

Ws,2(0,T ;L2)

≤ C E

∫ T

0
‖H(∇uε)‖2L2dt ≤ C.

Since (uε) is bounded in L1(�; L1(0, T ;W 1,2(T2))) we deduce that (
uε) is
bounded in L1(�; L1(0, T ;W−1,2(T2))) and as a consequence

((1
2

+ ε
) ∫ ·

0

uε ds

)
is bounded in L1(�;W 1,1(0, T ;W−1,2(T2))).

Regarding the remaining term, we deduce from (5.1) that

(
H(∇uε) div

( ∇uε

H(∇uε)

))
is bounded in L1(�; L1(0, T ; L1(T2)))

hence

( ∫ ·

0
H(∇uε) div

( ∇uε

H(∇uε)

)
ds

)
is bounded in L1(�;W 1,1(0, T ; L1(T2))).

Altogether, we obtain that (uε) is bounded in L1(�;Ws,2(0, T ;W−k,p)) where k, p
are determined by the Sobolev embedding theorem so that

L1(T2) ↪→ W−k,p(T2), W−1,2(T2) ↪→ W−k,p(T2)

and the proof is complete. ��
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5.2 Compactness

Let us define the path space

X = Xu × Xv × Xν × XV × XI × Xu0 × XW ,

where

Xu = L2(0, T ; L2(T2)
)
, Xv = (

L2(0, T ; L2(T2)), w
)
,

Xν = (
L2(0, T ; L2(T2)), w

)
, XV = (

L2(0, T ; L2(T2)), w
)
,

XI = C
([0, T ];R)

, XW = C
([0, T ];R)

, Xu0 = H1(T2).

Let us denote by μuε the law of uε on Xu , η ∈ (0, 1), by μv , μνε , μV ε and μI ε ,
respectively, the law of

v := div

( ∇uε

H(∇uε)

)
, νε := ∇uε

H(∇uε)
,

V ε := div

( ∇uε

H(∇uε)

)√
H(∇uε), I ε :=

∫ ·

0
‖H(∇uε)‖1+θ

L1
x

ds

on Xv , Xν , XV and XI (for some fixed θ ∈ (0, 1)), respectively, and by μW the law
of W on XW . Recall that the law of uε(0) on Xu0 is given by �ε and due to the
construction at the beginning of Sect. 3 we immediately obtain tightness of (�ε). The
joint law on X is then denoted by με. In order to prove tightness of (με), we make
use of the following compact embedding which can be found in [50, Corollary 5].

Lemma 5.4 Let X, B, Y be Banach spaces such that X
c

↪→ B ↪→ Y . If p, r ∈ [1,∞)

then

L p(0, T ; X) ∩ Ws,r (0, T ; Y )
c

↪→ L p(0, T ; B)

provided s > 0 if r ≥ p and s > 1/r − 1/p if r ≤ p.

Proposition 5.5 The set of laws {με; ε ∈ (0, 1)} is tight on X .

Proof We will show tightness of all the corresponding marginal laws, tightness for
the joint laws then follows immediately. Concerning {μuε ; ε ∈ (0, 1)}, we want to
employ the compact embedding

L2(0, T ; H1(T2)) ∩ Ws,2(0, T ;W−k,p(T2))
c

↪→ L2(0, T ; L2(T2))

hence for R > 0 we define the set

BR = {
u ∈ L2(0, T ; H1(T2)) ∩ Ws,2(0, T ;W−k,p(T2));

‖u‖L2(0,T ;H1(T2)) + ‖u‖Ws,2(0,T ;W−k,p(T2)) ≤ R
}
.
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Now, it holds by Chebyshev inequality, Proposition 4.1, Corollary 5.2 and Proposi-
tion 5.3

μuε (Bc
R) ≤ P

(
‖uε‖L2(0,T ;H1) >

R

2

)
+ P

(
‖uε‖Ws,2(0,T ;W−k,p) >

R

2

)

