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Abstract In 2010 Menon and Srinivasan published a conjecture for the statistical
structure of solutions ρ to scalar conservation laws with certain Markov initial condi-
tions, proposing a kinetic equation that should suffice to describeρ(x, t) as a stochastic
process in x with t fixed. In this article we verify an analogue of the conjecture for ini-
tial conditions which are bounded, monotone, and piecewise constant. Our argument
uses a particle system representation of ρ(x, t) over 0 ≤ x ≤ L for L > 0, with a
suitable random boundary condition at x = L .
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1 Introduction

We are interested in the statistical properties of solutions to the Cauchy problem for
the scalar conservation law{

ρt = H(ρ)x in R × (0,∞)

ρ = ξ on R × {t = 0}, (1.1)
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where ξ = ξ(x) is a stochastic process. In the special case

H(p) = − p2

2
(1.2)

(1.1) is the well-known inviscid Burgers’ equation, which has often been considered
with random initial data. Burgers himself, in his investigation of turbulence [8], was
already moving in this direction, though it would be some time before problems in
this area were addressed rigorously.

Several papers, including [4,5,9–11,27], have developed a theory showing a kind
of integrability for the evolution of the law of ρ(·, t) for certain initial data. This article
is concerned with pushing stochastic integrability results beyond the Burgers setting to
general scalar conservation laws, an effort begun in earnest by Menon and Srinivasan
[22,25]. Before stating our main result, we first survey the major developments in this
subject.

This work is adapted from [19].

1.1 Background

The Burgers case H(p) = −p2/2 has seen extensive interest. Recall that if

u(x, t) =
∫ x

−∞
ρ(x ′, t) dx ′ (1.3)

then u(x, t) formally satisfies

ut + 1

2
(ux )

2 = 0 (1.4)

and is determined by the Hopf–Lax formula [17]:

u(x, t) = inf
y

{∫ y

−∞
ξ(x ′) dx ′ + (x − y)2

2t

}
. (1.5)

The backward Lagrangian y(x, t) is the rightmost minimizer in (1.5), and it is standard
[13] that this determines both the viscosity solution u(x, t) to (1.4) and the entropy
solution to ρt + ρρx = 0,

ρ(x, t) = x − y(x, t)

t
. (1.6)

Groeneboom, in a paper [15] concerned not with PDE but concave majorants1 and
isotonic estimators, determined the statistics of y(x, t) for the case where ξ(x) is white
noise, which we understand to mean that the initial condition for u(x, t) in (1.4) is a
standard Brownian motion B(x). Among the results of [15] is a density for

sup{x ∈ R : B(x) − cx2 is maximal} (1.7)

1 Straightforward manipulations of (1.5) relate this to a Legendre transform.
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Scalar conservation laws with monotone pure-jump Markov… 869

expressed in terms of the Airy function. It has been observed (see e.g. [21]) that the
Airy function seems to arise in a surprising number of seemingly unrelated stochastic
problems, and it is notable that Burgers’ equation falls in this class.

Several key papers appeared in the 1990s; we rely on the introduction of Chabanol
and Duchon’s 2004 paper [11], which recounts some of this history, and discuss those
portions most relevant for our present purposes. In 1992, Sinai [27] explicitly con-
nectedBurgers’ equationwithwhite noise initial data to convexminorants ofBrownian
motion. Three years later Avellaneda and Weinan [3] showed for the same initial data
that the solution ρ(x, t) is a Markov process in x for each fixed t > 0.

Carraro and Duchon’s 1994 paper [9] defined a notion of statistical solution to
Burgers’ equation. This is a time-indexed family of probability measures ν(t, ·) on a
function space, and the definition of solution is stated in terms of the characteristic
functional

ν̂(t, φ) =
∫

exp

(
i
∫

ρ(x)φ(x) dx

)
ν(t, dρ) (1.8)

for test functions φ. Namely, ν̂(t, φ) must satisfy for each φ a differential equation
obtained by formal differentiation under the assumption that ρ distributed according
to ν(t, dρ) solves Burgers’ equation. This statistical solution approach was further
developed in 1998 by the same authors [10] and by Chabanol and Duchon [11]. It does
have a drawback: given a (random) entropy solution ρ(x, t) to the inviscid Burgers’
equation, the law of ρ(·, t) is a statistical solution, but it is not clear that a statistical
solution yields a entropy solution, and at least one example is known [4] when these
notions differ. Nonetheless, [9,10] realized that it was natural to consider Lévy process
initial data, which set the stage for the next development.

In 1998, Bertoin [4] proved a remarkable closure theorem for Lévy initial data. We
quote this, with adjustments to match our notation.

Theorem 1.1 ([4, Theorem 2]) Consider Burgers’ equation with initial data ξ(x)

which is a Lévy process without positive jumps for x ≥ 0, and ξ(x) = 0 for x < 0.
Assume that the expected value of ξ(1) is positive, Eξ(1) ≥ 0. Then, for each fixed
t > 0, the backward Lagrangian y(x, t) has the property that

y(x, t) − y(0, t) (1.9)

is independent of y(0, t) and is in the parameter x a subordinator, i.e. a nondecreasing
Lévy process. Its distribution is the same as that of the first passage process

x �→ inf{z ≥ 0 : tξ(z) + z > x}. (1.10)

Further, denoting by ψ(s) and Θ(t, s) (s ≥ 0) the Laplace exponents of ξ(x) and
y(x, t) − y(0, t),

E exp(sξ(x)) = exp(xψ(s)) (1.11)

E exp[s(y(x, t) − y(0, t))] = exp(xΘ(t, s)), (1.12)
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870 D. C. Kaspar, F. Rezakhanlou

we have the functional identity

ψ(tΘ(t, s)) + Θ(t, s) = s. (1.13)

Remark 1.1 The requirement Eξ(1) ≥ 0 can be relaxed, with minor modifications
to the theorem, in light of the following elementary fact. Suppose that ξ1(x) and
ξ2(x) are two different initial conditions for Burgers’ equation, which are related by
ξ2(x) = ξ1(x) + cx . It is easily checked using (1.5) that the corresponding solutions
ρ1(x, t) and ρ2(x, t) are related for t > 0 by

ρ2(x, t) = 1

1 + ct

[
ρ1
(

x

1 + ct
,

t

1 + ct

)
+ cx

]
. (1.14)

This observation is found in a paper ofMenon and Pego [24], but (as this is elementary)
it may have been known previously. Using (1.14) we can adjust a statistical description
for a case where Eξ(1) ≥ 0 to cover the case of a Lévy process with general mean
drift.

WefindTheorem1.1 remarkable for several reasons. First, in light of (1.6), it follows
immediately that the solution ρ(x, t) − ρ(0, t) is for each fixed t a Lévy process
in the parameter x , and we have an example of an infinite-dimensional, nonlinear
dynamical system (the PDE,Burgers’ equation)which preserves the independence and
homogeneity properties of its random initial configuration. Second, the distributional
characterization of y(x, t) is that of a first passage process, where the definition of
y(x, t) following (1.5) is that of a last passage process. Third, (1.13) can be used to
show [23] that if ψ(t, q) is the Laplace exponent of ρ(x, t) − ρ(0, t), then

ψt + ψψq = 0 (1.15)

for t > 0 and q ∈ Cwith nonnegative real part. This shows for entropy solutions what
had previously been observed by Carraro and Duchon for statistical solutions [10],
namely that the Laplace exponent (1.12) evolves according to Burgers’ equation!

In 2007 Menon and Pego [24] used the Lévy–Khintchine representation for the
Laplace exponent (1.12) and observed that the evolution according to Burgers’ equa-
tion in (1.15) corresponds to a Smoluchowski coagulation equation [2,28], with
additive collision kernel, for the jump measure of the Lévy process y(·, t). The jumps
of y(·, t) correspond to shocks in the solution ρ(·, t). The relative velocity of succes-
sive shocks can be written as a sum of two functions, one depending on the positions
of the shocks and the other proportional to the sum of the sizes of the jumps in y(·, t).
Regarding the sizes of the jumps as the usual masses in the Smoluchowski equation, it
is plausible that Smoluchowski equation with additive kernel should be relevant, and
[24] provides the details that verify this.

It is natural towonderwhether this evolution throughMarkov processeswith simple
statistical descriptions is a miracle [23] confined to the Burgers–Lévy case, or an
instance of a more general phenomenon. However, extending the results of Bertoin
[4] beyond the Burgers case H(p) = − 1

2 p2 remains a challenge. A different particular
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Scalar conservation laws with monotone pure-jump Markov… 871

case, corresponding to L(q) = (−H)∗(q) = |q|, is a problemof determiningLipschitz
minorants, and has been investigated by Abramson and Evans [1]. From the PDE
perspective this is not as natural, since (−H)∗(q) = |q| corresponds to

− H(p) = +∞ 1(|p| > 1), (1.16)

i.e.−H(p) takes the value 0 on [−1,+1] and is equal to+∞ elsewhere. So [1], while
very interesting from a stochastic processes perspective, has a specialized structure
which is rather different from those cases we will consider.

The biggest step toward understanding the problem for a wide class of H is found
in a 2010 paper of Menon and Srinivasan [25]. Here it is shown that when the initial
condition ξ is a spectrally negative2 strongMarkov process, the backward Lagrangian
process y(·, t) and the solution ρ(·, t) remain Markov for fixed t > 0, the latter
again being spectrally negative. The argument is adapted from that of [4] and both
[4,25] use the notion of splitting times (due to Getoor [14]) to verify the Markov
property according to its bare definition. In the Burgers–Lévy case, the independence
and homogeneity of the increments can be shown to survive, from which additional
regularity is immediate using standard results aboutLévyprocesses [18].As [25] points
out, without these properties it is not clear whether a Feller process initial condition
leads to a Feller process in x at later times. Nonetheless, [25] presents a very interesting
conjecture for the evolution of the generator of ρ(·, t), which has a remarkably nice
form and follows from multiple (nonrigorous, but persuasive) calculations.

