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Abstract WediscussHilbert space-valued stochastic differential equations associated
with the heat semi-groups of the standard model of non-relativistic quantum electro-
dynamics and of corresponding fiber Hamiltonians for translation invariant systems.
In particular, we prove the existence of a stochastic flow satisfying the strong Markov
property and the Feller property. To this end we employ an explicit solution ansatz.
In the matrix-valued case, i.e., if the electron spin is taken into account, it is given
by a series of operator-valued time-ordered integrals, whose integrands are factorized
into annihilation, preservation, creation, and scalar parts. The Feynman–Kac formula
implied by these results is new in the matrix-valued case. Furthermore, we discuss
stochastic differential equations and Feynman–Kac representations for an operator-
valued integral kernel of the semi-group. As a byproduct we obtain analogous results
for Nelson’s model.
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1 Introduction

The present article is devoted to the stochastic analysis of certain models for non-
relativistic quantum mechanical matter interacting with quantized radiation fields.
While the time evolution of the matter particles alone would always be generated by
Schrödinger operators in the models covered by our results, the radiation fields are
described by relativistic quantum field theory. The fields obey Bose statistics and thus
consist of an undetermined number of bosons which may be created or annihilated
along the time evolution. In particular, the state space of the radiation field is the
bosonic Fock space. In the prime example, the standard model of non-relativistic (NR)
quantum electrodynamics (QED), the matter particles are electrons and the bosons are
photons constituting the quantized electromagnetic field. In this model the electrons
have internal spin degrees of freedom. Another example is the Nelson model where
the matter particles are (spinless) nucleons and the bosons are mesons and thus have a
mass. The massless Nelson model can be used to describe the interaction of electrons
with acoustic phonons in solids, which are massless bosons.

After several decades of intensive studies of Schrödinger operators in classical
electromagnetic fields, the mathematical analysis of NRQED became more and more
popular in the late 90’s. Since then various spectral theoretic aspects of NRQED
have been investigated by new non-perturbative methods or sophisticated perturbative
multi-scale methods; see, e.g., [27,39] for a general introduction and reference lists.
In view of Feynman’s famous article [9] where, in particular, the quantum mechanical
time evolution of NR matter particles coupled to the quantized electromagnetic field
is discussed, it is certainly most natural to generalize also path integral techniques
developed in the mathematical study of Schrödinger operators to the case of quantized
radiation fields. In fact, Feynman–Kac formulas for the semi-group in the standard
model of NRQED have already been derived earlier and exploited in spectral theoretic
problemsmainly byF.Hiroshimaandhis co-workers; seeSect. 1.2 below for references
and more remarks. These Feynman–Kac formulas have been obtained via a functional
analytic approach based on Trotter product expansions. The aim of our work is to
explore their relationship to corresponding stochastic differential equations (SDE)
with the help of the stochastic calculus in Hilbert spaces.

In the first subsection below, we briefly describe the SDE analyzed in this paper and
our main results on it. In its full generality, our SDE escapes all frameworks we found
in the literature; see Remark 1.3 below. Therefore, we hope that readers interested in
the theory of SDE in infinite dimensional Hilbert spaces will consider our analysis,
which departs from an explicit solution ansatz, as an interesting case study. In Sect. 1.2
we comment on related Feynman–Kac formulas and future applications of our main
results.
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Stochastic differential equations for models of non-relativistic… 819

All notation used in the following two subsections will be re-introduced more
carefully later on; see in particular Sect. 2, where our basic hypotheses are formulated.
Concrete examples are given in “Appendix 1”. Another purpose of Sect. 2 is to make
this article accessible for readerswho are experts inmathematical quantumfield theory
but might be less familiar with stochastic calculus in Hilbert spaces or vice versa.
Hence, some basic information on Fock space calculus and stochastic calculus is
collected and suitably referenced. The content of Sects. 3–11 and “Appendices 2–6”
will be indicated along the discussion in the following two subsections.

In “Appendix 7” we explain some general notation and provide a list of symbols.

1.1 A class of stochastic differential equations and main results

The present article provides a fairly comprehensive study of the type of Hilbert space-
valued SDE described in the following paragraphs:

Let I be a finite or infinite continuous time horizon, B := (Ω,F, (Ft )t∈I ,P) be
a filtered probability space satisfying the usual assumptions, and X = (X1, . . . , Xν)

be a continuous R
ν-valued semi-martingale on I with respect to B whose quadratic

covariation is equal to the identity matrix. In fact, X will always be a solution of a
suitable Itō equation. The two most important examples are Brownian motion and
semi-martingale realizations of Brownian bridges. Precise conditions on X are for-
mulated in Hypothesis 2.7; in “Appendix 4” we verify that Brownian bridges satisfy
certain technical bounds appearing in it.

LetF := �s(h) denote the bosonic Fock spacemodeled over the one-bosonHilbert
space h = L2(M,A, μ), which is assumed to be separable with a σ -finite measure
space (M,A, μ). As usual ϕ( f ) is the field operator associated with f ∈ h and d�(�)
denotes the differential second quantization of the self-adjoint maximal multiplication
operator in h corresponding to somemeasurable function � : M→ R. Then ϕ( f ) and
d�(�) are unbounded self-adjoint operators in F as soon as f and � are non-zero;
they do not commute in general. Suppose that G1,x, . . . ,Gν,x, F1,x, . . . , FS,x ∈ h,
for every x ∈ R

ν , and m1, . . . ,mν, ω : M → R are measurable with ω > 0 μ-
almost everywhere (μ-a.e.). In Hypothesis 2.3 below we shall introduce appropriate
assumptions on the latter functions. In particular, we shall require a certain regularity
of the maps x �→ G	,x and x �→ Fj,x allowing for an application of the stochastic
calculus. Important from an algebraic point of view is the condition that G	,x and
Fj,x belong to some fixed completely real subspace of h which is invariant under the
multiplication operators induced by ω and im	.

Finally, let σ1, . . . , σS be hermitian L × L matrices acting on (generalized) spin
degrees of freedom and assume that the potential V : R

ν → R is locally integrable.
(The latter condition is Hypothesis 2.4.)

In the above situation we shall investigate the following SDE for an unknown
process Y on I with values in the fiber Hilbert space Ĥ := C

L ⊗F ,

Y• = η −
∫ •

0
Ĥ V (ξ , Xs)Ysds −

ν∑
	=1

∫ •

0
i1CL ⊗ v	(ξ , Xs)YsdX	,s . (1.1)
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The coefficients are unbounded operators defined, for fixed ξ , x ∈ R
ν , by

v	(ξ , x) := ξ	 − d�(m	)− ϕ(G	,x), 	 ∈ {1, . . . , ν}, (1.2)

Ĥ V
sc (ξ , x) :=

1

2

ν∑
	=1
{v	(ξ , x)2 − iϕ(∂x	G	,x)} + d�(ω)+ V (x), (1.3)

Ĥ V (ξ , x) := 1CL ⊗ Ĥ V
sc (ξ , x)−

S∑
j=1

σ j ⊗ ϕ(Fj,x). (1.4)

The F0-measurable initial condition η : Ω → Ĥ attains its values in the (ξ , x)-
independent domain D̂ of the generalized fiber Hamiltonians Ĥ V (ξ , x), which is
explicitly given by

D̂ := C
L ⊗D(M), M := 1

2

ν∑
	=1

d�(m	)
2 + d�(ω). (1.5)

Here and henceforth,D(·) denotes the domain of a linear operator. If the functions G	

and Fj are x-independent, then we denote Ĥ0(ξ , x) simply by Ĥ(ξ) and call it a fiber
Hamiltonian. In this case Ĥ(ξ) is self-adjoint and has a direct physical interpretation:
it generates the time-evolution of a combined particle-radiation system moving at a
fixed total momentum ξ . Typically, the essential spectrum of Ĥ(ξ) covers some half-
line. Its x-dependent generalization Ĥ V (ξ , x), which is closed but not self-adjoint in
general, appears in the following formula for the self-adjoint total Hamiltonian HV

acting in L2(Rν, Ĥ ),

(HVΨ )(x) :=
ν∑

	=1

{
− 1

2∂
2
x	Ψ (x)+ iϕ(G	,x)∂x	Ψ (x)

}
+ Ĥ V (0, x)∗Ψ (x), (1.6)

for a.e. x and Ψ in the domain of HV . In “Appendix 2” we present a (partially
well-known) elementary proof of the above (essentially well-known) assertions on
self-adjointness/closedness and domains of the generalized fiber Hamiltonians.

Our main result is the following theorem. In its statement D̂ is equipped with the
graph norm of 1CL ⊗ M .

Theorem 1.1 Under our standing Hypotheses 2.3, 2.4, and 2.7 formulated below, the
following assertions (1)–(4) hold where, in (2)–(4), we assume in addition that V is
bounded and continuous.

(1) Up to indistinguishability, there exists a unique continuous Ĥ -valued semi-
martingale, whose paths belong P-a.s. to C(I, D̂) and which P-a.s. solves (1.1)
on [0, sup I ).

(2) We can construct a stochastic flow for the system of SDE comprised of the Itō
equation for X and (1.1).

(3) The stochastic flow and the corresponding family of transition operators satisfy
the strong Markov and Feller properties.

(4) A Blagoveščensky-Freidlin theorem holds, i.e., there exists a unique (probabilis-
tically) strong solution to the SDE for X and (1.1).
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Precise formulations of statements (1)–(4) above are given in Theorems 5.3, 9.2,
9.5, 9.6 and Proposition 9.3.

With the help of some earlier ideas from mathematical quantum field theory we
prove Part (1) by using an explicit formula for the solution as an ansatz. We proceed
in four steps:

Step 1 In Sect. 3 we first analyze certain basic processes, namely a complex-valued
semi-martingale (uV

ξ ,t )t∈I , an h-valued semi-martingaleU+, and a family of h-valued

semi-martingales (U−
τ,t )t∈I , indexed by τ ∈ I . These processes admit explicit stochas-

tic integral representations involving ω, m	, G	, and X .

Step 2Next, we treat the scalar case, i.e. the casewhere L = 1, Fj = 0, in Sect. 4. Here
the ansatz is suggested byHiroshima’s formula [15] for the Fock space operator-valued
Feynman–Kac integrand inNRQEDwithout spin. Applying it to an exponential vector
we obtain an expression involving the basic processes whose stochastic differential
can be computed by means of the stochastic calculus in Hilbert spaces [6,30,31].

Step 3 After that we turn to the general matrix-valued case, i.e., L � 1 with non-zero
σ j and Fj . It shall eventually turn out that the semi-martingale solving (1.1) can be
written as (WV

ξ ,tη)t∈I with an operator-valued map

W
V
ξ : I ×Ω �−→ B(Ĥ )

such that, with probability one, all operatorsW
V
ξ ,t , t ∈ I , are given by norm-convergent

series ofB(Ĥ )-valued time-ordered strong integrals whose integrands are factorized
into an annihilation, a preservation, a creation, and a scalar part. (This result is stated
precisely in Sect. 5 where all relevant definitions can be found as well.) In the third step
of the proof we choose again an exponential vector as initial condition η and apply Itō’s
formula to the partial sums of W

V
ξ ,tη. The corresponding algebraic manipulations are

presented in Sect. 6. Two additional technical lemmas are deferred to “Appendix 5”.

Step 4 In the final step, carried out in Sect. 7, we analyze the convergence of the time-
ordered integral series, pass to general initial conditions η : Ω → D̂, and verify that
W

V
ξ
η has continuous paths in D̂ and solves (1.1). The analysis reveals in particular

that P-a.s. the following two bounds hold, for all t ∈ I ,

‖WV
ξ ,t‖ � ect−

∫ t
0 V (Xs )ds, (1.7)∫ t

0
‖d�(ω)1/2WV

ξ ,sψ‖2ds � c′ec′′t−2
∫ t
0 (V∧0)(Xs )ds‖ψ‖2, ψ ∈ Ĥ . (1.8)

Furthermore, the following weighted BDG type inequality holds, for all p ∈ N, t ∈ I ,
and F0-measurable η : Ω → D̂ with ‖Mη‖ ∈ L4p(P),

E

[
sup
s�t

‖MW
0
ξ ,sη‖2p

]
� cp,tE[‖Mη‖4p]1/2. (1.9)
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Here the inclusion of the weight M necessitates the operator norm bounds on com-
mutators of functions of second quantized multiplication operators and field operators
derived in “Appendix 3”. The pointwise operator norm bound (1.7) is owing to the
skew-symmetry of iv	(ξ , x); it is crucially used to deal with the terms d�(m	)

2 con-
tained in the weight M in (1.9).

Parts (2)–(4) of Theorem 1.1 are proven in Sect. 9 after we have discussed the
continuous dependence on initial conditions in Sect. 8.

Remark 1.2 (1) Assume in addition that |m	| � cω, for all 	 and some c > 0. Then
W

V
ξ ,t : Ω → B(Ĥ ) is Ft − B(B(Ĥ ))-measurable and P-almost separably

valued. In fact,WV
ξ ,t is P-a.s. given by a norm-convergent series ofB(Ĥ )-valued

time-ordered Bochner–Lebesgue integrals. This is shown in “Appendix 6”.
(2) In Sect. 10 we verify that W

V
ξ ,t goes over to its adjoint under a time-reversal.

The computations in Sect. 4 reveal the relation of some well-known constructions
in mathematical quantum field theory going back to Nelson [32] to the stochastic
calculus in Hilbert spaces, perhaps for the first time. Working with explicit solution
formulas certainly comes at the price of lengthy expressions and complicated algebraic
manipulations in the matrix-valued case. It is, however, nice to see that folkloric tools
of quantum field theory like time-ordered integration and normal ordering can be
rigorously controlled in our model by means of the stochastic calculus.

Next, we give some brief remarks on related abstract results.

Remark 1.3 (1) Under our general hypotheses, the SDE (1.1) is not covered by any
of the results we encountered in the literature on the semi-group or variational
approach to the solution theory for Hilbert space valued SDE; see, e.g., [5,6,35].
At the same time, Theorem 1.1(1) together with the bounds (1.7)–(1.9) pro-
vides more information on the solutions than the usual textbook theorems on
the existence of unique mild, (analytically) weak/strong, or variational solutions,
even if one ignores our explicit solution formulas. The non-applicability of the
abstract results is due to the fact that the operator-valued coefficients Ĥ(ξ , Xs),
v1(ξ , Xs), . . . , vν(ξ , Xs) appearing in the finite variation and local martingale
parts of our linear SDE are all unbounded, mutually non-commuting, random,
and time-dependent in general. Alternatively, we could consider the SDE for X
togetherwith (1.1), thus obtaining a non-linear system comprising time-dependent
vector fields and unbounded, non-commuting, non-constant operator-valued coef-
ficients. Recall also that the SDE for X contains an unbounded drift vector field
with a non-integrable singularity at sup I when X is a Brownian bridge. Alto-
gether, these features already rule out all general results we found. In addition,
we are in a critical situation with regards to coercivity estimates. For, in general,
it is impossible to replace d�(ω) by M on the right hand side of the bound

ReĤ(ξ , x)− 1

2

ν∑
	=1

1CL ⊗ v	(ξ , x)2 � (1− δ)1CL ⊗ d�(ω)− cδ, (1.10)

valid for arbitrary δ ∈ (0, 1) in the sense of quadratic forms on the form domain
of Ĥ(ξ , x). Since the form domain of Ĥ(ξ , x) is equal to the form domain of
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1CL ⊗ M , this shows that the coercivity condition required in the variational
approach (see [35, (H3) on p. 56] or [5, (D.3) on p. 178]) is not satisfied unless
m1 = · · · = mν = 0. Likewise, it is impossible in general to have a constant
> 1/2 in front of the sum in (1.10), which would correspond to assumptions one
encounters in the semi-group approach to the study of mild or weak solvability;
compare [6, §6.5., in particular, Thm. 6.26]. (At first sight it seems that the result
on existence of (analytically) strong solutions in [6, §6.6] could apply to fiber
Hamiltonians in the Nelson model, where G	 = 0, L = S = 1, σ1 = −1, F1
is constant, and the relevant choice for X is Brownian motion. But also in this
situation a related problem arises: the operator on the left hand side of (1.10) is
not equal to d�(ω)+ ϕ(F1), which is the negative generator of a C0-semi-group.
Rather it is equal to its restriction to D̂, so that the condition in Hyp. 6.5(iii) of
[6] is violated.)

(2) Assume that I and V are bounded, all m	 are zero, X is a Brownian motion or
a diffusion with a bounded drift vector field, and η is square-integrable. Then,
without additional elaboration, the variational approach implies the existence of
a unique variational solution Y var to (1.1) satisfying

E

[
sup
s∈I

‖Y var
s ‖2

]
+ E

[∫
I

∥∥d�(ω)1/2Y var
s ‖2ds

]
<∞,

which should be compared with (1.7)–(1.9); see [35, Def. 4.2.1, Thm. 4.2.2].
Moreover, Prop. 4.3.3. in [35] implies a Markov property of the variational solu-
tions which is weaker than our corresponding result as it is not formulated in terms
of a stochastic flow. If wewere not interested in explicit solution formulas, thenwe
could of course start out from these abstract results and try to complement them
by a discussion proceeding along parts of our Sect. 7 to arrive at Theorem 1.1(1)
in the present special case.

(3) The measurability of the operator-valued map W
V
ξ ,t claimed in Remark 1.2(1)

is proved by means of our explicit representation formulas; see Remark 1.4(4)
for its implications. We did not find analogous results in the literature on Hilbert
space-valued SDE.

1.2 Feynman–Kac formulas and applications to spectral theory

Let us add the argument [X] to W
V
ξ
in case we fix a special choice of X . If G	 and

Fj are constant and X = B is a Brownian motion starting at zero, then the solution
operatorW

0
ξ ,t [B] appears in the Feynman–Kac formula for the semi-group of the fiber

Hamiltonian,

e−t Ĥ(ξ)ψ = E[W0
ξ ,t [B]ψ], ψ ∈ Ĥ . (1.11)

Furthermore, set Bx := x+B, let bt; y,x be a semi-martingale realizationof aBrownian
bridge from y ∈ R

ν to x ∈ R
ν in time t > 0, and let
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pt (x, y) := (2π t)−ν/2e−|x− y|2/2t (1.12)

be the standard Gaussian. Choose m1 = · · · = mν = 0. Then the Feynman–Kac
formula for the total Hamiltonian reads

(e−t HV
Ψ )(x) = E[WV

0,t [Bx]∗Ψ (Bx
t )]

=
∫

Rν

pt (x, y)E[WV
0,t [bt; y,x]]Ψ ( y)d y, (1.13)

for a.e. x and all Ψ ∈ L2(Rν, Ĥ ); see Sect. 11 for precise formulations and suit-
able assumptions on V . For the reader’s convenience we present detailed proofs of
(1.11) and (1.13) in Sect. 11 after we have verified, in Sect. 10, that the right hand
sides of (1.11) and of the first line in (1.13) define symmetric C0-semi-groups; recall
Remark 1.2(2).

In the next remark we briefly discuss which features of the above formulas are well-
knownandwhich are new.Anexhaustive presentation of the earlier results canbe found
in [27]. This book also contains detailed discussions of Feynman–Kac formulas in
semi-relativistic QED (see also the recent article [21]), as well as results and references
on path integral representations for related models with paths running through the
infinite-dimensional state space of the radiation field.

Remark 1.4 (1) For the standard model of NRQED without spin, the first identity in
(1.13) is due to [15]. The case of a single spinning electron has been treated more
recently in [22], where the sesqui-linear form associated with the semi-group is
represented as a limit of expectations of certain regularized Feynman–Kac type
integrands. In [22], the discrete spin degrees of freedom are not put into the
target space, but accounted for by an additional Poisson jump process. In both
papers the Feynman–Kac formula is derived by means of repeated Trotter product
expansions and Nelson’s ideas on the free Markov field [32]. While this approach
is constructive, it does not reveal the relation of the Feynman–Kac integrand to a
SDE, which is the aim of the present paper.

(2) In the earlier literature, the Feynman–Kac formula for the fiberHamiltonian (1.11)
has been deduced from the one for the total Hamiltonian by inserting suitable
peak functions localized at the corresponding total momenta of the system [20].
By starting out with the SDE (1.1) for the generalized fiber Hamiltonian one can
avoid this detour and unify the discussion of fiber and total Hamiltonians.

(3) In the matrix-valued case, our representation of the Feynman–Kac integrands
in (1.11) and (1.13) as a time-ordered integral series is new, and (1.13) also
covers the case of several electrons. Since this representation is normal ordered,
it immediately gives fairly explicit formulas for vacuum expectation values of the
semi-group and, more generally, matrix elements of the semi-group in coherent
states in terms of the basic processes; cf. Remark 5.4.

(4) The second relation in (1.13) is new in all cases.We also remark that, for the expec-
tation E[WV

0,t [bt; y,x]] to be a well-defined B(Ĥ )-valued Bochner–Lebesgue

integral, the (by no means obvious) measurability property of W
V
ξ

asserted in
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Remark 1.2(1) is a necessary prerequisite. If the extra condition in Remark 1.2(1)
is fulfilled, which is mostly the case in applications, then we can actually drop
the vector ψ in (1.11) and represent the semi-group of the fiber Hamiltonian by
means ofB(Ĥ )-valued expectations.

(5) The assumptions on ω, m	, G	, Fj , and V used here are more general than in
earlier papers on Feynman–Kac formulas in NRQED [13,15,22].

(6) The formulas (1.11) and (1.13) cover the Nelsonmodel as well; see [27, Thm. 6.3]
and the references given there for earlier results.While the Nelsonmodel is scalar,
we shall read off the precise expression for the corresponding Feynman–Kac
integrand from our formula for the matrix-valued case in order to illustrate the
latter; see Example 12.2 and in particular the last remark in it.

Feynman–Kac formulas in NRQED and related models have various applications
in their spectral theory. For instance, in NRQED, the existence of invariant domains
under semi-groups, diamagnetic inequalities, and the (essential) self-adjointness of the
total Hamiltonian have been analyzed in [16,18]; see [20] for similar results on fiber
Hamiltonians. In the scalar case, ergodic properties of the semi-group and Perron–
Frobenius type theorems have been studied in [17]. Further properties of ground state
eigenvectors like, for instance, their spatial exponential decay are investigated in [13,
19]. Starting from Feynman–Kac representations, Gibbs measures associated with
ground state eigenvectors have been constructed in [1,2]. Again we refer to [27] for a
textbook presentation and numerous references.

By means of our results on the SDE (1.1) one can add many more results to the list.
In fact, under suitable assumptions onG	 and Fj , weighted BDG type estimations like
(1.9) can be substantially pushed forward: we can consider higher powers of td�(ω)
instead ofM on the left hand side of (1.9) and drop M on its right hand side at the same
time, by properly exploiting the regularizing effect of the term e−td�(ω) contained in
W

V
ξ ,t . Using this one of us worked out a semi-group theory for NRQED in the spirit of

[3,4,38] which, in addition to the regularizing effects known from Schrödinger semi-
groups with Kato decomposable potentials, takes into account the smoothing effect of
e−td�(ω) on the position coordinates of the bosons; see [28]. In a second companion
paper [29] the second-named author discusses differentiability properties of the sto-
chastic flow in weighted spaces, by employing our SDE and adapting strategies from
[26]. Under suitable assumptions he infers smoothing properties of the semi-group,
a Bismut–Elworthy–Li type formula, and smoothness of the operator-valued integral
kernel.

2 Definitions, assumptions, and examples

2.1 Operators in Fock space

In this subsection we introduce the bosonic Fock space F , which is the state space
of the radiation field, and recall the definition of certain operators acting in it. F is
modeled over the one-boson Hilbert space

h := F (1) := L2(M,A, μ). (2.1)
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826 B. Güneysu et al.

We assume that A is generated by a countable semi-ring R such that μ �R is σ -
finite, which entails separability of h. Let n ∈ N with n > 1, and let μn denote the
n-fold product of μ defined on the n-fold product σ -algebra An . Then the n-boson
subspace ofF , denoted byF (n), is equal to the closed subspace in L2(Mn,An, μn)

of all elementsψ(n) satisfyingψ(n)(k1, . . . , kn) = ψ(n)(kπ(1), . . . , kπ(n)),μn-a.e., for
every permutation π of {1, . . . , n}. Finally,

F := C⊕
∞⊕
n=1

F (n) � ψ = (ψ(0), ψ(1), . . . , ψ(n), . . . ). (2.2)

We shall make extensive use of the exponential vectors

ζ(h) := (1, ih, . . . , (n!)−1/2inh⊗n , . . .) ∈ F , h ∈ h, (2.3)

where as usual we identify h⊗n (k1, . . . , kn) = h(k1) . . . h(kn), μn-a.e. Let

E [v] := {ζ(h) : h ∈ v}, C [v] := spanC(E [v]), (2.4)

be the set of exponential vectors corresponding to one-boson states in some subset
v ⊂ h and its complex linear hull, respectively. The set E [h] is linearly independent
and C [v] is dense inF , if v is dense in h; see, e.g., [34, Prop. 19.4, Cor. 19.5].

Let h̃ be another L2-space satisfying the same assumptions as h and F̃ the corre-
sponding bosonic Fock space. If f ∈ h̃ and J : h → h̃ is an isometry, then we may
define an isometry W ( f, J ) : F → F̃ first on E [h] by

W ( f, J )ζ(h) := e−‖ f ‖2/2−〈 f |Jh〉ζ( f + Jh), h ∈ h, (2.5)

then on C [h] by linear extension, and finally onF by isometric extension; compare,
e.g., [34, §20]. If J is unitary, then W ( f, J ) is unitary as well. Writing �(J ) :=
W (0, J ) and, in the case h = h̃, W ( f ) := W ( f,1), we have

�(J )ζ(h) = ζ(Jh), W ( f )ζ(h) = e−‖ f ‖2/2−〈 f |h〉ζ( f + h), h ∈ h. (2.6)

If J : h→ h̃ is a conjugate linear isometry, then we obtain a conjugate linear isometry
�(J ) : F → F̃ by the first relation in (2.6) and conjugate linear and isometric exten-
sion. If the set U (h) of unitary operators on h is equipped with the strong topology,
then the correspondence h × U (h) � ( f, J ) �→ W ( f, J ) is strongly continuous.
In particular, for f ∈ h and every self-adjoint operator T in h, there exist unique
self-adjoint operators ϕ( f ) and d�(T ) inF such that

W (t f ) = eitϕ( f ), �(eitT ) = eitd�(T ), t ∈ R. (2.7)

More generally, for every J ∈ B(h, h̃) with ‖J‖ � 1, there is a unique operator
�(J ) ∈ B(F , F̃ ) with ‖�(J )‖ � 1 satisfying the first relation in (2.6). If A ∈
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B(h̃, h) with ‖A‖ � 1, then �(A)�(J ) = �(AJ ). If T is a self-adjoint non-negative
operator in h, then �(e−tT ) = e−td�(T ), t � 0.

Let f ∈ h. Then the symbols a†( f ) and a( f ) denote the usual (smeared) creation
and annihilation operators inF given by

(a†( f )ψ)(n)(k1, . . . , kn) = n−1/2
n∑

	=1
f (k	) ψ

(n−1)(. . . , k	−1, k	+1, . . .),

(a( f )ψ)(n)(k1, . . . , kn) = (n + 1)1/2
∫
M

f (k) ψ(n+1)(k1, . . . , kn, k) dμ(k),

μn-a.e., for n ∈ N, and (a†( f )ψ)(0) = 0 and a( f )ζ(0) = 0. They are defined on their
maximal domains andmutually adjoint to each other, a( f )∗ = a†( f ), a†( f )∗ = a( f ).
For all f, g ∈ h, we have the following relations,

ϕ( f ) = a†( f )+ a( f ), [ϕ( f ), ϕ(g)] = 2iIm〈 f |g〉1, (2.8)

[a( f ), a(g)] = [a†( f ), a†(g)] = 0, [a( f ), a†(g)] = 〈 f |g〉1, (2.9)

on, e.g., D(d�(1)) ⊃ C [h]. For a self-adjoint operator T in h, we further have

[a( f ), d�(T )] = a(T f ), [a†( f ), d�(T )] = −a†(T f ), (2.10)

[ϕ( f ), d�(T )] = iϕ(iT f ), (2.11)

on C [D(T )], where f ∈ D(T ). For f, h ∈ h and g ∈ D(T ),

a( f )ζ(h) = i〈 f |h〉ζ(h), d�(T )ζ(g) = ia†(Tg)ζ(g). (2.12)

Exponential vectors are analytic, as we shall see in the following lemma. We recall
that a map F : K → K ′ from one complex Hilbert space K into another K ′
is analytic, if and only if it is Fréchet differentiable. In this case the Taylor series
F(y + h) = ∑∞

n=0(n!)−1F (n)(y)(h⊗n ), where F (n)(y) is the nth Fréchet derivative
of F at y interpreted as a linear map from K ⊗n to K ′, converges absolutely, for all
y, h ∈ K ; see, e.g., [14, § III.3.3] for more information on analytic maps.

Lemma 2.1 The map h � h �→ ζ(h) ∈ F is analytic and

ζ (n)(h)( f1 ⊗ · · · ⊗ fn) = ina†( f1) . . . a
†( fn)ζ(h). (2.13)

for all h, f1, . . . , fn ∈ h. For all n ∈ N0 and f, h ∈ h, we have the error bound

∥∥∥∥∥ζ(h + f )−
n∑

	=0

i	

	!a
†( f )	ζ(h)

∥∥∥∥∥ � e‖h‖2
∞∑

	=n+1

2	/2‖ f ‖	
(	!)1/2 . (2.14)

Proof The proof is a straightforward exercise starting from the observation that
a†( f )	h⊗n−	 = (	!)1/2(n

	

)1/2Sn( f ⊗	 ⊗ h⊗n−	 ), where Sn is the orthogonal projec-
tion onto F (n) in L2(Mn,An, μn). ��
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Lemma 2.2 For all f ∈ h and z ∈ C, the series exp{za†( f )}, exp{za( f )}, and
exp{zϕ( f )} are strongly convergent on the normed space C [h] and map it into itself.
For A, B ∈ B(h, h̃) with ‖A‖, ‖B‖ � 1, g ∈ h̃, h ∈ h, and z ∈ C,

�(B∗) exp{zϕ(g)}�(A)ζ(h) = ez
2‖g‖2/2+i z〈g|Ah〉ζ(B∗Ah − i zB∗g)

= ez
2‖g‖2/2 exp{za†(B∗g)}�(B∗A) exp{za(A∗g)}ζ(h).

(2.15)

Proof The first statement follows from (2.12), (2.14), and the following consequence
of (2.6), inϕ( f )nζ(h) = dn

dtn
∣∣
t=0e

−t2‖ f ‖2/2−t〈 f |h〉ζ(h + t f ), h ∈ h. Together with
(2.6), (2.12), and (2.14) it implies the second equality in (2.15). Let z = i t with t ∈ R.
Then exp{i tϕ(g)} = W (tg) onC [h̃] and the first equality in (2.15) follows from (2.6).
For general z ∈ C, the first equality in (2.15) is obtained by analytic continuation.
(See [14, Thm. 3.11.5] for analytic continuation of vector-valued functions.) ��

It is helpful to keep in mind that, if � is a real-valued measurable function on M
and if the maximal operator of multiplication with � is denoted by the same symbol,
then d�(�) is again a self-adjoint maximal multiplication operator in F given by
d�(�)ζ(0) = 0 and, for n ∈ N,

(d�(�)ψ)(n)(k1, . . . , kn) =
n∑

	=1
�(k	) ψ

(n)(k1, . . . , kn), ψ ∈ D(d�(�)).

For instance, this remark is useful in order to derive the basic relative bounds

‖a( f )n ψ‖ � ‖�−1/2 f ‖n ‖d�(�)n/2 ψ‖, n ∈ N, (2.16)

‖a†( f ) ψ‖ � ‖(1+ �−1)1/2 f ‖ ‖(d�(�)+ 1)1/2 ψ‖, (2.17)

‖ϕ( f ) ψ‖ � 21/2‖(1+ �−1)1/2 f ‖ ‖(d�(�)+ 1)1/2 ψ‖, (2.18)

‖ϕ( f )2 ψ‖ � 6‖(1+ �−1)1/2 f ‖2 ‖(d�(�)+ 1) ψ‖, (2.19)

where we assume that � > 0, μ-a.e., and, in each line, f and ψ are chosen such that
all norms on its right hand side are well-defined. The bound in (2.16) follows from
a standard exercise using a weighted Cauchy–Schwarz inequality, Fubini’s theorem,
and a little combinatorics. The other bounds are consequences of (2.9) and (2.16).
Another consequence of (2.8) and (2.16) is

d�(�)+ ϕ( f ) � −‖�−1/2 f ‖2 on Q(d�(�)). (2.20)

Given a row vector of boson wave functions, f = ( f1, . . . , fν), we set ϕ( f ) :=
(ϕ( f1), . . . , ϕ( fν)), and we shall employ an analogous convention for the creation
and annihilation operators.
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2.2 Generalized fiber Hamiltonians

Next, we add (generalized) spin degrees of freedom to our model by tensoring the
Fock space with C

L , for some fixed L ∈ N. We call

Ĥ := C
L ⊗F (2.21)

the fiber Hilbert space, a notion motivated by Example 12.1(4). We assume that, for
some S ∈ N,

σ1, . . . , σS ∈ B(CL)

are hermitian matrices with ‖σ j‖ � 1. Most of the time we regard them as operators
on Ĥ by identifying σ j ≡ σ j ⊗ 1F . We shall write σ := (σ1, . . . , σS) and σ · v :=
σ1 v1+· · ·+σS vS , where v = (v1, . . . , vS) is a vector of complex numbers or suitable
operators.

Furthermore, we fix some ν ∈ N and collect the coefficient functions appear-
ing in the SDE (1.1) in row vectors, Gx = (G1,x, . . . ,Gν,x) ∈ hν and Fx =
(F1,x, . . . , FS,x) ∈ hS , parametrized by x = (x1, . . . , xν) ∈ R

ν . We will exclusively
work under the following standing hypothesis:

Hypothesis 2.3 (1) ω : M → R and m : M → R
ν are measurable such that ω is

μ-a.e. strictly positive. We introduce the following dense subspace of h,

d := D(ω + 1
2m

2). (2.22)

(2) The map x �→ Gx is in C2(Rν, hν), and x �→ Fx ∈ hS is globally Lipschitz
continuous on R

ν . The components of Gx , ∂x	Gx , Fx , and im · Gx belong to

k := L2
(
M,A,

[
ω−1 +

(
ω + 1

2m
2
)2]

μ

)
, (2.23)

and the following map is continuous and bounded,

R
ν � x �−→ (Gx, ∂x1Gx, . . . , ∂xνGx, Fx, im · Gx) ∈ k(ν+1)ν+S+1.

(3) There exists a conjugation C : h→ h, i.e., an anti-linear isometry with C2 = 1h,
such that, for all t � 0, x ∈ R

ν , 	 = 1, . . . , ν, and j = 1, . . . , S,

[C, e−tω+im·x] = 0, G	,x, Fj,x ∈ hC := { f ∈ h : C f = f }. (2.24)

As a consequence of (2.24) we also have

qx := divxGx ∈ hC , im · Gx ∈ hC , q̆x := 1
2qx − i

2m · Gx ∈ hC , (2.25)
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for all x ∈ R
ν . In view of (2.24) we observe that C is isometric on k as well, and we

introduce the completely real subspaces

dC := { f ∈ d : C f = f }, kC := { f ∈ k : C f = f }, (2.26)

and, noticing that �(−C) is a conjugation on F ,

FC := {ψ ∈ F : �(−C) ψ = ψ}. (2.27)

Then the real linear hull spanRE [dC ] = C [dC ] ∩FC is dense in FC ; see, e.g., [34,
Cor. 19.5]. Since F = FC + iFC , we see that C

L ⊗ C [dC ] is dense in Ĥ .
Concerning the electrostatic potential V , we introduce the following standing

hypothesis:

Hypothesis 2.4 V : R
ν → R is locally integrable.

