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Abstract In the simple case of a Bernoulli shift on two symbols, zero and one, by
permuting the symbols, it is obvious that any two equal entropy shifts are isomorphic.
We show that the isomorphism can be realized by a factor that maps a binary sequence
to another that is coordinatewise smaller than or equal to the original sequence.
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Monotone coupling · Burton–Rothstein
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1 Introduction

Let N be a positive integer, [N ] = {0, 1, . . . , N − 1}, and� = [N ]Z. Let T : � → �

be the left-shift given by (T x)i = xi+1 for all i ∈ Z. Given a probability measure p
on [N ], we call B(p) = (�,pZ, T ) a Bernoulli-shift on N symbols. We say that a
Bernoulli shift B(q) is a factor of B(p), if there exists a measurable map φ : � → �

such that the push-forward of pZ under φ is qZ and φ ◦ T = T ◦ φ on a subset of �

with pZ-full measure; we also call the map φ a factor from B(p) to B(q). We say that
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1118 T. Soo

the Bernoulli shifts B(p) and B(q) are isomorphic if there exists a factor map φ from
B(p) to B(q) such that its inverse φ−1 serves as a factor map from B(q) to B(p); in
this case, we call φ an isomorphism of B(p) and B(q). A factor map φ is monotone
if for all x ∈ �, we have φ(x)i ≤ xi for all i ∈ Z.

Theorem 1 If p ∈ ( 12 , 1), then there exists a monotone isomorphism of B(1 − p, p)
and B(p, 1 − p).

Let us remark that the map defined by φ(x)i = 1[xi = 0] for all i ∈ Z, which just
swaps zeros and ones, is clearly an isomorphism of B(1 − p, p) and B(p, 1 − p).
However, it is not monotone.

It is easy to determine when two Bernoulli shifts are isomorphic via an invariant
introduced by Kolmogorov [9], which is non-increasing under factors and preserved
under isomorphisms. The entropy of a probability measure p = (p0, . . . , pN−1) on
[N ] is given by H(p) := −∑N−1

i=0 pi log pi . Sinai [21,22] proved that if H(p) ≥
H(q), then B(q) is a factor of B(p), and Ornstein [16,17] proved that the entropies of
two Bernoulli shifts are equal if and only if the two Bernoulli shifts are isomorphic.

Although it is easy to compute the entropy of a Bernoulli shift and to determine
whether two Bernoulli shifts are isomorphic, the actual factor map which realizes the
isomorphism is in general a much more complicated object. In some special cases,
the factor map has a simple description [2,15]. The first non-trivial example of an
isomorphism is due to Melshalkin [15], which also gives a monotone isomorphism. I
thank Zemer Kosloff for his help with the following example.

Example 1 (A classical example due to Melshalkin [15]) We will adjust the treatment
given in [12] to ensure monotonicity. Let p = ( 18 ,

1
8 ,

1
8 ,

1
8 ,

1
2 ) and q = ( 14 ,

1
4 ,

1
4 ,

1
4 , 0),

so that N = 5, and p and q are probability measures on [N ] = {0, 1, 2, 3, 4}. Let
x ∈ � = [5]Z. We define a factor map φ : � → � such that if xi = 4, then
φ(x)i ∈ {2, 3}, if xi ∈ {2, 3}, then φ(x)i = 1, and if xi ∈ {0, 1}, then φ(x)i = 0.

It remains to specify what happens when xi = 4. Think of every xi = 4 as a right
parenthesis, and think of every xi �= 4 as a left parenthesis. Ergodicity implies that
every parenthesis will be matched legally almost surely. If xi = 4, then let j be the
position of the corresponding left parenthesis. If x j is odd, then we set φ(x)i = 3, if
x j is even, then we set φ(x)i = 2.

By definition, the map φ satisfies φ ◦ T = T ◦ φ and is monotone. Melshalkin
proved that φ is an isomorphism of B(p) and B(q). ♦

It is easy to see that a necessary condition for the existence of a monotone factor
from B(p) to B(q) is that there exists a monotone coupling of p and q; that is, a
probability measure ρ on [N ] × [N ] such that ρ(·, [N ]) = p, ρ([N ], ·) = q, and
ρ {(n,m) : n ≥ m} = 1. By Strassen’s theorem [23], the existence of a monotone
coupling is equivalent to the condition that

∑k
i=0 pi ≤ ∑k

i=0 qi for all 0 ≤ k < N , in
which case we say that p stochastically dominates q.

Theorem 2 (Quas and Soo [18]) Let p and q be probability measures on [N ]. If p
stochastically dominates q and H(p) is strictly greater than H(q), then there exists
a monotone factor from B(p) to B(q).
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A monotone isomorphism theorem 1119

Ball [1] proved Theorem 2 in the case that the measure q is supported on two
symbols. In both of those papers, a strict entropy inequality is required. In this paper,
we treat the case of equal entropy, in the special casewhere there are only two symbols,
zero and one, in each of the Bernoulli shifts. The methods used to prove Theorem 1
can also be adapted to produce monotone factors in other specific cases, but we do not
know the answer to the following question.

Question 1 Let p and q be probability measures on [N ] such that p stochastically
dominates q and H(p) = H(q). Does there exists a monotone factor from B(p) to
B(q)?

Russell Lyons [1] first posed the question of whether a monotone factor exists
between two Bernoulli shifts. The requirement of monotonicity makes defining maps
more difficult. In a related problem,Gurel-Gurevich andPeled [6, Theorem1.3] proved
that for p ∈ ( 12 , 1) there exists a monotone map φ : {0, 1}Z → {0, 1}Z such that the
product measure (p, 1 − p)Z is the push-forward of (1 − p, p)Z under φ; however,
their map is not be equivariant; that is, it does not satisfy φ ◦ T = T ◦ φ.

See [9,17,24] for more information on entropy and the isomorphism problem in
ergodic theory. See [13,18] for background on factors in probability theory.