We now give a partial statement of this conjecture. The generatorA of a stationary,
spectrally negative Feller process acts on test functions J ∈ C∞

c (R) by

(A J )(y) = b(y)J ′(y) +
∫ y

−∞
(J (z) − J (y)) f (y, dz), (1.17)

where b(y) characterizes the drift and f (y, ·) describes the law of the jumps. If we
allow b and f to depend on t , we have a family of generators. The conjecture of [25]
is that the evolution of the generator A for ρ(·, t) is given by the Lax equation

˙A = [A ,B] = AB − BA (1.18)

forB which acts on test functions J by

(B J )(y) = −H ′(y)b(t, y)J ′(y) −
∫ y

−∞
H(y) − H(z)

y − z
(J (z) − J (y)) f (t, y, dz).

(1.19)
An equivalent form of the conjecture (1.18) involves a kinetic equation for f . The key
result in the present article verifies that this kinetic equation holds in the special case
we will consider. Before we state this, let us establish our working notation.

2 i.e. Without positive jumps.
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1.2 Notation

Here we collect some of the various notation used later in the article.
Write H [p1, . . . , pn] for the nth divided difference of H through p1, . . . , pn . For

each n this function is symmetric in its arguments, and given by the following formulas
in the cases n = 2 and n = 3 where p1, p2, p3 are distinct:

H [p1, p2] = H(p2) − H(p1)

p2 − p1
and H [p1, p2, p3] = H [p2, p3] − H [p1, p2]

p3 − p1
.

(1.20)

The definition for general n and standard properties can be found in several numerical
analysis texts, including [16].

We write δx for the usual point mass assigning unit mass to x and zero elsewhere.
For C > 0 and n a positive integer, write

ΔC
n = {(a1, . . . , an) ∈ R

n : 0 < a1 < · · · < an < C} (1.21)

andΔC
n for the closure of this set inRn .Wewrite ∂ΔC

n for the boundary of the simplex,
and ∂iΔ

C
n for its various faces:

∂0Δ
C
n = {(a1, . . . , an) ∈ ∂ΔC

n : a1 = 0}
∂iΔ

C
n = {(a1, . . . , an) ∈ ∂ΔC

n : ai = ai+1}, i = 1, . . . , n − 1

∂nΔC
n = {(a1, . . . , an) ∈ ∂ΔC

n : an = C}.
(1.22)

WriteM for the set of finite, regular (signed)measures on [0, P], which is a Banach
space when equipped with the total variation norm ‖ · ‖tv. Call its nonnegative subset
M+.

Let K denote the set of bounded signed kernels from [0, P] to [0, P], i.e. the set
of k : [0, P] �→ M which are measurable when [0, P] is endowed with its Borel
σ -algebra and M is endowed with the σ -algebra generated by evaluation on Borel
subsets of [0, P], and which satisfy

‖k‖ = sup{‖k(ρ−, ·)‖tv : ρ− ∈ [0, P]} < ∞. (1.23)

Observe that K is a Banach space; completeness holds since a Cauchy sequence kn

has kn(ρ−, ·) Cauchy in total variation for each ρ−, and we obtain a pointwise limit
k(ρ−, ·). Measurability of k(·, A) for each Borel A ⊆ [0, P] then holds since this is
a real-valued pointwise limit of kn(·, A). Write K+ for the subset of K with range
contained inM+.

1.3 Main result

In this sectionwe provide a statistical description of solutions to the scalar conservation
law when the initial condition is an increasing, pure-jump Markov process given by
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Scalar conservation laws with monotone pure-jump Markov… 873

a rate kernel g. For this we require some assumptions on the rate kernel g and the
Hamiltonian H .

Assumption 1.1 The initial condition ξ = ξ(x) is a pure-jumpMarkov process start-
ing at ξ(0) = 0 and evolving for x > 0 according to a rate kernel g(ρ−, dρ+). We
assume that for some constant P > 0 the kernel g is supported on

{(ρ−, ρ+) : 0 ≤ ρ− ≤ ρ+ ≤ P} (1.24)

and has total rate which is constant in ρ−:

λ =
∫

g(ρ−, dρ+) (1.25)

for all 0 ≤ ρ− ≤ P . In particular, g ∈ K+.

Assumption 1.2 The Hamiltonian function H : [0, P] → R is smooth, convex, has
nonnegative right-derivative at p = 0 and noninfinite left-derivative at p = P .

We provide for x ≥ 0 a statistical description consisting of a one-dimensional
marginal at x = 0 and a rate kernel generating the rest of the path. The evolution
of the rate kernel is given by the following kinetic equation, and the evolution of the
marginal will be described in terms of the solution to the kinetic equation.

Definition 1.3 We say that a continuous mapping f : [0,∞) → K+ is a solution of
the kinetic equation {

ft = L κ f

f (0, ρ−, dρ+) = g(ρ−, dρ+),
(1.26)

where

L κ f (t, ρ−, dρ+)

=
∫

(H [ρ∗, ρ+] − H [ρ−, ρ∗]) f (t, ρ−, dρ∗) f (t, ρ∗, dρ+)

−
[∫

H [ρ+, ρ∗] f (t, ρ+, dρ∗) −
∫

H [ρ−, ρ∗] f (t, ρ−, dρ∗)
]

f (t, ρ−, dρ+),

(1.27)
provided that θ �→ L κ f (θ, ·, ·) ∈ K is Bochner-integrable and

f (t, ·, ·) − f (s, ·, ·) =
∫ t

s
L κ f (θ, ·, ·) dθ (1.28)

for all 0 ≤ s ≤ t < ∞.

Definition 1.4 We say that a continuous mapping � : [0,∞) → M+ is a solution of
the marginal equation {

�t = L 0�

�(0, dρ0) = δ0(dρ0),
(1.29)
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874 D. C. Kaspar, F. Rezakhanlou

where

L 0�(t, dρ0) =
∫

H [ρ∗, ρ0]�(t, dρ∗) f (t, ρ∗, dρ0)

−
[∫

H [ρ0, ρ∗] f (t, ρ0, dρ∗)
]

�(t, dρ0), (1.30)

provided that θ �→ L 0�(θ, ·) ∈ M is Bochner-integrable and

�(t, ·) − �(s, ·) =
∫ t

s
L 0�(θ, ·) dθ (1.31)

for all 0 ≤ s ≤ t < ∞.

Theorem 1.2 Suppose Assumptions 1.1 and 1.2 hold. Then the kinetic and marginal
equations have unique solutions, in the sense of Definitions 1.3 and 1.4. Furthermore,
the total integrals are conserved:

λ =
∫

f (t, ρ−, dρ+) (1.32)

1 =
∫

�(t, dρ0) (1.33)

for all t ≥ 0 and all 0 ≤ ρ− ≤ P. Finally, if

g(ρ−, [0, ρ−] ∪ {P}) = 0 (1.34)

for all 0 ≤ ρ− < P, then f (t, ·, ·) has the same property for t > 0.

The kernels described by the Theorem 1.2 are precisely what we need to describe
the statistics of the solution ρ, which brings us to our main result:

Theorem 1.3 When Assumptions 1.1 and 1.2 hold, the solution ρ to

{
ρt = H(ρ)x (x, t) ∈ R × (0,∞)

ρ = ξ (x, t) ∈ R × {t = 0} (1.35)

for each fixed t > 0 has x = 0 marginal given by �(t, dρ0) and for 0 < x < ∞
evolves according to rate kernel f (t, ρ−, dρ+).

Remark 1.2 Theorems 1.2 and 1.3 establish rigorously the conjectured [25] evolution
according to the Lax pair (1.18), within the present hypotheses. See [25, Section 2.7]
for a calculation showing the equivalence of the kinetic and Lax pair formulations,
which simplifies considerably in the present case due to the absence of drift terms. The
Lax pair and integrable systems approach (in the case of finitely many states, where
the generator is a triangular matrix) have been further explored by Menon [22] and in
a forthcoming work by Li [20].
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1.4 Organization

The remainder of this article is organized as follows. In Sect. 2 we show that Theo-
rem 1.3 will follow from a similar statistical characterization for the solution to the
PDE over x ∈ [0, L] with a time-dependent random boundary condition at x = L .
The latter we can study using a sticky particle system whose dimension is random and
unbounded, but almost surely finite. Elementary arguments are used to check that our
candidate for the law matches the evolution of the random initial condition according
to the dynamics. Next in Sect. 3 we show existence and uniqueness of the solutions
to marginal and kinetic equations of Theorem 1.2, which are needed to construct the
candidate law. The concluding Sect. 4 indicates some desired extensions and similar
questions for future work. To keep the main development concise, proofs of lemmas
have been deferred to Appendix.

2 A random particle system

As functions of x , the solutions ρ(x, t) we consider all have the form depicted in
Fig. 1. From a PDE perspective this situation is standard—a concatenation of Riemann
problems for the scalar conservation law—andwe can describe the solution completely
in terms of a particle system. Each shock consists of some number of particles stuck
together, and the particles move at constant velocities according to the Rankine–
Hugoniot condition except when they collide. The collisions are totally inelastic.