To treat the total Hamiltonian and the fiber Hamiltonians in a unified way, we
introduce a mathematical model Hamiltonian in the next definition. We again use
the notation introduced in (1.5). Henceforth, we shall also employ a common, self-
explanatory notation involving tuples of operators and formal scalar products between
them; simply compare the formulas inDefinition 2.5with (1.2)–(1.5) to interprete them
correctly. The various terms in (2.30) are well-defined on the given domains in view
of (2.18), (2.19), and Hypothesis 2.3.

Definition 2.5 (Generalized fiber Hamiltonian) Let ξ , x ∈ R
ν and

v(ξ , x) := ξ − d�(m)− ϕ(Gx). (2.28)

We introduce a generalized fiber Hamiltonian ĤV (ξ , x) in Ĥ , defined on the domain
of definition D̂ by

Ĥ V (ξ , x) := 1CL ⊗ Ĥ V
sc (ξ , x)− σ · ϕ(Fx), (2.29)

whose scalar part is defined on the domain of definition D(M) by

Ĥ V
sc (ξ , x) := 1

2v(ξ , x)
2 − i

2 ϕ(qx)+ d�(ω)+ V (x)

= 1
2 (ξ − d�(m))2 − ϕ(Gx) · (ξ − d�(m))+ 1

2ϕ(Gx)
2

− i
2 ϕ(qx)− i

2ϕ(im · Gx)+ d�(ω)+ V (x). (2.30)

If G and F are x-independent, then we denote Ĥ0(ξ , x) simply by Ĥ(ξ).

To get the equality in (2.30) we used the following consequence of (2.10) and a
simple approximation argument,

[d�(m), ϕ(g)] = a†(m · g)− a(m · g) = −iϕ(im · g) on D(M).
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In the next proposition we collect some essentially well-known basic properties
of the generalized fiber Hamiltonians; see [20] where the essential self-adjointness
of fiber Hamiltonians is proved via the method of invariant domains and Feynman–
Kac formulas. The existence of invariant domains is, however, a deeper result than the
essential self-adjointness itself which turns out to be a consequence of the relations and
bounds recalled inSect. 2.1. To illustrate thiswepresent a short proof of Proposition 2.6
in “Appendix 2”. We abbreviate

Ma(ξ) := 1CL ⊗
(
1
2 (ξ − d�(m))2 + ad�(ω)

)
, ξ ∈ R

ν, a � 1. (2.31)

Obviously, Ma(ξ) is self-adjoint on D̂. Let aC denote a dense set of analytic vectors
for 1

2m
2 + ω in hC . With the help of the semi-analytic vector theorem one can easily

show thatMa(ξ) is essentially self-adjoint onC
L⊗C [aC ] and, hence, onC

L⊗C [dC ].
Proposition 2.6 Let ξ , x ∈ R

ν . Then Ĥ0(ξ , x) is well-defined and closed on its
domain D̂ and, for all ε > 0, there exists a � 1 such that, for all ψ ∈ D̂,

‖(Ĥ0(ξ , x)− M1(ξ))ψ‖ � ε‖Ma(ξ)ψ‖ + c(ε)‖ψ‖, (2.32)

‖Ĥ0(ξ , x)ψ‖ � c(‖M1(ξ)ψ‖ + ‖ψ‖). (2.33)

The subspace C
L ⊗ C [dC ] and, more generally, every core of M1(0) is a core of

Ĥ0(ξ , x). If qx = 0, then Ĥ0(ξ , x) is self-adjoint on D̂.

2.3 Probabilistic objects and assumptions on the driving process

In the whole article, I denotes a time horizon, which is either equal to [0,∞) or to
[0, T ] with T > 0, and B = (Ω,F, (Ft )t∈I ,P) is some stochastic basis satisfying
the usual assumptions. This means that (Ω,F,P) is a complete probability space,
the filtration (Ft )t∈I is right-continuous, and F0 contains all P-zero sets. The letter E

denotes expectation with respect to P and, for any sub-σ -algebra H of F, the symbol
E
H denotes the corresponding conditional expectation. For s ∈ I , we shall sometimes

consider the time-shifted basis

Bs := (Ω,F, (Fs+t )t∈I s ,P), I s := {t � 0 : s + t ∈ I }, (2.34)

so that I = I 0. If K is a real separable Hilbert space, then we denote the space of
all continuousK -valued semi-martingales defined on I s by SI s (K ). The bold letter
B ∈ SI (R

ν) always denotes a ν-dimensional B-Brownian motion (with covariance
matrix 1Rν ) defined on I and, for all 0 � s < t ∈ I , the σ -algebra Fs,t is the
completion of the σ -algebra generated by all increments Br − Bs with r ∈ [s, t]. If X
is any process on I s with values in a separable Hilbert spaceK , then X• : Ω → K I s

denotes the corresponding path map given by (X•(γ ))(t) := Xt (γ ), t ∈ I s , γ ∈ Ω .
With this we introduce a third (and last) standing hypothesis on aR

ν-valued process
X which will enter into all our constructions and play the role of the driving process
in the SDE studied in this paper.
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Hypothesis 2.7 The bold letter X ∈ SI (R
ν) denotes a semi-martingale with respect

to B solving the Itō equation

X t = q + Bt +
∫ t

0
β(s, Xs) ds, t ∈ [0, sup I ), (2.35)

for some F0-measurable q : Ω → R
ν . When it becomes relevant, we shall indicate

the dependence of X on q by writing Xq for the solution of (2.35). We assume that
the drift vector field β ∈ C([0, sup I ) × R

ν,Rν) in (2.35) is such that the following
holds:

(1) For all s ∈ [0, sup I ) and every Fs-measurable q : Ω → R
ν the SDE (with

underlying basis Bs)

sX t = q + Bs+t − Bs +
∫ t

0
β(s + r, sXr ) dr, t ∈ [0, sup I s), (2.36)

has a global solution sXq ∈ SI s (R
ν) which is unique up to indistinguishability.

(2) (2.35) admits a stochastic flow, i.e., there is a family (Ξ s,t )0�s�t∈I of maps
Ξ s,t : R

ν ×Ω → R
ν , such that

(a) x �→ Ξ s,s+•(x, γ ) is continuous from R
ν into C(I s,Rν), for all s ∈ I and

γ ∈ Ω;
(b) (τ, x, γ ) �→ Ξ s,τ (x, γ ) is B([s, t]) ⊗ B(Rν) ⊗ Fs,t -measurable for fixed

0 � s < t ∈ I ;
(c) if s ∈ I , then Ξ s,s(x, γ ) = x, for all (x, γ ) ∈ R

ν ×Ω , and, if q : Ω → R
ν

is Fs-measurable, then

Ξ s,s+•(q(γ ), γ ) = sXq
s+•(γ ) on I s, for P-a.e. γ .

(3) For all κ � 1 and all bounded F0-measurable q : Ω → [0,∞), it holds

∀t ∈ I :
∫ t

0
(1 ∧ (sup I − s)κ)E

[
sup
|q|�q

|β(s, Xq
s )|2κ

]
ds <∞, (2.37)

where the supremum under the expectation is taken over all F0-measurable func-
tions q : Ω → R

ν with |q| � q.
(4) There exist p � 2 with p > ν and an increasing function L : I → [0,∞) such

that

E[|Ξ0,t (x, ·)−Ξ0,t ( y, ·)|p] � L(t)p |x − y|p, x, y ∈ R
ν, t ∈ I. (2.38)

Finally, we assume that

P{V (X•) ∈ L1
loc(I )} = 1. (2.39)

Remark 2.8 (1) Of course, Eq. (2.39) imposes no restriction on X , if V ∈ C(Rν,R).
(2) Notice that the time-dependent vector field β may be unbounded at T , if I is
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finite, and that the validity of the integral equations (2.35) and (2.36) is required
only strictly before T and T − s, respectively. Then the technical condition (2.37)
says that the possible singularity of β at T is not too strong in a certain sense.
Nevertheless the paths of X and sX are assumed to be continuous on all of I and
I s , respectively.

(3) In many parts of the paper we won’t use all properties of X imposed in Hypothe-
sis 2.7. In fact, the arguments of Sects. 3 and 4hold true as soon as X is a continuous
R
ν-valued semi-martingale on I with quadratic covariation 1Rν satisfying (2.39).

The technical extra condition (2.37) will be used in Sects. 6 and 7 to prove the
statements in Sect. 5, which in turn are used to derive the results of Sects. 8–
11. The continuity properties of the flow Ξ and in particular the L p-Lipschitz
condition (2.38) are exploited in Sect. 8 whose results are used in Sects. 9–11.

Example 2.9 (1) The most important example of a process satisfying Hypothesis 2.7
with an infinite time horizon I = [0,∞) is the trivial choice X = q + B.

(2) If I = [0,∞) andβ ∈ C(I×R
ν,Rν) is such that |β(s, x)−β(s, y)| � 	(t)|x− y|,

0 � s � t , x, y ∈ R
ν , with some increasing function 	 : I → (0,∞), then

the validity of all conditions imposed in Hypothesis 2.7 follows from standard
textbook results; see, e.g., [10, Chap. 6].

(3) The most important example with a finite time horizon I = [0, T ] is a semi-
martingale realization of a Brownian bridge from an F0-measurable q : Ω → R

ν

to y ∈ R
ν in time T . The definition of such a process is recalled in Sect. 10. In

“Appendix 4”we shall verify that Brownian bridges actually fulfill Hypothesis 2.7.

For later reference, we state an Itō formula suitable for our applications in the next
proposition. The construction of the Hilbert space-valued stochastic integrals with
integrator X appearing in its statement and in the following sections is standard and
we refer readers who wish to recall that construction to the textbooks [6,30,31].

Proposition 2.10 LetY be a real separableHilbert space andK be a real or complex
separable Hilbert space. Let A : I × Ω → B(Rν,Y ) and Ã : I × Ω → Y be
predictable such that, for every t ∈ I , ‖A•‖ is P-a.s. square-integrable on [0, t]
and Ã• is P-a.s. Bochner–Lebesgue integrable on [0, t]. Finally, let η : Ω → Y be
F0-measurable. Set

Z• := η +
∫ •

0
AsdXs +

∫ •

0
Ãsds. (2.40)

Assume that the partial derivatives ∂s f , dy f , and d2y f of f : I ×Y → K exist and
are uniformly continuous on every bounded subset of I × Y . Then ( f (t, Zt ))t∈I is a
K -valued continuous semi-martingale and P-a.s. satisfies

f (t, Zt ) = f (0, η)+
∫ t

0
∂s f (s, Zs)ds +

∫ t

0
dy f (s, Zs) Ãsds

+
∫ t

0
dy f (s, Zs)AsdXs + 1

2

∫ t

0
d2y f (s, Zs)A⊗2

s ds, t ∈ [0, sup I ).
(2.41)

123



834 B. Güneysu et al.

Proof If φ ∈ K and we replace f by Re〈φ| f 〉 or Im〈φ| f 〉, then the claim follows
from [6, Thm. 4.32]. The general case follows by applying this observation for every
φ in a countable dense subset of K and using that all so-obtained derivatives and
(stochastic) integrals commute (up to indistinguishability) with Re, Im, and 〈φ|·〉. ��

The next example will be applied with Y = Ĥ = F ν
C + iF ν

C .

Example 2.11 Assume that Z is given as in Proposition 2.10 with the only exception
that Y is now a complex Hilbert space which can be written as Y = YR + iYR,
for some completely real subspace YR ⊂ Y . Then ‖Z‖2 is a continuous real semi-
martingale and P-a.s. satisfies

‖Zt‖2 = ‖η‖2 +
∫ t

0
2Re〈Zs | Ãs〉ds +

∫ t

0
2Re〈Zs |As〉dXs +

∫ t

0
‖As‖2ds,

for all t ∈ [0, sup I ). In fact, Z can be uniquely written as Z = Z1 + i Z2, with
YR-valued processes Z j , j = 1, 2, given by formulas analogous to (2.40). Since
‖φ + iψ‖2 = ‖φ‖2 + ‖ψ‖2, for all φ,ψ ∈ YR, we may apply Proposition 2.10 to
‖Z1‖2 + ‖Z2‖2 and obtain the asserted formula after some trivial rearrangements.

For later reference, we also recall a substitution rule sufficient for our purposes. For
remarks on its proof see, e.g., [30, §26.4].

Proposition 2.12 Assume that Z is given as in Proposition 2.10 with a finite dimen-
sional Y and let D be a uniformly bounded, predictableB(Y ,C)-valued process on
I . Then

∫ •

0
DsdZs =

∫ •

0
Ds AsdXs +

∫ •

0
Ds Ãsds, P-a.s.

The following dominated convergence theorem for stochastic integrals shall be used
repeatedly:

Theorem 2.13 Let K be a real or complex separable Hilbert space, Z ∈ SI (R
ν),

and A, A(n), n ∈ N, be left continuous adapted B(Rν,K )-valued processes. Let
R : I ×Ω → R be a predictable process with locally bounded paths and assume that,
P-a.s., the following relations hold on I ,

A(n) → A as n →∞, ‖A(n)‖ � R, n ∈ N. (2.42)

Then

lim prob
n→∞

sup
t∈[0,τ ]

∥∥∥∥
∫ t

0
A(n)s dZs −

∫ t

0
AsdZs

∥∥∥∥ = 0, τ ∈ I, (2.43)

and there is a subsequence (A(nk ))k∈N of (A(n))n∈N such that, P-a.s., one has

lim
k→∞ sup

t∈[0,τ ]

∥∥∥∥
∫ t

0
A(nk )s dZs −

∫ t

0
AsdZs

∥∥∥∥ = 0, τ ∈ I. (2.44)
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Example 2.14 Let K , A, and Z be as in Theorem 2.13 and let τ ∈ I . For every
n ∈ N, let (σ (n)

	 )	∈N be an increasing sequence of stopping times such that sup	(σ
(n)
	+1−

σ
(n)
	 ) → 0, n → ∞, P-a.s., and such that P{σ (n)

	 < t} → 0, 	 → ∞, for all n ∈ N

and t ∈ I . Then

lim prob
n→∞

sup
t∈[0,τ ]

∥∥∥∥∥∥
∫ t

0
AsdZs −

∑
	∈N0

A
σ
(n)
	

(
Z
σ
(n)
	+1∧t − Z

σ
(n)
	 ∧t

)∥∥∥∥∥∥ = 0. (2.45)

In fact, the sum appearing under the norm in (2.45) equals
∫ t
0 A(n)s dZs with A(n) =∑

	∈N0
1
(σ

(n)
	 ,σ

(n)
	+1]Aσ (n)	

. Since A has left-continuous paths we see that (2.42) holds

with Rt := sup0�s<t ‖As‖.

Proof of Theorem 2.13 We refer to [30, §26.1] for a construction of the stochastic
integral which, under the assumptions of the theorem, implies the existence of an
increasing sequence of stopping times τm , m ∈ N, with P{supm τm < t} = 0, t ∈ I ,
and E[�∗τm (n)2] → 0, n →∞, where �∗τ (n) := supt�τ �t (n) with �t (n) denoting the
norm ‖ · · · ‖ on the left hand side of (2.43); cf. the proofs of [30, Thms. 24.2, 26.3].
Now let τ ∈ I and ε, ε1 > 0. Choose some m ∈ N with P{τm < τ } < ε1. Then the
above remarks imply lim supn P{�∗τ (n) � ε} � lim supn P{�∗τm (n) � ε} + P{τm <

τ } < ε1, which proves (2.43). The remaining statements follow as in the proof of [30,
Thm. 24.2]. ��

Remark 2.15 Let us recall that the mutual variation of two real-valued continuous
semi-martingales Z1 and Z2 on I is defined (up to indistinguishability) by

�Z1, Z2�• := Z1,t Z2,t − Z1,0Z2,0 −
∫ •

0
Z1,sdZ2,s −

∫ •

0
Z2,sdZ1,s . (2.46)

If both semi-martingales are of the form Z j,• =
∫ •
0 A j,sdXs +

∫ •
0 Ã j,sds, j = 1, 2,

with processes A j and Ã j as in Proposition 2.10 (with Y = R), then

�Z1, Z2�• =
∫ •

0
A1,s · A2,sds, P-a.s. (2.47)

We end this summary of results from stochastic analysis with a standard criterion
for a stochastic integral with respect to Brownian motion to be a martingale (where λ
denotes the one-dimensional Lebesgue–Borel measure):

Proposition 2.16 Let K be a real or complex separable Hilbert space and A be
an adapted, left continuous, B(Rν,K )-valued process on I such that E[‖A•‖2] ∈
L1
loc(I, λ). Then (

∫ t
0 AsdBs)t∈I is a martingale.
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3 Some basic Hilbert space-valued processes

In this section, we define and discuss the basic processes appearing in our ansatz for
the solution of (1.1); recall the remarks on Step 1 of the proof of Theorem 1.1 given
below its statement.

To this end we first recall the definition of Nelson’s isometries jt [32] mapping h
and k into h+1 and k+1, respectively, where

h+1 := L2(R×M, λ⊗ μ), k+1 := L2
(

R×M,

[
ω−1 +

(
ω + 1

2m
2
)2]

λ⊗ μ

)
,

with λ denoting the Lebesgue–Borel measure on R. They are defined by

jt f (k0, k) := π−1/2e−i tk0ω(k)1/2(ω(k)2 + k20)
−1/2 f (k), (3.1)

for all t ∈ R and a.e. (k0, k) ∈ R×M. (Usually, jt is defined in the position representa-
tion for a single boson in a—sometimes weighted—L2-space overR

3, which explains
the discrepancy between (3.1) and the formulas in [15,27,32,37].) The isometry of
the maps jt : h→ h+1 and jt �k : k→ k+1 follows from

j∗s jt f =
ω

π

∫
R

eik0(s−t) dk0
ω2 + k20

f = e−|s−t |ω f, s, t ∈ R, f ∈ h, (3.2)

which is easily verified by contour deformation. The maps t �→ jt ∈ B(h, h+1)
and t �→ jt �k∈ B(k, k+1) are strongly continuous. A direct inspection reveals that
t �→ j∗t ∈ B(h+1, h) and t �→ ( jt �k)∗ ∈ B(k+1, k) are strongly continuous as well.
It is convenient to introduce the random isometries

ιt := jt e
−im·(X t−X0), t ∈ I. (3.3)

Obviously, if A is an adapted process with values in h or k, then ιA = (ιt At )t∈I is an
adapted process with values in h+1 or k+1, respectively. If A is continuous, then ιA is
continuous as well. Analogous remarks hold for ι∗.

Definition 3.1 (Basic processes) We define K , (Kτ,t )t∈I ∈ SI (k+1) by

Kτ,• :=
∫ •

0
1(τ,∞)(s)ιsGXsdXs +

∫ •

0
1(τ,∞)(s)ιs q̆Xsds, K• := K0,•, (3.4)

for every τ ∈ I . With this we further define k-valued processes on I by

U−
τ,t := (ιτt )

∗Kτ,t , U−
t := U−

0,t = j∗0 Kt , U+
t := ι∗t Kt , (3.5)

for t ∈ I , where ιτ is ι stopped at τ . For every ξ ∈ R
ν , we finally set

uVξ ,• :=
1

2
‖K•‖2h+1 +

∫ •

0
V (Xs)ds − iξ · (X• − X0). (3.6)
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All processes introduced in Definition 3.1 are well-defined up to indistinguishabil-
ity. InNRQED(using slightly stronger assumptions) the process K has been introduced
in [15]. Lemma 4.3 below motivates the definitions in (3.5) and (3.6). The parameter
τ is needed only in the matrix-valued case.

The reader might have noticed that Kτ,t looks formally like a Stratonovich integral.
According to the following technical lemma it can indeed be approximated by the
usual average of left and right Riemann sums; this result will become important in
Sect. 10 where we discuss time-reversals. The only reason why Lemma 3.2 might
not immediately follow from the textbook literature is that the embeddings js are not
strongly differentiable with respect to s.

Lemma 3.2 Fix τ, t ∈ I with τ � t . Then

∥∥Kτ,t −Σn
τ,t

∥∥
h+1

n→∞−−−−−→ 0 in probability, (3.7)

where the sum corresponds to the sample points σ n
	 = σ n

	 (τ, t) := τ + 	(t − τ)/n,

Σn
τ,t :=

1

2

n−1∑
	=0

(
ισ n

	+1GXσn
	+1

+ ισ n
	
GXσn

	

)
·
(
Xσ n

	+1 − Xσ n
	

)
, n ∈ N. (3.8)

Proof We set D(s, x) := jse−im·(x−X0)Gx , s ∈ I , x ∈ R
ν . Then Taylor’s formula

yields Σn
τ,t = 1

2 (I
n
1 + I n2 + Jn + Rn), for every n ∈ N, with

I n1+α :=
∫ t

0

n−1∑
	=0

1(σ n
	 ,σ

n
	+1](s)D(σ

n
	+α, Xσ n

	
)dXs, α = 0, 1,

Jn :=
ν∑

a,b=1

n−1∑
	=0

∂xa Db(σ
n
	+1, Xσ n

	
)(Xa,σ n

	+1 − Xa,σ n
	
)(Xb,σ n

	+1 − Xb,σ n
	
),

‖Rn‖ � max
	̃=1,...,n−1

rn
	̃

2

n−1∑
	=1

‖Xσ n
	+1 − Xσ n

	
‖2. (3.9)

Here we further abbreviate

rn	 :=
ν∑

a,b=1

∫ 1

0
‖∂xa Db(σ

n
	+1, (1− s)Xσ n

	
+ sXσ n

	+1)− ∂xa Db(σ
n
	+1, Xσ n

	
)‖ds.

Since the integrands in I n1 and I n2 are adapted, left continuous, uniformly bounded,
and converge both to the process (1(τ,t](s)D(s, Xs))s∈I pointwise on I × Ω as n
goes to infinity, it follows from Theorem 2.13 that I n1 and I n2 converge both to∫ t
0 1(τ,∞)(s)D(s, Xs)dXs in probability. Expressions similar to Jn are well-known
from the proof of the Itō formula. In fact, writing
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X (n)
a,s :=

n−1∑
	=0

1(σ n
	 ,σ

n
	+1](s)Xa,σ n

	
, Z (n)

ab,s :=
n−1∑
	=0

1(σ n
	 ,σ

n
	+1](s)∂xa Db(σ

n
	+1, Xσ n

	
),

for all s ∈ I , a, b ∈ {1, . . . , ν}, and n ∈ N, we find

Jn :=
ν∑

a,b=1

(∫ t

0
Z (n)
ab,sd(XaXb)s −

∫ t

0
Z (n)
ab,s X

(n)
a,sdXb,s −

∫ t

0
Z (n)
ab,s X

(n)
b,sdXa,s

)
.

Here the uniformly bounded, left continuous, and adapted processes Z (n)
ab , n ∈ N,

converge pointwise on I × Ω to (1(τ,t](s)∂xa Db(s, Xs))s∈I . Applying successively
Theorem 2.13, Proposition 2.12, Eq. (2.46), and �Xa, Xb�s = sδa,b, we readily verify
that Jn converges in probability to

∫ t

0
divx D(s, Xs)ds = 2

∫ t

0
1(τ,∞)(s)ιs q̆Xsds.

Finally, fix γ ∈ Ω and let P(γ ) be the compact convex hull of the path {Xs(γ ) : s ∈
[0, t]}. Since the maps [0, t] � s �→ Xs(γ ) and [0, t]×P(γ ) � (s, x) �→ ∂xa Db(s, x)
are uniformly continuous, the sequence of random variables (max	 rn	 )n∈N converges
to 0 pointwise on Ω , as n goes to infinity. Thanks to Hypothesis 2.3 we further find
some constant c > 0 such that 0 � rn	 � c on Ω , for all 	 and n. At the same time

we know that the sequence
(∑n−1

	=1 ‖Xσ n
	+1 − Xσ n

	
‖2)n∈N

converges in probability to∑ν
a=1

(
�Xa, Xa�t − �Xa, Xa�τ

) = ν(t − τ). Employing these remarks, it is easy to
show that ‖Rn‖ → 0, n → ∞, in probability. In fact, let ε, ε1 > 0. Then we find
some n0 ∈ N such that

P

{∣∣∣∣∣ν(t − τ)−
n−1∑
	=1

‖Xσ n
	+1 − Xσ n

	
‖2
∣∣∣∣∣ � 1

}
< ε1, n � n0.

Set An :=
{∣∣ν(t − τ)−∑n−1

	=1 ‖Xσ n
	+1 − Xσ n

	
‖2∣∣ < 1

}
. Then the previous bound and

(3.9) permit to get, for all n � n0,

P{‖Rn‖ � ε} � ε1 + E[1An1{‖Rn‖�ε}] � ε1 + 1

ε
E[1An‖Rn‖]

� ε1 + 1+ ν(t − τ)

2ε
E

[
max
	

rn	

]
n→∞−−−−−→ ε1,

where we also applied the dominated convergence theorem in the last step. Since
ε1 > 0 was arbitrary, this proves that ‖Rn‖ goes to 0 in probability. ��

To derive stochastic integral representations for U−
τ,• and U+ we set

wτ,t := w∗τ,t , wτ,t := (ιτt )
∗ιt =

{
e−(t−τ)ω−im·(X t−Xτ ), t > τ,

1, t � τ ,
(3.10)
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for all τ, t ∈ I . Depending on the circumstances, we consider wτ,t and wτ,t as maps
from Ω into B(h) or B(k), which should cause no confusion. They leave the real
space hC (resp. kC ) invariant; recall (2.24) and (2.26). If A is an adapted continuous
process with values in h or k, then so are (wτ,t At )t∈I and (wτ,t At )t∈I .

Lemma 3.3 Let R ∈ N and set χR := 1{ 12m2+ω�R}. Then, P-a.s.,

χR U
+
t = w0,t

∫ t

0
χR e

sω−im·(Xs−X0){GXsdXs + q̆Xsds}, t ∈ I. (3.11)

Proof Fix t ∈ I and set σ n
	 := t	/n, 	 ∈ N0. Then Lemma 3.2 implies

‖χRι
∗
t K0,t − χRι

∗
t Σ

n
0,t‖h n→∞−−−−−→ 0 in probability,

with Σn
0,t as in (3.8). Next, we observe that χRι

∗
t Σ

n
0,t = w0,tΣ̃

n
t with

Σ̃n
t :=

1

2

n−1∑
	=0

(
Jσ n

	+1GXσn
	+1

+ Jσ n
	
GXσn

	

)
·
(
Xσ n

	+1 − Xσ n
	

)
, n ∈ N,

where Js := χResω−im·(Xs−X0), s ∈ I . Replacing D by the function D̃ defined by
D̃(s, x) := χResω−im·(x−X0)Gx , s ∈ I , x ∈ R

ν , in the proof of Lemma 3.2, we may
further verify that

lim prob
n→∞

Σ̃n
t =

∫ t

0
χR e

sω−im·(Xs−X0){GXsdXs + q̆Xsds}.

Together with (3.5), these remarks prove the equality in (3.11), a priori outside some
t-dependent P-zero set. We conclude by noting that the processes on both sides of
(3.11) are continuous. ��
Lemma 3.4 (1) Let τ ∈ I . Then (U−

τ,t )t∈I ∈ SI (k) ⊂ SI (h) and, P-a.s.,

U−
τ,• =

∫ •

0
1(τ,∞)(s)wτ,s GXsdXs +

∫ •

0
1(τ,∞)(s)wτ,s q̆Xsds. (3.12)

(2) U+ is adapted and continuous with values in k. Moreover, ωU+, m2U+, and the
components of mU+ are adapted and continuous as h-valued processes.

(3) U+ ∈ SI (h) with

U+• =
∫ •

0
(GXs + imU+

s )dXs −
∫ •

0

(
ω + 1

2m
2
)
U+
s ds

+
∫ •

0

( i
2m · GXs + 1

2qXs

)
ds, P-a.s. (3.13)

(4) U+
t and U−

τ,t attain their values in the real space hC .
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(5) By passing to suitable modifications of (Kτ,t )t∈I and (U−
τ,t )t∈I , for each τ ∈ I ,

we may assume that, for all γ ∈ Ω , the maps (τ, t) �→ Kτ,t (γ ) ∈ k+1 and
(τ, t) �→ U−

τ,t (γ ) ∈ k are continuous on I × I with Ks,s(γ ) = 0 andU−
s,s(γ ) = 0,

for every s ∈ I .

Proof (1) follows by definition of U−
τ,t , (3.2), and the fact that, if t � τ , then the

integrals defining Kτ,t commute with (ιτt )
∗ = ι∗τ , P-a.s.

(2) By the remarks preceding Definition 3.1, U+ is adapted and continuous. The
remaining statements are clear since 1

2m
2 + ω ∈ B(k, h).

(3) Let R ∈ N and consider the function fR : [0,∞) × R
ν × kC → hC given by

fR(t, x, y) := e−tω+im·xχR y, where χR is the same as in Lemma 3.3. Thanks to
the cut-off function, fR satisfies the assumptions of Proposition 2.10. According
to Lemma 3.3 we P-a.s. have χRU

+
t = fR(t, X t − X0,Yt ), t ∈ I , where Yt

abbreviates the integral on the right hand side of (3.11). Notice that Hypothesis 2.3
and the presence of χR ensure that Y is in fact a kC -valued semi-martingale.
Applying Proposition 2.10 and using (3.11) to simplify the result, we see that
χRU

+
t ∈ SI (hC ) with

χRU
+
t =

∫ t

0
χR(GXs + imU+

s )dXs −
∫ t

0
χR

(
ω + 1

2m
2
)
U+
s ds

+
∫ t

0
χR
( i
2m · GXs + 1

2qXs

)
ds, t ∈ I, P-a.s. (3.14)

By Part (2), ωU+, mU+, and m2U+ are adapted, continuous processes, whence
all integrals in (3.14) are still well-defined hC -valued (stochastic) integrals, if the
cut-off function χR is dropped. In particular, we may (up to indistinguishability)
commute all integration signs in (3.14) with χR , regarding the latter as a bounded
operator on hC . This finally leads to (3.13).

(4) Follows from (2.24), (2.25), (3.12), and (3.13).
(5) A suitablemodification of (Kτ,t )t∈I is simply given by 1(τ,∞)(t)(Kt−Kτ ). Apply-

ing (ιτ )∗, with X t (γ ) = Xq
t (γ ) replaced by Ξ0,t (q(γ ), γ ) in its definition [see

Hypothesis 2.7(2)], to the latter modification we may produce a suitable modifi-
cation of (U−

τ,t )t∈I . ��

Lemma 3.5 It holds uV
ξ
∈ SI (C) and one P-a.s. has

uVξ ,• =
∫ •

0
〈U+

s |GXs 〉 dXs +
∫ •

0
〈U+

s |q̆Xs 〉 ds +
1

2

∫ •

0
‖GXs‖2ds

+
∫ •

0
V (Xs) ds − iξ · (X• − X0). (3.15)

Proof The fact that uV
ξ
is a continuous semi-martingale follows from (3.6) and Exam-

ple 2.11. By means of Example 2.11 and the isometry of ιs we P-a.s. obtain
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‖K•‖2 =
∫ •

0
2Re〈Ks |ιsGXs 〉 dXs +

∫ •

0
(2Re〈Ks |ιs q̆Xs 〉 + ‖ιsGXs‖2) ds

=
∫ •

0
2〈U+

s |GXs 〉 dXs +
∫ •

0
(2〈U+

s |q̆Xs 〉 + ‖GXs‖2) ds.

Here we also used (2.24), (2.25), and U+ = CU+ in the second step. ��

4 Stochastic calculus in the scalar case

In this section we verify that the ansatz (4.1) suggested by Hiroshima’s expression for
the Feynman–Kac integrand [15] gives rise to solutions of the SDE (1.1) in the scalar
case. We consider only deterministic exponential vectors as initial conditions, which
effectively simplifies computations. A proper existence and uniqueness result with a
natural class of initial conditions for the SDE (4.8) will be contained in Theorem 5.3
as a special case (L = 1, F = 0).

In the following definition we use the notation introduced in (3.3), (3.4), and the
discussion of the Weyl representation W following (2.5).

Definition 4.1 For all ξ ∈ R
ν , we define WV

ξ
: I ×Ω → B(F ) by

WV
ξ ,t := e−iξ ·(X t−X0)−

∫ t
0 V (Xs )ds�(ι∗t )W (Kt )�(ι0), t ∈ I. (4.1)

Remark 4.2 It is the adjoint of WV
ξ ,t which appears in the Feynman–Kac formula in

the scalar case. It is advantageous to studyWV
ξ
, instead of its adjoint, because it yields

solutions to a backward SDE.

Lemma 4.3 WV
ξ ,t maps C [h] into itself and

WV
ξ ,tζ(h) = e−u

V
−ξ ,t−〈U−

t |h〉ζ(w0,t h +U+
t ), h ∈ h. (4.2)

Proof Combine (2.15), (3.2), (3.5), (3.6), and (4.1). ��
Remark 4.4 (1) In view of (2.3), (2.6), (3.6), (4.2), and Lemma 3.4(4), the operator

WV
0,t is manifestly real, i.e., it maps FC into itself. Just recall that FC is the

closure of spanR(E [dC ]).
(2) Another formula for WV

ξ ,t is given in Remark 17.7(1).
(3) From (3.6) and (4.1) it is obvious that

ln ‖WV
ξ ,t‖ � −

∫ t

0
V (Xs) ds, t ∈ I. (4.3)

To prepare for an application of Itō’s formula, we compute a few derivatives in the
next lemma, where the real Hilbert space R

2 × hC × hC will play the role of Y in
Proposition 2.10.
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Lemma 4.5 Let h ∈ hC and define the function f : R
2 × hC × hC → F by

f [u, v, w] := e−u1−iu2−〈w|h〉ζ(v), (u, v, w) ∈ R
2 × hC × hC . (4.4)

Then f is smooth and satisfies all conditions of Proposition 2.10. Given any g ∈ hC
and any self-adjoint operator, T , in hC , the diagonal parts of its first two Fréchet
derivatives at (u, v, w) applied to tangent vectors (x, y, z) ∈ R

2 × hC × hC can be
written as

f ′[u, v, w](x, y, z)
= (〈g|v〉 − 〈z|h〉 − x1 − i x2 + d�(T )+ ia†(y − T v)+ ia(g)) f [u, v, w], (4.5)

f ′′[u, v, w](x, y, z)⊗2

= (〈g|v〉 − 〈z|h〉 − x1 − i x2 + d�(T )+ ia†(y − T v)+ ia(g))2 f [u, v, w]
+(〈g|y〉 − ia†(T y)) f [u, v, w], (4.6)

provided that v ∈ D(T ) in (4.5) (resp. y ∈ D(T ), v ∈ D(T 2) in (4.6)).

Proof With the help of Lemma 2.1 it is elementary to check that f satisfies the
condition in Proposition 2.10 and that the diagonal parts of its nth Fréchet derivatives
are given by

f (n)[u, v, w](x, y, z)⊗n = (−〈z|h〉 − x1 − i x2 + ia†(y))n f [u, v, w]. (4.7)

Finally, we use (2.12), (2.6), and (2.9) to include a(g) and d�(T ). ��
Remark 4.6 Asanother consequence ofLemma2.1, the function fn : R

2×h2+nC → F
defined by

fn[u, v, w, y1, . . . , yn] := (dnv f )[u, v, w](y1, . . . , yn)
= e−u1−iu2−〈w|h〉ina†(y1) . . . a†(yn) ζ(v),

for u ∈ R
2 and v,w, y j ∈ hC , j = 1, . . . , n, is smooth as well.

Theorem 4.7 Let h ∈ dC . Then the process WV
ξ
ζ(h) belongs to SI (F ) and, P-a.s.,

we have, for all t ∈ [0, sup I ),

WV
ξ ,tζ(h)− ζ(h)

= −
∫ t

0
iv(ξ , Xs)W

V
ξ ,sζ(h) dXs −

∫ t

0
Ĥ V
sc (ξ , Xs)W

V
ξ ,sζ(h) ds, (4.8)

where v(ξ , x) and ĤV
sc (ξ , x) are defined by (2.28) and (2.30), respectively.

