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Abstract We study the Metropolis dynamics of the simplest mean-field spin glass
model, the random energymodel.We show that this dynamics exhibits aging by show-
ing that the properly rescaled time change process between the Metropolis dynamics
and a suitably chosen ‘fast’ Markov chain converges in distribution to a stable sub-
ordinator. The rescaling might depend on the realization of the environment, but we
show that its exponential growth rate is deterministic.

Mathematics Subject Classification 82C44 · 82D30 · 60K37

1 Introduction

This paper studies the out-of-equilibrium behavior of the Metropolis dynamics on
the random energy model (REM). Our main goal is to answer one of the remaining
important open questions in the field, namely whether this dynamics exhibits aging,
and, if yes, whether its aging behavior admits the usual description in terms of stable
Lévy processes.

Aging is one of the main features appearing in the long-time behavior of complex
disordered systems (see e.g. [12] for a review). It was for the first time observed
experimentally in the anomalous relaxation patterns of the residual magnetization
of spin glasses (e.g. [18,29]). One of the most influential steps in the theoretical
modeling of the aging phenomenon is the introduction of the so-called trap models by
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jiri.cerny@univie.ac.at

Tobias Wassmer
tobias.wassmer@univie.ac.at

1 Faculty of Mathematics, University of Vienna, Oskar-Morgenstern-Platz 1, 1090 Vienna, Austria

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00440-015-0681-1&domain=pdf
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Bouchaud [11] and Bouchaud and Dean [13]. These models, while being sufficiently
simple to allow analytical treatment, reproduce the characteristic power law decay
seen experimentally.

Since then a considerable effort has been made in putting the predictions obtained
from the trapmodels to a solid basis, that is to derive these predictions from underlying
spin-glass dynamics. The first attempt in this direction was made in [6–8] where it was
shown that, for a very particular Glauber-type dynamics, at time scales very close to
the equilibration, a well chosen two-point correlation function converges to that given
by Bouchaud’s trap model.

With the paper [9], where the same type of dynamics was studied in a more general
framework and on a broader range of time scales, it emerged that aging establishes
itself by the fact that scaling limits of certain additive functionals ofMarkov chains are
stable Lévy processes, and that the convergence of the two-point correlation functions
is just a manifestation of the classical arcsine law for stable subordinators.

TheGlauber-type dynamics used in those papers, sometimes called randomhopping
time (RHT) dynamics, is however rather simple and is often considered as ‘non-
realistic’, mainly because its transition rates do not take into account the energy of the
target state. Its advantage is that it can be expressed as a time change of a simple random
walk on the configuration space of the spin glass, which allows for a certain decoupling
of the randomness of the dynamics from the randomness of the Hamiltonian of the
spin glass, making its rigorous studies more tractable.

For more realistic Glauber-type dynamics of spin glasses, like the so-called
Bouchaud’s asymmetric dynamics or the Metropolis dynamics, such decoupling is
not possible. As a consequence, these dynamics are far less understood.

Recently, some progress has been achieved in the context of the simplest mean-field
spin glass model, the REM. First, in [31], the Bouchaud’s asymmetric dynamics have
been considered in the regime where the asymmetry parameter tends to zero with
the size of the system. Building on the techniques started in [32], this papers con-
firms the predictions of Bouchaud’s trap model in this regime. Second, the Metropolis
dynamics have been studied in [26], for a truncated version of the REM, using the
techniques developed for the RHT dynamics in [24,25], again confirming Bouchaud’s
predictions.

The weak asymmetry assumption of [31] and the truncation of [26] have both the
same purpose. They aim at overcoming some specific features of the asymmetry and
recovering certain features of the RHT dynamics. Our aim in this work is to get rid
of these simplifications and treat the non-modified REM with the usual Metropolis
dynamics.

Let us also mention that Bouchaud’s asymmetric dynamics (and implicitly the
Metropolis one) is rather well understood in the context of trap models on Z

d , see
[3,14,27], where it is possible to exploit the connections to the random conductance
model with unbounded conductances [4]. Finally, the Metropolis dynamics on the
complete graph was considered in [25].

Before stating our main result, let us briefly recall the general scheme for proving
aging in termsof convergence to stableLévyprocesses. The actual spin glass dynamics,
X = (Xt )t≥0,which is reversiblewith respect to theGibbsmeasure of theHamiltonian,
is compared to another Markov chain Y = (Yt )t≥0 on the same space, which is an
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‘accelerated’ version of X and whose stationary measure is uniform. The process Y is
typically easier to understand, e.g. it is a simple random walk for the RHT dynamics,
and the original process X can be written as its time change,

X (t) = Y (S−1(t)), (1.1)

for the right continuous inverse S−1 of a certain additive functional S of the Markov
chain Y , called the ‘clock process’. The aim is then to show convergence of the
properly rescaled clock process S to an increasing stable Lévy process, that is to a
stable subordinator.

We now state our main result. We consider the unmodified REM, as introduced
in [19,20]. The state space of this model is the N -dimensional hypercube HN =
{−1, 1}N , and its Hamiltonian is a collection (Ex )x∈HN of i.i.d. standard Gaussian
random variables defined on some probability space (�,F ,P). The non-normalized
Gibbs measure τx = eβ

√
NEx at inverse temperature β > 0 gives the equilibrium

distribution of the system.
The Metropolis dynamics on the REM is the continuous-time Markov chain X =

(Xt )t≥0 on HN with transition rates

rxy = e−β
√
N (Ex−Ey)+1{x∼y} =

(
1 ∧ τy

τx

)
1{x∼y}, x, y ∈ HN . (1.2)

Here, x ∼ y means that x and y are neighbors on HN , that is they differ in exactly
one coordinate.

As explained above, we will compare the Metropolis chain X with another ‘fast’
Markov chain Y = (Yt )t≥0 with transition rates

qxy = τx ∧ τy

1 ∧ τx
1{x∼y}, x, y ∈ HN . (1.3)

It can be easily checked using the detailed balance conditions that Y is reversible and
that its equilibrium distribution is

νx = 1 ∧ τx

ZN
, x ∈ HN ,

where ZN = ∑x∈HN
(1 ∧ τx ). Finally, since rxy = (1 ∨ τx )

−1qxy , X can be written
as a time change of Y as in (1.1) with the clock process S being given by

S(t) =
∫ t

0
(1 ∨ τYs ) ds. (1.4)

For the rest of the paperwemostly only dealwith the processY and the clock process
S. With exception of this introduction and Sect. 8, the actual Metropolis dynamics X
does not appear. For a fixed environment τ = (τx )x∈HN , let P

τ
ν denote the law of

the process Y started from its stationary distribution ν, and let D([0, T ],R) be the
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space ofR-valued cadlag functions on [0, T ]. We denote by βc = √
2 log 2 the (static)

critical temperature of the REM. Our main result is the following theorem.

Theorem 1.1 Let α ∈ (0, 1) and β > 0 be such that

1

2
<

α2β2

β2
c

< 1, (1.5)

and define

gN = eαβ2N (αβ
√
2πN
)− 1

α . (1.6)

Then there are random variables RN which depend on the environment (Ex )x∈HN

only, such that for every T > 0 the rescaled clock processes

SN (t) = g−1
N S(t RN ), t ∈ [0, T ],

converge in P-probability as N → ∞, in Pτ
ν -distribution on the space D([0, T ],R)

equipped with the Skorokhod M1-topology, to an α-stable subordinator Vα . The ran-
dom variables RN satisfy

lim
N→∞

log RN

N
= α2β2

2
, P-a.s. (1.7)

Let us make a few remarks on this result.

1. The result of Theorem 1.1 confirms that the predictions of Bouchaud’s trap model
hold for the Metropolis dynamics on the REM, at least at the level of scaling
limits of clock processes. It also compares directly to the results obtained for
the symmetric (RHT) dynamics in Theorem 3.1 of [9]. The scales gN and RN

are (up to sub-exponential prefactors) the same as previously. Similarly as in [9],
the right inequality of the assumption (1.5) is completely natural, beyond it Y
‘feels’ the finiteness ofHN and aging is not expected to occur. The left inequality
in (1.5) is technical, it ensures that the relevant deep traps are well separated
(cf. Lemma 2.1), introducing certain simplifications in the proof. Basing also on
Theorem 2.1 of [15] (which is an improved version of Theorem 3.1 of [9]), we
believe that this bound might be improved to α2β2/β2

c > 0, by further exploiting
our method. Finally, as previously, note that (1.5) is satisfied also for β < βc for
appropriate α, hence aging can occur above the critical temperature at sufficiently
short observation scales.

2. Our choice of the fast chain Y is rather unusual. In view of the previous papers
[3,31], it would be natural to take instead the chain Ỹ with uniform invariant
measure andwith transition rates τx∧τy , that is without the correction 1∧τx which
appears in the denominator of (1.3). This choice has, however, some deficiencies.
On the heuristic level, Ỹ is not an acceleration of X , since it is much slower than X
on sites with very small Gibbs measure τx 
 1. These sites, which are irrelevant
for the statics, then ‘act as traps’ on Ỹ , making them relevant for the dynamics,
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which is undesirable. On the technical level, the trapping on sites with small Gibbs
measure has the consequence that the mixing time of Ỹ is very large.
Our choice of the fast chain Y runs as fast as X on the sites with small Gibbs mea-
sure and thus does not have this deficiency. Moreover, since νx = Z−1

N whenever
Ex ≥ 0, the equilibrium distribution of the fast chain Y is still uniform on the
relevant deep traps, so the clock process S retains its usual importance for aging.
Remark also that in order to overcome the difficulties with the slow mixing of
the chain Ỹ , [31] truncate the Hamiltonian of the REM at 0 which effectively sets
τx ≥ 1 for all x ∈ HN . We prefer to retain the full REM and use the modified fast
chain Y instead. Finally, [26] uses the discrete skeleton of X as the base chain,
which has some interesting features but introduces similar undesirable effects.

3. We view Theorem 1.1 as our primary aging statement. The reason for this is that
it seems hard, without extending the paper considerably, to derive aging results
in terms of the usual two-point functions as e.g. in [9,26], or in terms of the
age process as in [22,31]. Such derivation usually requires some knowledge of
the fast chain Y that goes over the M1-convergence of the clock processes. This
knowledge is typically automatically obtained in the previous approaches. The
strength (or the weakness) of our method is that we do not need to obtain such
finer knowledge to show the clock process convergence.
Without the finer knowledge, it is possible to consider only non-standard (and to
some extent artificial) two-point functions or age processes.We give two examples
of such results in the concluding Sect. 8.

4. A rather unusual feature of Theorem1.1 is the fact that the scaling RN is random, it
depends on the randomenvironment. This is again a consequence of our technique.
Claim (1.7) in Theorem 1.1 however shows that at least the exponential growth
of RN is deterministic. The random scale RN is explicitly defined in (2.10). We
will see that its definition depends on a somewhat free choice of an auxiliary
parameter, but nevertheless the final result does not depend on this parameter.
This property (and also other heuristic considerations) makes us conjecture that
RN should actually satisfy a law of large numbers,

lim
N→∞ h(N )e−α2β2N/2RN = 1, P-a.s.,

for some deterministic function h(N ) growing (or decaying) at most sub-
exponentially.
Observe also that the randomness of RN should not have, at least heuristically,
any influence on the aging behavior of the process X . RN is the time scale of the
auxiliary process Y . The only physically relevant scale is gN , giving the observa-
tion time-scale for the Metropolis chain X . At least partially, this is confirmed by
the aging results of Sect. 8.

5. The mode of convergence in Theorem 1.1 is not optimal, one would rather like to
obtain the convergence in Pτ

ν -distribution for P-almost every environment, which
is usually called ‘quenched’ convergence. Actually, Theorem 1.1 can be strength-
ened slightly to a statement which is somewhere between P-a.s. convergence
and convergence in P-probability. Namely, the statement holds for a.e. realiza-
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tion of sites with ‘small’ τx , but only in probability over sites with ‘large’ τx ,
cf. Remark 6.4.

6. Our proof of Theorem 1.1 strongly exploits the i.i.d. structure of the Hamiltonian
of the REM. At present we do not know if it is possible to combine our techniques
with those used for the RHT dynamics of the p-spin model in [5,10].

We proceed by commenting on the proof of Theorem 1.1, concentrating mainly on
its novelties. The general strategy so far to prove such a result has been to first reduce
the problem to the clock process restricted to a set of deep traps which govern the
behavior of the original clockprocess.Thedifferentmethods then allmoreor less aimat
dividing the contribution of consequently found deep traps into essentially i.i.d. blocks.
For example in [9] or [3], this is achieved by controlling the hitting probabilities of
deep traps, proving that they are hit essentially uniformly in exponentially distributed
times, and controlling the time the chain spends at the deep traps by a sharp control
of the Green function. Similar rather precise estimates on hitting probabilities and/or
Green function are necessary in other approaches. Using this i.i.d. structure, one can
then show convergence of the clock process by standard methods, e.g. computing the
Laplace transform.

The method used in this paper is slightly inspired by the general approach taken
in [17,22]. There, models of trapped random walks on Zd are considered where little
information about the discrete skeleton as well as the waiting times of a continuous-
time Markov chain is available, and minimal necessary conditions for convergence
of the clock process are found. Taking up this idea, instead of analyzing in detail the
behavior of the fast chain Y , we extract the minimal amount of information needed to
show convergence of the clock process. In particular, we do not need any exact control
of hitting probabilities and Green functions of deep traps, as most previous work
did.

The first step in our proof is standard, namely that the main contribution to the
clock process comes from a small set of vertices with large Gibbs measure τx , the
so-called deep traps. More precisely, denoting the set of deep traps byDN (see Sect. 2
for details), we will show that the clock process S can be well approximated by the
‘clock process of the deep traps’

SD(t) =
∫ t

0

(
1 ∨ τYs

)
1{Ys∈DN } ds. (1.8)

Then it remains to show that in fact g−1
N SD(t RN ) converges to a stable subordinator.

To this end, we will in some sense invert the standard procedure described above.
Instead of approximating the clock process by an i.i.d. block structure and then use the
Laplace transform to show convergence, we will first compute a certain conditional
Laplace transform using some special properties of the Metropolis dynamics. Then
we analyze what is actually needed in order to show convergence of the unconditional
Laplace transform.

A bit more detailed, this will be done as follows. Under condition (1.5), the deep
traps are almost surely well separated. This fact and the fact that the definition (1.3)
contains the factor τx ∧ τy imply that the transition rates qxy of the fast chain Y do
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not depend on the energies Ex of the deep traps. Therefore, one can condition on the
location of all deep traps and the energies Ex of the non-deep traps, which determines
the law Pτ

ν of Y , and take the expectation over the energies of the deep traps. We call
this a ‘quasi-annealed’ expectation, and denote it by ED for the moment. Let �t (x)
denote the local time of the fast chain Y (see Sect. 2 for details). As ED is simply
an expectation over i.i.d. random variables, the quasi-annealed Laplace transform of
the rescaled clock process of the deep traps given Y can be computed. It essentially
behaves like

ED
[
e
−λ 1

gN
SD(t RN )

∣∣∣ Y] ≈ exp

{
−KλαεN

∑
x∈DN

�t RN (x)α
}
. (1.9)

Here, εN is a deterministic sequence tending to 0 as N → ∞. The above approx-
imation shows that the only object related to Y we have to control is the local-time
functional εN

∑
x∈DN

�t RN (x)α .
We will show that this a priori non-additive functional of Y actually behaves in an

additiveway, namely that it converges to t as N → ∞, under Pτ
ν forP-a.e. environment

τ . For this convergence to hold it is sufficient to have some weak bounds on the mean
hitting time of deep traps as well as some control on the mixing of the chain Y together
with an appropriate choice of the scale RN that depends on the environment.