≤ 2

R
E‖uε‖L2(0,T ;H1) + 2

R
E‖uε‖Ws,2(0,T ;W−k,p) ≤ C

R

which yields tightness of {μuε ; ε ∈ (0, 1)}.
For {μv; ε ∈ (0, 1)}, {μνε ; ε ∈ (0, 1)} and {μV ε ; ε ∈ (0, 1)})we proceed similarly

and make use of the uniform estimate from Proposition 5.1 together with the fact that
for R > 0 the set

BR ={
z ∈ L2(0, T ; L2(T2)); ‖z‖L2(0,T ;L2) ≤ R

}
.

is relatively compact in
(
L2(0, T ; L2(T2)), w

)
.

Regarding {μI ε ; ε ∈ (0, 1)} we observe that due to Proposition 4.1
(‖H(∇uε)‖1+θ

L1
x

)
is bounded in L2/1+θ (�; L2/1+θ (0, T ))

hence

(I ε) is bounded in L2/1+θ (�;W 1,2/1+θ (0, T ))

and due to Sobolev imbedding theorem

W 1,2/1+θ (0, T )
c

↪→ C([0, T ];R).

Therefore, we obtain tightness of {μI ε ; ε ∈ (0, 1)} on XI and the corresponding
tightness of μW follows by the same reasoning as in Proposition 4.4. ��

We apply the Jakubowski–Skorokhod representation theorem and obtain a weakly
convergent subsequence μn = μεn together with a limit law μ such that the following
result holds true.

Proposition 5.6 There exists a probability space (�̃, F̃ , P̃) with a sequence of X -
valued random variables (ũn, ṽn, ν̃n, Ṽ n, Ĩ n, W̃ n, ũn0), n ∈ N, and (ũ, ṽ, ν̃, Ṽ , Ĩ , W̃ ,

ũ0) such that

(i) the laws of (ũn, ṽn, ν̃n, Ṽ n, Ĩ n, W̃ n, ũn0) and (ũ, ṽ, ν̃, Ṽ , Ĩ , W̃ , ũ0) under P̃ coin-
cide with μn and μ, respectively,

(ii) (ũn, ṽn, ν̃n, Ṽ n, Ĩ n, W̃ n, ũn0) converges P̃-a.s. to (ũ, ṽ, ν̃, Ṽ , Ĩ , W̃ , ũ0) in the
topology of X .

We are immediately able to identify the approximations ṽn, ν̃n, Ṽ n, Ĩ n , n ∈ N.
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Lemma 5.7 For every n ∈ N it holds true a.s.

ṽn = div

( ∇ũn

H(∇ũn)

)
, ν̃n = ∇ũn

H(∇ũn)
,

Ṽ n = div

( ∇ũn

H(∇ũn)

)√
H(∇ũn), Ĩ n =

∫ ·

0
‖H(∇ũn)‖1+θ

L1
x

ds.

Proof According to our energy estimates and in particular due to Proposition 4.1 and
the surface area estimate from Proposition 5.1, the mappings

suppμun → L2(0, T ; L2(T2)), u �→ div

( ∇u

H(∇u)

)
,

suppμun → L2(0, T ; L2(T2)), u �→ ∇u

H(∇u)
,

suppμun → L2(0, T ; L2(T2)), u �→ div

( ∇u

H(∇u)

)√
H(∇u)

and

suppμun → C([0, T ];R), u �→
∫ ·

0
‖H(∇u)‖1+θ

L1
x

ds

are well-defined andmeasurable. Therefore, the claim follows directly from the equal-
ity of joint laws of (un, vn, νn, V n, I n) and (ũn, ṽn, ν̃n, Ṽ n, Ĩ n). ��

As a consequence of the a.s. convergence ũn → ũ in L2(0, T ; L2(T2)) and the
uniform bound in Proposition 4.1 we deduce that

∇ũn ⇀ ∇ũ in L2(�̃; L2(0, T ; L2(T2))). (5.3)

Nevertheless, as our model problem is nonlinear in ∇ũ it is crucial to establish the
strong convergence in order to be able to pass to the limit.