Proof By definition, WV
ξ ,s ζ(h) = f [u, v, w] with f as in (4.4) and with

u = uV−ξ ,s, v = w0,s h +U+
s , w = U−

s . (4.9)
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(Here and in what follows, we consider the complex-valued quantities u and x as
R
2-valued objects when we plug them into the formulas of Lemma 4.5 and apply

Proposition 2.10.) Applying Proposition 2.10 (with f (s, x) = e−sω+im·xh) and
Lemma 3.4(3), we see that, with the above choice of v,

dsv = −
((

ω + 1
2m

2
)
v + 1

2qXs + i
2m · GXs

)
ds + (imv + GXs )dXs . (4.10)

On account of Lemma 4.5 we may now apply the Itō formula of Proposition 2.10. In
combination with (3.6), (3.12), and (4.10) this results P-a.s. in

WV
ξ ,tζ(h)− ζ(h) =

∫ t

0
I XsdXs +

∫ t

0
I0,Xsds +

1

2

∫ t

0
I IXsd�X�s, t < sup I,

where I0 and the components of I are equal to f ′[u, v, w](x, y, z) in (4.5) with
(u, v, w) substituted according to (4.9) and (x, y, z, g,M) substituted according to
the table below. Likewise, I I equals f ′′[u, v, w](x, y, z)⊗2 in (4.6) with (u, v, w) as
in (4.9) and (x, y, z, g,M) given by the following table (where we drop all subscripts
and arguments Xs):

x y z g M

I and I I 〈U+s |G〉 + iξ im v + G w0,s G G im

I0 〈U+s |q̆〉 + 1
2 ‖G‖2 + V −(ω + 1

2 m2) v w0,s q̆ q̆ −ω
+ 1

2q + i
2m · G

Using that 〈U+
s |GXs 〉 and 〈U+

s |q̆Xs 〉 are real, we see that we have equalities according
to the next table:

〈g|v〉 − 〈z|h〉 − x y − M v

I and I I −iξ G

I0 − 1
2 ‖G‖2 − V − 1

2m
2 v + 1

2q + i
2m · G

Putting these remarks together we obtain

I0 + 1
2 I I =

{
− 1

2‖G‖2 − V + 1
2 〈G|im v + G〉 − d�(ω)

+ ia†
(
− 1

2m
2 v + 1

2q + i
2m · G

)
+ ia(q̆)− i

2a
†(im(im v + G))

+ 1
2 (−iξ + id�(m)+ ia†(G)+ ia(G))2

}
WV

ξ ζ(h)
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= {−V − d�(ω)+ i
2ϕ(q)+ ia

(− i
2m · G)+ 1

2 〈G|im v〉
− 1

2 (ξ − d�(m)− ϕ(G))2
}
WV

ξ ζ(h).

Onaccount of (2.12) and sinceWV
ξ
ζ(h) is proportional to ζ(v) the eigenvalue equation

a(m · G)WV
ξ
ζ(h) = 〈m · G|iv〉WV

ξ
ζ(h) holds, whence

I0,Xs + 1
2 I IXs = −Ĥsc(ξ , Xs)W

V
ξ ,s ζ(h).

Moreover, by (4.5), f [u, v, w] = WV
ξ ,s ζ(h), and the above tables,

I Xs = (−iξ + d�(im)+ ia†(GXs )+ ia(GXs ))W
V
ξ ,s ζ(h).

We thus arrive at (4.8). ��

5 The matrix-valued case: definitions and results

Our main existence and uniqueness theorem for solutions of the SDE (1.1) associated
with the generalized fiber Hamiltonian in the general matrix-valued case will be for-
mulated at the end of the present section. For this purpose, we shall first introduce
and discuss the required notation. In Example 12.2 the somewhat involved formulas
belowwill be illustrated by showing how they simplify in the special case of theNelson
model.

In what follows we shall use the symbol
∑

A∪B∪C=[n]
#C∈2N0

for the sum over all disjoint

partitions of [n] := {1, . . . , n} into three sets, where each setA, B, or C may be empty
and the cardinality of C is always even. It appears in the following instance of Wick’s
theorem saying that, on a suitable dense domain like C [h],

ϕ( f1) . . . ϕ( fn)=
∑

A∪B∪C=[n]
#C∈2N0

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∑
C=∪{cp,c′p}

cp<c′p

⎛
⎝

#C/2∏
p=1

〈 fcp | fc′p 〉
⎞
⎠

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(∏
a∈A

a†( fa)

)∏
b∈B

a( fb).

Here the sum in the curly brackets runs over all possibilities to split C into disjoint
subsets {cp, c′p} ⊂ C with cp < c′p, p = 1, . . . , #C/2. If C is empty, then the whole
term {· · · } should be read as 1, of course. We shall further write

t�n :=
{
(s1, . . . , sn) ∈ R

n : 0 � s1 � · · · � sn � t
}
, t � 0.

If t1, . . . , tn ∈ R and A ⊂ [n], then we set tA := (ta1, . . . , tam ) where A =
{a1, . . . , am} with a1 < · · · < am . For a multi-index α ∈ [S]n with [S] := {1, . . . , S},
the notation αA is defined in the same way.
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Definition 5.1 (Time-ordered integral series) Let τ, t1, . . . , tn ∈ I , α ∈ [S]n , and
A,B ⊂ [n]. We define L

α∅

τ (t∅) := Rα∅
(t∅) := 1 and, in case A (resp. B) is

non-empty,

L αA
τ (tA) :=

∏
a∈A

{a†(wta ,τ Fαa ,X ta
)+ i〈U−

ta ,τ |Fαa ,X ta
〉},

RαB (tB) :=
∏
b∈B

{a(w0,tb Fαb,X tb
)+ i〈Fαb,X tb

|U+
tb 〉},

on the domain C
L ⊗C [dC ], noticing that, by (2.9), the order of factors is immaterial.

If C ⊂ [n] with #C ∈ 2N0, then we further set Iα∅
(t∅) := 1 and

IαC (tC) :=
∑

C=∪{cp,c′p}
cp<c′p

#C/2∏
p=1

〈
Fαc′p ,X tc′p

∣∣∣∣ wtcp ,tc′p
Fαcp ,X tcp

〉
,

if C is non-empty. Writing dt[n] := dt1 . . . dtn , we finally define

W
V,(n)
ξ ,t ψ

:=
∑

α∈[S]n
σαn . . . σα1

∑
A∪B∪C=[n]

#C∈2N0

∫
t�n

IαC (tC)L
αA
t (tA)W

V
ξ ,t RαB (tB) ψ dt[n],

for ψ ∈ C [dC ] and t ∈ I , and, using the convention W
V,(0)
ξ ,t := WV

ξ ,t ,

W
V,(N ,M)

ξ ,t ψ :=
M∑

n=N

W
V,(n)
ξ ,t ψ, ψ ∈ C

L ⊗ C [dC ], N ,M ∈ N0, N � M.

For later reference, we shall collect a few relations in the following remark. It also
shows that W

V,(n)
ξ

ψ with ψ ∈ C
L ⊗ C [dC ] is a well-defined adapted continuous

process given by a manageable formula when ψ is an exponential vector.

Remark 5.2 (1) Let g, h ∈ dC . Then we set

L αA
τ (tA; g) :=

∏
a∈A

〈iwta ,τ g − iU−
ta ,τ |Fαa ,X ta

〉, (5.1)

RαB (tB; h) :=
∏
b∈B

〈Fαb,X tb
|iw0,tb h + iU+

tb 〉, (5.2)

and we shall repeatedly use the following consequences of (2.12),

L αA
τ (tA; g)〈ζ(g)|ψ〉 = 〈ζ(g)|L αA

τ (tA) ψ〉, ψ ∈ C [h], (5.3)
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RαB (tB; h) ζ(h) = RαB (tB) ζ(h). (5.4)

For instance, we see that, for an exponential vector ζ(h) ∈ E [dC ],

W
V,(n)
ξ ,t ζ(h) =

∫
t�n

Q(n)
t (h; t[n])WV

ξ ,t ζ(h) dt[n], (5.5)

considered as an identity inB(CL)⊗F , with

Q(n)
τ (h; t[n]) :=

∑
α∈[S]n

σαn . . . σα1

∑
A∪B∪C=[n]

#C∈2N0

IαC (tC)RαB (tB; h)L αA
τ (tA).

(5.6)

In our computations below it shall also be convenient to use the relation

〈
ζ(g)

∣∣Q(n)
τ (h; t[n])WV

ξ ,t ζ(h)
〉 = 〈ζ(g)|WV

ξ ,t ζ(h)〉Q(n)
τ (g, h; t[n]), (5.7)

which is an identity inB(CL), with

Q(n)
τ (g, h; t[n]) :=

∑
α∈[S]n

σαn . . . σα1

∑
A∪B∪C=[n]

#C∈2N0

IαC (tC)L
αA
τ (tA; g)RαB (tB; h).

(5.8)

The matrix element of W
V,(n)
ξ ,t for two exponential vectors ζ(g), ζ(h) ∈ E [dC ]

reads

〈ζ(g)|WV,(n)
ξ ,t ζ(h)〉 = 〈ζ(g)|WV

ξ ,t ζ(h)〉
∫
t�n

Q(n)
t (g, h; t[n]) dt[n]. (5.9)

(2) We shall consider the domain D(M) defined in (1.5) as a Hilbert space equipped
with the graph norm of M = 1

2d�(m)
2 + d�(ω). Then, for each γ ∈ Ω , the

following map is continuous,

I n+1 × dC � (t[n], t, h) �−→ (Q(n)
t (h; t[n])WV

ξ ,tζ(h))(γ ) ∈ B(CL)⊗D(M).

(5.10)

In particular, the Bochner integral in (5.5) exists and defines an adaptedB(CL)⊗
D(M)-valued process such that I × dC � (t, h) �→ W

V,(n)
ξ ,t (γ )ζ(h) ∈ B(CL)⊗

D(M) is continuous, for every γ ∈ Ω , and such that
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v(ξ , X t )W
V,(n)
ξ ,t ζ(h) =

∫
t�n

v(ξ , X t )Qt (h; t[n])WV
ξ ,tζ(h) dt[n], (5.11)

Ĥ V (ξ , X t )W
V,(n)
ξ ,t ζ(h) =

∫
t�n

Ĥ V (ξ , X t )Qt (h; t[n])WV
ξ ,tζ(h) dt[n], (5.12)

on Ω for all t ∈ I and h ∈ dC .
In fact, recall that, by Hypotheses 2.3, 2.7, and Lemma 3.4(5), the maps (s, t) �→
U−
s,t ∈ kC and (s, t) �→ ws,t FXs ∈ kSC are jointly continuous on I × I , at every

γ ∈ Ω . Since uV
ξ
(resp. U±) are continuous complex-valued (resp. kC -valued)

processes as well, it is straightforward to infer the continuity of (5.10) from (2.6),
(2.10), (4.2), and (5.6) in combination with Hypothesis 2.3 and Remark 4.6. The
relations (5.11) and (5.12) hold true since Ĥ V (ξ , x) and the components of v(ξ , x)
can be considered as bounded operators from D̂ intoH , whose norms are bounded
uniformly in x; recall (2.18) and (2.33).

In Theorem 5.3 below, we collect our main results on the objects introduced above.
Recall our standing Hypotheses 2.3, 2.4, and 2.7. Recall also that Ĥ V (ξ , x) in (5.15) is
defined by (2.29) on the domain D̂ defined in (1.5). Sincewe shall considermeasurable
functions with values in D̂, it might make sense to recall that the σ -algebra on D̂
corresponding to the graph norm of M1(0) (defined in (2.31)) coincides with the trace
σ -algebra D̂ ∩B(Ĥ ) of the Borel σ -algebra on Ĥ .

Theorem 5.3 (1) For all N ∈ N and t ∈ I , the operator W
V,(0,N )
ξ ,t , defined a priori

on C
L ⊗ C [dC ], extends uniquely to an element of B(Ĥ ), which is henceforth

again denoted by the same symbol. Furthermore, the limit

W
V
ξ ,t := W

V,(0,∞)

ξ ,t := lim
N→∞W

V,(0,N )
ξ ,t (5.13)

exists inB(Ĥ ) P-a.s. and locally uniformly in t ∈ I , and it P-a.s. satisfies

ln ‖WV
ξ ,t‖ �

∫ t

0

(
�(Xs)

2 − V (Xs)
)
ds, t ∈ I, (5.14)

where �(x) denotes the operator norm of the matrix (‖ω−1/2(σ · Fx)i j‖)Li, j=1.
(2) Let η : Ω → D̂ be F0-measurable. Then W

V
ξ
η ∈ SI (Ĥ ) and, up to indistin-

guishability, WV
ξ
η is the unique element of SI (Ĥ ) whose paths belong P-a.s. to

C(I, D̂) and which P-a.s. solves

X• = η −
∫ •

0
iv(ξ , Xs)XsdXs −

∫ •

0
Ĥ V (ξ , Xs)Xsds on [0, sup I ). (5.15)

Proof The proof of this theorem can be found at the end of Sect. 7; the rest of Sect. 7
and the whole Sect. 6 serve as a preparation for it. ��
Remark 5.4 In view of (2.3), (4.2), and (5.9) the matrix element of W

V
ξ ,t for two

exponential vectors ζ(g), ζ(h) ∈ E [dC ] reads
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〈ζ(g)|WV
ξ ,tζ(h)〉 = 〈ζ(g)|WV

ξ ,tζ(h)〉 Qt (g, h)

= e−u
V
−ξ ,t−〈U−

t |h〉+〈g|U+
t 〉+〈g|w0,t h〉 Qt (g, h), (5.16)

which are identities in B(CL) with

Qt (g, h) := 1+
∞∑
n=1

∫
t�n

Q(n)
t (g, h; t[n]) dt[n] ∈ B(CL); (5.17)

see (5.8) for a formula forQ(n)
t . The P-a.s. locally uniform convergence of the series

in (5.17) follows from Theorem 5.3; the exceptional subset of Ω where the series
might not converge neither depends on g, h, nor t ∈ I .

6 Stochastic calculus in the matrix-valued case

The first step towards the proof of Theorem 5.3 essentially comprises applications of
Itō’s formula and algebraic manipulations. These are carried through in the present
section. The final result of this section is formulated in Lemma 6.1 below, whose
derivation is split into three preparatory lemmas and a concluding proof at the end
of the section. The latter proof requires two additional technical lemmas which are
deferred to “Appendix 5”.

As the potential V does not influence the convergence properties of the time ordered
integral series, we set it equal to zero in this and in the most part of the next section;
it will be re-introduced only at the very end of the proof of Theorem 5.3.

By a simple function we shall always mean a function onΩ attaining only finitely
many values.

Lemma 6.1 Let M, N ∈ N0 with N � M, and let η be a C
L ⊗ C [dC ]-valued F0-

measurable simple function. Then W
V,(N ,M)

ξ
η ∈ SI (Ĥ ) and we P-a.s. have

W
0,(N ,M)

ξ ,• η = δ0,N η −
∫ •

0
Ĥ0
sc(ξ , Xs)W

0,(N ,M)

ξ ,s η ds

−
∫ •

0
iv(ξ , Xs)W

0,(N ,M)

ξ ,s η dXs +
∫ •

0
σ · ϕ(FXs )W

0,(N−1,M−1)
ξ ,s η ds

(6.1)

on [0, sup I ), with W
0,(−1,n)
ξ ,t := W

0,(0,n)
ξ ,t , n ∈ N0, and W

0,(−1,−1)
ξ ,t := 0.

In the rest of this section we fix g, h ∈ dC ; recall (2.22) and (2.26).

Lemma 6.2 For all n ∈ N and 0 � t1 � · · · � tn ∈ I , we have

〈ζ(g)|W 0
ξ ,tn

ζ(h)〉Q(n)
tn (g, h; t[n])

= 〈ζ(g)∣∣σ · ϕ(FX tn
)Q(n−1)

tn (h; t[n−1])W 0
ξ ,tn

ζ(h)
〉
, (6.2)

where we use the convention Q(0)
t1 (h; t[0]) := 1.
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Proof Setting τ = tn in (5.8) and taking into account that U−
tn ,tn = 0 on Ω [see

Lemma 3.4(5)] and wtn ,tn = 1 onΩ , and we obtain, since tn is contained in precisely
one of the sets A, B, or C,

Q(n)
tn (g, h; t[n]) = −i〈g|σ · FX tn

〉Q(n−1)
tn (g, h; t[n−1])

+ i〈σ · FX tn
|w0,tn h+U+

tn 〉Q(n−1)
tn (g, h; t[n−1])+ Jn(g, h), (6.3)

where t[n] = (t[n−1], tn) = (t1, . . . , tn−1, tn), J1(g, h) := 0, and

Jn(g, h) := σ ·
∑

α∈[S]n−1
σαn−1 . . . σα1

∑
c∈[n−1]

〈FX tn
|wtc,tn Fαc,X tc

〉

·
∑

A∪B∪C=[n−1]\{c}
#C∈2N0

IαC (tC)L
αA
tn (tA; g)RαB (tB; h), n � 2.

Next, we observe that, by (2.12) and (4.2),

i〈FX tn
|w0,tn h +U+

tn 〉W 0
ξ ,tn

ζ(h) = a(FX tn
)W 0

ξ ,tn
ζ(h), (6.4)

−i〈ζ(g)|ψ〉〈g|FX tn
〉 = 〈ζ(g)|a†(FX tn

) ψ〉, ψ ∈ C [dC ]. (6.5)

Hence, using (5.7) first and (6.4) and (6.5) afterwards we see that

〈ζ(g)|W 0
ξ ,tn

ζ(h)〉Q(n)
tn (g, h; t[n]) = 〈ζ(g)|W 0

ξ ,tn
ζ(h)〉 Jn(g, h)

+ 〈ζ(g)∣∣σ · a†(FX tn
)Q(n−1)

tn (h; t[n−1])W 0
ξ ,tn

ζ(h)
〉

+ σ · 〈ζ(g)|Q(n−1)
tn (h; t[n−1])a(FX tn

)W 0
ξ ,tn

ζ(h)〉.
(6.6)

Moreover, for n � 2 and every subset A ⊂ [n − 1], (2.9) implies

[a(FX tn
),L αA

tn (tA)] =
∑
c∈A

〈FX tn
|wtc,tn Fαc,X tc

〉L αA\{c}
tn (tA\{c}),

which together with (5.3), (5.6), and a rearrangement of summations yields

〈ζ(g)|W 0
ξ ,tn

ζ(h)〉Jn(g, h) = σ · 〈ζ(g)∣∣[a(FX tn
),Q(n−1)

tn (h; t[n−1])
]
W 0

ξ ,tn
ζ(h)

〉
.

Combining the previous identity with (6.6) we arrive at (6.2). ��
In the next lemmas we shall apply the formulas of the stochastic calculus with

respect to the time-shifted stochastic basisBtn . For this purpose,we shall first introduce
some convenient notation.

As usual stochastic integrals starting at tn ∈ I are defined as follows: If K is
a separable Hilbert space, (At )t∈I a family of B(Rm,K )-valued random variables
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such that (Atn+t )t∈I tn is left-continuous and Btn -adapted, and if (Zt )t∈I is a family of
R
m-valued random variables such that Z (tn) := (Ztn+t )t∈I tn is a continuous Btn -semi-

martingale, then we set

∫ t

tn
As dZs :=

∫ t−tn

0
Atn+s dZ (tn)

s , tn � t < sup I.

For instance, if ta ∈ [0, tn], then by using Itō’s formula with Btn as underlying sto-
chastic basis we obtain the formulas

wta ,τ Fαa ,X ta
− wta ,tn Fαa ,X ta

=
∫ τ

tn
imwta ,s Fαa ,X ta

dXs −
∫ τ

tn
( 12m

2 + ω)wta ,s Fαa ,X ta
ds, (6.7)

〈U−
ta ,τ |Fαa ,X ta

〉 − 〈U−
ta ,tn |Fαa ,X ta

〉
=
∫ τ

tn

〈
GXs

∣∣wta ,s Fαa ,X ta

〉
dXs +

∫ τ

tn

〈
q̆Xs

∣∣wta ,s Fαa ,X ta

〉
ds, (6.8)

P-a.s. for all τ ∈ [tn, sup I ). (If one wishes to prove the first one by means of
Proposition 2.10, then one should apply this proposition to fR(s + tn − ta, X tn+s −
X ta , Fαa ,X ta

), where fR is the same as in the proof of Lemma 3.4(3), consider Fαa ,X ta

as a time-independent process, and remove the cut-off afterwards.)

Lemma 6.3 For all n ∈ N, 0 � t1 � · · · � tn < sup I , andA ⊂ [n], we P-a.s. have,
for all t ∈ [tn, sup I ),

∫ t

tn
〈ζ(g)|W 0

ξ ,τ ζ(h)〉 dτL αA
τ (tA; g)

+
∫ t

tn

〈
ζ(g)

∣∣[L αA
τ (tA), v(ξ , Xτ )]v(ξ , Xτ )W

0
ξ ,τ ζ(h)

〉
dτ

=
∫ t

tn

〈
ζ(g)

∣∣[L αA
τ (tA), Ĥ

0
sc(ξ , Xτ )]W 0

ξ ,τ ζ(h)
〉
dτ

+ i
∫ t

tn

〈
ζ(g)

∣∣[L αA
τ (tA), v(ξ , Xτ )]W 0

ξ ,τ ζ(h)
〉
dXτ . (6.9)

Proof We may assume that A is non-empty, for otherwise all terms in (6.9) are zero.
First, we compute the stochastic differential of the process [tn, t] � τ �→ L αA

τ (tA; g)
given by (5.1). Employing the conventions introduced in the paragraph preceding the
lemma and (6.7) and (6.8) we find by straightforward computations and Itō’s product
rule for #A factors,

L αA
t (tA; g)−L αA

tn (tA; g)
= i

∑
c∈A

∫ t

tn
L

αA\c
τ (tA\c; g)

〈
img + GXτ

∣∣wtc,τ Fαc,X tc

〉
dXτ
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+ i
∑
c∈A

∫ t

tn
L

αA\c
τ (tA\c; g)

〈
(ω + 1

2m
2)g + q̆Xτ

∣∣wtc,τ Fαc,X tc

〉
dτ

−
∑
P⊂A
#P=2

∫ t

tn
L

αA\P
τ (tA\P ; g)

(∏
b∈P

〈
img + GXτ

∣∣wtb,τ Fαb,X tb

〉)
dτ, (6.10)

P-a.s. for all t ∈ [tn, sup I ). Here and henceforth we writeA\c := A\{c} for short; if
#A = 1, then the last line of (6.10) should be ignored. It will shortly turn out that all
terms on the right hand side of (6.10) can be related to certain commutators involving
v(ξ , Xτ ) or the scalar fiber Hamiltonian. In fact, if the multiplication operator � in h
is either equal to 1 or equal to one of the components of m, then we first observe that
(2.9) and (2.10) entail

[a†(� wtc,τ Fαc,X tc
),−d�(m)− ϕ(GXτ )]

= a†(� mwtc,τ Fαc,X tc
)+ 〈� GXτ |wtc,τ Fαc,X tc

〉. (6.11)

By virtue of the Leibnitz rule for commutators and (2.9), this shows that

[L αA
τ (tA), v(ξ , Xτ )]
=
∑
c∈A

(a†(mwtc,τ Fαc,X tc
)+ 〈GXτ |wtc,τ Fαc,X tc

〉)L αA\c
τ (tA\c). (6.12)

Applying (6.11) and the Leibnitz rule and (2.9) once more we deduce that

[L αA
τ (tA), 1

2v(ξ , Xτ )
2] − [L αA

τ (tA), v(ξ , Xτ )] v(ξ , Xτ )

= −1

2

[[L αA
τ (tA), v(ξ , Xτ )], v(ξ , Xτ )

]

= −
∑
c∈A

{
a†
( 1
2m

2wtc,τ Fαc,X tc

)+ 1
2 〈m · GXτ |wtc,τ Fαc,X tc

〉}L αA\c
τ (tA\c)

−
∑
P⊂A
#P=2

L
αA\P
τ (tA\P )

∏
b∈P

{a†(mwtb,τ Fαb,X tb
)+ 〈GXτ |wtb,τ Fαb,X tb

〉}, (6.13)

where the last line should again be ignored in the case #A = 1. Likewise, we obtain
the following relation for the remaining term in Ĥ0

sc(ξ , Xτ ),

[L αA
τ (tA), d�(ω)− i

2ϕ(qXτ )]
=
∑
c∈A

{−a†(ωwtc,τ Fαc,X tc
)+ i

2 〈qXτ |wtc,τ Fαc,X tc
〉}L αA\c

τ (tA\c). (6.14)

Next, we observe that, if we apply the operators on the right hand sides of (6.12)–
(6.14) to anyvector inC [dC ] and scalar-multiply the resultswith ζ(g), then the creation
operators a†( f ) on the right hand sides can be replaced by 〈ig| f 〉 and L αB

τ (tB) can
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be replaced by L αB
τ (tB; g); see (2.12) and (5.3). We conclude by comparing the so-

obtained identities with (2.25) and (6.10), and by employing the substitution rule of
Proposition 2.12 (w.r.t. the basis Btn ) to compute the first line of (6.9). ��
Lemma 6.4 For all n ∈ N, 0 � t1 � · · · � tn < sup I , and A ⊂ [n], we P-a.s. have

〈ζ(g)|W 0
ξ ,tζ(h)〉L αA

t (tA; g)− 〈ζ(g)|W 0
ξ ,tn

ζ(h)〉L αA
tn (tA; g)

= −
∫ t

tn

〈
ζ(g)

∣∣Ĥ0
sc(ξ , Xτ )L

αA
τ (tA)W

0
ξ ,τ ζ(h)

〉
dτ

− i
∫ t

tn

〈
ζ(g)

∣∣v(ξ , Xτ )L
αA
τ (tA)W

0
ξ ,τ ζ(h)

〉
dXτ , t ∈ [tn, sup I ). (6.15)

Proof If A = ∅, then (6.15) follows directly from (4.8). Hence, we may assume in
the following that A is non-empty.

We shall denote themutual variation, definedbymeans of the time-shifted stochastic
basis Btn , of (〈ζ(g)|W 0

ξ ,tn+sζ(h)〉)s∈I tn and (L
αA
tn+s(tA; g))s∈I tn by (�〈ζ(g)|W 0

ξ
ζ(h)〉,

L αA (tA ; g)�tn ,tn+s)s∈I tn . Then, on the one hand, by the definition (2.46) and by
(4.8), we P-a.s. have

�〈ζ(g)|W 0
ξ ζ(h)〉,L αA (tA ; g)�tn ,t +

∫ t

tn
〈ζ(g)|W 0

ξ ,τ ζ(h)〉 dτL αA
τ (tA; g)

= 〈ζ(g)|W 0
ξ ,tζ(h)〉L αA

t (tA; g)− 〈ζ(g)|W 0
ξ ,tn

ζ(h)〉L αA
tn (tA; g)

+
∫ t

tn
L αA

τ (tA; g)
〈
ζ(g)

∣∣Ĥ0
sc(ξ , Xτ )W

0
ξ ,τ ζ(h)

〉
dτ

+
∫ t

tn
L αA

τ (tA; g)
〈
ζ(g)

∣∣iv(ξ , Xτ )W
0
ξ ,τ ζ(h)

〉
dXτ , t ∈ [tn, sup I ). (6.16)

On the other hand we may compute the mutual variation defined above by applying
(2.47) in combination with (4.8) and (6.10). In this way we obtain

�〈ζ(g)|W 0
ξ ζ(h)〉,L αA (tA ; g)�tn ,t

=
∑
c∈A

∫ t

tn
〈ζ(g)|v(ξ , Xτ )W

0
ξ ,τ ζ(h)〉〈img + GXτ |wtc,τ F

(c)
X tc
〉L αA\c

τ (tA\c; g)dτ

=
∫ t

tn

〈
ζ(g)

∣∣[L αA
τ (tA), v(ξ , Xτ )]v(ξ , Xτ )W

0
ξ ,τ ζ(h)

〉
dτ, (6.17)

where we also used (2.12), (5.3), and (6.12) in the second step. By virtue of (6.17) we
see that the left hand sides of (6.9) and (6.16) are equal, P-a.s. for all t ∈ [tn, sup I ).
Equating the right hand sides of the latter identities and applying (5.3) we arrive at
(6.15). ��
Proof of Lemma 6.1 Let n ∈ N and 0 � t1 � · · · � tn . Multiplying both
sides of the identity (6.15) with the Ftn -measurable, B(CL)-valued random variable
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σαn . . . σα1IαC (tC)RαB (tB; h) (which commutes P-a.s. with the stochastic integral in
(6.15)) and summing over all partitions of sets and components of the multi-index α
afterwards, we P-a.s. obtain

〈ζ(g)|W 0
ξ ,tζ(h)〉Q(n)

t (g, h; t[n]) = 〈ζ(g)|W 0
ξ ,tn

ζ(h)〉Q(n)
tn (g, h; t[n])

−
∫ t

tn

〈
ζ(g)

∣∣Ĥ0
sc(ξ , Xτ )Q

(n)
τ (h; t[n])W 0

ξ ,τ ζ(h)
〉
dτ

−
∫ t

tn

〈
ζ(g)

∣∣iv(ξ , Xτ )Q
(n)
τ (h; t[n])W 0

ξ ,τ ζ(h)
〉
dXτ ,

(6.18)

for all t ∈ [tn, sup I ). In Lemma 16.1 belowwe shall verify that the exceptional P-zero
set where (6.18) might not hold can actually be chosen independently of 0 � t1 �
· · · � tn � t < sup I . Hence, we may integrate (6.18) over the simplex t�n , for
every t < sup I . Rewriting the second member of the first line of the above identity
by means of (6.2) we thus obtain (recall that dt[n] := dt1 . . . dtn)

∫
t�n

〈ζ(g)|Q(n)
t (h; t[n])W 0

ξ ,tζ(h)〉 dt[n]

=
∫
t�n

〈ζ(g)|σ · ϕ(FX tn
)Q(n−1)

tn (h; t[n−1])W 0
ξ ,tn

ζ(h)〉 dt1 . . . dtn

−
∫ t

0

∫ t

tn

∫
tn�n−1

〈
ζ(g)

∣∣Ĥ0
sc(ξ , Xτ )Q

(n)
τ (h; t[n])W 0

ξ ,τ ζ(h)
〉
dt1 . . . dtn−1 dτ dtn

−
∫
I n

∫ t

0
1{t1�···�tn�τ�t}

× 〈ζ(g)∣∣iv(ξ , Xτ )Q
(n)
τ (h; t[n])W 0

ξ ,τ ζ(h)
〉
dXτ dt[n].

Next, we apply the rule

∫ t

0

∫ t

tn
f (τ, tn) dτ dtn =

∫ t

0

∫ τ

0
f (τ, tn) dtn dτ (6.19)

to the integral in the third line and change the name of the integration variable of
the most exterior integral in the second line from tn to τ . In the last integral we
write dXτ = dBτ + β(τ, Xτ )dτ , employ (6.19) once more to deal with the term
containing β, and use the stochastic Fubini theorem to interchange the dBτ - and dt[n]-
integration; see, e.g., [6, §4.5] for a suitable version of the stochastic Fubini theorem
and Lemma 16.2 for justification. After that we apply the relations (5.11) and (5.12).
Finally, we use that the (stochastic) integrals commute with the scalar product and that
{ζ(g) : g ∈ aC } is a countable total set in F , if aC ⊂ dC is countable and dense in
hC . Taking these remarks into account we P-a.s. arrive at
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W
0,(n)
ξ ,t ψ =

∫ t

0
σ · ϕ(FXτ )W

0,(n−1)
ξ ,τ

ψ dτ −
∫ t

0
Ĥ0
sc(ξ , Xτ )W

0,(n)
ξ ,τ

ψ dτ

−
∫ t

0
iv(ξ , Xτ )W

0,(n)
ξ ,τ

ψ dXτ , t ∈ [0, sup I ), n ∈ N0, (6.20)

for a given ψ ∈ C
L ⊗ C [dC ]. Here we introduced the convention W

0,(−1)
ξ ,t := 0, so

that (6.20) follows immediately from (4.8) in the case n = 0. Adding the identities
(6.20) for n = N , . . . ,M we arrive at (6.1) with constant η = ψ ∈ C

L ⊗ C [dC ]. We
conclude by noting that the integrals in (6.1) commute P-a.s. with multiplications by
characteristic functions of sets in F0. ��

7 Weighted estimates

It is not hard to infer the existence of the limit (5.13) from the results of Sect. 6, which is
done in Lemma 7.2 below by an iterative application of Gronwall inequalities. What is
more involved is to prove that the limiting objectsW

V
ξ
give rise to solutions of the SDE

(5.15), for every F0-measurable initial condition η : Ω → D̂. In particular, we first
have to study some mapping properties of the operators W

0
ξ
ensuring that W

0
ξ
η again

attains its values in D̂, i.e., in the domain of the generalized fiber Hamiltonians, and
that it is continuous as a D̂-valued process (so that the (stochastic) integrals in (5.15)
actually exist). This is the purpose of the weighted estimates derived in Lemmas 7.6
and 7.7, which require some more preparations themselves. The latter two lemmas
are obtained for bounded initial conditions q in (2.35) only, as we shall use the bound
(2.37) in their proofs. To get rid of this restriction on q we shall invoke the pathwise
uniqueness properties discussed in Remark 7.3. When we pass to more general η and
to the limit M →∞ in the SDE (6.1), then our analysis will again rest on Lemma 7.6
and Lemma 7.7. Everything will be put together in the proof of Theorem 5.3 at the
end of this section.

The following corollary will be applied with various choices for the weightsΘ later
on, namely the trivial choiceΘ = 1 and the ones defined in (7.17) and (7.27) below.We
shall use the convenient notation adST := [S, T ], and the symbols c(a, . . .), c′(a, . . .),
etc., denote positive constants which depend only on the objects appearing in Hypoth-
esis 2.3 and the quantities displayed in their arguments (if any) as long as nothing else
is stated explicitly. Their values might change from one estimate to another.

Corollary 7.1 LetΘ be a bounded, strictly positive measurable function of a second
quantized multiplication operator. Let ϑ denote one of the operators 1 or 1+ d�(ω)
and abbreviate

T1(s) := ϑ−1/2Θ−1[[Θ2, ϕ(GXs )], d�(m)+ ϕ(GXs )]Θ−1ϑ−1/2

− ϑ−1/2 Re(i[Θ,ϕ(qXs )]Θ−1) ϑ−1/2

= 2iϑ−1/2Θ−1(adϕ(q̆Xs )
Θ)ϑ−1/2 + 2iϑ−1/2(adϕ(q̆Xs )Θ)Θ−1ϑ−1/2

+ ϑ−1/2Θ−1(ad2ϕ(GXs )
Θ2)Θ−1ϑ−1/2, (7.1)
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T2(s) := (1+ d�(ω))−1/2Θ σ · ϕ(FXs )Θ
−1, (7.2)

T (s) := −(adϕ(GXs )
Θ)Θ−1ϑ−1/2, (7.3)

assuming that the operators in (7.1) and (7.3), which are well-defined a priori on
C

L ⊗ C [dC ], extend to bounded operators on Ĥ whose norms are locally uniformly
bounded in s ∈ I . (For the one in (7.2) this is clear in view of (2.18).) Let p ∈ N,
δ > 0, M, N ∈ N0 with N � M, and let η be a C

L ⊗ C [dC ]-valued F0-measurable
simple function. Outside some P-zero set we then have, for all t ∈ [0, sup I ),

‖ΘW
0,(N ,M)

ξ ,t η‖2p − ‖ΘW
0,(N ,M)

ξ ,0 η‖2p

� −p(2− δ)

∫ t

0
‖ΘW

0,(N ,M)

ξ ,s η‖2p−2 ∥∥d�(ω)1/2ΘW
0,(N ,M)

ξ ,s η
∥∥2ds

+ c(p)
∫ t

0
‖ΘW

0,(N ,M)

ξ ,s η‖2p−2(‖T1(s)‖ + ‖T (s)‖2)∥∥ϑ1/2ΘW
0,(N ,M)

ξ ,s η
∥∥2ds

+ p(δ + 1
δ
)

∫ t

0
‖ΘW

0,(N ,M)

ξ ,s η‖2pds +
∫ t

0

‖T2(s)‖2p
δ

‖ΘW
0,(N−1,M−1)
ξ ,s η‖2pds

+
∫ t

0
2p‖ΘW

0,(N ,M)

ξ ,s η‖2p−2Re〈ΘW
0,(N ,M)

ξ ,s η
∣∣iT (s) ϑ1/2ΘW

0,(N ,M)

ξ ,s η
〉
dXs .