The utility of this particle description is lessened, however, by the fact that the
dynamics are quite infinite dimensional for our pure-jump initial condition ξ(x),

x

ρ

ρ0

ρ1

ρ2

ρ3

ρ4

x1 x2 x3 x4

Fig. 1 For each t > 0, the solution ρ(x, t) is a nondecreasing, pure-jump process in x . We will see that
for any fixed L > 0, we have a.s. finitely many jumps for x ∈ [0, L] and that ρ(·, t) on this interval can be
described by two (finite) nondecreasing sequences (x1, . . . , xN ; ρ0, . . . , ρN )
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876 D. C. Kaspar, F. Rezakhanlou

x ∈ [0,+∞). To have a simple description as motion at constant velocities, punc-
tuated by occasional collisions, we might argue that on each fixed bounded interval
of space we have finitely many collisions in a bounded interval of time, and piece
together whatever statistical descriptions we might obtain for the solution on these
various intervals. Inspired by those situations in statistical mechanics where bound-
ary conditions become irrelevant in an infinite-volume limit, we pursue a different
approach. We construct solutions to a problem on a bounded space interval [0, L],
and choose a random boundary condition at x = L to obtain an exact match with the
kinetic equations. The involved analysis will all pertain to the following result.

Theorem 2.1 Suppose Assumptions 1.1 and 1.2 hold. For any fixed L > 0, consider
the scalar conservation law⎧⎪⎨

⎪⎩
ρt = H(ρ)x (x, t) ∈ (0, L) × (0,∞)

ρ = ξ x ∈ [0, L] × {t = 0}
ρ = ζ (x, t) ∈ {x = L} × (0,∞)

(2.1)

with initial condition ξ (restricted to [0, L]), open boundary3 at x = 0, and random
boundary ζ at x = L . Suppose the process ζ has ζ(0) = ξ(L) and evolves according
to the time-dependent rate kernel H [ρ,ρ+] f (t, ρ,dρ+) independently of ξ given ξ(L).
Then for all t > 0 the law of ρ(·, t) is as follows:

(i) the x = 0 marginal is �(t, dρ0), and
(ii) the rest of the path is a pure-jump process with rate kernel f (t, ρ−, dρ+).

To prove our main result we can send L → ∞, applying Theorem 2.1 on each
[0, L], and use bounded speed of propagation to limit the respective influences of far
away particles (unbounded system) or truncation with random boundary (bounded
system). The argument is quite short.

Proof (Theorem 1.3) Fix any t > 0. We will write ρ̂(x, t) for the solution to (1.35)
over the semi-infinite x-interval [0,+∞) with initial data ξ̂ (x). We take the right-
continuous version of the solution. For L to be specified shortly, write ρ(x, t) for the
solution and ξ(x) for the initial data corresponding to (2.1).

Fix any x1, . . . , xk ∈ [0,+∞), and let X = max{x1, . . . , xk}. Choose L > X +
t H ′(P). We couple the bounded and unbounded systems by requiring

ξ̂ |[0,L] = ξ, (2.2)

allowing the random boundary ζ to evolve independently of ξ̂ given ξ̂ (L)

Recall [13] that the scalar conservation law has finite speed of propagation. Our
solutions are bounded in [0, P], so the speed is bounded by H ′(P). Since ρ̂(x, 0)
and ρ(x, 0) are a.s. equal on [0, L], we have also ρ̂(x, t) = ρ(x, t) a.s. for x ∈
[0, L − t H ′(P)] ⊃ [0, X ]. From this we deduce the distributional equality

3 Using Assumption 1.2 and ξ, ζ ≥ 0, the shocks and characteristics only flow outward across x = 0. Any
boundary condition we would assign, unless it involved negative values, would thus be irrelevant.
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Scalar conservation laws with monotone pure-jump Markov… 877

(ρ̂(x1, t), . . . , ρ̂(xk, t))
d= (ρ(x1, t), . . . , ρ(xk, t)). (2.3)

By Theorem 2.1, the latter distribution is exactly that of a process started according to
�(t, dρ0), evolving according to rate kernel f (t, ρ−, dρ+). This process is terminated
deterministically at x = L , which does not alter finite-dimensional distributions prior
to x = L . Since ρ(x, t) is right-continuous and has the correct finite-dimensional
distributions, the result follows. ��

2.1 The dynamics

Our work in the remainder of this section is to prove Theorem 2.1. We begin by
describing precisely those particle dynamics which determine the solution to the PDE.

Figure 1 illustrates a parametrization of a nondecreasing pure-jump process on
[0,+∞)with heightsρ0, ρ1, ρ2, . . . and jump locations x1, x2, . . ..Our sign restriction
on the jumps excludes rarefaction waves, and we have only constant values separated
by shocks.Going forward in time, the shocksmove according to theRankine–Hugoniot
condition

ẋi = −H [ρi−1, ρi ] (2.4)

until they collide. We say that each shock consists initially of one particle moving at
the velocity indicated above. Then result of a collision can be characterized in two
equivalent ways:

(i) At the first instant when xi = xi+1, the i th particle is annihilated, and the velocity
of the (i + 1)th particle changes from −H [ρi , ρi+1] to

ẋi+1 = −H [ρi−1, ρi+1]. (2.5)

In the case4 where several consecutive particles collide with each other at the
same instant, all but the rightmost particle is annihilated. Since we only seek a
statistical description for x ≥ 0, we annihilate the first particle when x1 = 0,
replace ρ0 with ρ1, and relabel the other particles accordingly.

(ii) When xi−1 < xi = xi+1 = · · · = x j−1 = x j < x j+1, the particles i through j
all move with common velocity −H [ρi−1, ρ j ]. Following Brenier et al [6,7] we
call these a sticky particle dynamics. We can additionally take the position x = 0
to be absorbing: ẋi = 0 whenever xi = 0.

We adopt the first viewpoint for convenience, as this is compatible with [12] (see the
text following Definition 2.2 below), but a suitable argument could be given for the
second alternative as well.

Definition 2.1 For L as in Theorem 2.1, the configuration space Q for the sticky
particle dynamics is

Q =
∞⊔

n=0

Qn, Qn = ΔL
n × ΔP

n+1. (2.6)

4 Which will almost surely not occur for the randomness we consider.
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A typical configuration is q = (x1, . . . , xn; ρ0, . . . , ρn) ∈ Qn when n > 0, or q =
(ρ0) ∈ Q0 = {ρ0 : 0 ≤ ρ0 ≤ P} when n = 0.

Definition 2.2 Our notation for the particle dynamics is as follows:

(i) For 0 ≤ s ≤ t and q ∈ Q, write

φt
sq = φt−s

0 q (2.7)

for the deterministic evolution from time s to t of the configuration q according to
the annihilating particle dynamics for the PDE, without random entry dynamics
at x = L .

(ii) Given a configuration q = (x1, . . . , xn, ρ0, . . . , ρn) and ρ+ > ρn , write ερ+q
for the configuration (x1, . . . , xn, L , ρ0, . . . , ρn, ρ+).

(iii) Write Φ t
sq for the random evolution of the configuration according to determin-

istic particle dynamics interrupted with random entries at x = L according to
the boundary process ζ of (2.1), where the latter has been started at time s with
value ρn . In particular, if the jumps of ζ between times s and t occur at times
s < τ1 < · · · < τk < t with values ρn+1 < · · · < ρn+k , then

Φ t
sq = φt

τk
ερn+k φ

τk
τk−1

ερn+k−1 · · · φτ2
τ1

ερn+1φ
τ1
s q. (2.8)

Proposition 2.1 For any s, q, the process Φ t
sq is strong Markov.

This assertion follows after recognizing Φ t
sq as a piecewise-deterministic Markov

process described in some generality by Davis [12]. Namely, we augment the config-
uration space Q to add the time parameter to each component Qn , and then have a
deterministic flow according to the vector field

(1;−H [ρ0, ρ1], . . . ,−H [ρn−1, ρn]; 0, . . . , 0). (2.9)

With rate
∫

H [ρn, ρ+] f (t, ρn, dρ+)we jump to the indicated point in Qn+1, and upon
hitting a boundary we transition to Qk for suitable k < n, annihilating particles in the
manner described above.

2.2 Checking the candidate measure

Our goal is to take q distributed according to the initial condition and exactly describe
the law ofΦT

0 q for each T > 0. Using the kinetic (1.27) andmarginal equations (1.30),
we construct for each time t ≥ 0 a candidate law μ(t, dq) on Q as follows. Take N
to be Poisson with rate λL , x1, . . . , xN uniform on ΔL

N , and ρ0, . . . , ρN distributed

on ΔP
N+1 according to the marginal � and transitions f independently of the xi :

e−λL
∞∑

n=0

δn(d N )μn(t, dq), (2.10)
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where μ0(t, dq) = �(t, dρ0) and

μn(t, dq) = 1ΔL
n
(x1, . . . , xn) dx1 · · · dxn �(t, dρ0)

n∏
j=1

f (t, ρ j−1, dρ j ), (2.11)

for n > 0. When we have verified (1.32), it will be immediate that the total mass of
this is one.

We decompose the mapping from configurations q to solutions (as functions of x
over [0, L]) into the map from q to the measure

π(q, dx) = ρ0δ0 +
n∑

i=1

(ρi − ρi−1)δxi (q ∈ Qn) (2.12)

and integration over [0, x]. We claim that when q is distributed according toμ(0, dq),
the law of the measure π(Φ t

0q, ·) is identical to that of π(q ′, ·) where q ′ is distributed
according to μ(t, dq ′).

