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Abstract We consider the topology of simplicial complexes with vertices the points
of a random point process and faces determined by distance relationships between the
vertices. In particular, we study the Betti numbers of these complexes as the number of
vertices becomes large, obtaining limit theorems formeans, strong laws, concentration
inequalities and central limit theorems. As opposed to most prior papers treating
random complexes, the limit with which we work is in the so-called ‘thermodynamic’
regime (which includes the percolation threshold) in which the complexes become
very large and complicated, with complex homology characterised by diverging Betti
numbers. The proofs combine probabilistic arguments from the theory of stabilizing
functionals of point processes and topological arguments exploiting the properties
of Mayer–Vietoris exact sequences. The Mayer–Vietoris arguments are crucial, since
homology in general, and Betti numbers in particular, are global rather than local
phenomena, and most standard probabilistic arguments are based on the additivity of
functionals arising as a consequence of locality.
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1 Introduction

This paper is concerned with structures created by taking (many) random points and
building the structure based on neighbourhood relations between the points. Perhaps
the simplest way to describe this is to let � = {x1, x2, . . . } be a finite or countable,
locally finite, subset of points in R

d , for some d > 1, and to consider the set

CB(�, r)
�=

⋃

x∈�

Bx (r), (1.1)

where 0 < r < ∞, and Bx (r) denotes the d-dimensional ball of radius r centred at
x ∈ R

d .
When the points of � are those of a stationary Poisson process on R

d , this union
is a special case of a ‘Boolean model’, and its integral geometric properties—such
as volume, surface area, Minkowski functionals—have been studied in the setting
of stochastic geometry since the earliest days of that subject. Our interest, however,
lies in the homological structure of CB(�, r), in particular, as expressed through its
Betti numbers. Thus our approach will be via the tools of algebraic topology, and, to
facilitate this, we shall generally work not with CB(�, r) but with a homotopically
equivalent abstract simplicial complex with a natural combinatorial structure. This
will be the Čech complex with radius r built over the point set �, denoted by C(�, r),
and defined below in Sect. 2.1.

The first, and perhaps most natural topological question to ask about these sets is
how connected are they. This is more a graph theoretic question than a topological one,
and has been well studied in this setting, with [31] being the standard text in the area.
There are various ‘regimes’ in which it is natural to study these questions, depending
on the radius r . If r is small, then the balls in (1.1) will only rarely overlap, and so the
topology of both CB(�, r) and C(�, r) will be mainly that of many isolated points.
This is known as the ‘dust regime’. However, as r grows, the balls will tend to overlap,
and so a large, complex structure will form, leading to the notion of ‘continuum
percolation’, for which the standard references are [16,25]. The percolation transition
occurs within what is known as the ‘thermodynamic’, regime (described inmore detail
in Sect. 2.2), and is typically the hardest to analyse. The third and final regime arises
as r continues to grow, and (loosely speaking) CB(�, r) merges into a single large set
with no empty subsets and so no interesting topology.

Motivatedmainly by issues in topological data analysis (e.g. [27,28]) there has been
considerable recent interest in the topological properties of CB(�, r) and C(�, r) that
go beyond mere connectivity or the volumetric measures provided by integral geom-
etry. These studies were initiated by Matthew Kahle in [19], in a paper which studied
the growth of the expected Betti numbers of these sets when the underlying point
process � was either a Poisson process or a random sample from a distribution satis-
fying mild regularity properties. Shortly afterwards, more sophisticated distributional
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results were proven in [21]. An extension to more general stationary point processes
� on R

d can be found in [42], while, in the Poisson and binomial settings, [3] looks
at these problems from the point of view of the Morse theory of the distance function.
Recently [5] has established important—from the point of view of applications—
extensions to the results of [3,19,21] in which the underlying point process lies on a
manifold of lower dimension than an ambient Euclidean space in which the balls of
(1.1) are defined. See also the recent survey [4].

However, virtually all of the results described in the previous paragraph (with the
notable exception of some growth results for expected Betti numbers in [19] and
numbers of critical points in [3]) deal with the topology of the dust regime. What is
new in the current paper is a focus on the thermodynamic regime, and new results that
go beyond the earlier ones about expectations. Moreover, because of the long range
dependencies in the thermodynamic regime, proofs here involve considerably more
topological arguments than is the case for the dust regime.

Our main results are summarised in the following subsection, after which we shall
give some more details about the current literature. Then, in Sect. 2, we shall recall
some basic notions from topology and from the theory of point processes. The new
results begin in Sect. 3, where we shall treat the setting of general stationary point
processes, while the Poisson and binomial settings will be treated in Sect. 4. The paper
concludes with some appendices containing variations of some known tools, adapted
to our needs.

1.1 Summary of results

Throughout the paper we shall assume that all our point processes are defined overRd

for d ≥ 2. Denoting Betti numbers of a set A ⊂ R
d by βk(A), k = 1, . . . , d−1, we are

interested in βk(CB(�, r)) for point processes � ⊂ R
d . Since the Betti numbers for

k ≥ d are identically zero, these values of k are uninteresting. On the other hand,β0(A)

gives the number of connected components of A. While this is clearly interesting and
important in our setting, it has already been studied in detail from the point of view
of random graph theory, as described above. Indeed, (sometimes stronger) versions of
virtually all our results for the higher Betti numbers already exist for β0 (cf. [1,31]),
and so this case will appear only peripherally in what follows.

Here is a summary of our results, grouped according to the underlying point
processes involved. Formal definitions of technical terms are postponed to later sec-
tions.

1. General stationary point processes: For a stationary point process � and r ∈
(0,∞), we study the asymptotics of βk(CB(� ∩ Wl , r)) as l → ∞ and where
Wl = [− l

2 ,
l
2 )

d .We showconvergenceof expectations (Lemma3.3) and, assuming
ergodicity, we prove strong laws (Theorem 3.5) for all the Betti numbers and a
concentration inequality for β0 (Theorem 3.6) in the special case of determinantal
point processes.

2. Stationary Poisson point processes: Retain the same notation as above, but take
� = P , a stationary Poisson point process on R

d . In this setting we prove a
central limit theorem (Theorem 4.7) for the Betti numbers of CB(P ∩ Wl , r) and
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C(P ∩ Wl , r), for any r ∈ (0,∞), as l → ∞. We also treat the case in which l
points are chosen uniformly inWl and obtain a similar result, although in this case
we can only prove the central limit theorem for r /∈ Id , where the interval Id will
be defined in Sect. 4.2. Informally, Id is the interval of radii where both CB(P, r)
and its complement have unbounded components a.s. We only remark here that
I2 = ∅ and Id is a non-degenerate interval for d ≥ 3.

3. Inhomogeneous Poisson and binomial point processes: Now, consider either the
Poisson point process Pn with non-constant intensity function n f , for a ‘nice’,
compactly supported, density f , or the binomial process of n iid random vari-
ables with probability density f . In this case the basic set-up requires a slight
modification, and so we consider asymptotics for βk(CB(Pn, rn)) as n → ∞ and
nrdn → r ∈ (0,∞). We derive an upper bound for variances and a weak law
(Lemma 4.2). In the Poisson case, we also derive a variance lower bound for
the top homology. For the corresponding binomial case we prove a concentra-
tion inequality (Theorem 4.5) and use this to prove a strong law for both cases
(Theorem 4.6).

A fewwords on our proofs: In the case of stationary point processes, we shall use the
nearly-additive properties of Betti numbers along with sub-additive theory arguments
[39,43]. In the Poisson and binomial cases, the proofs center around an analysis of the
so-called add-one cost function,

βk(CB(P ∪ {O}, r)) − βk(CB(P, r)),

where O is the origin in R
d . While simple combinatorial topology bounds with mar-

tingale techniques suffice for strong laws, weak laws, and concentration inequalities,
a more careful analysis via the Mayer–Vietoris sequence is required for the central
limit theorems.

Our central limit theorems rely on similar results for stabilizing Poisson functionals
(cf. [33]), which in turn were based upon martingale central limit theory. As for
variance bounds, while upper bounds can be derived via Poincaré or Efron–Stein
inequalities, the more involved lower bounds exploit the recent bounds developed in
[23] using chaos expansions of Poisson functionals.

One of the difficulties in analyzing Betti numbers that will become obvious in
the proof of the central limit theorem is their global nature. Most known examples
of stochastic geometric functionals satisfy both the notions of stabilization (cf. [33])
known as ‘weak’ and ‘strong’ stabilization. However, we shall prove that higher Betti
numbers satisfy weak stabilization but satisfy strong stabilization only for certain radii
regimes. We are unable to prove strong stabilization of higher Betti numbers for all
radii regimes because of the global dependence of Betti numbers on the underlying
point process.

1.2 Some history

To put our results into perspective, and to provide some motivation, here is a little
history.

123



Random geometric complexes in the thermodynamic regime 111

As already mentioned, recent interest in random geometric complexes was
stimulated by their connections to topological data analysis and, more broadly,
applied topology. There are a number of accessible surveys on this subject (e.g.
[6,9,12,15,45]), all of which share a common theme of studying topological invariants
of simplicial complexes built on point sets. At the time of writing, another excellent
review [7] by Carlsson appeared, which is longer than the earlier ones, more up to
date, and which also contains a gentle introduction the topological concepts needed in
the current paper. Throughout this literature, Betti numbers, apart from being a simple
topological invariant, appear as the first step to understanding persistent homology,
undoubtedly the single most important tool to emerge from current research in applied
topology.

Although the study of random geometric complexes seems to have originated in
[19], it is worth noting that Betti numbers of a random complex model were already
investigated in [24], where a higher-dimensional version of the Erdös–Renyi random
graph model was constructed. The recent paper [20] gives a useful survey of what is
known about the topology of these models, which are rather different to those in the
current paper.