Using standard methods we then strengthen the quasi-annealed convergence to
quenched convergence (in the sense of Theorem 1.1).

To conclude the introduction, let us comment on howourmethodmight be extended.
The key argument in the computation of the quasi-annealed Laplace transform, namely
the fact that the chain Y is independent of the depth of the deep traps, seems very spe-
cific for theMetropolis dynamics. However, by adapting the method appropriately and
using network reduction techniques, we believe that one could also treat Bouchaud’s
asymmetric dynamics andMetropolis dynamics in the regime where the left-hand side
inequality of (1.5) fails, i.e. there are neighboring deep traps.

The rest of the paper is structured as follows. Detailed definitions and notations used
through the paper are introduced in Sect. 2. In Sect. 3 we analyze themixing properties
of the fast chain Y , which will be crucial at several points later. In Sect. 4 we give
bounds on the mean hitting time of deep traps and on the normalizing scale RN . Using
these bounds and the results on the mixing of Y , we show concentration of the local
time functional εN

∑
x∈DN

�t RN (x)α in Sect. 5. We prove convergence of the rescaled
clock process of the deep traps in Sect. 6 with the above mentioned computation of the
quasi-annealed Laplace transform, using the concentration of the local time functional.
We treat the shallow traps in Sect. 7 by showing that their contribution to the clock
process can be neglected. Finally, in Sect. 8, we prove Theorem 1.1 and present some
additional aging results, as already mentioned. In Appendix we give the proof of a
technical result which is used to bound the expected hitting times in Sect. 4.

2 Definitions and notation

In this section we introduce some notation used through the paper and recall a few
useful facts. We use HN to denote the N -dimensional hypercube {−1, 1}N equipped
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with the usual distance

d(x, y) = 1

2

N∑
i=1

|xi − yi |,

and write EN for the set of nearest-neighbor edges EN = {{x, y} : d(x, y) = 1}.
For given parameters α and β, let

γ = α2β2

β2
c

∈ (1/2, 1), (2.1)

by condition (1.5) in Theorem 1.1.
Recall from the introduction that (Ex : x ∈ HN , N ≥ 1), is a family of i.i.d. stan-

dard Gaussian random variables defined on some probability space (�,F ,P). Note
that we do not denote the dependence on N explicitly, but we assume that the space
(�,F ,P) is the same for all N . For β > 0 the non-normalized Gibbs factor τx is
given by τx = eβ

√
NEx .

Using the standard Gaussian tail approximation,

P[Ex ≥ t] = 1

t
√
2π

e−t2/2(1+ o(1)
)

as t → ∞, (2.2)

we obtain that gN , as defined in Theorem 1.1, satisfies

P[τx > ugN ] = u−α2−γ N (1+ o(1)
)
.

This heuristically important computation explains the appearance of stable laws in
the distribution of sums of τx : If we observe 2γ N vertices, then finitely many of them
have their rescaledGibbsmeasures τx/gN of order unity, and,moreover, those rescaled
Gibbsmeasures behave like randomvariables in the domain of attraction of anα-stable
law.

Recall also that Y = (Yt )t≥0 stands for the fast Markov chain whose transition rates
qxy are given in (1.3), and that ν = (νx )x∈HN denotes the invariant distribution of this
chain, νx = 1∧τx

ZN
. For a given environment τ = (τx )x∈HN , let P

τ
x and Pτ

ν denote the
laws of Y started from a vertex x or from ν respectively, and Eτ

x , E
τ
ν the corresponding

expectations.
Note that the normalization factor ZN =∑x∈HN

(1∧τx ) satisfies, for every constant
κ ∈ (0, 1/2),

κ2N ≤ ZN ≤ 2N P-a.s for N large enough. (2.3)

Indeed, obviously ZN ≤ 2N , and ZN ≥ ∑x∈HN
1{Ex≥0}. But 1{Ex≥0} are

i.i.d. Bernoulli random variables, therefore the statement follows immediately by the
law of large numbers.
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An important role in the study of properties of Y is played by the conductances
defined by

cxy = νxqxy = τx ∧ τy

ZN
for x ∼ y. (2.4)

Let θs be the left shift on the space of trajectories of Y , that is

(θsY )t = Ys+t . (2.5)

Let Hx = inf{t > 0 : Yt = x} be the hitting time of x by Y , J1 the time of the first
jump of Y , and let H+

x = Hx ◦ θJ1 + J1 = inf{t > J1 : Yt = x} be the return time to
x by Y . Similarly define HA and H+

A for a set A ⊂ HN . The local time �t (x) of Y is
given by

�t (x) =
∫ t

0
1{Ys=x}ds.

Using this notation the clock process S introduced in (1.4) can be written as

S(t) =
∫ t

0
(1 ∨ τYs ) ds =

∑
x∈HN

�t (x)(1 ∨ τx ).

To define the set of deep traps DN and the random scale RN mentioned in the
introduction we introduce a few additional parameters. For α ∈ (0, 1), β > 0 as in
Theorem 1.1 and γ as in (2.1), we fix γ ′ and α′ such that

1

2
< γ ′ < γ, and α′ = βc

β

√
γ ′. (2.6)

An explicit choice of γ ′ will be made later in Sect. 5. We define the auxiliary scale

g′N = eα′β2N (α′β
√
2πN
)− 1

α′ ,

and set
DN = {x ∈ HN : τx ≥ g′N }.

to be the set of deep traps. By the Gaussian tail approximation (2.2) it follows that the
density of DN satisfies

P[x ∈ DN ] = 2−γ ′N (1+ o(1)). (2.7)

We quote the following observation on the size and sparseness of DN . The sparse-
ness will play a key role in our computation of the quasi-annealed Laplace transform
in Sect. 6.
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Lemma 2.1 [9, Lemma 3.7] For every ε > 0, P-a.s. for N large enough,

|DN |2(γ ′−1)N ∈ (1− ε, 1+ ε). (2.8)

Moreover, since γ ′ > 1/2, there exists δ > 0 such that P-a.s. for N large enough, the
separation event

S = {min{d(x, y) : x, y ∈ DN } ≥ δN
}

(2.9)

holds.

Finally, for the sake of concreteness, let us give the explicit form of the random
scale RN ,

RN = 2(γ−γ ′)N

⎛
⎝ ∑

x∈DN

Eτ
x [�Tmix(x)

α]
Eτ

ν [Hx ]

⎞
⎠

−1

, (2.10)

where Tmix denotes the mixing time of Y , a randomized stopping time which we will
construct in Sect. 3. The reason for this definitionwill become apparent whenwe prove
the concentration of the local time functional mentioned in the introduction. Although
the definition of RN seems arbitrary by the somewhat free choice of the parameter γ ′,
Theorem 1.1 actually shows that asymptotically RN will be independent of γ ′.

For the rest of the paper, c, c′, c′′ will always denote positive constants whose values
may change from line to line. We will use the notation g = o(1) for a function g(N )

that tends to 0 as N → ∞, and g = O( f ) for a function g(N ) that is asymptotically
at most of order f (N ), i.e. limN→∞ |g(N )|/ f (N ) ≤ c, for some c > 0.

3 Mixing properties of the fast chain

The fact that the chain Y mixes fast, namely on a scale polynomial in N , plays a
crucial role in many of our arguments. In this section we analyze the mixing behavior
of Y . We first give a lower bound on the spectral gap λY of Y , which we then use to
construct a strong stationary time Tmix.

Proposition 3.1 There are constants κ > 0, K > 0, C0 > 0, such that P-a.s. for N
large enough,

λY ≥ κ

4
N−K−1−βC0 .

We prove this proposition with help of the Poincaré inequality derived in [21]. To
state this inequality, let � be a complete set of self-avoiding nearest-neighbor paths
on HN , that is for each x �= y ∈ HN there is exactly one path γxy ∈ � connecting x
and y. Let |γ | be the length of the path γ . By [21, Proposition 1’, p. 38], using also
the reversibility of Y and recalling the definition (2.4) of the conductances, it follows
that

1

λY
≤ max

e={u,v}∈EN

⎧⎨
⎩

1

cuv

∑
γxy∈�:γxy�e

|γxy |νxνy
⎫⎬
⎭ . (3.1)
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To minimize the right-hand side of (3.1), special care should be taken of the edges
whose conductance cuv = (τu ∧ τv)/ZN is very small, that is which are incident to
vertices with very small τu . Those ‘bad’ edges should be avoided if possible by paths
γ ∈ �. They cannot be avoided completely, since � should be a complete set of paths.
On the other hand, if such edge is the first or the last edge of some path γxy , its small
conductance is canceled by equally small νx or νy . Therefore, to apply (3.1) efficiently,
one should find a set of paths � such that all paths γ ∈ � avoid ‘bad’ vertices, except
for vertices at both ends of the paths.

In the context of spin glass dynamics this method was used before in [23] to find
the spectral gap of the Metropolis dynamics (1.2). Using the same approach, that is
using the same set of paths � as in [23], we could find a lower bound on the spectral
gap of the fast chain Y of leading order exp{−c

√
N log N }. This turns out to be too

small for our purposes, cf. Remark 6.4.
In the next lemma we construct a set of paths � that avoids more ‘bad’ vertices,

which allows to improve the lower bound on the spectral gap to be polynomial in N .
This is possible by using an embedding of HN into its sub-graph of ‘good’ vertices,
i.e. vertices with not too small τx , which is inspired by similar embeddings in [28].

For a nearest-neighbor path γ = {x0, . . . , xn}, we call the vertices x1, . . . , xn−1
the interior vertices of γ , and the edges {xi , xi+1}, i = 1, . . . , n−2, the interior edges
of γ .

Lemma 3.2 There is an integer K > 0 and a constant C0 > 0, such that P-a.s. for
N large enough there exists a complete set of paths �, such that the following three
properties hold.

(i) For every path γ ∈ �, every interior edge e = {u, v} satisfies

ZNcuv = τu ∧ τv ≥ N−βC0 .

(ii) |γ | ≤ 8N for all γ ∈ �.
(iii) Every edge e ∈ EN is contained in at most N K 2N−1 paths γ ∈ �.

Proof For C0 > 0, whose value will be fixed later, we say that x ∈ HN is good
if τx ≥ N−βC0 , and it is bad otherwise. To construct the complete set of paths �

satisfying the required properties, we will use the fact that the set of good vertices is
very dense in HN . In particular, we will show that

P-a.s. for N large enough, every x ∈ HN has at least
1

2
C0

√
N good neighbors,

(3.2)
and

P-a.s. for N large enough, for any pair of vertices x, y at distance 2 or 3,

there is a nearest-neighbor path of length at most 7 connecting x and y,

such that all interior vertices of this path are good, (3.3)
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264 J. Černý, T. Wassmer

To prove these two claims, note first that for any x ∈ HN , the probability of being
bad is

P

[
τx < N−βC0

]
= P[Ex < −C0N

− 1
2 log N ] = 1

2
−
∫ C0N

− 1
2 log N

0

1√
2π

e−
s2
2 ds.

For N large enough the integrand is larger than 3
10 , and it follows that

P[x is bad] ≤ 1

2

(
1− 3

5
C0N

− 1
2 log N

)
=: 1

2
(1− qN ).

Hence, the number of bad neighbors of a vertex x ∈ HN is stochastically dominated by
a Binomial

(
N , 1

2 (1−qN )
)
random variable B. For λ > 0, the exponential Chebyshev

inequality yields

P

[
x has more than N − 1

2
C0

√
N bad neighbors

]

≤ P

[
B ≥ N − 1

2
C0

√
N

]
= P

[
eλB ≥ eλ(N− 1

2C0
√
N )
]

≤ e−λ(N− 1
2C0

√
N )

(
1+ 1

2
(1− qN )(eλ − 1)

)N

= e−λ(N− 1
2C0

√
N )

(
eλ

2

(
1− qN + e−λ(1+ qN )

))N

≤ 2−Ne
λ
2C0

√
N (exp{−qN + e−λ(1+ qN )})N .

Since qN → 0 as N → ∞, the second term in the braces is bounded by 2e−λ for N
large enough. Inserting qN and choosing λ = log N , the above is bounded by

2−N exp

{
1

2
C0

√
N log N − 3

5
C0

√
N log N + 2

}

≤ 2−N exp

{
− 1

10
C0

√
N log N

}
,

for N large enough. With a union bound over all x ∈ HN and using the Borel–Cantelli
lemma, (3.2) follows.

To prove (3.3), we first introduce some notation. For a given vertex x and
{i1, . . . , ik} ⊂ {1, . . . , N }, denote by xi1...ik the vertex that differs from x exactly
in coordinates i1, . . . , ik . If two vertices x and y are at distance 2, then y = xkl

for some k, l ∈ {1, . . . , N }. Then for {i, j} ∩ {k, l} = ∅ we define the path γ
i j
xy of

length 6 as {x, xi , xi j , xi jk, xi jkl = yi j , y j , y}. Similarly, for x, y with d(x, y) = 3,
we have y = xklm , and for {i, j} ∩ {k, l,m} = ∅ we define the path γ

i j
xy of length

7 by {x, xi , xi j , xi jk, xi jkl , xi jklm = yi j , y j , y}. Observe that for fixed x, y with
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d(x, y) = 2 or 3 and for different pairs i, j the innermost 3 or 4 vertices of the paths
γ
i j
xy are disjoint.
We now show that with high probability, for every x, y at distance 2 or 3, we may

find i, j such that γ i j
xy has only good interior vertices. Fix a pair x, y ∈ HN at distance

2 or 3, and let as above k, l or k, l,m be the coordinates in which x and y differ.
Assume for the moment that both x and y have at least 1

2C0
√
N good neighbors. Then

there are at least 1
4C

2
0N pairs i, j such that the vertices xi and y j are good. Moreover,

since it is a matter of dealing with a constant number of exceptions, we may tacitly
assume that i �= j , and {i, j} ∩ {k, l} = ∅ or {i, j} ∩ {k, l,m} = ∅, respectively.