We now describe the structure of the proof of Theorem 2.1. Fix some time T > 0
and consider F(t, q) = EG(ΦT

t q) where G takes the form of a Laplace functional:

G(q) = exp

(
−
∫

J (x) π(q, dx)

)
= exp

(
−ρ0 J (0) −

n∑
i=1

(ρi − ρi−1)J (xi )

)

(2.13)
for J ≥ 0 a continuous function on [0, L]. We aim to show that

d

dt

∫
EG(ΦT

t q)μ(t, dq) = 0 (2.14)

for 0 < t < T , from which it will follow that∫
EG(ΦT

0 q) μ(0, dq) =
∫

G(q) μ(T, dq) (2.15)

for all G of the form in (2.13). Using the standard fact that Laplace functionals com-
pletely determine the law of any random measure [18], this will suffice to show that
law of π(ΦT

0 q, dx) for q distributed as μ(0, dq) is precisely the pushforward through
π of μ(T, dq), and obtain the result.

We might verify (2.14) by establishing regularity for F(t, q) = EG(ΦT
t q) in t

and the x-components of q. We speculate that it should be possible to do so if J is
smooth with J ′(0) = 0 and we content ourselves to divide the configuration space into
finitely many regions, each of which corresponds to a definite order of deterministic
collisions in φ. On the other hand, themeasuresμ(t, dq) enjoy considerable regularity
(uniformity, in fact) in x , and we pursue instead an argument along these lines. Here
continuity of F(t, q) in t will suffice.

Lemma 2.1 Let G take the form of (2.13). Then F(t, q) = EG(ΦT
t q) is a bounded

function which is uniformly continuous in t uniformly in q:
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w(δ) = sup{|F(t, q) − F(s, q)| : s, t ∈ [0, T ], |t − s| < δ, q ∈ Q} → 0 (2.16)

as δ → 0+.

To differentiate in (2.14) we will need to compare EG(ΦT
s q) and EG(ΦT

t q) for
0 < s < t < T . Our next observation is that when the t − s is small, we can separate
the deterministic and stochastic portions of the dynamics over the time interval [s, t].
The idea is that in an interval of time [s, t], the probability of multiple particle entries
is O((t − s)2), and a single particle entry has probability O(t − s) which permits
additional o(1) errors.

Lemma 2.2 Let 0 < s < t ≤ T and q ∈ Qn. There exist a random variable
τ ∈ (s, t) a.s., with law depending on s, t, and q only through ρn, and a constant
Cλ,H ′(P) independent of q, s, t so that∣∣∣∣F(s, q)−F(t, φt

sq)−(t−s)
∫

[EF(t, ερ+φτ
s q)−F(t, q)]H [ρn, ρ+] f (t, ρn, dρ+)

∣∣∣∣
≤ Cλ,H ′(P)[(t − s)2 + (t − s)w(t − s)]. (2.17)

We proceed to an analysis of the deterministic portion of the flow, φt
sq, where q is

distributed according toμ(t, dq). For this we introduce some notation. Given q ∈ Qn ,
we write

σ(q) = min
{

r ≥ s : φr
s q ∈ (∂ΔL

n ) × ΔP
n+1

}
. (2.18)

For each fixed n, we consider several subsets of the set of n-particle configurations
Qn . In particular we need to separate those configurations which experience an exit at
x = 0 or a collision in a time interval shorter than t − s. For i = 0, . . . , n − 1, write:

Ai =
{

q ∈ Qn : σ(q) ≤ t and φ
σ(q)
s q ∈ (∂iΔ

L
n ) × ΔP

n+1

}

U = Qn \
n−1⋃
i=0

Ai

B = {q ∈ Qn : xn ≥ L − (t − s)H [ρn−1, ρn]}
V = Qn \ B.

(2.19)

Figure 2 illustrates these sets in the case n = 2. We observe in particular that φt
sU and

V differ by a μn(t, ·)-null set, and that the terms associated with the boundary faces
are related to configurations with one fewer particle.

Lemma 2.3 For each positive integer n and with errors bounded by

CL ,n,λ,H ′(P)[(t − s) + w(t − s)] (2.20)
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Fig. 2 The deterministic flow φ

on the x-simplex is translation at
constant velocity unless this
translation crosses a boundary of
ΔL

n . In the case n = 2 pictured
above, points in A0 and A1 hit
the boundary faces x1 = 0 and
x1 = x2, respectively. The
remaining portion of the simplex
is mapped to the simplex minus
the set B

x1

x2

B

A1

A0

velocity

we have the following approximations:

(t − s)−1
∫

F(t, φt
sq)1A0(q)μn(t, dq)

≈
∫

F(t, q)
H [ρ∗, ρ0]�(t, dρ∗) f (t, ρ∗, dρ0)

�(t, dρ0)
μn−1(t, dq), (2.21)

(t − s)−1
∫

F(t, φt
sq)1Ai (q)μn(t, dq)

≈
∫

F(t, q)
(H [ρ∗, ρi ] − H [ρi−1, ρ∗]) f (t, ρi−1, dρ∗) f (t, ρ∗, dρi )

f (t, ρi−1, dρi )
μn−1(t, dq)

(2.22)

for i = 1, . . . , n − 1, and

(t − s)−1
∫

F(t, φt
sq)1B(q)μn(t, dq)

≈
∫

F(t, ερ+q)H [ρn−1, ρ+] f (t, ρn−1, dρ+)μn−1(t, dq). (2.23)

Remark 2.1 It is essential that the integral over B can be approximated by an integral
over (x1, . . . , xn−1, L; ρ0, . . . , ρn−1, ρ+). The measure L ∗μ below does not have
any singular factors like δ(xn = L). In particular, the result of integrating over B will
partially cancel with the term arising from random particle entries.

The final ingredient for the proof of Theorem 2.1 is the time derivative of μ(t, dq),
which we now record.

Lemma 2.4 For any n ≥ 0 and any 0 ≤ s < t we have

‖μn(t, ·) − μn(s, ·) − (t − s)(L ∗μn)(t, ·)‖tv = o(t − s) (2.24)
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where the norm is total variation and (L ∗μn)(t, dq) is defined to be the signed kernel

[
(L 0�)(t, dρ0)

�(t, dρ0)
+

n∑
i=1

(L κ f )(t, ρi−1, dρi )

f (t, ρi−1, dρi )

]

× e−λL1ΔL
n
(x1, . . . , xn) dx1 · · · dxn �(t, dρ0)

n∏
j=1

f (t, ρ j−1, dρ j ). (2.25)

The expression for themeasure above is to be understood formally; the correct inter-
pretation involves replacement, not division. All of the “divisors” above are present as
factors of �(t, dρ0)

∏n
j=1 f (t, ρ j−1, dρ j ), and the fractions indicate that the appear-

ance of the denominator in this portion is to be replaced with the indicated numerator.
So that we know what to expect, before proceeding we note that when we sum over

i in (2.25), some of the terms arising fromL 0 andL κ cancel. Namely, the bracketed
portion of (2.25) expands as∫

H [ρ∗, ρ0]�(t, dρ∗) f (t, ρ∗, dρ0)

�(t, dρ0)
−
∫

H [ρ0, ρ∗] f (t, ρ0, dρ∗)

+
n∑

i=1

[∫
(H [ρ∗, ρi ] − H [ρi−1, ρ∗]) f (t, ρi−1, dρ∗) f (t, ρ∗, dρi )

f (t, ρi−1, dρi )

−
∫

(H [ρi , ρ∗] f (t, ρi , dρ∗) − H [ρi−1, ρ∗] f (t, ρi−1, dρ∗))
]

(2.26)

The gain terms associated with the kinetic equations we leave as they are, but note
that the “loss” terms telescope, and the above may be shortened to∫

H [ρ∗, ρ0]�(t, dρ∗) f (t, ρ∗, dρ0)

�(t, dρ0)
−
∫

H [ρn, ρ∗] f (t, ρn, dρ∗)

+
n∑

i=1

∫
(H [ρ∗, ρi ] − H [ρi−1, ρ∗]) f (t, ρi−1, dρ∗) f (t, ρ∗, dρi )

f (t, ρi−1, dρi )
. (2.27)

We are ready to prove our statistical characterization of the bounded system.

Proof (Theorem 2.1) For times s and t with 0 ≤ s < t ≤ T , consider the difference∫
F(t, q) μ(t, dq) − ∫

F(s, q) μ(s, dq):

∫
[F(t, q) − F(s, q)] μ(t, dq) +

∫
F(t, q)[μ(t, dq) − μ(s, dq)]

−
∫

[F(t, q) − F(s, q)][μ(t, dq) − μ(s, dq)] = (I) + (II) + (III) (2.28)

Since F(t, q) is uniformly continuous in t uniformly in q by Lemma 2.1 and μ is
a probability measure, (I) → 0 as t − s → 0. Using Lemma 2.4 and the fact that
|F | ≤ 1, (II) → 0 as t − s → 0, and in fact
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∫
F(t, q)

μ(t, dq) − μ(s, dq)

t − s
→
∫

F(t, q)(L ∗μ)(t, dq) (2.29)

as s → t− with t fixed. Using both Lemmas 2.1 and 2.4, we see (III) is o(t − s). Thus∫
F(t, q) μ(t, dq) is continuous in t ; we will show additionally that it is differentiable

from below in t with one-sided derivative equal to 0 for all 0 < t < T . In light of
(2.29), our task is to show that − ∫ F(t, q) (L ∗μ)(t, dq) approximates (I) up to an
o(t − s) error.