As we already noted above, the Boolean model (1.1) has long been studied in
stochastic geometry, mainly through its volumetric measures. However, one of these
measures is the Euler characteristic, χ , which is also one of the basic homotopy
invariants of topology, and is given by an alternating sum of Betti numbers. Results
for Euler characteristics which are related to ours for the individual Betti numbers can
be found, for example, in [35], which establishes ergodic theorems for χ(CB(�, r))
when the underlying point process � is itself ergodic. More recently, a slew of results
have been established for χ(CB(P, r)) (i.e. the Poisson case) in the preprint [18]. The
arguments in this paper replace more classic integral geometric arguments, and are
based on new results in the Malliavin–Stein approach to limit theory (cf. [29] and
esp. [36]). To some extent we shall also exploit these methods in the current paper,
although they are not as well suited to the study of Betti numbers as they are to the
Euler characteristic, due to the non-additivity of the former.

An alternative approach to the Euler characteristic of a simplicial complex is via an
alternating sumof the numbers of faces of different dimensions. This fact has been used
to good effect in [10], which derives exact expressions for moments of face counts, and
a central limit theorem and concentration inequality for the Euler characteristic and
β0 when the underlying space is a torus. (Working on a torus rather avoids otherwise
problematic boundary issueswhich complicatemoment calculations.) Someadditional
results on phase transitions in face counts for a wide variety of underlying stationary
point processes can be found in [42, Section 3].

1.3 Beyond the Čech complex

Although this paper concentrates on the Čech complex as the basic topological object
determined by a point process, this is but one of the many geometric complexes that
could have been chosen. There are various other natural choices including theVietoris-
Rips, alpha, witness, cubical, and discrete Morse complexes (cf. [14, Section 7], [44,
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112 D. Yogeshwaran et al.

Section 3]) that are also of interest. In particular, the alpha complex is homotopy
equivalent to the Čech complex [44, Section 3.2], as is an appropriate discrete Morse
complex [14, Theorem 2.5]. This immediately implies that all the limit theorems for
Betti numbers in this paper also hold for these complexes.

Moreover, since our main topological tools—Lemmas 2.2 and 2.3—can be shown
to hold for all the complexes listed above, most of our arguments should easily extend
to obtain similar theorems for these cases as well.

2 Preliminaries

This section introduces a handful of basic concepts and definitions from algebraic
topology and the theory of point processes. The aim is not to make the paper self-
contained, which would be impossible, but to allow readers from these two areas to
have at least the vocabulary for reading our results. We refer readers to the standard
texts such as [17,26] for more details on the topology we need, while [35,40] covers
the point process material.

2.1 Topological preliminaries

An abstract simplicial complex, or simply complex, K is a finite collection of finite
sets such that σ1 ∈ K and σ2 ⊂ σ1 implies σ2 ∈ K. The sets in K are called faces
or simplices and the dimension dim(σ ) of any simplex σ ∈ K is the cardinality of σ

minus 1. If σ ∈ K has dimension k, we say that σ is a k-simplex ofK. The k-skeleton
of K, denoted by Kk , is the complex formed by all faces of K with dimension at most
k.

Note that a singleton containing a simplex of dimension greater than zero is not
necessarily a simplicial complex. (This is as opposed to their usual concrete represen-
tations as subsets of Euclidean space, in which a closed simplex physically contains
all its lower dimensional faces.) When we want to study the complex generated by a
simplex σ , we shall refer to it as the full simplex σ , or, equivalently, σ k , its k-skeleton,
where k = dim(σ ).

A map g : K0 → L0 between two complexes K and L is said to be a simplicial
map if, for any m ≥ 0, {g(v1), . . . , g(vm)} ∈ L whenever {v1, . . . , vm} ∈ K.

Given a point set in R
d (or generally, in a metric space) there are various ways to

define a simplicial complex that captures some of the geometry and topology related
to the set. We shall be concerned with a specific construction—the so-called Čech
complex.

Definition 2.1 Let X = {xi }ni=1 ⊂ R
d be a finite set of points. For any r > 0, the

Čech complex of radius r is the abstract simplicial complex

C(X , r) �
{

σ ⊂ X :
⋂

x∈σ

Bx (r) 
= ∅
}

,

where Bx (r) denotes the ball of radius r centered at x .
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For future reference, note that by the nerve theorem (cf. [2, Theorem 10.7]) the
Čech complex built over a finite set of points is homotopic to the Boolean model (1.1)
constructed over the same set.

The Čech complexes that we shall treat will be generated by random point sets, and
we shall be interested in their homology groups Hk , with coefficients from a field F,
which will be anonymous but fixed throughout the paper. A common choice is to take
F = Z2, which is computationally convenient, but this will not be necessary here.

A few words are in place for the reader unfamiliar with homology theory. On the
heuristic level, the homology groups of a space are meant to capture the topological
structure of cycles or ‘holes’ in it. Of course, such concepts are best understood in
a geometric setting, e.g. when the space is a subset in R

d , or an abstract complex
generated by a triangulation of such a subset. Nevertheless, high dimensional cycles
can be defined combinatorially, much like 1-dimensional ones are defined for graphs.
Besides simply defining the cycles, one wishes to be able to ignore trivial cycles or
ones that are equivalent to others. As concrete examples, the boundary of a full disc
should not be regarded as a ‘hole’ and the two cycles forming the boundary of a hollow
cylinder are to be thought of as representatives of the same ‘hole’ (where, to obtain an
abstract complex, one should consider triangulations of these objects, or alternatively
work with singular homology). The way the theory deals with these two issues is by
defining Hk as the quotient of a group Zk representing cycles by another group Bk

representing boundaries. Then, trivial cycles are exactly those in the class of 0 and
equivalent ones belong to the same class. The groups Zk and Bk are subgroups of the
free group generated by (oriented) simplices; i.e. their elements are formal sums of
simplices with coefficients taken from some field. In general, the coefficients are from
an Abelian group but we shall work with field coefficients. Having made the choice of
workingwith field coefficients, all groups in our case are vector spaces. The dimension
of Hk , denoted by βk , is called the k-th Betti number and has a special meaning: it
is the maximal number of non-equivalent cycles of dimension k. It is important to
note that, for k = 0, β0 is the maximal number of vertices which (pairwise) cannot
be connected by a sequence of 1-simplices; that is, β0 is the number of connected
components of the space. Throughout the paper, we shall concentrate on the (random)
Betti numbers βk , 0 ≤ k ≤ d − 1, of Čech complexes.

Our two main topological tools are collected in the following two lemmas. The first
is needed for obtaining variousmoment bounds on Betti numbers of random simplicial
complexes, and the second will replace the role that additivity of functionals usually
plays in most probabilistic limit theorems. Because the arguments underlying these
lemmas are important for what follows, and will be unfamiliar to most probabilistic
readers, we shall prove them both. However both contain results that are well known
to topologists.

Lemma 2.2 Let K,K1 be two finite simplicial complexes such that K ⊂ K1 (i.e.,
every simplex in K is also a simplex in K1). Then, for every k ≥ 1, we have that

∣∣βk(K1) − βk(K)
∣∣ ≤

k+1∑

j=k

#{ j -simplices in K1\K}.

123
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Proof We start with the simple case when K1 = K⋃{σ } where σ is a j-simplex for
some j ≥ 0. Note that since both K and K1 are simplicial complexes it follows that
all the proper subsets of σ must already be present in K. Thus we immediately have
that

βk(K1) − βk(K) ∈

⎧
⎪⎨

⎪⎩

{0} j 
= k, k + 1,

{0, 1} j = k,

{−1, 0} j = k + 1.

Thus the lemma is proven for the caseK1 = K⋃{σ }. For arbitrary complexesK ⊂ K1,
enumerate the simplices in K1\K such that lower dimensional simplices are added
before the higher dimensional ones and repeatedly apply the above argument along
with the triangle inequality. �


With a little more work, one can go further than the previous lemma and derive
an explicit equality for differences of Betti numbers. This is again a classical result
in algebraic topology which is derived using the Mayer–Vietoris sequence (see [11,
Corollary 2.2]). However we shall state it here as it is important for our proof of the
central limit theorem.

A little notation is needed before we state the lemma. A sequence of Abelian groups
G1, . . . ,Gl and homomorphisms ηi : Gi → Gi+1, i = 1, . . . , l−1 is said to be exact
if im ηi = ker ηi+1 for all i = 1, . . . , l − 1. If l = 5 and G1 and G5 are trivial, then
the sequence is called short exact.

Lemma 2.3 (Mayer–Vietoris Sequence) Let K1 and K2 be two finite simplicial com-
plexes and L = K1 ∩K2 (i.e., L is the complex formed from all the simplices in both
K1 and K2). Then the following are true:
1. The following is an exact sequence, and, furthermore, the homomorphisms λk are

induced by inclusions:

· · · → Hk(L)
λk→ Hk(K1) ⊕ Hk(K2) → Hk(K1 ∪ K2)

→ Hk−1(L)
λk−1→ Hk−1(K1) ⊕ Hk−1(K2) → · · ·

2. Furthermore,

βk

(
K1

⋃
K2

)
= βk(K1) + βk(K2) + β(Nk) + β(Nk−1) − βk(L),

where β(G) denotes the rank of a vector space G and N j = ker λ j .

Proof The first part of the lemma is just a simplicial version of the classical Mayer–
Vietoris theorem (cf. [26, Theorem 25.1]). The second part follows from the first part,
as follows: Suppose we have the exact sequence

· · · → G1
η1→ G2

η2→ G3
η3→ G4

η4→ G5 → · · ·
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Then we also have the short exact sequence

0 → coker η1 → G3 → ker η4 → 0,

where the quotient space coker η1 = G2/im η1 is the cokernel of η1. From the exact-
ness of the sequence we have that

β(G3) = β(coker η1) + β(ker η4).

