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Abstract Let X = (X jk)
n
j,k=1 denote a Hermitian random matrix with entries X jk ,

which are independent for 1 ≤ j ≤ k ≤ n. We consider the rate of convergence of
the empirical spectral distribution function of the matrix X to the semi-circular law
assuming that EX jk = 0, EX2

jk = 1 and that

sup
n≥1

sup
1≤ j,k≤n

E|X jk |4 =: μ4 < ∞,

and

sup
1≤ j,k≤n

|X jk | ≤ D0n
1
4 .

By means of a recursion argument it is shown that the Kolmogorov distance between
the expected spectral distribution of theWignermatrixW = 1√

n
X and the semicircular

law is of order O(n−1).
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164 F. Götze, A. Tikhomirov

1 Introduction

Consider a family X = {X jk}, 1 ≤ j ≤ k ≤ n, of independent real random variables
defined on some probability space (�,M,Pr), for any n ≥ 1. Assume that X jk = Xkj ,
for 1 ≤ k < j ≤ n, and introduce the symmetric matrices

W = 1√
n

⎛
⎜⎜⎜⎝

X11 X12 · · · X1n
X21 X22 · · · X2n
...

...
. . .

...

Xn1 Xn2 · · · Xnn

⎞
⎟⎟⎟⎠ .

The matrix W has a random spectrum {λ1, . . . , λn} and an associated spectral dis-
tribution function Fn(x) = 1

n card { j ≤ n : λ j ≤ x}, x ∈ R. Averaging over the
random values Xi j (ω), define the expected (non-random) empirical distribution func-
tions Fn(x) = EFn(x). Let G(x) denote the semi-circular distribution function with
density g(x) = G ′(x) = 1

2π

√
4 − x2I[−2,2](x), where I[a,b](x) denotes the indicator-

function of the interval [a, b]. The rate of convergence to the semi-circular law has
been studied by several authors. We proved in [13] that the Kolmogorov distance
between Fn(x) and the distribution function G(x), �∗

n := supx |Fn(x) − G(x)| is of
order OP (n− 1

2 ) (i.e. n
1
2 �∗

n is bounded in probability). Bai et al. [1,2] and Girko [8]

showed that �n := supx |Fn(x) −G(x)| = O(n− 1
2 ). Bobkov, Götze and Tikhomirov

[4] proved that�n andE�∗
n have order O(n− 2

3 ) assuming a Poincaré inequality for the
distribution of the matrix elements. For the Gaussian Unitary Ensemble respectively
for the Gaussian Orthogonal Ensemble, see [12] respectively [21], it has been shown
that �n = O(n−1). Denote by γn1 ≤ · · · ≤ γnn , the quantiles of G, i.e. G(γnj ) = j

n ,
and introduce the notation llogn := log log n. Erdös et al. [6,7] showed, for matrices
with elements X jk which have a uniformly sub exponential decay, i.e.

Pr{|X jk | > t} ≤ A exp{−t�}, (1.1)

for some � > 0, A > 0 and for any t ≥ 1, the following result

Pr
{
∃ j : |λ j − γnj | ≥ (log n)C llogn [min( j, N − j + 1)]−

1
3 n− 2

3

}

≤ C exp{−(log n)c llogn }, (1.2)

for n large enough. It is straightforward to check that this bound implies that

Pr

{
sup
x

|Fn(x) − G(x)| ≤ Cn−1(log n)C llogn

}
≥ 1−C exp{−(log n)c llogn }. (1.3)

From the last inequality it follows that E�∗
n ≤ C n−1(log n)C llogn . Similar results

were obtained in [20, Theorem 32], assuming additionally that the distributions of the
entries of matrices have vanishing third moment.
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Optimal bounds for convergence... 165