Using Lemma 2.2 we have the following approximation of the portion of (I) involv-
ing μn , with error bounded by Cλ,H ′(P)[(t − s)2 + (t − s)w(t − s)]:

∫ [
F(t, q)(1B(q) + 1V (q)) − F(t, φt

sq)

(
1U (q) +

n−1∑
i=0

1Ai (q)

)

+ (t − s)F(t, q)

∫
H [ρn, ρ+] f (t, ρn, dρ+)

− (t − s)
∫

EF(t, ερ+φτ
s q)H [ρn, ρ+] f (t, ρn, dρ+)

]
μn(t, dq). (2.30)

We have
∫ [F(t, q)1V (q)− F(t, φt

sq)1U (q)] μn(t, dq) = 0 because the deterministic
flow φt

s maps U to V (modulo lower-dimensional sets) and preserve the Lebesgue
measure in spatial coordinates. Making replacements using Lemma 2.3 and reordering
the terms, we find with an error bounded by CL ,n,λ,H ′(P)[(t − s) + w(t − s)] that
∫

F(t, q) − F(s, q)

t − s
μn(t, dq)

≈
∫

F(t, ερ+q)H [ρn−1, ρ+] f (t, ρn−1, dρ+)μn−1(t, dq)

−
∫

EF(t, ερ+φτ
s q)H [ρn, ρ+] f (t, ρn, dρ+)μn(t, dq)

−
[∫

F(t, q)

(
n−1∑
i=1

(H [ρ∗, ρi ] − H [ρi−1, ρ∗]) f (t, ρi−1, dρ∗) f (t, ρ∗, dρi )

f (t, ρi−1, dρi )

+ H [ρ∗, ρ0]�(t, dρ∗) f (t, ρ∗, dρ0)

�(t, dρ0)

)
μn−1(t, dq)

−
∫

F(t, q)

∫
H [ρn, ρ+] f (t, ρn, dρ+)μn(t, dq)

]
(2.31)

for positive integers n. In the case n = 0, we have φt
sq = q, and the approximation is

∫
F(t, q) − F(s, q)

t − s
μ0(t, dq) ≈

∫
[F(t, ερ∗q) − F(t, q)]H [ρ0, ρ∗]μ0(t, dq).

(2.32)
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We observe that the bracketed portion of (2.31) nearly matches (2.27), except that part
involves μn−1 and part involves μn . Furthermore, we have∣∣∣∣

∫
EF(t, ερ+φτ

s q)H [ρn, ρ+] f (t, ρn, dρ+)μn(t, dq)

−
∫

F(t, ερ+q)H [ρn, ρ+] f (t, ρn, dρ+)μn(t, dq)

∣∣∣∣ ≤ CH ′(P),n,L(t − s).

(2.33)

This follows since τ is conditionally independent of q given ρn , and τ ∈ (s, t) a.s. so
that all but O(t − s) volume of the x-simplex is simply translated by φτ

s to a region
of identical volume. We make the replacement indicated by (2.33) in (2.31) without
changing the form of the error.

For any positive integer N we define

ΓN (t) =
∫

F(t, q)

N∑
n=0

μn(t, dq). (2.34)

Summing (2.31), (2.32), and our approximation for μn(t, ·) − μn(s, ·) from (2.27)
gives

ΓN (t) − ΓN (s)

t − s

≈
∫

F(t, q)

(
N∑

i=1

(H [ρ∗, ρi ] − H [ρi−1, ρ∗]) f (t, ρi−1, dρ∗) f (t, ρ∗, dρi )

f (t, ρi−1, dρi )

+ H [ρ∗, ρ0]�(t, dρ∗) f (t, ρ∗, dρ0)

�(t, dρ0)

)
μN (t, dq)

−
∫

F(t, ερ+q)H [ρN , ρ+] f (t, ρN , dρ+)μN (t, dq) (2.35)

with an o(t − s) error. Call the right side γN (t), so that the left derivative of ΓN is γN .
Since ΓN is a Lipschitz function, we deduce

ΓN (T ) − ΓN (0) =
∫ T

0
γN (t) dt. (2.36)

We have γN (t) bounded uniformly in t by

|γN (t)| ≤ 3H ′(P)L N λN+1

(N − 1)! , (2.37)

and thus γN → 0 uniformly in t . It follows that

ΓN (T ) − ΓN (0) → 0 (2.38)
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as N → ∞. Recognizing the limits of ΓN (T ) and ΓN (0) as

∫
G(q)μ(T, dq) and

∫
EG(ΦT

0 q)μ(0, dq), (2.39)

respectively, we have verified (2.14) and completed the proof. ��
Having shown the candidate measure μ(t, dq) constructed using the solutions

�(t, dρ0) and f (t, ρ−, dρ+) given by Theorem 1.2, our next task is to verify the
latter, which we undertake in the next section.

3 The kinetic and marginal equation

The primary goal of the present section is to prove Theorem 1.2 concerning the kernel
f (t, ρ−, dρ+) and marginal �(t, dρ0), so that the candidate measure μ(t, dq) in the
previous section is well-defined and has the properties required for the argument there.

While we introduce our notation, we also discuss the intuitive meaning of the terms
of our kinetic equation, comparing with that of Menon and Srinivasan [25]. Let us
writeL κ for the operator on K given by the right-hand side of (1.27),

(L κk)(ρ−, dρ+)

=
∫

(H [ρ∗, ρ+] − H [ρ−, ρ∗])k(ρ−, dρ∗)k(ρ∗, dρ+)

−
[∫

H [ρ+, ρ∗]k(ρ+, dρ∗) −
∫

H [ρ−, ρ∗]k(ρ−, dρ∗)
]

k(ρ−, dρ+), (3.1)

so that the kinetic equation is ft = L κ f .
The first term, which we call the gain term, corresponds to the production of a

shock connecting states ρ− and ρ+ by means of collision of shocks connecting states
ρ−, ρ∗ and ρ∗, ρ+. Such shocks have relative velocity given by

H [ρ∗, ρ+] − H [ρ−, ρ∗] = H [ρ−, ρ∗, ρ+](ρ+ − ρ−). (3.2)

In the Burgers case, the second divided difference H [·, ·, ·] is constant, and the above
is proportional to the sum of the increment ρ+ −ρ−, analogous to mass in the Smolu-
chowski equation.

The second line of (3.1) we call the “loss” term, though this need not be of definite
sign. To better understand this, note that when we have proven Theorem 1.2, we will
know that f (t, ρ−, dρ+) has total mass which is constant in (t, ρ−). In this case the
loss term may be rewritten equivalently as

[∫ (
H [ρ+, ρ∗] − H [ρ−, ρ+]) f (t, ρ+, dρ∗)

−
∫

(H [ρ−, ρ∗] − H [ρ−, ρ+]) f (t, ρ−, dρ∗)
]

f (t, ρ−, dρ+), (3.3)
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which corresponds precisely with the kinetic equation of [25]. The meaning of the first
line of (3.3) is clear:we lose a shock connecting statesρ−, ρ+ when a shock connecting
ρ+, ρ∗ collideswith this, and the relative velocity is precisely H [ρ+, ρ∗]−H [ρ−, ρ+].

The second line of (3.3) is less easily understood. One would expect to find here
a loss related to a shock connecting ρ−, ρ+ colliding with ρ∗, ρ− for ρ∗ < ρ−,
particularly if we were viewing f as a jump density as [25] views its corresponding
n(t, y, dz). Viewed as a rate kernel, it is not clear that f should suffer such a loss: in
some sense we must condition on being in state ρ− for f (t, ρ−, ·) to be relevant at all.
At this point we cannot offer an intuitive kinetic reason for the second line of (3.3),
but in light of the rigorous results of this article we can be assured that this is correct
for our model.

Remark 3.1 The form (3.3) seems preferable in the more generic setting, since—as
pointed out by the referee—the resulting equation ft = L κ f has the property that

λ(t, ρ−) =
∫

f (t, ρ−, dρ+) (3.4)

is (formally) conserved in time for eachρ−,without assuming that λ(0, ρ−) is constant.
This observation will be important in attempts to generalize the results of the present
paper.

We return to the task at hand, showing existence and uniqueness of f (t, ρ−, dρ+).
The argument proceeds through an approximation scheme for exp(λH ′(P)t) f (t, ·, ·),
where we can easily maintain positivity. To avoid endowingK with a weak topology,
we show directly the approximations are Cauchy, rather than appealing to Arzela–
Ascoli.

Proof (Theorem 1.2, part I) Write c = λH ′(P) and consider for each positive integer
n the continuous paths hn : [0,∞) → K defined by hn(0) = g for all n and

ḣn(t) = e−cj/n(L κhn)( j/n) + chn( j/n), t ∈ ( j/n, ( j + 1)/n). (3.5)

We claim the following properties of hn :

(a) hn(t) ≥ 0 for all t ≥ 0,
(b) for each t ≥ 0 the total integral

∫
hn(t, ρ−, dρ+) is constant in ρ− ∈ [0, P),

(c) for all t ≥ 0
‖hn(t)‖ ≤ λ(1 + c/n)�nt� ≤ λec(t+1) =: M(t), (3.6)

and
(d) hn(t, ρ−, [0, ρ−] ∪ {P}) = 0 for all t and all ρ− ∈ [0, P).

Since hn is piecewise-linear in t and the properties above are preserved by convex
combinations, it suffices to verify this at t = j/n for all integers j ≥ 0.

We proceed by induction. Abbreviate hn
j = hn( j/n). The j = 0 case holds by the

hypotheses on g. Assume now that the claim holds for j , and consider j + 1. We have
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n(hn
j+1 − hn

j ) = e−cj/n
[∫

(H [ρ∗, ρ+] − H [ρ−, ρ∗])hn
j (ρ−, dρ∗)hn

j (ρ∗, dρ+)

+
(∫

H [ρ−, ρ∗]hn
j (ρ−, dρ∗)

)
hn

j (ρ−, dρ+)

−
(∫

H [ρ+, ρ∗]hn
j (ρ+, dρ∗)

)
hn

j (ρ−, dρ+)

]
+ chn

j (ρ−, dρ+).