Proposition 5.8 For all p ∈ [1, 2), it holds true that

∇ũn → ∇ũ in L p(�̃; L p(0, T ; L p(T2))).

Proof Step 1 Due to the weak convergence (5.3), there exists a Young measure asso-
ciated to the sequence (∇ũn), i.e. there exists σ : �̃ × [0, T ] ×T

2 → P1(R
2), where

P1(R
2) denotes the set of probability measures on R2, such that for every B ∈ C(R2)

with linear growth

B(∇ũn) ⇀ B̄ in L2(�̃; L2(0, T ; L2(T2)))

where

B̄(t, x) = 〈σt,x , B〉 a.e.
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We refer the reader to [51] for a thorough exposition of the concept of Youngmeasures,
the above applied result can be found in [51, Theorem 4.2.1, Corollary 4.2.10]. The
desired strong convergence of ∇ũn will be shown once we prove that for a.e. ω, t, x
the Young measure σ is a Dirac mass.

Step 2 In this part of the proof, we show that the following relation holds true a.e.

∫

R2

|p|2
√
1 + |p|2 dσt,x (p) =

( ∫

R2
p dσt,x (p)

)
·
( ∫

R2

p
√
1 + |p|2 dσt,x (p)

)
. (5.4)

Towards this end, we observe that due to Proposition 5.6,

ṽn ⇀ ṽ, ν̃n ⇀ ν̃ in L2(0, T ; L2(T2)) a.s.

Using |ν̃n| ≤ 1 and the Vitali convergence Theorem we also deduce that ν̃ ∈
L2(�̃; L2(0, T ; L2(T2))) with

ν̃n ⇀ ν̃ in L2(�̃; L2(0, T ; L2(T2)))

Besides, ν̃n is a continuous and bounded function of ∇ũn hence, according to Step 1,
ν̃ is given by

ν̃(t, x) =
∫

R2

p
√
1 + |p|2 dσt,x (p).

Using integration by parts, it follows easily that ṽ = div ν̃ almost everywhere.
Thus, on the one hand, we employ the Div–Curl Lemma type argument from [12,
Theorem 3.1, (3.13)] and obtain

∇ũn · ν̃n ⇀ ∇u · ν̃ in L2(0, T ; L2(T2)) a.s.

and consequently by the Vitali convergence theorem

∇ũn · ν̃n ⇀ ∇u · ν̃ in L2(�̃; L2(0, T ; L2(T2))).

On the other hand, we deduce from Step 1 that the weak limit of ∇ũn · ν̃n is also given
by

∫

R2

|p|2
√
1 + |p|2 σt,x (p)

and (5.4) follows.
Step 3 Next, we will infer from (5.4) that σ reduces to a Dirac mass for a.e. ω, t, x .

To simplify the notation, let us denote f (p) = p, g(p) = p√
1+|p|2 . Then (5.4) reads

as
〈σ, f · g〉 = 〈σ, f 〉 · 〈σ, g〉. (5.5)
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Since 〈ν, 1〉 = 1, the left hand side of (5.5) can be rewritten as

1

2

( ∫

R2
f (p) · g(p)dσ(p)

∫

R2
dσ(q) +

∫

R2
f (q) · g(q)dσ(q)

∫

R2
dσ(p)

)

= 1

2

∫

R2

(
f (p) · g(p) + f (q) · g(q)

)
dσ ⊗ σ(p, q)

whereas for the right hand side, we have

1

2

( ∫

R2
f (p)dσ(p) ·

∫

R2
g(q)dσ(q) +

∫

R2
f (q)dσ(q) ·

∫

R2
g(p)dσ(p)

)

= 1

2

∫

R2

(
f (p) · g(q) + f (p) · g(q)

)
dσ ⊗ σ(p, q).