The proof of Theorem 1 will involve some of the methods of [18], which in turn
combines ideas from various treatments of the Ornstein and Sinai factor theorems
given by Keane and Smorodinsky [10,11], Burton and Rothstein [3,4], del Junco
[7,8], and Ball [1]. We briefly summarize some of the main features and differences
in their proofs. Keane and Smorodinsky, and Ball employed a marker-filler method
and a version of Hall’s marriage theorem (see Remark 9). Del Junco also employed
a marker-filler method, but he replaced the marriage lemma with his star-coupling
(see Sect. 4). These constructions are explicit and they exhibit factor maps that are
finitary–an almost surely continuity property (see [20] for details). In a somewhat
more abstract approach, Burton and Rothstein proved that in a suitably defined metric
space, the set of all factors is a residual set, in the sense of the Baire category theorem.
This was the approach taken in [18], and will also be the approach we take here.

Dedication

I never had the pleasure ofmeeting Professor del Junco, but I wrote to him inDecember
2013 about Theorem 2 with a preprint of [18]. He wrote back the same day saying he
was glad that an old idea of his had found another application and that he always felt
that the star-coupling was one of his best ideas.

His coupling was a key feature in our proof of Theorem 2, and will also be a star
feature in the proof of Theorem 1.

2 Coupling and stochastic domination

Strassen’s theorem [23] holds in the much more general setting of a partially ordered
Polish space. The proof, even in the case of a finite set is non-trivial, see for example
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1120 T. Soo

[14, Theorem 10.4]. However, in the special case of real-valued random variables
or random variables taking values on a finite totally ordered set, the proof is easily
obtained using a simple coupling of random variables.

2.1 Quantiles

Let X be a real-valued random variable, with cumulative distribution function or law
given by F(z) = FX (z) := P(X ≤ z) for all z ∈ R. Define the generalized inverse of
F via F−1(y) := sup {x ∈ R : F(x) < y}. Let U be uniformly distributed in [0, 1],
so that FU (z) = z for all z ∈ [0, 1]. We call F−1

X (U ) the quantile representation of
X . It is easy to see that the random variable F−1

X (U ) has the same law as X . When we
define random variables using the quantile representation sometimes we will refer to
the random variableU as the randomization; oftenU will be chosen to be independent
of any previously defined random variables.

If X and Y are two real-valued random variables, we say that X stochastically
dominates Y if P(X ≤ z) ≤ P(Y ≤ z) for all z ∈ R. A coupling of X and Y is a
pair of random variables (X ′,Y ′) defined on the same probability space such that X ′
has the same law as X and Y ′ has the same law as Y . Let U be uniformly distributed
in [0, 1]. If we set X ′ := F−1

X (U ) and Y ′ := F−1
Y (U ), then the quantile coupling

of X and Y is given by (X ′,Y ′). We say that the coupling (X ′,Y ′) is monotone if
X ′ ≥ Y ′. Strassen’s theorem implies that X stochastically dominates Y if and only if
there exists a monotone coupling of X and Y . Clearly, the existence of a monotone
coupling implies stochastic domination; on the other hand, it is easy to see that the
quantile coupling is monotone under the assumption of stochastic domination.

Let us remark that stochastic domination and the quantile coupling are also similarly
defined in the case that the randomvariables take values in a finite totally ordered space.

Lemma 3 (Strassen’s theorem via the quantile coupling) Let X and Y be real-valued
random variables or random variables taking values in a finite totally ordered space.
If (X ′,Y ′) is a quantile coupling of X and Y, then X ′ is almost surely greater than or
equal to Y ′ if and only if X stochastically dominates Y .

In Sect. 4, we will discuss an ingenious variation of the quantile coupling due to
del Junco [7, Section 4], which will be a key ingredient in our proof of Theorem 1.

2.2 An simple application of Strassen’s theorem

Lemma 3 will be used to prove the following simple observation, which will serve as
the starting point in our proof of Theorem 1. For two binary sequences x and y of the
same length, we write x 	 y if and only if xi ≤ yi for all indices i . Thus the relation
	 defines a partial order on the set of binary sequences with the same length. We write
x = 1n0� to mean a binary sequence of n ones followed by � zeros.

Lemma 4 Let n ≥ 1 and p ∈ ( 12 , 1). Let X = (X1, . . . , Xn) and Y = (Y1, . . . ,Yn)
be an i.i.d. sequences of Bernoulli random variables with parameters p and 1 − p,
respectively. Let Bn be the set of size n + 1 of all binary sequences z of length n of
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A monotone isomorphism theorem 1121

the form z = 1n−�0� for some � ∈ [0, n]. Let X∗ and Y ∗ be random variables that
have laws X and Y conditioned to be in Bn, respectively. Then with respect to the
order 	, defined on binary sequences, X∗ stochastically dominates Y ∗, and there is
a monotone coupling of X∗ and Y ∗.

Note that in Lemma 4, although the set of all binary sequences of a fixed length is
only partially ordered by 	, the set Bn is totally ordered by 	. The set Bn can also be
described as the set of binary sequences of length n that do not have a zero followed
by a one. We will refer to Bn as a filler set.

Proof of Lemma 4 Lemma4 is simple consequence of the duality between p and 1−p.
For every integer � ∈ [0, n], we have

n−�∑

i=0

pn−�−i (1 − p)i =
n−�∑

i=0

(1 − p)n−�−i pi ; (1)

this implies, using � = 0, that P(X ∈ Bn) = P(Y ∈ Bn). Thus in order to prove
that X∗ stochastically dominates Y ∗, it suffices to show that for all z ∈ Bn , we have
P(X 	 z, X ∈ Bn) ≤ P(Y 	 z,Y ∈ Bn). If z = 1n−�0�, then since p > 1 − p, by
equality (1) we have

P(X 	 z, X ∈ Bn) = (1 − p)�
(
n−�∑

i=0

pn−�−i (1 − p)i
)

≤ p�

(
n−�∑

i=0

(1 − p)n−�−i pi
)

= P(Y 	 z,Y ∈ Bn).

The existence of a monotone coupling follows from Lemma 3. ��

3 Markers, fillers, and joinings

3.1 Markers

Let us fix� = {0, 1}Z. Let x ∈ �.We call the interval [i, i+1] ⊂ Z a primarymarker
if xi = 0 and xi+1 = 1. Later, we will define secondary and tertiary markers which
will consist of consecutive primary markers. Note that two distinct primary markers
have an empty intersection. We call an interval of Z a filler if it is nonempty and lies
between two primary markers. Thus each x ∈ � partitions Z into intervals of primary
markers and fillers.