(3.7)
In particular, for any ρ+ we have

c − e−cj/n
∫

H [ρ+, ρ∗]hn
j (ρ+, dρ∗) ≥ c − e−cj/n H ′(P)‖hn

j‖
≥ c − e−cj/n H ′(P)λ(1 + c/n) j

= c
[
1 − e−cj/n(1 + c/n) j

]
≥ 0, (3.8)

using property (c) for case j ; thus n(hn
j+1 − hn

j ) ≥ 0. This and (a) hn
j ≥ 0 give

hn
j+1 ≥ 0, property (a) for case j +1. Furthermore, the total integral of the right-hand

side of (3.7) is exactly

c
∫

hn
j (ρ−, dρ+) = c‖hn

j‖, (3.9)

since (b) implies the bracketed portion integrates to 0. Also using (b) for case j , the
change in the total integral from hn

j to hn
j+1 is independent of ρ−, verifying (b) for

case j + 1. Using (c) for case j we find

‖hn
j+1‖ ≤ ‖hn

j‖ + cn−1‖hn
j‖ = (1 + c/n)‖hn

j‖ ≤ λ(1 + c/n) j , (3.10)

so that (c) holds for case j + 1. Finally, we observe that property (d) for hn
j implies

L κhn
j (ρ−, [0, ρ−] ∪ {P}) = 0, (3.11)

and thus (d) holds for case j + 1.
We now consider the matter of convergence. PairingL κ with any k1, k2 ∈ K and

measurable J (ρ+) with |J | ≤ 1, we find that

‖L κk1 − L κk2‖ ≤ 3H ′(P)(‖k1‖ + ‖k2‖)‖k1 − k2‖. (3.12)

In particular L κ is Lipschitz on bounded sets inK . For brevity write

L hk(s, ρ−, dρ+) = e−csL κk(ρ−, dρ+) + ck(ρ−, dρ+). (3.13)
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We compute for any m < n and t ≥ 0

‖hm(t) − hn(t)‖ ≤
∫ t

0
‖ḣm(s) − L hhm(s)‖ + ‖L hhm(s) − L hhn(s)‖

+‖L hhn(s) − ḣn(s)‖ ds. (3.14)

Observe that

‖ḣn(s) − L hhn(s)‖ = ‖L hhn(n−1�ns�) − L hhn(s)‖
≤ ‖e−cn−1�ns�L κhn(n−1�ns�) − e−csL κhn(s)‖

+ c‖hn(n−1�ns�) − hn(s)‖ (3.15)

where

‖e−cn−1�ns�L κhn(n−1�ns�) − e−csL κhn(s)‖
≤ e−cs‖L κhn(n−1�ns�) − L κhn(s)‖

+ (e−cn−1�ns� − e−cs)‖L κhn(n−1�ns�)‖
≤ e−cs6H ′(P)M(s)‖hn(n−1�ns�) − hn(s)‖

+ e−csecn−1
n−13H ′(P)M(s)2

≤ 6cec‖hn(n−1�ns�) − hn(s)‖ + 3cλecs+3cn−1, (3.16)

We have also

‖hn(n−1�ns�) − hn(s)‖ ≤ n−1‖L hhn(n−1�ns�)‖
≤ n−1(e−cs3H ′(P)M(s)2 + M(s))

= n−1(3λcecs+2c + λec(s+1)). (3.17)

Combining these, there is a constant C1 so that

‖ḣn(s) − L hhn(s)‖ ≤ C1n−1ecs (3.18)

for all positive integers n and times s ≥ 0.
The remaining term in the integrand of (3.14) is

‖L hhm(s) − L hhn(s)‖ ≤ e−cs‖L κhm(s) − L κhn(s)‖ + c‖hm(s) − hn(s)‖
≤ (e−cs6H ′(P)M(s) + c)‖hm(s) − hn(s)‖
= (6ec + c)‖hm(s) − hn(s)‖ = C2‖hm(s) − hn(s)‖.

(3.19)

All together,

‖hm(t) − hn(t)‖ ≤
∫ t

0
C2‖hm(s) − hn(s)‖ + C1(n

−1 + m−1)ecs ds, (3.20)
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and by Gronwall

‖hm(t) − hn(t)‖ ≤ C1(n
−1 + m−1)eC2t ect − 1

c
. (3.21)

From thiswe see that hn is Cauchy, hence convergent to a continuous h : [0,∞) → K
satisfying

h(t) = g +
∫ t

0
[e−cs(L κh)(s) + ch(s)] ds (3.22)

for all t ≥ 0, having properties (a,b,d) above and ‖h(t)‖ ≤ M(t).
We define f (t) = e−ct h(t), finding that

– the mapping t �→ f (t) ∈ K+ is continuous;
– the mapping t �→ L κ f (t) ∈ K is continuous (using the local Lipschitz property
of L κ ), and hence Bochner-integrable; and

– the kernels f solve ḟ = L κ f with f (0) = g by Leibniz.

Using the local Lipschitz property of L κ , the solution is unique. Properties (a,b,d)
above hold for f , and (b) in particular gives for each fixed ρ−

d

dt

∫
f (t, ρ−, dρ+) =

∫
(L κ f )(t, ρ−, dρ+) = 0. (3.23)

Thus
∫

f (t, ρ−, dρ+) = λ for all t ≥ 0, 0 ≤ ρ− < P . ��
We now turn to �(t, dρ0), which is intended to serve as the marginal at x = 0 for

our solution ρ(x, t) for fixed t > 0. We define a time-dependent family of operators
L 0 acting on measures ν(dρ0) inM by

(L 0ν)(t, dρ0) =
∫

H [ρ∗, ρ0]ν(dρ∗) f (t, ρ∗, dρ0)

−
[∫

H [ρ0, ρ∗] f (t, ρ0, dρ∗)
]

ν(dρ0). (3.24)

Again the integration is over ρ∗ only, and for each t we have (L 0ν)(t, ·) ∈ M . Our
evolution equation for �(t, dρ0) is the linear, time-inhomogeneous �t = L 0�.

Proof (Theorem 1.2, part II) Note that (3.24) is exactly the forward equation for a
pure-jump Markov process evolving according to a time-varying rate kernel

H [ρ0, ρ+] f (t, ρ0, dρ+), (3.25)

so we could obtain existence and uniqueness of solutions along these lines. We outline
an argument similar to that employed for f , for the sake of completeness.

Define for each n the continuous path hn : [0,∞) → M with hn(0) = δ0 and

ḣn(t) = e−cj/nL 0hn( j/n) + chn( j/n), t ∈ ( j/n, ( j + 1)/n). (3.26)
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Proceeding as in the proof for f we verify that for each j the hn
j = hn( j/n) are

nonnegative and, since L 0hn( j/n) has total integral zero, ‖hn
j‖ ≤ (1 + c/n)�nt�.

Observing that L 0 is linear and bounded uniformly over t ,

sup
t

‖(L 0ν)(t, ·)‖tv ≤ 2λH ′(P)‖ν‖tv, (3.27)

we easily show hn is Cauchy on bounded time intervals, with limit h : [0,∞) → M+
satisfying

h(t) = δ0 +
∫ t

0
[e−cs(L 0h)(s) + ch(s)] ds. (3.28)

Take �(t) = e−ct h(t) to find that �(t) ≥ 0 solves

�(t) = δ0 +
∫ t

0
(L 0�)(s) ds. (3.29)

Uniqueness follows using (3.27). Finally, since L 0ν as zero total integral for any ν,
we find that

∫
�(t, dρ0) = 1 for all t . ��

We close this section with a remark concerning the kinetic equation ft = L κ f
without the assumption that the initial kernel g has bounded support [0, P]. When
the initial condition ξ(x) is unbounded, growing for example linearly in the case of
quadratic H , the solution to the scalar conservation law ρt = H(ρx ) on the semi-
infinite domain should blow up in finite time. We likewise expect that the solution f
to the kinetic equation will blow up, but control of certain moments prior to this blow
up may allow us to run the argument of Theorem 2.1 with only superficial changes.
At the moment we lack the sort of estimates one obtains in the Smoluchowski case
(e.g. coming from a closed equation for the second moment), but we hope to revisit
this in future work.

4 Conclusion

We review what has been accomplished: using an exact propagation of chaos calcu-
lation for a bounded system with a suitably selected random boundary condition, we
have derived a complete description of the law of the solution ρ(x, t) to the scalar con-
servation law ρt = H(ρ)x for x, t > 0 when ρ(x, 0) = ξ(x) is a bounded, monotone,
pure-jump Markov process with constant jump rate. Notably, we have recovered the
Markov property of the solution and a statistical description of the shocks simul-
taneously. This may be regarded as both a strength of our present analysis and a
shortcoming of our present understanding (a soft argument for the preservation of the
Markov property in the particle system would be illuminating).