Now applying this to the Mayer–Vietoris sequence with G1 = Hk(L), etc, we have

βk(K1

⋃
K2) = β(coker λk) + β(ker λk−1)

= βk(K1) + βk(K2) − β(im λk) + β(Nk−1)

= βk(K1) + βk(K2) + β(Nk) + β(Nk−1) − βk(L),

which completes the proof. �


2.2 Point process preliminaries

A point process� is formally defined to be a random, locally-finite (Radon), counting
measure on Rd . More formally, let Bb be the σ -ring of bounded, Borel subsets of Rd

and letM be the corresponding space of non-negative Radon counting measures. The
Borel σ -algebraM is generated by the mappings μ → μ(B) for all B ∈ Bb. A point
process � is a random element in (M,M), i.e. a measurable map from a probability
space (	,F ,P) to (M,M). The distribution of � is the measure P�−1 on (M,M).

We shall typically identify � with the positions {x1, x2, . . . } of its atoms, and so
for Borel B ⊂ R

d , we shall allow ourselves to write

�(B) =
∑

i

δxi (B) = #{i : xi ∈ B} = #{� ∩ B},

where # denotes cardinality and δx the single atom measure with mass one at x . The
intensity measure of� is the non-randommeasure defined byμ(B) = E {�(B)}, and,
whenμ is absolutely continuous with respect to Lebesgue measure, the corresponding
density is called the intensity of �. A point process is called simple if its points (i.e.,
xi ’s) are a.s. distinct. In this article, we shall consider only simple point processes.

For ameasureφ ∈ M, letφ(x) be the translatemeasure given byφ(x)(B) = φ(B−x)
for x ∈ R

d and B ∈ Bb. A point process is said to be stationary if the distribution
of �(x) is invariant under such translation, i.e. P�−1

(x) = P�−1 for all x ∈ R
d . For a

stationary point process in R
d , μ(B) = λ|B| for all B ∈ Bb, where |B| denotes the

Lebesgue measure of B, and the constant of proportionality λ is called the intensity
of the point process.

Of particular importance to us are the Poisson and Binomial point processes. These
processes are characterized through their relation to one of the most fundamental
notions of probability theory—statistical independence. A Poisson process P is the
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simple point process uniquely determined by its intensity measureμ and the following
property: for any collection of disjoint measurable sets {Ai }, {P(Ai )} are independent
random variables. An equivalent, direct definition is given by the finite dimensional
distributions,

P {P(Ai ) = ni , i = 1, . . . , k} =
k∏

i=1

P {Pi = ni } ,

where Pi are Poisson variables with parameterμ(Ai ) and, again, Ai are assumed to be
disjoint. ABinomial point processXn is a process formed by n i.i.d points X1, . . . , Xn .
It is worth mentioning that conditioning a Poisson process to have exactly n points
yields a Binomial process; and conversely, mixing a Binomial process by taking n to
be a Poisson variable produces a Poisson process.

For all of the point processes we consider, we shall be interested in behavior in the
so-called thermodynamic limit. That is, while letting the number of points n increase
to infinity, we choose the radii rn so that the average degree of a point (in the random
1-skeleton) converges to a constant. (Note, however, that this average depends on the
location of the point for inhomogeneous processes.) As was described in Sect. 1.1,
this is done either by scaling the space and taking r to be n-independent for station-
ary processes, or by fixing the space, increasing the intensity and decreasing rn for
inhomogeneous processes.

We conclude the section with some more definitions. For Borel A ⊂ R
d , we write

�A for both the restricted random measure given by �A(B) := �(A ∩ B) (when
treating� itself as a measure) and the point set�∩ A (when treating� as a point set).
To save space, we shall write �l for �Wl , where Wl is the ‘window’ [−l/2, l/2)d , for
all l ≥ 0.

For a set of measures � ∈ M, let the translate family be �x := {φ(x) : φ ∈ �}. A
point process � is said to be ergodic if

P {� ∈ �} ∈ {0, 1}
for all � ∈ M for which

P {� ∈ (�\�x ) ∪ (�x\�)} = 0

for all x ∈ R
d .

Finally, we say that � has all moments if, for all bounded Borel B ⊂ R
d , we have

E

{
[�(B)]k

}
< ∞, for all k ≥ 1. (2.1)

3 Limit theorems for stationary point processes

This section is concerned with the Čech complex C(�l , r), where � is a stationary
point process on Rd with unit intensity and, as above, �l is the restriction of � to the
window Wl = [−l/2, l/2)d . The radius r is arbitrary but fixed.
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It is natural to expect that, as a consequence of stationarity, letting l → ∞,
l−d

E {βk(C(�l , r))} will converge to a limit. Furthermore, if we also assume ergod-
icity for �, one expects convergence of l−dβk(C(�l , r)) to a random limit. All this
would be rather standard fare, and rather easy to prove from general limit theorems, if
it were only true that Betti numbers were additive functionals on simplicial complexes,
or, alternatively, the Betti numbers of Čech complexes were additive functionals of the
underlying point processes. Although this is not the case, Betti numbers are ‘nearly
additive’, and a correct quantification of this near additivity is what will be required
for our proofs.

As hinted before Lemma 2.2, the additivity properties of Betti numbers are related
to simplicial counts S j (X , r), which, for j ≥ 0, denotes the number of j-simplices in
C(X , r), and S j (X , r; A), which denotes the number of j-simplices with at least one
vertex in A.

Our first results are therefore limit theorems for these quantities.

Lemma 3.1 Let � be a unit intensity stationary point process on R
d , possessing all

moments. Then, for each j ≥ 0, there exists a constant c j := c(L�, j, d, r) such that

E
{
S j (�A, r)

} ≤ E
{
S j (�, r; A)

} ≤ c j |A|.

Proof We have the following trivial upper bound for simplicial counts:

S j (�, r; A) ≤
∑

x∈�∩A

(�(Bx (2r)))
j−1 .

Due to the stationarity of � along with the assumption that it has all moments, we
have that the measure

μ0(A) := E

{
∑

x∈�∩A

(�(Bx (r))
j−1

}

is translation invariant and finite on compact sets. Thus μ0(A) = c j |A| for some
c j ∈ (0,∞), and we are done. �

Lemma 3.2 Let � be a unit intensity, ergodic, point process on R

d possessing all
moments. Then, for each j ≥ 0, there exists a constant, Ŝ j := Ŝ(L�, j, d, r), such
that, with probability one,

lim
l→∞

S j (�, r;Wl)

ld
= lim

l→∞
S j (�l , r)

ld
= Ŝ j (L�, r).

Proof Define the function

h(�) := 1

j + 1

∑

x∈�W1

#[ j-simplices in C(�, r) containing x].
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Recalling that by � − z we mean the points of � moved by −z, it is easy to check
that

∑

z ∈Zd∩Wl−2r−1

h(� − z) ≤ S j (�l , r) ≤
∑

z ∈Zd∩Wl+1

h(� − z). (3.1)

Since � has all moments, we have that

E {h(�)} ≤ E

{
�(W1+r )

j+1
}

< ∞.

and so are in position to apply the multivariate ergodic theorem (e.g. [25, Propo-
sition 2.2]) to each of the sums in (3.1). This implies the existence of a constant
Ŝ j (L�, r) ∈ [0,∞) such that, with probability one,

lim
l→∞

1

ld
∑

z ∈Zd∩Wl−2r−1

h(� − z) = lim
l→∞

1

ld
∑

z ∈Zd∩Wl+1

h(� − z) = Ŝ j (L�, r).

This gives the ergodic theorem for S j (�l , r). The result for S j (�, r;Wl) follows from
this and the bounds

S j (�l , r) ≤ S j (�l , r;Wl) ≤ S j (�l+2r+1, r).

�


3.1 Strong law for Betti numbers

In this section we shall start with a convergence result for the expectation of
βk(C(�l , r)) when � is a quite general stationary point process, and then proceed
to a strong law. We treat these results separately, since convergence of expectations
can be obtained under weaker conditions than the strong law. In addition, seeing the
proof for expectations first should make the proof of strong law easier to follow.

From [42, Theorem 4.2] we know that

E {βk(C(�l , r))} = O(ld).

The following lemma strengthens this result.

Lemma 3.3 Let� be a unit intensity stationary point process possessing all moments.
Then, for each 0 ≤ k ≤ d −1, there exists a constant β̂k := β̂k(L�, r) ∈ [0,∞) such
that

lim
l→∞

E {βk(C(�l , r))}
ld

= β̂k .
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Remark 3.4 The lemma is interesting only in the case when β̂k > 0, and this
does not always hold. However, it can be guaranteed for negatively associated point
processes (including Poisson processes, simple perturbed lattices and determinantal
point processes) under some simple conditions on void probabilities, cf. [42, Theo-
rem 3.3].

Proof of Lemma 3.3 Set

ψ(l) := E {βk(C(�l , r))} ,

and define

β̂k := lim sup
l→∞

ψ(l)

ld
. (3.2)

Fix t > 0. Let Qit , i = 1, . . . ,md be an enumeration of {t zi + Wt ⊂ Wmt : zi ∈
Z
d}. Note that the Qit , i = 1, . . . ,md form a partition Wmt .
Define the complex

K(r, t) :=
md⋃

i=1

C (
�Qit , r

)
,

and note that it is a subcomplex of C(�mt , r). Since the union here is of disjoint
complexes,

βk(K(r, t)) =
md∑

i=1

βk
(C(�Qit , r)

)
.