Thus subtracting the right hand side from the left hand side we deduce that

∫

R2

(
f (p) − f (q)

) · (
g(p) − g(q)

)
dσ ⊗ σ(p, q) = 0.

To conclude, we first observe that

F(p, q) = (
f (p) − f (q)

) · (
g(p) − g(q)

)
> 0 ∀p, q ∈ R

2, p �= q,

F(p, p) = 0. (5.6)

This follows from the strict convexity of the function G, G(p) := √
1 + |p|2, which

is equivalent to the strict monotonicity of G ′ = g. Since f is the identity this proves
(5.6).

As a consequence, the support of σ needs to be a single point hence necessarily
σt,x = δ∇ũ(t,x) almost everywhere.

Step 4 Since a Young measure being Dirac is equivalent to the convergence in
measure we conclude by making use of the a priori estimate from Proposition 4.1. ��

Note that in particular we have proved that

H(∇ũn) ⇀ H(∇ũ) in L2(�̃; L2(0, T ; L2(T2)).

and that for all p ∈ [1, 2)

H(∇ũn) → H(∇ũ) in L p(�̃; L p(0, T ; L p(T2)).

(Such a convergence of the area measures is a crucial property also in many related
results for deterministicmean curvature flow, see for example [20].) As a consequence,
we are able to identify the limits Ṽ and Ĩ .
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Corollary 5.9 It holds true a.s.

Ṽ = div

( ∇ũ

H(∇ũ)

)√
H(∇ũ), Ĩ =

∫ ·

0
‖H(∇ũ)‖1+θ

L1
x

ds.

Proof In order to identify the limit of Ṽ n , observe that due to Proposition 5.8, for all
q ∈ [1,∞)

∇ũn

H(∇ũn)
→ ∇ũ

H(∇ũ)
in Lq(�̃; Lq(0, T ; Lq(T2)))

hence according to Proposition 5.1

div

( ∇ũn

H(∇ũn)

)
⇀ div

( ∇ũ

H(∇ũ)

)
in L2(�̃; L2(0, T ; L2(T2))).

Besides, √
H(∇ũn) →

√
H(∇ũ) in L2(�̃; L2(0, T ; L2(T2))) (5.7)

and consequently

div

( ∇ũn

H(∇ũn)

)√
H(∇ũn) ⇀ div

( ∇ũ

H(∇ũ)

)√
H(∇ũ)

in L1(�̃; L1(0, T ; L1(T2))) which gives the identification of Ṽ .
Identification of Ĩ follows from the fact that for every t ∈ [0, T ]

∫ t

0
‖H(∇ũn)‖1+θ

L1
x

ds →
∫ t

0
‖H(∇ũ)‖1+θ

L1
x

ds

according to Propositions 5.8, 4.1 and the Vitali convergence theorem. ��

5.3 Identification of the limit

Let (F̃t ) be the P̃-augmented canonical filtration of the process (ũ, W̃ , ũ0). Note that
Ṽ and Ĩ are adapted to (F̃t ) as well due to Corollary 5.9. Now everything is prepared
to establish the final existence result, which in particular proves the main Theorem 2.3.

Theorem 5.10
(
(�̃, F̃ , (F̃t ), P̃), ũ, W̃

)
is a weak martingale solution to (2.1) with

the initial law �. That is, it satisfies Definition 2.1 and in particular for every ϕ ∈
C∞(T2) it holds true for a.e. t ∈ [0, T ] a.s. that

〈ũ(t), ϕ〉 = 〈ũ0, ϕ〉 + 1

2

∫ t

0
〈ũ,
ϕ〉ds + 1

2

∫ t

0
〈H(∇ũ)ṽ, ϕ〉ds

+
∫ t

0
〈H(∇ũ)dW̃ , ϕ〉, (5.8)

123



Weak solutions for a stochastic mean curvature flow of two. . . 403

where

ṽ = div

( ∇ũ

H(∇ũ)