We emphasize how our approach using random dynamics on a bounded interval has
made things considerably easier: by constructing a bounded system which has exactly
the right law, we are relieved of the burden of determining precisely how wrong the
law would be with deterministic boundary.
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Our result lends additional support to the conjecture of Menon and Srinivasan [25]
and we hope that the sticky particle methods described herein will provide another
approach, quite different from that of Bertoin [4], which might be adapted to resolve
the full conjecture. One of the authors is attempting a similar particle approach in the
non-monotone setting, and hopes to report on this in future work.
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Appendix: proofs of lemmas

Proof (Lemma 2.1) Boundedness of G is obvious from its definition as a Laplace
functional. For continuity, we begin by considering G(φt

0q) with q fixed. As t varies,
φt
0q varies continuously, with ρ-values unchanging and x-values changing with rate

bounded by H ′(P), except for finitelymany timeswhen collisions occur. Note G(φt
0q)

depends onφt
0q viaπ(φt

0q, ·), and the former varies continuously across these collision
times. More concretely, because J ∈ C([0, L]), J is uniformly continuous, and so

wJ (δ) = sup{|J (x) − J (y)| : x, y ∈ [0, L], |x − y| ≤ δ} (5.1)

has the property that wJ (δ) → 0 as δ → 0+. Using the above,

| logG(φt
0q) − logG(q)| ≤

n∑
i=1

(ρi − ρi−1)wJ (t H ′(P)) ≤ Pw(t H ′(P)). (5.2)

Since the exponential is uniformly continuous for nonpositive arguments, we find that
G(φt

0q) is continuous at t = 0 uniformly in q. Write

wG(δ) = sup{|G(φt
0q) − G(q)| : q ∈ Q, 0 ≤ t ≤ δ}, (5.3)

and observe that wG(δ) → 0 and δ → 0+.
Suppose now that 0 ≤ s < t ≤ T ; we compare EG(ΦT

s q) and EG(φT
t q). Write

θ = t − s. We have G(ΦT
s q) = G(ΦT

T −θΦ
T −θ
s q) a.s., coupling the random entry

processes on matching intervals. Then

E|G(ΦT
T −θΦ

T −θ
s q) − G(φT

T −θΦ
T −θ
s q)| ≤ Cλ,H ′(P)θ, (5.4)

because the random entries occur at a rate bounded by λH ′(P) and |G| ≤ 1. Using
the time homogeneity and continuity for the deterministic flow,

E|G(φT
T −θΦ

T −θ
s q) − G(ΦT −θ

s q)| ≤ wG(θ). (5.5)
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So, at the cost of an error bounded byCλ,H ′(P)θ +wG(θ), we compareEG(ΦT
t q)with

EG(ΦT −θ
s q) instead. Now the configuration q is flowed on time intervals of equal

length, but with random entry rates that have been shifted in time.
The random entry rate is given by H [ρn, ρ+] f (r, ρn, dρ+) and f is TV-continuous

in r ; we have

‖ f (r, ρn, dρ+) − f (r − θ, ρn, dρ+)‖ =
∥∥∥∥
∫ r

r−θ

(L κ f )(τ, ρn, dρ+) dτ

∥∥∥∥
≤ Cλ,H ′(P)θ. (5.6)

Let us define three kernels for r ∈ [0, T − t] according to

f̂ (r, ρ−, dρ+) = f (s + r, ρ−, dρ+) ∧ f (t + r, ρ−, dρ+)

f s(r, ρ−, dρ+) = f (s + r, ρ−, dρ+) − f̂ (r, ρ−, dρ+)

f t (r, ρ−, dρ+) = f (t + r, ρ−, dρ+) − f̂ (r, ρ−, dρ+),

(5.7)

where the minimum (∧) of two measures is defined as usual by choosing a third
measurewithwhich the former two are absolutely continuous, and taking the pointwise
minimum of their Radon-Nikodym derivatives. That this extends measurably to the
parametric case (i.e. involving kernels) is immediate from a parametric version of the
Radon–Nikodym theorem [26, Theorem 2.3].

Using the above we construct a coupled random entry process for times r ∈ [0, T −
t], namely let (ζ s, ζ t )(r) be the pure-jump Markov process started at (ρn, ρn) from q
and evolving according to the generatorL z acting on bounded measurable functions
J (y, z) defined on [0, P]2 according to

(L z J )(r, y, z) = 1(y = z)
∫

{J (ρ+, ρ+) − J (y, z)}H [y, ρ+] f̂ (r, y, dρ+)

+ 1(y = z)
∫

{J (ρ+, z) − J (y, z)}H [y, ρ+] f s(r, y, dρ+)

+ 1(y = z)
∫

{J (y, ρ+) − J (y, z)}H [z, ρ+] f t (r, z, dρ+)

+ 1(y �= z)
∫

{J (ρ+, z) − J (y, z)}H [y, ρ+]( f̂ + f s)(r, y, dρ+)

+ 1(y �= z)
∫

{J (y, ρ+) − J (y, z)}H [z, ρ+]( f̂ + f t )(r, z, dρ+).

(5.8)
Taking J (y, z) which does not depend on z we find that ζ s(r) for r ∈ [0, T − t] has
the same law as the random boundary for ΦT −θ

s q, and likewise taking J which does
not depend on y we find the ζ t (r) has the same law as the random boundary for ΦT

t q,
verifying the coupling.

On the diagonal y = z, the rate at which L z causes jumps that leave the diagonal
(the second and third lines of (5.8)) is bounded by
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Cλ,H ′(P)θ, (5.9)

and the probability that such a transition never occurs in a time interval of length T − t
is bounded below by

exp[−Cλ,H ′(P)(T − t)θ ] ≥ exp[−Cλ,H ′(P)T θ ]. (5.10)

So, coupling the random entry dynamics, we find thatΦT −θ
s q = ΦT

t q with probability
at least exp[−Cλ,H ′(P)T θ ]. Putting the above pieces together, we find

|EG(ΦT
s q) − EG(ΦT

t q)| ≤ Cλ,H ′(P)(t − s) + wG(t − s)

+ (1 − exp(Cλ,H ′(P)T (t − s))), (5.11)

and the proof is complete. ��
Proof (Lemma 2.2) Using the Markov property of the random flow Φ, we have a
functional identity:

F(s, q) = EG(ΦT
t Φ t

sq) = EF(t, Φ t
sq). (4.12)

Let q be fixed, and consider the following events, whose union is of full measure for
computing the final expectation above:

E0 = {no entry at x = L in (s, t)}
E1 = {at least one entry at x = L in (s, t)} (4.13)

Observe that on E0 we see only the deterministic flow φ over the time interval (s, t):

F(t, Φ t
sq)1E0 = F(t, φt

sq)1E0 , (4.14)

and this occurs with probability

P(E0) = exp

(
−
∫ t

s

∫
H [ρn, ρ+] f (r, ρn; dρ+) dr

)
. (4.15)

We prefer an expression evaluating f at only a single time, and Taylor expand the
exponential around zero.∣∣∣∣
∫ t

s

∫
H [ρn, ρ+] f (r, ρn, dρ+) dr − (t − s)

∫
H [ρn, ρ+] f (t, ρn, dρ+)

∣∣∣∣
=
∣∣∣∣
∫ t

s

∫ r

t

∫
H [ρn, ρ+](L κ f )(r ′, ρn, dρ+) dr ′ dr

∣∣∣∣ ≤ Cλ,H ′(P)(t − s)2, (4.16)

so that

P(E0) = 1 − (t − s)
∫

H [ρn, ρ+] f (t, ρn, dρ+) + O((t − s)2) (4.17)
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and by exhaustion

P(E1) = (t − s)
∫

H [ρn, ρ+] f (t, ρn, dρ+) + O((t − s)2), (4.18)

with both errors bounded uniformly over Q. On E1 write τ for the first time a random
entry occurs forΦ t

s , and ρ+ for the new boundary value, noting that the distribution of
τ depends only on q through ρn and that the law of ρ+ is determined by f (τ, ρn, ·).
We have τ ∈ (s, t) so that

F(t, Φ t
sq)1E1 = F(t, Φ t

τ ερ+φτ
s q)1E1 . (4.19)

Using the strong Markov property for the random boundary at the stopping time τ ,

EF(t, Φ t
τ ερ+φτ

s q)1E1 = EF(τ, ερ+φτ
s q)1E1 . (4.20)

Since P(E1) = O(t − s), we can afford to make o(1) modifications to this. Write
w(δ) for the modulus of continuity of F(t, q) in time, according to Lemma 2.1. Now
τ ∈ (s, t) a.s. on E1, so

|EF(τ, ερ+φτ
s q)1E1 − EF(t, ερ+φτ

s q)1E1 | ≤ P(E1)w(t − s). (4.21)

Nextwemodify the distribution fromwhichρ+ is selected; at present,ρ+ is selected
according to the random measure

H [ρn, ρ+] f (τ, ρn, dρ+)∫
H [ρn, ρ+] f (τ, ρn, dρ+)

. (4.22)

Since τ ∈ (s, t) a.s. on E1, the total variation difference

‖ f (τ, ρn, dρ+) − f (t, ρn, dρ+)‖ ≤ Cλ,H ′(P)(t − s) a.s. (4.23)

Let us write ρ̂+ for an independent random variable distributed as

H [ρn, ρ+] f (t, ρn, dρ+), (4.24)

(note t instead of τ ), normalized to have unit mass. Then∣∣EF(t, ερ+φτ
s q)1E1 − EF(t, ερ̂+φτ

s q)1E1
∣∣ ≤ Cλ,H ′(P)(t − s)P(E1). (4.25)

Note that P(E1) cancels with the normalization in (4.22), up to an O(t − s) error,
and that ρ̂+ is independent of E1. With error bounded uniformly over q ∈ Q by
Cλ,H ′(P)[(t − s)2 + (t − s)w(t − s)], we have

EF(t, Φ t
sq) ≈ F(t, φt

sq)

(
1 − (t − s)

∫
H [ρn, ρ+] f (t, ρn, dρ+)

)

+(t − s)
∫

E[F(t, ερ+φτ
s q) | E1]H [ρn, ρ+] f (t, ρn, dρ+), (4.26)
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where the remaining expectation is now taken only over τ conditioned on E1, which
is therefore distributed over [s, t]. ��
Proof (Lemma 2.3) On any of Ai , i = 0, . . . , n − 1, we have σ = σ(q) ≤ t . For such
q we have

|F(t, φt
sq) − F(t, φσ

s q)| ≤ |F(t, φt
σ φσ

s q) − F(σ, φσ
s q)|

+ |F(σ, φσ
s q) − F(t, φσ

s q)|. (4.27)

The first absolute difference is the error induced by conditioning on zero particle
entries on the interval [s, σ ], which costs less than λH ′(P)(t − s). Lemma 2.1 bounds
the second of these by w(t − s). Using (4.27) we can replace the integrand F(t, φt

sq)

over Ai with F(t, φσ
s q), i.e. the projection of q onto (∂iΔ

L
n ) × ΔP

n+1 in the direction
of the velocity.

