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Abstract We study the random metric space called the Brownian plane, which is
closely related to the Brownian map and is conjectured to be the universal scaling
limit of many discrete random lattices such as the uniform infinite planar triangulation.
We obtain a number of explicit distributions for the Brownian plane. In particular, we
consider, for every r > 0, the hull of radius r , which is obtained by “filling in the
holes” in the ball of radius r centered at the root. We introduce a quantity Zr which
is interpreted as the (generalized) length of the boundary of the hull of radius r . We
identify the law of the process (Zr )r>0 as the time-reversal of a continuous-state
branching process starting from +∞ at time −∞ and conditioned to hit 0 at time 0,
and we give an explicit description of the process of hull volumes given the process
(Zr )r>0. We obtain an explicit formula for the Laplace transform of the volume of
the hull of radius r , and we also determine the conditional distribution of this volume
given the length of the boundary. Our proofs involve certain new formulas for super-
Brownian motion and the Brownian snake in dimension one, which are of independent
interest.

Mathematics Subject Classification 05C80 · 60J68 · 60J80
1 Introduction

Much recent work has been devoted to understanding continuous limits of random
graphs drawn on the two-dimensonal sphere or in the plane, which are called random
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planar maps. A fundamental object is the random compact metric space known as
the Brownian map, which has been proved to be the universal scaling limit of several
important classes of random planar maps conditioned to have a large size (see in
particular [1,3,6,23,30]). The main goal of this work is to study the random (non-
compact) metric space called the Brownian plane, which may be viewed as an infinite-
volume version of the Brownian map. The Brownian plane was first introduced and
studied in [9], where it was shown to be the scaling limit in distribution of the uniform
infinite planar quadrangulation (UIPQ) in the local Gromov–Hausdorff sense. The
Brownian plane is in fact conjectured to be the universal scaling limit of many discrete
random lattices including the uniform infinite planar triangulation (UIPT) introduced
byAngel and Schramm [5] and studied then by several authors. It was proved in [9] that
the Brownian plane is locally isometric to the Brownian map, in the following sense.
Recalling that both the Brownian map and the Brownian plane are equipped with a
distinguished point called the root, one can couple these two random metric spaces
in such a way that, for every δ > 0, there exists ε > 0 such that the balls of radius
ε centered at the root in the two spaces are isometric with probability at least 1 − δ.
As a consequence, the Brownian plane shares many properties of the Brownian map.
On the other hand, the Brownian plane also enjoys the important additional property
of invariance under scaling: multiplying the distance by a constant factor λ > 0 does
not change the distribution of the Brownian plane. This property suggests that the
Brownian plane should be more tractable for calculations than the Brownian map, for
which very few explicit distributions are known. Our purpose is to obtain such explicit
distributions for the Brownian plane, and in particular to give a detailed probabilistic
description of the growth of “hulls” centered at the root.

In order to give a more precise presentation of our results, let us introduce some
notation. As in [9], we write (P∞, D∞) for the Brownian plane, and we let ρ∞ stand
for the distinguished point of P∞ called the root. We recall that P∞ is equipped with
a volume measure, and we write |A| for the volume of a measurable subset of P∞.
For every r > 0, the closed ball of radius r centered at ρ∞ in P∞ is denoted by
Br (P∞). In contrast with the case of Euclidean space, the complement of Br (P∞)

will have infinitely many connected components (see [24] for a detailed discussion
of these components in the slightly different setting of the Brownian map) but only
one unbounded connected component. We then define the hull of radius r as the
complement of the unbounded component of the complement of Br (P∞), and we
denote this hull by B•

r (P∞). Informally, B•
r (P∞) is obtained by “filling in the holes”

of Br (P∞)—see Fig. 1 below, and Fig. 3 in Sect. 5 for a discrete version of the hull.
In what follows, we give a complete description of the law of the process

(|B•
r (P∞)|)r>0. To formulate this description, it is convenient to introduce another

process (Zr )r>0 which gives for every r > 0 the size of the boundary of B•
r (P∞).

Proposition 1.1 Let r > 0. There exists a positive random variable Zr such that

lim
ε→0

ε−2|B•
r (P∞)c ∩ Br+ε(P∞)|= Zr

in probability.
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Fig. 1 Illustration of the
geometric meaning of the
processes (Zr )r≥0 and
(|B•

r (P∞)|)r≥0. The Brownian
plane is represented as a
two-dimensional “cactus” where
the height of each point is equal
to its distance to the root. The
shaded part represents the hull
B•
r (P∞) and Zr corresponds to

the (generalized) length of its
boundary. At time s, both
processes Z· and |B•· (P∞)|
have a jump. Geometrically this
corresponds to the creation of a
“bubble” above height s

r Zr

s

B•
r (P∞)

In view of this proposition, one interprets Zr as the (generalized) length of the
boundary of the hull of radius r (this boundary is expected to be a fractal curve
of dimension 2). A key intermediate step in the derivation of our main results is to
identify the process (Zr )r>0 as a time-reversed continuous-state branching process.
For every u ≥ 0, set ψ(u) = √

8/3 u3/2. The continuous-state branching process
with branching mechanismψ is the Feller Markov process (Xt )t≥0 with values inR+,
whose semigroup is characterized as follows: for every x, t ≥ 0 and every λ > 0,

E[e−λXt | X0 = x] = exp

(
− x

(
λ−1/2 +√2/3 t

)−2)
.

See Sect. 2.1 for a brief discussion of this process. Note that X gets absorbed at 0
in finite time. It is easy to construct a process (X̃t )t≤0 indexed by the time interval
(−∞, 0] and which is distributed as the process X “started from +∞” at time −∞
and conditioned to hit zero at time 0 (see Sect. 2.1 for a more rigorous presentation).

Proposition 1.2 (i) For every r > 0, we have for every λ ≥ 0,

E

[
exp(−λZr )

]
=
(
1+ 2λr2

3

)−3/2

.

Equivalently, Zr follows a Gamma distribution with parameter 3
2 and mean r2.

(ii) The two processes (Zr )r>0 and (X̃−r )r>0 have the same finite-dimensional
marginals.

We observe that results closely related to Proposition 1.2 have been obtained by
Krikun [16,17] in the discrete setting of the UIPT and the UIPQ.

Part (ii) of the preceding proposition implies that the process (Zr )r>0 has a càdlàg
modification, with only negative jumps, and from now on we deal with this modifi-
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cation. We can now state the main results of the present work. For every r > 0, we
write �Zr for the jump of Z at time r .

Theorem 1.3 Let s1, s2, . . . be a measurable enumeration of the jumps of Z, and let
ξ1, ξ2, . . . be a sequence of i.i.d. real random variables with density

1√
2πx5

e−1/2x 1(0,∞)(x),

which is independent of the process (Zr )r>0. The following identity in distribution of
random processes holds:(

Zr , |B•
r (P∞)|

)
r>0

(d)=
(
Zr ,

∑
i :si≤r

ξi (�Zsi )
2
)
r>0

.

This theorem identifies the conditional distribution of the process of hull volumes
knowing the process of hull boundary lengths, whose distribution is given by the
preceding proposition. Informally, each jump time r of Z corresponds to the creation
of a new connected component of the complement of the ball Br (P∞), which is
“swallowed” by the hull, leading to a negative jump for the boundary of the hull and
a positive jump for its volume. The common distribution of the variables ξi should
then be interpreted as the law of the volume of a newly created connected component
knowing that the “length” of its boundary is equal to 1 (see [4, Proposition 6.4] and
especially [10, Proposition 9] for related results about the asymptotic distribution of
the volume of a triangulationwith a boundary of size tending to infinity). This heuristic
discussion is made much more precise in the companion paper [10], where many of
the results of the present work are interpreted in terms of asymptotics for the so-called
“peeling process” studied by Angel [4] for the UIPT.

The proof of Theorem 1.3 depends on certain explicit calculations of distributions,
which are of independent interest.

Theorem 1.4 Let r > 0. For every μ > 0,

E

[
exp(−μ|B•

r (P∞)|)
]
= 33/2 cosh((2μ)1/4r)

(
cosh2((2μ)1/4r) + 2

)−3/2

.

Furthermore, for every 
 > 0,

E

[
exp(−μ|B•

r (P∞)|)
∣∣∣∣ Zr = 


]

=r3(2μ)3/4
cosh((2μ)1/4r)

sinh3((2μ)1/4r)
exp

(
− 


(√
μ

2

(
3 coth2((2μ)1/4r) − 2

)
− 3

2r2

))
.

In view of the first assertion of the theorem, one may ask whether a similar formula
holds for the volume |Br (P∞)| of the ball of radius r . In principle our methods should
also be applicable to this problem, but our calculations did not lead to a tractable
expression. One may still compare the expected volumes of the hull and the ball.
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The hull process of the Brownian plane 191

From the first formula of the theorem, one easily gets that E[|B•
r (P∞)|] = r4/3. On

the other hand, using the method of the proof of [26, Proposition 5], one can verify
that E[|Br (P∞)|] = 2r4/21.

We also note that there is an interesting analogy between the second formula of The-
orem 1.4 and classical formulas for Bessel processes (see Corollary 1.8 and Corollary
3.3 in [31, Chapter XI]), which also involve hyperbolic functions—in special cases
these formulas can be restated in terms of linear Brownian motion via the Ray–Knight
theorems.

The preceding results can also be interpreted in terms of asymptotics for the UIPQ.
In the last section of this article, we prove that the process of hull volumes of the UIPQ
converges in distribution, modulo a suitable rescaling, to the process (|B•

r (P∞)|)r>0.
A similar invariance principle should hold for the UIPT and for more general random
lattices such as the ones constructed by Addario-Berry [2] and Stephenson [32].

Our proofs depend on a new representation of theBrownian plane,which is different
from the one used in [9]. Roughly speaking, this representation is a continuous analog
of the construction of the UIPQ that was given by Chassaing and Durhuus in [7],
whereas [9] used a continuous version of the construction in [12]. Similarly as in [9],
the representation of the Brownian plane in the present work uses a random infinite
real tree T∞ whose vertices are assigned real labels. The probabilistic structure of the
real tree T∞ is more complicated than in [9], but the labels are now nonnegative and
correspond to distances from the root in P∞ (whereas in [9] labels corresponded in
some sense to “distances from infinity”). This is of course similar to the well-known
Schaeffer bijection between rooted quadrangulations and well-labeled trees [8]. The
fact that labels are distances from the root is important for our purposes, since it
allows us to give a simple representation of the hull of radius r : the complement of
this hull corresponds to the set of all points a in T∞ such that labels stay greater
than r along the (tree) geodesic from a to infinity. See formula (16) below. There is
a similar interpretation for the boundary of the hull, and a key observation is the fact
that the “boundary length” Zr can be obtained in terms of exit measures from (r,∞)

associated with the “subtrees” branching off the spine of the infinite tree T∞ at a level
greater than the last occurence of label r on the spine [see formula (18) below].

The construction of the infinite tree T∞ and of the labels assigned to its vertices,
as well as the subsequent calculations, make a heavy use of the Brownian snake and
its properties. In particular the special Markov property of the Brownian snake [18]
and its connections with partial differential equations play an important role. Because
of the close relation between super-Brownian motion and the Brownian snake, some
of the results that follow can be written as statements about super-Brownian motion,
which may be of independent interest. In particular, Corollary 4.7, which is essentially
equivalent to the second formula of Theorem 1.4, gives the Laplace transform of
the total integrated mass of a super-Brownian motion started from uδa (for some
u, a > 0) knowing that the minimum of the range is equal to 0. Similarly, Corollary
4.9 determines for a super-Brownian motion starting from δ0 the law of the process
whose value at time r > 0 is the pair consisting of the exit measure from (−r,∞) and
the mass of those historical paths that do not hit level −r .

The paper is organized as follows. Section 2 presents a number of preliminar-
ies. In particular, we recall basic facts about the (one-dimensional) Brownian snake
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including exit measures and the special Markov property, and its connections with
super-Brownian motion. We also state a recent result from [25] giving a decomposi-
tion of the Brownian snake knowing its minimal spatial position. The latter result is
especially useful in Sect. 3, where we derive our new representation of the Brownian
plane. In order to show that this new construction is equivalent to the one in [9], we
use the fact that the distribution of the Brownian plane is characterized by the invari-
ance under scaling and the above-mentioned property stating that theBrownian plane is
locally isometric to theBrownianmap. Section 4 contains the proof of ourmain results:
Propositions 1.1 and 1.2 are proved in Sect. 4.1, Theorem 1.4 is derived in Sect. 4.2,
and Theorem 1.3 is proved in Sect. 4.3. Finally, Sect. 5 is devoted to our invariance
principle relating the hull process of the UIPQ to the process (|B•

r (P∞)|)r>0.