Let p ∈ ( 12 , 1), and consider the product probability measures on � = {0, 1}Z
given by μ := (1− p, p)Z and ν := (p, 1− p)Z. Thus the probability that the zeroth
coordinate is a one under μ is p and is 1− p under ν. By conditioning, an instance of
a random variable X with law μ can be given by first deciding on the locations of the
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1122 T. Soo

primary markers, and then deciding on the content of the filler; the same observation
holds for a random variable Y with law ν.

To be more precise, let T = {M,F}Z, where M and F are two symbols that stand
for ‘marker’ and ‘filler.’ For each x ∈ �, define the hat map by setting

x̂(i) =
{
M if i ∈ Z is in a primary marker;
F otherwise.

Let τ and τ ′ be push-forwards of the measures μ and ν via the hat map. Sometimes
we will refer to τ as the marker measure. We have the following disintegration. For
τ -almost every t ∈ T, there exists a probability measure, μt on �, such that

∫

f (x)dμ(x) =
∫ (∫

f (x)dμt (x)

)

dτ(t)

for all measurable f : � → [0,∞).

Remark 5 Keane and Smorodinsky [10, Lemma 4] give a concrete description of μt .
The measure μt assigns the sequence 01 to each primary marker interval of t , and is
a product measure on the filler intervals, where on a filler interval of length n it is the
law of n i.i.d. Bernoulli random variables with parameter p conditioned to be in the set
Bn of sequences of consecutive ones followed by consecutive zeros (see Lemma 4).
The analogous result holds of ν. ♦

Remark 6 Notice that the probability that the origin is contained in a primary marker
is same under μ and ν. Keane and Smorodinsky [10, Lemma 3] proved that τ = τ ′.
Thus the marker measure τ is the same forμ and ν and depends only on the parameter
p. This fact will also be important in our proof of Theorem 1. ♦

3.2 Joinings

A coupling of μ and ν is a probability measure ξ on � × � that has marginals μ

and ν; a joining is a coupling that is invariant under the product shift T × T , so that
ξ ◦ (T × T ) = ξ . A joining ξ is ergodic if all ξ -almost sure (T × T )-invariant sets
have measure zero or one. A coupling ξ is monotone if

ξ {(x, y) ∈ � × � : xi ≥ yi for all i ∈ Z} = 1.

A joining ξ is of marker form if for ξ -almost every (x, y) ∈ � × � the binary
sequences x and y have the same primary markers. It follows from Remark 6 that
there exists a joining of μ and ν in marker form. We will use a monotone version of
this fact.

Proposition 7 There exists a monotone joining of μ and ν of marker form.
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Proof By Remark 6, we have τ = τ ′. Hence we may assume that there exist random
variables X and Y with lawsμ and ν such that X and Y have the same primarymarkers
and filler intervals. Consider a coupling of X and Y defined in the following way. By
Remark 5, conditioned on the locations of the primary markers, for each filler interval
I of X , we know that the law of the restriction of X to I is given by the law of a finite
sequence of i.i.d. Bernoulli randomvariableswith parameter p conditioned be in afiller
set; furthermore, conditioned on the locations of primary markers, the restrictions of
X to each filler interval give independent random variables. The analogous statement
holds for Y . For each filler interval I , by Lemma 4, there exists a monotone coupling
of the restriction of X to I and the restriction of Y to I . Hence by applying Lemma 4
to each of the filler intervals independently, and leaving the primary markers alone,
we obtain a coupling (X ′,Y ′) of X and Y whose law is monotone and of marker form.

��

3.3 The Baire category approach of Burton and Rothstein

Let p ∈ ( 12 , 1) and J = J (p) be the set of all monotone ergodic joinings of μ =
(1 − p, p)Z and ν = (p, 1 − p)Z of marker form. Note that J is nonempty by
Proposition 7. Following the approach of Burton and Rothstein [4], we will show the
monotone isomorphisms are a residual set in J , when we endow J with a suitable
topology. Following del Junco [8], we assign a complete metric to J as follows. For
i ≥ 0, let Ci be the set of measurable C ⊂ � × � that only depend on the coordinates
j ∈ [−i, i]; we will call such sets cylinder sets. For any two measures ζ and ξ on
� × � (which may not be joinings), set

d*(ζ, ξ) :=
∞∑

i=0

2−(i+1) sup
C∈Ci

|ζ(C) − ξ(C)|.

Thus d* is the usual weak-star metric. For ξ ∈ J , let ξt be ξ conditioned to have the
primary markers given by t ∈ T. Let us remark that ξt is no longer a joining. Let τ be
the common marker measure. For ζ, ξ ∈ J , set

d(ξ, ζ ) :=
∫

d*(ξt , ζt )dτ(t). (2)

Standard methods show that (J, d) is a Baire space (see for example [18,
Lemma 17]). We will show that the set of monotone isomorphisms contains an
intersection of open dense sets of J , and hence is nonempty by the Baire category
theorem. To be more precise, let F denote the product sigma-algebra for �. Let
P := {P0, P1} denote the partition of � according the zeroth coordinate so that
Pi := {x ∈ � : x0 = i}. Let ζ ∈ J and let ε > 0. If there exists T′ ⊂ T with
τ(T′) > 1 − ε such that for every t ∈ T′, and each P ∈ σ(P) there exists a P ′ ∈ F
such that

ζt ((P
′ × �) � (� × P)) < ε,
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1124 T. Soo

then we say that ζ is an ε-almost factor from B(1 − p, p) to B(p, 1 − p). For each
ε > 0, let Uε be the set of all ε-almost factors from B(1 − p, p) to B(p, 1 − p). It is
routine to verify thatUε is an open set (see for example [5, page 123–24]) and that an
element in the intersection of all the Uε defines a monotone factor from B(1 − p, p)
to B(p, 1 − p) (see for example [19, Theorem 2.8]). The real work lies in verifying
that Uε is dense; once this has been proved, the Baire category theorem gives that the
set of monotone factors from B(1 − p, p) to B(p, 1 − p) contains an intersection of
open dense sets, and hence is nonempty.