The remaining interior vertices {xi j , xi jk, xi jkl = yi j } or {xi j , xi jk, xi jkl , xi jklm =
yi j } are all good with probability strictly larger than 1/2, so the probability that one
or more of these vertices are bad is bounded by 15/16. Since these 3 or 4 innermost
vertices are disjoint for different pairs i, j , by independence, the probability that among
all 1

4C
2
0N pairs {i, j} there is none for which all innermost 3 or 4 vertices of γ

i j
xy are

good is bounded by (15/16)
1
4C

2
0N . Hence, for one fixed pair x, y ∈ HN at distance 2

or 3, where both x and y have at least 1
2C0

√
N good neighbors, the probability that

there is no path from x to y of length 6 or 7 with all interior vertices good is bounded

by (15/16)
1
4C

2
0N .

There are less than 2N (N 2 + N 3) pairs of vertices at distance 2 or 3 respectively,
and we know from the proof of (3.2) that with probability larger than 1− e−c

√
N log N

every x ∈ HN has at least 1
2C0

√
N good neighbors. It follows that the probability that

the event in (3.3) does not happen is bounded by

e−c
√
N log N + 2N (N 2 + N 3)(15/16)

1
4C

2
0N . (3.4)

Choosing C0 >

√
4 log 2

log 15/16 and applying the Borel–Cantelli lemma implies (3.3).
We now use the density properties (3.2) and (3.3) of good vertices to define a

(random) mapping from the hypercube to its sub-graph of good vertices. Let ϕN (x) :
HN → HN be given by

ϕN (x) =

⎧⎪⎨
⎪⎩
x, if x is good;

xi , if x and x j , j < i, are bad but xi is good;
x, if x is bad and has no good neighbor.

By (3.2), P-a.s. for N large enough the last option will not be used, and therefore ϕN

maps all vertices to good vertices. In this case, for two neighboring vertices x, y, their
good images ϕN (x) and ϕN (y) can either coincide, or be at distance 1, 2, or 3.

Let further

PN = {{x0, . . . , xk} : k ≥ 0, d(xi , xi−1) = 1 ∀ i = 1, . . . , k}

be the set of finite nearest-neighbor paths onHN , including paths of length zero, which
are just single vertices. We extend the mapping ϕN to the set of edges by associating
to every edge e ∈ EN an element of PN : For an edge e = {x, y} ∈ EN , let ϕN (e) be
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266 J. Černý, T. Wassmer

• the ‘path’ {ϕN (x)}, if ϕN (x) is good and ϕN (x) = ϕN (y);
• the path {ϕN (x), ϕN (y)}, if both ϕN (x) and ϕN (y) are good and at distance 1;
• the path γ

i j
ϕN (x),ϕN (y) with ‘minimal’ i, j such that all vertices of this path are good,

if both ϕN (x) and ϕN (y) are good with distance 2 or 3 and such path exists;
• the path {x, y} in any other case.

From (3.2) and (3.3) it follows that P-a.s. for N large enough the last option does not
occur and ϕN maps all edges to paths that contain only good vertices.

Finally, we extend ϕN to be amap that sends paths to paths. For γ = {x0, . . . , xn} ∈
PN we define ϕN (γ ) to be a concatenation of paths ϕN ({xi−1, xi }), i = 1, . . . , n, with
possible loops erased by an arbitrary fixed loop-erasure algorithm. Note that ϕN can
make paths shorter or longer, but by construction, for any path γ ∈ PN ,

|ϕN (γ )| ≤ 7|γ |. (3.5)

We can now construct the random set of paths � that satisfies the properties of the
lemma. We first define a certain canonical set of paths �̃, and then use the mapping
ϕN to construct � from �̃.

For any pair of vertices x �= y ∈ HN , let γ̃xy be the path from x to y obtained
by consequently flipping the disagreeing coordinates, starting at coordinate 1. These
paths are all of length smaller or equal to N , and the set �̃ = {γ̃xy : x �= y ∈ HN } has
the property that any edge e is used by at most 2N−1 paths in �̃. Indeed, if e = {u, v},
then there is a unique i such that ui �= vi . By construction, e ∈ γ̃xy if

x = (x1, . . . , xi−1, ui , ui+1, . . . , uN ),

y = (v1, . . . , vi−1, vi , yi+1, . . . , yN ).

It follows that a total of N−1 coordinates of x and y are unknown, and so the number of
possible pairs x, y for paths γ̃xy through e is bounded by 2N−1 (cf. [21, Example 2.2]).

For any pair x �= y ∈ HN , let the path γxy in the set � be defined by

γxy =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ϕN (γ̃xy), if x, y are good,

{x} ◦ ϕN (γ̃xy), if x is bad and y is good,

ϕN (γ̃xy) ◦ {y}, if x is good and y is bad,

{x} ◦ ϕN (γ̃xy) ◦ {y}, if x, y are bad,

where ‘◦’ denotes the path concatenation.
It remains to check that this set of paths � indeed satisfies the required properties.

First, by construction, � is complete, that is every path γxy ∈ � connects x with
y and is nearest-neighbor and self-avoiding. Further, by construction of ϕN and the
properties (3.2) and (3.3), P-a.s. for N large enough, all interior vertices of all γ ∈ �

are good, i.e. (i) is satisfied. Moreover, by (3.5) and the construction of the paths
γ̃ ∈ �̃, the paths γ ∈ � have length at most 7N + 2, hence (ii) is satisfied for N ≥ 2.
Finally, ϕN deforms the paths γ̃ ∈ �̃ only locally, so that the number of paths in �

passing through an edge e is bounded by the number of paths in �̃ passing through
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the ball of radius 4 around e. But this number is bounded by 2N−1 times the number
of edges in that ball, which is bounded by NK for some integer K > 0. This proves
(iii) and thus finishes the proof of the lemma. ��

We can now prove the spectral gap estimate.

Proof of Proposition 3.1 P-a.s. for every N large enoughwe can find a complete set of
paths � such that (i), (ii) and (iii) of Lemma 3.2 and (2.3) hold. By (ii), the expression
in (3.1) over which the maximum is taken is bounded from above by

8N

ZN

1

τu ∧ τv

∑
γxy�{u,v}

(τx ∧ 1)(τy ∧ 1). (3.6)

We distinguish three cases for the position of the edge {u, v} in a path γxy .

(1) If {u, v} is an interior edge of γxy , then τu ∧ τv is larger than N−βC0 by (i) of
Lemma 3.2.

(2) If {u, v} is at the end of the path γxy , say at u = x , and v is an interior vertex of
γxy , then τx ∧ τv is either larger than N−βC0 , or it is equal to τx in which case it
cancels with τx ∧ 1. Indeed, if τx ∧ τv was smaller than N−βC0 and equal to τv ,
then v would be a bad interior vertex of γ , which contradicts (i) of Lemma 3.2.

(3) If γxy only consists of the single edge {x, y}, then τx ∧ τy is either larger than 1,
or the term τx ∧ τy cancels with the smaller one of τx ∧ 1 and τy ∧ 1.

It follows that for every edge {u, v} the expression (3.6) is bounded from above by

8N

ZN
NβC0#{paths through e}.

Since, by (iii) of Lemma 3.2, the number of paths is bounded by NK 2N−1, and, by
(2.3), ZN ≥ κ2N , this completes the proof. ��

In a next step we construct the mixing time Tmix of the fast chain Y . To this end,
define the mixing scale

mN = 8

κ
NK+3+βC0 . (3.7)

Then Proposition 3.1 reads λN ≥ 2N 2m−1
N .

We assume that our probability space (�,F ,P) is rich enough so that there exist
infinitelymany independent randomvariables distributed uniformly on [0, 1], indepen-
dent of everything else. A randomized stopping time T is a positive random variable
such that the event {T ≤ t} depends only on {Ys : s ≤ t}, the environment, and on the
values of these additional random variables.

Proposition 3.3 P-a.s. for N large enough, there exists a randomized stopping time
Tmix with values in {mN , 2mN , 3mN , . . .} such that Tmix is a strong stationary time
for Y , that is for any (possibly random) Y0 ∈ HN ,

(i) Pτ
Y0
[YTmix = y] = νy ,
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(ii) for any k ≥ 1, Pτ
Y0
[Tmix ≥ kmN ] = e−(k−1),

(iii) Tmix and YTmix are independent.

Proof This construction follows closely [31, Proposition 3.1], with only minor adap-
tations. Define the following distances from stationarity,

s(t) = min
{
s ≥ 0 : ∀x, y ∈ HN , Pτ

x [Yt = y] ≥ (1− s)ν(y)
}
,

d̄(t) = max
x,y∈HN

∥∥Pτ
x [Yt ∈ · ] − Pτ

y [Yt ∈ · ]∥∥T V ,

where ‖ · ‖T V denotes the total variation distance. Define the time

T = inf{t ≥ 0 : d̄(t) ≤ e−1}.

From [2, Lemmas 4.5, 4.7 and 4.23] we know that

d̄(t) ≤ e−�t/T �,
s(2t) ≤ 1− (1− d̄(t))2,

T ≤ 1

λY

(
1+ 1

2
log

1

ν∗

)
,

(3.8)

where ν∗ = minx νx . Since P[τx ≤ e−N2/4] ≤ ce−c′N3
, by the Borel–Cantelli lemma,

P-a.s. for N large enough, log 1
ν∗ ≤ N2

4 + log ZN ≤ 1
2N

2. Therefore, by Proposi-
tion 3.1 and (3.8), P-a.s. for N large enough, T ≤ 1

4mN , d̄( 12mN ) ≤ e−2, and
s(mN ) ≤ 2e−2 ≤ e−1, which means that for all Y0, y ∈ HN ,

Pτ
Y0 [YmN = y] ≥ (1− e−1)νy .

We can now define the strong stationary time Tmix with values in {mN , 2mN , . . .}.
LetU1,U2, . . . be i.i.d. uniformly on [0, 1] distributed random variables, independent
of anything else. Conditionally on Y0 = x , YmN = y, let Tmix = mN if

U1 ≤ (1− e−1)νy

Pτ
x [YmN = y] (≤1).

Otherwise, we define Tmix inductively: for every k ∈ N, conditionally on Tmix > kmN ,
YkmN = z and Y(k+1)mN = y, let Tmix = (k + 1)mN if

Uk+1 ≤ (1− e−1)νy

Pτ
z [YmN = y] (≤ 1).

By construction, we have for every x ∈ HN ,

Pτ
x [Tmix = mN | YmN = y] = (1− e−1)νy

Pτ
x [YmN = y] ,
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and thus
Pτ
Y0 [Tmix = mN , YmN = y | Y0 = x] = (1− e−1)νy .

Similarly, we have

Pτ
Y0 [Tmix = (k + 1)mN , Y(k+1)mN = y | Tmix > kmN , YkmN = x] = (1− e−1)νy .

By induction over k, we obtain that for any k ∈ N and y ∈ HN ,

Pτ
Y0 [Tmix = kmN , YkmN = y] = e−(k−1)(1− e−1)νy,

which finishes the proof. ��
For future reference we collect here two useful statements that follow directly from

the construction of Tmix.

Lemma 3.4 For every t > 0 and x ∈ HN and every starting distribution ρ,

Pτ
ρ [Yt = x |Tmix < t] = νx ,∣∣Pτ

ρ [Yt = x] − νx
∣∣ ≤ Pτ

ρ [Tmix > t] = e−�t/mN−1�.

4 Bounds on mean hitting time and random scale

In this sectionwe prove bounds on themean hitting time Eτ
ν [Hx ] of deep traps x ∈ DN .

As a corollary of the proof we will obtain a useful bound on the Green function in
deep traps. The bounds on the mean hitting times will further imply bounds on the
random scale RN , which will imply the claim (1.7) of Theorem 1.1.

Proposition 4.1 There exists δ ∈ (0, 1/6), such that P-a.s. for N large enough,

2N−N1−δ ≤ Eτ
ν [Hx ] ≤ 2N+N1−δ

for every x ∈ DN .

The proof of Proposition 4.1 is split in two parts.

Proof of the upper bound For the upper bound we use [2, Lemma 3.17] which states
that

Eτ
ν [Hx ] ≤ 1− νx

λY νx
.

Since τx ≥ 1 for deep traps x ∈ DN , this is smaller than ZN
λY

, which by Proposition 3.1

and (2.3) is bounded by 2N+N1−δ
, P-a.s. for N large enough. ��

For the lower bound wewill use a version of Proposition 3.2 of [16] which allows to
bound the inverse of themeanhitting time Eτ

ν [Hx ] in termsof the effective conductance
from x to a suitable set B. Recall the definition of the conductances cxy from (2.4),
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and let cx =∑y∼x cxy . Following the terminology of [30, Chapter 2], we define the
effective conductance between a vertex x and a set B as

C(x → B) = Pτ
x [H+

x > HB]cx .

By Proposition 8.5, which is a generalization of [16, Proposition 3.2] to arbitrary
continuous-time finite-state-space Markov chains,

1

Eτ
ν [Hx ] ≤ C(x → B)ν(B)−2. (4.1)

To apply this bound effectively, we should find a set B such that C(x → B) is
small and ν(B) close to 1. In the next lemma we construct such sets B for every
x ∈ HN . For these sets we have some control on the conductances connecting B and
Bc. Using standard network reduction techniques we can then give a bound on the
effective conductance C(x → B), which when plugged into (4.1) will imply the lower
bound on Eτ

ν [Hx ].
Denote by B(x, r) = {y ∈ HN , d(x, y) ≤ r} the ball of radius r around x , and by

∂B(x, r) = {y ∈ HN , d(x, y) = r} the sphere of radius r .

Lemma 4.2 For every δ ∈ (0, 1/6), P-a.s. for N large enough, there exist radii
(ρx )x∈HN satisfying 1 ≤ ρx ≤ N 3δ , such that for all x ∈ HN and for all y ∈
∂B(x, ρx ), τy ≤ 2

1
2 N

1−δ
.

Proof Fix δ ∈ (0, 1/6). We say that a sphere ∂B(x, r) is good if τy ≤ 2
1
2 N

1−δ
for all

y ∈ ∂B(x, r), otherwise we say that it is bad. Using the Gaussian tail approximation
(2.2), we get that

P

[
τy > 2

1
2 N

1−δ
]
≤ ce

− log2 2
8β2

N1−2δ

.

The size of the sphere ∂B(x, r) is bounded by Nr , hence the probability that the sphere
∂B(x, r) is bad is bounded by

Nr
P

[
τy > 2

1
2 N

1−δ
]
≤ c exp

{
r log N − log2 2

8β2 N 1−2δ
}

.

By independence of the τx , the probability that for one fixed x all the spheres ∂B(x, r),
r = 1, . . . , N 3δ , are bad is bounded by

N3δ∏
r=1

Nr
P

[
τy > 2

1
2 N

1−δ
]
≤
(
NN3δ

P

[
τy > 2

1
2 N

1−δ
])N3δ

≤ exp

{
N 3δ log c + N 6δ log N − log2 2

8β
N 1+δ

}
.
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Finally, by a union bound, the probability that among all 2N vertices in HN there is
one for which all spheres ∂B(x, r), r = 1, . . . , N 3δ , are bad is bounded by

2N
(
NN3δ

P

[
τy > 2

1
2 N

1−δ
])N3δ

≤ exp

{
N 3δ log c + N 6δ log N + N log 2− log2 2

8β
N 1+δ

}
.