2 Preliminaries

2.1 A continuous-state branching process

An important role in thisworkwill be played by a particular continuous-state branching
process, which was already mentioned in the introduction. We refer to [19, Chapter 2]
and references therein for the general theory of continuous-state branching processes,
and content ourselves with a brief exposition of the case of interest in this work.We fix
a constant c > 0. The continuous-state branching process with branching mechanism
ψ(u) = c u3/2 is the Feller Markov process (Xt )t≥0 with values in R+, càdlàg paths
and no negative jumps, whose semigroup is characterized as follows. If Px stands for
the probability measure under which X starts from X0 = x , then, for every x, t ≥ 0
and every λ > 0,

Ex [e−λXt ] = e−x ut (λ)

where the function ut (λ) is determined by the differential equation

dut (λ)

dt
= −c (ut (λ))3/2, u0(λ) = λ.

It follows that ut (λ) = (λ−1/2 + c
2 t)

−2, and thus,

Ex [e−λXt ] = exp

(
− x

(
λ−1/2 + c

2
t

)−2)
. (1)

By differentiating with respect to λ, we have also

Ex [Xte
−λXt ] = xλ−3/2

(
λ−1/2 + c

2
t

)−3

exp

(
− x

(
λ−1/2 + c

2
t

)−2)
. (2)

Let T := inf{t ≥ 0 : Xt = 0}, and note that Xt = 0 for every t ≥ T , a.s. Since
Px (T ≤ t) = Px (Xt = 0) = exp(− 4x

c2t2
), we readily obtain that the density of T

under Px is (when x > 0) the function
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t �→ φt (x) := 8x

c2t3
exp

(
− 4x

c2t2

)
.

For future purposes, it will be useful to introduce the process X conditioned on
extinction at a fixed time. To this end, we write qt (x, dy) for the transition kernels of
X . We fix ρ > 0 and define the process X “conditioned on extinction at time ρ” as
the time-inhomogeneous Markov process indexed by the interval [0, ρ]with values in
(0,∞) (with 0 serving as a cemetery point) whose transition kernel between times s
and t is

πs,t (x, dy) = φρ−t (y)

φρ−s(x)
qt−s(x, dy),

if 0 ≤ s < t < ρ and x > 0, and

πs,ρ(x, dy) = δ0(dy)

if s ∈ [0, ρ) and x > 0. This is just a standard h-transform in a time-inhomogeneous
setting, and the interpretation can be justified by the fact that, for every choice of
0 < s1 < · · · < sp < ρ, the conditional distribution of (Xs1 , . . . , Xsp ) under Px (· |
ρ ≤ T < ρ + ε) converges to π0,s1(x, dy1)πs1,s2(y1, dy2) . . . πsp−1,sp (yp−1, dyp) as
ε ↓ 0.

If 0 ≤ s < t < ρ and x > 0, the Laplace transform of πs,t (x, dy) is

∫
e−λy πs,t (x, dy) = 1

φρ−s(x)
Ex [φρ−t (Xt−s) e

−λXt−s ]

=
(

ρ − s

ρ − t + (t − s)(1+ c2
4 λ(ρ − t)2)1/2

)3

× exp

(
− 4x

c2

(((
c2λ

4
+ (ρ − t)−2

)−1/2

+ t − s

)−2

− (ρ − s)−2
))

, (3)

where the second equality follows from the explicit expression of φρ−s and formula
(2).

Finally, let us briefly discuss the process X̃ which was introduced in Sect. 1. Simple
arguments give the existence of a process (X̃t )t∈(−∞,0] with càdlàg paths and no
negative jumps, which is indexed by the time interval (−∞, 0] and such that:

• X̃t > 0 for every t < 0, and X̃0 = 0, a.s.;
• X̃t −→ +∞ as t ↓ −∞, a.s.;
• for every x > 0, if T̃x := inf{t ∈ (−∞, 0] : X̃t ≤ x}, the process (X̃

(T̃x+t)∧0)t≥0
has the same distribution as X started from x .

To get an explicit construction of X̃ , one may concatenate independent copies of the
process X started at n and stopped at the hitting time of n−1, for every integer n ≥ 1.
We omit the details.
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2.2 Preliminaries about the Brownian snake

We give below a brief presentation of the Brownian snake, referring to the book [19]
for more details. We write W for the set of all finite paths in R. An element of W is
a continuous mapping w : [0, ζ ] −→ R, where ζ = ζ(w) ≥ 0 depends on w and is
called the lifetime of w. We write ŵ = w(ζ(w)) for the endpoint of w. For x ∈ R, we
set Wx := {w ∈ W : w(0) = x}. The trivial path w such that w(0) = x and ζ(w) = 0
is identified with the point x of R, so that we can view R as a subset of W . The space
W is equipped with the distance

d
(
w,w′) = |ζ(w) − ζ(w′)| + sup

t≥0
|w (t ∧ ζ(w)

)− w′ (t ∧ ζ(w′)
) |.

The Brownian snake (Ws)s≥0 is a continuous Markov process with values in W .
We will write ζs = ζ(Ws ) for the lifetime process of Ws . The process (ζs)s≥0 evolves
like a reflecting Brownian motion in R+. Conditionally on (ζs)s≥0, the evolution of
(Ws)s≥0 can be described informally as follows: When ζs decreases, the path Ws is
shortened from its tip, and when ζs increases the pathWs is extended by adding “little
pieces of linear Brownian motion” at its tip. We refer to [19, Chapter IV] for a more
rigorous presentation.

It is convenient to assume that the Brownian snake is defined on the canonical
space C(R+,W) of all continuous functions from R+ into W , in such a way that, for
ω = (ωs)s≥0 ∈ C(R+,W), we have Ws(ω) = ωs . The notation Pw then stands for
the law of the Brownian snake started from w.

For every x ∈ R, the trivial path x is a regular recurrent point for the Brownian
snake, and so we can make sense of the excursion measure Nx away from x , which
is a σ -finite measure on C(R+,W). Under Nx , the process (ζs)s≥0 is distributed
according to the Itô measure of positive excursions of linear Brownian motion, which
is normalized so that, for every ε > 0,

Nx

(
sup
s≥0

ζs > ε

)
= 1

2ε
.

We write σ := sup{s ≥ 0 : ζs > 0} for the duration of the excursion under Nx . For
every 
 > 0, we will also use the notation N

(
)
0 := N0(· | σ = 
).

We set

R := {Ŵs : s ≥ 0}, W∗ := inf R = inf
s≥0

Ŵs .

We will consider R and W∗ under the excursion measures Nx , and we note that we
have also R = {Ŵs : 0 ≤ s ≤ σ } and W∗ = min{Ŵs : 0 ≤ s ≤ σ }, Nx a.e.
Occasionally we also write ω∗ = W∗(ω) for ω ∈ C(R+,W).

If x, y ∈ R and y < x , we have

Nx (y ∈ R) = Nx (W∗ ≤ y) = 3

2(x − y)2
(4)

(see e.g. [19, Section VI.1]).
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It is known (see e.g. [27, Proposition 2.5]) that Nx a.e. there is a unique instant
sm ∈ [0, σ ] such that Ŵsm = W∗.

2.2.1 Decomposing the Brownian snake at its minimum

We will now recall a key result of [25] that plays an important role in what follows.
This result identifies the law of the minimizing path Wsm under N0, together with the
distribution of the “subtrees” that branch off the minimizing path. Let us define these
subtrees in a more precise way.

For every s ≥ 0, we set

ζ̂s := ζ(sm+s)∧σ , ζ̌s := ζ(sm−s)∨0.

We let (âi , b̂i ), i ∈ Î be the excursion intervals of ζ̂s above its past minimum. Equiv-
alently, the intervals (âi , b̂i ), i ∈ Î are the connected components of the set

{
s ≥ 0 : ζ̂s > min

0≤r≤s
ζ̂r

}
.

Similarly, we let (ǎ j , b̌ j ), j ∈ Ǐ be the excursion intervals of ζ̌s above its past mini-
mum. We may assume that the indexing sets Î and Ǐ are disjoint. In terms of the tree
Tζ coded by the excursion (ζs)0≤s≤σ under N0 (see e.g. [20, Section 2]), each interval
(âi , b̂i ) or (ǎ j , b̌ j ) corresponds to a subtree of Tζ branching off the ancestral line of the
vertex associated with sm. We next consider the spatial displacements corresponding
to these subtrees. The properties of the Brownian snake imply that, for every i ∈ Î ,
the paths Wsm+s , s ∈ [âi , b̂i ], are the same up to time ζsm+âi = ζsm+b̂i

, and similarly

for the paths Wsm−s , s ∈ [ǎ j , b̌ j ], for every j ∈ Ǐ . Then, for every i ∈ Î , we let
W [i] ∈ C(R+,W) be defined by

W [i]
s (t) = Wsm+(âi+s)∧b̂i (ζsm+âi + t), 0 ≤ t ≤ ζsm+(âi+s)∧b̂i − ζsm+âi .

Similarly, for every j ∈ Ǐ ,

W [ j]
s (t) = Wsm−(ǎ j+s)∧b̌ j

(ζsm−ǎ j + t), 0 ≤ t ≤ ζsm−(ǎ j+s)∧b̌ j
− ζsm−ǎ j .

We finally introduce the point measures on R+ × C(R+,W) defined by

N̂ =
∑
i∈ Î

δ(ζsm+âi
,W [i]), Ň =

∑
j∈ Ǐ

δ(ζsm−ǎ j
,W [ j]).

Theorem 2.1 (i) Let a > 0. Under the excursion measure N0 and conditionally on
W∗ = −a, the random path (a + Wsm(ζsm − t))0≤t≤ζsm

is distributed as a nine-
dimensional Bessel process started from 0 and stopped at its last passage time at
level a.
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(ii) Under N0, conditionally on the minimizing path Wsm , the point measures
N̂ (dt, dω) and Ň (dt, dω) are independent and their common conditional distri-
bution is that of a Poisson point measure with intensity

2 1[0,ζsm ](t) 1{ω∗>Ŵsm } dt NWsm (t)(dω).

Parts (i) and (ii) of the theorem correspond respectively to Theorem 5 and Theorem
6 of [25]. Note that when applying Theorem 5 of [25], we also use the fact that the
time-reversal of a Bessel process of dimension −5 started from a and stopped when
hitting 0 is a nine-dimensional Bessel process started from 0 and stopped at its last
passage time at level a (see e.g. [31, Exercise XI.1.23]). We refer to [31, Chapter XI]
for basic facts about Bessel processes.

2.2.2 Exit measures and the special Markov property

Let D be a nonempty open interval of R, such that D �= R. We fix x ∈ D and, for
every w ∈ Wx , set

τD(w) = inf{t ∈ [0, ζ(w)] : w(t) /∈ D},

with the usual convention inf ∅ = ∞. The exit measure ZD from D (see [19, Chap-
ter 5]) is a random measure on ∂D, which is defined under Nx and is supported on
the set of all exit points Ws(τD(Ws)) for the paths Ws such that τD(Ws) < ∞ (note
that here ∂D has at most two points, but the following discussion remains valid for
the d-dimensional Brownian snake and an arbitrary subdomain D of R

d ). Note that
Nx (ZD �= 0) < ∞. It is easy to prove, for instance by using Proposition 2.2 below,
that

{ZD = 0} = {R ⊂ D}, Nx a.e. (5)

A crucial ingredient of our study is the special Markov property of the Brownian
snake [18]. In order to state this property, we first observe that, Nx a.e., the set

{s ≥ 0 : τD(Ws) < ζs}

is open and thus can be written as a union of disjoint open intervals (ai , bi ), i ∈ I ,
where I may be empty. From the properties of the Brownian snake, one has, Nx a.e.
for every i ∈ I and every s ∈ [ai , bi ],

τD(Ws) = τD(Wai ) = ζai ,

and more precisely all paths Ws , s ∈ [ai , bi ] coincide up to their exit time from D.
For every i ∈ I , we then define an element W (i) of C(R+,W) by setting, for every
s ≥ 0,

W (i)
s (t) := W(ai+s)∧bi (ζai + t), for 0 ≤ t ≤ ζ

(W (i)
s )

:= ζ(ai+s)∧bi − ζai .
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The hull process of the Brownian plane 197

Informally, the W (i)’s represent the “excursions” of the Brownian snake outside D
(the word “outside” is a little misleading here, because although these excursions start
from a point of ∂D, they will typically come back inside D).

We also need to introduce a σ -field that contains the information about the paths
Ws before they exit D. To this end, we set, for every s ≥ 0,

ηD
s := inf

{
r ≥ 0 :

∫ r

0
du 1{ζu≤τD(Wu)} > s

}
,

and we let ED be the σ -field generated by the process (WηD
s
)s≥0 and the class of all

sets that are Nx -negligible. The random measure ZD is measurable with respect to
ED (see [18, Proposition 2.3]).