Note that the vertices of any simplex in C(�mt , r)\K(r, t) must lie in the set
⋃md

i=1(∂Qit )
(2r), where for any set A ⊂ R

d , A(r) is the set of points in R
d with

distance at most r from A. Hence, by Lemma 2.2,

∣∣∣∣∣∣
βk(C(�mt , r)) −

md∑

i=1

βk(C(�Qit , r))

∣∣∣∣∣∣
≤

k+1∑

j=k

S j

(
�⋃md

i=1(∂Qit )
(2r) , r

)
. (3.3)

Thus, since for c := c(d, r) large enough, for any t ≥ 1,

∥∥∥∥∥∥

md⋃

i=1

(∂Qit )
(2r)

∥∥∥∥∥∥
≤ cmdtd−1,
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it follows from Lemma 3.1 that

1

(mt)d
E

⎧
⎨

⎩

k+1∑

j=k

S j

(
�⋃md

i=1(∂Qit )
(2r) , r

)⎫
⎬

⎭ ≤ c

t
. (3.4)

By the stationarity of �, taking expectations over (3.3) and applying (3.4) we obtain
that, for any t ≥ 1,

ψ(mt)

(mt)d
≥ ψ(t)

td
− c

t
.

Now fix ε > 0. By (3.2), we can find an arbitrarily large t0 ≥ 1 such that ψ(t0)
td0

≥
β̂k − ε

2 and c
t0

≤ ε
2 . Hence, from the above we have that, for all m ≥ 1,

ψ(mt0)

(mt0)d
≥ β̂k − ε.

Now take l > 0, and let m be the unique integer m = m(l) such that mt0 ≤ l <

(m + 1)t0. Again, applying Lemma 2.2 yields

∣∣βk(C(�l , r)) − βk(C(�mt0 , r))
∣∣ ≤

k+1∑

j=k

S j (�l , r;Wl\Wmt0). (3.5)

Since ‖Wl\Wmt0‖ ≤ d(l − mt0)ld−1, as before, using Lemma 3.1, it is easy to verify
that

ψ(l)

ld
≥ ψ(mt0)d

(m + 1)d td0
− O(m−1) ≥ (β̂k − ε)

md

(m + 1)d
− O(m−1).

Since m → ∞ as l → ∞, it follows that lim inf l→∞ ψ(l)
ld

≥ β̂k − ε. This and (3.2)
complete the proof. �

Theorem 3.5 Let � be a unit intensity ergodic point process possessing all moments.
Then, for 0 ≤ k ≤ d − 1, and β̂k as in Lemma 3.3,

βk(C(�l , r))

ld
a.s.→ β̂k .

Proof As in the previous proof, fix t > 0 and let Qit , i = 1, . . . ,md be the partition
ofWmt to translations ofWt . Further, for each real l > 0, letm = m(l, t) be the unique
integer for which mt ≤ l < (m + 1)t .

The proof contains two steps. Firstly, we shall establish a strong law for
βk(C(�Wmt , r)) in m, and then show that the error term in (3.5) vanishes asymp-
totically. Many of our arguments will rely on the multi-parameter ergodic theorem
(e.g. [25, Proposition 2.2]).

123



Random geometric complexes in the thermodynamic regime 121

Let ei , i = 1, . . . , d, be the d unit vectors in R
d , and Ti = Ti (t) the measure

preserving transformation defined by a shift of tei . Then, setting Y = βk(C(�Wt , r)),
and noting that E {Y } ≤ E

{
�(Wt )

k+1
}

< ∞, it follows immediately from the multi-
parameter ergodic theorem that

1

md

m−1∑

i1=0

· · ·
m−1∑

id=0

Y (T i1
1 · · · T id

d (�)) = 1

md

md∑

i=1

βk(C(�Qit , r))

a.s.→ E
{
βk

(C(�Wt , r)
)}

, (3.6)

as m → ∞.
Applying the multiparameter ergodic theorem again, but now with

Y = Sk(�(∂Wt )(4r)
, r) + Sk+1(�(∂Wt )(4r)

, r),

we obtain

1

md

md∑

i=1

(
Sk(�(∂Qit )

(4r) , r) + Sk+1(�(∂Qit )
(4r) , r)

) a.s.→ Ŝt , (3.7)

where Ŝt ≤ ctd−1. This bound follows by applying Lemma 3.1 to obtain

E
{
Sk(�(∂Qit )

(4r) , r) + Sk+1(�(∂Qit )
(4r) , r)

} ≤ ctd−1, (3.8)

for some c := c(L�, j, d, r).
Note that, for j = k, k + 1,

S j

(
�⋃md

i=1(∂Qit )
(2r) , r

)
≤

md∑

i=1

S j

(
�

(4r)
(∂Qit )

, r
)

. (3.9)

It follows immediately from (3.6)–(3.9) that, with probability one,

lim sup
m→∞

∣∣∣∣∣
βk(C(�mt , r))

(mt)d
− E

{
βk(C(�Wt , r))

}

td

∣∣∣∣∣

= lim sup
m→∞

∣∣∣∣∣
βk(C(�mt , r))

(mt)d
−

∑md

i=1 βk(C(�Qit , r))

(mt)d

∣∣∣∣∣

≤ lim sup
m→∞

1

(mt)d

k+1∑

j=k

S j

(
�⋃md

i=1(∂Qit )
(2r) , r

)
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≤ lim sup
m→∞

1

(mt)d

k+1∑

j=k

md∑

i=1

S j

(
�

(4r)
(∂Qit )

, r
)

= Ŝt
td

≤ c

t
.

Now, given ε > 0, by Lemma 3.3, we can choose t0 large enough so that, with
probability one,

lim
m→∞

∣∣∣∣
βk(C(�mt0 , r))

(mt0)d
− β̂k

∣∣∣∣ ≤ ε.

Now consider the error terms in (3.5). For j = k, k + 1, we have that

S j (�l , r;Wl\Wm(l)t0)

ld
≤ S j (�l , r)

ld
− S j (�m(l)t0 , r)

ld

≤ S j (�(m(l)+1)t0 , r)

(m(l)t0)d
− S j (�m(l)t0 , r)

((m(l) + 1)t0)d
.

By Lemma 3.2, we know that there exist Ŝ j (�, r) ∈ [0,∞), j = k, k + 1, such that,
with probability one,

lim
l→∞

S j (�(m(l)+1)t0 , r)

(m(l)t0)d
= lim

l→∞
S j (�m(l)t0 , r)

((m(l) + 1)t0)d

= Ŝ j (�, r).

Hence, with probability one,

lim
l→∞

1

ld

k+1∑

j=k

S j (�l , r;Wl\Wm(l)t0) = 0.

Substituting this in (3.5) gives that, with probability one,

lim
l→∞

∣∣∣∣
βk(C(�l , r))

ld
− βk(C(�m(l)t0 , r))

ld

∣∣∣∣ = 0,

so that

lim
l→∞

∣∣∣∣
βk(C(�l , r))

ld
− β̂k

∣∣∣∣ ≤ ε,

and the proof is complete. �

The following concentration inequality is an easy consequence of the general con-

centration inequality of [30].
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Theorem 3.6 Let � be a unit intensity stationary determinantal point process. Then
for all l ≥ 1, ε > 0, and a ∈ ( 12 , 1], we have that

P

{∣∣∣β0(C(�
l
1
d
, r))−E

{
β0(C(�

l
1
d
, r))

} ∣∣∣ ≥ εla
}

≤ 5 exp

(
− ε2l2a−1

16Kd(εla−1+2Kd)

)
,

where Kd is the maximum number of disjoint unit balls that can be packed into BO(2).

Proof Firstly, note that β0, viewed as a function on finite point sets is Kd -Lipschitz;
viz. for any finite point set X ⊂ R

d and x ∈ R
d ,

∣∣β0(C(X ∪ {x}, r)) − β0(C(X , r))
∣∣ ≤ Kd .

This follows from the fact that, on the one hand, adding a point x toX can add nomore
than one connected component to C(X , r). On the other hand, the largest decrease in
the number of disjoint components in C(X , r) is bounded by the number of disjoint r -
balls in Bx (2r). By scale invariance, the latter number depends only on the dimension
d and not on r , and is denoted by Kd .

The remainder of the proof is a simple application of [30, Theorem 3.5] (see also
[30, Example 6.4]). �


4 Poisson and binomial point processes

Since there is already an extensive literature on β0(C(X , r)) for Poisson and binomial
point processes, albeit in the language of connectedness of random graphs (e.g. [31]),
in this section we shall restrict ourselves only to βk for 1 ≤ k ≤ d − 1.

The models we shall treat start with a Lebesgue-almost everywhere continuous
probability density f on R

d , with a compact, convex support that (for notational
convenience) includes the origin, and such that

0 < inf
x∈supp( f ) f (x)

�= f∗ ≤ f ∗ �= sup
x∈Rd

f (x) < ∞. (4.1)

Themodels arePn , the Poisson point process onRd with intensity n f , and the binomial
point processXn = {X1, . . . , Xn}, where the Xi are i.i.d. random vectors with density
f . From [19],we know that for bothPn andXn the thermodynamic regime corresponds
to the case nrdn → r ∈ (0,∞), so that for such a radius regime we have that

E {βk(C(Pn, rn))} = �(n), E {βk(C(Xn, rn))} = �(n).

In proving limit results for Betti numbers in these cases, much will depend on
moment estimates for the add-one cost function. The add-one cost function for a
real-valued functional F defined over finite point sets X is defined by

Dx F(X )
�= F(X ∪ {x}) − F(X ), x ∈ R

d . (4.2)
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Our basic estimate follows. For notational convenience, we write

βn
k (X )

�= βk(C(X , rn)),

where {rn}n≥1 is a sequence of radii to be determined.

Lemma 4.1 Let 1 ≤ k ≤ d − 1. For the Poisson point process Pn and binomial point
process Xn, with nrdn → r ∈ (0,∞), we have that

�k
�= max

(
sup
n≥1

sup
x∈Rd

E

{
|Dxβ

n
k (Pn)|4

}
, sup
n≥1

sup
x∈Rd

E

{
|Dxβ

n
k (Xn)|4

})
(4.3)

is finite.

Proof The lemma is a consequence of the following simple bounds from Lemma 2.2.

|Dxβ
n
k (Pn)| ≤

k+1∑

j=k

S j (Pn, rn; {x})

≤ [Pn(Bx (rn))]
k + [Pn(Bx (rn))]

k+1

≤ 2 [Pn(Bx (rn))]
k+1 ,

and, similarly,

|Dxβ
n
k (Xn)| ≤ 2 [Xn(Bx (rn))]

k+1 .