Write vi = −H [ρi−1, ρi ] for the velocities. We can integrate over A0 using as a
parametrization for the x-variables

(θ, x2, . . . , xn) �→ (−θv1, x2 − θv2, . . . , xn − θvn), (4.28)

which has absolute Jacobian determinant −v1 = H [ρ0, ρ1]. Namely,∫
A0

F(t, φσ
s q)μn(t, dq)

=
∫

ΔL
n−1×ΔP

n+1

∫ (t−s)∧|(L−xn)/vn |

0
F(t, (0, x2, . . . , xn; ρ0, . . . , ρn))

H [ρ0, ρ1] dθ dx2 · · · dxn �(t, dρ0)

n∏
i=1

f (t, ρi−1, dρi ). (4.29)

On all but a portion of A0 with x-volume bounded by Cn,L ,H ′(P)(t − s)2 we have
t − s < |(L − xn)/vn|, and we can extend the upper limit of integration to θ = t − s
with and error bounded by this. Noting that the configurations

(0, x2, . . . , xn; ρ0, . . . , ρn) and (x2, . . . , xn; ρ1, . . . , ρn) (4.30)

are equivalent under our sticky particle dynamics and relabeling,we obtain our approx-
imation for the integral over A0.

The argument for Ai , i = 1, . . . , n − 1, is similar. We use the mapping

(x1, . . . , xi , xi+2, . . . , xn, θ) �→ (x1 − θv1, . . . , xi − θvi , xi − θvi+1, . . . , xn − θvn),

(4.31)
with absolute Jacobian determinant vi − vi+1 = H [ρi , ρi+1] − H [ρi−1, ρi ], and
replace the upper limit of integration for θ with t − s at the cost of an O((t − s)2)
error. Relabeling gives the indicated approximation.

The range of
φs+θ

s (x1, . . . , xn−1, L; ρ0, . . . , ρn) (4.32)
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where (x1, . . . , xn−1) ∈ ΔL
n−1, (ρ0, . . . , ρn) ∈ ΔP

n+1, and

0 ≤ θ ≤ (t − s) ∧ x1
|v1| ∧ x2 − x1

|v2 − v1| ∧ · · · ∧ xn − xn−1

|vn − vn−1| (4.33)

is B, modulo sets of lower x-dimension. Using Lemma 2.1 we can replace F(t, q) by

F(t, (x1, . . . , xn−1, L; ρ0, . . . , ρn)) (4.34)

with pointwise error over B bounded by Cλ,H ′(P)[w(t − s) + (t − s)]. For all but an
O((t − s)2) portion of the x-volume, the value t − s is the minimum above, and as
before we obtain the indicated approximation of the integral over B. ��

Proof (Lemma 2.4) Essentially we are verifying the Leibniz rule, but we are unable
to find a version of this to cite for kernels. We first obtain quantitative control over our
linear approximations of f and �. Namely, fix any measurable |J | ≤ 1. We have∫

J (ρ+)[ f (t, ρ−, dρ+) − f (s, ρ−, dρ+) − (t − s)(L κ f )(t, ρ−, dρ+)]

=
∫ t

s
J (ρ+)[(L κ f )(τ, ρ−, dρ+) − (L κ f )(t, ρ−, dρ+)]dτ. (4.35)

The difference ofL κ f at different times can be expressed in terms of f and H again,

(L κ f )(τ, ρ−, dρ+) − (L κ f )(t, ρ−, dρ+)

=
∫

(H [ρ∗, ρ+] − H [ρ−, ρ∗])
(∫ τ

t
(L κ f )(τ ′, ρ−, dρ∗)dτ ′

)
f (τ, ρ∗, dρ+)

+
∫

(H [ρ∗, ρ+] − H [ρ−, ρ∗]) f (t, ρ−, dρ∗)
(∫ τ

t
(L κ f )(τ ′, ρ∗, dρ+) dτ ′

)

−
[∫ τ

t

∫ (
H [ρ+, ρ∗](L κ)(τ ′, ρ+, dρ∗)

− H [ρ−, ρ∗](L κ)(τ ′, ρ−, dρ∗)
)

dτ ′
]

f (τ, ρ−, dρ∗)

−
[∫

H [ρ+, ρ∗] f (τ, ρ+, dρ∗)

−H [ρ−, ρ∗] f (τ, ρ−, dρ∗)
] ∫ τ

t
(L κ f )(τ ′, ρ−, dρ+). (4.36)

Noting that ‖L κ f ‖ ≤ 3λ2H ′(P), we integrate over ρ+, then ρ∗, and find that (4.35)
is bounded by

9H ′(P)2λ3(t − s)2. (4.37)
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Next, for any |J | ≤ 1,

∫
J (ρ0)[�(t, dρ0) − �(s, dρ0) − (t − s)(L 0�)(t, dρ0)]

=
∫ t

s
J (ρ0)[(L 0�)(τ, dρ0) − (L 0�)(t, dρ0)]dτ, (4.38)

and

(L 0�)(τ, dρ0) − (L 0�)(t, dρ0)

=
∫

H [ρ∗, ρ0]
(∫ τ

t
(L 0�)(τ ′, dρ∗) dτ ′

)
f (τ, ρ∗, dρ0)

+
∫

H [ρ∗, ρ0]�(t, dρ∗)
(∫ τ

t
(L κ f )(τ ′, ρ∗, dρ0)

)

−
[∫ τ

t

(∫
H [ρ0, ρ∗](L κ f )(τ ′, ρ0, dρ∗)

)
dτ ′
]

�(τ, dρ0)

−
[∫

H [ρ0, ρ∗] f (t, ρ0, dρ∗)
] ∫ τ

t
(L 0�)(τ ′, dρ0) dτ ′. (4.39)

We have ‖L 0�‖ ≤ 2λH ′(P), so by integrating over ρ0 and then ρ∗ we find (4.38) is
bounded by

5H ′(P)2λ2(t − s)2. (4.40)

Returning to the problem of establishing our Leibniz rule, note that e−λL1ΔL
n
(dx)

factors from both μn and L ∗μn . It will therefore suffice to obtain a bound on the
(ρ0, . . . , ρn) portion.

We argue by induction. In the case n = 0, we have only the difference in (4.38),
and the result holds. Now suppose that the result holds for case n, and consider n + 1.
Choose as a test function J (ρ0, . . . , ρn+1), which is measurable and has |J | ≤ 1, and
integrate it against

�(t, dρ0)

n+1∏
j=1

f (t, ρ j−1, dρ j ) − �(s, dρ0)

n+1∏
i=1

f (s, ρ j−1, dρ j )

=
∫

�(t, dρ0)

n∏
j=1

f (t, ρ j−1, dρ j )[ f (t, ρn, dρn+1) − f (s, ρn, dρn+1)]

+
⎡
⎣�(t, dρ0)

n∏
j=1

f (t, ρ j−1, dρ j ) − �(s, dρ0)

n∏
j=1

f (s, ρ j−1, dρ j )

⎤
⎦ f (s, ρn, dρn+1).

(4.41)
For eachρ0, . . . , ρn , the function J (ρ0, . . . , ρn+1) is bounded andmeasurable inρn+1,
so f (t, ρn, dρn+1) − f (s, ρn, dρn+1) can be replaced with

(t − s)
∫

J (ρ0, . . . , ρn+1)(L
κ f )(t, ρn, dρn+1) (4.42)
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plus an error no larger than 9H ′(P)2λ3(t − s)2, which when integrated over the
remaining variables grows by a factor λn .

In the third line of (4.41), noting
∫

J (ρ0, . . . , ρn+1) f (s, ρn, dρn+1) is bounded and
measurable in (ρ0, . . . , ρn), we apply the inductive hypothesis, replacing the bracketed
difference by

(t − s)

[
(L 0�)(t, dρ0)

�(t, dρ0)
+

n∑
i=1

(L κ f )(t, ρi−1, dρi )

f (t, ρi−1, dρi )

]
�(t, dρ0)

n∏
j=1

f (t, ρ j−1, dρ j )

(4.43)
plus an o(t − s) error. After doing this, again noting J (ρ0, . . . , ρn+1) is measurable
in ρn+1 for each fixed ρ0, . . . , ρn , we replace f (s, ρn, dρn+1) with f (t, ρn, dρn+1) at
a cost of 3λ2H ′(P)(t − s), which gets multiplied by the other factor (t − s).

Adding the modified versions of these two lines of (4.41), we find exactly the
ρ0, . . . , ρn+1 portion of L ∗μn+1 plus an o(t − s) error. ��
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