We now state the special Markov property [18, Theorem 2.4].

Proposition 2.2 Under Nx , conditionally on ED, the point measure

∑
i∈I

δW (i)

is Poisson with intensity

∫
ZD(dy) Ny .

Remarks (i) Since on the event {ZD = 0} there are no excursions outside D, the
previous proposition is equivalent to the same statement where Nx is replaced by
the probability measure Nx (· | ZD �= 0).

(ii) In what follows we will apply the special Markov property in a conditional form.
Suppose that D = (a,∞) for some a > 0 and that x > a. Then the preceding
statement remains valid if we replace Nx by Nx (· ∩ {R ⊂ (0,∞)}), provided
we also replace

∫
ZD(dy) Ny by

∫
ZD(dy) Ny(· ∩ {R ⊂ (0,∞)}). This follows

from the fact that conditioning a Poisson point measure on having no point on a
set of finite intensity is equivalent to removing the points that fall into this set. We
omit the details.

For a < x , we write Za := 〈Z(a,∞), 1〉 for the total mass of the exit measure
outside (a,∞). We will use the Laplace transform of Za under Nx , which is given by

Nx

(
1− exp(−μZa)

)
= 1(

μ−1/2 +
√

2
3 (x − a)

)2 , (6)

for every μ ≥ 0. This formula is easily derived from the fact that the (nonnegative)
function u(x) = Nx (1 − exp(−μZa)) defined for x ∈ (a,∞) solves the differential
equation u′′ = 4u2 with boundary conditions u(a) = μ and u(∞) = 0 (see [19,
Chapter V]). On the other hand, an application of the special Markov property shows
that, for every b < a < x ,
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Nx (exp(−λZb) | E (a,∞)) = exp

(
− Za Na(1− exp(−λZb))

)
.

If we substitute formula (6) in the last display, and compare with (1), we easily get
that the process (Zx−a)a>0 is Markov under Nx , with the transition kernels of the
continuous-state branching process with branching mechanism ψ(u) = √

8/3 u3/2.
Although Nx is an infinite measure, the preceding assertion makes sense, simply
because we can restrict our attention to the finite measure event {Zx−ε > 0}, for any
choice of ε > 0. It follows that (Zx−a)a>0 has a càdlàg modification under Nx , which
we consider from now on.

We finally explain an extension of the special Markov property where we consider
excursions outside a random domain. For definiteness, we fix x = 0, and for every
a > 0, we set Ea = E (−a,∞). Let H be a random variable with values in (0,∞], such
that N0(H < ∞) < ∞, and assume that H is a stopping time of the filtration (Ea)a>0
in the sense that, for every a > 0, the event {H ≤ a} is Ea-measurable. As usual we
can define the σ -field EH that consists of all events A such that A ∩ {H ≤ a} is Ea-
measurable, for every a > 0. Since Z−a is Ea-measurable for every a > 0, it follows
by standard arguments that the random variable Z−H is EH -measurable (at this point
it is important that we have taken a càdlàg modification of the process (Z−a)a>0).

We may consider the excursions (WH,(i))i∈I of the Brownian snake outside
(−H,∞). These excursions are defined in exactly the same way as in the case
where H is deterministic, considering now the connected components of the open
set {s ≥ 0 : Ws(t) < −H for some t ∈ [0, ζs]}. We define W̃ H,(i) by shifting WH,(i)

so that it starts from 0.

Proposition 2.3 Under the probability measureN0(· | H < ∞), conditionally on the
σ -field EH , the point measure

∑
i∈I

δW̃ H,(i)

is Poisson with intensity

Z−H N0.

This proposition can be obtained by arguments very similar to the derivation of the
strong Markov property of Brownian motion from the simple Markov property: we
approximate H with stopping times greater than H that take only countably many
values, then use Proposition 2.2 and finally perform a suitable passage to the limit. We
leave the details to the reader.

2.2.3 The Brownian snake and super-Brownian motion

The initial motivation for studying the Brownian snake came from its connection
with super-Brownian motion, which we briefly recall. Under the excursion measure
Nx (dω), the lifetime process (ζs(ω))s≥0 is distributed as a Brownian excursion, and
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so we can define for every t ≥ 0 the local time proces (
ts(ω))s≥0 of this excursion at
level t . Next let μ be a finite measure on R, and let

N (dω) =
∑
k∈K

δω(k) (dω)

be a Poisson measure on C(R+,W) with intensity
∫

μ(dx) Nx (dω). For every t > 0,
let Xt be the random measure on R defined by setting, for every nonnegative measur-
able function ϕ on R,

〈Xt , ϕ〉 =
∑
k∈K

∫ σ(ω(k))

0
d
ts(ω(k)) ϕ(Ŵs(ω(k))). (7)

If we also set X0 = μ, the process (Xt )t≥0 is then a super-Brownian motion with
branching mechanism ψ0(u) = 2u2 started from μ (see [19, Theorem IV.4]). A nice
feature of this construction is the fact that it also gives the associated historical process:
Just consider for every t > 0 the random measure Xt defined by setting

〈Xt ,�〉 =
∑
k∈K

∫ σ(ω(k))

0
d
ts(ω(k))�(Ws(ω(k))), (8)

for every nonnegative measurable function � on W . Some of the forthcoming results
are stated in terms of super-Brownian motion and its historical process. Without loss
of generality we may and will assume that these processes are obtained by formulas
(7) and (8) of the previous construction. This also means that we consider the special
branching mechanism ψ0(u) = 2u2, but of course the case of a general quadratic
branching mechanism can then be handled via scaling arguments.

3 The Brownian plane

3.1 The Brownian plane as a random metric space

We start by giving a characterization of the Brownian plane as a random pointedmetric
space satisfying appropriate properties. We let Kbcl denote the space of all isometry
classes of pointed boundedly compact length spaces. The space Kbcl is equipped with
the local Gromov–Hausdorff distance dLGH (see [9, Section 2.1]) and is a Polish
space, that is, separable and complete for this distance. For r > 0 and F ∈ Kbcl , we
use the notation Br (F) for the closed ball of radius r centered at the distinguished
point of F . Note that Br (F) is always viewed as a pointed compact metric space.

The Brownian plane P∞ is then a random variable taking values in the space Kbcl .

Definition 3.1 Let E1 and E2 be two random variables with values in Kbcl . We say
that E1 and E2 are locally isometric if, for every δ > 0, there exists a number r > 0
and a coupling of E1 and E2 such that the balls Br (E1) and Br (E2) are isometric with
probability at least 1− δ.
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We leave it to the reader to verify that this is an equivalence relation (only transitivity
is not obvious). The interest of this definition comes from the next proposition. If E
is a (random) metric space and λ > 0, we use the notation λ · E for the same metric
space where the distance has been multiplied by λ.

Proposition 3.2 The distribution of the Brownian plane is characterized in the set of
all probability measures on Kbcl by the following two properties:

(i) The Brownian plane is locally isometric to the Brownian map.
(ii) The Brownian plane is scale invariant, meaning that λ · P∞ has the same
distribution as P∞, for every λ > 0.

Proof The fact that property (i) holds is Theorem 1 in [9]. Property (ii) is immediate
from the construction in [9], or directly from the convergence (1) in [9, Theorem 1].
So we just have to prove that these two properties characterize the distribution of the
Brownian plane. Let E be a random variable with values in Kbcl , which is both locally
isometric to the Brownian map and scale invariant. Then, E is also locally isometric
to the Brownian plane, and, for every δ > 0, we can find r > 0 and a coupling of E
and P∞ such that

P [Br (E) = Br (P∞)] > 1− δ,

where the equality is in the sense of isometry between pointed compact metric spaces.
Trivially this implies that, for every a > 0,

P
[
Ba

(a
r
· E
)
= Ba

(a
r
· P∞

)]
> 1− δ.

By scale invariance, a
r · E and a

r · P∞ have the same distribution as E and P∞
respectively. So we get that for every δ > 0, for every a > 0, we can find a coupling
of E and P∞ such that

P [Ba(E) = Ba (P∞)] > 1− δ.

Recalling the definition of the local Gromov–Hausdorff distance dLGH (see e.g. [9,
Section 2.1]) we obtain that, for every ε > 0 and every δ > 0, there exists a coupling
of E and P∞ such that

P[dLGH (E,P∞) < ε] > 1− δ.

Clearly this implies that the Lévy–Prokhorov distance between the distributions of E
and P∞ is 0 and thus E and P∞ have the same distribution. ��

3.2 A new construction of the Brownian plane

In this section,weprovide a construction of theBrownian plane,which is different from
the one in [9]. We then use Proposition 3.2 and Theorem 2.1 to prove the equivalence
of the two constructions.
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We consider a nine-dimensional Bessel process R = (Rt )t≥0 starting from 0
and, conditionally on R, two independent Poisson point measures N ′(dt, dω) and
N ′′(dt, dω) on R+ × C(R+,W) with the same intensity

2 1{R(ω)⊂(0,∞)} dt NRt (dω).

It will be convenient to write

N ′ =
∑
i∈I

δ(ti ,ωi ), N ′′ =
∑
i∈J

δ(ti ,ωi ),

where the indexing sets I and J are disjoint.
We also consider the sum N = N ′ + N ′′, which conditionally on R is Poisson

with intensity

4 1{R(ω)⊂(0,∞)} dt NRt (dω),

and we have
N =

∑
i∈I∪J

δ(ti ,ωi ). (9)

We start by introducing the infinite random tree that will be crucial in our construc-
tion of the Brownian plane. For every i ∈ I ∪ J , write σi = σ(ωi ) and let (ζ is )s≥0 be
the lifetime process associated with ωi . Then the function (ζ is )0≤s≤σi codes a rooted
compact real tree, which is denoted by T i , and we write pζ i for the canonical projec-
tion from [0, σi ] onto T i (see e.g. [20, Section 2] for basic facts about the coding of
trees by continuous functions). We construct a random non-compact real tree T∞ by
grafting to the half-line [0,∞) (which we call the “spine”) the tree T i at point ti , for
every i ∈ I ∪ J . Formally, the tree T∞ is obtained from the disjoint union

[0,∞) ∪
( ⋃

i∈I∪J

T i
)

by identifying the point ti of [0,∞) with the root ρi of T i , for every i ∈ I ∪ J . The
metric d∞ on T∞ is determined as follows. The restriction of d∞ to each tree T i is
(of course) the metric dT i on T i . If x ∈ T i and t ∈ [0,∞), we take d∞(x, t) =
dT i (x, ρi ) + |ti − t |. If x ∈ T i and y ∈ T j , with i �= j , we take d∞(x, y) =
dT i (x, ρi ) + |ti − t j | + dT j (ρ j , y). By convention, T∞ is rooted at 0. The infinite
tree T∞ is equipped with a volume measure V, which puts no mass on the spine and
whose restriction to each tree T i is the natural volume measure on T i defined as the
image of Lebesgue measure on [0, σi ] under the projection pζ i .

We also define labels on the tree T∞. The label �x of a vertex x ∈ T∞ is defined
by �x = Rt if x = t belongs to the spine [0,∞), and �x = ω̂i

s if x = pζ i (s) belongs
to the subtree T i , for some i ∈ I ∪ J . Note that the mapping x �→ �x is continuous
almost surely (for continuity at points of the spine, observe that, for every K > 0 and
ε > 0, there are a.s. only finitely many values of i ∈ I ∪ J such that ti ≤ K and
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sup{|ω̂i
s−Rti | : s ≥ 0} > ε). For future use, we also notice that, if x = pζ i (s) belongs

to the subtree T i , the quantities ωi
s(t), 0 ≤ t ≤ ζ is are the labels of the ancestors of x

in T i .
We will use the fact that labels are “transient” in the sense of the following lemma.

Recall the notation ω∗ = W∗(ω).

Lemma 3.3 We have a.s.

lim
r↑∞

(
inf

i∈I∪J,ti>r
ωi∗
)

= +∞.

Proof It is enough to verify that, for every A > 0, we have

lim
r↑∞ P

(
inf

i∈I∪J, ti≥r
ωi∗ < A

)
= 0.

However by construction,

P

(
inf

i∈I∪J,ti≥r
ωi∗ < A

)

= P

(
inf
t≥r Rt < A

)
+ E

[
1
{
inf
t≥r Rt ≥ A

}

×
(
1− exp

(
− 4

∫ ∞

r
dt NRt (0 < W∗ < A)

))]

= P

(
inf
t≥r Rt < A

)
+ E

[
1
{
inf
t≥r Rt ≥ A

}

×
(
1− exp

(
− 6

∫ ∞

r
dt
( 1

(Rt − A)2
− 1

(Rt )2

)))]
,

using (4). The desired result easily follows from the fact that the integral
∫∞ dt (Rt )

−3

is convergent. ��
Until now, we have not used the fact that N is decomposed in the form N =

N ′ +N ′′. This decomposition corresponds intuitively to the fact that the trees T i are
grafted on the left side of the spine [0,∞) when i ∈ I , and on the right side when
i ∈ J . We make this precise by defining an exploration process of the tree. To begin
with, we define, for every u ≥ 0,

τ ′
u :=

∑
i∈I

1{ti≤u} σi , τ ′′
u :=

∑
i∈J

1{ti≤u} σi .