)
. (5.9)

The proof is based on a refined identification limit procedure which in comparison
to Sect. 4.2 includes two new ingredients. First, the method of densely defined martin-
gales which was developed in [44] is applied in order to deal with martingales that are
only defined for almost all times and no continuity properties are a priori known (see
[44, Theorem 4.13, Appendix]). In that case, the corresponding quadratic variations
are not well defined and the approach of Sect. 4.2 does not apply directly. Second, the
local martingales approach of [45] is invoked to overcome the difficulty in the passage
to the limit.

Both issues originate in the lack of uniform moment estimates for ∇un . Indeed, on
the one hand, we are not able to obtain tightness of (un) in any space of continuous (or
weakly continuous) functions in time and consequently the passage to the limit in the
correspondingmartingales can be performedonly for a.e. t ∈ [0, T ]. On the other hand,
we are only able to establish the strong convergence∇ũn → ∇ũ in L p(0, T ; L p(T2))

a.s. for p ∈ [1, 2) and the convergence in L2(0, T ; L2(T2)) remains weak, which is
not enough to pass to the limit in the quadratic variation. Note that the problem lies
in particular in the weak convergence with respect to time rather than space as we
consider weak solutions in x anyway.

We claim that as a consequence of Proposition 5.6, it holds true that

ũn → ũ in L2(T2) in measure P̃ ⊗ L[0,T ] (5.10)

and consequently there exists D ⊂ [0, T ] of full Lebesgue measure such that (up to
subsequence)

ũn(t) → ũ(t) in L2(T2) P̃-a.s. ∀t ∈ D. (5.11)

Indeed, (5.10) follows directly from the dominated convergence theorem since for
every δ ∈ (0, 1)

P̃ ⊗ L[0,T ]
(
‖ũn − ũ‖L2

x
> δ

)
= Ẽ

∫ T

0
1{‖ũn(t)−ũ(t)‖

L2x
>δ} dt

where for a.e. ω the inner integral converges to 0 due to Proposition 5.6.
Note that D is dense in [0, T ] since it is complement of a set with zero Lebesgue

measure. For all t ∈ D and a test function ϕ ∈ C∞(T2) we define

Mn(t) = 〈
un(t), ϕ

〉 − 〈
un(0), ϕ

〉 −
(1
2

+ εn

) ∫ t

0
〈un,
ϕ〉ds − 1

2

∫ t

0
〈H(∇un)vn, ϕ〉ds,

M̃n(t) = 〈
ũn(t), ϕ

〉 − 〈
ũn0, ϕ

〉 −
(1
2

+ εn

) ∫ t

0
〈ũn,
ϕ〉ds − 1

2

∫ t

0
〈H(∇ũn)ṽn, ϕ〉ds,

M̃(t) = 〈
ũ(t), ϕ

〉 − 〈
ũ0, ϕ

〉 − 1

2

∫ t

0
〈ũ,
ϕ〉ds − 1

2

∫ t

0
〈H(∇ũ)ṽ, ϕ〉ds,
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and recall that

vn = div

( ∇un

H(∇un)

)
, ṽn = div

( ∇ũn

H(∇ũn)

)
.

Proposition 5.11 The process W̃ is a (F̃t )-Wiener process, the processes

M̃, M̃2 −
∫ ·

0

〈
H(∇ũ), ϕ

〉2 dr, M̃W̃ −
∫ ·

0

〈
H(∇ũ), ϕ

〉
dr,

indexed by t ∈ D, are (F̃t )-local martingales.

Proof The first claim follows immediately by the same reasoning as in Lemma 4.8.
To prepare the proof of the remaining parts, let R ∈ R

+ and define

τR : C([0, T ];R) → [0, T ], f �→ inf
{
t > 0; | f (t)| ≥ R

}
.