Since δ < 1/6 this decays faster than exponentially, and so by the Borel–Cantelli
lemma the event occurs P-a.s. only for finitely many N , i.e. P-a.s. for N large enough
we can find for every x ∈ HN a radius ρx ≤ N 3δ such that the sphere ∂B(x, ρx ) is
good. ��

For every x ∈ DN we define the set Ax by

Ax :=
{
B(x, ρx ), if the radius ρx from Lemma 4.2 exists,

{x}, otherwise.
(4.2)

We may now proceed with the proof of the lower bound in Proposition 4.1.

Proof of the lower bound of Proposition 4.1 Wewill apply (4.1) with B = Ac
x . Using

Lemma 4.2 and (2.3), P-a.s. for N large enough, for all x ∈ DN all conductances

cyz = (τy ∧ τz)/ZN connecting Ax and Ac
x are smaller than 2

1
2 N

1−δ
/(κ2N ). By the

parallel law (cf. [30, Chapter 2.3]), the effective conductance between the boundaries
of Ax and Ac

x is equal to the sum of all the conductances of edges connecting Ax and
Ac
x , and so P-a.s. for N large enough,

C(∂Ax → ∂Ac
x ) =

∑
y∈∂Ax
z∈∂Ac

x

cyz ≤ κ−1Nρx+12
1
2 N

1−δ

2−N .

By Rayleigh’s monotonicity principle (cf. [30, Chapter 2.4]), comparing the effective
conductances from x to Ac

x before and after setting all the conductances inside Ax to
infinity, it follows that

C(x → Ac
x ) ≤ C(∂Ax → ∂Ac

x ) ≤ κ−1Nρx+12
1
2 N

1−δ

2−N .

Since δ < 1/6 and ρx ≤ N 3δ , we have Nρx+1 ≤ 2
1
2 N

1−δ
for N large enough, and

thus, P-a.s. for N large enough,

C(x → Ac
x ) ≤ c2−N+N1−δ

. (4.3)

Moreover, P-a.s. for N large enough, as νy = (1∧τy)/ZN ≤ 1/ZN , using (2.3) again,

ν(Ac
x ) = 1− ν(Ax ) ≥ 1− Z−1

N |Ax | ≥ 1− c2−N N N3δ N→∞−−−−→ 1. (4.4)
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Plugging (4.3) and (4.4) into (4.1) and readjusting δ to accommodate for constants
easily yields the required lower bound Eτ

ν [Hx ] ≥ 2N−N1−δ
. This completes the proof.

��
As a corollary we get a lower bound on Eτ

x [�HAcx
(x)] for the deep traps x ∈ DN .

Corollary 4.3 There are constants δ ∈ (0, 1/6) and c > 0, such that P-a.s. for N
large enough, for all x ∈ DN , under Pτ

x the local time of Y in x before leaving
Ax , �HAcx

(x), stochastically dominates an exponential random variable with mean

c2−N1−δ
. In particular, P-a.s. for N large enough,

Eτ
x

[
�HAcx

(x)
]
≥ c2−N1−δ

.

Proof Recall that J1 denotes the time of the first jump of Y . The local time at x before
hitting Ac

x is an exponential random variable with mean equal to

Eτ
x

[
#{visits to x before HAc

x
}] · Eτ

x [J1].

The expected number of visits before leaving Ax is Pτ
x [H+

x > HAc
x
]−1 = cxC(x →

Ac
x )

−1. The mean duration of one visit to x is Eτ
x [J1] = (

∑
y∼x qxy)

−1. For the deep
traps we have τx > 1, therefore

∑
y∼x qxy = ∑y∼x cxy/νx = ZNcx . It follows that

the local time at x before hitting Ac
x is in fact an exponential random variable with

mean Z−1
N C(x → Ac

x )
−1. Using the bounds (4.3) and (2.3), the claim follows easily.

��
As a next consequence we give bounds on the random scale RN defined in (2.10).

Note that this lemma also proves the statement (1.7) about the asymptotic behavior of
RN in Theorem 1.1.

Lemma 4.4 For every ε > 0, P-a.s. for N large enough,

2(γ−ε)N ≤ RN ≤ 2(γ+ε)N .

Proof By Proposition 3.3, Tmix/mN is a geometric random variable with parameter
e−1, and thus Eτ

x [�Tmix(x)
α] ≤ Eτ

x [Tmix
α] ≤ cmα

N ≤ eεN by (3.7), for every ε > 0

and N large enough. Moreover, |DN | ≤ c′2(1−γ ′)N by (2.8). Using the lower bound
on Eτ

ν [Hx ] from Proposition 4.1, we obtain that for every ε > 0, P-a.s. for N large
enough,

RN = 2(γ−γ ′)N

⎛
⎝ ∑

x∈DN

Eτ
x [�Tmix(x)

α]
Eτ

ν [Hx ]

⎞
⎠

−1

≥ 2(γ−ε)N .

For the upper bound we need a lower bound on Eτ
x [�Tmix(x)

α]. Recall the sets Ax

defined in (4.2), and note that

Eτ
x [�Tmix(x)

α] ≥ Eτ
x

[
1{Tmix≥HAcx

}�HAcx
(x)α
]
. (4.5)
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By Corollary 4.3, P-a.s. for N large enough, the local time at x before hitting Ac
x

stochastically dominates an exponential random variable with mean c2−N1−δ
, hence

Pτ
x

[
�HAcx

(x) ≤ 2−2N1−δ
]
≤ 1− e−c2−N1−δ ≤ c2−N1−δ

.

Moreover, for every ε > 0, P-a.s. for N large enough,

Pτ
x [Tmix < HAc

x
] ≤ Pτ

x [YTmix ∈ Ax ] = ν(Ax ) ≤ κ−12−N N N3δ ≤ 2−εN .

Using the last two observations in (4.5), P-a.s. for N large enough,

Eτ
x [�Tmix(x)

α] ≥ Pτ
x

[
{Tmix ≥ HAc

x
} ∩ {�HAcx

(x) ≥ 2−2N1−δ }
] (

2−2N1−δ
)α

≥ 2−2αN1−δ
(
Pτ
x

[
�HAcx

(x) ≥ 2−2N1−δ
]

− Pτ
x

[
{�HAcx

(x) ≥ 2−2N1−δ } ∩ {Tmix < HAc
x
}
])

≥ 2−2αN1−δ
(
Pτ
x

[
�HAcx

(x) ≥ 2−2N1−δ
]
− Pτ

x

[
Tmix < HAc

x

])

≥ 2−2αN1−δ
(
(1− c′2−N1−δ

) − 2−εN
)

≥ 2−εN .

Combining this with |DN | ≥ c2(1−γ ′)N by (2.8) and the upper bound on Eτ
ν [Hx ] from

Proposition 4.1, we obtain the required upper bound on RN . ��

5 Concentration of the local time functional

In this section we prove the concentration of the local time functional that appears in
the computation of the quasi-annealed Laplace transform of the clock process on the
deep traps, as explained in the introduction (cf. (1.9)). We denote this functional by

LN (t) = 2(γ ′−γ )N
∑
x∈DN

�t RN (x)α.

So far we had no restriction on the choice of γ ′ other than 1/2 < γ ′ < γ , see
(2.6). We now make an explicit choice as follows. Let ε0 = 1

2

(
(1− γ ) ∧ (γ − 1

2 )
)
,

and define γ ′ = γ − ε0, such that in particular

1− γ ≥ 2ε0, (5.1)

γ − γ ′ = ε0. (5.2)

The main result of this section is the following proposition.
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Proposition 5.1 For every fixed t ≥ 0, P-a.s. for N large enough,

Pτ
ν

[
|LN (t) − t | ≥ 2−

1
5 ε0N
]
≤ c2−

1
10 ε0N .

Proof We approximate LN (t) by the sum of essentially independent random variables
as follows. Let K = ⌊2ε0N

⌋
. For a fixed t > 0, define

tk = t RN

K
k, k = 0, . . . , K .

Recall the notation (2.5). For every x ∈ DN and k = 1, . . . , K , define Hk
x = tk−1 +

Hx ◦ θtk−1 to be the time of the first visit to x after tk−1, and set

�kt,x =
(∫ (Hk

x+N2mN )∧(tk−N2mN )

Hk
x ∧(tk−2N2mN )

1{Ys=x}ds
)α

.

The random variable �kt,x gives ‘roughly’ the α-th power of the time that Y spends in
x between tk−1 and tk − N 2mN , with some suitable truncations. Let further

Uk
N (t) = 2(γ ′−γ )N

∑
x∈DN

�kt,x .

The next lemma, which we prove later, shows that the sum of theUk
N (t)’s is a good

approximation for LN (t).

Lemma 5.2 For every t > 0, P-a.s. for N large enough,

Pτ
ν

[
LN (t) �=

K∑
k=1

Uk
N (t)

]
≤ c2−

1
2 ε0N .

With Lemma 5.2, the proof of the proposition reduces to understanding of the
approximating sum

∑K
k=1U

k
N (t). We will compute its expectation and variance under

Pτ
ν . In particular, we will show that there is c < ∞ such that for every t > 0,

∣∣∣∣∣Eτ
ν

[
K∑

k=1

Uk
N (t)

]
− t

∣∣∣∣∣ ≤ c2−2ε0N , P-a.s. as N → ∞, (5.3)

and

Varτν

(
K∑

k=1

Uk
N (t)

)
≤ c2−

1
2 ε0N , P-a.s. as N → ∞. (5.4)
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The statement of the proposition then follows from Lemma 5.2, (5.3) and (5.4) by
routine application of the Chebyshev inequality. Indeed, P-a.s. for N large enough,

Pτ
ν

[
|LN (t) − t | ≥ 2−

1
5 ε0N
]

≤ Pτ
ν

[
LN (t) �=

K∑
k=1

Uk
N (t)

]
+Pτ

ν

[∣∣∣∣∣
K∑

k=1

Uk
N (t)−Eτ

ν

[
K∑

k=1

Uk
N (t)

]∣∣∣∣∣≥2 · 2− 1
5 ε0N

]

≤ c2−
1
2 ε0N + c′2−

1
10 ε0N ≤ c′′2−

1
10 ε0N ,

which is the claim of the proposition.
We proceed by computing the expectation (5.3). We will need two lemmas which

we show later. The first lemma estimates the probability that a deep trap is visited by
the process Y .

Lemma 5.3 For every tN such that 1 ≤ tN ≤ 2N , for every ε > 0, P-a.s. for N large
enough, for all x ∈ DN ,

Pτ
ν [Hx ≤ tN ] = tN

Eτ
ν [Hx ] + O

(
t2N2

2(ε−1)N
)
+ O
(
2(ε−1)N

)
≤ ctN2

(ε−1)N .

The second lemma then gives the expected contribution of a single �kt,x to∑K
k=1U

k
N (t).

Lemma 5.4 For every fixed t > 0, k = 1, . . . , K and ε > 0, P-a.s. for N large
enough, for all x ∈ DN ,

Eτ
ν

[
�kt,x

]
= t RN

K Eτ
ν [Hx ] E

τ
x

[
�Tmix(x)

α
]+ O

(
2(2γ+3ε−2ε0−2)N

)
.

With Lemma 5.4 it is easy to compute the expectation (5.3). Using that |DN | ≤
c2(1−γ ′)N by (2.8), and the definition (2.10) of RN , for every ε > 0, P-a.s. for N large
enough,

Eτ
ν

[
K∑

k=1

Uk
N (t)

]
= 2(γ ′−γ )N

∑
x∈DN

K∑
k=1

(
t RN

K Eτ
ν [Hx ] E

τ
x [�Tmix(x)

α]

+ O
(
2(2γ+3ε−2ε0−2)N

))

= t + O
(
2(γ ′−γ )N2(1−γ ′)N2(2γ−2+3ε−ε0)N

)

= t + O
(
2(γ−1+3ε−ε0)N

)
.

Choosing ε < ε0/3 and recalling (5.1) imply (5.3).
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Next, we estimate the variance (5.4). Since ν is the stationary measure for Y , the
random variables Uk

N (t), k = 1, . . . , K , are identically distributed under Pτ
ν . Hence

Varτν

(
K∑

k=1

Uk
N (t)

)
= K Varτν

(
U 1

N (t)
)
+ 2

∑
1≤k< j≤K

Covτ
ν

(
Uk

N (t),U j
N (t)
)
. (5.5)

The covariances can be neglected easily. Indeed, since by definitionUk
N (t) depends

on the trajectory of Y between times tk−1 and tk−N 2mN only, we can use theMarkov
property at the later time to write

Covτ
ν

(
Uk

N (t),U j
N (t)
)

= Eτ
ν

[(
Uk

N (t) − Eτ
νU

k
N (t)
)
Eτ
[
U j

N (t) − Eτ
νU

j
N (t)
∣∣ Ytk−N2mN

]]
. (5.6)

By Lemma 3.4,
∣∣Pτ [Ytk = y|Ytk−N2mN

] − νy
∣∣ ≤ e−cN2

. Using in addition that

U j
N ≤ ec

′N for some sufficiently large c′, we see that the inner expectation satisfies

∣∣∣Eτ [U j
N (t) − Eτ

νU
j
N (t) | Ytk−N2mN

]
∣∣∣ ≤ e−cN2/2.

Inserting this inequality back to (5.6) and summing over k < j then implies that the
second term in (5.5) is O(e−cN2

) and thus can be neglected when proving (5.4).
To control the variance ofU 1

N (t) in (5.5), it is enough to bound its second moment,
which is

Eτ
ν

[
U 1

N (t)2
]
= 22(γ

′−γ )N

⎛
⎝ ∑

x∈DN

Eτ
ν

[
(�1t,x )

2
]
+
∑

x �=y∈DN

Eτ
ν [�1t,x�1t,y]

⎞
⎠ .

Since, by definition, �1t,x ≤ (N 2mN )α and �1t,x �= 0 implies Hx ≤ t RN/K ,

Eτ
ν

[
U 1

N (t)2
]
≤ 22(γ

′−γ )N N 4αm2α
N

⎛
⎝ ∑

x∈DN

Pτ
ν

[
Hx ≤ t RN

K

]

+
∑

x �=y∈DN

Pτ
ν

[
Hx , Hy ≤ t RN

K

]⎞⎠ . (5.7)

By Lemmas 5.3 and 4.4, for every ε > 0, P-a.s. as N → ∞,

Pτ
ν

[
Hx ≤ t RN

K

]
≤ c2(γ−1+ε−ε0)N . (5.8)
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Moreover, by (2.8), |DN | ≤ c2(1−γ ′)N , and by (3.7), N 4αm2α
N ≤ 2εN , for every ε > 0

and N large enough. It follows that the contribution of the first sum in (5.7) to the
variance, including the prefactor K = 2ε0N from (5.5), can be bounded by

c2(2(γ ′−γ )+1−γ ′+γ−1+2ε)N = c2(γ ′−γ+2ε)N .

By (5.2), γ ′ − γ + 2ε ≤ −ε0 + 2ε < − 1
2ε0 for ε < ε0/4, and hence this contribution

is smaller than c2− 1
2 ε0N as required for (5.4).