Note that both u �→ τ ′
u and u �→ τ ′′

u are nondecreasing and right-continuous. The left
limits of these functions are denoted by τ ′

u− and τ ′′
u− respectively, and τ ′

0− = τ ′′
0− = 0

by convention.
Then, for every s ≥ 0, there is a unique u ≥ 0, such that τ ′

u− ≤ s ≤ τ ′
u , and:
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• Either there is a (unique) i ∈ I such that u = ti , and we set

�′
s := pζ i

(
s − τ ′

ti−
)
.

• Or there is no such i and we set �′
s = u.

We define similarly (�′′
s )s≥0 by replacing (τ ′

u)u≥0 by (τ ′′
u )u≥0 and I by J . Informally,

(�′
s)s≥0 and (�′′

s )s≥0 correspond to the exploration of respectively the left and the
right side of the tree T∞. Noting that �′

0 = �′′
0 = 0, we define (�s)s∈R by setting

�s :=
{

�′
s if s ≥ 0,

�′′−s if s ≤ 0.

It is straightforward to verify that the mapping s �→ �s is continuous. We also note
that the volume measure V on T∞ is the image of Lebesgue measure on R under the
mapping s �→ �s .

This exploration process allows us to define intervals on T∞. Let us make the
convention that, if s > t , the “interval” [s, t] is defined by [s, t] = [s,∞) ∪ (−∞, t].
Then, for every x, y ∈ T∞, there is a smallest interval [s, t], with s, t ∈ R, such that
�s = x and �t = y, and we define

[x, y] := {�r : r ∈ [s, t]}.

Note that [x, y] �= [y, x] unless x = y. We may now turn to our construction of the
Brownian plane. We set, for every x, y ∈ T∞,

D◦∞(x, y) = �x + �y − 2max

(
min

z∈[x,y] �z, min
z∈[y,x] �z

)
, (10)

and then

D∞(x, y) = inf
x0=x,x1,...,xp=y

p∑
i=1

D◦∞(xi−1, xi ) (11)

where the infimum is over all choices of the integer p ≥ 1 and of the finite sequence
x0, x1, . . . , xp in T∞ such that x0 = x and xp = y. Note that we have

D◦∞(x, y) ≥ D∞(x, y) ≥ |�x − �y |, (12)

for every x, y ∈ T∞. Furthermore, it is immediate from our definitions that

D∞(0, x) = D◦∞(0, x) = �x

for every x ∈ T∞. As a consequence of the continuity of the mapping s �→ ��s , we
have D◦∞(x0, x) −→ 0 (hence also D∞(x0, x) −→ 0) as x → x0, for every x0 ∈ T∞.

It is not hard to verify that D∞ is a pseudo-distance on T∞. We put x ≈ y if and
only if D∞(x, y) = 0 and we introduce the quotient space P̃∞ = T∞ / ≈ , which is
equipped with the metric induced by D∞ and with the distinguished point which is
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the equivalence class of 0. The volume measure on P̃∞ is the image of the volume
measure V on T∞ under the canonical projection.

Theorem 3.4 The pointed metric space P̃∞ is locally isometric to the Brownian map
and scale invariant. Consequently, P̃∞ is distributed as the Brownian plane P∞.

Proof The fact that P̃∞ is scale invariant is easy from our construction. Hence the
difficult part of the proof is to verify that P̃∞ is locally isometric to the Brownian
map. Let us start by briefly recalling the construction of the Brownian map m∞. We
argue under the conditional excursion measure N

(1)
0 = N0(· | σ = 1). Under N

(1)
0 ,

the lifetime process (ζs)0≤s≤1 is a normalized Brownian excursion, and the tree Tζ

coded by (ζs)0≤s≤1 is the so-called CRT. As previously, pζ stands for the canonical
projection from [0, 1] onto Tζ . We can define intervals on Tζ in a way analogous to
what we did before for T∞: If x, y ∈ Tζ , [x, y] = {pζ (r) : r ∈ [s, t]}, where [s, t] is
the smallest interval such that pζ (s) = x and pζ (t) = y, using now the convention
that the interval [s, t] is defined by [s, t] = [s, 1]∪[0, t]when s > t . Thenwe equip Tζ

with Brownian labels by setting�x = Ŵs if x = pζ (s). For every x, y ∈ Tζ , we define
D◦(x, y), resp. D(x, y), by exactly the same formula as in (10), resp. (11), replacing
� by �. We have again the bound D(x, y) ≥ |�x − �y |. We then observe that D is a
pseudo-distance on Tζ , and the Brownian map m∞ is the associated quotient metric
space. The distinguished point ofm∞ is chosen as the (equivalence class of the) vertex
xm of Tζ with minimal label, and we note that D(xm, x) = �x −�xm = �x −W∗ for
every x ∈ Tζ .

If we replace the normalized Brownian excursion by a Brownian excursion with
duration r > 0, that is, if we argue under N

(r)
0 , and perform the same construction,

simple scaling arguments show that the resulting pointed metric space is distributed
as r1/4 · m∞ and is thus locally isometric to m∞ (both are locally isometric to the
Brownian plane). Consequently, under the probability measure

N0(· | σ > 1) =
∫ ∞

1

dr

2r3/2
N

(r)
0 (·)

the preceding construction also yields a random pointed metric space which is locally
isometric to m∞. Let us write M for this random pointed metric space. We will
argue that M is locally isometric to P̃∞, which will complete the proof. Some of the
arguments that follow are similar to those used in [9, Proof of Proposition 4] to verify
that the Brownian plane is locally isometric to the Brownian map.

We set for every b > 0,

Ab :=
∫ σ

0
ds 1{τ(−b,∞)(Ws )<∞},

where we used the notation τD(w) introduced in Sect. 2.2. Still with the notation of
this subsection, the random variable Ab is Eb-measurable, and it follows that

H := inf{b ≥ 0 : Ab = 1}
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is a stopping time of the filtration (Ea)a>0. Observe that {H < ∞} = {σ > 1}, N0
a.e. From Proposition 2.3, we get that under the probability measure N0(· | σ > 1),
and conditionally on the pair (H,Z−H ), the excursions of the Brownian snake outside
(−H,∞) form a Poisson point process with intensity Z−H N−H (incidentally this
also implies thatZ−H > 0 a.e. on {σ > 1}). Among the excursions outside (−H,∞),
there is exactly one that attains the minimal valueW∗, and conditionally on H = h and
W∗ = a (with a < −h), this excursion is distributed according to N−h(· | W∗ = a).

Now compare Theorem 2.1 with the construction of P̃∞ given above to see that
we can find a coupling of the Brownian snake under N0(· | σ > 1) and of the
triplet (R,N ′,N ′′) determining the labeled tree (T∞, (�x )x∈T∞), in such a way that
the following properties hold. There exists a (random) real δ > 0 and an isometry
I from the ball Bδ(Tζ ) [centered at the distinguished vertex xm = pζ (sm)] onto
the ball Bδ(T∞) (centered at 0). This isometry preserves intervals, in the sense that
if x, y ∈ Bδ(Tζ ), I([x, y] ∩ Bδ(Tζ )) = [I(x), I(y)] ∩ Bδ(T∞). Furthermore, the
isometry I preserves labels up to a shift by−W∗, meaning that �I(x) = �x −W∗ for
every x ∈ Bδ(Tζ ). Consequently, we have

D(xm, x) = �x − W∗ = �I(x) = D∞(0, I(x))

for every x ∈ Bδ(Tζ ).
Next we can choose η > 0 small enough so that labels on Tζ \Bδ(Tζ ) are all strictly

larger than W∗ + 2η and labels on T∞\Bδ(T∞) are all strictly larger than 2η (we use
Lemma 3.3 here). In particular, if x ∈ Tζ , the condition D(xm, x) ≤ 2η implies that
x ∈ Bδ(Tζ ), and, if x ′ ∈ T∞, the condition D∞(0, x ′) ≤ 2η implies that x ′ ∈ Bδ(T∞).
We claim that

D(x, y) = D∞(I(x), I(y)), (13)

for every x, y ∈ Tζ such that D(xm, x) ≤ η and D(xm, y) ≤ η. To verify this
claim, first note that, if x ′, y′ ∈ T∞ are such that D∞(0, x ′) = �x ′ ≤ 2η and
D∞(0, y′) = �y′ ≤ 2η, we can compute D◦∞(x ′, y′) using formula (10), and in the
right-hand side of this formulawemay replace the interval [x ′, y′] by [x ′, y′]∩Bδ(T∞)

(because obviously theminimal value of� on [x ′, y′] is attained on [x ′, y′]∩Bδ(T∞)).
A similar replacement may be made in the analogous formula for D◦(x, y) when
x, y ∈ Tζ are such that �x ≤ W∗ + 2η and �y ≤ W∗ + 2η. Using the isometry I, we
then obtain that

D◦(x, y) = D◦∞(I(x), I(y)) (14)

for every x, y ∈ Tζ such that D(xm, x) ≤ 2η and D(xm, y) ≤ 2η. Then, let x ′, y′ ∈
T∞ be such that �x ′ ≤ η and �y′ ≤ η. If we use formula (11) to evaluate D∞(x ′, y′),
we may in the right-hand side of this formula restrict our attention to “intermediate”
points xi whose label �xi is smaller than 2η (indeed if one of the intermediate points
has a label strictly greater than 2η, then it follows from (12) that the sum in the right-
hand side of (11) is strictly greater than 2η ≥ D∞(x ′, y′)). A similar observation
holds if we use the analog of (11) to compute D(x, y) when x, y ∈ Tζ are such that
D(xm, x) ≤ η and D(xm, y) ≤ η. Our claim (13) is a consequence of the preceding
considerations and (14).
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It follows from (13) that I induces an isometry from the ball Bη(M) onto the ball
Bη(P̃∞). This implies that M is locally isometric to P̃∞, and the proof is complete. ��

In view of Theorem 3.4, we may and will write P∞ instead of P̃∞ for the random
metric space that we constructed in the first part of this subsection. We denote the
canonical projection from T∞ onto P∞ by �. The fact that D∞(x0, x) −→ 0 as
x → x0, for every fixed x0 ∈ T∞, shows that � is continuous. The argument of the
preceding proofmakes it possible to transfer several known properties of the Brownian
map to the space P∞. First, for every x, y ∈ T∞, we have

D∞(x, y) = 0 if and only if D◦∞(x, y) = 0.

Indeed this property will hold for x and y belonging to a sufficiently small ball cen-
tered at 0 in T∞, by [21, Theorem 3.4] and the coupling argument explained in the
preceding proof. The scale invariance of the Brownian plane then completes the argu-
ment. Similarly, we have the so-called “cactus bound”, for every x, y ∈ T∞ and every
continuous path (γ (t))0≤t≤1 in P∞ such that γ (0) = �(x) and γ (1) = �(y),

min
0≤t≤1

D∞(0, γ (t)) ≤ min
z∈�x,y�

�z, (15)

where �x, y� stands for the geodesic segment between x and y in the tree T∞. The
bound (15) follows from the analogous result for the Brownian map [22, Proposi-
tion 3.1] and the coupling argument of the preceding proof.

Since labels correspond to distances from the distinguished point, we have, for
every r > 0,

Br (P∞) = �

(
{x ∈ T∞ : �x ≤ r}

)
.

Recall the definition of the hull B•
r (P∞) in Sect. 1. We claim that

B•
r (P∞) = P∞ \ �

(
{x ∈ T∞ : �y > r, ∀y ∈ �x,∞�}

)
, (16)

where �x,∞� is the geodesic path from x to∞ in the tree T∞. The fact that B•
r (P∞)

is contained in the right-hand side of (16) is easy: If x ∈ T∞ is such that �y > r for
every y ∈ �x,∞�, then �(�x,∞�) gives a continuous path going from �(x) to ∞
and staying outside the ball Br (P∞). Conversely, suppose that x ∈ T∞ is such that

min
y∈�x,∞�

�y ≤ r.