Set r∗ = supn≥1 ωdnrdn < ∞, where ωd is the volume of a d-dimensional unit ball.
Let Poi(λ) and Bin(n, p) denote the Poisson random variable with mean λ and the
binomial random variable with parameters n, p respectively. Then, we obtain that

E

{
|Dxβ

n
k (Pn)|4

}
≤ 16E

{
[Pn(Bx (rn))]

4(k+1)
}

≤ 16E
{[
Poi(r∗ f ∗)

]4(k+1)
}

,

E

{
|Dxβ

n
k (Xn)|4

}
≤ 16E

{
[Xn(Bx (rn))]

4(k+1)
}

≤ 16E

{[
Bin

(
n,

r∗ f ∗

n

)]4(k+1)
}

.

The lemma now follows from the boundedness of moments of Poisson and binomial
random variables with constant means. �


4.1 Strong laws

We begin with a lemma giving variance inequalities, which, en passant, establish weak
laws for Betti numbers.
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Lemma 4.2 For the Poisson point process Pn and binomial point process Xn, with
nrdn → r ∈ (0,∞), and each 1 ≤ k ≤ d − 1, there exists a positive constant c1 such
that for all n ≥ 1,

VAR (βk(C(Pn, rn))) < c1n, VAR (βk(C(Xn, rn))) < c1n. (4.4)

Thus, as n → ∞,

n−1 [βk(C(Pn, rn)) − E {βk(C(Pn, rn))}] P→ 0,

and

n−1 [βk(C(Xn, rn)) − E {βk(C(Xn, rn))}] P→ 0.

Proof Note firstly that the two weak laws (4.5) follow immediately from the upper
bounds in (4.4) and Chebyshev’s inequality.

Thus it remains to prove (4.4). The Poisson case is the easiest, since by Poincaré’s
inequality (e.g. [22, equation (1.8)]), the Cauchy-Schwartz inequality and Lemma 4.1,

VAR (βk(C(Pn, r)) ≤
∫

Rd
E

{[
Dxβ

n
k (Pn)

]2}
n f (x) dx

≤ n
√

�k,

where �k < ∞ is given by (4.3).
For the binomial case, we need the Efron–Stein inequality (cf. [13] and for the

case of random vectors [38, (2.1)]), which states that for a symmetric function F :
(Rd)n → R,

VAR (F(Xn)) ≤ 1
2

n∑

i=1

E

{[
F(Xn) − F(Xn+1\{Xi })

]2}
,

whereXn andXn+1 are coupled so thatXn+1 = Xn∪{Xn+1}. Applying this inequality,
we have

VAR (βk(C(Xn, rn))) ≤ 1
2

n∑

i=1

E

{[
βk(Xn, rn) − βk(Xn+1\{Xi }, rn)

]2}

= 1
2

n∑

i=1

E

{
[βk(Xn, rn) − βk(Xn\{Xi }, rn)

+ βk(Xn\{Xi }, rn) − βk(Xn+1\{Xi }, rn)
]2 }

≤ 1
2

n∑

i=1

4
√

�k

= 2n
√

�k, (4.5)
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where in the second inequality we have used Lemma 4.1. This completes the proof.
�


Thanks to the recent bound of [23, Theorem 5.2] (see Lemma 5.1), we can also
give a lower bound for the Poisson point process in the case of k = d − 1.

Lemma 4.3 For the Poisson point processPn with nrdn → r ∈ (0,∞), let n0 be such
that there is a set A ⊂ supp( f ) with A ⊕ BO(3rn) ⊂ supp( f ) and |A| > 0 for all
n ≥ n0. Then, there exists a positive constant c2 such that, for all n ≥ n0 as above,

VAR (βd−1(C(Pn, rn))) > c2n. (4.6)

Remark 4.4 Note that from the universal coefficient theorem [26, Theorem 45.8] and
Alexander duality [37, Theorem 16], we have that1

H̃k(CB(Pn, r)) ∼= H̃d−k−1(R
d\CB(Pn, r)).

Thus

βd−1(CB(Pn, r)) = β0(R
d\CB(Pn, r)) − 1.

β0(R
d\CB(Pn, r)) is nothing but the number of components of the vacant region of

the Boolean model, which is easier to analyse and this will play a crucial role in our
proof.

Proof The proof will be based on Lemma 5.1 and the duality argument of Remark 4.4.
The finiteness of moments required by this lemma is guaranteed by Lemma 4.1.
Choose n ≥ n0 for n0 as defined in the statement of the lemma and also the set A
guaranteed by this assumption. Let x ∈ A. So we now have to show that, for each
1 ≤ k ≤ d − 1, there exists an m (depending on k and d only) and a finite set of
points {z1, . . . , zm} ∈ BO(2rn) such that for some constants c, c∗ ∈ (0, 1) and for all
(y1, . . . , ym) ∈ ∏m

i=1 Bx+zi (c∗rn),

P
{
Dxβ

n
k (Pn ∪ {y1, . . . , ym}) ≤ −1

}
> c, (4.7)

and

Dxβ
n
d−1(Pn ∪ {y1, . . . , ym}) ≤ 0, (4.8)

with probability one. Though not explicitly mentioned, it is to be understood that the
above choices of m, zi , c, c∗ are not dependent on x ∈ A. The above two inequalities
imply that

∣∣E
{
Dxβ

n
d−1(Pn ∪ {y1, . . . , ym})}∣∣ ≥ c,

1 The H̃k are the reduced homology groups and it suffices to note that H̃k ∼= Hk for k 
= 0 and H0 ∼= H̃0⊕F.
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so that condition (5.1) required in Lemma 5.1 is satisfied for the add-one cost function
with the constant c above, and the lower bound to the variance given there holds.
Though, in this proof we require the construction only for k = d − 1, we have stated
one of the inequalities for all k as this will be important to the variance lower bound
argument in Theorem 4.7.

Moreover, it is easy to check that, given our choice of {z1, . . . , zm} and c∗rn (in
place of r in Lemma 5.1), the bound in (5.2) can be further bounded from below by
c2n for some c2 > 0 (depending only on f , A, k, r and d). This will prove the lemma.

Thus, all that remains is to find an m and construct z1, . . . , zm satisfying the above
conditions.

Fix k ∈ {1, . . . , d − 1}. Let Sk denote the unit k-dimensional sphere, and embed
it via the usual inclusion in the unit sphere in R

d . For ε < 1
4 let Skε = {x ∈ R

d :
miny∈Sk ‖x − y‖ ≤ ε} denote the ε-thickening of Sk .

Now choose m large enough (but depending only on k and d only) such that there
exist points v1, . . . , vm in Rd so that

Skε ⊂
m⋃

i=1

Bvi (1) ⊂ (
BO( 14 )

)c
(4.9)

and, for all 0 ≤ j ≤ d − 1,

β j (C({v1, . . . , vm}, 1)) = β j (S
k) = β j (S

k
ε ). (4.10)

(Recall that β j (Sk) = 0 for j 
= 0, k, while β0(Sk) = βk(Sk) = 1.)
Now, if needed choose m larger such that there is a c∗ > 0 for which all

(y1, . . . , ym) ∈ ∏m
i=1 Bc∗(vi ) satisfy (4.9) and (4.10). Note that by scaling we have,

for all {y1, . . . , ym} ∈ ∏m
i=1 Brnvi (c∗rn),

rn S
k
rnε ⊂

m⋃

i=1

Byi (rn) ⊂ (BO(rn/4))
c ,

while βk(C({y1, . . . , ym}, rn)) = 1.
Setting zi = rnvi for i = 1, . . . ,m, we have that zi ∈ BO(2rn) as required as well

as c∗ chosen as above ensures the size requirements we need. So, what remains is to
show that (4.7) and (4.8) hold for {y1, . . . , ym} ∈ Bn,m := ∏m

i=1 Bx+zi (c∗rn).
On the other hand, the structure of Bn,m implies that, for {y1, . . . , ym} ∈ Bn,m ,

P
{
Dxβ

n
k (Pn ∪ {y1, . . . , ym}) ≤ −1

∣∣ Pn(Bx (2rn)) = 0
} = 1.

Furthermore, it is immediate from Poisson void probabilities that

P {Pn(Bx (2rn)) = 0} ≥ e− f ∗nωdrdn ≥ e−r∗ f ∗
> 0,

where r∗ := supn≥1 nωdrdn . These two facts together imply that (4.7) holds with
c = e−r∗ f ∗

> 0.
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We now turn to the second of these inequalities (which is only for k = d −
1), for which we need the nerve theorem [2, Theorem 10.7] along with dual-
ity argument (Remark 4.4). The nerve theorem allows us to prove the inequality
for βd−1(CB(Pn, rn)) instead of βd−1(C(Pn, rn)), and the duality argument further
reduces our task to proving

Dxβ
n
0 (Rd\CB(Pn ∪ {y1, . . . , ym}, rn)) ≤ 0, (4.11)

with probability one.
Set Vn := R

d\CB(Pn ∪ {y1, . . . , ym}, rn). Since x ⊕ rn Sd−1
rnε ⊂ ⋃m

i=1 Byi (rn), we
have that Vn is the disjoint union of Vn ∩ Bx (rn) and Vn ∩ Bx (rn)c. Thus,

βn
0 (Rd\CB(Pn ∪ {y1, . . . , ym}, rn)) = β0(Vn ∩ Bx (rn)) + β0(Vn ∩ Bx (rn)

c).