Theorem 1 asserts the existence of a monotone isomorphism which appears to
be a much stronger statement the existence of a monotone factor. However, one of
the advantages of the Baire category approach is that proving the existence of the
isomorphism requires little additional work. We define an approximate factor from
B(p, 1 − p) to B(1 − p, p) in the analogous way. Let ζ ∈ J and let ε > 0. If there
exists T′ ⊂ T with τ(T′) > 1 − ε such that for every t ∈ T′, and each P ∈ σ(P)

there exists a P ′ ∈ F such that ζt ((P × �) � (� × P ′)) < ε, then we say that ζ is
an ε-almost factor from B(p, 1 − p) to B(1 − p, p). For each ε > 0, let Vε be the
set of all ε-almost factors. Again, one can verify that Vε is an open set, and that an
element in the intersection of all the Vε defines a monotone factor from B(p, 1 − p)
to B(1 − p, p). Moreover, any element in the grand intersection of all the Uε and Vε

defines a monotone isomorphism. It will become apparent that the same proof that
shows that Uε is dense can be essentially copied to show that Vε is dense. Thus the
Baire category theorem shows that the grand intersection is nonempty.

It remains to verify that for each ε > 0, the set Uε of ε-almost factors is dense.
Given ε > 0 and ξ ∈ J , we need to find ξ ′ ∈ Uε with d(ξ, ξ ′) < ε. We will define ξ ′
as a certain perturbation of ξ which will be obtained using del Junco’s star-coupling
[7, Section 4 and Proposition 4.7].

4 The star-coupling

Let X and Y be random variables taking values on finite sets A and B, respectively. In
this section, we will discuss various couplings of X and Y ; that is, random variables
X ′ and Y ′ defined together on the same probability space with the same distribution
as X and Y , respectively.

Let ρ be a joint probabilitymass function for X andY .We say that an element a ∈ A
is split by ρ if there exist distinct b, b′ ∈ B, such that ρ(a, b) > 0 and ρ(a, b′) > 0.
For the purposes of defining factors, we are interested in couplings that do not split
many elements.

Remark 8 Let us remark that if we assign an arbitrary total ordering to A and B, then
the law of a quantile coupling of X and Y will split at most |B| − 1 elements of A.♦

Remark 9 Keane and Smorodinsky [10, Theorem 11] proved that there is a coupling
of X and Y with law ρ′ that will split at most |B|−1 elements of A and in addition, ρ′
is absolutely continuous with respect to ρ; that is, ρ(a, b) = 0 implies ρ′(a, b) = 0.
A version of their theorem was used in the proof of Theorem 2, but we will not need
to appeal to this result in our proof of Theorem 1. ♦
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Let X and Y be jointly distributed random variables taking values on totally ordered
finite sets (A,≤) and (B,≤), respectively. Let X ′ have the same law as X . One way
to generate another random variable Y ′ so that (X ′,Y ′) has the same joint distribution
as (X,Y ) is to appeal to a quantile representation. Consider the set of conditional
cumulative distribution functions given by Qa := P(Y ≤ b | X = a) for each a ∈ A.
LetU be uniformly distributed in [0, 1] and independent of X ′. Set Y ′ := Q−1

X ′ (U ). It
is easy to verify that (X ′,Y ′) has the same joint distribution as (X,Y ); we call (X ′,Y ′)
the conditional quantile representation of (X,Y ).

The next coupling we discuss is due to del Junco [7,8]. Let (X1,Y1) and (X2,Y2) be
random variables taking values on the finite sets (A1, B1) and (A2, B2), respectively.
Suppose that each of the sets A1, A2, B1, and B2 are totally ordered sets.Wewill define
(X ′

1,Y
′
1) and (X ′

2,Y
′
2) such that (X ′

i ,Y
′
i ) has the same law as (Xi ,Yi ) for i = 1, 2.

Let U1,U2, and U be independent random variables uniformly distributed in the unit
interval [0, 1]. Let X ′

2 and Y
′
1 be independent random variables that have the same laws

as X2 and Y1, respectively; more specifically, we may assume that they are given by
their respective quantile representations with sources of randomization given by U2
andU1. Next, using the same source of randomizationU , let Y ′

2 be such that (X
′
2,Y

′
2)

is the conditional quantile representation of (X2,Y2), and let X ′
1 be such that (Y

′
1, X

′
1)

is the conditional quantile representation of (Y1, X1). We refer to ((X ′
1,Y

′
1), (X

′
2,Y

′
2))

as the star-coupling of (X1,Y1) and (X2,Y2).

Remark 10 It is immediate from the definition the star-coupling that X ′
2 is independent

of (Y ′
1, X

′
1) and Y ′

1 is independent of (X ′
2,Y

′
2). ♦

Remark 11 It follows from Remark 8, that the star-coupling of the random variables
(X1,Y1) and (X2,Y2) taking values on (A1, B1) and (A2, B2), respectively, has the
property that for a fixed a2 ∈ A2 and b1 ∈ B1, the number of a1 ∈ A1 such that
there are distinct b2, b′

2 ∈ B2 with both (a1, b1, a2, b2) and (a1, b1, a2, b′
2) receiving

positive mass under the law of star-coupling (X ′
1,Y

′
1, X

′
2,Y

′
2) is at most |B2| − 1. ♦

Remark 12 del Junco refers to his coupling as the ∗-joining [7,8]. ♦

We may also iterate the star-coupling to more than two pairs of random vari-
ables. For example, if (Xi ,Yi ) are finite-valued random variables taking values in
totally ordered spaces (Ai , Bi ) for i = 1, 2, 3, we define its iterated star-coupling
in the following way. Take the star-coupling of (X1,Y1) and (X2,Y2) to be given by
((X ′

1,Y
′
1), (X

′
2,Y

′
2)). Assign a lexicographic ordering to the set A1 × A2, and take

the star-coupling of ((X ′
1, X

′
2), (Y

′
1,Y

′
2)) and (X3,Y3), to obtain random variables

((X ′′
1 , X

′′
2 , X

′′
3), (Y

′′
1 ,Y ′′

2 ,Y ′′
3 )). Notice that by definition of the star-coupling, (X ′′

i ,Y
′′
i )

has the same law as (Xi ,Yi ) for i = 1, 2, 3.
We will make use of the following variation of the iterated star-coupling. Let ρ

be a probability measure on the finite set A × B which has projections α and β on
the sets A and B, respectively. For every k ∈ Z

+, let αk and βk denote the k-fold
product measures on Ak and Bk , respectively. Let ninitial and kgroup ≥ 2 be integers.
Let Zi = (Xi ,Yi ) be random variables with the following grouping property with
law ρ and constants ninitial and kgroup. For each i ≥ 1, the random variable Zi takes
values on (A×B)kgroup ≡ Akgroup ×Bkgroup and has a law that has projections αkgroup and

123



1126 T. Soo

βkgroup on Akgroup and Bkgroup , respectively, and a projection ρ on each copy of A × B.
Similarly, for i = 0, the random variable Z0 takes values on (A × B)ninitial and has a
law that has projections αninitial and βninitial on Aninitial and Bninitial , respectively, and a
projection ρ on each copy of A × B.