For the second summation in (5.7) we write

Pτ
ν

[
Hx , Hy≤ t RN

K

]
≤ Pτ

ν

[
Hx <Hy≤ t RN

K

]
+ Pτ

ν

[
Hy < Hx ≤ t RN

K

]
.

By the Markov property, each of these two probabilities can be bounded by

Pτ
ν

[
Hx < Hy ≤ t RN

K

]
=
∫ t RN

K

0
Pτ

ν [Hx ∈ du]Pτ
x

[
Hy <

t RN

K
− u

]

≤
∫ t RN

K

0
Pτ

ν [Hx ∈du]
(
Pτ
x [Hy≤Tmix]+Pτ

ν

[
Hy≤ t RN

K

])

≤ Pτ
ν

[
Hx ≤ t RN

K

](
Pτ
x [Hy ≤ Tmix]+Pτ

ν

[
Hy≤ t RN

K

])
.

Using (5.8) and (2.8) again, the second sum in (5.7) is bounded by

c2(γ−1+ε−ε0)N

⎛
⎝22(1−γ ′)N2(γ−1+ε−ε0)N +

∑
x �=y∈DN

Pτ
x [Hy ≤ Tmix]

⎞
⎠ . (5.9)

The first term in the parentheses of (5.9) together with the prefactors K from (5.5)
and 22(γ

′−γ )N N 4αm2α
N ≤ 2(2(γ ′−γ )+ε)N from (5.7), contributes to the variance by at

most
c2(ε0+2(γ ′−γ )+ε+2(1−γ ′)+2(γ−1+ε−ε0))N = c2(3ε−ε0)N ≤ c2−

1
2 ε0N

if ε is small enough, as required by (5.4).
For the second term in the parentheses of (5.9) we need the following lemmawhose

proof is again postponed.

Lemma 5.5 LetW x
t =∑y∈DN ,y �=x 1{Hy≤t}. Then for every ε > 0, P-a.s. for N large

enough, for every x ∈ DN ,
Eτ
x [W x

Tmix
] ≤ 2εN .

Using Lemma 5.5, and including all the prefactors as before, the contribution of
the second term in (5.9) to the variance (5.5) is bounded by

c2(ε0+2(γ ′−γ )+ε+1−γ ′+γ−1+ε−ε0+ε)N = c 2(γ ′−γ+3ε)N ≤ 2−
1
2 ε0N ,
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where for the last inequality we used (5.2) again, and choose ε small enough. This
completes the proof of (5.4) and thus of the proposition. ��

We proceed by proving the lemmas used in the above proof.

Proof of Lemma 5.3 By [1, Theorem 1] the hitting time Hx is approximately expo-
nential in the sense that

∣∣∣∣Pτ
ν [Hx > t] − e

− t
Eτ
ν [Hx ]
∣∣∣∣ ≤ 1

λY Eτ
ν [Hx ] .

Hence, using Propositions 3.1 and 4.1 to bound λY and Eτ
ν [Hx ] respectively, we have

for every ε > 0, P-a.s. for N large enough,

Pτ
ν [Hx ≤ tN ] =

(
1− e

− tN
Eτ
ν [Hx ]
)
+ O
(
2(ε−1)N

)

= tN
Eτ

ν [Hx ] + O
(
t2N2

2(ε−1)N
)
+ O
(
2(ε−1)N

)
.

Finally, if 1 ≤ tN ≤ 2N this is bounded by ctN2(ε−1)N , which proves the lemma. ��
Proof of Lemma 5.4 By the strong Markov property and the definition of �kt,x ,

Eτ
ν

[
�kt,x

]
≥ Pτ

ν

[
Hx ∈ [tk−1, tk − 2N 2mN ]

]
Eτ
x

[
�N2mN

(x)α
]
,

Eτ
ν

[
�kt,x

]
≤ Pτ

ν

[
Hx ∈ [tk−1, tk − N 2mN ]

]
Eτ
x

[
�N2mN

(x)α
]
.

(5.10)

We will now give approximations of the expressions appearing in (5.10).
Observe that for every s, t > 0,

�t (x)
α ≤ �s(x)

α + (�t (x) − �s(x))
α.

Using this inequality with t = N 2mN and s = Tmix and applying the strong Markov
property at Tmix, observing that YTmix is ν-distributed,

Eτ
x

[
�N2mN

(x)α
] ≤ Eτ

x

[
�Tmix(x)

α
]+ Eτ

ν

[
�N2mN

(x)α
]
.

By Lemma 5.3, using also that by (3.7), �N2mN
(x)α ≤ N 2αmα

N ≤ 2εN for every ε > 0
and N large enough,

Eτ
ν

[
�N2mN

(x)α
] ≤ Pτ

ν

[
Hx ≤ N 2mN

]
2εN ≤ c2(3ε−1)N .

Hence we obtain the upper bound

Eτ
x

[
�N2mN

(x)α
] ≤ Eτ

x

[
�Tmix(x)

α
]+ c2(3ε−1)N . (5.11)
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For a matching lower bound, note that

Eτ
x

[
�N2mN

(x)α
] ≥ Eτ

x

[
�Tmix(x)

α1{Tmix≤N2mN }
]
.

But from Proposition 3.3 it follows that

Eτ
x [�Tmix(x)

α1{Tmix>N2mN }]≤Eτ
x [Tmix

α1{Tmix>N2mN }]≤
∞∑

k=N2

(kmN )αe−k≤ce−c′N2
,

so that
Eτ
x

[
�N2mN

(x)α
] ≥ Eτ

x

[
�Tmix(x)

α
]− ce−cN2

. (5.12)

Combining (5.11) and (5.12), we obtain

Eτ
x

[
�N2mN

(x)α
] = Eτ

x

[
�Tmix(x)

α
]+ O

(
2(3ε−1)N

)
. (5.13)

Note also that by (3.7), for every ε > 0 and N large enough,

Eτ
x [�Tmix(x)

α] ≤ Eτ
x [Tmix

α] ≤ cmα
N ≤ 2εN . (5.14)

To approximate the probabilities in (5.10), we apply Lemma 5.3 for tN = tk−1 and
tN = tk − i N 2mN , for a fixed t > 0 and i = 1, 2. Using Lemma 4.4 to bound RN

and Proposition 4.1 to bound Eτ
ν [Hx ], for every ε > 0, P-a.s. for N large enough, for

both i = 1, 2,

Pτ
ν

[
Hx ∈ [tk−1, tk − i N 2mN ]

]

= t RN

K Eτ
ν [Hx ] + O

(
22(γ+ε−ε0−1)N

)
= O
(
2(γ+ε−ε0−1)N

)
. (5.15)

Inserting both (5.15) and (5.13) in (5.10), and using (5.14), for every ε > 0, P-
a.s. for N large enough,

Eτ
ν

[
�kt,x

]
= t RN

K Eτ
ν [Hx ] E

τ
x

[
�Tmix(x)

α
]+ O

(
2(2γ+3ε−2ε0−2)N

)
.

This proves the lemma. ��
Proof of Lemma 5.2 Note first that

{
LN (t) �=

K∑
k=1

Uk
N (t)

}
⊆
{
∃x ∈ DN : �t RN (x)α �=

K∑
k=1

�kt,x

}
.

To control the probability of this event, we introduce some more notation. Set H (0)
x =

0, H (1)
x = Hx , and for k ≥ 2 define the time of the ‘k-th visit after mixing’ inductively
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as

H (k)
x = inf{t > Tmix ◦ θ

H (k−1)
x

+ H (k−1)
x : Yt = x}.

Let N x
t = min{k ≥ 0, H (k)

x ≤ t} be the number of ‘visits after mixing’ to x before
time t . Finally, let Ik = [tk − 2N 2mN , tk]. Then

Pτ
ν

[
∃x ∈ DN : �t RN (x)α �=

K∑
k=1

�kt,x

]
≤ Pτ

ν

[
Ys ∈ DN for some s ∈

K⋃
k=1

Ik

]

+ Pτ
ν

[
∃x ∈ DN : N x

t RN
≥ 2
]

+ Pτ
ν

[
∃x ∈ DN : Tmix ◦ θHx >N 2mN

]
.

(5.16)

We show that each of the three terms on the right-hand side is smaller than c2− 1
2 ε0N ,

which will prove the lemma.
For the first term in (5.16), using the stationarity of ν and the Markov property

Pτ
ν

[
Ys ∈ DN for some s ∈

K⋃
k=1

Ik

]
≤ K
∑
x∈DN

Pτ
ν

[
Hx ≤ 2N 2mN

]
. (5.17)

By Lemma 5.3, P-a.s. for all x ∈ DN , for ε > 0 small and N large enough,

Pτ
ν [Hx ≤ 2N 2mN ] ≤ 2(ε−1)N .

Since |DN | ≤ c2(1−γ ′)N by (2.8), the right hand side of (5.17) is bounded by
c2ε0N2(ε−γ ′)N . Since γ ′ > 1/2 and by definition ε0 ≤ 1/4, when ε is small enough

this is smaller than c2− 1
2 ε0N as required.

For the second term in (5.16), by Lemma 5.3 and the strong Markov property at
Tmix, for every ε > 0, P-a.s. for N large enough,

Pτ
ν [H (2)

x ≤ t RN ] ≤ Pτ
ν [Hx ≤ t RN ]2 ≤ c22(γ−1+ε)N .

Togetherwith (2.8) to bound |DN |, and using (5.1) and (5.2),P-a.s. for N large enough,

Pτ
ν

[
∃x ∈ DN : N x

t RN
≥ 2
]
≤ c2(1−γ ′)N22(γ−1+ε)N

= c2(γ−γ ′)N+(γ−1)N+εN

≤ c2(−ε0+ε)N ≤ c2−
1
2 ε0N

as required.
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Finally we give a bound on the third term in (5.16). By Proposition 3.3, Pτ
x [Tmix >

N 2mN ] ≤ e−cN2
. Thus, with (2.8) to bound |DN |, P-a.s. for N large enough,

Pτ
ν

[
∃x ∈ DN : Tmix ◦ θHx > N 2mN

]
≤ c2(1−γ ′)N Pτ

x [Tmix > N 2mN ]
≤ c′2−

1
2 ε0N .

Together with the previous estimates, this implies that the right-hand side of (5.16) is

bounded by c2− 1
2 ε0N , and concludes the proof of the lemma. ��

Proof of Lemma 5.5 Let H0 = 0 and define recursively for i ≥ 1

Hi = inf
{
t ≥ Hi−1 : Yt ∈ DN\{YHi−1}

}
.

By (2.9), P-a.s. for N large enough, the vertices in DN are at least distance δN
from each other. In particular the balls Ax = B(x, ρx ), x ∈ DN , defined in (4.2)
are disjoint. Hence, when on y ∈ DN , the random walk Y should first leave Ay in
order to visit DN\{y}. The strong Markov property and Corollary 4.3 then imply
that Hi stochastically dominates a Gamma random variable with parameters i and
μ := c2N

1−δ
.

IfW x
t ≥ i , then Hi ≤ t . Hence, for t ≥ μ,

Eτ
x

[
W x

t

]=∑
i≥1

Pτ
x [W x

t ≥ i]≤
∑
i≥1

Pτ
x [Hi ≤ t]≤

∑
i≥1

∫ t

0
μi ui−1e−μu�(i)−1du=μt.

Using the trivial estimate Eτ
x [W x

Tmix
1{Tmix≥N2mN }] ≤ |DN |Pτ

x [Tmix ≥ N 2mN ], it
follows that

Eτ
x

[
W x

Tmix

] ≤ Eτ
x

[
W x

N2mN

]
+ |DN |Pτ

x [Tmix ≥ N 2mN ]
≤ μN 2mN + c2(γ ′−1)Ne−cN2 ≤ 2εN

by (2.8), (3.7) and Proposition 3.3. This completes the proof. ��
For later applications, we state two further consequences of the proof of Lemma 5.2.

Lemma 5.6 P-a.s. for N large enough,

Pτ
ν

[
∃x ∈ DN : �t RN (x) > N 2mN

]
≤ c2−

1
2 ε0N ,

and
Pτ

ν

[
|{x ∈ DN : Hx ≤ t RN }| ≥ 2

3
2 ε0N
]
≤ c2−

1
4 ε0N .

Proof The first claim follows directly from the bounds on the second and third term
on the right hand side of (5.16) in the proof of Lemma 5.2, since the local time in a
vertex that is only ‘visited once after mixing’ is bounded by Tmix ◦ θHx .
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The second assertion can be seen in the following way. Using Lemma 5.3 to bound
the probability of a single vertex x ∈ DN to be visited before time t RN and (2.8) to
bound the size of DN , for every ε > 0, P-a.s. for N large enough,

Eτ
ν [|{x ∈ DN : Hx ≤ t RN }|] ≤ c2(1−γ ′)N2(γ−1+ε)N ≤ c2(γ−γ ′+ε)N .

By (5.2) this is equal to c2(ε0+ε)N , so choosing ε < ε0/4 this is smaller than c2
5
4 ε0N .

Then by the Markov inequality the probability that there are more than 2
3
2 ε0N vertices

visited is smaller than c2− 1
4 ε0N . ��

6 Clock process of the deep traps

This section contains the main steps leading to the proof of Theorem 1.1. Recall from
(1.8) that the ‘clock process of deep traps’ SD is given by

SD(t) =
∫ t

0
(1 ∨ τYs )1{Ys∈DN }ds =

∫ t

0
τYs1{Ys∈DN }ds.

We now show that SD converges to a stable process.

Proposition 6.1 Under the assumptions of Theorem 1.1, the rescaled clock processes
of the deep traps g−1

N SD(t RN ) converge in P-probability as N → ∞, in Pτ
ν distri-

bution on the space D([0, T ],R) equipped with the Skorokhod M1-topology, to an
α-stable subordinator Vα .

The proof of Proposition 6.1 consists of three steps. In a first step, we show con-
vergence in distribution of one-dimensional marginals by showing that the Laplace
transform of one-dimensional marginals converges. This step contains, to some extent,
the principal insight of this paper and is split in two parts: We first show the quasi-
annealed convergence mentioned in the introduction, which is then strengthened to
convergence in probability with respect to the environment. The second and third step
of the proof of Proposition 6.1 are rather standard and deal with the joint convergence
of increments and the tightness.

6.1 Quasi-annealed convergence

We establish here the connection between the Laplace transform of the clock process
of deep traps and the local time functional LN studied in Sect. 5. The key observation
is that the depths of the deep traps are in some sense independent of the fast chain Y ,
and can be thus averaged out easily.