(7.4)

Proof By virtue of the integral representation (6.1) we know that ψ(N ,M) :=
Θ W

0,(N ,M)

ξ
η ∈ SI (Ĥ ). Applying Example 2.11, we P-a.s. find

‖ψ(N ,M)
t ‖2 = ‖ψ(N ,M)

0 ‖2 −
∫ t

0
2
〈
ψ(N ,M)
s

∣∣d�(ω)ψ(N ,M)
s

〉
ds

−
∫ t

0
2Re

〈
W

0,(N ,M)

ξ ,s η
∣∣Θ2 1

2v(ξ , Xs)
2

W
0,(N ,M)

ξ ,s η
〉
ds

+
∫ t

0
2Re

〈
ψ(N ,M)
s

∣∣Θ i
2ϕ(qXs )W

0,(N ,M)

ξ ,s η
〉
ds

+
∫ t

0
2Re

〈
ψ(N ,M)
s

∣∣Θ σ · ϕ(FXs )W
0,(N−1,M−1)
ξ ,s η

〉
ds

−
∫ t

0
2Re

〈
ψ(N ,M)
s

∣∣Θ iv(ξ , Xs)W
0,(N ,M)

ξ ,s η
〉
dXs

+
∫ t

0

∥∥Θ v(ξ , Xs)W
0,(N ,M)

ξ ,s η
∥∥2ds, t ∈ [0, sup I ). (7.5)

Next, we commute Θ2 with one of the factors v(ξ , Xs) in the second line and
take the cancellation with the term in the last line into account. Furthermore,
we use that 2Re{[A, B]C} = [[A, B],C], if A, B, and C are symmetric, and
Re〈ψ(N ,M)

s | i2ϕ(qXs )ψ
(N ,M)
s 〉 = 0, to see that the sum of the terms in the second, third,

and last lines above is equal to the term in the second line of (7.6) below. Likewise,
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we commuteΘ with v(ξ , Xs) = ξ − d�(m)− ϕ(GXs ) in the penultimate line above

and observe that Re〈ψ(N ,M)
s |iv(ξ , Xs) ψ

(N ,M)
s 〉 = 0 to see that the dXs-integrals in

(7.5) and (7.6) are identical. Altogether we P-a.s. arrive at

‖ψ(N ,M)
t ‖2 = ‖ψ(N ,M)

0 ‖2 −
∫ t

0
2
〈
ψ(N ,M)
s

∣∣d�(ω)ψ(N ,M)
s

〉
ds

− 1

2

∫ t

0

〈
ϑ1/2ψ(N ,M)

s

∣∣T1(s) ϑ1/2ψ(N ,M)
s

〉
ds

+
∫ t

0
2Re

〈
(1+ d�(ω))1/2ψ(N ,M)

s

∣∣T2(s) ψ(N−1,M−1)
s

〉
ds

+
∫ t

0
2Re

〈
ψ(N ,M)
s

∣∣iT (s) ϑ1/2ψ(N ,M)
s

〉
dXs, t ∈ [0, sup I ). (7.6)

For every p ∈ N, p � 2, another application of Itō’s formula (to the function f (t) =
t p, using (7.5)) yields

‖ψ(N ,M)
t ‖2p = ‖ψ(N ,M)

0 ‖2p −
∫ t

0
2p ‖ψ(N ,M)

s ‖2p−2 〈ψ(N ,M)
s

∣∣d�(ω)ψ(N ,M)
s

〉
ds

− p

2

∫ t

0
‖ψ(N ,M)

s ‖2p−2 〈ϑ1/2ψ(N ,M)
s

∣∣T1(s) ϑ1/2ψ(N ,M)
s

〉
ds

+
∫ t

0
2p ‖ψ(N ,M)

s ‖2p−2 Re〈(1+ d�(ω))1/2ψ(N ,M)
s

∣∣T2(s) ψ(N−1,M−1)
s

〉
ds

+
∫ t

0
2p ‖ψ(N ,M)

s ‖2p−2 Re〈ψ(N ,M)
s

∣∣iT (s) ϑ1/2ψ(N ,M)
s

〉
dXs

+ p(p − 1)

2

∫ t

0
‖ψ(N ,M)

s ‖2p−4(2Re〈ψ(N ,M)
s

∣∣iT (s) ϑ1/2ψ(N ,M)
s

〉)2ds,
(7.7)

P-a.s. for all t ∈ [0, sup I ). Finally, we apply the bounds

2p ‖φ‖2p−2 |〈(1+ d�(ω))1/2φ|T2(s) φ′〉|
� δ p ‖φ‖2p−2〈φ|(1+ d�(ω)) φ〉 + p ‖T2(s)‖2 ‖φ‖2p−2 ‖φ′‖2/δ
� δ p ‖φ‖2p−2〈φ|d�(ω) φ〉 + p(δ + 1/δ) ‖φ‖2p + ‖T2(s)‖2p ‖φ′‖2p/δ,

with φ := ψ
(N ,M)
s and φ′ := ψ

(N−1,M−1)
s , to arrive at the asserted estimate. ��

We recall that Gronwall’s lemma states that, for all non-negative, continuous func-
tions a, β, and ρ on I , we have the implication

ρ � a +
∫ •

0
(βρ)(s)ds ⇒ ρ(t) � a(t)+

∫ t

0
(a β)(s) e

∫ t
s β(τ)dτds, t ∈ I. (7.8)
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If a is the integral of another continuous function, c, on I , then

ρ �
∫ •

0
(c + βρ)(s) ds ⇒ ρ(t) �

∫ t

0
c(s) e

∫ t
s β(τ)dτds, t ∈ I. (7.9)

Lemma 7.2 There is a P-zero setN such that, for all (t, γ ) ∈ I × (Ω\N ) and 0 �
N � M < ∞, the operators W

V,(N ,M)

ξ ,t (γ ), defined a priori on C
L ⊗ C [dC ], extend

uniquely to continuous operators on Ĥ (which are denoted by the same symbols).
The limitsW

V,(N ,∞)

ξ
:= limM→∞ W

V,(N ,M)

ξ
converge inB(Ĥ ), pointwise onΩ\N

and locally uniformly on I . Moreover, for all 0 � N � M � ∞ and ψ ∈ Ĥ , the
Ĥ -valued process W

V,(N ,M)

ξ
ψ is adapted and has continuous paths on Ω\N . For

every p ∈ N, we finally have the following bound on Ω\N ,

‖WV,(N ,M)

ξ ,t ‖2p � e2pt−2p
∫ t
0 V (Xs )ds

M∑
n=N

1

n!
(∫ t

0
γp(s) ds

)n

, t ∈ I, (7.10)

with γp(s) := c(p) ‖(1+ ω−1)1/2FXs‖2p.

Proof Obviously, it is sufficient to prove the lemma for V = 0; recall (2.39). Let
ψ ∈ C

L ⊗ C [dC ] and suppose that 0 � N � M < ∞. We apply (7.4) with
Θ = ϑ = 1. Then the term in the last line of (7.4) vanishes, ‖T2(s)‖2p � γp(s) by
(2.18), and T1 = 0, T = 0. Moreover, we choose δ = 1 and abbreviate

ρN ,M := ‖W0,(N ,M)

ξ
ψ‖2p, b(τ, t) := e2p(t−τ), 0 � τ � t,

so that b(r, s) b(s, t) = b(r, t), for 0 � r � s � t . Taking also the initial values
ρN ,M (0) = δN ,0 ‖ψ‖2p, 0 � N � M <∞, into account in (7.4) and applying (7.9)
we P-a.s. arrive at the following recursive system of inequalities,

ρN ,M (t) �
∫ t

0
b(τ, t) γp(τ ) ρN−1,M−1(τ ) dτ, N ∈ N, M > N ,

ρ0,N (t) � b(0, t) ‖ψ‖2 +
∫ t

0
b(τ, t) γp(τ ) ρ0,N−1(τ ) dτ, N ∈ N,

ρ0,0(t) � ‖ψ‖2 b(0, t),

the last one of which is following from (4.3). From this we readily infer that

ρ0,N (t) � ‖ψ‖2 b(0, t)
(
1+

N∑
n=1

∫
t�n

γp(t1) . . . γp(tn) dt1 . . . dtn

)
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and, hence,

ρN ,M (t) �
∫
t�N

b(t1, t2) . . . b(tN , t) γp(t1) . . . γp(tN ) ρ0,M−N (t1) dt1 . . . dtN

� ‖ψ‖2 b(0, t)
M∑

n=N

∫
t�n

γp(t1) . . . γp(tn) dt1 . . . dtn

= ‖ψ‖2 b(0, t)
M∑

n=N

1

n!
(∫ t

0
γp(s) ds

)n

. (7.11)

Here we find a P-zero set N such that (7.11) holds on Ω\N , for all t ∈ I , N �
M <∞, and all ψ contained in the following countable subset of C

L ⊗ C [dC ],

A :=
{

n∑
	=1

v	 ⊗ ζ(h	) : v	 ∈ (Q+ iQ)L , h	 ∈ aC , 	 = 1, . . . , n, n ∈ N

}
,

where aC is some countable dense subset of dC . Employing Remark 5.2(2) we then
deduce that (7.11) actually holds on Ω\N , for all t ∈ I , N � M < ∞, and every
ψ ∈ C

L ⊗ C [dC ]. This shows that all W
0,(N ,M)

ξ ,t , t ∈ I , have unique extensions to

elements of B(Ĥ ) on Ω\N , and we see that (7.10) holds on Ω\N as well. If
ψ ∈ Ĥ and ψn ∈ C

L ⊗ C [dC ], n ∈ N, with ψn → ψ , then we also see that, on
Ω\N , the convergence W

0,(N ,M)

ξ ,t ψn → W
0,(N ,M)

ξ ,t ψ is locally uniform in t . Since,

by Remark 5.2(2), each process W
0,(N ,M)

ξ
ψ̃ with ψ̃ ∈ C

L ⊗ C [dC ] and M < ∞ is

adapted and has continuous paths, we conclude that W
0,(N ,M)

ξ
ψ is adapted and has

continuous paths onΩ\N , for every ψ ∈ Ĥ . The assertions on the limiting objects
with M = ∞ are now clear as well. ��
Remark 7.3 Recall that W

V,(N ,M)

ξ
depends on X . Let X̃ be another process fulfill-

ing Hypothesis 2.7 with the same stochastic basis B, and denote the corresponding
processes constructed in Lemma 7.2 by W̃

V,(N ,M)

ξ
. Then, for all 0 � N � M � ∞,

W
V,(N ,M)

ξ ,• = W̃
V,(N ,M)

ξ ,• , P-a.s. on {X• = X̃•}. (7.12)

For a start, it is clear that W
V,(N ,M)

ξ ,• ψ = W̃
V,(N ,M)

ξ ,• ψ holds on some (ψ, N ,M)-

independent set A ∈ F with P({X• = X̃•}\A) = 0, if ψ ∈ C
L ⊗ C [dC ] and

0 � N � M < ∞. This can be read off from (4.2), (5.5), and (5.6), if one keeps
in mind that the (stochastic) integrals defining the basic processes in Definition 3.1
remain P-a.s. unchanged on {X• = X̃•}, when X is replaced by X̃ . Since (7.10) holds,
however, on some (N ,M)-independent set of full P-measure, these observations are
sufficient to verify (7.12).
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Remark 7.4 The previous lemma and its proof imply

∫ t

0

∥∥d�(ω)1/2W0,(N ,M)

ξ ,s η
∥∥2ds � c′ect‖η‖2, t ∈ I, 0 � N � M <∞, (7.13)

P-a.s. for all C
L ⊗ C [dC ]-valued F0-measurable simple functions η. In fact, choose

p = 1 and, as before,Θ = ϑ = 1 and δ = 1 in (7.4). Then solve (7.4) for the left hand
side of (7.13) (instead of just throwing it away as in the proof of the lemma).Combining
the result with (7.10) we obtain (7.13). Taking the expectation of (7.13) and using the
trival bound ‖d�(ω)1/2(1 + ε d�(ω))−1/2φ‖ � ‖d�(ω)1/2φ‖, ε > 0, we further
infer from (7.13) and the dominated convergence theorem that, in the limit ε ↓ 0,
η′ε := d�(ω)1/2(1 + ε d�(ω))−1/2W0,(N ,M)

ξ
η converges to d�(ω)1/2W0,(N ,M)

ξ
η in

L2
Ĥ
([0, t]×Ω,λ⊗P). Since eachη′ε is predictable, d�(ω)1/2W

0,(N ,M)

ξ
η is predictable

as well.

Lemma 7.5 We consider the process on I defined by

M• :=
∫ •

0
‖ΘW

0,(N ,M)

ξ ,s η‖2p−2Re〈ΘW
0,(N ,M)

ξ ,s η
∣∣iT (s)ϑ1/2ΘW

0,(N ,M)

ξ ,s η
〉
dBs,

where ϑ is 1 or 1+d�(ω); compare it with the last line of (7.4) and with (2.35). Then,
under the assumptions of Corollary 7.1 and for allCL⊗C [dC ]-valuedF0-measurable
simple functions η,M is a martingale with

E

[
sup
s�t

|Ms |
]

� ε E

[
sup
s�t

‖ΘW
0,(N ,M)

ξ ,s η‖2p
]

+ c

ε
E

[∫ t

0
‖ΘW

0,(N ,M)

ξ ,s η‖2p−2∥∥T (s)ϑ1/2ΘW
0,(N ,M)

ξ ,s η
∥∥2ds

]
,

t ∈ I, ε > 0. (7.14)

Proof First, let ϑ = 1. On account of (7.10) and the boundedness of Θ the criterion
given in Proposition 2.16 can be applied to show that M is a martingale in this case.
Notice also that the integrand in the definition ofM is predictable becauseW

0,(N ,M)

ξ
η

is adapted and continuous. If ϑ = 1 + d�(ω), then we apply Proposition 2.16 using
(7.10) andRemark7.4 in addition.The estimate (7.14) is an easy consequenceofDavis’
inequality (see, e.g., [23, Thm. 3.28 in Chap. 3]) E[sups�t |Ms |] � cE[�M ,M �

1/2
t ],

Proposition 2.12(2), and Cauchy–Schwarz inequalities. ��
In the statement of the next lemma and henceforth we abbreviate

Y t := β(t, X t ), t ∈ [0, sup I ), (7.15)

so that dX t = dBt + Y tdt .
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Lemma 7.6 Assume that q in (2.35) is bounded so that (2.37) is available, and set
θ := 1+ d�(ω). Then there is a P-zero setN such that, onΩ\N , every W

0,(N ,M)

ξ ,t ,
t ∈ I , maps the domain of d�(ω) into itself. Moreover, for all p ∈ N, t ∈ I , N ∈
N0, M ∈ N0 ∪ {∞} with N � M, and F0-measurable η : Ω → D(d�(ω)) with
E[‖θη‖4p] <∞,

E

[
sup
s�t

‖θ W
0,(N ,M)

ξ ,s η‖2p
]

� cp,Y ,I (t)E[‖θη‖4p]1/2
M∑

	=N

(c(p)t)	

	! . (7.16)

Here cp,Y ,I : I → (0,∞) is continuous and monotonically increasing.

Proof Let us first treat the case I = [0, T ] with 0 < T < ∞. We assume that
0 � N � M <∞ and that η is a C

L ⊗C [dC ]-valued F0-measurable simple function
to begin with. We apply (7.4) with δ = 1, ϑ = 1, and Θ = θε, where

θε := (1+ d�(ω))(1+ εd�(ω))−1, ε ∈ (0, 1]. (7.17)

As a consequence of Hypothesis 2.3 and Lemma 14.1 we then know that T1(s) and the
components of T (s) extend to bounded operators on Ĥ and that ‖T1(s)‖, ‖T2(s)‖,
and ‖T (s)‖2 are bounded by deterministic constants, uniformly in ε ∈ (0, 1] and
s ∈ I . In fact, ‖T (s)θ1/2ε ‖ is bounded uniformly in ε and s as well; see (14.1). We set

ψ(N ,M)
ε,s := θεW

0,(N ,M)

ξ ,s η, ρεN ,M (t) := E

[
sup
s�t

‖ψ(N ,M)
ε,s ‖2p

]
.

According to (2.35), (7.4), Lemma 7.5 (where we choose ε = 1/4p), and the above
remarks we then obtain

ρεN ,M (t) � ρεN ,M (0)+ c(p)
∫ t

0
(ρεN ,M (s)+ ρεN−1,M−1(s)) ds +

1

2
ρεN ,M (t)

+ c(p)E

[∫ t

0
‖ψ(N ,M)

ε,s ‖2p−2∥∥{T (s)θ1/2ε }θ1/2ε W
0,(N ,M)

ξ ,s η
∥∥2ds

]

+ 2p
∫ t

0
E
[‖ψ(N ,M)

ε,s ‖2p−1∥∥{T (s)θ1/2ε }θ1/2ε W
0,(N ,M)

ξ ,s η
∥∥|Y s |

]
ds, (7.18)

for all t ∈ [0, T ). The Cauchy–Schwarz inequality implies

‖θ1/2ε W
0,(N ,M)

ξ ,s η‖ � ‖ψ(N ,M)
ε,s ‖1/2‖W0,(N ,M)

ξ ,s η‖1/2, (7.19)

and combining this with a weighted Hölder inequality (w.r.t. the measure λ⊗ P) and
the bounds ‖T (s)θ1/2ε ‖ � c and (7.10), we see that the term in last line of (7.18) is
bounded by some p-dependent constant times
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∫ t

0
E
[‖ψ(N ,M)

ε,s ‖2p−1/2‖W0,(N ,M)

ξ ,s η‖1/2|Y s |
]
ds

�
(∫ t

0

E[‖ψ(N ,M)
ε,s ‖2p]

(T − s)2p/(4p−1)
ds

)1− 1
4p (∫ t

0
ΣM

N (s)(T − s)2p E[‖η‖2p|Y s |4p]ds
) 1

4p

.

(7.20)

Here we abbreviate ΣM
N (s) := ecs

∑M
n=0∨N (cs)n/n!, for integers N � M , where

c > 0 is chosen such that ‖W0,(N ,M)

ξ ,s ‖2p � ΣM
N (s), which is possible thanks to

(7.10). It is now also clear that

(second line of (7.18)) � c(p)
∫ t

0
ρεN ,M (s) ds + c(p)

∫ t

0
ΣM

N (s) ds E[‖η‖4p]1/2.

Applying Young’s and Hölder’s inequalities to (7.20), using (2.37), and applying the
obtained estimates to (7.18) we obtain

ρεN ,M (t) � 2ρεN ,M (0)+ c(p)
∫ t

0
αM
N (s) ds E[‖η‖4p]1/2

+
∫ t

0
βp,T (s) ρ

ε
N ,M (s) ds + c(p)

∫ t

0
ρεN−1,M−1(s) ds, (7.21)

for t ∈ [0, T ), where

αM
N (s) := ΣM

N (s)(1+ (T − s)2pE[|Y s |8p]1/2),
βp,T (s) := c(p)

(
1+ (T − s)

−2p
(4p−1)

)
.

Finally, an application of (7.8) and an integration by parts using ρεN ,M (0) =
δN ,0E[‖θεη‖2p] yield

ρεN ,M (t) � 2δN ,0 bp,T (0, t)E[‖θεη‖2p] + c(p)
∫ t

0
bp,T (s, t) α

M
N (s) ds E[‖η‖4p]1/2

+ c(p)
∫ t

0
bp,T (s, t) ρ

ε
N−1,M−1(s) ds, t ∈ [0, T ), (7.22)

with bp,T (s, t) := e
∫ t
s βp,T (r)dr . Observe that bp,T (r, s) bp,T (s, t) = bp,T (r, t), 0 �

r � s � t < T . We may now argue similarly as in the proof of Lemma 7.2 to see that
the following inequalities hold, for 0 � t < T ,

ρεN ,M (t) � 2E[‖θεη‖2p] bp,T (0, t)
M∑

n=N

∫
t�n

c(p)ndt[n]

+ JN ,M (t)E[‖η‖4p]1/2, (7.23)
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JN ,M (t) :=
M∑

m=0

∫
t�m+1

c(p)m+1 bp,T (t1, t) αM−m
N−m (t1) dt[m+1]. (7.24)

Since αK
L � 0 we may replace bp,T (t1, t) by bp,T (0, t) in (7.24). After that we

estimate
∫ t2
0 αK

L (t1)dt1 � ΣK
L (t)(t +

∫ t
0 (T − s)2pE[|Y s |8p]1/2ds) and evaluate the

remaining integrals over the simplices in JN ,M (t), which yields

JN ,M (t) � c(p) ect bp,T (0, t)
(
t +
∫ t

0
(T − s)2pE[|Y s |8p]1/2ds

)
SN ,M ,

SN ,M :=
M∑

m=0

M−m∑
n=0∨(N−m)

(c(p)t)m

m!
(ct)n

n!

=
N∑

m=0

(c(p)t)m

m!
M∑
j=N

(ct) j−m

( j − m)! +
M∑

m=N+1

(c(p)t)m

m!
M∑
j=m

(ct) j−m

( j − m)!

�
M∑
j=N

(c(p) ∨ c) j t j

j !
j∑

m=0

(
j

m

)
=

M∑
j=N

(c′(p)t) j

j ! .

Thanks to Lemma 7.2 and since θε is bounded we may use Lebesgue’s dominated
convergence theorem, first to extend (7.23) to all F0-measurable η : Ω → Ĥ with
E[‖η‖4p] < ∞, and then to pass to the limit M → ∞. Combining this with the
bounds on JN ,M (t) we obtain

ρεN ,∞(t) � cp,Y ,I (t)E[‖θεη‖4p]1/2 bp,T (0, t)
∞∑

n=N

(c′′(p)t)n

n! , (7.25)

for t ∈ [0, T ) and N ∈ N0. Since θε is merely a multiplication operator in each Fock
space sector F (m), m ∈ N, we may now pass to the limit ε ↓ 0 in (7.23) and (7.25)
by means of the monotone convergence theorem, for all η as in the statement of this
lemma. Finally, we observe that p � 1 entails 2p/(4p − 1) ∈ (1/2, 2/3]. Therefore,
bp,T (0, T ) is finite and we may extend our estimates to the case t = T again by
monotone convergence.

The same proof works in the case I = [0,∞), provided that all factors (T − s)a ,
which were used to control a possible singularity of Y at T , are replaced by 1. ��

In what follows we again consider D̂, i.e., the domain of the generalized fiber
Hamiltonians, as a Hilbert space equipped with the graph norm of M1(0) (defined in
(2.31)).

Lemma 7.7 Assume that q in (2.35) is bounded and set Υ := 1 + d�(m)2. Then
there is a P-zero set N0 such that, on Ω\N0, every W

0,(N ,M)

ξ ,t , t ∈ I , maps D̂ into

D(d�(m)2). Furthermore, for all p ∈ N, t ∈ I , N ∈ N0, M ∈ N0∪{∞}with N � M,
and all F0-measurable η : Ω → D̂ with E[‖η‖4pD̂ ] <∞,
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E

[
sup
s�t

‖Υ W
0,(N ,M)

ξ ,s η‖2p
]

� c̃p,Y ,I (t)E[‖η‖4pD̂ ]1/2
M∑

	=N

(c(p)t)	

	! . (7.26)

Here c̃p,Y ,I : I → (0,∞) is continuous and monotonically increasing.

Proof Again we start with the case I = [0, T ], 0 < T <∞. Let 0 � N � M <∞
and suppose that η is a C

L ⊗ C [dC ]-valued F0-measurable simple function to begin
with. We apply (7.4) with Θ := Υε, where

Υε := (E + d�(m)2)(1+ εd�(m)2)−1, ε ∈ (0, 1/E], E � 1. (7.27)

and with ϑ := θ = 1 + d�(ω) and δ = 1. As a direct consequence of Lemma 14.1
we may choose E so large that c(p)(‖T1(s)‖+ ‖T (s)‖2) � p/2, for all s � 0, where
c(p) is the constant appearing in (7.4). Then the sum of the first two lines on the right
hand side of (7.4) is less than or equal to

− p

2

∫ t

0
‖η̃(N ,M)

ε,s ‖2p−2‖d�(ω)1/2η̃(N ,M)
ε,s ‖2ds + p

2

∫ t

0
‖η̃(N ,M)

ε,s ‖2pds,

where

η̃
(N ,M)
ε,t := ΥεW

0,(N ,M)

ξ ,t η.

Using also the bound ‖T2(s)‖ � c, which follows from (2.18) and (14.5) and is uniform
in ε, we see that (7.4) implies, for all t ∈ [0, sup I ),

f εN ,M (t) := ‖η̃(N ,M)
ε,t ‖2p + p

2

∫ t

0
‖η̃(N ,M)

ε,s ‖2p−2‖d�(ω)1/2η̃(N ,M)
ε,s ‖2ds

� f εN ,M (0)+
5p

2

∫ t

0
‖η̃(N ,M)

ε,s ‖2pds + c

∫ t

0
‖η̃(N−1,M−1)ε,s ‖2pds + 2p sup

s�t
|Ms |

+ 2p
∫ t

0
‖θ1/4η̃(N ,M)

ε,s ‖2p−2∥∥T̂ (s) θ1/4Υ 1/2
ε W

0,(N ,M)

ξ ,s η
∥∥ |Y s |ds. (7.28)

HereM denotes the martingale defined in Lemma 7.5 withΘ = Υε and ϑ = θ ; recall
that dXs = dBs + Y sds. Moreover, we abbreviate

T̂ (s) := θ−1/4(adϕ(GXs )
Υε)Υ

−1/2
ε θ−1/4;

then T̂ (s) is bounded uniformly on Ω and in ε > 0 and s ∈ I , according to (14.6).
Since the terms in the last two lines of (7.28) are monotonically increasing in t the
estimate still holds true, if we replace f εN ,M (t) by sups�t f

ε
N ,M (s) on the left hand

side of (7.28). To bound the integral in the last line of (7.28) we estimate

‖θ1/4η̃(N ,M)
ε,s ‖ � ‖η̃(N ,M)

ε,s ‖1/2‖θ1/2η̃(N ,M)
ε,s ‖1/2,

‖θ1/4Υ 1/2
ε W

0,(N ,M)

ξ ,s η‖ � ‖η̃(N ,M)
ε,s ‖1/2‖θW

0,(N ,M)

ξ ,s η‖1/4‖W0,(N ,M)

ξ ,s η‖1/4,
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and combine these two bounds with the geometric-arithmetic mean inequality
a1/2b1/4c1/8d1/8 � a/2+ b/16+ c/8+ 2d to get

2p‖T̂ (s)‖ ‖θ1/4η̃(N ,M)
ε,s ‖∥∥θ1/4Υ 1/2

ε W
0,(N ,M)

ξ ,s η
∥∥ |Y s |

� (p(T − s)δ−1 + p/8)‖η̃(N ,M)
ε,s ‖2 + p

8
‖d�(ω)1/2η̃(N ,M)

ε,s ‖2

+ p

4
(T − s)−4δ‖θW

0,(N ,M)

ξ ,s η‖2 + 4p‖T̂ (s)‖8(T − s)4‖W0,(N ,M)

ξ ,s η‖2|Y s |8,
(7.29)

where δ ∈ (0, 1/4p). To bound the expectation of sups�t |Ms | in (7.28) we employ
Lemma 7.5 (with ε = 1/8p in (7.14)). Putting these remarks together and setting

�εN ,M (t) := E

[
sup
s�t

f εN ,M (s)

]
,

we infer from (7.28) that, for all t ∈ [0, sup I ),

�εN ,M (t) � �εN ,M (0)+
∫ t

0
(p(T − s)δ−1 + 21p

8 + 8pc‖T‖2∞)E[‖η̃(N ,M)
ε,s ‖2p]ds

+ c

∫ t

0
E[‖η̃(N−1,M−1)ε,s ‖2p]ds + 1

4
E

[
sup
s�t

‖η̃(N ,M)
ε,s ‖2p

]

+ (8pc‖T‖2∞ + p
8 )

∫ t

0
E[‖η̃(N ,M)

ε,s ‖2p−2‖d�(ω)1/2η̃(N ,M)
ε,s ‖2]ds

+ p

4

∫ t

0
E[‖η̃(N ,M)

ε,s ‖2p−2(T − s)−4δ‖θW
0,(N ,M)

ξ ,s η‖2]ds

+ 4p
∫ t

0
E[‖η̃(N ,M)

ε,s ‖2p−2‖T̂ (s)‖8(T − s)4‖W0,(N ,M)

ξ ,s η‖2|Y s |8]ds.
(7.30)

By enlarging E � 1 further, if necessary, we may assume that ‖T‖2∞ :=
sups∈I supΩ ‖T (s)‖2 � 1/82c. Applying also Hölder’s inequality ( 2p−22p + 1

p = 1) to

the (dPds)-integrals in the last two lines of (7.30) and estimating a
p−1
p b

1
p � a+ b/p

after that we obtain

�εN ,M (t) � �εN ,M (0)+
∫ t

0
β̃p,T (s)E[‖η̃(N ,M)

ε,s ‖2p]ds + c

∫ t

0
E[‖η̃(N−1,M−1)ε,s ‖2p]ds

+ 1

4
E

[
sup
s�t

‖η̃(N ,M)
ε,s ‖2p

]
+ p

4
E

[∫ t

0
‖η̃(N ,M)

ε,s ‖2p−2‖d�(ω)1/2η̃(N ,M)
ε,s ‖2ds

]

+ 1

4

∫ t

0
(T − s)−4pδE[‖θW

0,(N ,M)

ξ ,s η‖2p]ds

+ 4‖T̂‖8p∞
∫ t

0
E[(T − s)4p‖W0,(N ,M)

ξ ,s η‖2p|Y s |8p]ds, (7.31)
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for all t ∈ [0, sup I ), with

β̃p,T (s) := 7p + p(T − s)δ−1, so that β̃T ∈ L1([0, T ]).

Next, we observe that the sum of the two terms in the second line of (7.31) is �
3
4�

ε
N ,M (t). Applying also the bounds (7.16) and (7.10) in the third and fourth lines of

(7.31), respectively, we arrive at the following analog of (7.21),

1

4
�εN ,M (t) � �εN ,M (0)+

∫ t

0
β̃p,T (s) �

ε
N ,M (s)ds + c

∫ t

0
�εN−1,M−1(s) ds

+ c(p)
∫ t

0
α̃M
N (s) ds E[‖θη‖4p]1/2, t ∈ [0, sup I ).

Here we abbreviate, for integers N � M , 0 � M ,

α̃M
N (s) := {(T − s)−4pδcp,Y ,I (s)+ ecs(T − s)4pE[|Y s |16p]1/2}

M∑
	=0∨N

(c(p)s)	

	! ,

where c(p) > 0 is chosen bigger than the constant c > 0 introduced in the para-
graph below (7.20). Since by the choice of δ and by (2.37) the function in the curly
brackets {· · · } is integrable on [0, T ], we may now conclude exactly as in the proof
of Lemma 7.6.

Again the same proof works in the case I = [0,∞), if all factors (T − s)a with
some a ∈ R are replaced by 1. ��
Remark 7.8 In the proofs of the next two lemmas we shall employ the following
elementary observation:

LetK be a separableHilbert space and let X, X (N ), N ∈ N, beK -valued processes
on I such that sups�t ‖X (N )

s − Xs‖ → 0 in L2(P), as N →∞, for all t ∈ I , and

E

[
sup
s�t

‖X (N )
s − X (M)

s ‖2
]

�
M∑

n=N+1
cn(t), 0 � N < M <∞, t ∈ I,

where the cn : I → (0,∞) are monotonically increasing such that {ncn(t)} ∈ 	2(N),
t ∈ I . Then, P-a.s., the limit limN→∞ X (N )• = X• exists locally uniformly on I .

In fact, a priori it is clear that X (N	)• → X•, P-a.s., along some subsequence. An
easy argument employing the monotone convergence theorem shows, however, that∑∞

N=1 sups�t ‖X (N )
s − X (N+1)

s ‖ ∈ L2(P), for every t ∈ I , which readily implies that,

P-a.s., {X (N )• }N∈N is a locally uniform Cauchy sequence.

Recall that we consider D̂ as a Hilbert space equipped with the graph norm of
M1(0) = 1CL ⊗ ( 12d�(m)

2 + d�(ω)).

Lemma 7.9 Assume that q in (2.35) is bounded, let 0 � N � M � ∞, p ∈ N, and
let η : Ω → D̂ be F0-measurable with E[‖η‖4pD̂ ] <∞. Then the following holds:
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(1) For P-a.e. γ ∈ Ω , we have (W0,(N ,M)

ξ ,• η)(γ ) ∈ C(I, D̂) and (W0,(0,N )
ξ ,• η)(γ ) →

(W0
ξ ,•η)(γ ), N →∞, in C(I, D̂). Furthermore,

E

[
sup
s�t

‖W0,(N ,M)

ξ ,s η‖2pD̂
]

� ĉp,Y ,I (t)E[‖η‖4pD̂ ]1/2
M∑

n=N

(c(p)t)n

n! , t ∈ I.

(7.32)

(2) The integral process (
∫ t
0 v(ξ , Xs)W

0,(N ,M)

ξ ,s η dBs)t∈I is an L2-martingale.

Proof (1) The bound (7.32) follows by combining (7.16) and (7.26). It shows that
Remark 7.8 is applicable with K = D̂ and X (N ) = W

0,(0,N )
ξ ,s η, whence, P-a.s.

and locally uniformly on I , we have W
0,(0,N )
ξ ,• η→ W

0
ξ ,•η in D̂.

Next, let Mε := (M1(0) + 1)(εM1(0) + 1)−1, ε > 0. Then each Ĥ -valued
process Mε

W
0,(0,N )
ξ

ψ with N ∈ N, ε > 0, and ψ ∈ Ĥ has continuous
paths outside some ψ-independent P-zero set by Lemma 7.2. Therefore, each
process Mε

W
0,(0,N )
ξ

η with N ∈ N and ε > 0 has continuous paths P-a.s. By
virtue of (7.32) we may apply the dominated convergence theorem to show that
sups�t ‖(Mε − M1(0))W

0,(0,N )
ξ ,s η‖ → 0, ε ↓ 0, in L2(P) and for all t ∈ I ,

which implies that, P-a.s., M1(0)W
0,(0,N )
ξ

η has continuous paths as an Ĥ -valued

process or, in other words, (W0,(0,N )
ξ ,• η)(γ ) ∈ C(I, D̂), for P-a.e. γ and for

every N ∈ N. By the remark in the first paragraph above it now follows that
(W0

ξ ,•η)(γ ) ∈ C(I, D̂) and (W0,(0,N )
ξ

η)(γ )→ (W0
ξ
η)(γ ) in C(I, D̂), for P-a.e.

γ .
(2) The bound (2.18), Hypothesis 2.3(2), and Hypothesis 2.7 imply that the com-

ponents of v(ξ , X) are continuous B(D̂, Ĥ )-valued adapted processes whose
operator norms are uniformly bounded by deterministic constants. Hence, the
assertion is a consequence of Proposition 2.16 and (7.32). ��

Proof of Theorem 5.3 Apart from the bound (5.14), which is derived in the uniqueness
proof in the next paragraph, Part (1) of Theorem 5.3 is an immediate consequence of
Lemma 7.2.

To prove the uniqueness part of Theorem 5.3(2), let X ∈ SI (Ĥ ) be such that its
paths belong P-a.s toC(I, D̂) and such that it P-a.s. solves (5.15). Then a computation
analogous to (7.5) with Θ = 1 (again using the skew-symmetry of the components
of iv(ξ , x)) yields, P-a.s. for all t ∈ [0, sup I ),

‖Xt‖2 = ‖η‖2 −
∫ t

0
2
〈
Xs
∣∣(d�(ω)− σ · ϕ(FXs )+ V (Xs)

)
Xs
〉
ds.