Then, if (γ (t))t≥0 is any continuous path going from �(x) to ∞ in P∞, the bound
(15) leads to

min
t≥0

D(0, γ (t)) ≤ min
y∈�x,∞�

�y ≤ r,

and it follows that �(x) ∈ B•
r (P∞), proving our claim.
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Write ∂B•
r (P∞) for the topological boundary of B•

r (P∞). It follows from (16) that

∂B•
r (P∞) = �

(
{x ∈ T∞ : �x = r and �y > r, ∀y ∈ �x,∞�}

)
, (17)

with the obvious notation �x,∞�. The latter formula motivates the definition of the
(generalized) length of the boundary of B•

r (P∞). We observe that this boundary con-
tains (the image under � of) a single point on the spine, corresponding to the last visit
of r by the process R,

Lr = sup {t ≥ 0 : Rt = r} .

Any other point x ∈ T∞ such that �x = r and �y > r for every y ∈ �x,∞� must be
of the form pζ i (s), for some i ∈ I ∪ J , with ti > Lr , and some s ∈ [0, σi ] such that
the path ωi

s hits r exactly at its lifetime. For each fixed i (with ti > Lr ), the “quantity”
of such values of s is measured by the total mass Zr (ω

i ) of the exit measure of ωi

from (r,∞). Here we use the same notation Zr = 〈Z(r,∞), 1〉 as previously.
Following the preceding discussion, we define, for every r > 0,

Zr :=
∫

N (dt, dω) 1{Lr<t} Zr (ω) =
∑

i∈I∪J,ti>Lr

Zr

(
ωi
)

. (18)

We observe that the quantities Zr (ω
i ) in (18) are well defined since each ωi is a

Brownian snake excursion starting from Rti and the condition ti > Lr guarantees that
Rti > r . We interpret Zr as measuring the size of the boundary of the hull B•

r (P∞).
Note that at the present stage, it is not clear that the random variable Zr coincides

with the one introduced in Proposition 1.1 (which we have not yet proved). At the
end of Sect. 4.1 below, we will verify that the approximation result of Proposition 1.1
holds with the preceding definition of Zr .

4 The volume of hulls

4.1 The process of boundary lengths

Our main goal in this subsection is to describe the distribution of the process (Zr )r>0.
We fix a > 0. By formula (18) and the exponential formula for Poisson measures, we
have, for every λ ≥ 0,

E

[
exp(−λZa)

]
= E

[
exp

(
− 4

∫ ∞

La

dt NRt

(
1{R⊂(0,∞)}(1− e−λZa )

))]
. (19)

The quantity in the right-hand side will be computed via the following two lemmas.
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Lemma 4.1 For every x > a and λ ≥ 0,

Nx

(
1{R⊂(0,∞)}(1− e−λZa )

)
= 3

2

((
x − a + (

2λ

3
+ a−2)−1/2

)−2

− x−2
)

.

Proof We have

Nx

(
1{R⊂(0,∞)}(1−e−λZa )

)
= Nx

(
1− 1{R⊂(0,∞)}e−λZa

)
− Nx

(
1− 1{R⊂(0,∞)}

)

= Nx

(
1− 1{R⊂(0,∞)}e−λZa

)
− 3

2x2
,

by (4). In order to compute the first term in the right-hand side, we observe that we
have R ⊂ (a,∞) ⊂ (0,∞) on the event {Za = 0}, Nx a.e., by (5). Therefore, we can
write

Nx

(
1− 1{R⊂(0,∞)}e−λZa

)
= Nx

(
1{Za>0}

)
− Nx

(
1{Za>0,R⊂(0,∞)}e−λZa

)

= Nx

(
1{Za>0}

)
− Nx

(
1{Za>0} e−λZa exp

(
− 3Za

2a2

))

= Nx

(
1− exp

(
− (λ + 3

2a2
)Za

))
.

In the second equality we used the special Markov property, together with formula
(4), to obtain that the conditional probability of the event {R ⊂ (0,∞)} given Za is
exp(− 3Za

2a2
). The formula of the lemma follows from the preceding two displays and

(6). ��
Lemma 4.2 For every α ∈ (0, a),

E

[
exp

(
6
∫ ∞

La

dt

(
1

(Rt )2
− 1

(Rt − α)2

))]
=
(
a − α

a

)3

.

Proof By dominated convergence, we have

E

[
exp

(
6
∫ ∞

La

dt

(
1

(Rt )2
− 1

(Rt − α)2

))]

= lim
b↑∞ ↓ E

[
exp

(
6
∫ Lb

La

dt

(
1

(Rt )2
− 1

(Rt − α)2

))]
.

Let us fix b > a. By the time-reversal property of Bessel processes already mentioned
after the statement of Theorem 2.1, the process (R̃t )t≥0 defined by

R̃t = R(Lb−t)∨0
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is a Bessel process of dimension −5 started from b. Set Ta := inf{t ≥ 0 : R̃t = a} =
Lb − La . Write (Bt )t≥0 for a one-dimensional Brownian motion which starts from r
under the probability measure Pr , and for every y ∈ R, let γy := inf{t ≥ 0 : Bt = y}.
Then,

E

[
exp

(
6
∫ Lb

La

dt

(
1

(Rt )2
− 1

(Rt − α)2

))]

= E

[
exp

(
6
∫ Ta

0
dt

(
1

(R̃t )2
− 1

(R̃t − α)2

))]

=
(
b

a

)3

Eb

[
exp

(
− 6

∫ γa

0

dt

(Bt − α)2

)]
,

where the last equality is a special case of the classical absolute continuity relations
between Bessel processes (see [25, Lemma 1] for this special case). Next observe that

Eb

[
exp

(
−6
∫ γa

0

dt

(Bt−α)2

)]
= Eb−α

[
exp

(
− 6

∫ γa−α

0

dt

(Bt )2

)]
=
(
a − α

b − α

)3

,

where the second equality is well known (and can again be viewed as a consequence
of Lemma 1 in [25]). By combining the last two displays, we get

E

[
exp

(
6
∫ Lb

La

dt

(
1

(Rt )2
− 1

(Rt − α)2

))]
=
(
b

a

)3

×
(
a − α

b − α

)3
,

and the desired result follows by letting b ↑ ∞. ��
We can now identify the law of Za .

Proof of Proposition 1.2 (i) We start from formula (19) and use first Lemma 4.1 and
then Lemma 4.2 to obtain, for every λ ≥ 0,

E

[
exp(−λZa)

]

= E

⎡
⎢⎣exp

⎛
⎜⎝6
∫ ∞

La

dt

⎛
⎜⎝ 1

(Rt )2
− 1(

Rt −
(
a − ( 2λ3 + a−2

)−1/2
))2

⎞
⎟⎠
⎞
⎟⎠
⎤
⎥⎦

=
⎛
⎝a −

(
a − ( 2λ3 + a−2

)−1/2
)

a

⎞
⎠

3

,

which yields the desired result. ��
Our next goal is to obtain the lawof thewhole process (Za)a≥0,where by convention

we take Z0 = 0. To this end it is convenient to introduce a “backward” filtration
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(Ga)a≥0, which we will define after introducing some notation. If w ∈ W , we set
τa(w) := inf{t ≥ 0 : w(t) /∈ (a,∞)}, with the usual convention inf ∅ = ∞. Then,
let a ≥ 0 and x > a, and let ω = (ωs)s≥0 ∈ C(R+,Wx ) be such that ωs = x for all
s large enough. For every s ≥ 0, we define tra(ω)s ∈ Wx by the formula

tra(ω)s = ω
η

(a)
s (ω)

,

where, for every s ≥ 0,

η(a)
s (ω) := inf

{
r ≥ 0 :

∫ r

0
du 1{ζ(ωu )≤τa(ωu)} > s

}
.

From the properties of the Brownian snake, it is easy to verify that Nx (dω) a.e., tra(ω)

belongs to C(R+,Wx ), and the paths tra(ω)s do not visit (−∞, a), and may visit
a only at their endpoint (what we have done is removing those paths that hit a and
survive for some positive time after hitting a). Note that we are using a particular
instance of the time change ηD

s introduced when defining the σ -field ED in Sect. 2.2
(indeed, the σ -field E (a,∞) is generated by the mapping ω �→ tra(ω) up to negligible
sets).

Recall formula (9) for the point measure N . For every a ≥ 0, we let Ga be the
σ -field generated by the process (RLa+t )t≥0 and the point measure

N (a) :=
∑

i∈I∪J,ti>La

δ(ti ,tra(ωi)),

and by the P-negligible sets. Note that, in the definition of N (a), we keep only those
excursions that start from the “spine” at a time greater than La (so that obviously their
initial point is greater than a) and we truncate these excursions at level a. Also notice
that N (0) = N .

From our definitions it is clear that Ga ⊃ Gb if a < b. Furthermore, it follows
from the measurability property of exit measures that Za is Ga-measurable, for every
a > 0 (the point is that Za(ω

i ) is equal a.s. to a measurable function of tra(ωi ), see
[18, Proposition 2.3]). We also notice that, for every a > 0, the process (RLa+t )t≥0 is
independent of (Rt )0≤t≤La . This follows from last exit decompositions for diffusion
processes, or in amore straightforward way this can be deduced from the time-reversal
property already mentioned above.

Proposition 4.3 Let 0 < a < b. Then, for every λ ≥ 0,

E[exp(−λZa) | Gb] =
(

b

a + (b − a)(1+ 2λa2
3 )1/2

)3

× exp

(
− 3Zb

2

(
1

(b − a + ( 2λ3 + a−2)−1/2)2
− 1

b2

))
.
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If b > 0 is fixed, the proposition shows that the process (Zb−a)0≤a<b is time-
inhomogeneous Markov with respect to the (forward) filtration (Gb−a)0≤a<b, and
identifies the Laplace transform of the associated transition kernels. Since the law of
Zb is also given by Proposition 1.2 (i), this completely characterizes the law of the
process (Za)a≥0. The more explicit description of this law given in Proposition 1.2
(ii) will be derived later.

Proof Recall that 0 < a < b are fixed. We write

Za = Ya,b + Ỹa,b,

where

Ya,b :=
∑

i∈I∪J,ti>Lb

Za

(
ωi
)

, Ỹa,b :=
∑

i∈I∪J,La<ti≤Lb

Za

(
ωi
)

.

From the fact that (RLb+t )t≥0 is independent of (Rt )0≤t≤Lb and properties of Poisson
measures, it easily follows that Ya,b and Ỹa,b are independent, and more precisely Ỹa,b

is independent of σ(Ya,b) ∨ Gb. This implies that

E
[
exp (−λZa) | Gb

] = E
[
exp
(−λỸa,b

)]
E
[
exp
(−λYa,b

) | Gb
]
. (20)

From the special Markov property (see also the remark following Proposition 2.2),
we have

E[exp(−λYa,b) | Gb] = E

[ ∏
i∈I∪J,ti>Lb

exp
(
−λZa

(
ωi
)) ∣∣∣∣Gb

]

=exp

(
−

∑
i∈I∪J,ti>Lb

Zb

(
ωi
)

Nb

(
1{R⊂(0,∞)}

(
1−e−λZa

)))

= exp

(
−Zb Nb

(
1{R⊂(0,∞)}

(
1− e−λZa

)))

= exp

(
− 3Zb

2

((
b − a +

(
2λ

3
+ a−2

)−1/2 )−2

− b−2
))

,

where the last equality is Lemma 4.1.
Using Proposition 1.2 (i), we have thus,

E[exp(−λYa,b)] =
(
1+ b2

((
b − a + (

2λ

3
+ a−2)−1/2

)−2

− b−2
))−3/2

=
(

b

b − a + ( 2λ3 + a−2)−1/2

)−3

,
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and since Ya,b and Ỹa,b are independent,

E[exp(−λỸa,b)] = E[exp(−λZa)] × (E[exp(−λYa,b)])−1

=
(
1+ 2λa2

3

)−3/2( b

b − a + ( 2λ3 + a−2)−1/2

)3

=

⎛
⎜⎜⎜⎝

b

a + (b − a)

(
1+ 2λa2

3

)1/2

⎞
⎟⎟⎟⎠

3

.

The statement of the proposition follows from (20) and the preceding calculations. ��
Wewill now identify the transition kernels whose Laplace transform appears in the

previous proposition. To this end, we recall the discussion of Sect. 2.1, which we will
apply with the particular value c = √

8/3.

Proposition 4.4 Let ρ > 0 and x > 0. The finite-dimensional marginal distributions
of (Zρ−a)0≤a≤ρ knowing that Zρ = x coincide with those of the continuous-state
branching process with branching mechanism ψ(u) = √

8/3 u3/2 started from x and
conditioned on extinction at time ρ.

Proof Recall the notation introduced in Sect. 2.1. By comparing the right-hand side of
(3) with the formula of Proposition 4.3, we immediately see that, for 0 ≤ s < t < ρ,

E[exp(−λZρ−t ) | Gρ−s] =
∫

e−λy πs,t (Zρ−s, dy).

Arguing inductively, we obtain that, for every 0 < s1 < · · · < sp < ρ, the conditional
distribution of (Zρ−s1 , . . . , Zρ−sp ) knowing Gρ is π0,s1(Zρ, dy1)πs1,s2(y1, dy2) . . .