For i ≥ 1, write Xi = (X1
i , . . . , X

kgroup
i ), Yi = (Y 1

i , . . . ,Y
kgroup
i ), Z j

i = (X j
i ,Y

j
i ),

Ymiss
i = (Y 1

i , . . . ,Y
kgroup−1
i ), and Zmiss

i = (Xi ,Ymiss
i ).

First, consider the following coupling of X0, X1,Y0, and Y1. The resulting coupling
will not be a coupling of Z0 = (X0,Y0) and Z1 = (X1,Y1), but the resulting coupling
as a measure on (A× B)ninitial+kgroup will have ρ as a projection on each copy of A× B.
Let W = (E, F) have law given by the product measure ρkgroup . Let (Z0, Z1

miss)

be a star-coupling of Z0 = (X0,Y0) and Wmiss = (E, Fmiss). Using independent
randomization, let Y rep

1 be such that the pair (X1
kgroup ,Y rep

1 ) is the conditional quantile
representation ofWkgroup = (Ekgroup , Fkgroup). It is easy to verify from the properties of
the star-coupling and the independence of (W 1, . . . ,Wkgroup) that Y rep

1 is independent
of Y1miss; moreover,

(
Z0, (X1, (Y1miss,Y rep

1 )
)
is a coupling of Z0 and W such that

(X0, X1) has law αninitial+kgroup and (Y0,Y1miss,Y rep
1 ) has law βninitial+kgroup . We will

refer to this coupling as the star-coupling with replacement of Z0 and Z1.
Here, two ‘replacements’ take place, Z1 was replaced by W = (E, F) which has

the product measure ρkgroup as its law, and we only applied the star-coupling to Z0
and Wmiss, where in the final construction, the ‘missing’ value is replaced with a
conditional quantile representation.

We iterate this construction as follows. First, let (Z ′
0, Z

′
1) be the star-coupling

with replacement of Z0 and Z1. Next, we take the star-coupling with replace-
ment of

(
(X ′

0, X
′
1), (Y

′
0,Y

′
1)

)
and Z2; to obtain random variables

(
(X ′

0, X
′
1, X2), (Y ′

0,

Y ′
1,Y2

miss,Y rep
2 )

)
taking values on Aninitial+2kgroup × Bninitial+2kgroup with a law that has

projections αninitial+2kgroup and βninitial+2kgroup , respectively. Finally, it is clear that this
construction can be extended an arbitrary number of times in the obvious way. We call
this construction the iterated-star coupling with replacement of Z0, Z1, . . . , Zn .

The importance of the star-coupling can be summarized in Proposition 13, below;
it is a version of del Junco’s [8, Proposition 4.7].

Proposition 13 (del Junco) Let ρ be a probability measure on the finite set A × B
and have marginals α and β, on A and B, respectively. Assume that H(α) = H(β).
Let kgroup ≥ 2. For η > 0, there exists ninitial = ninitial(η, kgroup) ∈ Z

+ such that the
following holds.

Let n ∈ Z
+. Let Zi = (Xi ,Yi ), for i = 0, 1, . . . , n, have the grouping property

with the law ρ and constants ninitial and kgroup. Define the following product spaces

I j := Aninitial × Akgroup j ≡ Aninitial+kgroup j ,

J j := Bninitial × Bkgroup j ≡ Bninitial+kgroup j ,

and

J̄ j := B(kgroup−1) j .
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For y = (y0, (y1, y′
1), . . . , (y j , y

′
j )) ∈ J j = Bninitial×Bkgroup j = Bninitial×(Bkgroup−1×

B) × · · · × (Bkgroup−1 × B), let

ȳ = (y1, . . . , y j ) ∈ J̄ j .

Let Wn = (Xn,Yn) be a random variable given by the iterative star-coupling with
replacement of Z0, Z1, . . . , Zn. There exists a deterministic function � : In → J̄n
such that P(Ȳn = �(Xn)) > 1 − η.

The proof of Proposition 13 uses the Shannon–McMillan–Breiman theorem and
Remark 11. A version of Proposition 13 is also used the proof of Theorem 2 of Quas
and Soo, see [18, Proposition 14].

5 The proof of Proposition 13

Proof of Proposition 13 We will place conditions on ninitial later. Let h := H(α) =
H(β). Let ε > 0 such that

h − 2ε >
(
1 − 1

kgroup

)
(h + ε). (3)

Set

L j := ninitial + kgroup j, for 0 ≤ j ≤ n.

Let x ∈ I j be given by x = (x0, . . . , x j ). We say that x is α-good if

αL j (x) < e−(h−ε)Lj , (4)

and is α-completely good if for all 0 ≤ i ≤ j , we have (x0, . . . , xi ) ∈ Ii is good.
The corresponding definition for β is more complicated. We remark that in the

presence of a strict entropy gap, H(α) > H(β), the definition could be more simple
and symmetric (see for example [10, page 366] or [18, Proof of Proposition 14]. We
declare that every y ∈ J0 is β-good. Set

L̄ j := (kgroup − 1) j for 0 ≤ j ≤ n,

so that L j = L̄ j + ninitial + j . We say that y = (y0, (y1, y′
1), . . . , (y j , y

′
j )) ∈ J j is

β-good if

βL̄ j (ȳ) > e−(h−2ε)Lj . (5)

Note that being β-good does not depend on the behavior of (y0, y′
1, . . . , y

′
j ) and L j

appears in the exponent rather than L̄ j on the right hand side of (5). We say that y is
β-completely good if for all 0 ≤ i ≤ j , we have y j = (y0, (y1, y′

1), . . . , (yi , y
′
i )) ∈ Ji

is good.
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Note that if y ∈ Jn is not completely good, then for some j ≥ 1, we have βL̄ j (ȳ j ) <

e−(h−2ε)L j , and by (3),

βL̄ j (ȳ j ) < e−(h−2ε)L j ≤ e−(1−1/kgroup)(h+ε)L j ≤ e−(h+ε)L̄ j . (6)

For two elements y, z ∈ J j , we say that they are equivalent if ȳ = z̄.We let [y] ⊂ Ji
be the equivalence class of y. Given a measure on I j × J j we say it finely splits an
element x ∈ I j if there exists y, z ∈ Ji such that [y] �= [z] and for which the measure
assigns positive mass to both (x, y) and (x, z).