Together with the bound (2.20) this P-a.s. implies that

‖Xt‖2 � ‖η‖2 +
∫ t

0
2
(
�(Xs)

2 − V (Xs)
)‖Xs‖2ds, t ∈ I,
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where � is defined in the statement of Theorem 5.3(1), thus

‖Xt‖ � ‖η‖e
∫ t
0 (�(Xs )

2−V (Xs ))ds, t ∈ I.

This entails the desired uniqueness statement and also proves (5.14).
To prove the existence part of Theorem 5.3(2) we assume that q (in (2.35)) is

bounded for a start.
Let η : Ω → D̂ be F0-measurable with E[‖η‖8D̂] < ∞ and let η	, 	 ∈ N, be

C
L ⊗ C [dC ]-valued F0-measurable simple functions such that ‖η	 − η‖D̂ → 0 in

L8(P). We already know that each η	, 	 ∈ N, may be plugged into the stochastic
integral equation (6.1) (where M < ∞). Set η̃(	)s := W

0,(N ,M)

ξ ,s (η	 − η), where 0 �
N � M � ∞. In view of (7.32) we then see that sups�t ‖η̃(	)s ‖D̂ → 0, 	 → ∞, in
L4(P), for all t ∈ I . Moreover, we have the following bounds, uniformly in x ∈ R

ν ,

‖Ĥ0
sc(ξ , x)φ‖+‖v(ξ , x)φ‖ � c(ξ) ‖φ‖D̂, ‖σ · ϕ(Fx)φ‖ � c ‖φ‖D̂. (7.33)

Combined with Lemma 7.9 and Proposition 2.12(2) the first one permits to get

E

[
sup
s�t

∥∥∥
∫ s

0
v(ξ , Xr ) η̃

(	)
r dBr

∥∥∥2
]

� cE

[∫ t

0
‖v(ξ , Xs) η̃

(	)
s ‖2ds

]

� c′t E

[
sup
s�t

‖η̃(	)s ‖2D̂
]

	→∞−−−−−→ 0, (7.34)

for every t ∈ I . Moreover, (2.37) and (7.15) imply that the right hand side of

E

[
sup
s�t

∥∥∥
∫ s

0
v(ξ , Xr ) η̃

(	)
r Y rdr

∥∥∥2
]

� c′′
(∫ t

0
(T − s)−2/3ds

)3/2 (∫ t

0
(T − s)2E[|Y s |4]ds

)1/2

E

[
sup
s�t

‖η̃(	)s ‖4D̂
]1/2

(7.35)

goes to zero, for every t ∈ I , as well. (If I = [0,∞), replace (T − s)a by 1. Notice
that the constants in (7.34) and (7.35) depend in particular on q.) It is now clear that
we may plug η	 into (6.1) and pass to the limit 	 → ∞ in that equation, since each
term converges in L2(P), locally uniformly on I . Hence, Eq. (6.1) is available for all
F0-measurable η : Ω → D̂ with E[‖η‖8D̂] <∞, at least when M <∞.

To pass to the limit M →∞ in the so-obtained extension of (6.1), we pick some
F0-measurable η : Ω → D̂ with E[‖η‖8D̂] < ∞ and observe that Lemma 7.9(1) and

(7.33) imply the P-a.s. existence of the following limit in C(I, Ĥ ) (equipped with
the topology of locally uniform convergence),
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lim
N→∞

∫ •

0

(
Ĥ0
sc(ξ , Xs)W

0,(0,N )
ξ ,s − σ · ϕ(FXs )W

0,(0,N−1)
ξ ,s

)
η ds

=
∫ •

0
Ĥ0(ξ , Xs)W

0
ξ ,sη ds.

Employing (7.34) and (7.35), but with η̃(	) replaced by W
0,(N+1,M)

ξ
η, N < M � ∞,

and invoking (7.32), we further see that Remark 7.8 applies with K = Ĥ and
X (N )
t = ∫ t0 v(ξ , Xs)W

0,(0,N )
ξ ,s η dXs . This shows that, P-a.s.,

lim
N→∞

∫ •

0
v(ξ , Xs)W

0,(0,N )
ξ ,s η dXs =

∫ •

0
v(ξ , Xs)W

0
ξ ,s η dXs in C(I, Ĥ ).

Thus, we have solved (5.15) with V = 0, for bounded q, and for η in L8
D̂(P),

W
0
ξ ,•η = η− i

∫ •

0
v(ξ , Xs)W

0
ξ ,s η dXs −

∫ •

0
Ĥ0(ξ , Xs)W

0
ξ ,sη ds, P-a.s. (7.36)

Next, if η : Ω → D̂ is an arbitrary F0-measurable map and q : Ω → R
ν is F0-

measurable but otherwise arbitrary as well, then we may apply the results proven so
far with qn := 1{|q|+‖η‖D̂�n}q, ηn := 1{|q|+‖η‖D̂�n}η, n ∈ N. If W

0
ξ
η is constructed

by means of q (which is possible according to Lemma 7.2), then we use the pathwise
uniqueness property explained in Remark 7.3 and the pathwise uniqueness property
Xq = Xqn , P-a.s. on {q = qn}, and Lemma 7.9(1) to argue that W

0
ξ
η has P-a.s. con-

tinuous paths as a D̂-valued process. (See also (9.2) below for a pathwise uniqueness
statement slightly more general than necessary.) Hence, the (stochastic) integrals in
(7.36) are well-defined elements of SI (Ĥ ), for general q and η as well. Then the
pathwise uniqueness property of Remark 7.3 and the pathwise uniqueness of the lat-
ter (stochastic) integrals imply that (7.36) is satisfied P-a.s. on the union of all sets
{|q| + ‖η‖D̂ � n}, n ∈ N.

To conclude it only remains to include the potential V , which can be done by

applying Itō’s formula to W
V
ξ ,tη = e−

∫ t
0 V (Xs )dsW0

ξ ,tη. ��

8 Dependence on initial conditions

In this section we shall deal with families of driving processes indexed by the initial
condition in (2.35). Recall that in Hypothesis 2.7 we introduced the notation Xq for
the process solving the SDE dX t = dBt + β(t, X t )dt with initial condition X0 = q.

Obviously, all quantities ι, (wτ,t )t∈I , uVξ , U
±, (U−

τ,t )t∈I , K , (Kτ,t )t∈I , and W
V
ξ

depend on the choice of the driving process (and in particular of B). Since we are now
dealing with different choices of the driving process at the same time, we explicitly
refer to this dependence in the notation by writing Z [Xq], if Z is any of the above
quantities constructed by means of Xq .

In the first lemma below and in its corollary we consider constant initial conditions
q = x and study the pathwise continuous dependence of the above processes on x.
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In the second lemma we prove a weaker form of continuous dependence for a more
general class of initial conditions. Both lemmas serve as a preparation for the study
of a Markovian flow introduced in Sect. 9. As usual, the existence of the flow will be
inferred from an interplay between these two types of continuous dependences.

Lemma 8.1 For any Hilbert space K , let C(ν)

K denote the set of maps Z : I × R
ν ×

Ω → K , (t, x, γ ) �→ Zt (x, γ ), for which we can find another map Z % : I × R
ν ×

Ω → K satisfying the following two conditions:

(1) For all x ∈ R
ν , we find some P-zero set Nx such that Zt (x, γ ) = Z %

t (x, γ ), for
all (t, γ ) ∈ I × (Ω\Nx).

(2) For every γ ∈ Ω , the map I × R
ν � (t, x) �→ Z %

t (x, γ ) ∈ K is continuous.

If V is continuous, then the following map belongs to C(ν)

h+1⊕h⊕h⊕C
,

(t, x, γ ) �−→ (Kt [Xx],U−
t [Xx],U+

t [Xx], uVξ ,t [Xx])(γ ).

Proof Let p � 2. It is well-known (see, e.g., [6, Thm. 4.37]) that there exists cp >

0, such that, for all separable Hilbert spaces K and (e.g.) all adapted, continuous
B(Rν,K )-valued processes A on I ,

E

[
sup
t�σ

∥∥∥
∫ t

0
As dBs

∥∥∥p
]

� cp σ
p−2
2 E

[∫ σ

0
‖As‖p ds

]
, σ ∈ I. (8.1)

Let us further assume that p > ν is such that (2.38) is available and apply the previous
inequality to

K 0• [Xx] :=
∫ •

0
ιs[Xx]GXx

s
dBs ∈ SI (h+1), x ∈ R

ν .

Employing (8.1)with As = ιs[Xx]GXx
s
−ιs[X y]GX y

s
and observing that the derivative

of (x, y) �→ e−im·xG y is uniformly bounded on R
ν as a consequence of Hypothe-

sis 2.3(2), we deduce that, for some L0 > 0 and all x, y ∈ R
ν ,

E

[
sup
t�σ

∥∥K 0
t [Xx] − K 0

t [X y]∥∥p
]

� cp,ν L
p
0 σ

p−2
2

(
σ |x − y|p +

∫ σ

0
E
[|Xx

s − X y
s |p
]
ds

)

� cp,ν L
p
0 (1+ L(σ )p)σ p/2 |x − y|p, σ ∈ I,

where we applied (2.38) in the last step. Since p > ν, this estimate implies that
(t, x, γ ) �→ K 0

t [Xx](γ ) belongs to C(ν)

h+1 according to the Kolmogorov–Neveu
lemma; see [30, Lem. 3 of § 36 and Exercise E.5 of Chap. 8]. Moreover, it is easy to
check that (t, x, γ ) �→ Kt [Xx](γ )−K 0

t [Xx](γ ) is inC(ν)

h+1 as the latter processes are
given by the Bochner–Lebesgue integrals
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∫ t

0
jse

im·(x−Ξ s (x,γ )){GΞ s (x,γ ) · β(s,Ξ s(x, γ ))+ q̆Ξ s (x,γ )}ds, t ∈ I, (8.2)

for all γ outside a x-dependent P-zero set. In fact, for every γ ∈ Ω , the integrand in
(8.2) is continuous in (s, x) ∈ [0, sup I )×R

ν as a consequence of Hypothesis 2.3(2)
and Hypothesis 2.7(2a). Hence, we may apply the dominated convergence theorem
to verify continuity of the integrals (8.2) as (t, x) varies in any compact subset of
[0, sup I ) × R

ν . In the case I = [0, T ] we have to employ the following additional
observation to include the endpoint T <∞: for every r ∈ N, Eq. (2.37) implies

E

[∫ T

0
sup
|x|�r

|β(s,Ξ s(x, ·))|ds
]

�
(∫ T

0
(T − s)−2/3ds

)3/4 (∫ T

0
(T − s)2E

[
sup
|x|�r

|β(s, Xx
s )|4
]
ds

)1/4

<∞.

As a consequence, we find a P-zero set N such that, for all γ ∈ N c and r ∈ N, we
may use a suitable multiple of 1+ sup|x|�r |β(s,Ξ s(x, γ ))| as an integrable majorant
when we apply the dominated convergence theorem to show continuity of the integral
(8.2) as (t, x) varies in I × {|x| � r}. The remaining assertions now follow from the
fact that (t, x, γ ) �→ Kt [Xx](γ ) is in C(ν)

h+1 in combination with (3.5) and (3.6). ��
Corollary 8.2 Let V ∈ C(Rν,R) and 0 � N � M � ∞. Then

(t, x, γ ) �→ W
V,(N ,M)

ξ ,t [Xx](γ ) ψ belongs to C(ν)

Ĥ
, (8.3)

for all ψ ∈ Ĥ . More precisely, there exist operators W
V,(N ,M)

ξ ,t [Xx]%(γ ) ∈ B(Ĥ ),
t ∈ I , x ∈ R

ν , γ ∈ Ω , such that

∀ (t, γ ) ∈ I ×Ω : sup
s�t

sup
x∈Rν

∥∥WV,(N ,M)

ξ ,s [Xx]%(γ )∥∥ � ct

M∑
	=N

(c t)	

	! , (8.4)

and such that, for everyψ ∈ Ĥ , (t, x, γ ) �→ W
V,(N ,M)

ξ ,t [Xx]%(γ ) ψ is a modification
of the map in (8.3) fulfilling the requirements (1) and (2) of Lemma 8.1.

Proof Step 1 By definition, Hypothesis 2.3, and Lemma 8.1, after a suitable mod-
ification the maps (s, t, x) �→ ws,t [Xx] FXx

s
∈ hSC , and (s, t, x) �→ U−

s,t [Xx] are
P-a.s. jointly continuous on {s � t ∈ I } × R

ν . More precisely, one has to replace
Xx in ι, w, and F by its version (Ξ0,t (x, ·))t∈I given by Hypothesis 2.7(2), and
(t, x, γ ) �→ Kt [Xx](γ ) should be replaced by a suitable version K % as in Lemma 8.1.
Combining this observationwithRemark 4.6, Lemma8.1, Eqs. (4.2), and (5.6)wemay
verify by hand that (8.3) holds true, provided thatψ ∈ C

L⊗C [dC ], 0 � N � M <∞,
and V is continuous. We let W

V,(N ,M)

ξ ,t [Xx]% denote the random operators defined on

the domain C
L ⊗C [dC ] by the same formulas as W

V,(N ,M)

ξ ,t [Xx] �CL⊗C [dC ], but with
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Xx and K replaced by (Ξ0,t (x, ·))t∈I and K %, respectively. (Recall that uV
ξ
and U±

are defined by means of K and ι.) Then we find a (M, N )-independent P-zero set
N ∈ F such that, for all (t, x, γ ) ∈ I ×Q

ν × (Ω\N ),

W
V,(N ,M)

ξ ,t [Xx] �CL⊗C [dC ] (γ ) = W
V,(N ,M)

ξ ,t [Xx]%(γ ).

Applying the bound (7.10) to each of the countable number of processes in the previous
equation and enlarging the P-zero set N , if necessary, we conclude that, for all
0 � N � M <∞, t ∈ I , γ ∈ Ω\N , we have

sup
s�t

∥∥WV,(N ,M)

ξ ,s [Xx]%(γ ) ψ̃∥∥ � ct ‖ψ̃‖
M∑

	=N

(c t)	

	! , ψ̃ ∈ C
L ⊗ C [dC ], (8.5)

a priori for all x ∈ Q
ν . By continuity of (t, x) �→ W

V,(N ,M)

ξ ,t [Xx]%(γ ) ψ̃ , the
bound (8.5) is, however, even available for all x ∈ R

ν . Finally, we re-define
W

V,(N ,M)

ξ
[Xx]%(γ ) := δ0,N1, if γ ∈ N , so that (8.5) is valid for all (t, x, γ ) ∈

I × R
ν ×Ω .

Step 2 Let M < ∞, ψ ∈ Ĥ , and ψn ∈ C
L ⊗ C [dC ], n ∈ N, with ψn → ψ .

Then, by the construction of W
V,(N ,M)

ξ
[Xx] in Lemma 7.2, W

V,(N ,M)

ξ
[Xx]ψn →

W
V,(N ,M)

ξ
[Xx]ψ on I outside some x-dependent P-zero set N ′

x,N ,M , which nei-
ther depends on ψ nor on the approximating sequence {ψn}. Therefore, defining
W

V,(N ,M)

ξ ,t [Xx]%ψ := limn→∞ W
V,(N ,M)

ξ ,t [Xx]%ψn , t ∈ I , on Ω , we certainly have

W
V,(N ,M)

ξ ,t [Xx]%ψ = W
V,(N ,M)

ξ ,t [Xx]ψ , t ∈ I , on Ω\(N ∪ N ′
x,N ,M ), so that

W
V,(N ,M)

ξ ,t [Xx]%ψ satisfies the requirement (1) in Lemma 8.1. Notice that, by (8.5), the

above definition ofW
V,(N ,M)

ξ ,t [Xx]%ψ does not depend on the approximating sequence

{ψn} and that (8.5) extends to all ψ̃ ∈ Ĥ . Moreover, (8.5), thus extended, implies
that, on Ω , the convergence W

V,(N ,M)

ξ ,t [Xx]ψn → W
V,(N ,M)

ξ ,t [Xx]% ψ , n → ∞, is
locally uniform in (t, x) ∈ I ×R

ν . Employing the results of the first step, we deduce
that (t, x) �→ W

V,(N ,M)

ξ ,t [Xx]%(γ ) ψ is continuous on I × R
ν . This proves (8.3) and

(8.4) for finite M .

Step3Employing (8.4) (withfiniteM)we further see that the limitsW
V,(N ,∞)

ξ ,t [Xx]%(γ )
ψ := limM→∞ W

V,(N ,M)

ξ ,t [Xx]%(γ )ψ are locally uniform in (t, x), for all γ ∈ Ω and

ψ ∈ Ĥ , and that, by the construction ofWV,(N ,M)

ξ ,t [Xx] in Lemma 7.2 and the remarks

in Step 2, W
V,(N ,∞)

ξ
[Xx]%ψ = W

V,(N ,∞)

ξ
[Xx]ψ holds outside some ψ-independent

P-zero setN ′′
x,N . This implies (8.3) and (8.4) also in the general case. ��

Lemma 8.3 Assume that V is continuous and bounded. Let q, qn : Ω → R
ν , n ∈ N,

all be bounded and F0-measurable such that qn → q, P-a.s., as n → ∞, and
supn ‖qn‖∞ < ∞. Moreover, let η, ηn : Ω → Ĥ , n ∈ N, all be bounded and F0-
measurable such that E[‖η − ηn‖2] → 0, as n →∞. Then
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E

[
sup
t�τ

∥∥WV
ξ ,t [Xq] η −W

V
ξ ,t [Xqn ] ηn

∥∥2
]

n→∞−−−−−→ 0, τ ∈ I.

Proof In the case I = [0, T ] we assume that τ < T to start with.
Since ‖WV

ξ ,t [Xq]‖ � cτ , t ∈ [0, τ ], P-a.s., with a q-independent constant cτ ,
we may assume that ηn = η, n ∈ N. As we can approximate η by the vectors
η̃	 := (1+ d�(m)2/	+ d�(ω)/	)−1η : Ω → D̂, which satisfy E[‖η − η̃	‖2] → 0,
	→∞, by dominated convergence, we may also assume that η : Ω → D̂ such that
‖η‖D̂ is bounded on Ω . Under these assumptions we define ψ(n)

t := W
V
ξ ,t [Xq] η −

W
V
ξ ,t [Xqn ] η, so that ψ(n)

0 = 0. Abbreviate

vs := ξ − d�(m)− ϕ(GXq
s
),

and let v
(n)
s be defined analogously with qn in place of q. Applying Theorem 5.3 in

combination with Example 2.11 and taking Re〈ψ(n)
s |ivs ψ(n)

s 〉 = 0 into account, we
P-a.s. obtain after some brief computations, for all n ∈ N and t ∈ [0, sup I ),

‖ψ(n)
t ‖2 = −

∫ t

0
2‖d�(ω)1/2ψ(n)

s ‖2ds

+
∫ t

0
2Re

〈
ψ(n)
s

∣∣(σ · ϕ(FXq
s
)+ i

2ϕ(qXq
s
)
)
ψ(n)
s

〉
ds

−
∫ t

0
2Re

〈
ψ(n)
s

∣∣V (Xq)WV
ξ ,s[Xq]η − V (Xqn )WV

ξ ,t [Xqn ]η〉 ds

+
∫ t

0
Re
〈
(vs − v(n)s )WV

ξ ,s[Xq]η∣∣(vs − v(n)s )WV
ξ ,s[Xqn ]η〉 ds

+
∫ t

0
Re
〈
W

V
ξ ,s[Xq]η∣∣[vs, vs − v(n)s ]WV

ξ ,s[Xqn ]η〉 ds

+
∫ t

0
2Re

〈
ψ(n)
s

∣∣(σ · ϕ(FXq
s
−FX

qn
s
)+ i

2ϕ(qXq
s
− qXqn

s
)
)
W

V
ξ ,s[Xqn ]η〉 ds

−
∫ t

0
2Re

〈
ψ(n)
s

∣∣i(vs − v(n)s )W
V
ξ ,s[Xqn ]η〉 dBs

−
∫ t

0
2Re

〈
ψ(n)
s

∣∣i(vs − v(n)s )W
V
ξ ,s[Xqn ]η〉β(s, Xq

s ) ds

−
∫ t

0
2Re

〈
ψ(n)
s

∣∣iv(n)s W
V
ξ ,s[Xqn ]η〉(β(s, Xq

s )− β(s, Xqn
s )
)
ds. (8.6)

Next, we observe that vs − v
(n)
s = ϕ(GX

qn
s
− GXq

s
) and

[vs, vs − v(n)s ] = [d�(m), ϕ(GXq
s
− GX

qn
s
)]

= iϕ(im · (GX
qn
s
− GXq

s
)),
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where the field operators on the right hand sides can be controlled by means of (2.18);
i.e., setting θ := 1+ d�(ω), we obtain

‖(vs − v(n)s )θ−1/2‖ + ‖[vs, vs − v(n)s ]θ−1/2‖ � c ‖GX
qn
s
− GXq

s
‖kν � c′,

‖σ · ϕ(FXq
s
− FX

qn
s
)θ−1/2‖ � c ‖FX

qn
s
− FXq

s
‖kS � c′,

‖ϕ(qXq
s
− qXqn

s
)θ−1/2‖ � c max

j=1,...,ν ‖∂x j GX
qn
s
− ∂x j GXq

s
‖kν � c′.

Moreover, ‖σ · ϕ(FXq
s
)ψ

(n)
s ‖, ‖ϕ(qXq

s
)ψ

(n)
s ‖ � c ‖θ1/2ψ(n)

s ‖; here we observe that

terms containing one factor ‖θ1/2ψ(n)
s ‖ = (‖d�(ω)1/2ψ(n)

s ‖2 + ‖ψ(n)
s ‖2)1/2 can be

controlled by the integral in the first line of (8.6) via the bound 2ab � εa2 + b2/ε.
Taking these remarks into account, writing W

V
ξ ,s[Xqn ]η = W

V
ξ ,s[Xq]η − ψ

(n)
s , and

applying Cauchy–Schwarz inequalities we easily see that the sum of all terms of the
right hand side of (8.6) which appear in the first six lines is bounded from above by

(
Lines 1.–6. of RHS of (8.6)

)
� c

∫ t

0
(‖ψ(n)

s ‖2 + αn(s) ‖θ1/2WV
ξ ,s[Xq]η‖2)ds,

for t ∈ [0, τ ]. Here the constant depends (inter alia) on the supremum norm of V
which is bounded by assumption, and the random variables αn(s) are defined by

αn(s) := max
�=1,2,4 ‖GX

qn
s
− GXq

s
‖�kν + ‖FX

qn
s
− FXq

s
‖2kS

+ max
j=1,...,ν ‖∂x j GX

qn
s
− ∂x j GXq

s
‖2kν + |V (Xqn

s )− V (Xq
s )|2.

To treat the martingale in the seventh line of (8.6), let us call itM, we apply the special
case E[supt�τ |Mt |] � cE[�M,M�

1/2
τ ] of an inequality due to Davis; see, e.g., [23,

Thm. 3.28 in Chap. 3]. Here we have, for every ε > 0,

E
[
�M,M�1/2τ

] = 2E

[(∫ τ

0

(
Re
〈
ψ(n)
s

∣∣i(vs − v(n)s )W
V
ξ ,s[Xqn ]η〉)2ds

)1/2
]

� εE

[
sup
t�τ

‖ψ(n)
t ‖2

]
+ 1

ε
E

[∫ τ

0

∥∥(vs − v(n)s )W
V
ξ ,s[Xqn ]η∥∥2ds

]
.

Furthermore (ignore the factors (T − s)a in the case I = [0,∞)),

2E

[∫ t

0
‖ψ(n)

s ‖ ∥∥(vs − v(n)s )W
V
ξ ,s[Xqn ]η∥∥ |β(s, Xq

s )| ds
]

�
∫ t

0
(T − s)−3/4E

[
sup
r�s

‖ψ(n)
r ‖2

]
ds +

(∫ t

0
(T − s)2E[|β(s, Xq

s )|4]ds
)1/2

·
(∫ t

0
E
[
αn(s)(T − s)−1/2‖θ1/2WV

ξ ,s[Xqn ]η‖4]ds
)1/2

,
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and, likewise,

2
∫ t

0
E
[‖ψ(n)

s ‖ ∥∥v(n)s W
V
ξ ,s[Xqn ]η∥∥ |β(s, Xq

s )− β(s, Xqn
s )|]ds

�
∫ t

0
(T − s)−3/4E

[
sup
r�s

‖ψ(n)
r ‖2

]
ds

+
(∫ t

0
E
[
c(T − s)−1/2‖WV

ξ ,s[Xqn ]η‖4D̂
]
ds

)1/2 (∫ t

0
(T − s)2E[α′n(s)4]ds

)1/2

,

with α′n(s) := |β(s, Xq
s )− β(s, Xqn

s )|.
Putting all the above remarks together, using that, by (7.32),

max
�=1,2,4 sup

q̃=q,q1,q2,...
E

[
sup
s�τ

‖WV
ξ ,s[Xq̃]η‖2�D̂

]
� c(τ )(1+ E[‖η‖16D̂ ]),

and employing (2.37), we readily arrive at the following estimate for ρ(t) :=
E[supr�t ‖ψ(n)

r ‖2],

ρ(t) � c

∫ t

0
[1 ∨ (T − s)−1/2] ρ(s) ds + cn(τ ), t ∈ [0, τ ], (8.7)

cn(τ ) := c(τ, η)

{
max

a=1/2,1/4

(∫ τ

0
[1 ∨ (T − s)−1/2]E[αn(s)2]ds

)a

+
(∫ τ

0
(T − s)2E[α′n(s)4]ds

)1/2
}
.

Since qn → q, P-a.s., Hypothesis 2.7(2a) and (2c) imply that Xqn
s → Xq

s , s ∈ [0, τ ],
P-a.s., whence, by Hypothesis 2.3 and the continuity of V and β, αn(s) → 0 and
α′n(s) → 0, for all s ∈ [0, τ ], P-a.s. By virtue of Hypothesis 2.3, Hypothesis 2.7(3)
[with q = |q| ∨ (supn |qn|)], and the boundedness of V we may thus apply the
dominated convergence theorem to see that cn(τ ) → 0, as n → ∞. In the case
I = [0, T ] we further observe that cn(T )→ 0 and that the bound (8.7) holds true for
τ = T as well. We may now apply Gronwall’s lemma to conclude. ��

9 Stochastic flow, strong Markov property, and strong solutions

In this section we prove the existence of a Markovian flow associated with our model,
always assuming that the potential V is continuous and bounded. To start with we
recall that the time-shifted stochastic basis Bτ , where τ ∈ [0, sup I ), together with the
time-shifted Brownian motion and the drift vector field given, respectively, by

τBt := Bτ+t − Bτ , βτ (t, x) := β(τ + t, x), t ∈ I τ , x ∈ R
ν,
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again satisfy the conditions imposed by Hypothesis 2.7; cf. (2.34) for the definition
of Bτ and I τ . In accordance with our earlier conventions, we let τ Xq ∈ SI τ (R

ν)

denote the solution of the SDE dX t = dτ Bt +βτ (t, X t )dt with Fτ -measurable initial
condition q : Ω → R

ν and Bτ as underlying stochastic basis. Then the corresponding
operators

W
V
ξ ,t [τ Xq] ∈ B(Ĥ ), t ∈ I τ , P-a.s., (9.1)

are defined by Theorem 5.3 applied with Bτ as underlying basis. For later reference
we note that the pathwise uniqueness property of W

V
ξ
[ · ] explained in Remark 7.3

implies, for any two Fτ -measurable q, q̃ : Ω → R
ν and A ∈ Fτ ,

q = q̃ P-a.s. on A ⇒ (∀t ∈ I τ : W
V
ξ ,t [τ Xq] = W

V
ξ ,t [τ Xq̃]) P-a.s. on A. (9.2)

Moreover, if η : Ω → D̂ is Fτ -measurable, then, according to Hypothesis 2.7 and
Theorem 5.3, (τ Xq,WV

ξ
[τ Xq] η) is, up to indistinguishability, the unique element of

SI τ (R
ν × Ĥ ) whose paths belong P-a.s. to C(I τ ,Rν × D̂) and which solves the

following initial value problem for a system of SDE’s for (X, X),

X• = q + τ B• +
∫ •

0
βτ (s, Xs) ds, (9.3)

X• = η − i
∫ •

0
v(ξ , Xs) Xs dXs −

∫ •

0
Ĥ V (ξ , Xs) Xs ds. (9.4)

In what follows we shall also set T Xq := q and W
V
ξ ,0[T Xq] := 1, for every

FT -measurable q : Ω → R
ν , if T = sup I <∞.

Lemma 9.1 Let 0 � σ � τ ∈ I and let (q, η) : Ω → R
ν × Ĥ be Fσ -measurable.

Then we P-a.s. have

∀ t ∈ I, t � τ : W
V
ξ ,t−σ [σ Xq] η = W

V
ξ ,t−τ [τ X

σ Xq
τ−σ ]WV

ξ ,τ−σ [σ Xq] η. (9.5)

Proof If η attains its values in D̂, then it is straightforward to infer the statement from
the above remarks. If η is arbitary, we apply (9.5) first to the Fτ -measurable random
vectors ηn := (1+ d�(m)2/n + d�(ω)/n)−1η : Ω → D̂. Then there is a P-zero set
N such that (9.5) holds with η replaced by ηn onΩ\N and for all n ∈ N. By (9.1) we
may then pass to the limit n →∞ pointwise on Ω\N . ��

We summarize parts of our previous discussion in the following theorem. With the
results proven so far at hand its proof follows traditional lines:

Theorem 9.2 (Existence of a stochastic flow) Assume that V is continuous and
bounded. Then there exists a family of maps �τ,t : R

ν × Ĥ × Ω → R
ν × Ĥ ,

0 � τ � t ∈ I , satisfying the following:
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(1) Forall τ ∈ [0, sup I ),φ ∈ Ĥ , andγ ∈ Ω , the following twomaps are continuous,

R
ν × Ĥ � (x, ψ) �−→ �τ,τ+•(x, ψ, γ ) ∈ C(I τ ,Rν × Ĥ ),

I τ � t �−→ �τ,τ+t ( ·, φ, γ ) ∈ C(Rν,Rν × Ĥ ).

(2) Let τ ∈ I . Then �τ,τ (x, ψ, γ ) = (x, ψ), for all (x, ψ, γ ) ∈ R
ν × Ĥ × Ω . If

(q, η) : Ω → R
ν × Ĥ is Fτ -measurable with τ < sup I , then

�τ,τ+•(q(γ ), η(γ ), γ ) =
(
τ Xq• ,WV

ξ ,•[τ Xq] η)(γ ) on I τ , (9.6)

for P-a.e. γ . In particular, if η attains its values in D̂, then�τ,τ+•(q(·), η(·), ·) is,
up to indistinguishability, the only element of SI τ (R

ν × Ĥ ) whose paths belong
P-a.s. to C(I τ ,Rν × D̂) and which solves (9.3) and (9.4).

(3) For 0 � σ � τ ∈ I , we find a P-zero set Nσ,τ such that, for all (x, ψ) ∈ R
ν×Ĥ ,

�σ,t (x, ψ, γ ) = �τ,t (�σ,τ (x, ψ, γ ), γ ), τ � t ∈ I, γ ∈ Ω\Nσ,τ . (9.7)

(4) For 0 � τ � t , the map [τ, t] × R
ν × Ĥ ×Ω � (s, x, ψ, γ ) �→ �τ,s(x, ψ, γ )

is B([τ, t]) ⊗B(Rν × Ĥ ) ⊗ Fτ,t -measurable, where Fτ,t is the completion of
the σ -algebra generated by all increments Bs − Bτ with s ∈ [τ, t]. In particular,
�τ,t (x, ψ, ·) is Fτ -independent.

Proof If (q, η) = (x, ψ) ∈ R
ν × Ĥ is constant, then we define

�τ,τ+t (x, ψ, γ ) :=
(
Ξ τ,τ+t (x, γ ),WV

ξ ,t [τ Xx]% ψ), τ ∈ I, t ∈ I τ , γ ∈ Ω.

Then � satisfies (1) and (9.6) (with (q, η) = (x, ψ)) according to Hypothesis 2.7(2)
and Corollary 8.2 (applied to the time-shifted data).

Next, let A1, . . . , A	 be disjoint elements of Fτ whose union equals Ω and let
(x j , ψ j ) ∈ R

ν × Ĥ , j = 1, . . . , 	. Then (9.2) implies that, P-a.s. on I τ ,

W
V
ξ ,•[τ Xq̂]η̂ =

	∑
j=1

1A j W
V
ξ ,•[τ Xx j ]ψ j , where (q̂, η̂) =

	∑
j=1

(x j , ψ j ) 1A j . (9.8)

Since, by the remarks in the first paragraph of this proof, the process on the right hand
side of the first identity in (9.8) and the second component of (�τ,τ+t (q̂(·), η̂(·), ·))t∈I τ
are indistinguishable, we see that (9.6) holds true, for simple Fτ -measurable functions
(q, η) = (q̂, η̂) as in (9.8).

Now, let (q, η) : Ω → R
ν × Ĥ be Fτ -measurable and bounded. Then there exist

simple functions (q̂n, η̂n), n ∈ N, like the one in (9.8), such that supn ‖q̂n‖∞ < ∞,
q̂n → q, P-a.s., and E[‖η − η̂n‖2] → 0, as n →∞. By applying Lemma 8.3 to the
time-shifted data, wemay assume – after passing to a suitable subsequence if necessary
– that also η̂n → η and W

V
ξ ,t [τ Xq̂n ]η̂n → W

V
ξ ,t [τ Xq]η, t ∈ I τ , on the complement
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of some t-independent P-zero set. Since (x, ψ) �→ �τ,t (x, ψ, γ ) is continuous, we
may thus pass to the limit n →∞ in

�τ,t (q̂n(γ ), η̂n(γ ), γ ) =
(
τ Xq̂n

t ,WV
ξ ,t [τ Xq̂n ] η̂n

)
(γ ),

for all t ∈ I τ and γ outside another t-independent P-zero set. This proves (9.6) for
bounded (q, η). For general (q, η), we plug q̃n := 1|q|�nq and η̃n := 1‖η‖�n η, n ∈ N,
into (9.6) which then holds outside a P-zero set Nn . Then (9.2) permits to argue that
both sides of the resulting identity converge pointwise on Ω\ ∪n Nn , as n →∞, for
every t � τ .

Altogether we have now proved (1) and (2). The assertions of (4) follow from
Part (1), Hypothesis 2.7(2), and Lemma 9.1 together with (9.4) and (9.6).

To prove (3) we pick a countable dense subset, {(xn, ψn) : n ∈ N}, of R
ν × Ĥ .

Then a straightforward combination of Lemma 9.1 and (9.6) shows that the equality
in (9.7) with (x, ψ) = (xn, ψn) holds true, for all t ∈ I with t � τ and n ∈ N, as
long as γ does not belong to some (n, σ, τ )-dependent P-zero set, say N (n)

σ,τ . Taking
the continuity of (x, ψ) �→ �r,s(x, ψ, γ ) into account we conclude that (9.7) is valid,
for all x ∈ R

ν , ψ ∈ Ĥ , τ � t ∈ I , and γ ∈ Ω\ ∪n N (n)
σ,τ . ��

In the next propositionCb(R
ν×Ĥ ,K ) is the set of bounded and continuous maps

from R
ν × Ĥ into some Hilbert space K .

Proposition 9.3 (Feller and Markov properties) Assume that V is continuous and
bounded. Let K be a Hilbert space. For 0 � τ � t ∈ I and every bounded Borel-
measurable function f : R

ν × Ĥ → K , we define

(Pτ,t f )(x, ψ) :=
∫
Ω

f (�τ,t (x, ψ, γ )) dP(γ ), x ∈ R
ν, ψ ∈ Ĥ . (9.9)

Then the family (Pτ,t )τ�t∈I enjoys the Feller property, i.e. Pτ,t maps the set Cb(R
ν ×

Ĥ ,K ) into itself. In fact, for every f ∈ Cb(R
ν × Ĥ ,K ), the following map is

continuous,

I τ × R
ν × Ĥ � (t, x, ψ) �−→ (Pτ,τ+t f )(x, ψ) ∈ K . (9.10)

Furthermore, if 0 � σ � τ � t ∈ I , if f is a real-valued bounded Borel function
or f ∈ Cb(R

ν × Ĥ ,K ), and if (q, η) : Ω → R
ν × Ĥ is Fσ -measurable, then we

have, for P-a.e. γ ,

(EFτ [ f (�σ,t [q, η])])(γ ) = (Pτ,t f )(�σ,τ (q(γ ), η(γ ), γ )), (9.11)

where �r,s[q, η] denotes the random variable Ω � γ �→ �r,s(q(γ ), η(γ ), γ ).