To formalize this, we introduce a two-step procedure to sample the environment τ .
Let ξ = (ξx )x∈HN be i.i.d. Bernoulli random variables such that, cf. (2.7),

P[ξx = 1] = 1− P[ξk = 0] = P[x ∈ DN ] = 2−γ ′N (1+ o(1)).
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Further, let E = (Ex )x∈HN be i.i.d. standard Gaussian random variables conditioned
to be larger than 1

β
√
N
log g′N , and E = (Ex )x∈HN i.i.d. standard Gaussian random

variables conditioned to be smaller than 1
β
√
N
log g′N . The collections ξ , E and E are

mutually independent. The Hamiltonian of the REM can be obtained by setting

Ex = Ex1{ξx=1} + Ex1{ξx=0}. (6.1)

From now on, we always assume that Ex are given by (6.1). Observe that in this
procedure the set DN coincides with the set {x ∈ HN : ξx = 1}.

We use G = σ(ξ, E) to denote the σ -algebra generated by the ξ ’s and E’s. In
particular, the number and positions of deep traps and all the τy , y /∈ DN , are G-
measurable. The depths of deep traps are however independent of G.

In the next lemma we compute the quasi-annealed Laplace transform of SD. The
term ‘quasi-annealed’ refers to the fact that we average over the energies of the deep
traps Ex (and over the law of the process), but we keep quenched the positions of the
deep traps ξx and the energies of remaining traps Ex .

Lemma 6.2 There is a constant K ∈ (0,∞) such that for every λ > 0 and t ≥ 0,

E

[
Eτ

ν

[
e
− λ

gN
SD(t RN )

] ∣∣∣∣G
]

N→∞−−−−→ e−Kλα t , P-a.s.

Proof Recall the separation event S defined in (2.9). This event depends only on ξ

and is therefore G-measurable, and by Lemma 2.1 it occurs P-a.s. for N large enough.
On S , no deep traps x ∈ DN are neighbors. Since moreover τx ≥ 1 for x ∈ DN , all
the transition rates

qxy1S = τx ∧ τy

1 ∧ τx
1S , x, y ∈ HN ,

are G-measurable. That is, on the event S , the law of the chain Y is in fact G-
measurable. Therefore, on S , the order of taking expectations over the depth of the
deep traps and the chain Y can be exchanged. Namely, denoting by E the expectation
over the random variables Ex , on S ,

E

[
Eτ

ν

[
e
− λ

gN
SD(t RN )

] ∣∣∣∣G
]
= Eτ

ν

[
E

[
e
− λ

gN
SD(t RN )

]]

= Eτ
ν

[
E

[
exp

{
− λ

gN

∫ t RN

0
τYs1{Ys∈DN }ds

}]]

= Eτ
ν

⎡
⎣E
⎡
⎣exp
⎧⎨
⎩−

λ

gN

∑
x∈DN

�t RN (x)τx

⎫⎬
⎭
⎤
⎦
⎤
⎦ .

(6.2)
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We next approximate the inner expectation on the right-hand side of (6.2). Since
its argument is bounded by one, it will be sufficient to control it on an event of Pτ

ν -
probability tending to 1 as N → ∞. Define the event

A =
{
for all x ∈ DN , �t RN (x) ≤ N 2mN

}
∩
{
|LN (t) − t | ≤ 2−

1
5 ε0N
}

. (6.3)

By Proposition 5.1 and Lemma 5.6, P-a.s. for N large enough, Pτ
ν [Ac] ≤ e−cN .

When performing the inner expectation of (6.2), the local times �t RN (x) of Y as
well asDN are fixed, the expectation is taken only over the energies of the deep traps.
By independence of the Ex it follows that

E

[
e
− λ

gN
SD(t RN )

]
=
∏

x∈DN

E

[
exp

{
− λ

gN
�t RN (x)eβ

√
N Ex

}]

= exp

⎧⎨
⎩
∑
x∈DN

logE

[
exp

{
− λ

gN
�t RN (x)eβ

√
N Ex

}]⎫⎬
⎭ .

(6.4)

For u ∈ [0, N 2mN ], let

ϑ(u) = 1− E

[
exp

{
− λ

gN
ueβ

√
N Ex

}]
.

Since (Ex ) has standard Gaussian distribution conditioned on being larger than
1

β
√
N
log g′N , using that by (2.7),

P

[
Ex >

1

β
√
N

log g′N
]
= P[x ∈ DN ] = 2−γ ′N (1+ o(1)),

it follows that

ϑ(u) = 2γ ′N
√
2π

(1+ o(1))
∫ ∞

1
β
√
N
log g′N

e−
s2
2

(
1− e

− λu
gN

eβ
√
Ns
)
ds.

We use the substitution s = 1
β
√
N

(βz + log gN − log λ − log u). The lower limit of

the integral then becomes

1

β
(log g′N − log gN + log λ + log u) =: ω(N ).
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For u ≤ N 2mN , ωN is asymptotically dominated by log g′N − log gN ≤ −cN , and
thus limN→∞ ω(N ) = −∞. After the substitution,

ϑ(u) = 2γ ′N
√
2π

(1+ o(1))
∫ ∞

ω(N )

e
− 1

2β2N
(βz+log gN−log λ−log u)2

(
1− e−eβz

) 1√
N

dz.

(6.5)
For u ∈ [0, N 2mN ], using the definition (1.6) of gN , the exponent of the first

exponential satisfies

− 1

2β2N
(βz + log gN − log λ − log u)2

= − 1

2β2N

(
βz + αβ2N − 1

α
log
(
αβ

√
2πN
)
− log λ − log u

)2

= −α2β2

2
N+α log λ+α log u+log

(
αβ

√
2πN
)
−αβz+err(z)+o(1).

(6.6)
Here, o(1) is an error independent of the variable z. Note that for the log2 u part to be
o(1) it is important that mN defined in (3.7) is not too large, see also Remark 6.4. The
second error term is

err(z) = − 1

2N
z2 + 1

βN
z

(
1

α
log(αβ

√
2πN ) + log λ + log u

)
.

Observe that limN→∞ err(z) = 0 for every z ∈ R, and that for every ε there is N0
large enough, so that for N ≥ N0 and all z ∈ R

err(z) ≤ ε|z|. (6.7)

Inserting the results of the computation (6.6) back into (6.5), using that α2β2/2 =
γ log 2, we obtain

ϑ(u) = αβ2(γ ′−γ )Nλαuα

∫ ∞

ω(N )

e−αβz+err(z)
(
1− e−eβz

)
dz (1+ o(1)). (6.8)

We now claim that

∫ ∞

ω(N )

e−αβz+err(z)
(
1− e−eβz

)
dz

N→∞−−−−→
∫
R

e−αβz
(
1− e−eβz

)
dz =: C. (6.9)

Indeed, the integrand converges point-wise onR to e−αβz(1−e−eβz
)which is integrable

if α < 1.Moreover, by (6.7), the integrand is bounded by e−αβz+ε|z|(1−e−eβz
), which

is integrable if we choose ε < β(1−α)∧αβ. The claim (6.9) follows by the dominated
convergence theorem.

We now come back to (6.4). Since on A, �t RN (x) ≤ N 2mN for all x ∈ DN ,
and γ ′ < γ , we see that ϑ(�t RN (x)) = o(1) uniformly in x ∈ DN on A. With
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log(1− x) = −x(1+ O(x)) as x → 0 this yields

E

[
e
− λ

gN
SD(t RN )

]
= exp

⎧⎨
⎩
∑
x∈DN

log
(
1− ϑ(�t RN (x))

)
⎫⎬
⎭

= exp

⎧⎨
⎩−
∑
x∈DN

ϑ(�t RN (x)) (1+ o(1))

⎫⎬
⎭ .

The inner sum can be easily computed from (6.8). Recalling that on A the local time
functional LN (t) converges, denoting K = αβC , we obtain on A,

∑
x∈DN

ϑ(�t RN (x)) = αβCλα2(γ ′−γ )N
∑
x∈DN

�t RN (x)α
(
1+ o(1)

)

= αβCλαLN (t) (1+ o(1))

= Kλαt + o(1) as N → ∞. (6.10)

It follows that on A

E

[
e
− λ

gN
SD(t RN )

]
= e−Ktλα(1+o(1)) = e−Ktλα + o(1) as N → ∞.

Inserting this into (6.2), using that Pτ
ν [Ac] = O(e−cN ), we conclude that, on S ,

P-a.s. as N → ∞,

E

[
Eτ

ν

[
e
− λ

gN
SD(t RN )

] ∣∣∣∣G
]
= Eτ

ν

[
E

[
e
− λ

gN
SD(t RN )

]
1A

]
+ O(e−cN )

= e−Ktλα + o(1).

Since S occurs P-a.s. for N large enough, this completes the proof. ��

6.2 Quenched convergence

We strengthen the convergence in Lemma 6.2 in the following way.

Lemma 6.3 The one-dimensional marginals of the rescaled clock processes g−1
N

SD(t RN ) converge in P-probability as N → ∞, in Pτ
ν -distribution to an α-stable

law, that is for every t > 0 and λ > 0,

Eτ
ν

[
e
− λ

gN
SD(t RN )

]
N→∞−−−−→ e−Kλα t in P-probability.
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Proof It will be enough to show that P-a.s. for N large enough,

E

[
Eτ

ν

[
e
− λ

gN
SD(t RN )

]2 ∣∣∣∣G
]
= e−2Kλα t + o(1). (6.11)

Indeed, if (6.11) holds, then the conditional variance

Var

[
Eτ

ν

[
e
− λ

gN
SD(t RN )

] ∣∣∣∣G
]

N→∞−−−−→ 0, P-a.s.,

and the claim follows by an application of the Chebyshev inequality and Lemma 6.2.
To show (6.11), we rewrite

E

[
Eτ

ν

[
e
− λ

gN
SD(t RN )

]2 ∣∣∣∣G
]
= E

[
Êτ

ν

[
e
− λ

gN

∑
x∈DN

(�
(1)
t RN

(x)+�
(2)
t RN

(x))τx
] ∣∣∣∣G
]

,

where �(1) and �(2) are the local times of two independentMarkov chainsY (1) andY (2),
both having law Pτ

ν , and Êτ
ν is the expectation with respect to the joint law P̂τ

ν of these
chains. AgainP-a.s. for N large enough the separation eventS holds, and on this event
the law P̂τ

ν is G-measurable. Therefore we can exchange the expectations similarly as
before. As in Lemma 6.2, it will be enough to control the expression on an event of
P̂τ

ν -probability tending to 1 as N → ∞. We thus set Â = A(1) ∩A(2) whereA(i) are
defined for both chains Y (i) as in (6.3). Applying Proposition 5.1 and Lemma 5.6 for
both independent chains, we have that P-a.s. as N → ∞, P̂τ

ν [Âc] = O(e−cN ).
Let C be the event that Y (1) and Y (2) visit disjoint sets of deep traps,

C =
{
{x ∈ DN : �

(1)
t RN

(x) > 0} ∩ {x ∈ DN : �
(2)
t RN

(x) > 0} = ∅
}

.

We claim that P̂τ
ν [Cc] = O(e−cN ), P-a.s. as N → ∞. Indeed, by Lemma 5.6, with

probability larger than 1 − c2− 1
4 ε0N , the chain Y (1) visits at most 2

3
2 ε0N different

vertices in DN . By Lemma 5.3, each of those vertices has probability smaller than
c2(γ−1+ε)N of being hit by Y (2), for every ε > 0, P-a.s. for N large enough. Therefore
by the choice (5.1) of ε0, P-a.s. for N large enough,

P̂τ
ν [Cc] ≤ c2−

1
4 ε0N + 2

3
2 ε0Nc′2(γ−1+ε)N ≤ c2−

1
4 ε0N + c′2−

1
2 ε0N+εN ,

which decays exponentially if ε < ε0/2.
Since on C the τx of the vertices x ∈ DN visited by Y (1) and Y (2) are independent,

and since the integrand is bounded by 1, we have on the separation event S ,

E

[
Eτ

ν

[
e
− λ

gN
SD(t RN )

]2 ∣∣∣∣G
]

= Êτ
ν

[
E

[
e
− λ

gN

∑
x∈DN

(�
(1)
t RN

(x)+�
(2)
t RN

(x))τx
]]
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= Êτ
ν

[
E

[
e
− λ

gN

∑
x∈DN

(�
(1)
t RN

(x)+�
(2)
t RN

(x))τx
]

1Â∩C

]
+ O(e−cN )

= Êτ
ν

[
E

[
e
− λ

gN

∑
x∈DN

�
(1)
t RN

(x)τx
]
E

[
e
− λ

gN

∑
x∈DN

�
(2)
t RN

(x)τx
]

1Â∩C

]
+ O(e−cN ).

Using the same procedure as in the proof of Lemma 6.2, on the event Â, the two inner
expectations, x ∈ DN , both converge to

exp

⎧⎨
⎩−Kλα2(γ ′−γ )N

∑
x∈DN

�
(i)
t RN

(x)α

⎫⎬
⎭ = exp

{
−KλαL(i)

N (t)
}

, i = 1, 2.

Moreover, on Â, the local time functionals L(i)
N (t) concentrate on t simultaneously. It

follows that on S , P-a.s. as N → ∞,

E

[
Eτ

ν

[
e
− λ

gN
SD(t RN )

]2 ∣∣∣∣G
]
= e−2Kλα t + o(1).

Noting again that S occurs P-a.s. for N large enough, this shows (6.11), and hence
the lemma. ��
Remark 6.4 (a) Inspecting the last proof carefully, it follows that Lemma 6.3 can be

slightly strengthened. Namely, the stated convergence holds a.s. with respect to ξ

and E , and in probability only with respect to E . The same remark then applies
to Theorem 1.1.

(b) A closer analysis of the errors made in the computation of the quasi-annealed
Laplace transform, in particular in (6.6), shows that the error in Lemma 6.2 and
(6.11) is of order O(N−1 log2 N ), where the logarithmic part comes from the
log2 u part in (6.6), u being bounded by N 2mN , and mN being polynomial in N .
Therefore the variance decay is not enough to apply the Borel–Cantelli lemma
and obtain P-a.s. convergence.

(c) Note also that the previous proof, more precisely bounding the log2 u part of
(6.6), requires that log(N 2mN ) 
 N 1/2. This iswhere our improved techniques to
estimate the spectral gap in Proposition 3.1 are necessary.Aswe already remarked,
the techniques of [23] show roughly that mN ≤ e

√
N log N only, which is not

sufficient.

6.3 Joint convergence of increments

In the next step, we extend the convergence to joint convergence of increments.

Lemma 6.5 The increments of the rescaled clock processes g−1
N SD(t RN ) converge

jointly in P-probability in Pτ
ν -distribution to the increments of an α-stable subordina-

tor.
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Proof Fix k ≥ 1 and 0 = t0 < t1 < · · · < tk .Wewill show that for every λ1, . . . , λk ∈
(0,∞) and P-a.e. environment τ ,

lim
N→∞ Eτ

ν

[
e
− 1

gN

∑k
i=1 λi (SD(ti RN )−SD(ti−1RN ))

]
= lim

N→∞

k∏
i=1

Eτ
ν

[
e
− λi

gN
SD((ti−ti−1)RN )

]
.

(6.12)
Then the lemma follows by using the above proved convergence in P-probability in
Pτ

ν -distribution of the one-dimensional marginals.
Let I i = [ti RN − N 2mN , ti RN ]. For a set I ⊂ [0,∞), let V(I ) be the event

V(I ) = {Ys /∈ DN for all s ∈ I }.