For j ≥ 0, let W j = (X j ,Y j ) be a random variable given by the iterative star-
coupling with replacement of Z0, Z1, . . . , Z j , where we setW0 := Z0; thus (X j ,Y j )

takes values in I j × J j . We say that x ∈ I j is desirable if the following properties are
satisfied.

(a) The element x is α-completely good.
(b) The element x is not finely split by (the law of) W j = (X j ,Y j ).
(c) Furthermore, up to equivalence, there is a unique β-completely good y ∈ J j for

which (x, y) receives positive mass under (the law of) W j .

For desirable x ∈ I j , set� j (x) = ȳ, where y is determined by condition (c); otherwise
if x is not desirable simply set� j (x) = y′ for some predetermined fixed y′ ∈ J j . Note
that

P
(
Ȳ j = � j (X j )

) ≥ P(X j is desirable).

Remark 11 and del Junco’s inductive argument [8, Lemma 4.6] will be used to show
that for all j ≥ 0,

P(X j is not desirable) ≤ P(X j is not c.g.) + P(Y j is not c.g.)

+ |B|kgroup
j−1∑

i=0

e−εLi , (7)

where “c.g.” is short for completely good.
The case j = 0 is vacuous, since being good implies being completely good, and

under Z0 no elements are finely split.
Assume (7) for the case j − 1 ≥ 0. We show that (7) holds for the case j . Let E be

the event that X j−1 is desirable, but X j is not desirable. Clearly,

P(X j is not desirable) ≤ P(X j−1 is not desirable) + P(E). (8)

Note that on the event E , the random variables X j−1 and Y j−1 are completely good.
Observe that the event E is contained in the following three events

(I) E1 := The random variable X j is not good, but X j−1 is completely good.
(II) E2 := The random variable Xj is completely good, but is finely split under the

iterative star-coupling W j , even though X j−1 is desirable.
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A monotone isomorphism theorem 1129

(III) E3 := The random variable Yj is not good, but Y j−1 is completely good.

Clearly,

P(E1) + P(X j−1 is not c.g.) = P(X j is not c.g.). (9)

Similarly,

P(E3) + P(Y j−1 is not c.g.) = P(Y j is not c.g.). (10)

Let us focus on the event E2. LetX j = (X j−1, X), so that X takes values in Akgroup .
We show that for any x ∈ Akgroup and any completely good y ∈ J j−1 that

P(E2 | X = x, Ȳ j−1 = ȳ) ≤ |B|kgroupe−εL j−1 , (11)

so that P(E2) ≤ |B|kgroupe−εL j−1 and it follows that (7) holds by (8)–(10), and the
inductive hypothesis.

Note that if x and y are good, then

P(X j−1 = x|X = x, Ȳ j−1 = ȳ) = P
(
X j−1 = x, Ȳ j−1 = ȳ, X = x

)

P
(
Ȳ j−1 = ȳ, X = x

)

= P
(
X j−1 = x, Ȳ j−1 = ȳ

)

P
(
Y j−1 = ȳ

) (12)

≤ P
(
X j−1 = x

)

P
(
Ȳ j−1 = ȳ

)

≤ e−εL j−1 , (13)

where (12) follows from the independence properties of the star-coupling (with
replacement) and (13) follows from (4) and (5). Also note that if x is desirable, then
if (x, x) is finely split under W j , then for the unique, up to equivalence, y for which
(x, y) receives positive mass under W j−1 there exist (y, u), (y′, u′) ∈ Bkgroup =
Bkgroup−1 × B such that y �= y′ and both ((x, x), (y, y, u)) and ((x, x), (y, y′, u′))
receive positive mass underW j . By Remark 11 and the definition of the star-coupling
with replacement, for a fixed x ∈ Akgroup and y ∈ J j−1 the set of all x such that
there exists distinct y, y′ ∈ Bkgroup−1 for which there are u, u′ ∈ B such that both
((x, x), (y, y, u)) and ((x, x), (y, y′, u′)) receive positive mass underW j has at most
|B|kgroup−1 − 1 elements; thus summing over all such x yields (11).

The Shannon–McMillan–Breiman theorem implies that ninitial can be chosen so
that all three terms in (7) can be made smaller than η/3. This is done in the following
way. Set

SA(k, K ) :=
{
a ∈ AK : α�(a) < e−(h−ε)� for all k ≤ � ≤ K

}
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and

SB(k, K ) :=
{
b ∈ BK : β�(b) > e−(h+ε)� for all k ≤ � ≤ K

}
,

where we have the slight abuse of notation that if a = (a1, . . . , aK ), then α�(a) =
α�(a1, . . . , a�).

First, by the Shannon–McMillan–Breiman theorem choose κ so that for all K ≥ κ ,
we have

βK (SB(κ, K )) > 1 − η/3. (14)

Next, using the Shannon–McMillan–Breiman theorem again, choose ninitial suffi-
ciently large so that the following three inequalities are satisfied:

αK (SA(ninitial, K )) > 1 − η/3 for all K ≥ ninitial, (15)

min
{
β�(y) > 0 : y ∈ B�, 0 ≤ � ≤ κ

}
> e−(h−2ε)ninitial , (16)

and

|B|kgroup
∞∑

i=ninitial

e−εi < η/3. (17)

Finally, we will verify that this choice of ninitial is sufficient. Condition (15) gives
that P(X j is not c.g.) < η/3. Recall that by definition, L j ≥ ninitial for all j ≥
0, so that (17) ensures that |B|kgroup ∑ j−1

i=0 e−εL j < η/3. It remains to verify that
P(Y j is not c.g.) < η/3.