πsp−1,sp (yp−1, dyp). The desired result follows. ��
We can now complete the proof of Proposition 1.2.

Proof of Proposition 1.2 (ii) We first verify that Za and X̃−a have the same distribu-
tion, for every fixed a > 0. Let λ > 0 and set f (y) = e−λy to simplify notation. By
the properties of the process X̃ , we have

E[ f (X̃−a)] = lim
x↑∞ Ex [ f (XT−a) 1{a≤T }],

where T = inf{t ≥ 0 : Xt = 0} as previously. On the other hand, recalling the
definition of the functions φt in Sect. 2.1,

Ex [ f (XT−a) 1{a≤T }] = lim
n↑∞

∞∑
k=1

Ex [1{a+ k−1
n <T≤a+ k

n } f (Xk/n)]

= lim
n↑∞

∞∑
k=1

Ex

[
f (Xk/n) PXk/n

(
a − 1

n
< T ≤ a

)]
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= lim
n↑∞

∞∑
k=1

Ex

[
f (Xk/n)

∫ a

a−1/n
φb(Xk/n) db

]

= Ex

[ ∫ ∞

0
f (Xt ) φa(Xt ) dt

]
,

where dominated convergence is easily justified by the fact that Ex [T ] < ∞ and
φb(0) = 0 for every b > 0. Now use the form of φa together with formula (2) (with
c = √

8/3) to see that the right-hand side of the last display is equal to

∫ ∞

0
dt

3x

a3

(
λ + 3

2a2

)−3/2 ((
λ + 3

2a2

)−1/2

+
√
2

3
t

)−3

× exp

(
− x

((
λ + 3

2a2

)−1/2

+
√
2

3
t

)−2)

=
(
1+ 2λa2

3

)−3/2 (
1− exp

(
−x(λ + 3

2a2
)−1/2

))
.

We then let x ↑ ∞ to get that

E
[
exp
(−λX̃−a

)] =
(
1+ 2λa2

3

)−3/2

= E
[
exp (−λZa)

]

by assertion (i) of the proposition.
Knowing that Za and X̃−a have the same distribution, the proof is completed as

follows. We observe that, for every a > 0, the law of (X̃−a+t )0≤t≤a conditionally on
X̃−a = x coincides with the law of X started from x and conditioned on extinction at
timea (we leave the easyverification to the reader).By comparingwithProposition4.4,
we get the desired statement. ��

As a consequence of Proposition 1.2, the process (Zr )r>0 has a càdlàgmodification,
and from now on we deal only with this modification. We conclude this subsection by
proving Proposition 1.1: we need to verify that our definition of the random variable
Zr matches the approximation given in this proposition.

Proof of Proposition 1.1 If x ∈ T∞ and x is not on the spine, the point�(x) belongs to
B•
r (P∞)c∩Br+ε(P∞) if and only if�x ∈ (r, r+ε] and�y > r for every y ∈ �x,∞�.

Recalling our notation V for the volume measure on T∞, we can thus write

|B•
r (P∞)c ∩ Br+ε(P∞)|
=

∑
i∈I∪J :ti>Lr

V
({

x ∈ T i : �x ≤ r + ε and �y > r, ∀y ∈ �ρi , x�
})

.

We will first deal with indices i such that ti > Lr+ε, and we set

Aε :=
∑

i∈I∪J :ti>Lr+ε

V
({

x ∈ T i : �x ≤ r + ε and �y > r, ∀y ∈ �ρi , x�
})
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to simplify notation. Recall that if x ∈ T i and x = pζ i (s), we have �x = ω̂i
s and

{�y : y ∈ �ρi , x�} = {ωi
s(t) : 0 ≤ t ≤ ζ is }. An application of the special Markov

property shows that the conditional distribution of Aε knowing Zr+ε is the law of
Uε(Zr+ε), where Uε is a subordinator whose Lévy measure is the “law” of

∫ σ

0
ds 1{Ŵs≤r+ε; Ws (t)>r, ∀t∈[0,ζs ]},

under Nr+ε (and Uε is assumed to be independent of Zr+ε). From the first moment
formula for the Brownian snake [19, Proposition IV.2], one easily derives that

Nr+ε

(∫ σ

0
ds 1{Ŵs≤r+ε; Ws (t)>r, ∀t∈[0,ζs ]}

)
= Er+ε

[ ∫ ∞

0
dt 1{Bt≤r+ε} 1{t<γr }

]
= ε2,

where we have used the notation of the proof of Lemma 4.2. On the other hand, scaling
arguments show that

(Uε(t))t≥0
(d)=
(

ε4U1

(
t

ε2

))
r≥0

,

and the law of large numbers implies that t−1U1(t) converges a.s. to 1 as t → ∞.
Since the conditional distribution of ε−2Aε knowing Zr+ε is the law of ε2U1(

Zr+ε

ε2
),

it follows from the preceding observations that

ε−2Aε − Zr+ε −→
ε→0

0

in probability. Since Zr+ε converges to Zr as ε → 0, we conclude that

ε−2Aε −→
ε→0

Zr

in probability. To complete the proof, we just have to check that

ε−2
∑

i∈I∪J :Lr<ti≤Lr+ε

V
({

x ∈ T i : �x ≤ r + ε and �y > r, ∀y ∈ �ρi , x�
})

−→
ε→0

0

in probability. We leave the easy verification to the reader. ��

4.2 The law of the volume of the hull

This subsection is devoted to the proof of Theorem 1.4. We fix a > 0 and recall
our notation B•

a (P∞) for the hull of radius a in the Brownian plane P∞. To simplify
notation, we write B•

a instead of B•
a (P∞), and we also write |B•

a | for the volume of
this hull. Recall that Za is interpreted as a generalized length of the boundary of B•

a .
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Thanks to the construction of the Brownian plane explained in Sect. 3.2 and to
formula (16), we can express the volume |B•

a | as the sum of two independent con-
tributions, namely, on the one hand, the total volume of those subtrees that branch
off the spine below level La , and, on the other hand, the contribution of the subtrees
that branch off the spine above level La (for these, we need to sum, over all indices
i ∈ I ∪ J with ti > La , the Lebesgue measure of the set of all s ∈ [0, σi ] such that
the path ωi

s hits level a).
The beginning of this subsection is devoted to calculating the Laplace transform of

the first of these two contributions. Thanks to Theorem 2.1, this is also the Laplace
transform of σ under the conditional probability measure Na(· | W∗ = 0). This
motivates the following calculations.

We recall the notation Z0 for the (total mass of the) exit measure from (0,∞), and
we also set

Y0 :=
∫ σ

0
ds 1{τ0(Ws )=∞},

where we recall that τ0(w) = inf{t ≥ 0 : w(t) /∈ (0,∞)}. We note that Y0 = σ under
the conditional probability measure Na(· | W∗ = 0). Our first goal is to compute, for
every λ,μ > 0, the function uλ,μ(x) defined for every x > 0 by

uλ,μ(x) = Nx (1− exp (−λZ0 − μY0)).

Note that uλ,0(x) is given by formula (6). On the other hand, the limit of uλ,μ as
λ ↑ ∞ is

u∞,μ(x) := Nx (1− 1{R⊂(0,∞)} exp(−μY0)) =
√

μ

2

(
3 coth2((2μ)1/4x)− 2

)
(21)

by [14, Lemma 7]. The latter formula is generalized in the next lemma.

Lemma 4.5 We have, for every x > 0:

• if λ >

√
μ
2 ,

uλ,μ(x) =
√

μ

2

(
3

(
coth2

(
(2μ)1/4x + coth−1

√√√√2

3
+ 1

3

√
2

μ
λ

))
− 2

)
;

• if λ <

√
μ
2 ,

uλ,μ(x) =
√

μ

2

(
3

(
tanh2

(
(2μ)1/4x + tanh−1

√√√√2

3
+ 1

3

√
2

μ
λ

))
− 2

)
.
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Remark If λ =
√

μ
2 , we have simply

uλ,μ(x) =
√

μ

2
.

This can be obtained by a passage to the limit from the previous formulas, but a direct
proof is also easy.

Proof By results due to Dynkin, the function uλ,μ solves the differential equation

{ 1
2u

′′ = 2u2 − μ, on (0,∞),

u(0) = λ.
(22)

This is indeed a very special case of Theorem 3.1 in [13]. For the reader who is
unfamiliar with the general theory of superprocesses, a direct proof can be given
along the lines of the proof of Lemma 6 in [14].

It is also easy to verify that

lim
x→∞ uλ,μ(x) = N0(1− e−μσ ) =

√
μ

2
.

The formulas of the lemma then follow by solving Eq. (22), which requires some
tedious but straightforward calculations. ��

For future reference, we note that, if λ >

√
μ
2 , we have, for every x > 0,

uλ,μ(x) = u∞,μ(x + θμ(λ)), (23)

where the function θμ, which is defined on (

√
μ
2 ,∞) by

θμ(λ) = (2μ)−1/4 coth−1

√√√√2

3
+ 1

3

√
2

μ
λ,

is the functional inverse of u∞,μ. Of course (23) is nothing but the flow property of
solutions of (22).

Proposition 4.6 Let a > 0. Then, for every μ > 0,

Na

(
e−μY0

∣∣∣∣W∗ = 0

)
= −1

3
a3 u′∞,μ(a) = a3(2μ)3/4

cosh((2μ)1/4a)

sinh3((2μ)1/4a)
.

Remark The conditioning on {W∗ = 0} may be understood as a limit as ε → 0 of
conditioning on {−ε < W∗ ≤ 0}. Equivalently, we may use Theorem 2.1, which
provides an explicit description of the conditional probabilities N0(· | W∗ = y) for
every y < 0. Recall that Y0 = σ under Na(· | W∗ = 0).
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Proof We first observe that, for every ε > 0,

Na(−ε < W∗ ≤ 0) = 3

2a2
− 3

2(a + ε)2
∼

ε→0

3ε

a3
, (24)

by (4). On the other hand,

Na

(
e−μY0 1{−ε<W∗≤0}

)
= Na

(
e−μY0 1{Z0>0,W∗>−ε}

)

= Na

(
e−μY0 1{Z0>0} exp(−Z0 N0(W∗ ≤ −ε))

)

= Na

(
exp

(
− μY0 − 3

2ε2
Z0

)
1{Z0>0}

)

using the special Markov property in the second equality, and then (4). Set α = 3
2ε2

to simplify notation. Then,

Na

(
exp

(
− μY0 − αZ0

)
1{Z0>0}

)

= Na

(
1− e−μY01{Z0=0}

)
− Na

(
1− e−μY0−αZ0

)

= u∞,μ(a) − uα,μ(a)

= u∞,μ(a) − u∞,μ(a + θμ(α))

∼
α→∞ −θμ(α) u′∞,μ(a),

using (23) in the last equality. Since

θμ(α) ∼
α→∞

√
3

2α
,

it follows from the preceding discussion that

Na

(
e−μY0 1{−ε<W∗≤0}

)
∼

ε→0
−u′∞,μ(a) ε.

The result of the proposition follows using also (24). ��
We state the next result in terms of super-Brownian motion, although our main

motivation comes from our application to the Brownian plane in Theorem 1.4. Recall
that, in order to use the connection with the Brownian snake, we always assume that
the branching mechanism of super-Brownian motion is ψ0(u) = 2u2.

Corollary 4.7 Let a > 0 and r > 0. Assume that (Xt )t≥0 is a super-Brownian motion
that starts from rδa under the probability measure Prδa . Set
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� =
∫ ∞

0
dt 〈Xt , 1〉,

and write RX for the range of X . Then, for every μ > 0,

Erδa

[
e−μ�

∣∣∣∣ minRX = 0

]

= a3(2μ)3/4
cosh((2μ)1/4a)

sinh3((2μ)1/4a)
exp

(
−r

(√
μ

2

(
3 coth2((2μ)1/4a)−2

)
− 3

2a2

))
.

Proof We may assume that (Xt )t≥0 is constructed from a Poisson point measure N
with intensity rNa via formula (7). Then, we immediately verify that

� =
∫

N (dω) σ(ω)

and properties of Poisson measures lead to the formula

Erδa

[
e−μ�

∣∣∣∣ minRX = 0

]

= Na

(
e−μσ

∣∣∣∣ minR = 0

)
exp

(
− rNa

(
(1− e−μσ )1{minR>0}

))
.