On the event V
(∪k

i=1 I
i
)
, for every i ≤ k,

SD(ti RN ) − SD(ti−1RN ) = SD(ti RN − N 2mN ) − SD(ti−1RN ). (6.13)

Moreover, by Lemma 5.3, P-a.s. for all x ∈ DN , for ε > 0 small and N large enough,

Pτ
ν [Hx ≤ N 2mN ] ≤ 2(ε−1)N .

By (2.8), |DN | ≤ c2(1−γ ′)N , hence the expected number of vertices x ∈ DN visited in
a time-interval of length N 2mN is smaller than c2(ε−γ ′)N , P-a.s. for N large enough.
This still holds for a finite union of intervals of length N 2mN , and so we conclude that
by the Markov inequality, Pτ

ν

[
V
(∪k

i=1 I
i
)]→ 1, P-a.s. as N → ∞.

The reason to shorten the time intervals as above is to give the Markov chain Y the
time it needs to mix. Define the event

M = {Tmix ◦ θti RN−N2mN
≤ N 2mN ∀i = 1, . . . , k}.

It is easy to see using Proposition 3.3 that Pτ
ν [M] → 1, P-a.s. as N → ∞. On the

event M the Markov chain Y always mixes between ti RN − N 2mN and ti RN and
thus, by Lemma 3.4, for every i = 1, . . . , k and y ∈ HN ,

Pτ
ν [Yti RN = y | M] = νy .

Therefore, on M,

(
SD(ti RN − N 2mN ) − SD(ti−1RN )

)
i=1,...,k

d=
(
S(i)
D ((ti − ti−1)RN − N 2mN )

)
i=1,...,k

, (6.14)

where the S(i)
D are the clock processes of the deep traps of independent stationary

started processes Y (i) having the same law as Y .
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Combining observations (6.13) and (6.14), with the estimates on the probabilities
of V
(∪k

i=1 I
i
)
and M, since the integrand is bounded by 1, we obtain that P-a.s. as

N → ∞,

Eτ
ν

[
e
− 1

gN

∑k
i=1 λi (SD(ti RN )−SD(ti−1RN ))

]

= Eτ
ν

[
e
− 1

gN

∑k
i=1 λi (SD(ti RN−N2mN )−SD(ti−1RN ))1V

(∪k
i=1 I

i
)∩M
]
+ o(1)

= Eτ
ν

[
k∏

i=1

Eτ
ν

[
e
− λi

gN
S(i)
D ((ti−ti−1)RN−N2mN )

]
1V
(∪k

i=1 I
i
)∩M
]
+ o(1)

=
k∏

i=1

Eτ
ν

[
e
− λi

gN
S(i)
D ((ti−ti−1)RN−N2mN )

]
+ o(1).

Using analogous arguments it can be shown that for every i = 1, . . . , k, P-a.s. as
N → ∞,

Eτ
ν

[
e
− λi

gN
S(i)
D ((ti−ti−1)RN−N2mN )

]
= Eτ

ν

[
e
− λi

gN
S(i)
D ((ti−ti−1)RN )

]
+ o(1).

Combining the last two equations proves (6.12) and hence the lemma. ��

6.4 Tightness in the Skorokhod topology

The last step in the proof of Proposition 6.1 is to show tightness.

Lemma 6.6 The sequence of probability measures Pτ
ν

[
g−1
N SD(t RN ) ∈ · ] is P-

a.s. tight with respect to the Skorokhod M1-topology on D([0, T ],R).

Proof The proof is standard but we include it for the sake of completeness. By [33,
Theorem 12.12.3], the tightness in the Skorokhod M1-topology on D([0, T ],R) is
characterized in the following way: For f ∈ D([0, T ],R), δ > 0, t ∈ [0, T ], let

w f (δ)=sup

{
inf

α∈[0,1] | f (t)−(α f (t1)+(1−α) f (t2))| : t1≤ t≤ t2≤T, t2−t1≤δ

}
,

v f (t, δ)=sup {| f (t1) − f (t2)| : t1, t2 ∈ [0, T ] ∩ (t − δ, t + δ)} .

The sequence of probability measures PN = Pτ
ν

[
g−1
N SD(t RN ) ∈ · ] on D([0, T ],R)

is tight in the M1-topology, if

(i) For every ε > 0 there is c such that

PN [ f : ‖ f ‖∞ > c] ≤ ε, N ≥ 1. (6.15)
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(ii) For every ε > 0 and η > 0, there exist δ ∈ (0, T ) and N0 such that

PN [ f : w f (δ) ≥ η] ≤ ε, N ≥ N0, (6.16)

and

PN [ f : v f (0, δ) ≥ η] ≤ ε and PN [ f : v f (T, δ) ≥ η] ≤ ε, N ≥ N0.

(6.17)

Since the clock processes are increasing, (6.15) is equivalent to convergence of
the distribution of g−1

N SD(T RN ), which follows from the convergence of the Laplace
transform of the marginal at time T . (6.16) is immediate from the fact that the oscillat-
ing functionw f (δ) is always zero since the processes g

−1
N SD(t RN ) are increasing. To

check (6.17), again by the monotonicity of the g−1
N SD(t RN ) it is enough to check that

for δ small enough and N ≥ N0, Pτ
ν [g−1

N SD(δRN ) ≥ η] ≤ ε. By the convergence of
the marginal at time δ, we may take δ such that P[Vα(δ) ≥ η] ≤ ε

2 and N0 such that
for N ≥ N0,

∣∣∣∣Pτ
ν

[
1

gN
SD(δRN ) ≥ η

]
− P [Vα(δ) ≥ η]

∣∣∣∣ ≤ ε

2
.

The reasoning for v f (T, δ) is similar. ��

7 Shallow traps

In this section we show that the convergence of the clock process of the deep traps
shown in Sect. 6 is enough for convergence of the clock process itself.

Proposition 7.1 Under the assumptions of Theorem 1.1, the clock process of the deep
traps approximates the clock process, namely, for every t ≥ 0,

1

gN
(S(t RN ) − SD(t RN ))

N→∞−−−−→ 0 P-a.s. in Pτ
ν -probability.

Proof We will split the set of shallow traps SN := HN\DN into two parts and sepa-
rately deal with the corresponding contributions to the clock process.

We start with ‘very shallow traps’. Let δ > 0 be a small constant which will be
fixed later and hN = eδαβ2N . Define the set of very shallow traps as

SN = {x ∈ HN : τx ≤ hN }.

The contribution of this set to the clock process can easily be neglected as follows.
Write

Eτ
ν

[
1

gN

∫ t RN

0
(1 ∨ τYs )1{Ys∈SN }ds

]
= 1

gN

∑
x∈SN

(1 ∨ τx )E
τ
ν

[
�t RN (x)

]
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Note that Eτ
ν [�t RN (x)] = νx t RN = Z−1

N (1∧τx )t RN , and (1∨τx )(1∧τx ) = τx ≤ hN

on SN . With (2.3) for ZN , and Lemma 4.4 for RN , for every ε > 0, P-a.s. for N large
enough, the right-hand side of the last equation can be bounded from above by

g−1
N 2NhN Z

−1
N t RN ≤ cg−1

N eδαβ2N2(γ+ε)N .

To obtain exponential decay of this expression, it is enough to take account of the
exponential part of gN , which is eαβ2N . Then, up to sub-exponential factors, using

that γ = α2β2

2 log 2 , the above is bounded by

exp

{
((δ − 1)αβ2 + 1

2
α2β2 + ε log 2)N

}
.

Since α < 1, by choosing ε and δ small enough this can be made smaller than e−cN

for some c > 0. Applying the Markov inequality and the Borel–Cantelli lemma,

1

gN

∫ t RN

0
(1 ∨ τYs )1{Ys∈SN }ds

N→∞−−−−→ 0 P-a.s. in Pτ
ν -probability. (7.1)

To control the contribution of the remaining shallow traps SN\SN , we first split
this set into slices S i

N as follows. Set

IN =
⌈

1

log 2
(log g′N − log hN )

⌉
.

Note that by definition of g′N and hN , for δ small as fixed above, IN = cN + O(1)
for some c > 0. For i = 1, . . . , IN , let

S i
N =
{
x ∈ SN\SN : τx ∈ [2−i g′N , 2−i+1g′N )

}
,

so that SN\SN = ∪IN
i=1S i

N .
We next control the sizes of the slices S i

N . By the tail approximation (2.2), for all
i = 1, . . . , IN ,

P[y ∈ S i
N ] ≤ P

[
Ex >

1

β
√
N

(log g′N − i log 2)

]

= f (1)
N ,i exp

{
−1

2
α′2β2N + α′i log 2− f (2)

N ,i − o(1)

}
(1+ o(1)).

(7.2)
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We separately control the two expressions f (1)
N ,i and f (2)

N ,i . The first one equals

f (1)
N ,i =

α′β
√
2πN√

2π
β
√
N

(log g′N − i log 2)
.

To control this, note that by definition of IN , for all i = 1, . . . , IN ,

log g′N − i log 2 ≥ log hN − log 2 = δαβ2N − log 2.

It follows that, for all i = 1, . . . , IN , f
(1)
N ,i is bounded by some constant c > 0, which

can be chosen to be independent of i . The second expression to control in (7.2) is

f (2)
N ,i =

i2 log2 2

2β2N
+ i log 2

α′β2N
log(α′β

√
2πN ).

This is strictly positive, so it can be omitted in (7.2) in order to obtain an upper bound.

Using the obtained control on f (1)
N ,i and f (2)

N ,i in (7.2), as well as the fact that γ
′ = α′2β2

2 log 2 ,
we conclude that for all i = 1, . . . , IN ,

P[y ∈ S i
N ] ≤ c2−γ ′N2α′i .

In particular, the size |S i
N | of the i-th slice is dominated by a binomial random vari-

able with parameters n = 2N and p = c2α′i2−γ ′N . Then it follows by the Markov
inequality that for every ε > 0,

P

[
|S i

N | > 2εNc2α′i2(1−γ ′)N
]
≤ 2−εN .

Since IN = cN + O(1), a union bound and the Borel–Cantelli lemma imply that for
every ε > 0, P-a.s. for N large enough,

|S i
N | ≤ 2εN c2α′i2(1−γ ′)N , for all i = 1, . . . , IN . (7.3)

Coming back to the contribution of the intermediate traps SN\SN to the clock
process, we use as before that Eτ

ν [�t RN (y)] = νyt RN = 1∧τy
ZN

t RN , and (1 ∨ τy)(1 ∧
τy) = τy ≤ 2−i+1g′N on S i

N . With (2.3) for ZN , Lemma 4.4 for RN , and (7.3) for
the size of S i

N , we obtain that for every ε > 0, P-a.s. for N large enough, for all
i = 1, . . . , IN ,

Eτ
ν

[
1

gN

∫ t RN

0
(1 ∨ τYs )1{Ys∈S i

N }ds
]
= 1

gN

∑
y∈S i

N

(1 ∨ τy)E
τ
ν [�t RN (y)]

≤ g−1
N |S i

N |2−i+1g′N Z
−1
N t RN
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≤ c
g′N
gN

2(α−1)i2(γ−γ ′+2ε)N .

Summing over i = 1, . . . , IN , P-a.s. for N large enough,

Eτ
ν

[
1

gN

∫ t RN

0
(1 ∨ τYs )1{Ys∈⋃IN

i=1 S i
N }
ds

]
≤ c′

g′N
gN

2(γ−γ ′+2ε)N . (7.4)

We claim that the right hand side of (7.4) decays exponentially in N for ε > 0
small enough. To this end, as before, it is enough to take account of the exponential
parts in both gN and g′N , which contribute to the right hand side of (7.4) by

e(α′−α)β2N = 2(
√

γ ′−√
γ )

2β
βc

N
.

Hence, to show the exponential decay on the right hand side of (7.4), it is sufficient
to prove that we can choose ε > 0 small enough, such that

(
√

γ ′ − √
γ )

2β

βc
+ γ − γ ′ + 2ε < 0. (7.5)

With a first order approximation of the concave function
√
x at γ ,

1

2
√

γ
(γ − γ ′) <

√
γ −√γ ′.

Since, 1
2
√

γ
= βc

2αβ
>

βc
2β and α < 1, this implies

βc

2β
(γ − γ ′) <

√
γ −√γ ′,

and (7.5) thus holds for ε > 0 small enough. The right hand side of (7.4) then decays
exponentially, and with Markov inequality we conclude that

1

gN

∫ t RN

0
(1 ∨ τYs )1{Ys∈⋃IN

i=1 S i
N }
ds

N→∞−−−−→ 0 P-a.s. in Pτ
ν -probability.

This together with (7.1) finishes the proof of the proposition. ��

8 Conclusions

We first complete the proof of Theorem 1.1 by observing that it follows directly from
Propositions 6.1, 7.1 and Lemma 4.4.

In the remaining part of this section we discuss how our main result, Theorem 1.1,
and the techniques leading to its proof can be extended to show more usual aging
statements in terms of two-point functions or in terms of the age process. The purpose
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of this discussion is not to give the best possible results, but more to show what is
possible with our techniques, and also to explain what is missing to obtain better
results.

Let us start by pointing out what are the main obstacles impeding us from working
with the standard objects considered in the literature previously. As example, consider
first the usual two-point function

�(t, θ) = Pτ
ν [Xt = Xθ t ], t > 0, θ > 1, (8.1)

where X is the Metropolis chain defined in (1.2). For this two-point function the
desired statement would be, say,

lim
N→∞�(tgN , θ) = Aslα(θ), in P-probability, for every t > 0, (8.2)

whereAslα(θ) is the probability, given by the arc-sine law, that the range of an α-stable
Lévy process does not intersect the interval [1, θ ].

Statements like (8.2) usually follow from a clock-process convergence analogous
to Theorem 1.1, if one can show that

“After hitting a deep trap x ∈ DN , the process Y mixes well before hitting another

deep trap, that is before hitting DN\{x}.” (8.3)

However, the strongest information we have in this direction is contained in
Lemma 5.5:

“After hitting a deep trap x ∈ DN ,Y hits on average less than 2εN

other deep traps before mixing.”

That means that we cannot exclude the (unlikely) possibility that X is trapped in a
cluster of deep traps, making the verification of (8.2) non-trivial.

An alternative way how to show aging, put forward in [22,31], is to consider the
age process At = τXt . This process does not depend on the auxiliary chain Y , which
makes it more physically relevant than the clock process. Aging in the language of
age processes manifests itself by the convergence

b−1
N AgN t

N→∞−−−−→ Zt , (8.4)

in a sufficiently weak topology on the space of càdlàg processes, with a well chosen
scaling factor bN , and with Zt being a particular process, related to the limit behavior
of the clock process, whose definition we quote from [31]: Let ϒ be an α-stable Lévy
process, and let

Vt =
∫ t

0
Ts dϒs,
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where (Tt )t≥0 is an independent family of independent, mean one, exponential random
variables. Let W = V−1 be the inverse of V . Finally, define

Zt = ϒWt − ϒWt−.