The definition of completely good (5), gives that if

y = (y0, (y1, y
′
1), . . . , (y j , y

′
j )) ∈ Jn

is not completely good, then for some i > 0, we have

βL̄i (ȳi ) < e−(h−2ε)Li < e−(h−2ε)ninitial , (18)

where yi = (y0, (y1, y′
1), . . . , (yi , y

′
i )); inequalities (18) and (16) imply that

L̄i > κ; (19)

moreover, (6) gives that

βL̄i (ȳi ) ≤ e−(h+ε)L̄i . (20)

Hence if y is not completely good, then by (19) and (20) it belongs to the complement
of SB(κ, K ) for all K ≥ κ . Thus (14) gives that P(Y j is not c.g.) < η/3. ��

123



A monotone isomorphism theorem 1131

In Proposition 13, we have that given x ∈ In , with high probability, up to equiva-
lence, it determines a corresponding

y = (y0, (y1, y
′
1), . . . , (yn, y

′
j )) ∈ Jn .

It will be useful to refer to (y0, y′
1, . . . , y

′
n) as the undetermined coordinates, and

(y1, . . . , yn) as the destined coordinates.We say that there are ninitial+n undetermined
coordinates, since y0 ∈ Bninitial , and yi ∈ B for 1 ≤ i ≤ n, and there are (kgroup − 1)n
destined coordinates.

6 Perturbing the joining

Let ξ ∈ J be a monotone joining of marker form. We will define a perturbation ξ ′ of
ξ using the iterated star-coupling with replacement. The perturbation will depend on
a few parameters. With the help of Proposition 13, we will be able to make a choice of
these parameters so that ξ ′ will be an almost factor and close to ξ in the metric defined
in (2).

6.1 Defining the perturbation

Let kmark < rmark be large integers to be chosen later. A secondary marker is the max-
imal union of at least kmark consecutive primary markers, so that secondary markers
have no filler between them and if the interval [i, j] is a secondary marker for x ∈ �,
then x restricted to [i, j] has the form 0101 · · · 0101.

Similarly, a tertiary marker is the maximal union of at least rmark consecutive
primary markers. We call the set of integers between but not including two secondary
markers a block, and the set of integers between but not including two tertiary markers
a city. Thus within a city there are blocks, which we consider ordered from left to right.
Note that a block may contain primary markers.

Let p ∈ ( 12 , 1). Let ξ ∈ J (p). Let Z = (X,Y ) have law ξ . Suppose thatwe are given
that Z has primary markers given by t ∈ T. Let I ⊂ Z be a block of length n. We are
interested in the distribution of the random variable taking values in {0, 1}n × {0, 1}n
given by the distribution of Z , conditioned on t , restricted to I . The type of the block
I is defined to be the vector containing an alternating sequence of integers that are the
lengths of the filler and marker intervals in I and the length of the type is simply the
sum of the integers in the type which give the length of the block. The distribution of
this random variable is determined by the parameter p and the type of I . There are
a countable number of types. Fix an enumeration (typei )i∈N of the types and let ρi
be the corresponding law. Associate to each type-i block a large integer niinitial which
will be chosen later; here i is an index that is not an exponent. A census of a city is
the sequence of nonnegative integers ci , where each ci is the number of type-i blocks
in the city.

Remark 14 Note that for every i ∈ N, if the length of the type-i is n, then ρi is a
probability measure on {0, 1}n × {0, 1}n with projections αi and βi that have equal
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entropy. The equal entropy assertion also follows from the duality between p and
1 − p. ♦

A modification of Z = (X,Y ) on a subset of Z is a coupling of X and Y given
by Z ′ = (X ′,Y ′) such that Z ′ is equal to Z off the subset and has the same primary
markers as Z . We will define a modification Z ′ of Z so that the law of Z ′ will be a
member of J . The modifications will be made independently on each city, so that we
need only define what changes occur on a city. On each city the modifications will be
made independently on each set of types, so that we need only define what changes
occur on each set of types.

Suppose that the primary markers of Z are given by t ∈ T. Fix i ∈ N. Let us focus
on the type-i blocks in a single fixed city. We will refer to this modification as the
star-modification of type-i on a city. Suppose that the census c is such that we may
write

ci = niinitial + qi kgroup + ri , (21)

where 0 ≤ ri < kgroup andqi is an nonnegative integer.Wewill notmakemodifications
on the last ri blocks. Suppose that length of the type-i block is n. It may be helpful to
think of two different copies of {0, 1}n by setting A = B = {0, 1}n . LetW = (Wj )

ci
j=1

be the set of random variables taking values in A×B obtained by taking the restriction
of Z , conditioned to have primary markers given by t , to each block of type-i in the
city. Although W gives an identical sequence, where each Wj has law ρ j , it may not
be independent. However, the projections on A and B are independent; if we write
Wj = (X j ,Y j ), then by Remark 5, we have that X = (X j ) and Y = (Y j ) are i.i.d.
sequences. Consider the first niinitial random variables together as a single random

variable taking values in (A × B)n
i
initial , and each subsequent kgroup random variables

together as random variables taking values in (A × B)kgroup . We obtain a sequence of
random variables M = (M0, M1, . . . , Mqi ). Thus M takes values on

(A × B)n
i
initial+qi kgroup ≡ Aniinitial+qi kgroup × Bniinitial+qi kgroup .

Take the iterative star-coupling with replacement of these random variables to obtain
new random variables M ′ = (M ′

0, . . . , M
′
qi ); furthermore, using independent ran-

domization, we may stipulate that these random variables are independent of Z . We
define a modification Z ′ of Z by replacing the values of M with those of M ′, so that
Z = Z ′ off the type-i blocks in the city, and if Z restricted to the type-i blocks, then
it is given by M , then Z ′ restricted to the type-i blocks is given by M ′. The iterated
star-coupling with replacement gives that the law of each M ′

j projected onto each of
the ninitial + qi kgroup copies of A × B is ρi , so that monotonicity is preserved and
the primary markers remain unchanged. Also, the projections of M and M ′ on Aci−ri

have the same law. Similarly, the projections of M and M ′ on Bci−ri have the same
law, so that by Remark 5, the random variable Z ′ gives the required coupling.

Note we have only defined the star modification of type-i when ci ≥ niinitial+kgroup.
In the case that ci is not sufficiently large, we simply do nothing, that is, we stipulate
that the star modification of type-i leaves everything unchanged.
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For a single type-i , if we apply the star modification of the type on each city,
independently, then we obtain a modification of Z that has law that belonging to J .
We call this the star-modification of type-i of Z . We summarize our construction in
the following proposition.