The first term in the right-hand side is given by Proposition 4.6. As for the second
term we observe that

Na

(
(1− e−μσ )1{minR>0}

)
= Na

(
1− e−μσ 1{minR>0}

)
− Na(minR ≤ 0)

= u∞,μ(a) − 3

2a2
,

and we use formula (21). This completes the proof. ��
Proof of Theorem 1.4 The first formula of the theorem is a straightforward conse-
quence of the second one since we know the distribution of Za . More precisely, using
Proposition 1.2 (ii), we observe that

E

[
exp

(
− Za

(√
μ

2

(
3 coth2((2μ)1/4a) − 2

)
− 3

2a2

))]

=
(
1+ 2a2

3

(√
μ

2

(
3 coth2((2μ)1/4a) − 2

)
− 3

2a2

))−3/2

= 33/2a−3(2μ)−3/4
(
3 coth2((2μ)1/4a) − 2

)−3/2

.
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If we multiply this quantity by

a3(2μ)3/4
cosh((2μ)1/4a)

sinh3((2μ)1/4a)

we get the desired formula for E[exp(−μ|B•
a |)].

Not suprisingly, the second formula of Theorem 1.4 is a consequence of the anal-
ogous formula in Corollary 4.7. Let us explain this. Using our representation of the
Brownian plane, and formula (16), we can write |B•

a | as the sum of two independent
contributions:

• The contribution of subtrees branching off the spine at a level smaller than La .
Using Theorem 2.1, we see that this contribution is distributed as σ under the
conditional probability measureNa(· | W∗ = 0). We also note that this contribution
is independent of the σ -field Ga .

• The contribution of subtrees branching off the spine at a level greater than La . This
contribution is Ga-measurable. Furthermore, an application of the special Markov
property (similar to the one in the proof of Proposition 4.3) shows that its conditional
distribution given Za = r is the law of

∑
k∈K

σ(ω(k))

where
∑

k∈K δω(k) is a Poisson measure with intensity rNa(· ∩ {W∗ > 0}).
The preceding discussion shows that the conditional distribution of |B•

a | given Za = r
coincides with the distribution of � under Prδa (· | minRX = 0), with the notation of
Corollary 4.7. This completes the proof. ��

4.3 The process of hull volumes

Our goal in this subsection is to prove Theorem 1.3. In a way similar to Corollary 4.7,
we consider a super-Brownian motion (Xt )t≥0, and the probability mesure Prδ0 under
which this super-Brownian motion starts from rδ0. We also introduce the associated
historical process (Xt )t≥0. As previously, we may and will assume that (Xt )t≥0 and
(Xt )t≥0 are constructed from a Poisson measure

N =
∑
k∈K

δω(k)

with intensity rN0, via formulas (7) and (8). We then set, for every a < 0,

Za =
∑
k∈K

Za(ω(k))
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and, for every a ≤ 0,

Ya =
∑
k∈K

Ya(ω(k))

where

Ya(ω) :=
∫ σ

0
ds 1{τa(Ws (ω))=∞}.

We also set Z0 = r by convention.
In the theory of superprocesses [13], Za corresponds to the total mass of the exit

measure of the historical process (Xt )t≥0 from (a,∞) (for our present purposes, we
do not need this interpretation). We also note that, for every a ≤ 0, we have

Ya =
∫ ∞

0
dt
∫

Xt (dw) 1{τa(w)=∞},

and the right-hand side is the total integrated mass of those historical paths that do not
hit a.

As previously, X = (Xt )t≥0 denotes a continuous-state branching process with
branching mechanism ψ(u) = √

8/3 u3/2 that starts from r under the probability
measure Pr . We will use the “Lévy-Khintchine representation” for ψ : we have

ψ(u) =
∫

κ(dy)
(
e−λy − 1+ λy

)

where κ(dy) is the measure on (0,∞) given by

κ(dy) =
√

3

2π
y−5/2 dy.

Proposition 4.8 Let a > 0. The law under Prδ0 of the pair (Z−a,Y−a) coincides
with the law under Pr of the pair

(
Xa,

∑
i :si≤a

ξi (�Xsi )
2
)

(25)

where s1, s2, . . . is a measurable enumeration of the jumps of X, and ξ1, ξ2, . . . is a
sequence of i.i.d. real random variables with density

1√
2πx5

e−1/2x 1(0,∞)(x),

which is independent of the process (Xt )t≥0.
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Proof We first observe that, for every λ,μ > 0, we have

Erδ0

[
exp (−λZ−a − μY−a)

] = exp(−ruλ,μ(a))

by the exponential formula for Poisson measures. We will prove that the joint Laplace
transform of the pair (25) is given by the same expression.

To this end, we fix μ > 0 and write α = √
2μ to simplify notation. We also

set wa(λ) = uλ,μ(a) for every a ≥ 0. As a consequence of (22) (or directly from
Lemma 4.5) we have for every a, b ≥ 0,

wa+b = wa ◦ wb

and w0(λ) = λ. Furthermore, the derivative of wa(λ) at a = 0 is easily computed
from the formulas of Lemma 4.5:

d

da
wa(λ)|a=0 =

√
2

3

√
α + λ (α − 2λ) (26)

where we recall that α = √
2μ.

Let us consider now the Laplace transform of the pair (25). We first observe that
the Laplace transform of the variables ξi is given by

E
[
e−βξ

] = (1+√2β
)
e−

√
2β,

for every β ≥ 0 (note that E[ξe−βξ ] = e−
√
2β by the well-known formula for the

Laplace transform of a positive stable random variable with parameter 1/2). It follows
that, for every λ > 0,

Er

[
exp

(
− λXa − μ

∑
i :ξi≤a

ξi (�Xsi )
2
)]

= Er

[
exp(−λXa)

∏
0≤s≤a

(1+ α�Xs)e
−α�Xs

]
.

The additivity property of continuous-state branching processes allows us to write
the right-hand side in the form exp(−rva(λ)), where the function va(λ) (which of
course depends also on α) is such that v0(λ) = λ. The Markov property of X readily
gives the semigroup property

va+b = va ◦ vb

for every a, b ≥ 0. To complete the proof of the proposition, it suffices to verify that
wa = va for every a ≥ 0, and to this end it will be enough to prove that

d

da
wa(λ)|a=0 = d

da
va(λ)|a=0. (27)

The left-hand side is given by (26). Let us compute the right-hand side. We fix λ > 0
in what follows.
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As we already mentioned, the process X is a Feller process with values in [0,∞).
The exponential function ϕλ(x) = e−λx belongs to the domain of the generator L of
X , and

Lϕλ(x) = ψ(λ) x ϕλ(x),

as a straightforward consequence of the formula for the Laplace transform of Xt .
Consequently, we have

e−λXt = e−λr + Mt + ψ(λ)

∫ t

0
Xs e

−λXs ds,

where M is a martingale, which is clearly bounded on every compact interval. For
every t ≥ 0, set

Vt :=
∏

0≤s≤t

(1+ α�Xs)e
−α�Xs ,

and note that V is a nonnegative nonincreasing process, which is bounded by one. By
applying the integration by parts formula, we have

Vte
−λXt = e−λr +

∫ t

0
Vs− dMs + ψ(λ)

∫ t

0
Vs Xs e

−λXsds +
∫ t

0
e−λXs dVs . (28)

The martingale term
∫ t
0 Vs− dMs has zero expectation. Let us evaluate the expected

value of the last term

∫ t

0
e−λXs dVs =

∑
0≤s≤t

e−λXs�Vs

=
∑
0≤s≤t

e−λXs−Vs− × e−λ�Xs

(
(1+ α�Xs)e

−α�Xs − 1

)
.

We note that the dual predictable projection of the random measure

∑
s≥0,�Xs>0

δ(s,�Xs )(du, dx)

is the measure

Xu du κ(dx)

where we recall that κ(dx) is the “Lévy measure” associated with X (a simple way to
get this is to use the Lamperti transformation to represent X as a time-change of the
Lévy process with Lévy measure κ). It follows that
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E

[ ∫ t

0
e−λXs dVs

]
= E

[ ∫ t

0
XsVse

−λXs ds

]
×
∫

κ(dx) e−λx
(

(1+ αx)e−αx − 1

)
.

By taking expectations in (28), we thus get

e−rvt (λ) − e−rv0(λ) = E

[ ∫ t

0
XsVse

−λXs ds

]

×
(

ψ(λ) +
∫

κ(dx) e−λx
(

(1+ αx)e−αx − 1

))
.

Note that

1

t
E

[ ∫ t

0
XsVse

−λXs ds

]
−→
t↓0 r e−λr ,

and thus it immediately follows from the preceding display that

d

da
va(λ)|a=0 = −ψ(λ) −

∫
κ(dx) e−λx

(
(1+ αx)e−αx − 1

)

= −
∫

κ(dx)

(
(1+ αx)e−(α+λ)x − 1+ λx

)
.

From the expression of κ , straightforward calculations lead to the formula

∫
κ(dx)

(
(1+ αx)e−(α+λ)x − 1+ λx

)
= −

√
2

3

√
α + λ (α − 2λ)

and our claim (27) follows, recalling (26). This completes the proof. ��
With the notation introduced in Proposition 4.8, set for every a ≥ 0,

Ya :=
∑
i :si<a

ξi (�Xsi )
2.

Corollary 4.9 The law of the process (Z−a,Y−a)a≥0 under Prδ0 coincides with the
law of (Xa,Ya)a≥0 under Pr .

Proof An application of the special Markov property shows that the process
(Z−a,Y−a)a≥0 is (time-homogeneous) Markov under Prδ0 , with transition kernel
given by

Erδ0

[
g (Z−a−b,Y−a−b) | (Z−a,Y−a)

] = �b (Z−a,Y−a) ,

where

�b(z, y) = Ezδ0

[
g (Z−b, y + Y−b)

]
.
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On the other hand, the Markov property of the continuous-state branching process X
also shows that the process (Xa,Ya)a≥0 is Markov under Pr , and

Er [g(Xa+b,Ya+b) | (Xa,Ya)] = �b(Xa,Ya),

where

�b(z, y) = Ez[g(Xb, y + Yb)].

By Proposition 4.8, we have �b = �b, and the desired result follows. ��
Remark We chose to put a strict inequality si < a in the definition of Ya so that the
process Y has left-continuous paths, which is also the case forY−a . On the other hand,
both Z−a and Xa have right-continuous paths.

Proof of Theorem 1.3 Fix ρ > 0, and let U follow a Gamma distribution with para-
meter 3

2 and mean ρ2, so that U has the same distribution as Zρ , by Proposition 1.2
(i). Suppose that, conditionally given U , N is a Poisson point measure with intensity
U N0 under the probability measure P. We can use formulas (7) and (8) to define a
super-Brownian motion (Xt )t≥0 started fromU δ0 and the associated historical super-
process. We then define (Za,Ya)a≤0 as in the beginning of this subsection. We also
write S for the extinction time of X .

The arguments used in the proof of Theorem 1.4, based on our representation of the
Brownian plane and formula (16), show that the process (Zρ−a, |B•

ρ |− |B•
ρ−a |)0≤a≤ρ

has the same distribution as (Z−a,Y−a)0≤a≤ρ under P(· | S = ρ). For a precise
justification, note that B•

ρ\B•
ρ−a is the image under � of those x ∈ T∞ such that

�y > ρ − a for every y ∈ �x,∞� and there exists z ∈ �x,∞� such that �z ≤ ρ. If x
satisfies these properties, either x belongs to one of the subtrees branching off the spine
at a level belonging to ]Lρ−a, Lρ], or x belongs to one of the subtrees branching off the
spine at a level greater than Lρ but the label of one of the ancestors of x in this subtree
is less than or equal to ρ (and, in both cases, the labels of the ancestors of x in the
subtree containing x remain strictly greater than ρ−a). The volume of the set of points
x corresponding to the second case is handled via the special Markov property for the
domain (ρ,∞), in a way similar to the end of the proof of Theorem 1.4. We obtain
that the sum of the two contributions leads to the quantity Y−a for a super-Brownian
motion starting from Zρδ0 and conditioned on extinction at time ρ.

Write P(U ) for a probability measure under which the continuous-state branching
process X starts from U (and the process Y is constructed by the formula preceding
Corollary 4.9), and let T be the extinction time of X as previously. Recall the process
X̃ from Sect. 2.1, and also set for every a ≥ 0,

Ỹa =
∑

i :s̃i≥−a

ξi
(
�X̃ s̃i

)2
,

where s̃1, s̃2, . . . is a measurable enumeration of the jumps of X̃ , and the random
variables ξi are as in Proposition 4.8 and are supposed to be independent of X̃ .
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FromCorollary 4.9, we obtain that the law of (Z−a,Y−a)0≤a≤ρ underP(· | S = ρ)

coincides with the law of (Xa,Ya)0≤a≤ρ under P(U )(· | T = ρ). However, using the
final observation of the proof of Proposition 1.2 (ii), the latter law is also the law of
(X̃−ρ+a, Ỹρ − Ỹρ−a)0≤a≤ρ .