In order to prove a statement like (8.4) in our context, the first difficulty comes
in fixing a right scaling factor bN . In [31], this factor consist of two ingredients: (a)
the observation scale for the processes X and A (i.e. gN here), and (b) the diagonal
Green function of the suitably killed process Y , evaluated at the deep traps. As the
consequence of the weak asymmetry assumption of [31], this Green function can be
computed explicitly, and, more importantly, it can be shown to be essentially deter-
ministic (see (2.5) and Theorems 10.1, 11.1 in [31]).

In our case, we do not have access to such Green function (actually one of the main
points of this paper is to show that one does not need it to show the clock-process
convergence). As a consequence, we even cannot guess the right scale bN . Moreover,
we actually doubt that a statement like (8.4) holds without modifications. The reason
for this is the fact that the Green function (when suitably defined) will be random
in our setting, and will take different values on different deep traps. This additional
randomness should be incorporated into (8.4), by either modifying the age process At

or the limit process Zt .
One possible idea would be to replace At with

Ãt = τ̃Xt , where τ̃x = Eτ
x [S(Tmix)]. (8.5)

While τx is directly related to the energy Ex of the state x , τ̃x is a more dynamical
quantity. It gives the mean holding time in x and ‘its neighborhood’ before mixing,
which could, possibly, be related to the ‘activation energy’ needed to leave x . We
expect that

g−1
N ÃgN t

N→∞−−−−→ Zt ,

but we cannot show it easily; the non-availability of (8.3), again, hinders proving that
τ̃−1
x S(Tmix) under Pτ

x has an exponential distribution in the limit N → ∞.
We now state our complementary aging results. To this end, set H1 = inf{t ≥ 0 :

Yt ∈ DN }, and define inductively for i ≥ 1

Mi = Hi + Tmix ◦ θHi ,

Ni = Mi + Tmix ◦ θMi ,

Hi+1 = inf{t ≥ Ni : Yt ∈ DN }.

Let further
Hi = S(Hi ),

where S is the clock process as usual. Finally, let

�′(t, θ) = Pτ
ν [{Hi : i ∈ N} ∩ [t, θ t] = ∅] . (8.6)
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Heuristically,Hi corresponds to times when the Metropolis chain X enters a ‘new’
deep trap, or possibly a cluster of deep traps, after mixing twice previously. �′ then
gives the probability that no such entrance occurs between t and θ t . �′ can also be
viewed as an approximation to the probability that X remains in one (cluster of) deep
trap(s) during the observation period, which is close in spirit to (8.1).

Observe, however, that the times Hi are defined in terms of mixing of Y and not
of X , which makes the two-point function �′ to some extent artificial. Optimally,
two-point functions should only depend on the physically relevant chain X , and not
on the auxiliary chain Y . Remark also that various modified two-point functions like
�′ were considered in the literature previously, see e.g. [5,9]; all of them are however
expressed in terms of X only.

The function �′ exhibits aging given by the arc-sine law:

Theorem 8.1 Let α, β and gN be as in Theorem 1.1. Then for every t > 0,

lim
N→∞�′(tgN , θ) = Aslα(θ), in P-probability.

Remark 8.2 Observe that the random scale RN does not enter the statement of Theo-
rem 8.1. This partially confirms the heuristic arguments given in the introduction.

Proof of Theorem 8.1 The result is far from being optimal and its proof is rather stan-
dard, so we only briefly describe its main ingredients.

We decompose S(Hi ) into three parts

Hi = S(Hi ) =
∫ Hi

0
(1 ∨ τYs ) ds

=
∫ Hi

0
(1 ∨ τYs )1{Ys /∈Ds }ds +

∫
Ii

τYs1{Ys∈Ds }ds +
∫
Ji

τYs1{Ys∈Ds }ds,

(8.7)
where Ii = ∪i−1

j=1[Hj , Mj ] and Ji = ∪i−1
j=1[Mj , N j ]. The first part gives the contribu-

tion of the shallow traps, the second and the third part then give the time spent in the
deep traps in the corresponding time slots; observe that no deep trap is visited by Y in
∪i [Ni , Hi+1).

Using Proposition 7.1, the first part can be neglected by showing

sup
i :S(Hi )∈[tgN ,θ tgN ]

1

gN

∫ Hi

0
(1 ∨ τYs )1{Ys /∈Ds }ds = 0, in Pτ

ν -probability,P-a.s.

The third part can be neglected as well, it is non-zero with very small probability.
Indeed, using the same arguments as in (5.17) and below, we observe that, by the

strong Markov property, the sequence
∫ N j
M j

τYs1{Ys∈Ds }ds, j ≥ 1, is an i.i.d. sequence.
Since YMj is ν-distributed, we have for every j ≥ 1

Pτ
ν

[∫ N j

M j

τYs1{Ys∈Ds }ds �= 0

]
= Pτ

ν [HDN ≤ Tmix] ≤ 2(ε−γ ′)N ,
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by Lemma 5.3 and Proposition 4.1. Moreover, by the second part of Lemma 5.6, we

need to consider only j ≤ 2
3
2 ε0N+εN to compute S(Hi ) at the time scales we are

interested in. It follows that the probability that the third term is not-zero is bounded

by 2(2ε−γ ′+ 3
2 ε0)N which is negligible since γ ′ > 1/2 and ε0 < 1/4.

The dominating contribution comes from the second part which is again a sum of
an i.i.d. sequence, namely of

Uj =
∫ Mj

Hj

τYs1{Ys∈Ds }ds, j ≥ 1. (8.8)

We may now define the process

S̃(t) =
∑
Hj≤t

U j ,

and observe that g−1
N S̃(t RN ) is close in the M1-distance to g−1

N S(t RN ), by previous
arguments. It follows that g−1

N S̃(t RN ) converges to a Lévy process in theM1-topology,
and thus, since the jumps of S̃ are given by an i.i.d. sum, also in J1-topology.

We may now conclude using the usual continuity arguments,

�′(tgN , θ) = Pτ
n [{g−1

N S̃(t) : t ≥ 0} ∩ [t, tθ ] = ∅] + o(1) = Aslα(θ) + o(1),

as N → ∞, as required. ��
Remark 8.3 It might be not obvious why we require Y to mix twice in the definition of
Hi . The reason for this is the fact that while YMi is ν-distributed, it is not independent
of Ui . We need thus an additional mixing to introduce an i.i.d. structure. Without this
mixing, Ui would be a two-dependent sequence.

Finally, let us state an age-process type result. Using the notation (8.8) introduced
in the proof of Theorem 8.1, let

Āt = Ui whenever t ∈ [Hi ,Hi+1),

with H0 := 0 and U0 := 0. Roughly, At gives the total holding time in the (cluster
of) deep trap(s) where X is located at time t . The next theorem is an aging statement
for Ā.

Theorem 8.4 Let α, β, gN be as in Theorem 1.1. Then for every T > 0, the rescaled
age process

ĀN (t) = g−1
N Ā(gN t), t ≥ 0,

converge in P-probability an N → ∞, in Pτ
ν -distribution on the space D([0, T ),R)

equipped with the Skorokhod J1-topology, to the process Z̄t given by Z̄t = ϒWt −
ϒWt−, where ϒ is an α-stable Lévy process and W = ϒ−1 its inverse.
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Comparing this theorem with the ‘desired’ statement (8.5), τ̃x ’s of Ã are replaced
byU ’s in Ā, that means the expectation Eτ

x is not taken. This is reflected in the change
made in the limiting process: the definition of the process Z̄ does not contain the
additional exponential family Tt . The reason for this is the already mentioned fact that
we cannot show easily that the holding times are exponential after rescaling them by
their mean.

Proof of Theorem 8.4 In the proof or Theorem 8.1 we showed thatHi is well approx-
imated by

∑i−1
j=1Uj . As Uj is an i.i.d. sequence converging after rescaling to an

α-stable Lévy process, the claim of the Theorem can be proved by standard arguments
similarly to [31]. Observe also that the stronger J1-topology can be used here, because
Ā is considerably tamer than A. ��

Appendix: Extremal characterization of mean hitting time

In this appendix we give the proof of the formula (4.1) which gives a lower bound
on the mean hitting time of a set when starting from stationarity. This formula is a
continuous-time version of (a half of) Proposition 3.2 from [16]. This proposition,
as well as the underlying result [2, Proposition 3.41], is stated for a continuous-time
Markov chain whose waiting times are mean-one exponential random variables. We
were not able to find analogous statements for general continuous-timeMarkov chains
in the literature, so we provide short proofs here, for the sake of completeness.

We start by introducing some notation. Let Y be a reversible continuous-time
Markov chain on a finite state space S with transition rates qxy and invariant proba-
bility measure νx , denote by Pν and Px the laws of Y started stationary and from x
respectively, and by Eν , Ex the corresponding expectations. Define the conductances
as cxy = νxqxy = νyqyx . Let qx = ∑y qxy and cx = ∑y cxy . The transition proba-

bility from x to y is pxy = qxy
qx

= cxy
cx
. In the same way as in Sect. 2, we define the

hitting time Hx and the return time H+
x to x by Y , and similarly HA and H+

A for sets
A ⊂ S.

A function g on S is called harmonic in x , if
∑

y g(y)pxy = g(x). For x ∈ S and
B ⊂ S\{x}, the equilibrium potential g�

x,B is defined as the unique function on S that
is harmonic on (x ∪ B)c, 1 on x and 0 on B. It is well known that

g�
x,B(y) = Py[Hx ≤ HB].

For a function g : S → R, the Dirichlet form is defined as

D(g, g) = 1

2

∑
z∈S

∑
y∼z

νzqzy(g(z) − g(y))2, (8.9)

where y ∼ z means that y and z are neighbors in the sense that qzy > 0.
The following proposition is the required generalization of Proposition 3.2 of [16].
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300 J. Černý, T. Wassmer

Proposition 8.5 For every x ∈ S and B ⊂ S\{x}
1

Eν[Hx ] ≤ D(g�
x,B, g�

x,B)ν(B)−2 = cx Px [H+
x > HB]ν(B)−2. (8.10)

To prove this proposition we will need a lemma which is a generalization of [2,
Proposition 3.41] giving the extremal characterization of the mean hitting time.

Lemma 8.6 For every x ∈ S,

1

Eν[Hx ] = inf

⎧⎨
⎩D(g, g) : g : S → R, g(x) = 1,

∑
y∈S

νyg(y) = 0

⎫⎬
⎭ . (8.11)

Proof The proof follows the lines of [2] with someminor changes to fit into the setting
of general continuous-time chains.

We first show that there is a minimizing function g that equals g(y) = Zyx
Zxx

, where

Zyx =
∫ ∞

0

(
Py[Yt = x] − νx

)
dt.

To this end, we introduce the Lagrangemultiplier γ and consider g as theminimizer
of D(g, g) + γ

∑
z νzg(z) with g(x) = 1. The contribution to this of g(y) for y �= x

is ∑
z∼y

νyqyz(g(y) − g(z))2 + γ νyg(y),

which is minimized if

2
∑
z∼y

νyqyz(g(y) − g(z)) + γ νy = 0.

From this we get for all y ∈ S, by introducing the term including the parameter β for
the case y = x , that

g(y) =
∑
z∼y

qyz
qy

g(z) − γ

2

1

qy
+ β

qy
1{y=x}.

Multiplying by qy and νy , and summing over all y ∈ S,
∑
y

∑
z∼y

νyqyzg(y) =
∑
y

∑
z∼y

νyqyzg(z) − γ

2
+ βνx .

By reversibility νyqyz = νzqzy , so the term on the left and the first term on the right
are identical, which gives γ

2 = βνx . Thus there is a minimizing g such that

g(y) = β

qy

(
1{y=x} − νx

)+∑
z∼y

qyz
qy

g(z). (8.12)
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We now show that up to the factor β the function y  → Zyx satisfies the same
relation. Indeed, by the strong Markov property at the time J1 of the first jump of Y ,
which under Py is an exponential random variable with mean 1

qy
,

Zyx =
∫ ∞

0

(∫ J1

0

(
1{y=x} − νx

)
dt +
∑
z∼y

qyz
qy

∫ ∞

0
(Pz[Yt = x] − νx ) dt

)
Py(dJ1)

= 1

qy

(
1{y=x} − νx

)+∑
z∼y

qyz
qy

Zzx .

The function g(y) = Zyx
Zxx

thus satisfies the constrains of the variational problem in
(8.11) and fulfills (8.12) with β = 1/Zxx . It is thus the minimizer of this variational
problem.

Moreover, by [2, Lemmas 2.11 and 2.12], we have Zxx = Eν[Hx ]νx and
νx Ey[Hx ] = Zxx − Zyx . Denoting h(y) = Ey[Hx ] and using these equalities, we
obtain

D(g, g) = 1

Eν[Hx ]2 D(h, h) = 1

Eν[Hx ] ,

where for the last equality we used D(h, h) = Eν[Hx ], by e.g. [1, Lemma 6]. This
completes the proof. ��

With this lemma the proof of Proposition 8.5 follows the lines of [16].

Proof of Proposition 8.5 To prove the inequality in (8.10), it is sufficient tomodify the
function g�

x,B so that it becomes admissible for the variational problem in Lemma 8.6.
Write g� for g�

x,B and define g̃ on S as

g̃(z) = g�(z) −∑y∈S νyg�(y)

1−∑y∈S νyg�(y)
.

Then g̃ equals 1 on x and
∑

z∈S νz g̃(z) = 0. Hence, by Lemma 8.6,

1

Eν[Hx ] ≤ D(g̃, g̃) = D(g�, g�)

⎛
⎝1−∑

y∈S
νyg

�(y)

⎞
⎠

−2

.

But g� is non-negative, bounded by 1 and non-zero only on Bc, therefore∑
y∈S νyg�(y) ≤ ν(Bc), the first part of Proposition 8.5 follows.
To prove the equality in (8.10), we show that

D(g�
x,B, g�

x,B) = Px [H+
x > HB]cx . (8.13)
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Indeed, let again g� = g�
x,B . If g

� is harmonic in z, the second sum in the Dirichlet
form (8.9) is

∑
y∼z

czy(g
�(z) − g�(y))2 =

∑
y∼z

czy(g
�(y)2 − g�(z)2).

This shows that the contribution to the Dirichlet form of every edge that connects two
vertices in which g� is harmonic or zero vanishes. Therefore D(g�, g�) reduces to

D(g�, g�) = 1

2

(∑
y∼x

cxy(1− g�(y))2 +
∑
y∼x

cxy(1− g�(y)2)

)

=
∑
y∼x

cxy(1− g�(y))

= cx
∑
y∼x

pxy Py[Hx > HB]

= cx Px [H+
x > HB].

This proves (8.13) and thus the proposition. ��
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16. Černý, J., Teixeira, A., Windisch, D.: Giant vacant component left by a random walk in a random
d-regular graph. Ann. Inst. Henri Poincaré Probab. Stat. 47(4), 929–968 (2011)
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