So,

Dxβ
n
0 (Rd\CB(Pn ∪ {y1, . . . , ym}, rn))

= βn
0 (Rd\CB(Pn ∪ {x, y1, . . . , ym}, rn)) − β0(Vn ∩ Bx (rn)) − β0(Vn ∩ Bx (rn)

c)

= β0(Vn ∩ Bx (rn)
c) − β0(Vn ∩ Bx (rn)) − β0(Vn ∩ Bx (rn)

c)

= −β0(Vn ∩ Bx (rn)) ≤ 0,

where in the second equality, we have used the fact

Bx (rn) ⊂ CB(Pn ∪ {x, y1, . . . , ym}, rn).

This proves (4.11) and hencewehave (4.8),whichwas all thatwas required to complete
the proof. �


Our next main result is a concentration inequality for βk(C(Xn, rn).

Theorem 4.5 Let 1 ≤ k ≤ d − 1, Xn be a binomial point process, and assume that
nrdn → r ∈ (0,∞). Then, for any a > 1

2 and ε > 0, for n large enough,

P
{∣∣βk(C(Xn, rn) − E {βk(C(Xn, rn)}

∣∣ ≥ εna
} ≤ C

ε
n2k+2−a exp(−nγ ),

where γ = (2a − 1)/4k and C > 0 is a constant depending only on a, r, k, d and the
density f .

The proof, close to that of [31, Theorem3.17], is based on a concentration inequality
for martingale differences.

Proof Fix n ∈ N. Let Qn,i be a partition of Rd into cubes of side length rn . Define
the set An as follows:

An
�= {X : |X | = n, ∀i, X (Qn,i ∩ supp( f )) ≤ max(r, 1)nγ

}
.
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For large enough n, since Xn(Qn,i ) is stochastically dominated by a Bin(n, f ∗rdn )

random variable, elementary bounds (e.g. [31, Lemma 1.1]), yield that

P {Xn /∈ An} ≤ c1n exp(−nγ ),

for some constant c1. Since the above bound is dependent only on the mean of the
binomial random variable and r , the constants d and r are suppressed. Recall that the
points ofXn are denoted by X1, . . . , Xn , and letFi = σ(X1, . . . , Xi ) be the sequence
of σ -fields they generate, with F0 denoting the trivial σ -field. (The actual ordering of
the X j will not be important.) We can define the finite martingale

M (n)
i

�= E {βk(C(Xn, rn)) | Fi } ,

for 0 = 1, . . . , n, along with the corresponding martingale differences

D(n)
i

�= E {βk(C(Xn, rn)) | Fi } − E {βk(C(Xn, rn)) | Fi−1} ,

i = 1, . . . , n, and D(n)
0 = 0. Writing

βk(C(Xn, rn)) − E {βk(C(Xn, rn))} =
n∑

i=0

D(n)
i ,

and setting X i
n = Xn+1\{Xi }, we have that D(n)

i can be represented as

D(n)
i = E

{
βk(C(Xn, rn)) − βk(C(X i

n, rn)) | Fi

}
.

Let Ai,n := {Xn ∈ An,X i
n ∈ An}. Then, recalling that S j (X , r; A) denotes the

number of j-simpliceswith at least one vertex in A, and appealing again to Lemma 2.2,
we have that, conditioned on the event Ai,n , for n large enough,

|βk(C(Xn, rn)) − βk(C(X i
n, rn))| ≤

k+1∑

j=k

S j (Xn+1, rn; {Xi , Xn+1}) ≤ c2(rn
γ )k .

In all cases, we have the universal bound |βk(C(Xn, rn)) − βk(C(X i
n, rn))| ≤ nk , and

so,

∣∣D(n)
i

∣∣ = E

{(∣∣D(n)
i

∣∣1Ai,n

)∣∣Fi

}
+ E

{(∣∣D(n)
i

∣∣1Ac
i,n

)∣∣Fi

}

≤ c2(rn
γ )k + nkP

{
Ac
i,n|Fi

}
.

Defining Bi,n := {P{Ac
i,n | Fi } ≤ n−k}, Markov’s inequality implies

P
{
Bc
i,n

} ≤ nkE
{
P
{
Ac
i,n | Fi

}} = nkP
{
Ac
i,n

} ≤ 2c1n
k+1 exp(−nγ ).
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Thus, since |D(n)
i |1Bi,n ≤ c3(rnγ )k , using [8, Lemma 1], we have that for any b1, b2 >

0,

P

{∣∣∣∣∣

n∑

i=1

D(n)
i

∣∣∣∣∣ > b1

}
≤ 2 exp

(
− b21
32nb22

)

+
(
1 + 2 supi ‖D(n)

i ‖∞
b1

)
n∑

i=1

P {|Di | > b2} .

Choosing b1 = εna and b2 = c3(rnγ )k , we have

P
{|βk(C(Xn, rn)) − E {βk(C(Xn, rn))} | ≥ εna

}

≤ 2 exp

(
− ε2n2a

32nc23(rn
γ )2k

)
+ (1 + 2ε−1nk−a)

n∑

i=1

P

{
|D(n)

i | > c3(rn
γ )k

}

≤ 2 exp

(
− ε2n2a

32nc23(rn
γ )2k

)
+ (1 + 2ε−1nk−a)

n∑

i=1

P
{
Bc
i,n

}

≤ 2 exp

(
−ε2n2a−2kγ−1

32c23r
2k

)
+ (1 + 2ε−1nk−a)2c1n

k+2 exp(−nγ )

≤ c

ε
n2k+2−a exp(−nγ ),

for large enough n and a constant c > 0 which depends only on a, r, k, d. The last
inequality above follows from the fact that γ < a − 1

2 and hence, for large enough n,
exp(−nγ ) is the dominating term in the penultimate expression. �


We now finally have the ingredients needed to lift the weak laws of Lemma 4.2 to
the promised strong convergence.

Theorem 4.6 For the Poisson point process Pn and binomial point process Xn, with
nrdn → r ∈ (0,∞), and each 1 ≤ k ≤ d − 1, we have, with probability one,

lim
n→∞ n−1 [βk(C(Pn, rn)) − E {βk(C(Pn, rn)}] = 0,

and

lim
n→∞ n−1 [βk(C(Xn, rn)) − E {βk(C(Xn, rn)}] = 0.

Proof By choosing a = 1 in Theorem 4.5 and summing over n, we have, for all ε > 0,

∑

n≥1

P

{
n−1|βk(C(Xn, rn) − E {βk(C(Xn, rn)}| ≥ ε

}
< ∞.

The Borel–Cantelli lemma immediately implies the strong law for βk(C(Xn, rn)).
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Turning to the Poisson case, we shall use the standard coupling of Pn to Xn to
complete the proof of the theorem. Let Nn be a Poisson random variable with mean n.
Then, by choosingPn = {X1, . . . , XNn }, we have coupled it withXn = {X1, . . . , Xn},
n ≥ 1. By Lemma 2.2, we have that

|βk(C(Pn, rn) − βk(C(Xn, rn)| ≤ Sk(Pn ∪ Xn, rn;Pn � Xn)

+ Sk+1(Pn ∪ Xn, rn;Pn � Xn).

Now note that,

Sk
(
Pn

⋃
Xn, rn;Pn � Xn

)
= |Sk(Pn, rn) − Sk(Xn, rn)|,

with a similar inequality holding for Sk+1(). From [32, Theorem 2.2] and the remarks
following that result, we have that there exists a constant Ŝk( f ) ∈ (0,∞) such that,
with probability one,

lim
n→∞

Sk(Xn, rn)

n
= lim

n→∞
Sk(Pn, rn)

n
= Ŝk( f ).

A similar limit law holds true for Sk+1, and so we have that, with probability one,

lim
n→∞

Sk(Pn ∪ Xn, rn;Pn � Xn)

n
= lim

n→∞
Sk+1(Pn ∪ Xn, rn;Pn � Xn)

n
= 0.

Thus,

|βk(C(Pn, rn) − βk(C(Xn, rn)|
n

n→∞→ 0,

and the strong law for βk(C(Pn, rn) follows. �


4.2 Central limit theorem

We have finally come to main result of this section: central limit theorems for Betti
numbers.

We start with some definitions from percolation theory for the Boolean model on
Poisson processes [25] needed for the proof of the Poisson central limit theorem.
Recall firstly that we say that a subset A of Rd percolates if it contains an unbounded
connected component of A.

Now let P be a stationary Poisson point process on R
d with unit intensity. (Unit

intensity is for notational convenience only. The arguments of this section will work
for any constant intensity.) We define the critical (percolation) radii for P as follows:

rc(P)
�= inf{r : P {C(P, r) percolates} > 0},
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and,

r∗
c (P)

�= sup{r : P{Rd\C(P, r) percolates} > 0}.

ByKolmogorov’s zero-one law, it is easy to see that the both of the probabilities inside
the infimum and supremum here are either 0 or 1. The first critical radius is called
the critical radius for percolation of the occupied component and the second is the
critical radius for percolation of the vacant component.

We define the interval of co-existence, Id(P), for which unbounded components of
both the Boolean model and its complement co-exist, as follows:

Id(P) =
{

(rc, r∗
c ] if P {C(P, rc) percolates} = 0,

[rc, r∗
c ] otherwise.

From [25, Theorem 4.4 and Theorem 4.5], we know that I2(P) = ∅ and from [34,
Theorem 1] we know that Id(P) 
= ∅ for d ≥ 3. In high dimensions, it is known that
rc /∈ Id(P) (cf. [41]).

We now need a little additional notation. Let {Bn}n≥1 be a sequence of bounded
Borel subsets in R

d satisfying the following four conditions:

(A) |Bn| = n, for all n ≥ 1.
(B)

⋃
n≥1

⋂
m≥n Bm = R

d .
(C) |(∂Bn)

(r)|/n → 0, for all r > 0.
(D) There exists a constant b1 such that diam(Bn) ≤ b1nb1 , where diam(B) is the

diameter of B.

In a moment we shall state and prove a central limit theorem for the sequences of
the form βk(C(P ∩ Bn, r)), when the Bn are as above. Setting up the central limit
theorem for the binomial case requires a little more notation.