Proof The Feller property and the continuity of (9.10) follow from Theorem 9.2(1)
and the dominated convergence theorem.
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To prove the Markov property (9.11) we argue similarly as in, e.g., [6, Thm. 9.14].
There it is also explained why, without loss of generality, we may assume f to be
continuous in the case K = R as well. On account of (9.7) it suffices to show that

E
Fτ [ f (�τ,t [̃q, η̃])] = (Pτ,t f )(̃q, η̃), P-a.s., (9.12)

holds, for all σ(�σ,τ [q, η])-measurable maps (̃q, η̃) : Ω → R
ν×Ĥ and in particular

for�σ,τ [q, η] itself. If (̃q, η̃) is P-a.s. constant equal to some (x, ψ) ∈ R
ν×Ĥ , then,

according to the second assertion of Theorem 9.2(4), we may replace the conditional
expectationE

Fτ byE on the left hand side of (9.12)which then reduces to the definition
of Pτ,t .

Next, let A1, . . . , A	 be disjoint Borel subsets of R
ν × Ĥ whose union equals

R
ν × Ĥ and set χ j := 1A j (�σ,τ [q, η]). Then, of course,

�τ,t [q̂, η̂] =
	∑

j=1
�τ,t (x j , ψ j , ·) χ j , where (q̂, η̂) =

	∑
j=1

(x j , ψ j ) χ j , (9.13)

with constant (x j , ψ j ) ∈ R
ν × Ĥ , for j = 1, . . . , 	. Since �τ,t (x j , ψ j , ·) =:

�τ,t [x j , ψ] is Fτ -independent and χ j is Fτ -measurable it follows that

E
Fτ [ f (�τ,t [q̂, η̂])] =

	∑
j=1

E[ f (�τ,t [x j , ψ j ])]χ j = (Pτ,t f )(q̂, η̂), P-a.s.,

(9.14)

with q̂, η̂ as in (9.13). For general (̃q, η̃), we construct simple functions (q̂n, η̂n),
n ∈ N, as the one in (9.13) such that (q̂n, η̂n) → (̃q, η̃), P-a.s., plug them into
(9.14), and pass to the limit n →∞ using the continuity of f , Pτ,t f , and (x, ψ) �→
�τ,t (x, ψ, γ ). ��
Corollary 9.4 Assume that V is continuous and bounded, let K be a Hilbert space,
and let f : R

ν × Ĥ → K be bounded and Borel measurable. Then

Pσ,t f = Pσ,τ Pτ,t f on R
ν × Ĥ , if 0 � σ � τ � t ∈ I. (9.15)

Proof The asserted identity follows from (9.11) and EE
Fτ = E. ��

By standard procedures wemay finally infer the strongMarkov property of the flow
(�τ,t )τ�t from Proposition 9.3. In order to state it precisely in the next theorem we
denote the law of the process (�s,s+t (x, ψ, ·))t�0, where s � 0 and (x, ψ) ∈ R

ν×Ĥ
is deterministic, by

P
s,(x,ψ) := P ◦ (�s,s+•[x, ψ])−1.
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Here we consider only the case I = [0,∞) and in particular the above formula defines
a measure on the Borel subsets ofC([0,∞),Rν×Ĥ ); the corresponding expectation
is denoted by E

s,(x,ψ)[ · ].
If τ : Ω → [0,∞] is a stopping time, then Fτ denotes as usual the σ -algebra

consisting of all events A ∈ F such that {τ � t} ∩ A ∈ Ft , for every t ∈ I . Moreover,
�s,τ+•[q, η] : Ω → C([0,∞),Rν×Ĥ ) is the path map assigning the path [0,∞) �
t �→ �s,τ (γ )+t (q(γ ), η(γ ), γ ) to γ ∈ Ω .

Theorem 9.5 (Strong Markov property) Assume that V is bounded and continu-
ous. Consider the case I = [0,∞), let s ∈ [0,∞), and let τ � s be a stopping
time. Furthermore, suppose that (q, η) : Ω → R

ν × Ĥ is Fs -measurable and that
f : C([0,∞),Rν × Ĥ ) → [0,∞) is Borel-measurable. Then we have, for P-a.e.
γ ∈ {τ <∞},

(EFτ [ f (�s,τ+•[q, η])])(γ ) = E
τ(γ ),�s,τ (γ )(q(γ ),η(γ ),γ )[ f ]. (9.16)

Proof With Proposition 9.3 at hand we may—for the most part literally—follow the
exposition in [6, pp. 250–252]; here the continuity of (9.10) is used. ��

Next, we formulate a Blagoveščensky-Freidlin type theorem. To this end we let
ΩW := C(I,Rν) denote the Wiener space, FW the completion of the corresponding
Borel σ -algebra with respect to the Wiener measure PW, and FW

t the completion of
the σ -algebra σ(prs : 0 � s � t) generated by the evaluation maps prt (γ ) := γ (t),
t ∈ I , γ ∈ ΩW. (Then (FW

t )t∈I is known to be right continuous.)

Theorem 9.6 (Strong solutions) Assume that V is bounded and continuous. Let
(�W

τ,t )τ�t∈I denote the stochastic flow constructed in Theorem 9.2 for the special
choices B = (ΩW,FW, (FW

t )t∈I ,PW) and B = pr. Then (�W
0,t )t∈I is a strong solu-

tion of (9.3) and (9.4) in the sense that, for any stochastic basis (Ω,F, (Ft )t∈I ,P) and
Brownian motion B as in Hypothesis 2.7, and for any F0-measurable (q, η) : Ω →
R
ν × Ĥ , the up to indistinguishability unique solution of (9.3) and (9.4) is given, for

P-a.e. γ , by the following formula

(Xq
t ,W

V
ξ ,t [Xq]η)(γ ) = �W

0,t (q(γ ), η(γ ), B•(γ )), t ∈ I. (9.17)

Proof First, let (q, η) = (x, ψ) ∈ R
ν × Ĥ be constant with ψ ∈ D̂. Then (9.17)

follows from the uniqueness statement of Theorem 5.3 and a transformation argument
applied to the system of SDEs solved by the process (�W

0,t [x, ψ])t∈I ; cf. [10, Satz 6.26,
Lem. 6.27] for details. (We apply Example 2.14 to transform the stochastic integral in
that system.) Employing the continuity of (x, ψ) �→ �W

0,•(x, ψ, γ ), we then extend
the result to general (q, η) by the approximation procedure already used in the first
part of the proof of Theorem 9.2. ��
Corollary 9.7 Assume that V is continuous and bounded, that I = [0,∞), and that
the vector fieldβ appearing inHypothesis 2.7 is time-independent, i.e.β ∈ C(Rν,Rν).
Then the flow (�τ,t )τ�t is stationary, i.e. Pτ,t f = P0,t−τ f , for all 0 � τ � t and f
as in Corollary 9.4.
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Proof If β does not depend explicitly on t , then the whole system (9.3) and (9.4)
is autonomous. If the initial condition is constant, (q, η) = (x, ψ) ∈ R

ν × Ĥ , it
follows that its solution corresponding to (B, B) and its solution corresponding to the
time-shifted data (Bτ , Bτ+•) are obtained by inserting B and Bτ+•, respectively, into
the strong solution (�W

0,t (x, ψ, ·))t�0. Now the result follows from (9.9) and the fact
that B and Bτ+• have the same law. ��

10 Symmetric semi-groups

In our verifications of the Feynman–Kac formulas in Sect. 11 we shall employ the
Hille-Yosida theorem on generators of strongly continuous semi-groups of bounded
self-adjoint operators. For this purpose we shall show in the present section that the
expressions on the “probabilistic” side of the Feynman–Kac formulas define such
symmetric semi-groups.

In the whole section we fix some t ∈ I , t > 0. To study the symmetry we shall
consider certain reversed processes running backwards from t . To start with we denote
the reverse of the driving process (Xτ )τ∈[0,t] (fulfilling Hypothesis 2.7) by X̄ and the
associated stochastic basis by B̄. That is,

X̄τ := X t−τ , τ ∈ [0, t], B̄ := (Ω,F, (F̄τ )τ∈[0,t],P). (10.1)

Here the filtration (F̄τ )τ∈[0,t] is defined as follows: for every τ ∈ [0, t], set Gτ :=
σ(X t−τ ; Bt−s − Bt : s ∈ [0, τ ]) and letHτ denote the smallest σ -algebra containing
Gτ and all P-zero sets. Set Ht+ε := Ht , for all ε > 0. Then it follows easily from
Hypothesis 2.7(2) that (Hτ )τ�0 is a filtration, and we define F̄τ := ⋂ε>0 Hτ+ε. By
construction, B̄ satisfies the usual assumptions and X̄ is adapted to B̄. Under certain
assumptions on the drift vector field β appearing in Hypothesis 2.7 and the law of Xτ ,
τ ∈ (0, t], it is possible to guarantee that X̄ is again a diffusion process and in particular
a continuous semi-martingale with respect to B̄; see [12,33] and Remark 10.3 below.
In the first two lemmas of this section we content ourselves, however, to work with
the somewhat implicit assumption that X̄ again fulfills Hypothesis 2.7 (together with
the new basis B̄, of course). We verify this postulate only in the two main examples
of interest in the present paper, namely Brownian motion and Brownian bridges.

Since all quantities ι, (wτ,t )t∈I , uVξ , U
±, (U−

τ,t )t∈I , K , (Kτ,t )t∈I , and W
V
ξ
depend

on the choice of X , and since we are again dealing with different choices of the driving
process at the same time, we again refer to this dependence in the notation by writing
Z [X] or Z [X̄], if Z is any of the above processes constructed by means of X or X̄ ,
respectively.

In Eq. (10.3) below and its proof we extend the conjugation C of Hypothesis 2.3
trivially to h+1 ∼= L2(R, dk0)⊗ h; for short we shall again write C instead of 1⊗C .
Under this convention we have, for instance,

jsC = C j−s, s ∈ R. (10.2)
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Lemma 10.1 Assume that X̄ is a continuous semi-martingale on [0, t]with respect to
B̄ satisfying Hypothesis 2.7. Then there exists a P-zero set N such that the following
identities hold on Ω\N, for all τ ∈ [0, t],

Kτ,t [X̄] = −C eim·(X t−X0)+ik0t Kt−τ [X], (10.3)

U−
τ,t [X̄] = −U+

t−τ [X], U+
τ [X̄] = −U−

t−τ,t [X], (10.4)

uVξ ,t [X̄] = uVξ ,t [X] = uV−ξ ,t [X]. (10.5)

Proof Plugging X and X̄ into the formula (3.8) for the sum Σn
τ,t and employing the

identity (see (2.24), (3.1), and (10.2))

js e
−im·(X t−s−X t−0)C = Ceim·(X t−X0)+ik0t jt−s e−im·(X t−s−X0)

it is straightforward to verify that

Σn
τ,t [X̄] = −Ceim·(X t−X0)+ik0t Σn

0,t−τ [X].

By the assumption on X̄ , the approximation formula (3.7) applies to both X and
X̄ and shows that (10.3) holds P-a.s., for all τ ∈ [0, t] ∩ Q. By continuity [see
Lemma 3.4(5)] we then see that (10.3) even holds for arbitrary τ ∈ [0, t], outside a
τ -independent P-zero set. Multiplying (10.3) with ι∗τ [X̄] = j∗τ eim·(X t−τ−X t ) and using
j∗τ Ceik0t = C j∗t−τ , we further obtain, P-a.s. for all 0 � τ � t ,

U−
τ,t [X̄] = ι∗τ [X̄] Kτ,t [X̄] = −Cι∗t−τ [X]Kt−τ [X] = −C U+

t−τ [X],
which yields the first identity in (10.4), if take Lemma 3.4(4) into account. The second
identity in (10.4) follows from

U+
τ [X̄] = ι∗τ [X̄]

(
K0,t [X̄] − Kτ,t [X̄]

)
= −Cι∗t−τ [X]

(
Kt [X] − Kt−τ [X]

) = −CU−
t−τ,t [X].

Finally, (10.3) implies ‖Kt [X̄]‖ = ‖Kt [X]‖ which permits to get (10.5). ��
Next, we study the influence of the time-reversal of the driving process onW

V
ξ
. This

is easily done starting from the convenient formulas in Remark 5.4. Again, we indicate
the dependence on the driving process of the processes appearing in Remark 5.4 by
adding the extra variables [X] or [X̄] to the corresponding symbols.

Lemma 10.2 Assume that the time-reversed data (X̄, B̄) fulfills Hypothesis 2.7 as
well. Then the following two relations,

Qt (g, h)[X̄] = Qt (h, g)[X]∗, 〈ζ(g)|WV
ξ ,t [X̄] ζ(h)〉 = 〈WV

ξ ,t [X] ζ(g)|ζ(h)〉,
hold true outside a P-zero set which does not depend on g, h ∈ dC , and

W
V
ξ ,t [X̄] = W

V
ξ ,t [X]∗, P-a.s. (10.6)
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Proof We consider the various terms in the formula (5.8) for Q(n)
t (g, h, t[n])[X̄]: the

relations wr,s[X̄] FX̄r
= wt−s,t−r [X] FX t−r obviously hold true on Ω , for 0 � r �

s � t . In view of (5.8) this together with (10.4) shows that

Q(n)
t (g, h, t1, . . . , tn)[X̄] = Q(n)

t (h, g, t − tn, . . . , t − t1)[X]∗

outside a P-zero set which neither depends on (t1, . . . , tn) ∈ t�n nor g, h.
Combining this with (5.17) and substituting t ′1 := t − tn , . . . , t ′n = t − t1 in the

integrals over t�n , n ∈ N, we obtain the first asserted identity. Taking also (10.4),
(10.5), and (5.16) into account we arrive at the second one. Since ζ(g) and ζ(h) can
be chosen from total subset ofF and since W

V
ξ ,t [X] and W

V
ξ ,t [X̄] are P-a.s. bounded

we also obtain the relation (10.6). ��
Before we discuss our main examples we quote a special case of a result from

[12,33]:

Remark 10.3 Suppose that, for all τ ∈ (0, t], the law of Xτ is absolutely continuous
with respect to the Lebesgue measure and assume (for simplicity) that the correspond-
ing density, dτ : R

ν → [0,∞), is strictly positive and continuously differentiable. Set
d0 := 1. Assume further that the vector field β(τ, ·) is globally Lipschitz continuous,
uniformly in τ ∈ [0, t]. Then

B̄τ := Bt−τ − Bt −
∫ t

t−τ
(∇ ln ds)(Xs) ds, τ ∈ [0, t], (10.7)

defines a B̄-Brownian motion B̄ on [0, t] and it is elementary to check that

X̄τ = X̄0 +
∫ τ

0
β̄(s, X̄s) ds + B̄τ , τ ∈ [0, t), (10.8)

β̄(s, ·) := −β(t − s, ·)+ ∇ ln dt−s, s ∈ [0, t). (10.9)

Example 10.4 Assume that X = Bx is a translated Brownian motion, where

Bx := x + B, x ∈ R
ν . (10.10)

The density of Bx
τ is given by the Gaussian pτ (x, ·) defined in (1.12). From

Remark 10.3 we infer the existence of a B̄-Brownian motion, B̄, on [0, t] such that
X̄ = (Bx

t−τ )τ∈[0,t] is a solution with initial condition q = X̄0 = Bx
t of

bτ = q +
∫ τ

0

x − bs
t − s

ds + B̄τ , τ ∈ [0, t), bt = x. (10.11)

This is the SDE for a Brownian bridge from q to x in time t .

Since the drift vector field in the SDE for a Brownian bridge is singular at the end
point, the results of [33] do not apply directly to reversed Brownian bridges. One can,
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however, adapt the arguments of [33] to verify the following lemma. For the reader’s
convenience we present a detailed proof of it in “Appendix 4”.

Lemma 10.5 Let bt;x, y denote the Brownian bridge from x to y in time t defined as
the, up to indistinguishability, unique solution of the SDE

bτ = x +
∫ τ

0

y − bs
t − s

ds + Bτ , τ ∈ [0, t), (10.12)

which has a limit at t , P-a.s., namely bt;x, yt := y. Define (Hs)s�0 and (F̄s)s∈[0,t] as
in the beginning of this section with X = bt;x, y. Then

B̂s := bt;x, yt−s − y +
∫ t

t−s
bt;x, yr − x

r
dr, s ∈ [0, t), (10.13)

defines a Brownian motion with respect to (Hs)s∈[0,t). Its unique extension to a mar-
tingale on [0, t] with respect to (Hs)s∈[0,t], henceforth again denoted by B̂, is even a
(F̄s)s∈[0,t]-Brownian motion.

Furthermore, we P-a.s. have

bt;x, yt−s = y + B̂s +
∫ s

0

x − bt;x, yt−r
t − r

dr, s ∈ [0, t). (10.14)

Hence, if X = bt;x, y is a Brownian bridge, then X̄ is a semi-martingale realization
of the Brownian bridge from y to x in time t with respect to the B̄-Brownian motion
B̂. In the situation of the previous lemma we thus write

b̂ t; y,x• := bt;x, yt−• . (10.15)

Example 10.6 (1) As a consequence of Lemma 10.5, Eqs. (10.6), and (10.15),

W
V
ξ ,t [bt;x, y]∗ = W

V
ξ ,t [b̂ t; y,x], P-a.s. (10.16)

(2) Here we continue Example 10.4, i.e., we again set X̄• = Bx
t−• and define the

stochastic basis B̄ as in (10.1) with X = Bx . Furthermore, we assume that V is
bounded and continuous. If (�̄t;x

s,τ )s�τ�t denotes the stochastic flow constructed
in Theorem 9.2 in the case where (10.11) is substituted for (9.3) and the stochastic
basis B̄ is used, then Part (1) of the present example P-a.s. implies

�̄
t;x
0,τ [ y, φ] = (b̂ t; y,x

τ ,WV
ξ ,τ [b̂ t; y,x]φ), τ ∈ [0, t], y ∈ R

ν, φ ∈ Ĥ .

(10.17)
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Let Ψ : R
ν → Ĥ be Borel measurable in what follows. Since X̄0 = Bx

t and
Ψ (Bx

t ) are F̄0-measurable, we P-a.s. arrive at the formulas

(X̄ t ,W
V
ξ ,t [Bx]∗Ψ (Bx

t )) = (X̄ t ,W
V
ξ ,t [X̄]Ψ (Bx

t )) = �̄
t;x
0,t [Bx

t , Ψ (Bx
t )]. (10.18)

Next, let K be a separable Hilbert space and let f : R
ν × Ĥ → K be bounded

and Borel-measurable. Using the F̄0-measurability of Bx
t and Ψ (Bx

t ) as well as the
Markov property (9.11) in the second step, we further observe that

E[ f (�̄t;x
0,t [Bx

t , Ψ (Bx
t )])] = E[EF̄0 [ f (�̄t;x

0,t [Bx
t , Ψ (Bx

t )])]]
= E[(P̄ t;x

0,t f )(Bx
t , Ψ (Bx

t ))], (10.19)

where P̄ t;x
s,τ is the transition operator associated with (�̄t;x

s,τ )s�τ�t according to (9.9).
Since Bx

t is pt (x, ·)-distributed we may re-write (10.19) as

E[ f (�̄t;x
0,t [Bx

t , Ψ (Bx
t )])] =

∫
Rν

(P̄ t;x
0,t f )( y, Ψ ( y)) pt (x, y) d y. (10.20)

Now, assume in addition that Ψ is bounded and choose f (x, ψ) := 1‖ψ‖<Rψ , with

some R > e‖�‖2∞t+‖V ‖∞t‖Ψ ‖∞; recall (5.14). Then (9.9), (10.17), (10.18), and
(10.20) in combination yield

E[WV
ξ ,t [Bx]∗Ψ (Bx

t )] =
∫

Rν

E[WV
ξ ,t [b̂ t; y,x]Ψ ( y)] pt (x, y) d y. (10.21)

On account of (5.14) and the boundedness of V , it is easy to extend the relation (10.21)
to, e.g., all Ψ ∈ L p(Rν, Ĥ ) with p ∈ [1,∞].

Next, we introduce some abbreviations for quantities appearing on the “probabilis-
tic” side of the Feynman–Kac formulas we shall derive in Sect. 11.

Definition 10.7 (Feynman–Kac operators)

(1) Let m = 0, t > 0, and x, y ∈ R
ν be such that V (bt; y,x• ) ∈ L1([0, t]), P-a.s., and

e−
∫ t
0 V (bt; y,xs )ds is P-integrable. Then we define

T V
t (x, y) := pt (x, y)E[WV

0,t [bt; y,x]]. (10.22)

(2) Let t � 0, x ∈ R
ν , andΨ ∈ L2(Rν, Ĥ ) such that V (Bx• ) ∈ L1

loc([0,∞)), P-a.s.,

and e−
∫ t
0 V (Bx

s )ds‖Ψ (Bx
t )‖Ĥ is P-integrable. Then we set

T V
t Ψ (x) := E[WV

0,t [Bx]∗ Ψ (Bx
t )].
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(3) If G and F are x-independent, then we define, for all t � 0 and ξ ∈ R
ν ,

T̂t (ξ)ψ := E[W0
ξ ,t [B]∗ψ] = E[W0

ξ ,t [B]ψ], ψ ∈ Ĥ . (10.23)

Remark 10.8 (1) The Bochner–Lebesgue integrability of the operator-valued map
W

V
0,t [bt; y,x] : Ω → B(Ĥ ) in (10.22) is (and in particular its measurability and

the fact it is P-almost separably valued) follows from (5.14), Proposition 17.1,
Bochner’s theorem, and the additional assumption m = 0.

(2) Assume that V is continuous and m = 0. Then we actually know that we can
modify the processesW

V
0 [bt; y,x], (x, y) ∈ R

2ν , in such away that themap [0, t]×
R
2ν×Ω � (s, x, y, γ ) �→ W

V
0,s[bt; y,x](γ ) ∈ B(Ĥ ) becomesB([0, t]×R

2ν)⊗
F-B(B(Ĥ ))-measurable with a separable image, W

V
0,s[bt; y,x] : Ω → B(Ĥ )

is Fs-B(B(Ĥ ))-measurable for all (s, x, y) ∈ [0, t] × R
2ν , and (0, t] × R

2ν �
(s, x, y) �→ W

V
0,s[bt; y,x](γ ) ∈ B(Ĥ ) is continuous for all γ ∈ Ω .

This claim follows from the solution formula (15.1) for the Brownian bridge,
Proposition 17.2, and an obvious analogue of Lemma 8.1 [where (x, y)will adopt
the role of x].
If V is bounded and continuous, then we may conclude that R

2ν � (x, y) �→
T V
t (x, y) is operator norm continuous.

(3) If, in addition to our standing hypotheses, we assume that |m| � cω, for some
c > 0, then (5.14) and Proposition 17.1 imply thatW0

ξ ,t [B] in (10.23) is Bochner–
Lebesgue integrable and T̂t (ξ) = E[W0

ξ ,t [B]] = E[W0
ξ ,t [B]∗].

Lemma 10.9 Assume that V is continuous and bounded and let η : Ω → Ĥ be
F0-measurable and square-integrable. Then there exist c, cV > 0 such that, for all
t � 0,

sup
x∈Rν

E

[
sup
s�t

‖(1+ M1(ξ))
−1/2(WV

ξ ,s[Bx] − 1)η‖2
]

� ctecV tE[‖η‖2]. (10.24)

Proof We abbreviate Θ := 1 + M1(ξ) and ψt := (WV
ξ ,t [Bx] − 1)η, so that ψ0 = 0

and ‖ψt‖ � 2ecV t‖η‖, t � 0, P-a.s. We assume without loss of generality that ηmaps
Ω into D̂. [Otherwise approximate η by the vectors (1 + M1(ξ)/n)−1η, n ∈ N.] By
Theorem 5.3 and the Itō formula in Example 2.11, we P-a.s. have

‖Θ−1/2ψt‖2 = −2
∫ t

0

〈
ψs
∣∣Θ−1 Ĥ V (ξ , Bx

s )W
V
ξ ,s[Bx]η〉ds

+
∫ t

0

∥∥Θ−1/2v(ξ , Bx
s )W

V
ξ ,s[Bx]η∥∥2ds

− 2
∫ t

0
Re
〈
Θ−1/2ψs

∣∣iΘ−1/2v(ξ , Bx
s )W

V
ξ ,s[Bx]η〉dBs, t � 0.

In view of Proposition 2.16, Eq. (5.14), and the bound supx ‖v(ξ , x)Θ−1/2‖ < ∞
(recall (2.16), (2.17), and Hypothesis 2.3), the stochastic integral in the third line, call
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it M , is a martingale. Employing (5.14) and (2.33) to estimate the integrals in the
first and second line and using Davis’ inequality E[sups�t |Ms |] � cE[�M ,M �

1/2
t ],

t � 0, we readily arrive at the asserted bound. ��
Lemma 10.10 Assume that G and F are x-independent and let ξ ∈ R

ν . Then the
family (T̂t (ξ))t�0 defines a strongly continuous, bounded, and self-adjoint semi-group

on Ĥ .

Proof The (locally uniform) boundedness and self-adjointness are obvious from (5.14)
and (10.23). The semi-group property can be shown similarly as in Lem. 10.11 below.
Having observed these facts, it only remains to show that T̂t (ξ)ψ → ψ , t ↓ 0, for all
ψ ∈ Q(M1(ξ)). For such ψ , we have, however,

∥∥(T̂t (ξ)− 1)ψ
∥∥ = sup

‖φ‖=1
∣∣〈φ∣∣E[(W0

ξ ,t [B]∗ − 1)ψ]〉∣∣
� sup
‖φ‖=1

E[‖(1+ M1(ξ))
−1/2(W0

ξ ,t [B] − 1)φ‖2]1/2

× ‖(1+ M1(ξ))
1/2ψ‖,

and we conclude by applying (10.24). ��
Lemma 10.11 Let V ∈ Cb(R

ν,R). Then

T V
t ( y, x) = T V

t (x, y)∗ ∈ B(Ĥ ), (10.25)

for all x, y ∈ R
ν and t > 0. Furthermore, (T V

t )t�0 is a strongly continuous one-
parameter semi-group of bounded self-adjoint operators on the Hilbert space

H := L2(
R
ν, Ĥ

) =
∫ ⊕

Rν

Ĥ dx. (10.26)

Morever,

T V
t Ψ (x) =

∫
Rν

T V
t (x, y) Ψ ( y) d y, Ψ ∈H , x ∈ R

ν . (10.27)

Proof Under the stated assumptions the (locally uniform) boundedness of (T V
t )t�0 is

obvious from (5.14). (Observe that the function defined by f (x) := E[‖Ψ (Bx
t )‖] =

(et&/2‖Ψ (·)‖
Ĥ
)(x), x ∈ R

ν , belongs to L2(Rν) with ‖ f ‖ � ‖Ψ ‖, if Ψ ∈ H .) In
particular, T V

t is well-defined on all of H .
On account of Theorem 9.6 the definition of T V

t (x, y) does not depend on the
choice of the Brownian motion used to construct (via (10.12)) the Brownian bridge
bt; y,x in (10.22). In particular, it may be replaced by the bridge b̂ t; y,x defined in
(10.15). Then (10.16) implies (10.25) and the formula (10.27) is nothing else than
(10.21). Of course, (10.25) and (10.27) imply that T V

t is bounded and selfadjoint.
The semi-group property follows from a special case of (9.15): consider the

bounded Borel function f (x, ψ) := 〈ψ |'(x)〉 1‖ψ‖�R , (x, ψ) ∈ R
ν × Ĥ , where
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' ∈ C(Rν, Ĥ ) ∩ L2(Rν, Ĥ ) is bounded and R > 0 is chosen so large that
‖WV

ξ ,τ
[Bx]‖ � R P-a.s., for all x and τ ∈ [0, s + t]. If τ � s + t and ‖ψ‖ � 1, we

then have

Pτ f (x, ψ) = E[〈WV
0,τ [Bx]ψ |'(Bx

τ )〉] = 〈ψ |T V
τ '(x)〉,

where T V
τ ' ∈ C(Rν, Ĥ ) ∩ L2(Rν, Ĥ ) is again bounded. Consequently,

〈ψ |T V
s T V

t '(x)〉 = Ps Pt f (x, ψ) = Ps+t (x, ψ) = 〈ψ |T V
s+t'(x)〉,

if ‖ψ‖ � 1. Since each T V
τ is bounded, this entails T V

s T V
t = T V

s+t .
To prove the strong continuity of (T V

t )t�0, we set Θ := 1+ d�(ω)+ d�(m)2/2.
Thanks to its by now proven locally uniform boundedness and semi-group property,
it suffices to show that T V

t Ψ → Ψ , as t ↓ 0, for all Ψ ∈ H with ‖Θ1/2Ψ (·)‖
Ĥ
∈

L2(Rν), which clearly form a dense subset of H . Then, for such Ψ , Lemma 10.9
implies

‖(T V
t − 1)Ψ ‖2 =

∫
Rν

∥∥E[(WV,∗
0,t [Bx] − 1) Ψ (Bx

t )]
∥∥2
Ĥ dx

=
∫

Rν

sup
φ∈Ĥ
‖φ‖=1

∣∣〈φ∣∣E[(WV
0,t [Bx]∗ − 1) Ψ (Bx

t )]
〉∣∣2dx

=
∫

Rν

sup
φ∈Ĥ
‖φ‖=1

∣∣E[〈Θ−1/2(WV
0,t [Bx] − 1)φ

∣∣Θ1/2Ψ (Bx
t )
〉]∣∣2dx

� sup
y∈Rν

s�t

sup
φ∈Ĥ
‖φ‖=1

E[‖Θ−1/2(WV
0,s[By] − 1)φ‖2]

×
∫

Rν

E[‖Θ1/2Ψ (Bx
t )‖2]dx

� ctecV t
∥∥et&/2‖Θ1/2Ψ (·)‖2∥∥L1(Rν )

� ctecV t
∥∥‖Θ1/2Ψ (·)‖2∥∥L1(Rν )

,

where the last L1-norm equals ‖Θ1/2Ψ ‖2. ��

11 Feynman–Kac formulas

This final section is devoted to the Feynman–Kac formulas. With the results proven in
the previous sections at hand all proofs given here are essentially standard and they are
repeated only for the convenience of the reader. We start with the fiber Hamiltonian.
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Theorem 11.1 (Feynman–Kac formula: fiber case) Assume that G and F are x-
independent and let ξ ∈ R

ν and t � 0. Then

e−t Ĥ(ξ)ψ = E[W0
ξ ,t [B]∗ψ] = E[W0

ξ ,t [B]ψ], ψ ∈ Ĥ . (11.1)

If |m| � cω, for some c > 0, then the Feynman–Kac formula can also be written in
terms of aB(Ĥ )-valued Bochner–Lebesgue integral,

e−t Ĥ(ξ) = E[W0
ξ ,t [B]]. (11.2)

Proof Since (T̂t (ξ))t�0 is a symmetric C0-group, by the Hille-Yosida theorem, it has
a unique self-adjoint generator, say K̂ (ξ). Let ψ ∈ D̂. Then

T̂t (ξ)ψ = ψ +
∫ t

0
T̂s(ξ)Ĥ(ξ)ψds, (11.3)

by Theorem 5.3(2), where we used Lemma 7.9(2) to exploit the fact that expectations
of L2-martingales starting from zero vanish. Since t �→ T̂t (ξ)ψ is continuous at t = 0,
(11.3) implies limt↓0 t−1(T̂t (ξ)ψ−ψ) = Ĥ(ξ)ψ . We deduce that D̂ ⊂ D(K̂ (ξ)) and
K̂ (ξ) = Ĥ(ξ) on D̂. Since Ĥ(ξ) is essentially self-adjoint on D̂ by Proposition 2.6,
it follows that K̂ (ξ) = Ĥ(ξ) and, hence, e−t Ĥ(ξ) = T̂t (ξ), i.e., (11.1) is valid. Then
(11.2) follows from Remark 10.8. ��

Next, we treat the total Hamiltonian which is acting in the Hilbert spaceH defined
in (10.26). The proofs given here are essentially standard and they are repeated only
for the convenience of the reader.

If V is bounded, then it is well-known that the formula (1.6) with Ψ ∈ D0, where

D0 := spanC{ fψ ∈H | f ∈ C∞0 (Rν), ψ ∈ C
L ⊗ C [dC ]}, (11.4)

defines an essentially self-adjoint operator with domain D0; see [11] for a simple
analytic proof and [16,18]. We denote the self-adjoint closure of this operator again
by the symbol HV . Furthermore, if V = V+ − V− is a decomposition of V into
measurable functions V± : R

ν → [0,∞) with V± ∈ L1
loc(R

ν), and if the densely
defined symmetric sesqui-linear form in H given by

D2
0 � (Ψ1, Ψ2) �−→ 〈Ψ1|H0 Ψ2〉 + 〈V 1/2

+ Ψ1|V 1/2
+ Ψ2〉 − 〈V 1/2

− Ψ1|V 1/2
− Ψ2〉, (11.5)

is semi-bounded from below and closable, then we denote the self-adjoint operator
associated with its closure by HV as well. This is consistent with the above definition
for bounded V .

For instance, the form (11.5) is semi-bounded and closable if V− = 0. Hence, by
the KLMN-theorem, it is still semi-bounded and closable with Q(HV ) = Q(HV+),
if V− is HV+ -form bounded with relative form bound < 1. If (11.5) is semi-bounded
and V ∈ L2

loc(R
ν), then it is closable as well and HV is the Friedrichs extension of
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(H0+V ) �D0 . Likewise, whenever the densely defined symmetric sesqui-linear form
in L2(Rν) given by

C∞0 (Rν)2 � ( f1, f2) �−→ 〈 f1| − 1
2& f2〉 + 〈V 1/2

+ f1|V 1/2
+ f2〉 − 〈V 1/2

− f1|V 1/2
− f2〉,

is semi-bounded from below and closable, then we denote the self-adjoint Schrödinger
operator associated with its closure by SV .

Finally, we note thatWV
0 [Bx] (resp.WV

0 [bt;x, y]) are always well-defined for a.e. x
(resp. a.e. (x, y) ∈ R

ν ×R
ν , for a given t > 0) under our standing hypothesis that V

be locally integrable. The latter follows from observing that, for a given Ṽ ∈ L1
loc(R

ν),
one has

P{Ṽ (Bx• ) ∈ L1
loc([0,∞))} = 1, P{Ṽ (bt;x, y• ) ∈ L1([0, t])} = 1, (11.6)

for a.e. x and for all t > 0 and a.e. (x, y), respectively. Here the first equality has been
noted in Lem. 2 of [8].

The second one then follows from standard properties of the law of bt;x, y.

Proposition 11.2 Let V be bounded, m = 0, χ ∈ C∞0 (Rν,R), φ ∈ D̂, and x ∈ R
ν .