(with the convention inf ∅ = T ). Then for every I n , one may use Proposition 4.1 and
deduce that τR(I n) defines an (Ft )-stopping time and the blow up does not occur in
a finite time, i.e.

sup
R∈R+

τR(I n) = T a.s. (5.12)

The same is valid for the case of Ĩ n and Ĩ . The stopping times τR( Ĩ ) will play the role
of a localizing sequence for the processes

M̃, M̃2 −
∫ ·

0

〈
H(∇ũ), ϕ

〉2 dr, M̃W̃ −
∫ ·

0

〈
H(∇ũ), ϕ

〉
dr.

In particular, we employ τR( Ĩ n) as a localizing sequence for the approximations

M̃n, (M̃n)2 −
∫ ·

0

〈
H(∇ũn), ϕ

〉2 dr, M̃nW̃ n −
∫ ·

0

〈
H(∇ũn), ϕ

〉
dr

and pass to the limit. Therefore, it is also necessary to establish the convergence of
the stopping times, that is, for a fixed R ∈ R

+ we need to verify

τR( Ĩ n) → τR( Ĩ ) a.s.

so it is a question of continuity of τR(·). This is not true in general but due to observa-
tions made in [45, Lemma 3.5, Lemma 3.6], there exists a sequence Rm → ∞ such
that

P̃
(
τRm (·) is continuous at Ĩ ) = 1 (5.13)

and in the sequel we only employ Rm from this sequence.
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Let us proceed with the proof. We observe that, for all n ∈ N, the process

Mn =
∫ ·

0

〈
H(∇un) dW (r), ϕ

〉

is a square integrable (Ft )-martingale by (4.2) and therefore

(Mn)2 −
∫ ·

0

〈
H(∇un), ϕ

〉2 dr, MnW −
∫ ·

0

〈
H(∇un), ϕ

〉
dr

are (Ft )-martingales. Therefore, as in Lemma 4.9, we obtain for fixed n ∈ N from
the equality of laws that

Ẽ γ
(
�s ũ

n, �s W̃
n, ũn0

)[
M̃n(t ∧ τRm ( Ĩ n)

)]

= Ẽ γ
(
�s ũ

n, �s W̃
n, ũn0

)[
M̃n(s ∧ τRm ( Ĩ n)

)]
, (5.14)

Ẽ γ
(
�s ũ

n, �s W̃
n, ũn0

)[
(M̃n)2

(
t ∧ τRm ( Ĩ n)

) −
∫ t∧τRm ( Ĩ n)

0∧τRm ( Ĩ n)

〈
H(∇ũn), ϕ

〉2 dr
]

= Ẽ γ
(
�s ũ

n, �s W̃
n, ũn0

)
[
(M̃n)2

(
s ∧ τRm ( Ĩ n)

) −
∫ s∧τRm ( Ĩ n)

0

〈
H(∇ũn), ϕ

〉2 dr
]
,

(5.15)

Ẽ γ
(
�s ũ

n, �s W̃
n, ũn0

)[
M̃nW̃ n(t ∧ τRm ( Ĩ n)

) −
∫ t∧τRm ( Ĩ n)

0

〈
H(∇ũn), ϕ

〉
dr

]

= Ẽ γ
(
�s ũ

n, �s W̃
n, ũn0

)[
M̃nW̃ n(s ∧ τRm ( Ĩ n)

) −
∫ s∧τRm ( Ĩ n)

0

〈
H(∇ũn), ϕ

〉
dr

]
,

(5.16)

where s, t ∈ [0, T ], s ≤ t , and

γ : Xu |[0,s] × XW |[0,s] × Xu0 → [0, 1]

is a continuous function.
In order to pass to the limit in (5.14), (5.15) and (5.16), let us first establish the

convergence M̃n(t) → M̃(t) a.s. for all t ∈ D. Concerning the term 〈ũn(t), ϕ〉 we
conclude immediately due to (5.11). Since convergence of the third term in M̃n(t)
follows directly from Proposition 5.6, let us proceed with the mean curvature term.
We recall that according to Proposition 5.6 and Corollary 5.9 it holds true that

div

( ∇ũn

H(∇ũn)