In particular, we write Un to denote the point process obtained by choosing n points
uniformly in Bn , and call this the extended binomial point process. This is a natural
binomial counterpart to the Poisson point process P ∩ Bn .

We finally have all that we need to formulate the main central limit theorem.

Theorem 4.7 Let {Bn} be a sequence of sets in R
d satisfying conditions (A)–(D)

above, and let P and Un, n ≥ 1, respectively, be the unit intensity Poisson process
and the extended binomial point process described above. Take k ∈ {1, . . . , d − 1}
and r ∈ (0,∞). Then there exists a constant σ 2 > 0 such that, as n → ∞,

n−1VAR (βk(C(P ∩ Bn, r)) → σ 2,

and

n−1/2 (βk(C(P ∩ Bn, r)) − E {βk(C(P ∩ Bn, r))}) ⇒ N (0, σ 2).

Furthermore, for r /∈ Id(P), there exists a τ 2 with 0 < τ 2 ≤ σ 2 such that

n−1VAR (βk(C(Un, r)) → τ 2,
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and

n−1/2 (βk(C(Un, r)) − E {βk(C(Un, r))}) ⇒ N (0, τ 2).

The constants σ 2 and τ 2 are independent of the sequence {Bn}.
Remark 4.8 The condition r /∈ Id(P), needed for the binomial central limit theorem,
is rather irritating, and we are not sure if it is necessary or an artefact of the proof. It
is definitely not needed for the case k = d − 1. To see this, note that from the duality
argument of Remark 4.4, we have that

βd−1(C(P ∩ Bn, r)) = β0(R
d\C(P ∩ Bn, r)) − 1.

However,Rd\C(P∩Bn, r) is nothing but the vacant component of the Booleanmodel,
and central limit theorems for β0(R

d\C(X ∩ Bn, r)) for both Poisson and binomial
point processes are given in [33, p 1040] for all r ∈ (0,∞). By the above duality
arguments, this proves both the central limit theorems of Theorem4.7, when k = d−1,
and without the requirement that r /∈ Id(P).

Proof Since the theorem is somewhat of an omnibus collection of results, the proof
is rather long. Thus we shall break it up into signposted segments.
I. Poisson central limit theorem: Since βk(C( · , r)) is a translation invariant functional
over finite subsets of Rd , we need only check that Conditions 3 and 4 in Theorem 5.2,
along with the weak stabilization of (5.4), hold in order to prove the convergence of
variances and the asymptotic normality in the Poisson case. The strict positivity of σ 2

will follow from that of τ 2, to be proven below.
We treat each of the three necessary conditions separately.

(i)Weak stabilization: Firstly, we shall show that there exist a.s. finite randomvariables
Dβk (∞), and R such that, for all ρ > R,

(DOβr
k )(P ∩ BO(ρ)) = Dβk (∞), (4.12)

where βr
k (X )

�= βk(C(X , r)) for any finite point-set X . Then, we shall complete the
proof of weak stabilization by showing the above for any B-valued sequence of sets
An tending to R

d . (See the paragraphs preceding Theorem 5.2 for the definition of
B.)

For any ρ > 2r , define the simplicial complexes

Kρ = C((P ∩ BO(ρ)) ∪ {0}, r),
K′

ρ = C(P ∩ BO(ρ), r),

K′′ = C((P ∩ BO(2r)) ∪ {0}, r),
L = K′

ρ ∩ K′′,

and note that Kρ = K′
ρ ∪ K′′ and that, as implied by the notation, L and K′′ do not

depend on ρ.
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From the second part of Lemma 2.3, we have that

(DOβr
k )(P ∩ BO(ρ)) = βk(Kρ) − βk(K′

ρ)

= βk(K′′) + β(Nρ
k ) + β(Nρ

k−1) − βk(L), (4.13)

where Nρ
k is the kernel of the induced homomorphism

λ
ρ
k : Hk(L) → Hk(K′

ρ) ⊕ Hk(K′′)

Hence, all that remains is to show that β(Nρ
j ), j = k, k − 1, remain unchanged as ρ

increases beyond some random variable R. Since these variables are integer valued,
it suffices to show that they are increasing and bounded to prove (4.12). We shall do
this for β(Nρ

k ). The same proof also works for β(Nρ
k−1).

The boundedness is immediate, since

β(Nρ
k ) ≤ βk(L) ≤ �(BO(2r))k+1 < ∞, a.s.

All that remains to show is that β(Nρ
k ) is increasing. Let ρ1, ρ2 be such that 2r <

ρ1 ≤ ρ2. We need to show that β(Nρ1
k ) ≤ β(Nρ2

k ).
Since L ⊂ Kρ1 ⊂ Kρ2 , we have the corresponding simplicial maps defined by the

respective inclusions (see Sect. 2.1) and hence the following homomorphisms:

Hk(L)
λ

ρ1
k→ Hk(K′

ρ1
) ⊕ Hk(K′′) η→ Hk(K′

ρ2
) ⊕ Hk(K′′).

Also, by the functoriality of homology, λ
ρ2
k = η ◦ λ

ρ1
k . Since ker η ⊂ ker η′ ◦ η for

any two homomorphisms η, η′, we have that

β(Nρ1
k ) = β(ker λρ1

k ) ≤ β(ker η ◦ λ
ρ1
k ) = β(Nρ2

k ). (4.14)

This proves that β(Nρ
k ) is increasing in ρ, as, similarly, is β(Nρ

k−1). Combining the
convergence of β(Nρ

j ), j = k, k − 1, with (4.13) gives (4.12).

Now, let An be a B-valued sequence of sets tending to R
d . To complete the proof

of weak stabilization, we need to show that there exists an integer valued random
variable N such that for all n > N ,

(DOβr
k )(P ∩ An) = Dβk (∞), (4.15)

where, as before, βr
k (X )

�= βk(C(X , r)) for any finite point-set X . Firstly, choose
R as in (4.12) and WLOG assume R > 2r . In particular, this implies that β(Nρ

j )

remains constant for ρ > R for j = k − 1, k. Since P ∩ BO(R + 1) is a.s. finite and⋃
n≥1

⋂
m≥n Am = R

d , there exists an a.s. finite random variable N∗ such that

{0} ∪ P ∩ BO(R + 1) ⊂
⋂

m≥N∗
Am .
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Hence, {0} ∪ P ∩ BO(R + 1) ⊂ An for all n > N∗. Let n > N∗, and note that since
An ∈ B, diam(An) < ∞ and so we can choose Rn < ∞ such that An ⊂ BO(Rn).
Define the simplicial complexes

K = C((P ∩ BO(R + 1)) ∪ {0}, r),
Kn = C((P ∩ An) ∪ {0}, r),
K∗

n = C((P ∩ BO(Rn)) ∪ {0}, r),
K′

n = C(P ∩ An, r),

K′′ = C((P ∩ BO(2r)) ∪ {0}, r),
L = K′

n ∩ K′′,

where, again, L and K′′ do not depend of n. Now applying the second part of
Lemma 2.3, since Kn = K′

n ∪ K′′,we have that

(DOβr
k )(P ∩ An) = βk(Kn) − βk(K′

n)

= βk(K′′) + β(Mn
k ) + β(Mn

k−1) − βk(L), (4.16)

where Mn
j , j = k, k − 1, is the kernel of the induced homomorphism

γ n
j : Hj (L) → Hj (K′

n) ⊕ Hj (K′′).

Again, to prove (4.15), all we need to show is that β(Mn
j ), j = k, k − 1, remain

constant for any n > N∗.
To see this, start by noting that, by the choice of n, R, Rn , we have the following

inclusions:

L ⊂ K ⊂ K′
n ⊂ K∗

n .

Hence the corresponding simplicial maps give rise to the following induced homo-
morphisms:

Hk(L)
η1→ Hk(K) ⊕ Hk(K′′) η2→ Hk(K′

n) ⊕ Hk(K′′) η3→ Hk(K∗
n) ⊕ Hk(K′′).

Note that γ n
k = η2 ◦ η1. Also, from the choice of R,K and K∗

n , we have that

β(N R+1
k ) = β(ker η1) = β(ker η3 ◦ η2 ◦ η1),

where Nρ
k for any ρ ≥ 2r was defined after (4.13). Now, by an argument similar to

that used to obtain (4.14), we have the following inequality:

β(ker η1) ≤ β(Mn
k ) = β(ker η2 ◦ η1) ≤ β(ker η3 ◦ η2 ◦ η1).
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Thus, we have that β(Mn
k ) = β(N R+1

k ) for n > N∗ with a corresponding result
holding for β(Mn

k−1). Using this in (4.16) proves (4.15), and so we have shown that
βk(C(P, r)) is weakly stabilizing on P for all r ≥ 0.

(ii) Uniformly bounded moments: Via a calculation similar to that in Lemma 4.1, we
obtain that, for m ∈ [|A|/2, 3|A|/2],

∣∣(DOβk)(Um,A)
∣∣ ≤ 2

[
Bin

(
m,

ωdrd

|A|
)]k+1

≤ 2

[
Bin

(⌈
3|A|
2

⌉
,
ωdrd

|A|
)]k+1

,

where the inequalities here are to be read as ‘bounded by a random variable with
distribution’. Thus, the uniformly bounded fourth moments for the rightmost binomial
random variable implies uniformly bounded fourth moments for the add-one cost
function.

(iii) Polynomial boundedness: This follows easily from the relation

βk(C(X , r)) ≤ Sk(X , r) ≤ X (Rd)k+1.

From Theorem 5.2 and the remarks below it, the above three items suffice to prove
the central limit theorem for the Poisson point processes.

II. Binomial central limit theorem: Given the bounds proven in the previous part of
the proof, all that remains to complete the central limit theorem for the binomial case
is to prove the strong stabilization of DOβk for r /∈ Id .

What we need to show is that there exist a.s. finite random variables D̂βk (∞), S
such that for all finite X ⊂ BO(S)c,

(DOβk)((P ∩ BO(S)) ∪ X ) = D̂βk (∞).