Proposition 15 Let p ∈ ( 12 , 1) and ξ ∈ J (p). If Z has law ξ and if Z ′ is a star
modification of Z of a particular type, then the law of Z ′ is also a member of J (p).

Given a finite set of types, the star-modification of Z on the set of types is obtained
by applying the star-modification in succession, starting with the smallest type.

Remark 16 In our construction of the star modification of type-i on a city, we relied
on the fact that the law of M ′

j still has a projection of ρi on each copy of A × B to
ensure that primary markers and monotonicity are preserved. This fact will also be
important for us later in proving that the parameters of the star-modification Z ′ of Z
can be chosen so that it is a small perturbation in the d-metric, since on the event that
the origin is contained in a block, and the coordinates of a cylinder set C lie in that
block, we have that the probabilities of C under Z and Z ′ are not only close, they are
equal! This is another one of nice features of del Junco’s star coupling. ♦

6.2 Choosing the parameters

From the discussion in Sect. 3.3, it remains to show that given a joining ξ ∈ J (p), we
can choose parameters so that the star-modification of a random variable with law Z
on a finite set of type results in a random variable with law ξ ′ that is close to ξ in the
metric defined by (2) and is also an almost factor.

Proof of Theorem 1 Let p ∈ ( 12 , 1). Let ε > 0. As discussed in Sect. 3.3, it suffices
to show thatUε, the set of ε-almost factors from B(1− p, p) to B(p, 1− p) is dense.
The proof that Vε, the set of ε-almost factors from B(p, 1 − p) to B(1 − p, p) is
similar with the roles of p and 1 − p reversed.

Let ξ ∈ J (p) and Z have law ξ . Let ε > 0. We will choose the parameters for
the star-modification Z ′ of Z as follows. The modification will occur on a finite set of
types T , which will be specified later. Recall that in the star-modification, some blocks
are left unchanged, so that Z equals Z ′ on those blocks, and whereas some blocks
are modified via the iterated star-coupling with replacement, so that Z may not equal
to Z ′ on those blocks. Note that Z ′ and Z always share the same primary markers,
and although markers may lie in the modified coordinates they are always preserved.
If ξ ′ is the law of Z ′, then these parameters will be chosen so that d(ξ, ξ ′) < ε and
ξ ′ ∈ Uε. We choose the parameters as follows.

(i) Set ε′ := ε/100.
(ii) Let δ > 0 be small enough and �∗ be large enough so that twomeasures ζ and ζ ′

on {0, 1}Z ×{0, 1}Z are ε′ close in the metric d*, if for all cylinder sets C ∈ C�∗ ,
we have |ζ(C) − ζ ′(C)| < δ.

(iii) Choose kmark sufficiently large so that with probability at least 1− ε′ the origin
is in a block and the interval [−2�∗, 2�∗] is in the block.
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(iv) With this choice of kmark, there exists L > 0 such that with probability at least
1− 2ε′ the origin will in a block and the length of the block will be between �∗
and L .

(v) In particular, there exists a finite set of types T , those with lengths between �∗
and L , such that with probability at least 1− 2ε′, each block will be of type T .
Since we have a fixed enumeration of the types, we will view T as a subset of
N.

(vi) Set kgroup = �1/ε′� + 1.
(vii) For each i ∈ N, choose niinitial via Proposition 13, by substituting ρ = ρi ,

ninitial = niinitial, and η = ε′.
(viii) Let c be the census of the city containing the origin. If ci is sufficiently large,

define qi as in (21). Choose rmark sufficiently large so that with probability at
least 1 − ε′, the origin is in a city, and for all i ∈ T the census will satisfy
niinitial/qi < ε′.

Applying Proposition 15 a finite number of times gives that ζ ′ ∈ J . By Remark 16,
conditions (i), (ii), and (iii), imply that d(ζ ′, ζ ) < ε.

It remains to verify that ζ ′ ∈ Uε. Call t ∈ T amodel marker if the block containing
the origin is a modified block and the origin lies in a destined coordinate. Property (vii)
and Proposition 13 imply that for all model markers t ∈ T there exists a deterministic
measurable ψ : � → {0, 1} such that

ζ ′
t {(x, y) : (x, y0) = (x, ψ(x))} > 1 − ε′. (22)

For a particular type-i , with ci = niinitial + qi kgroup + ri as in (21) the ratio of
undetermined coordinates plus those that are unchanged to destined coordinates is
(niinitial +qi + ri )/qi (kgroup −1). Recall that ri < kgroup. Conditions (iv), (v), (vi), and
(viii), ensure us that the set of model markers has probability at least 1− 7ε′; this fact
together with (22) and (i) imply that ζ ′ ∈ J . ��

7 Some other examples

One of the key observations of Keane and Smorodinsky [11, Lemmas 2 and 3] that
allowed the definition of markers in their proof of that two Bernoulli shifts B(p) and
B(q) of equal entropy are isomorphic was that one could assume without loss of
generality that p0 = q0 in the case where p and q give non-zero mass to three or
more symbols, and in the case where p gives non-zero mass to only two symbols,
then one can assume that pk0 p1 = qk0q1 from some k. In general, in the construction
of monotone factors, we may not make this reduction since monotonicity may not
preserved. However by a straightforward adaptation of the proof of Theorem 1, the
following monotone versions of the Keane and Smorodinsky reductions are enough
to prove the existence of a monotone isomorphism.

Theorem 17 Let N ≥ 2. Let p and q be probability measures on [N ] of equal entropy.
Suppose p stochastically dominates q, and furthermore there exists i ≥ j such that
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pi = q j and p∗ stochastically dominates q∗, where p∗ is the law of a random vari-
able with law p conditioned not to take the value i, and q∗ is the law of a random
variable with law q conditioned not to take the value j . Then there exists a monotone
isomorphism of B(p) and B(q).

Theorem 18 Let N ≥ 2. Let p and q be probability measures on [N ] of equal entropy.
Suppose p stochastically dominates q, and furthermore there exists i ≥ j and k ≥ �

such that pi pk = q jq� and for all n ≥ 1, we have that pn∗ stochastically dominates
qn∗, where pn∗ is the law of a random vector with law pn conditioned so that an
occurrence of an i is never immediately followed by an occurrence of a k, and qn∗ is
the law of a random vector with law qn conditioned so that an occurrence of a j is
never followed by an occurrence of an �. Then there exists a monotone isomorphism
of B(p) and B(q).
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