Then

(T V
t (χφ))(x)− χ(x)φ +

∫ t

0
(T V

s HV (χφ))(x)ds = 0, t � 0. (11.7)

Proof Let x ∈ R
ν . For every ψ ∈ D̂, we infer from Itō’s formula that, P-a.s.,

〈
φ
∣∣χ(Bx

t )W
V
0,t [Bx]ψ 〉 = 〈φ|χ(x)ψ〉

+
∫ t

0

〈
φ
∣∣(∇χ(Bx

s )+ iχ(Bx
s )ϕ(GBx

s
)
)
W

V
0,s[Bx]ψ 〉dBs

+
∫ t

0

〈
φ
∣∣( 1

2&χ(B
x
s )+ i∇χ(Bx

s ) · ϕ(GBx
s
)− Ĥ V (0, Bx

s )
)
W

V
0,s[Bx]ψ 〉ds,

for all t � 0. Applying (2.18), Hypothesis 2.3, and (5.14), we next observe that, for
every t � 0, the expression sups�t |〈(∇χ(Bx

s )− iχ(Bx
s )ϕ(GBx

s
))φ|WV

0,s[Bx]ψ〉| is
bounded by some deterministic constant. In view of Proposition 2.16 this shows that
the stochastic integral in the second line above is a martingale. Taking the expectation,
re-arranging some terms, and using (1.6), we thus arrive at 〈Lt (x)|ψ〉 = 0, ψ ∈ D̂,
where Lt (x) denotes the vector on the left hand side of (11.7). ��
Theorem 11.3 (Feynman–Kac formula) Assume that V admits a decomposition V =
V+ − V− into measurable functions V± : R

ν → [0,∞) such that V+ ∈ L1
loc(R

ν) and
V− is SV+ -form bounded with relative form bound b � 1. Then Ψ ∈ Q(HV+) implies
‖Ψ (·)‖

Ĥ
∈ Q(SV+) with

∥∥(SV+)1/2‖Ψ (·)‖
Ĥ

∥∥ � ‖(HV+ + c)1/2Ψ ‖. (11.8)
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In particular, V− is HV+ -form bounded with form bound � b and the form (11.5) is
semi-bounded. If the form (11.5) is closable as well, then the following Feynman–Kac
formulas are valid, for all t > 0, Ψ ∈H , and a.e. x ∈ R

ν ,

(e−t HV
Ψ )(x) = E[WV

0,t [Bx]∗Ψ (Bx
t )]

=
∫

Rν

pt (x, y)E[WV
0,t [bt; y,x] ]Ψ ( y)d y. (11.9)

Here the integral E[WV
0,t [bt; y,x]] ∈ B(Ĥ ) is well-defined in the Bochner–Lebesgue

sense, for all t > 0 and a.e. (x, y) ∈ R
ν × R

ν .

Proof Notice that, by definition, SV+ -form boundedness of V− includes the second
relation in C∞0 (Rν) ⊂ Q(SV+) ⊂ Q(V−), which entails V− ∈ L1

loc(R
ν).

For V bounded and continuous, the proof of the first equation in (11.9) parallels the
one of Theorem 11.1, with Proposition 11.2 applied instead of (11.3). Moreover, we
employ the fact (recalled above) that HV is essentially self-adjoint on D0, i.e., on the
complex linear hull of vectorsχφ as considered in Proposition 11.2. The disintegration
formula in the second line of (11.9) is precisely the content of (10.27), for bounded
continuous V .

Next, we record a simple fact that will be used implicitly in the approximation
arguments below: for any measurable N ⊂ R

ν with Lebesgue measure zero, one has

∫ t

0
P{Bx

s ∈ N } ds = 0 =
∫ t

0
P{bt;x, ys ∈ N } ds. (11.10)

The relations in (11.10) ensure that, if Ṽ and Ṽn , n ∈ N, belong to L1
loc(R

ν,R), and
if Ṽn(z)→ Ṽ (z) and Ṽn(z) � Ṽ (z), for a.e. z, then, for fixed t ∈ I ,

∫ t
0 Ṽn(Xs)ds →∫ t

0 Ṽ (Xs)ds, P-a.s., where X is Bx or bt;x, y with x and y satisfying (11.6).
Let us now extend (11.9) to the casewhen V is bounded: Thenwe can use Friedrichs

mollifiers to construct a sequence of smooth potentials Vn with |Vn(x)| � ‖V ‖∞ and
Vn(x) → V (x), n → ∞, for a.e. x. Clearly, HVn → HV , n → ∞, in the strong
resolvent sense and, in particular, e−t HVn → e−t HV

strongly, for every t > 0. Let
Ψ : x �→ Ψ (x) be inH and fix some t > 0. Thenwe find integers 0 < n1 < n2 < . . .

such that (e−t H
Vn j

Ψ )(x) → (e−t HV
Ψ )(x), j → ∞, in Ĥ and for a.e. x. By the

validity of (11.9) for bounded continuous potentials, it now suffices to show that, for
a.e. x, one has

E[WVn
0,t [Bx]∗ Ψ (Bx

t )] → E[WV
0,t [Bx]∗ Ψ (Bx

t )], (11.11)∫
Rν

pt (x, y)E[WVn
0,t [bt; y,x] ]Ψ ( y)d y→

∫
Rν

pt (x, y)E[WV
0,t [bt; y,x] ]Ψ ( y)d y,

as n →∞. This follows, however, readily by dominated convergence, as (5.14) gives
us the uniform bounds

‖WVn
0,t [Bx]∗‖ ∨ ‖WVn

0,t [bt; y,x] ‖ � e(c−inf V )t , P-a.s. (11.12)
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Next, we extend (11.9) to the case when V is bounded from below. Since the
sequence of bounded potentials given by Vn := n ∧ V , n ∈ N, is monotonically
increasing, the corresponding Hamiltonians HVn again converge to HV in strong
resolvent sense (see [7, Thm. 7.10]), and it suffices to verify both limit relations in
(11.11). This follows, however, again by dominated convergence since we again have
the bounds (11.12). Then, in order to see (11.8), we can employ (5.14), (11.9), and a
standard scalar Feynman–Kac formula to get

‖(e−t HV+
Ψ )(x)‖ � E[ect−

∫ t
0 V+(Bx

s )ds‖Ψ (Bx
t )‖] = (e−t (SV+−c)‖Ψ (·)‖)(x),

for a.e. x, which entails
∫

Rν

‖Ψ (x)‖(‖Ψ (·)‖ − e−t (SV+−c)‖Ψ (·)‖)(x) dx � 〈Ψ |Ψ − e−t HV+
Ψ 〉,

for all t > 0 and Ψ ∈H . Dividing by t > 0, passing to the limit t ↓ 0, and invoking
the spectral calculus we see that Ψ ∈ Q(HV+) implies ‖Ψ (·)‖ ∈ Q(SV+) and (11.8)
is proven.

Finally, we consider general V as in the statement and assume that the form (11.5)
is closable. Then the sequence Vn := (−n) ∨ V , n ∈ N, is monotonically decreasing
and we again know that HVn converges to HV in strong resolvent sense; see [7,
Thm. 7.9]. It remains to prove the two convergences in (11.11). Since b � 1, we also
know that there exists a semi-bounded self-adjoint operator S∞ in L2(Rν) such that
SVn converges to S∞ in strong resolvent sense [36, Thm. S.16]. Fix t > 0 andΨ ∈H
in what follows. Again we use (5.14) to get

‖WVn
0,t [Bx]∗‖ � ect−

∫ t
0 V (Bx

s )ds, P-a.s., (11.13)

‖WVn
0,t [bt; y,x] ‖ � ect−

∫ t
0 V (bt; y,xs )ds, P-a.s., (11.14)

for x and (x, y) as in (11.6), respectively. On the other hand we know that

E[e−
∫ t
0 V (n)(Bx

s )ds‖Ψ (Bx
t )‖] = (e−t SVn ‖Ψ (·)‖)(x)→ (e−t S∞‖Ψ (·)‖)(x),

for a.e. x. Thus, e−
∫ t
0 V (Bx

s )ds‖Ψ (Bx
t )‖ ∈ L1(P), for a.e. x, by monotone conver-

gence. (Here we argue similarly as in [40].) Hence, the first limit relation in (11.11)
follows, for a.e. x, from the dominated convergence theorem and (11.13), using

ect−
∫ t
0 V (Bx

s )ds‖Ψ (Bx
t )‖ as a P-integrable majorant. Analogously, in order to prove

the second relation in (11.11), we can use dominated convergence and (11.14), noting
that, for a.e. x,
∫

Rν

pt (x, y)E[e−
∫ t
0 V (bt; y,xs )ds ]‖Ψ ( y)‖d y = E[e−

∫ t
0 V (Bx

s )ds‖Ψ (Bx
t )‖] <∞.

The latter relation also implies that, for a.e. (x, y) ∈ R
ν × R

ν , one has

e−
∫ t
0 V (bt; y,xs )ds ∈ L1(P). This completes the proof. ��
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Remark 11.4 In the scalar case, i.e. if F = 0, the bound (11.8) holds true with c = 0.
This follows immediately from (5.14) and the proof of (11.8). In this case, Eq. (11.8)
is one example of a diamagnetic inequality; see, e.g., [25,27] and the references given
therein for other versions and alternative derivations of diamagnetic inequalities for
quantized vector potentials.

Appendix 1: Examples

Non-relativistic quantum electrodynamics

Example 12.1 In all items below we choose M = R
3 × {1, 2}, equipped with the

product of the Lebesgue and counting measures, i.e., h = L2(R3 × {1, 2}).
(1) In the standard model of NRQED for one electron interacting with the elec-

tromagnetic radiation field with sharp ultra-violet cut-off one chooses ν = 3,
ω(k, j) = |k|, for (k, j) ∈ R

3 × {1, 2}, m = 0, and G is given by

G�
x (k, j) := (α/2)1/2(2π)−3/2|k|−1/2 χ�(k) e−ik·xε(k, j), a.e. (k, j),

where α > 0 and χ� is the characteristic function of a ball of radius� > 0 about
the origin in R

3. The vectors |k|−1k, ε(k, 1), and ε(k, 2) form a.e. an oriented
orthonormal basis of R

3, so that the Coulomb gauge condition divxG�
x = 0 is

satisfied in h. If the electron spin is neglected, then one chooses L = 1 and
F = 0. To include the electron spin one takes L = 2, S = 3, σ1, σ2, and σ3 are
the 2× 2-Pauli-spin matrices, and for F one chooses

F�
x (k, j) := − i

2 k × G�
x (k, j), x ∈ R

3, a.e. (k, j).

Applying a suitable unitary transformation to the total Hamiltonian, if necessary,
one may always assume that the polarization vectors are given by

ε(k, 1) = |e× k|−1e× k, ε(k, 2) = |k|−1k × ε(k, 1), a.e. k,

where e is some unit vector in R
3. Then a suitable conjugation is given by

(C f )(k, j) := (−1) j f (−k, j), for a.e. (k, j) and f ∈ h.
(2) To cover the standard model of NRQED for N ∈ N electrons we choose ν = 3N ,

write x = (x1, . . . , xN ) ∈ (R3)N instead of x, and set

G�,N
x (k, j) := (G�

x1(k, j), . . . ,G
�
xN (k, j)) ∈ (C3)N .

If spin is neglected, then we again set L = 1 and F = 0. To include spin, we
choose L = 2N , so that C

L = (C2)⊗N , S = 3N , and

σ3	+ j := 1⊗	

C2 ⊗ σ j ⊗ 1
⊗N−	−1
C2 , 	 = 0, . . . , N − 1, j = 1, 2, 3,
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with the Pauli matrices σ1, σ2, and σ3, as well as

F�,N
x (k, j) := (F�

x1(k, j), . . . , F
�
xN (k, j)) ∈ (C3)N .

(3) In the standard model of NRQED for N electrons in the electrostatic potential of
K ∈ N nuclei with atomic numbers Z = (Z1, . . . , ZK ) ∈ (0,∞)K located at
the sites R = (R1, . . . , RK ) ∈ (R3)K , the potential V is given by the Coulomb
interaction potential,

V N
R,Z (x1, . . . , xN ) := −

N∑
i=1

K∑
�=1

α Z�
|xi − R� | +

∑
1�i< j�N

α

|xi − x j | .

It is infinitesimally Laplace-bounded [24]. The corresponding total Hamiltonain
acts inH = L2((R3)N , (C2)⊗N ⊗F ) and attains the form

H�,N
R,Z :=

N∑
	=1

{
1
2 (−i∇x	 − ϕ(G�

x	 ))
2 − σ (	) · ϕ(F�

x	 )
}
+ d�(ω)+ V N

R,Z ,

where σ (	) := (σ3	−2, σ3	−1, σ3	).
Here we abuse notation: all terms in the previous formula have to be considered
as operators inH in the canonical way; see, e.g., [11,27] for careful discussions.
According to the Pauli principle the physical Hamiltonian is actually given by
the restriction of H�,N

R,Z to the reducing subspace of functions which are anti-
symmetric under simultaneous permutations of the N position-spin degrees of
freedom. By the permutation symmetry of the Hamiltonian the Feynman–Kac
formula for the restricted, physical Hamiltonian is, however, the same as for the
non-restricted one.

(4) Fiber decompositions in the translation-invariant case. Consider again the situa-
tion in Part (1) of this example. Let H0 be the corresponding total Hamiltonian
for one electron interacting with the quantized photon field and with a vanishing
electrostatic potential. Then it turns out that H0 is unitarily equivalent to a direct
integral,

∫⊕
R3 Ĥ(ξ) dξ , of fiber Hamiltonians attached to the total momenta ξ ∈ R

3

of the system,

Ĥ(ξ) = 1
2 (ξ − d�(m)− ϕ(G�

0 ))
2 − σ · ϕ(F�

0 )+ d�(ω). (12.1)

In (12.1) we have m(k, j) = k. The transformation is achieved by applying first∫⊕
R3 eix·d�(m)dx and then a (C2 ⊗ F -valued) Fourier transform acting on the
x-variables; recall that eix·d�(m)ϕ(e−im·x f )e−ix·d�(m) = ϕ( f ).

The Nelson model

Example 12.2 Let L = S = 1, σ1 = −1, and G = 0. Then Fx has only one compo-
nent which we denote by Fx . With the usual abuse of notation, the total Hamiltonian
then attains the general form of the Nelson Hamiltonian,
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HV
N := − 1

2&+ ϕ(Fx)+ d�(ω)+ V .

The easiest way to treat Nelson’s model is to adapt the proof of Theorem 4.7 by
replacing−iϕ(q) by ϕ(F) in the computations. To illustrate the involved formulas of
Definition 5.1we shall, however, demonstrate how they simplify in the above situation:
Of course, G = 0 entails Kt = U±

t = U−
s,t = 0. Recalling also that ws,t = ι∗t ιs , if

s � t , we see that the quantity defined in (5.8) satisfies

Q(n)
t (g, h; t[n]) = (−1)n

∑
A∪B∪C=[n]

#C∈2N0

∑
C=∪{cp,c′p}

⎛
⎝

#C/2∏
p=1

1

2
〈ιtc′p FX tc′p

|ιtcp FX tcp
〉
⎞
⎠

×
(∏
a∈A

−i〈ιt g|ιta FX ta
〉
)∏

b∈B
i〈ιtb FX tb

|ι0h〉. (12.2)

Here we dropped the condition cp < c′p in the partitions of C, i.e. we sum over all

possibilities to partition C into ordered pairs; thus the new factors 1
2 appearing in

(12.2). In doing so we exploited that the scalar products in the first line of (12.2) are
real. Written in this way the sum on the right hand side of (12.2) becomes permutation
symmetric as a function of t1, . . . , tn . Instead of integrating it over the simplex t�n ,
we may just as well integrate it over the cube [0, t]n and multiply the result by 1/n!.
Therefore,

∫
t�n

Q(n)
t (g, h; t[n])dt[n]

= (−1)n
n!

∑
A∪B∪C=[n]

#C∈2N0

(#C)!
(#C/2)!

(‖KN
t ‖2
2

) #C
2

〈ig|UN,+
t 〉#A〈UN,−

t |ih〉#B,

where the analogs of the basic processes for Nelson’s model are given by

KN
t :=

∫ t

0
ιs FXs ds, UN,+

t := ι∗t KN
t , UN,−

t := ι∗0KN
t ,

i.e. only by Bochner–Lebesgue integrals. A little combinatorics reveals that

∞∑
n=0

∫
t�n

Q(n)
t (g, h; t[n]) dt[n]

=
∞∑
n=0

1

n!
"n/2#∑
P=0

(−1)n−2Pn!
(n − 2P)!P!

(‖KN
t ‖2
2

)P

(〈ig|UN,+
t 〉 + 〈UN,−

t |ih〉)n−2P

=
∞∑
P=0

1

P!
(‖KN

t ‖2
2

)P ∞∑
	=0

(−1)	
	! (〈ig|UN,+

t 〉 + 〈UN,−
t |ih〉)	.
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Combining this formula with (4.2) and (5.9) we arrive at

lim
M→∞〈ζ(g)|W

V,(0,M)

ξ ,t ζ(h)〉 = e−u
N,V
−ξ ,t+〈g|w0,t h〉+i〈g|UN,+

t 〉−i〈UN,−
t |h〉

= 〈ζ(g)|WN,V
ξ ,t ζ(h)〉,

where (observe the flipped sign of the first term in comparison to (3.6))

uN,V
ξ ,• := −1

2
‖KN• ‖2 +

∫ •

0
V (Xs) ds − iξ · (X• − X0),

and where (the exponentials converge strongly on the normed space C [dC ])

WN,V
ξ ,• ψ := e−u

N,V
−ξ ,• exp{−a†(UN,+• )}�(w0,•) exp{−a(UN,−• )}ψ, ψ ∈ C [dC ].

Applying (2.15) we see that

WN,V
ξ ,t = �(ι∗t )e−ϕ(K

N
t )�(ι0)e

iξ ·(X t−X0)−
∫ t
0 V (Xs )ds on C [dC ],

which is the formula appearing, e.g., in [27].

Appendix 2: Self-adjointness of fiber Hamiltonians

The following short proof of Proposition 2.6 combines three observations: a first one by
Könenberg (see [25]) who noticed that, by putting an artificial, large constant in front
of d�(ω) (instead of assuming weak coupling), one obtains a manifestly self-adjoint
and surprisingly useful comparison operator. The second one is borrowed from [11]
where a double commutator analog to the one in (13.2) appears. The third ingredient
is the following result [41, Thm. 2.b)]:

Theorem 13.1 If A is a self-adjoint operator in someHibert spaceK , B is symmetric
inK and A-bounded, and A+t B is closed, for all t ∈ [0, 1], then A+B is self-adjoint.

The following proof can mutatis mutandis also be used for the total Hamiltonian.

Proof of Proposition 2.6 Step 1 Starting from (2.29) and the representation of the
scalar Hamiltonian in the second and third lines of (2.30) the bounds (2.32) and (2.33)
follow, for sufficiently large a � 1, from (2.18), (2.19), and brief and elementary
estimations using

‖(1+ d�(ω))1/2(ξ − d�(m))ψ‖2 � ‖(ξ − d�(m))2ψ‖ ‖(1+ d�(ω))ψ‖.

By virtue of the Kato-Rellich theorem the bound (2.32) shows that T := Ĥ0(ξ , x)+
(a − 1) d�(ω) is closed (resp. self-adjoint if qx = 0) on D̂ and that every core of
Ma(ξ) is a core of T ; in fact, T − Ma(ξ) = Ĥ0(ξ , x)− M1(ξ). We further have

a ‖d�(ω)ψ‖ � ‖Ma(ξ) ψ‖ � 2 ‖Tψ‖ + c ‖ψ‖, (13.1)
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and, hence, ‖Ĥ0(ξ , x) ψ‖ � 3‖T ψ‖ + c ‖ψ‖, for all ψ ∈ D̂. Since C
L ⊗ C [dC ] is

a core of T , this implies Ĥ0(ξ , x) ⊂ Ĥ0(ξ , x) �CL⊗C [dC ].
Abbreviate v := ξ−d�(m)−ϕ(Gx) and assume thatω is bounded for themoment.

Then (2.9), (2.10), and (2.20) yield

2Re
〈
d�(ω)ψ

∣∣v2 ψ 〉 = 2〈vψ |d�(ω) vψ〉 + 〈ψ∣∣[v, [v, d�(ω)]]ψ 〉
� −2 ‖ω1/2Gx‖2 ‖ψ‖2 + 〈ψ |ϕ(ωm · Gx) ψ〉
� −(2 ‖ω1/2Gx‖2 + ‖ω1/2m · Gx‖2) ‖ψ‖2 − 〈ψ |d�(ω)ψ〉,

(13.2)

for all ψ ∈ C
L ⊗C [dC ]. Returning to our general assumptions on ω we apply (13.2)

with ω∧n instead of ω, for every n ∈ N, and pass to the limit n →∞ on the left hand
side and in the last line. (Notice that Hypothesis 2.3 does not imply thatωm ·Gx ∈ h.)
In combination with (2.18) the so-obtained estimate entails

‖Tψ‖2 � 2

(∥∥∥ 12v2 ψ
∥∥∥2 + 2a Re

〈
1
2v

2 ψ

∣∣∣ d�(ω)ψ
〉
+ a2 ‖d�(ω)ψ‖2

)

+ c ‖(d�(ω)+ 1)1/2 ψ‖2

� 2a2
∥∥∥
(
1
2v

2 + d�(ω)
)
ψ

∥∥∥2 + c′〈ψ |(d�(ω)+ 1) ψ〉
� 4a2 ‖Ĥ0(ξ , x) ψ‖2 + c′′〈ψ |(d�(ω)+ 1) ψ〉,

for allψ ∈ C
L⊗C [dC ]. Since, by (13.1), 〈ψ |d�(ω)ψ〉 � ε ‖T ψ‖2+ c(ε) ‖ψ‖2, we

obtain ‖Tψ‖ � c(a‖Ĥ0(ξ , x)ψ‖+‖ψ‖), for allψ ∈ C
L⊗C [dC ]. Together with the

above remarks this implies that Ĥ0(ξ , x) = Ĥ0(ξ , x) �CL⊗C [dC ] and that the graph
norms of T and Ĥ0(ξ , x) are equivalent.

Step 2 Assume that qx = 0 in the rest of this proof. To conclude that Ĥ0(ξ , x) is
selfadjoint in this case we apply Theorem 13.1 with A = T and B = (1− a)d�(ω).
In fact, we then have

A + t B = 1
2 (ξ − d�(m)− ϕ(Gx))

2 − σ · ϕ(Fx)+ d�(ωt )

on D̂, where ωt := (1 − t)aω + tω, t ∈ [0, 1]. In particular, A + t B is closed by
Step 1, since the tuple (ωt ,m,G, F) satisfies Hypothesis 2.3, for every t ∈ [0, 1]. ��

Appendix 3: Commutator estimates

In the next lemma we prove a number of commutator estimates which have been used
in Sect. 7.

Lemma 14.1 Define θε by (7.17), Υε by (7.27), and let θ := θ0 = 1 + d�(ω). Then
the following bounds hold true, for all E � 1, ε ∈ (0, 1/E], α ∈ [1/2, 1], and f ∈ k,
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‖θ−1/2ε adϕ( f )θε‖ = ‖(adϕ( f )θε) θ−1/2ε ‖ � c ‖ω1/2(1+ ω)1/2 f ‖h, (14.1)

‖ad2ϕ( f )θε‖ � c ‖ω1/2 f ‖2h, (14.2)

‖θ−1ε (adϕ( f ) θ
2
ε ) θ

−1
ε ‖ � c ‖ω1/2(1+ ω)1/2 f ‖2h, (14.3)

‖(adϕ( f )Υε)Υ −α
ε θ−1/2‖ � c E1/2−α ‖ f ‖k, (14.4)

‖θ−1/2(adϕ( f )Υε)Υ −α
ε ‖ � c E1/2−α ‖ f ‖k, (14.5)

‖θ−1/4(adϕ( f )Υε)Υ −α
ε θ−1/4‖ � c E1/2−α ‖ f ‖k, (14.6)

‖θ−1/2Υ −α
ε adϕ( f )Υε‖ � c E1/2−α ‖ f ‖k, (14.7)

‖θ−1/2Re[Υ −1
ε (ad2ϕ( f )Υε)]θ−1/2‖ � c E−1/2 ‖ f ‖2k, (14.8)

‖θ−1/2Υ −1
ε (ad2ϕ( f )Υ

2
ε )Υ

−1
ε θ−1/2‖ � c E−1/2 ‖ f ‖2k. (14.9)

Proof We remark that all algebraic identities between various combinations of oper-
ators below are valid on the dense domain C [dC ]. All norms have to be read as norms
of operators which are densely defined and bounded on C [dC ].

First, we observe that, if Θ denotes one of the weights θε or Υε, then

Θ−1 (adϕ( f ) Θ2)Θ−1 = 2{Θ−1 (adϕ( f )Θ)}{(adϕ( f )Θ)Θ−1}
+Θ−1 ad2ϕ( f )Θ + (ad2ϕ( f )Θ)Θ−1,

so that (14.3) follows from (14.1) and (14.2) and (14.9) from (14.4), (14.7), and (14.8).
Writing

Θε = (1+ d�(ω))(1+ εd�(ω))−1 = ε−1
(
1− (1− εE)(1+ εd�(ω))−1

)

and applying (2.8), (2.11), and adS(T T ′) = T adST ′+(adST )T ′ as well as adST−1 =
−T−1(adST ) T−1, repeatedly we obtain

adϕ( f )Θε = (εE − 1)(1+ εd�(ω))−1 iϕ(iω f )(1+ εd�(ω))−1, (14.10)

ad2ϕ( f )Θε = 2ε (1− εE)(1+ εd�(ω))−1 (ϕ(iω f )(1+ εd�(ω))−1)2

+ (1− εE) ‖ω1/2 f ‖2 (1+ εd�(ω))−2. (14.11)

As a consequence of (2.16) we have ε1/2‖a(ω f )(1 + εd�(ω))−1/2‖ � ‖ω1/2 f ‖,
which together with (2.8) and (14.11) implies (14.2). From (2.18) and (14.10) we
readily infer that (14.1) is satisfied.

Likewise, by writing

Υε = (E + d�(m j )
2)(1+ εd�(m j )

2)−1 = ε−1(1− (1− εE) Rε)

with Rε := (1+ εd�(m j )
2)−1, we deduce that

adϕ( f )Υε = (1− εE) Rε {adϕ( f )(d�(m j )
2)} Rε,
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where, on account of (2.11),

adϕ( f )(d�(m j )
2) = 2id�(m j ) ϕ(im j f )+ ϕ(m2

j f )

= 2iϕ(im j f ) d�(m j )− ϕ(m2
j f ).

Consequently, for α ∈ [1/2, 1], γ ∈ [0, 1], and β := 1− γ ,

∥∥θ−β/2(adϕ( f )Υε)Υ −α
ε θ−γ /2

∥∥
� |1− εE | ‖θ−β/2ϕ(m2

j f ) θ
−γ /2‖ ‖(E + d�(m j )

2)−α‖
+ 2|1− εE | ∥∥d�(m j )(E + d�(m j )

2)−α
∥∥ ‖θ−β/2ϕ(im j f ) θ

−γ /2‖,

which proves (14.4), (14.5), and (14.6). Here we use that (2.18) implies the bounds

‖θ−1/4ϕ(g) θ−1/4‖, ‖θ−1/4ϕ(ig) θ−1/4‖ � 21/2‖(1+ ω−1)1/2g‖. (14.12)

Using the above identities for a single commutator we further find

ad2ϕ( f )Υε = 2(1− εE)Rε 2iϕ(im j f )
εd�(m j )

2

1+ εd�(m j )2
2iϕ(im j f ) Rε

+ 8(1− εE)Re[Rε 2iϕ(im j f )
εd�(m j )

1+ εd�(m j )2
ϕ(m2

j f ) Rε]

− 2ε(1− εE)Rε ϕ(m
2
j f )Rε ϕ(m

2
j f ) Rε

− 2(1− εE) (Rε ϕ(im j f )
2 Rε + ‖ |m j |1/2 f ‖2 Rε d�(m j ) Rε).

Now, we multiply the previous identity both from the left and from the right with
θ−1/2 = (1+ d�(ω))−1/2. By (2.18) the latter operators control all unbounded fields.
Multiplying the previous identity in addition with Υ

−1/2
ε from the left or from the

right we can also control the operator d�(m j ) in the last line, where no power of ε
can be employed to control it by means of the resolvents Rε. From these remarks we
readily infer (14.8). ��

Appendix 4: Admissibility of Brownian bridges

In this “Appendix”we verify that the semi-martingale realizations of Brownian bridges
satisfy the technical condition (2.37) of Hypothesis 2.7. After that we also present a
detailed proof of Lemma 10.5 on time-reversals of Brownian bridges.

In all what follows, y ∈ R
ν and q : Ω → R

ν is F0-measurable such that E[|q|n] <
∞, for all n ∈ N. Recall that the (up to indistinguishability unique) solution of b• =
q + B• +

∫ •
0

y−bs
T −s ds is explicitly given by

bT ;q, yt :=
{

t
T y + T −t

T q + Bt − (T − t)
∫ t
0

Bs
(T −s)2 ds, if 0 � t < T ,

y, if t = T .
(15.1)
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Lemma 15.1 The drift vector field in the SDE bT ;q, y• = Bq• +
∫ •
0 Y sds satisfied by

the process in (15.1) can P-a.s. be written as

Y t := y − bT ;q, yt

T − t
= y − q

T −
∫ t

0

1

T − s
dBs, 0 � t < T . (15.2)

Proof Plugging the formula (15.1) for bT ;q, yt into the expression in the middle in
(15.2) and taking the following consequence of Itō’s formula into account,

− Bt

T − t
+
∫ t

0

Bs

(T − s)2
ds = −

∫ t

0

1

T − s
dBs, 0 � t < T , P-a.s.,

we arrive at the formula on the right hand side of (15.2). ��
Lemma 15.2 For all T > 0, p ∈ N, and t ∈ [0, T ),

E[|Y t |2p] =
p∑

	=0

(2p − 2+ ν)!!
(2(p − 	)− 2+ ν)!!

(
p

	

)
E[|q − y|2(p−	)]

T 2(p−	)
t	

T 	(T − t)	
, (15.3)

where (2 j)!! := 2 j j !, (2 j + 1)!! = (2 j + 1)!/(2 j)!!, and in particular

∫ T

0
(T − s)�E[|Y s |2� ] ds � c(ν, �, T )E[(1+ |q − y|)2� ], � > 0. (15.4)

Proof By (15.2) and Itō’s formula (ignore the last integral, if p = 1)

|Y t |2p = |q − y|2p
T 2p − 2p

∫ t

0
|Y s |2(p−1) Y s

T − s
dBs

+ p ν
∫ t

0
|Y s |2(p−1) ds

(T − s)2
+ p(p − 1)

2

∫ t

0
|Y s |2(p−2) 4|Y s |2

(T − s)2
ds,

for all t ∈ [0, T ), P-a.s., and therefore,

E[|Y t |2p] = E[|q − y|2p]
T 2p + (2p − 2+ ν)p

∫ t

0
E[|Y s |2(p−1)] ds

(T − s)2
.

Iterating this we find

E[|Y t |2p] =
p∑

	=0

(2p − 2+ ν)!! p!
(2(p − 	)− 2+ ν)!!

E[|q − y|2(p−	)]
(p − 	)! T 2(p−	)

∫
t�	

	∏
j=1

dt j
(T − t j )2

,

which is (15.3) since the integral over t�n equals (
∫ t
0 ds/(T − s)2)	/	!. ��

As announced above, we shall now work out the details on the time-reversal of a
Brownian bridge:
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Proof of Lemma 10.5 In this proof the letter T plays the role of the letter t in the
statement of Lemma 10.5, i.e., we consider the bridge bT ;x, y reversed at T .

Let N ⊂ F be the set of P-zero sets. Recall that, for every t ∈ [0, T ], we defined
Ht to be the smallest σ -algebra containingN and the σ -algebra σ(bT ;x, yT −t ; Bs− BT :
T − t � s � T ) = σ(bT ;x, yT −t ; Bs − Br : T − t � r � s � T ).

Step 1 We claim that (Ht )t∈[0,T ] is a filtration and that bT ;x, yT −s is Ht -measurable, for
all 0 � s � t � T .

Of course, the second assertion implies the first. Since bT ;x, yT = y, P-a.s., and

σ(N) = H0 ⊂ Ht , t ∈ (0, T ], we see that bT ;x, yT is Ht -measurable, for all t ∈ [0, T ].
Let 0 < s < t � T . Then, up to indistinguishability, (bT ;x, yT −t+s)s∈[0,t] is the unique
semi-martingale with respect to BT −t on [0, t] which P-a.s. solves

X• = bT ;x, yT −t + BT −t+• − BT −t +
∫ •

0

y − Xr

t − r
dr on [0, t), X t = y.

The standard solution theory for SDE thus implies that, for every ε ∈ (0, s), the random
variable bT ;x, yT −s is measurable with respect to the smallest σ -algebra containingN and

σ(bT ;x, yT −t ; Br−BT −t : T −t � r � T −s+ε). In particular, bT ;x, yT −s isHt -measurable.

Step 2 Next, we claim that (10.13) defines a continuous martingale with respect to
(Ht )t∈[0,T ) starting at zero.

Obviously, all paths of B̂ are continuous on [0, T ) and, by Step 1 and (10.13), B̂ is
adapted to (Ht )t∈[0,T ). Using E[bT ;x, yt ] = t

T y+ T −t
T x, t ∈ [0, T ], which is obvious

from (15.1), we read off from (10.13) that B̂t is integrable and E[B̂t ] = 0, for all
t ∈ [0, T ]. Of course, B̂0 = 0, P-a.s., and

E
H0 [B̂t ] = E

σ(N)[B̂t ] = E[B̂t ] = 0, t ∈ (0, T ).

Let 0 < s < t < T . Taking the SDE solved by bT ;x, y into account we see that

B̂t − B̂s = BT −t − BT −s −
∫ T −s

T −t

(
x − bT ;x, yu

u
+ y − bT ;x, yu

T − u

)
du

= BT −t − BT −s −
∫ T −s

T −t
∇ ln dT ;x, yu (bT ;x, yu )du, P-a.s., (15.5)

where
dT ;x, yu := pu(x, ·)pT −u( y, ·)/pT (x, y), u ∈ (0, T ). (15.6)

We may now employ the arguments of [33, §4] to show that Eσ(bT ;x, yT −s )[B̂t − B̂s] = 0,
P-a.s.; see Lemma 15.3 below. For all T − s � r � u � T , we further know that
σ(Bu − Br ) and σ(b

T ;x, y
T −s ; B̂t − B̂s) are independent since b

T ;x, y
T −s and B̂t − B̂s are

FT −s-measurable while Bu− Br is FT −s-independent. For trivial reasons, σ(N) and
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σ(bT ;x, yT −s ; B̂t − B̂s) are independent as well. These remarks entail E
Hs [B̂t − B̂s] =

E
σ(bT ;x, yT −s )[B̂t − B̂s] = 0, P-a.s. Since B̂s is Hs-measurable, we arrive at

E
Hs [B̂t ] = B̂s, P-a.s.

Hence, B̂ is a continuous martingale with respect to (Ht )t∈[0,T ) starting P-a.s. at zero.

Step 3 Invoking amartingale convergence theorem,we see that (B̂t )t∈[0,T ) has a unique
extension to a continuous (Ht )t∈[0,T ]-martingale (starting at zero), again denoted by
B̂. Furhermore, a glance at (10.13) reveals that the quadratic variation process of B̂ is
(t1)t∈[0,T ]. In view of Lévy’s characterizationwe now see that B̂ is a Brownianmotion
with respect to (Ht )t∈[0,T ] and, hence, also with respect to its standard extension
(F̄t )t∈[0,T ]; see [10, p. 219].

Step 4 Substituting u(s) := T − s pathwise in (10.13) we obtain (10.14). By Step 1,
(bT ;x, yT −t )t∈[0,T ] is adapted to (F̄t )t∈[0,T ] and we conclude. ��
Lemma 15.3 Let0 < s < t < T and f : R

ν → RbeboundedandBorelmeasurable.
With dT ;x, y defined by (15.6), we then have

E[ f (bT ;x, yt )] =
∫

Rν

dT ;x, yt (z) f (z)dz,

E[ f (bT ;x, yT −s )(BT −s − BT −t )] = E

[
f (bT ;x, yT −s )

∫ T −s

T −t
∇ ln dT ;x, yu (bT ;x, yu )du

]
.

Proof We shall show the second asserted identity with 0 < T − t < T − s < T
replaced by 0 < s < t < T . By an approximation argument, we may actually assume
f to be continuous with compact support, which we do from now on.
For fixed T > 0 and y ∈ R

ν , we set

�s,t (z, a) := pt−s(z, a)pT −t (a, y)
/
pT −s(z, y), a, z ∈ R

ν, 0 � s < t < T .