Summarizing, we have obtained the identity in distribution

(
Zρ−a, |B•

ρ | − |B•
ρ−a |

)
0≤a≤ρ

(d)= (
X̃−ρ+a, Ỹρ − Ỹρ−a

)
0≤a≤ρ

.

This immediately gives

(
Za, |B•

a |
)
0≤a≤ρ

(d)= (
X̃−a, Ỹa

)
0≤a≤ρ

,

from which the statement of Theorem 1.3 follows. ��

5 Asymptotics for the UIPQ

We will rely on the Chassaing–Durhuus construction of the UIPQ [7]. The fact that
this construction is equivalent to the more usual construction involving local limits
of finite quadrangulations can be found in [29]. The Chassaing–Durhuus construction
is based on a random infinite labeled discrete ordered tree, which we denote here by
T. In a way very analogous to the tree T∞ considered above, the tree T consists of
a spine, which is a discrete half-line, and for every vertex of the spine, of two finite
subtrees grafted at this vertex respectively to the left and to the right of the spine (if
the grafted subtree consists only of the root, this means that we add nothing). The root
of T is the first vertex of the spine. The set of all corners of T is equipped with a total
order induced by the clockwise contour exploration of the tree. Each vertex v of T is
assigned a positive integer label 
v , in such a way that the label of the root is 1 and
the labels of two neighboring vertices may differ by at most 1 in absolute value. We
will not need the exact distribution of the tree T: See e.g. [26, Section 2.3].

Let us now explain the construction of the UIPQ from the tree T. First the vertex
set of Q∞ is the union of the vertex set V (T) of T and of an extra vertex denoted by
∂ . We then generate the edges of Q∞ by the following device, which is analogous
to the Schaeffer bijection between finite (rooted) quadrangulations and well-labeled
trees [8]. All corners of T with label 1 are linked to ∂ by an edge of Q∞. Any other
corner c is linked by an edge of Q∞ to the last corner before c (in the clockwise
countour order) with strictly smaller label. The resulting collection of edges forms
an infinite quadrangulation of the plane, which is the UIPQ Q∞ (see Fig. 2, and [7]
for more details). It easily follows from the construction that the graph distance (in
Q∞) between ∂ and another vertex of Q∞ is just the label of this vertex in T. Let
us introduce the left and right contour processes. Starting from the root of T, we list
all corners of the left side of T in clockwise contour order, and, for every k ≥ 0, we
denote the vertex corresponding to the k-th corner in this enumeration by v′

k (in such

a way that v′
0 is the root of T). We then write C (L)

k for the generation (distance from

the root in T) of vk , and V
(L)
k = 
v′

k
. Note that |C (L)

k+1−C (L)
k | = 1 for every k ≥ 0. We
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Fig. 2 The Chassaing–Durhuus
construction. The tree T is
represented in thin lines. A few
of the vertices v′k , v′′k have been
indicated together with their
labels in bold figures. The edges
of Q∞ incident to 4 particular
faces have been drawn in thick
lines

v′
0 = v′′

0 = v′′
2

v′
1

v′
2

u7

u8

v′′
1

v′
4

v′′
4

v′′
5

∂

1

2

2
1

3
2

v′′
9 1

u6

2

4
v′′
6

define similarly C (R)
k and V (R)

k using the exploration in counterclockwise order of the
right side of the tree, and the analog of the sequence (v′

k)k≥0 is denoted by (v′′
k )k≥0. By

linear interpolation, wemay view all four processesC (L), V (L),C (R), V (R) as indexed
by R+. A key ingredient of the following proof is the convergence [26, Theorem 5],

(
1

k2
C (L)

k4s
,

√
3

2

1

k
V (L)

k4s
,
1

k2
C (R)

k4s
,

√
3

2

1

k
V (R)

k4s

)
s≥0

(d)−→
k→∞

(
h(�′

s),��′
s
, h(�′′

s ), ��′′
s

)
s≥0

,

(29)
where we recall that �′

s and �′′
s are the exploration processes of respectively the left

and the right side of T∞ (see Sect. 3.2), and we use the notation h(�′
s) = d∞(0,�′

s)

for the “height” of�′
s in T∞. The convergence (29) holds in the sense of weak conver-

gence of the laws on the space C(R+, R
4). We also mention another convergence in

distribution concerning labels on the spine. Write un for the n-th vertex on the spine
of T. Then, (√

3

2

1

k

u�k2s 

)
s≥0

(d)−→
k→∞ (Rs)s≥0 (30)

and this convergence in distribution holds jointly with (29). The convergence (30) can
be found in [26, Proposition 1]. The fact that this convergence holds jointly with (29)
is clear from the proof of Theorem 5 in [26].

According to [26, Lemma 3], we have for every A > 0,

lim
K→∞

(
sup
k≥1

P

(
inf
t≥K

1

k
V (L)

k4t
< A

))
= 0, (31)
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∂

Fig. 3 A representation of the UIPQ near the vertex ∂ . The shaded part is the ball B2(Q∞). The hull
B•
2(Q∞), whose boundary is in thick lines on the figure, is obtained by filling in the holes of B2(Q∞)

and by symmetry the analogous statement with V (L) replaced by V (R) also holds.
Finally, we note that Lemma 3.3 implies

lim
s↑∞ ��′

s
= lim

s↑∞��′′
s
= +∞, a.s. (32)

For every integer k ≥ 1, define the ball Bk(Q∞) as the union of all faces of Q∞
that are incident to (at least) one vertex at distance smaller than or equal to k− 1 from
∂ . The hull B•

k (Q∞) is then obtained by adding to Bk(Q∞) the bounded components
of the complement of Bk(Q∞) (see Fig. 3). Define the “volume” |B•

k (Q∞)| as the
number of faces contained in B•

k (Q∞).

Theorem 5.1 We have

(
k−4 |B•�kr (Q∞)|

)
r>0

(d)−→
k→∞

(
1

2
|B•

r
√
3/2(P∞)|

)
r>0

,

in the sense of weak convergence of finite dimensional marginals.

Remarks (i) In the companion paper [10], we use the peeling process to give a differ-
ent approach to the convergenceof the sequenceof processes (k−4 |B•�kr (Q∞)|)r>0.
The limit then appears in the form given in Theorem 1.3.

(ii) By scaling, the processes ( 12 |B•
r
√
3/2

(P∞)|)r>0 and (|B•
(9/8)1/4r

(P∞)|)r>0 have the

same distribution, and we recover the “usual” constant (9/8)1/4 (see e.g. [8]). The
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reason for stating the theorem in the form above is the fact that the convergence
then holds jointly with (29) or (30), as the proof will show.

Proof Insteadof dealingwith |B•�kr (Q∞)|wewill consider the quantity‖B•�kr (Q∞)‖
defined as the number of vertices that are incident to a face of B•�kr (Q∞). It is an easy
exercise to verify that the desired convergence will follow if we can prove that the
statement holds when |B•�kr (Q∞)| is replaced by ‖B•�kr (Q∞)‖ (the underlying idea
is the fact that a finite quadrangulation with n faces has n + 2 vertices, and we also
observe that, for every fixed r > 0, the size of the boundary ofB•�kr (Q∞) is negligible

with respect to k4 – this is clear if we know that the sequence (k−4‖B•�kr (Q∞)‖)r>0
converges to a limit which is continuous in probability).

We will verify that, if r > 0 is fixed, the sequence k−4‖B•�kr (Q∞)‖ converges

in distribution to 1
2 |B•

r
√
3/2

(P∞)|. It will be clear that our method extends to a joint
convergence in distribution if we consider a finite number of values of r , yielding the
desired statement. To simplify the presentation, we take r = 1 in what follows. So our
goal is to show that

k−4‖B•
k (Q∞)‖ (d)−→

k→∞
1

2
|B•√

3/2(P∞)|. (33)

If u ∈ V (T), write Geo(u → ∞) for the geodesic path from u to ∞ in T, and set

m(u) := min{
v : v ∈ Geo(u → ∞)}.

Let k ≥ 1. We note that:

(i) The condition m(u) ≥ k + 3 ensures that x /∈ B•
k (Q∞). Indeed, from the way

edges of Q∞ are generated, it is easy to construct a path of Q∞ from u to∞ that
visits only vertices at distance (at least) m(u) − 1 from ∂ . If m(u) − 1 ≥ k + 2,
none of these vertices can be incident to a face of Bk(Q∞).

(ii) Ifm(u) ≤ k then x ∈ B•
k (Q∞). This is an immediate consequence of the discrete

“cactus bound” (see [11, Proposition 4.3], in a slightly different setting), which
implies that any path of Q∞ going from u to ∞ visits a vertex at distance less
than or equal to m(u) from ∂ .

Recall our definition of the “contour sequence” (v′
k)k≥0 of the left side of the tree.We

now extend the definition of v′
k to nonnegative real indices: If k ≥ 1 and k−1 < s < k,

we take v′
s = v′

k ifC
(L)
k = C (L)

k−1+1 and v′
s = v′

k−1 ifC
(L)
k = C (L)

k−1−1. This definition
is motivated by the fact that we have

∫∞
0 ds 1{v′

s = u} = 2 for every vertex u in the
left side of T (not on the spine), and the same integral is equal to 1 if u is on the spine
and different from the root. We extend similarly the definition of v′′

k .
We next observe that, for every fixed s > 0,

1

k
m
(
v′
k4s

) (d)−→
k→∞

√
2

3
min

{
�y : y ∈ ��′

s,∞�
}
, (34)

and this convergence holds jointly with (29). The convergence (34) is essentially a
consequence of (29) and (30). Let us only sketch the argument. A first technical
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ingredient is to replacem(v′
k4s

) by a truncated version obtained by replacingGeo(u →
∞) in the definition ofm(u) by the geodesic from u to the vertex uAk2 , for some large
integer constant A. One then proves, using (29) and (30), that the analog of (34) holds
for this truncated version, with a limit equal to

√
2/3 min{�y : y ∈ ��′

s, A�} (a
convenient way is to use a minor variant of the homeomorphism theorem of [28] to
see that (29) implies also the convergence of the associated “snakes”, which is what
we need here). Finally, the fact that the convergence of truncated versions suffices to
get (34) is easy using (31) and (32).

If we consider a finite number of values of s, the corresponding convergences (34)
hold jointly [and jointly with (29)]. Via the method of moments, it easily follows that,
for every A > 0, and every a > 0,

∫ A

0
ds 1{

m
(
v′
k4s

)
≤a k

} (d)−→
k→∞

∫ A

0
ds 1{min{�y :y∈��′

s ,∞�}≤√
3/2 a}.

Thanks to (31) and (32), we can replace A by ∞ and obtain

∫ ∞

0
ds 1{

m
(
v′
k4s

)
≤a k

} (d)−→
k→∞

∫ ∞

0
ds 1{min{�y :y∈��′

s ,∞�}≤√
3/2 a}.

By combining this convergence with the analogous result for the right side of the tree,
we get

∫ ∞

0
ds 1{

m
(
v′
k4s

)
≤a k

} +
∫ ∞

0
ds 1{m(v′′

k4s
)≤a k}

(d)−→
k→∞

∫ ∞

0
ds 1{min{�y :y∈��′

s ,∞�}≤√
3/2 a} +

∫ ∞

0
ds 1{min{�y :y∈��′′

s ,∞�}≤√
3/2 a}.

(35)

By (16), the limit in the previous display is equal to |B•√
3/2 a

(P∞)|. On the other hand,
previous remarks show that, if a k ≥ 1,

∫ ∞

0
ds 1{

m
(
v′
k4s

)
≤a k

}+
∫ ∞

0
ds 1{m(v′′

k4s
)≤a k} =2 k−4(#{u ∈ V (T) : m(u) ≤ a k}−1).

Furthermore, it follows from properties (i) and (ii) stated above that

#{u ∈ V (T) : m(u) ≤ k} ≤ ‖B•
k (Q∞)‖ ≤ #{u ∈ V (T) : m(u) ≤ k + 2}.

Our claim (33) now follows from the convergence (35) and the preceding observations,
together with the fact that the mapping r �→ |B•

r (P∞)| is continuous in probability.
This completes the proof. ��

Let us conclude with a comment. It would seem more direct to derive Theorem 5.1
from the fact that the Brownian plane is the Gromov–Hausdorff scaling limit of
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the UIPQ [9, Theorem 2]. We refrained from doing so because the local Gromov–
Hausdorff convergence does not give enough information to handle volumes of balls
or hulls. It would have been necessary to establish a type of Gromov–Hausdorff–
Prokhorov convergence in our setting, in the spirit of the work of Greven, Pfaffelhuber
and Winter [15], who however consider the case of metric spaces equipped with a
probability measure. This would require a number of additional technicalities, and for
this reason we preferred to rely on the results of [26].

Acknowledgments We thank the referee for a very careful reading of the paper.
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