)√
H(∇ũn) ⇀ div

( ∇ũ

H(∇ũ)

)√
H(∇ũ)

in L2(0, T ; L2(T2))) almost surely. Moreover, in view of (5.7) we obtain

div

( ∇ũn

H(∇ũn)

)
H(∇ũn) ⇀ div

( ∇ũ

H(∇ũ)

)
H(∇ũ)
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in L1(0, T ; L1(T2))) almost surely. which yields the desired convergence of the cor-
responding term in M̃n(t).

Moreover, we observe that according to (5.14)–(5.16) and [44, Proposition A.1] it
follows for every n ∈ N that

M̃n =
∫ ·

0

〈
H(∇ũn), ϕ

〉
dW̃ n ∀t ∈ D P̃-a.s.

Therefore, the passage to the limit in (5.14) and in the first terms on the left hand side
of (5.15) and (5.16) (and the same for the right hand side) can be justified by using
the convergence M̃n(t) → M̃(t) together with the uniform integrability given by

Ẽ
∣∣M̃n(t ∧ τRm ( Ĩ n)

)∣∣2+v ≤ C Ẽ

( ∫ τRm ( Ĩ n)

0

〈
H(∇ũn), ϕ

〉2 dt
)(2+v)/2

≤ C Ẽ

[
sup

0≤t≤T
‖H(∇ũn)‖L1

x

∫ τRm ( Ĩ n)

0
‖H(∇ũn)‖1+θ

L1
x

dr

]
≤ CδRm .

This estimate also yields the necessary uniform integrability that together with

〈
H(∇ũn), ϕ

〉 → 〈
H(∇ũn), ϕ

〉
a.e. (ω, r)

justifies the passage to the limit in the remaining terms in (5.15) and (5.16). Thus we
have shown that M̃2 − ∫ ·

0

〈
H(∇ũ), ϕ

〉2 dr and M̃W̃ − ∫ ·
0

〈
H(∇ũ), ϕ

〉
dr are densely

defined local martingales with respect to (F̃t ) and the proof is complete. ��
Proof of Theorem 5.10 Having Proposition 5.11 in hand, we apply [44, Proposi-
tion A.1] for the stopped processes

M̃
( · ∧τRm ( Ĩ )

)
, M̃2( · ∧τRm ( Ĩ )

) −
∫ ·∧τRm ( Ĩ )

0

〈
H(∇ũ), ϕ

〉2 dr,

M̃W̃
( · ∧τRm ( Ĩ )

) −
∫ ·∧τRm ( Ĩ )

0

〈
H(∇ũ), ϕ

〉
dr,

and deduce that

M̃
( · ∧τRm ( Ĩ )

) =
∫ ·∧τRm ( Ĩ )

0

〈
H(∇ũ) dW̃ , ϕ

〉 ∀t ∈ D P̃-a.s.

for every m ∈ N and consequently (5.8) holds true due to (5.12).
In particular, M̃ can be defined for all t ∈ [0, T ] such that it has a modification

which is a continuous (F̃t )-local martingale and furthermore, due to Proposition 4.1,
it is a (F̃t )-martingale. Besides, we observe that (2.1) is satisfied in H−1(T2) and, as
a consequence, ũ (as a class of equivalence) has a representative with almost surely
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continuous trajectories in H−1(T2) and hence is measurable with respect to the pre-
dictable σ -field P . The continuous embedding H1(T2) ↪→ H−1(T2) then implies
that ũ ∈ L2(�̃ × [0, T ],P, dP ⊗ dt; H1(T2)) as required by Definition 2.1. Indeed,
any Borel subset of H1(T2) is also Borel in H−1(T2) and therefore its preimage under
ũ is predictable. The proof is complete. ��
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