We shall handle the two case of r < rc and r > r∗
c separately.

Assume that r < rc, or r ≤ rc if rc /∈ Id . In this case, since CB(P, r) does not
percolate, there are only finitely many components of CB(P, r) that intersect BO(r)
and all of them are a.s. bounded. LetC1, . . . ,CM be an enumeration of the components
for some a.s. finiteM > 0. (We exclude the trivial but possible case ofM = 0.) Further,
C1, . . . ,CM are a.s. bounded subsets and so C = ⋃M

i=1 Ci is also a.s. bounded. Thus,
in this case we can choose an a.s. finite S such that d(x,C) > 3r for all x /∈ BO(S).
This implies that for any locally finiteX ⊂ BO(S)c we haveC ∩CB(X , r) = ∅. Thus,
for any finite X ⊂ [BO(S)]c,

(DOβk)((P ∩ BO(S)) ∪ X ) = βk(C ∪ BO(r)) − βk(C), (4.17)

i.e. βk strongly stabilizes with stabilization radius S and

D̂βk (∞)
�= βk(C ∪ BO(r)) − βk(C).
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Now assume that r > r∗
c . Since R

d\CB(P, r) has only finitely many components
that intersect BO(r), duality arguments, as inRemark 4.8, establish strong stabilization
for βk(P, r).

Consequently, (4.17) and duality establishes strong stabilization of βk(C(P, r)) for
r /∈ Id , and this completes the proof of the central limit theorem for βk(C(Un, r)).

III. Positivity of τ 2: All that remains is to show the strict positivity of τ 2. By Theo-
rem 5.2, it suffices to show that Dβk (∞) is non-degenerate and this we shall do by
using similar arguments to those we used to obtain (4.7) and (4.8).

Write Pn for P ∩ BO(n). We showed in (4.12) that |(DOβk)(Pn)| a.s.→ |Dβk (∞)|,
and we have from Lemma 2.2 that, for n large enough,

|(DOβk)(Pn)| ≤
k+1∑

j=k

S j (Pn ∪ {0}, r; {0}) ≤ 2P(BO(2r))k+1.

Since E
{P(BO(2r))k+1

}
< ∞, we can use the dominated convergence theorem to

obtain that E {|(DOβk)(Pn)|} → E
{|Dβk (∞)|} as n → ∞.

Choose m (depending on k, d only) as in the proof of variance lower bound in
Lemma 4.2 (see (4.9) and (4.10)) and define the set B∗

m as there. Setting B∗
r,m = r B∗

m ,
we have that |B∗

m,r | = |B∗
m |rmd > 0. Thus, for all n ≥ 5r ,

E {|(DOβk)(Pn)|}
≥ E

{|(DOβk)(Pn)|1Pn(BO (2r))=m,Pn(BO (4r)\BO (2r))=0
}

= E
{|(DOβk)(Pn)|

∣∣Pn(BO(2r)) = m,Pn(BO(4r)\BO(2r)) = 0
}

×P {Pn(BO(2r)) = m,Pn(BO(4r)\BO(2r)) = 0}
≥ P {Pn(BO(2r)) = m,Pn(BO(4r)\BO(2r)) = 0}

× 1

(ωd(2r)d)m

∫

(y1,...,ym )∈BO (2r)m
|(DOβk)({y1, . . . , ym})| dy1 · · · dym

≥ |B∗
m,r |
m! e−ωd (4r)d )

> 0.

Thus,

E
{|Dβk (∞)|} = lim

n→∞E {|(DOβk)(Pn)|} >
|B∗

m,r |
m! e−ωd (4r)d ).

This shows thatP
{
Dβk (∞) 
= 0

}
> 0. Thus, to complete the proof of non-degeneracy

of Dβk (∞), it suffices show that P {DOβ∞ = 0} > 0.

P
{
Dβk (∞) = 0

} = lim
n→∞P {(DOβk)(Pn) = 0}

≥ lim
n→∞P {Pn(BO(2r)) = 0}
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= exp(−ωd(2r)
d)

> 0.

�
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Appendices

Appendix 1

The following useful lemma needed for variance lower bounds is essentially a simpli-
fication of [23, Theorem 5.2] to our situation.

Lemma 5.1 Let n ≥ 1 and Pn be the Poisson point process with density n f, where f
satisfies (4.1). Let F be a translation invariant functional on locally finite point sets of
R
d such that E

{
F(Pn)

2
}

< ∞. Assume that there exist m ∈ N, a set A ⊂ supp( f ),
a finite set of points z1, . . . , zm and r > 0 with A ⊕ Bzi (r) ⊂ supp( f ) for all
i ∈ {1, . . . ,m} such that for all x ∈ A and (x1, . . . , xm) ∈ ∏m

i=1 Bx+zi (r), we have
that

∣∣E
{
Dx

(
F(Pn ∪ {x1 . . . , xm}))} ∣∣ ≥ c, (5.1)

for some positive constant c. Then

VAR (F(Pn)) ≥ f ∗n c2( f∗( f ∗)−1)m+1

8m+2 · 4 · (m + 1)! min
j=1,...,m+1

2−d(m+1− j)(wd f
∗nrd) j−1|A|.

(5.2)

Proof [23, Theorem 5.3] simplifies [23, Theorem 5.2] to the case of stationary Poisson
point processes in Euclidean space. However, since we are dealing with Poisson point
processes with non-uniform densities, we require a small change in the arguments
there and shall describe this in a moment. In any case, the similarity of our lower
bound (5.2) to that of [23, Theorem 5.3] is to be expected. In particular, if we set
f∗ = f ∗ = λ, then (5.2) is exactly the variance lower bound in [23, Theorem 5.3]
with t there replaced by λn here (although the set A and r are different).

Now, more specifically, set

U =
{

(x, x + z1 + x1, . . . , x + zm + xm) : x ∈ A, (x1, . . . , xm) ∈
m∏

i=1

BO(r)

}
.
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Note that this plays the role of U as defined in [23, Theorem 5.2] and defining g on
U as

g(y1, . . . , ym+1) :=
∣∣E {F(Pn ∪ {y1, y2 . . . , ym+1})}−E {F(Pn ∪ {y2, . . . , ym+1})}

∣∣,

we have that g > c/2 Lebesgue a.e. onU . Setting νn(.) to be the intensity measure of
the point process Pn , we have that

f∗|.| ≤ νn(.) ≤ f ∗|.|,

where we recall that |.| stands for the Lebesgue measure on R
d . Using these bounds

for νn(.), we firstly obtain that

νm+1
n (U ) ≥ n f m+1∗ |A|(nwdr

d)m .

Secondly, let ∅ 
= J ⊂ {1, . . . ,m + 1} and for y = (y1, . . . , ym+1) ∈ R
d(m+1), let

yJ be the components of y with indices in J . If y ∈ U , then |yi − y j | ≤ 2r for all
1 ≤ i, j ≤ m + 1 and so for any yJ ∈ R

d|J |, we have that

νm+1−|J |
n

({yJc ∈ R
d(m+1−|J |) : y ∈ U }) ≤ (2d f ∗nwdr

d)m+1−|J |.

Using the above upper and lower bounds in the proof of [23, Theorem 5.3] along
with the a.e. lower bound for g on U , (5.2) follows. �


Appendix 2

We use the notation of Sect. 4.2, and consider a sequence {Bn} of subsets of Rd

satisfying Conditions (A)–(D) there.
Given such a sequence, letB (= B({Bn})) be the collection of all subsets A of Rd

such that A = Bn + x for some Bn in the sequence and some point x ∈ R
d .

For a A ∈ B, we shall denote by Um,A the point process obtained by choosing m
points uniformly in A. Then the extended binomial processUn of Sect. 4.2 is equivalent
to Un,Bn in the current notation.

Theorem 5.2 [33, Theorem 2.1] Let H be a real-valued functional defined for all
finite subsets of Rd and satisfying the following four conditions:
1. Translation invariance: H(X + y) = H(X ) for all finite subsets X and y ∈ R

d .
2. Strong stabilization: H is called strongly stabilizing if there exist a.s. finite random

variables R (called the radius of stabilization for H) and DH (∞) such that, with
probability 1,

(DOH)
(
(P ∩ BO(R)) ∪ A

) = DH (∞)

for all finite A ⊂ BO(R)c.
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3. Uniformly bounded moments:

sup
A∈B; 0∈A

sup
m∈[|A|/2,3|A|/2]

E

{[
(DOH)(Um,A)

]4}
< ∞.

4. Polynomial boundedness: There is a constant b2 such that, for all finite subsets
X ⊂ R

d ,

|H(X )| ≤ b2 [diam(X ) + |X |]b2 . (5.3)

Then, there exist constants σ 2, τ 2 with 0 ≤ τ 2 ≤ σ 2, such that, as n → ∞,

n−1VAR (H(P ∩ Bn)) → σ 2, n−1VAR (H(Un)) → τ 2,

n−1/2 [H(P ∩ Bn) − E {H(P ∩ Bn)}] ⇒ N (0, σ 2),

and

n−1/2 [H(Un)) − E {H(Un)}] ⇒ N (0, τ 2),

where ⇒ denotes convergence in distribution. The constants σ 2, τ 2 are independent
of the choice of Bn. If DH (∞) is non-degenerate, then τ 2 > 0 and also σ 2 > 0.
Further, if E {DH (∞)} 
= 0, then τ 2 < σ 2.

The last statement follows from the remark below [33, Theorem 2.1]. In the Poisson
case the strongly stabilizing condition required for the central limit theorem can be
replaced by the so-called weak stabilization condition, as in [33, Theorem 3.1]. H is
said to be weakly stabilizing if there exists a random variable D∞(H) such that

(DOH)(P ∩ An)
a.s.→ D∞(H), (5.4)

for any B-valued sequence An growing to R
d .
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