Then
(
∂s + 1

2&z + y − z
T − s

· ∇z

)
�s,t (z, a) = 0,

for all a, z ∈ R
ν and 0 � s < t < T . We set

(πs,t f )(z) :=
∫

Rν

�s,t (z, a) f (a)da, z ∈ R
ν, 0 � s < t < T .

Since f is bounded, it is then also clear that (s, z) �→ (πs,t f )(z) belongs toC2([0, t)×
R
ν) with

(
∂s + 1

2&z + y − z
T − s

· ∇z

)
(πs,t f )(z) = 0, z ∈ R

ν, 0 � s < t < T .

123



902 B. Güneysu et al.

Hence, Itō’s formula (applied with respect to the time-shifted basis Bs) P-a.s. entails,
for all 0 � s � r < t ,

(πr,t f )(b
T ;x, y
r )− (πs,t f )(b

T ;x, y
s ) =

∫ r

s
∇(πu,t f )(bT ;x, yu )dBu . (15.7)

Since f ∈ C0(R
ν), we further know that (s, z) �→ πs,t f has a unique bounded and

continuous extension onto [0, t] × R
ν with πt,t f (z) = f (z), z ∈ R

ν . The function
(s, z) �→ ∇(πs,t f )(z) is bounded on every set [0, r ] × R

ν with r ∈ [0, t). Let F :
Ω → R be bounded and Fs-measurable. Then the dominated convergence theorem
and (15.7) yield

E[F( f (bT ;x, yt )− (πs,t f )(b
T ;x, y
s )

)] = lim
r↑t E

[∫ r

s
F ∇(πu,t f )(bT ;x, yu )dBu

]
= 0.

This proves the following relation,

E
Fs [ f (bT ;x, yt )] = (πs,t f )(b

T ;x, y
s ), P-a.s., 0 � s < t. (15.8)

In particular, E[ f (bT ;x, yt )] = E[EF0 [ f (bT ;x, yt )]] = (π0,t f )(x), which is the first
asserted identity. Applying (15.7) first and Itō’s formula with respect toBs afterwards,
we P-a.s. obtain

(πr,t f )(b
T ;x, y
r )(B	,r − B	,s) =

∫ r

s
∂	(πu,t f )(b

T ;x, y
u )du

+
∫ r

s
(B	,u − B	,s)∇(πu,t f )(bT ;x, yu )dBu

+
∫ r

s
(πu,t f )(b

T ;x, y
u )dB	,u, (15.9)

for all r ∈ [s, t).
The dominated convergence theorem and (15.9) now imply

E[ f (bT ;x, yt )(Bt − Bs)] = lim
r↑t E[(πr,t f )(bT ;x, yr )(Br − Bs)]

= lim
r↑t

∫ r

s
E[∇(πu,t f )(bT ;x, yu )]du. (15.10)

Here we further infer from the first asserted identity (extended to bounded measurable
f ) and from (15.8) that

∫ r

s
E
[∇(pu,t f )(bT ;x, yu )

]
du =

∫ r

s

∫
Rν

�0,u(x, z)∇(pu,t f )(z)dzdu

= −
∫ r

s

∫
Rν

(∇z�0,u)(x, z)(pu,t f )(z)dzdu
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r↑t−−−→ −
∫ t

s

∫
Rν

(�0,u)(x, z)(pu,t f )(z)(∇ ln dT ;x, yu )(z)dzdu

= −
∫ t

s
E[(pu,t f )(bT ;x, yu )(∇ ln dT ;x, yu )(bT ;x, yu )]du

= −
∫ t

s
E[EFu [ f (bT ;x, yt )](∇ ln dT ;x, yu )(bT ;x, yu )]du

= −
∫ t

s
E[ f (bT ;x, yt )(∇ ln dT ;x, yu )(bT ;x, yu )]du

= −E

[
f (bT ;x, yt )

∫ t

s
(∇ ln dT ;x, yu )(bT ;x, yu )du

]
. (15.11)

Combinig (15.10) and (15.11) we arrive at the second asserted identity. ��

Appendix 5: On time-ordered integration of a stochastic integral

After the application of the stochastic calculus in Sect. 6 we obtain the relation (6.18)
on the complement of a P-zero set which depends inter alia on the parameters t[n] =
(t1, . . . , tn). Hence, it is clear a priori that, P-a.s., (6.18) is available for all rational
t[n] ∈ I�n ∩ Q

n at the same time, where I�n := {0 � t1 � · · · � tn ∈ I } ⊂ R
n .

To obtain (6.18) for all t[n] ∈ I� on the complement of one fixed P-zero set, we shall
exploit the continuity in t[n] of the various terms in (6.18). To this end we have to
show in particular that the stochastic integrals in (6.18) posses modifications which
define a process that is jointly continuous in (t, t[n]). This is essentially what is done
in the proof of the first of the two following lemmas. In the second one we justify the
use of the stochastic Fubini theorem in the proof of Lemma 6.1 at the end of Sect. 6.
In this appendix the results of Sects. 3 and 4 may be used without producing logical
inconsistences, and the vectors g, h ∈ dC are fixed.

Lemma 16.1 On the complement of some (t, t[n])-independentP-zero set, the stochas-
tic integral formula (6.18) holds true, for all t ∈ [0, sup I ), n ∈ N, and t[n] ∈ t�n.

Proof Step 1 Employing (2.9), (2.12), (2.6), (4.2), and (5.6) we first observe that the
integrand 〈ζ(g)|iv(ξ , Xτ )Q

(n)
τ (h; t[n])W 0

ξ ,τ
ζ(h)〉 of the stochastic integral in (6.18)

is a linear combination of terms of the form

Lτ [t[n]] := IαC (tC)L
αA
τ (tA; g)RαB (tB; h)

· 〈img + GXτ |wtd ,τ Fαd ,X td
〉�〈ζ(g)|W 0

ξ ,τ ζ(h)〉, (16.1)

with disjoint (and possibly empty) subsets A,B, C, {d} ⊂ [n] and � ∈ {0, 1}. As a
consequence, if we define

It [t[n]] :=
∫ t

0
1τ>tn Lτ [t[n]] dBτ , t ∈ I, t[n] ∈ I�n,

then it suffices to verify the following:
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ClaimThere exists aB(I�n)⊗F-measurablemapJ % : (t[n], t, γ ) �→ I %
t [t[n]](γ ) ∈

R such that, for each fixed (t[n], t) ∈ I�n × [0, sup I ), we P-a.s. have I %
t [t[n]] =

It [t[n]], and such that, for all γ ∈ Ω , the map I�n × [0, sup I ) � (t[n], t) �→
I %

t [t[n]](γ ) is continuous.
Step 2To begin with we argue that wemay additionally assume that X = Xq , for some
bounded F0-measurable q : Ω → R

ν , so that (2.37) is available. For, if X0 = q is
unbounded, then we can set qm := 1{|q| � m}q, m ∈ N, and verify the claim in Step
1 for each Xqm . After that we invoke the pathwise uniqueness property Xq• = Xqm• ,
P-a.s. on {|q| � m}, which entails u0

ξ ,•[Xq] = u0
ξ ,•[Xqm ],U+• [Xq] = U+• [Xqm ], and

U−
s,•[Xq] = U−

s,•[Xqm ], P-a.s. on {|q| � m}, for each s ∈ I . (Here we use the notation
explained in the second paragraph of Sect. 8.)

So let q be bounded. Then the claim in Step 1 follows from the Kolmogoroff-Neveu
lemma (see, e.g., [10, Satz 2.11′] or [30, Exercise E.4 of Chap. 8]) as soon as we can
find (n-dependent) p, ε > 0 and some function c : I → (0,∞) such that

E

[
sup
τ�σ

‖Iτ [t[n]] −Iτ [s[n]]‖p
]

� c(σ ) |t[n] − s[n]|n+ε, σ ∈ [0, sup I ),

for all t[n], s[n] ∈ I�n with |t[n] − s[n]| � 1. To this end we shall prove that

E

[(∫ σ

0

∣∣1τ>tn Lτ [t[n]] − 1τ>sn Lτ [s[n]]
∣∣2dτ

)p/2
]

� cn,p(σ ) |t[n] − s[n]| p−22 ,

(16.2)

for all σ, t[n], s[n] as above and for all p � 2.

Step 3 First, we derive suitable bounds on the scalar products whose products define
Lτ [t[n]]; recall (5.1) and (5.2). In fact, by Hypothesis 2.3 the terms

a(	)s,t :=
〈
im g + GX t

∣∣ws,t F	,Xs

〉
and a(S+	)s,t := 〈g|ws,t F	,Xs 〉, 	 = 1, . . . , S,

are bounded on Ω , uniformly in 0 � s � t ∈ I . Moreover, it is straightforward to
infer the following bounds from Hypothesis 2.3,

|a(	)s,t − a(	)s̃,t | � c(|s − s̃| + |Xs − X s̃ |), s, s̃ � t ∈ I, 	 = 1, . . . , 2S,

on Ω with a t-independent constant c > 0, where (2.35) P-a.s. implies

|Xs − X s̃ | � |Bs − Bs̃ | +
∫ s

s̃
|β(τ, Xτ )| dτ, 0 � s̃ � s < sup I, (16.3)
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Taking (2.37) into account we deduce that, for all p � 2 and σ ∈ [0, sup I ),

E

[∫ σ

0
|a(	)s,τ − a(	)s̃,τ |pdτ

]

� c(p)

(
|s − s̃|p + E[|Bs − Bs̃ |p] + |s − s̃|p−1

∫ σ

0
E[|β(τ, Xτ )|p] dτ

)

� c′(p, σ ) |s − s̃|p/2, s, s̃ ∈ [0, σ ], |s − s̃| � 1. (16.4)

Furthermore, in view of (3.4) and (3.5) the scalar products

a(	)s,t := 〈U−
s,t |F	,Xs 〉, 	 = 2S + 1, . . . , 3S,

satisfy, for all p � 2, σ ∈ [0, sup I ), and s ∈ [0, σ ],

E

[
sup
t�σ

|a(	)s,t |p
]

� cp E

[
sup
t�σ

∥∥∥∥
∫ t

0
1r>s ιrGXr dBr +

∫ t

0
1r>s ιr (GXr · β(r, Xr )+ q̆Xr )dr

∥∥∥∥
p
]

� c′(p) σ
p−2
2 E

[∫ σ

0
‖GXr ‖pdr

]
+ c′(p) σ p−1

∫ σ

0
E[1+ |β(r, Xr )|p] dr

� c′′(p, σ ), 	 = 2S + 1, . . . , 3S. (16.5)

For all p � 2 and s̃ � s � σ < sup I with |s − s̃| � 1, we likewise have

E

[
sup

0�τ�σ

‖U−
s,τ −U−

s̃,τ‖p
]

= E

[
sup

0�τ�σ

∥∥∥∥
∫ τ

0
1s̃<r�s ιrGXr dBr +

∫ τ

0
1s̃<r�s ιr (GXr β(r, Xr )+ q̆Xr )dr

∥∥∥∥
p
]

� c(p)E

[(∫ σ

0
1s̃<r�s‖GXr ‖2dr

)p/2
]
+ c(p)|s − s̃|p−1

∫ σ

0
E[1+ |β(r, Xr )|p]dr

� c′(p, σ )|s − s̃|p/2. (16.6)

Together with the global Lipschitz continuity of x �→ Fx , (16.3), and an estimate
analog to (16.4), the bound (16.6) implies

E

[
sup

0�τ�σ

|a(	)s,τ − a(	)s̃,τ |p
]

� c(p, σ ) |s − s̃|p/2, 	 = 2S + 1, . . . , 3S, (16.7)

under the above conditions on s, s̃, σ , and p.
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Let us finally consider the τ -independent terms in (16.1). It is clear that

a( j,	)r,s := 〈Fj,Xs |wr,s F	,Xr 〉 and a(3S+1)s,τ := a(3S+1)s := 〈FXs |w0,sh〉,

are bounded on Ω uniformly in r, s ∈ I (and τ , of course). Thanks to the above
discussion it is also clear that a(3S+1)s,τ satisfies a bound analog to (16.4) and that

E
[|a( j,	)r,s − a( j,	)r̃ ,s̃ |p] � c(p, σ )

(|r − r̃ | + |s − s̃|)p/2, (16.8)

for all r, r̃ , s, s̃ ∈ [0, σ ] with |r − r̃ | � 1 and |s − s̃| � 1. Finally, setting a(3S+2)s,τ :=
a(3S+2)s := 〈FXs |U+

s 〉, we get E[|a(3S+2)s |p] � c(p, σ ) and a bound analog to (16.7).

Step 4Next, we derive the bound (16.2) assuming that sn � tn � σ < sup I with |tn−
sn| � 1 without loss of generality: Notice that Lτ [t[n]] is the product of m � n scalar
products which are either uniformly bounded or can be estimated as in (16.5), whence

E

[(∫ tn

sn
(|Lτ [t[n]]| + |Lτ [s[n]]|)2dτ

)p/2
]

� c(n, p) |tn − sn| p−22 sup
s�σ

j=1,...,3S+2

∫ tn

sn
E[1+|a( j)s,τ |np]dτ �c′(n, p, σ ) |tn − sn| p−22 .

Furthermore, representing the difference Lτ [t[n]] − Lτ [s[n]] as a telescopic sum and
using the bound (4.3), we readily deduce that

E

[(∫ σ

tn

∣∣Lτ [t[n]] − Lτ [s[n]]
∣∣2dτ

)p/2
]

� σ
p−2
2 E

[∫ σ

0

∣∣Lτ [t[n]] − Lτ [s[n]]
∣∣pdτ

]

� c max
1� j,k�3S+2 E

⎡
⎢⎢⎣
∫ σ

0

⎛
⎜⎜⎝

n∑
m=1

|a( j)tm ,τ − a( j)sm ,τ |
n∏

	=1
	%=m

(
1+ |a(k)s	,τ | + |a(k)t	,τ |

)
⎞
⎟⎟⎠

p

dτ

⎤
⎥⎥⎦

+ c max
1�k�3S+2
1� j,	�S

E

⎡
⎢⎢⎣
∫ σ

0

⎛
⎜⎜⎝

n∑
a,b=1
a<b

|a( j,	)ta ,tb − a( j,	)sa ,sb |
n∏

c=1
c %=a,b

(
1+ |a(k)sc,τ | + |a(k)tc,τ |

)
⎞
⎟⎟⎠

p

dτ

⎤
⎥⎥⎦

� c′ max
1� j,k�3S+2
m=1,...,n

E

[∫ σ

0
|a( j)tm ,τ − a( j)sm ,τ |pndτ

]1/n
sup

s∈[0,σ ]
E

[∫ σ

0

(
1+ |a(k)s,τ |pn

)
dτ

] n−1
n

+ c′ max
1�k�3S+2
1�a<b�n
1� j,	�S

E[|a( j,	)ta ,tb − a( j,	)sa ,sb |np]1/n sup
s∈[0,σ ]

E

[∫ σ

0

(
1+ |a(k)s,τ |np

)
dτ

] n−2
n

� c′′ |t[n] − s[n]|p/2.
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Here the constants c, c′, c′′ > 0 depend on g, h, n, p, and σ . Altogether this proves
(16.2), where |t[n] − s[n]| � 1.

Conclusion A priori we know that (6.18) is valid, for all t ∈ [tn, sup I ) and all ratio-
nal t[n] ∈ I�n ∩ Q

n , ouside some (t, t[n])-independent P-zero set. The above steps
show, however, that the stochastic integral appearing in (6.18) has a suitable modi-
fication which is jointly continuous in (t, t[n]). Using Hypothesis 2.7(2), (5.7), and
Remark 5.2(2) it is straightforward to see that all remaining terms on both sides of
(6.18) have continuous modifications as well. Hence, we can extend (6.18) by con-
tinuity to all t[n] ∈ I�n and tn � t < sup I such that it holds outside of one fixed
P-zero set. ��
Lemma 16.2 The following relation holds P-a.s., for all t ∈ [0, sup I ),

∫
I n

∫ t

0
1τ�n (t[n])

〈
ζ(g)

∣∣iv(ξ , Xτ )Q
(n)
τ (h; t[n])W 0

ξ ,τ ζ(h)
〉
dBτ dt[n]

=
∫ t

0

∫
I n
1τ�n (t[n])

〈
ζ(g)

∣∣iv(ξ , Xτ )Q
(n)
τ (h; t[n])W 0

ξ ,τ ζ(h)
〉
dt[n] dBτ .

Proof Since both sides of the asserted identity are continuous in t (according to
Lemma 16.1), it suffices to prove it (P-a.s.) for some fixed t . So, let t ∈ [0, sup I ) in
what follows. By the remark in the very beginning of the proof of Lemma 16.1, we
then have to show that, P-a.s.,

∫
I n

∫ t

0
1τ�n (t[n])Lτ [t[n]] dBτ dt[n] =

∫ t

0

∫
I n
1τ�n (t[n])Lτ [t[n]] dt[n] dBτ , (16.1)

where Lτ [t[n]] is given by (16.1). Invoking the pathwise uniqueness properties dis-
cussed in Step 2 of the proof of Lemma 16.1 and the pathwise uniqueness property
of stochastic integrals with respect to Brownian motion, we may again argue that it
suffices to prove (16.1) under the additional assumption that the initial condition q
in the SDE solved by X = Xq be bounded. In order to justify the application of the
stochastic Fubini theorem it then suffices (see, e.g., [6, Rem. 4.35]) to check that

∫
t�n

(
E

[∫ t

tn

∣∣Lτ [t[n]]
∣∣2dτ

])1/2

dt[n] <∞. (16.2)

Since q is assumed to be bounded we know, however, from the arguments in the proof
of Lemma 16.1 that, for all t ∈ [0, sup I ),

E

[∫ t

tn

∣∣Lτ [t[n]]
∣∣2dτ

]
� c(n) sup

s�t
j=1,...,3S+2

∫ t

tn
E[1+ |a( j)s,τ |np] <∞,

where we use the notation introduced in Step 3 of the proof of Lemma 16.1. Clearly,
this implies (16.2) and we conclude. ��
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Appendix 6: Measurability of the operator-valued map W
0
ξ,t

Recall that a measurable map from a measurable space into a Banach space equipped
with its Borel σ -algebra can be (a.e.) approximated by measurable simple functions,
if and only if its range is (a.e.) separable. In particular, it is not possible to define
its Bochner–Lebesgue integral, if its range is not (a.e.) separable. Since B(Ĥ ) is a
non-separable Banach space, we shall therefore prove the following two propositions
in this appendix:

Proposition 17.1 Let ξ ∈ R
ν and assume, in addition to our standing hypotheses, that

|m| � cω, for some c > 0. Then, after a suitable modification, the operator-valued
map W

V
ξ
: I ×Ω → B(Ĥ ) has a separable image and defines an adaptedB(Ĥ )-

valued process whose paths are continuous on I\{0}. In particular, it is predictable.
Proposition 17.2 Let ξ ∈ R

ν and let T be a locally compact metric space. Assume
that V is continuous and that |m| � cω, for some c > 0. Assume further that the
driving process depends parametrically on x ∈ T , which we indicate by writing X x ,
such that I × T � (t, x) �→ X x

t (γ ) is continuous, for all γ ∈ Ω . Finally, assume
that the basic processes can and have been chosen such that

I 2 ×T � (τ, t, x) �−→ (uV−ξ ,t [X x ],U+
t [X x ],U−

τ,t [X x ])(γ ) ∈ C⊕ k2

is continuous, for all γ ∈ Ω . Then we can modify each process W
V
ξ
[X x ], x ∈ T ,

such that (t, x, γ ) �→ W
V
ξ
[X x ](γ ) is measurable from I × T × Ω to B(Ĥ ) with

a separable image, W
V
ξ ,t [X x ] : Ω → B(Ĥ ) is Ft -B(B(Ĥ ))-measurable, for all

(t, x) ∈ I × T , and (I\{0}) × T � (t, x) �→ W
V
ξ ,t [X x ](γ ) is operator norm

continuous, for all γ ∈ Ω .

Remark 17.3 (1) Note that, in the trivial case where m, G, and F are all equal to
zero, we have W

0
0,t = e−td�(ω), which is not continuous at t = 0 with respect to

the operator norm.
(2) Employing the bounds derived in Lemma 17.4 below, we can actually verify, with-

out using Theorem 5.3, that the series of time-ordered integrals (5.13) converges
with respect to the operator norm pointwise on Ω . The bounds on the norm of
W

V
ξ ,t thus obtained are, however, not P-integrable in general and way too rough

in order to discuss the SDE (5.15).

To prove the above propositions we shall employ the bound

‖a†( f1) . . . a†( fm)ψ‖ � 2
m
2 (m!)1/2

⎛
⎝ m∏

j=1
‖ f j‖ω

⎞
⎠
(

m∑
	=0

1

	!
∥∥d�(ω) 	2ψ∥∥2

) 1
2

(17.1)

with ‖ f ‖2ω := ‖ f ‖2 + ‖ω−1/2 f ‖2 and where f, f1, . . . , fm and ψ are such that the
norms on the right hand sides are well-defined. We leave the proof of (17.1) as an
exercise to the reader.
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For general information on analytic maps from one Hilbert space into another, like
the one appearing in the next lemma, we refer again to [14, § III.3.3].

Lemma 17.4 Let t > 0 and m ∈ N0. Then the map Fm,t : km+1 → B(Ĥ ),

Fm,t ( f1, . . . , fm, g) :=
∞∑
n=0

1

n!a
†( fm) . . . a

†( f1)a
†(g)ne−td�(ω), (17.2)

is well-defined, analytic on km+1, and satisfies

‖Fm,t ( f1, . . . , fm, g)‖ � (m!)1/2
⎛
⎝ m∏

j=1
2T 1/2‖ f j‖ω

⎞
⎠ s
(
(2T )1/2‖g‖ω

)
, (17.3)

where T := 1 ∨ (1/2t) and s(z) := ∑∞
n=0(n!)−1/2zn, z ∈ C. If 	 ∈ N and

f1, . . . , fm+	, g ∈ k, then Ran(Fm,t ( f1, . . . , fm, g)) ⊂ D(a†( fm+	) . . . a†( fm+1))
and

a†( fm+	) . . . a†( fm+1)Fm,t ( f1, . . . , fm, g) = Fm+	,t ( f1, . . . , fm+	, g). (17.4)

In particular, we may write

Fm,t ( f1, . . . , fm, g) = a†( fm) . . . a
†( f1) exp{a†(g)}e−td�(ω)

with exp{a†(g)}e−td�(ω) := F0,t (g). For every s > 0, we finally have

Fm,t+s( f1, . . . , fm, g) = Fm,t ( f1, . . . , fm, g)e
−sd�(ω). (17.5)

Proof Let t > 0. It follows immediately from (17.1) that, for all 	 ∈ N0, the multi-
linear map k	 � (h1, . . . , h	) �→ a†(h1) . . . a†(h	)e−td�(ω) ∈ B(F ) is bounded and,
in particular, analytic. Therefore, to show analyticity of Fm,t , it suffices to show that
the series in (17.2) converges uniformly on every bounded subset of km+1. Applying
(17.1) we obtain, for all φ ∈⋂	∈N D(d�(ω)	),

1

n!
∥∥a†( f1) . . . a†( fm)a†(g)nφ∥∥

� (2T )
m
2

⎛
⎝ m∏

j=1
‖ f j‖ω

⎞
⎠ ((m + n)!) 12

n! (2T )
n
2 ‖g‖nω

(
m+n∑
	=0

T−	

	!
〈
φ
∣∣d�(ω)	φ〉

) 1
2

� (2T 1/2)m(m!)1/2
⎛
⎝ m∏

j=1
‖ f j‖ω

⎞
⎠ (2T 1/2‖g‖ω)n

(n!)1/2
( ∞∑
	=0

T−	

	!
〈
φ
∣∣d�(ω)	φ〉

) 1
2

.
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Here we used the bound (m+n)!
m!n! < 2m+n in the second step. Since

∞∑
	=0

T−	

	!
〈
e−td�(ω)ψ

∣∣d�(ω)	e−td�(ω)ψ 〉 = ∥∥e−(t−1/2T )d�(ω)ψ∥∥2 � ‖ψ‖2,

for all ψ ∈ F , this implies

1

n!
∥∥a†( f1) . . . a†( fm)a†(g)ne−td�(ω)∥∥

� (2T
1
2 )m(m!) 12

⎛
⎝ m∏

j=1
‖ f j‖ω

⎞
⎠ (2T

1
2 ‖g‖ω)n
(n!) 12

.

Therefore, the series in (17.2) converges absolutely in operator norm, uniformly on
every bounded subset of km+1, and we also obtain (17.3). The relation (17.4) follows
inductively from the fact that a†( f ) is closed, for every f ∈ h, and (17.5) is obvious
from the fact that right multiplication with e−sd�(ω) is continuous on B(F ). ��
Corollary 17.5 Let r, s, τ > 0 and m ∈ N0. Then, for all f1, . . . , fm, g ∈ k, the
operator Gm,s( f1, . . . , fm, g) defined on the dense domain C [dC ] by

Gm,s( f1, . . . , fm, g)ψ := e−sd�(ω) exp{a(g)}a( f1) . . . a( fm)ψ, ψ ∈ C [dC ],

is bounded and its unique extension to an element ofB(F ) is given by

Gm,s( f1, . . . , fm, g) = Fm,s( f1, . . . , fm, g)
∗.

If n ∈ N0 and |m| � cω, for some c > 0, then the map D(m,n)
r,s,τ : C × [0,∞) ×

R
ν × km+n+2 → B(F ) defined by

D(m,n)
r,s,τ (a, t, x, f1, . . . , fm, f̃1, . . . , f̃n, g, g̃)

:= aFm,r ( f1, . . . , fm, g)�(e
−(τ+t)ω+im·x)Fn,s( f̃1, . . . , f̃n, g̃)∗ (17.6)

is uniformly continuous on every bounded subset of C× [0,∞)× R
ν × km+n+2 and

has a separable image. Moreover, D(m,n)
r,s,τ = D(m,n)

r̃ ,s̃,τ̃ , for all r̃ , s̃, τ̃ > 0 satisfying
r̃ + s̃ + τ̃ = r + s + τ .

Proof The first assertion follows from Lemma 17.4, and the continuity of the map
(17.6) follows from Lemma 17.4 and the bound

‖�(e−(τ+t)ω+im·x)− �(e−(τ+u)ω+im· y)‖
� ‖(1− e(t−u)d�(ω)+i(x− y)·d�(m))e−(t+τ)d�(ω)‖
� (u − t)‖d�(ω)e−τd�(ω)‖ + |x − y|‖d�(|m|)e−τd�(ω)‖
� (u − t + c|x − y|)‖d�(ω)e−τd�(ω)‖,
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for all x, y ∈ R
ν and u > t > 0. The map (17.6) has a separable image because it

is continuous and its domain C × [0,∞) × R
ν × km+n+2 is separable. The relation

D(m,n)
r,s,τ = D(m,n)

r̃ ,s̃,τ̃ is a consequence of (17.5). ��
Corollary 17.6 Let T be a locally compact metric space, let K be a separable
Hilbert space, and let TK be the set of measurable maps X : I × T × Ω → K ,
(t, x, γ ) �→ Xx

t (γ ), such that Xx is an adapted process, for every x ∈ T , and
I ×T � (t, x) �→ Xx

t (γ ) is continuous, for all γ ∈ Ω .
Let r, s, τ > 0, 	,m, n ∈ N0, X̃ ∈ TRν , Z1, . . . , Zm, Z̃1, . . . , Z̃n,Y, Ỹ ∈ Tk,

and h : I 	 × T × Ω → C, (t[	], x, γ ) �→ hxt[	](γ ) be measurable such that its

restriction to [0, t]	 × T × Ω is B([0, t]	) ⊗ B(T ) ⊗ Ft -measurable, for every
t ∈ I , and such that I 	 × T � (t[	], x) �→ hxt[	](γ ) is continuous, for all γ ∈ Ω .

For all (t[	+m+n], ρ[3], t, x) ∈ G := I 	+m+n+3 × [0,∞) × T , define a function
Ω → B(F ) by

Bx
t,ρ[3](t[	+m+n], ·)
:= D(m,n)

r,s,τ

(
hxt[	], t, X̃

x
ρ1
, Zx

1,t	+1 , . . . , Z
x
m,t	+m , Z̃

x
1,t	+m+1 , . . . , Z̃

x
n,t	+m+n ,Y

x
ρ2
, Ỹ x

ρ3

)
.

(17.7)

Then B : G ×Ω → B(F ) is measurable, it has a separable image, its restriction to
[0, t]	+m+n+3 × [0,∞)×T ×Ω → B(F ) isB([0, t]	+m+n+3 × [0,∞)×T )⊗
Ft−B(B(F ))-measurable, and themap (t[	+m+n], ρ[3], t, x) �→ Bx

t,ρ[3](t[	+m+n], γ )
is continuous on G , for all γ . Furthermore, the B(F )-valued Bochner–Lebesgue
integrals in

J (t̃, ρ[3], t, x, γ ) :=
∫
t̃�m+n+	

Bx
t,ρ[3](t[	+m+n], γ )dt[	+m+n], t̃ ∈ I, (17.8)

are well-defined, the map J : G ′ := I 4 × [0,∞)×T ×Ω → B(F ) is measurable
with a separable image and its restriction to [0, t]4 × [0,∞)×T ×Ω → B(F ) is
B([0, t]4 × [0,∞)× T )⊗ Ft -B(B(Ĥ ))-measurable, for every t ∈ I . Finally, for
all γ ∈ Ω , the map (t̃, ρ[3], t, x) �→ J (t̃, ρ[3], t, x, γ ) is continuous on G ′.

Proof The measurability properties of B are clear by definition and Corollary 17.5,
since B is the composition of twomaps which are measurable in the appropriate sense.
(Here we use that⊗n

i=1B(k) = B(kn)which follows from the separability of k.) Since
the image of B is contained in the image of (17.6), it is separable. Corollary 17.5 also
shows that, at each fixed γ , B can be written as a composition of two continuous maps.
In particular, the integral in (17.8) is a (well-defined) Bochner–Lebesgue integral of a
continuous function over a compact simplex. The measurability properties of J thus
follow from a standard result in integration theory and the image of J is contained in
any closed separable subspace ofB(F ) containing the image of B. The continuity of J
follows from the dominated convergence theorem and the local compactness of G . ��
Remark 17.7 Let t > 0 and pick arbitrary r, s, τ > 0 with r + s + τ < t . Then the
following statements hold true on all of Ω:
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(1) In view of (2.15) and (4.2) we have the following factorization,

WV
ξ ,tψ = e−u

V
−ξ ,t exp{ia†(U+

t )}�(w0,t ) exp{ia(U−
t )}ψ, ψ ∈ C [h].

Thus, WV
ξ ,t = D(0,0)

r,s,τ (e
−uV−ξ ,t , t − τ, X t − X0,U

+
t ,U

−
t ) with D(0,0)

r,s,τ as in (17.6).

(2) Let n ∈ N. Then W
V,(n)
ξ ,t can be written as a linear combination (with coefficients

inB(CL)) of B(F )-valued Bochner–Lebesgue integrals,

W
V,(n)
ξ ,t =

∑
α∈[S]n

σαn . . . σα1

∑
A∪A′∪B∪B′∪C=[n]

#C∈2N0

∫
t�n

D(#A,#B)
r,s,τ (ℵ(t, t[n]))dt[n],

(17.9)

where the argument of the integrand is given by

ℵ(t, t[n])
:= (ht,tA′∪B′∪C , t − τ, X t − X0, {wta ,t Fαa ,X ta

}a∈A, {w0,tb Fαb,X tb
}b∈B, iU+

t , iU
−
t ),

ht,tA′∪B′∪C

:= IαC (tC)e
−uV−ξ ,t

( ∏
a′∈A′

{i〈U−
ta′ ,t |Fαa′ ,X ta′ 〉}

) ∏
b′∈B′

{i〈Fαb′ ,X tb′ |U
+
tb 〉}.

(3) We may compute the adjoint of W
V,(n)
ξ ,t by replacing the integrand in (17.9) by its

adjoint. Hence, in combination with (17.6) we obtain a fairly detailed formula for
W

V∗
ξ ,t =

∑∞
n=0 W

V,(n)∗
ξ ,t in terms of the basic processes.

Proof of Proposition 17.2 Since W
V,(n)
ξ ,0 = δ0,n1 onΩ , the F0-measurability of W

V
ξ ,0

is trivial. Thus, for every n ∈ N0, the statement of the proposition with W
V
ξ
replaced

byW
V,(n)
ξ

follows immediately from Corollary 17.6 in combination with the formulas
of Remark 17.7. Combining this result with the bound (7.10), we conclude that, P-a.s.,
the convergence W

V
ξ ,t [X x ] = limN→∞ W

V,(0,N )
ξ ,t [X x ] in B(Ĥ ) is locally uniform

in (t, x) ∈ I × T . Since each measure space (Ω,Ft ,P) with t ∈ I is complete, this
proves the proposition. ��
Proof of Proposition 17.1 Proposition 17.1 is proved in the same way as Proposi-
tion 17.2. ��

Appendix 7: General notation and list of symbols

s ∧ t := min{s, t} and s ∨ t := max{s, t}, for s, t ∈ R.
1A is the characteristic function of a set A.
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Vectors and vector spaces
D(·) denotes the domain of linear operators, andQ(·) the quadratic form domain of

suitable linear operators.B(K1,K2) is the space of bounded linear operators between
two normed linear spaces K1,K2;B(K1) := B(K1,K1).

x⊗n denotes the n-fold tensor product of a vector x with itself.

h= L2(M,A, μ); k, d; h+1, k+1 (2.1); Hypothesis 2.3; Sect. 3
F = �s(h); Ĥ = C

L ⊗F ;H (2.2); (2.21); (10.26)
ζ(h); E [v], C [v] (2.3); (2.4)
D̂; D0 (1.5); (11.4)
hC ; kC , dC ; FC Hypothesis 2.3; (2.26); (2.27)

Quantities determining the model, operators

W ( f,U ), W ( f ), �(U ) Section 2.1
ϕ( f ), d�(T ), a†( f ), a( f ) Section 2.1
ω, m, G, F, C , σ , ν, L , S Hypothesis 2.3 and preceding paragraphs
q, q̆ (2.25)
Ĥ V (ξ , x), Ĥ V

sc (ξ , x), Ĥ(ξ), v(ξ , x) Definition 2.5
M ; Ma(ξ) (1.5); (2.31)
V ; HV Hypothesis 2.4; (1.6) and Sect. 11
pt ; T̂t (ξ), T V

t , T V
t (x, y) (1.12); Definition 10.7

Measure theoretic and probabilistic objects, processes
B(T ) denotes the Borel σ -algebra of a topological space T .
λν is the ν-dimensional Lebesgue–Borel measure and λ := λ1.

I , T , B = (Ω,F, (Ft )t∈I ,P), Fs,t , E, E
H Beginning of Sect. 2.3

I s , Bs (2.34)
B, X , Xq , sXq , β, Ξ Hypothesis 2.7
Y ; Bx := x + B (7.15); (10.10)

bT ;x, y; b̂T ; y,x Lemma 10.5 and “Appendix 4”; (10.15)
SI (K ) Beginning of Sect. 2.3
�·, ··� Remark 2.15
jt ; ιt ; wτ,t , wτ,t (3.1); (3.3); (3.10)
uV
ξ
, U±, (U−τ,t )t∈I , Kτ,t , Kt Definition 3.1

WV
ξ
; W

V
ξ
; W

V,(n)
ξ

, W
V,(N ,M)
ξ

(4.1); Theorem 5.3; Definition 5.1

t�n ,L αA (tA), RαB (tB), IαC (tC) Definition 5.1

L αA (tA; g), RαB (tB; h), Q(n)
τ Remark 5.2

�s,t (x, ψ); �s,t [q, η], Ps,t Theorem 9.2; Proposition 9.3
X̄ , F̄τ , B̄ (10.1)

The meaning and use of an additional argument [X], [Bx], etc., of a process, e.g.,
U±[X] or W

V
ξ ,t [bt : y,x], is explained in the beginning of Sect. 8.
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