In this paper we derive the optimal bound for the rate of convergence of the expected
spectral distribution to the semi-circular law. Using arguments similar to those used
in [17] we provide a self-contained proof based on recursion methods developed in
the papers of Götze and Tikhomirov [9,13] and [22]. It follows from the results of
Gustavsson [14] that the best possible bound in the Gaussian case for the rate of
convergence in probability is O(n−1√log n). The best possible bound for �n is of
order O(n−1). For Gaussian matrices such bounds were obtained in [12] and [21]. Our
setup includes the case that the distributions of X jk = X (n)

jk may depend on n. In the
following we shall investigate the rate of convergence of expected spectral distribution
function Fn(x) = EFn(x) to the semi-circular distribution function by estimating the
quantity �n . The main result of this paper is the following

Theorem 1.1 Let EX jk = 0, EX2
jk = 1. Assume that

sup
n≥1

sup
1≤ j,k≤n

E|X jk |4 =: μ4 < ∞. (1.4)

Assume as well that there exists a constant D0 such that for all n ≥ 1

sup
1≤ j,k≤n

|X jk | ≤ D0n
1
4 . (1.5)

Then, there exists a positive constant C = C(D0, μ4) depending on D0 and μ4
only such that

�n = sup
x

|Fn(x) − G(x)| ≤ Cn−1. (1.6)

Corollary 1.1 Let EX jk = 0, EX2
jk = 1. Assume that

sup
n≥1

sup
1≤ j,k≤n

E|X jk |8 =: μ8 < ∞. (1.7)

Then, there exists a positive constant C = C(μ8) depending on μ8 only such that

�n ≤ Cn−1. (1.8)

Remark 1.2 Note that the bound (1.6) in Theorem 1.1 and the bound (1.8) in the
Corollary 1.1 are not improvable and coincide with the corresponding bounds in the
Gaussian case.

We state here as well the results for the Stieltjes transform of the expected spectral
distribution of the matrix W. Let R denote the resolvent matrix of the matrix W,

R := R(z) = (W − zI)−1.

Here and in what follows I denotes the unit matrix of corresponding dimension. For
any distribution function F(x) we define the Stieltjes transform sF (z), for z = u + iv
with v > 0, via formula
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166 F. Götze, A. Tikhomirov

sF (z) =
∫ ∞

−∞
1

x − z
dF(x).

Denote by mn(z) the Stieltjes transform of the distribution function Fn(x). It is a
well-known fact that

mn(z) = 1

n

n∑
j=1

1

λ j − z
= 1

n
Tr R.

By s(z) we denote the Stieltjes transform of the semi-circular law,

s(z) = −z + √
z2 − 4

2
.

The Stieltjes transform of the semi-circular distribution satisfies the equation

s2(z) + zs(z) + 1 = 0 (1.9)

(see, for example, [13, equality (4.20)]).
Introduce for z = u + iv and a positive constant A0 > 0

v0 := A0n
−1, and γ := γ (z) := |2 − |u||. (1.10)

For any 0 < ε < 1
2 , and A0 > 0, define a region G = G(A0, n, ε) ⊂ C+, by

G :=
{
z = u + iv ∈ C+ : −2 + ε ≤ u ≤ 2 − ε, v ≥ v0/

√
γ (z)

}
. (1.11)

Let a > 0 be a positive number such that

1

π

∫
|u|≤a

1

u2 + 1
du = 3

4
. (1.12)

We prove the following result.

Theorem 1.3 Let 1
2 > ε > 0 be a sequence of positive numbers in (1.11) such that

ε
3
2 = 2v0a. (1.13)

Assuming the conditions of Theorem 1.1, there exists a positive constant C =
C(D0, A0, μ4) depending on D, A0 and μ4 only, such that, for z ∈ G

|Emn(z) − s(z)| ≤ C

nv
3
4

+ C

n
3
2 v

3
2 |z2 − 4| 14

.
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Optimal bounds for convergence... 167

1.1 Sketch of the proof

1.We start with an estimate of the Kolmogorov-distance to theWigner distribution via
an integral over the difference of the corresponding Stieltjes transforms along a contour
in the upper half-plane using a smoothing inequality (2.1) and Cauchy’s formula
developed by the authors in [11]. The resulting bound (2.3) involves an integral over a
segment at a fixeddistance, sayV = 4, from the real axis and a segmentu+i A0n−1(2−
|u|)− 1

2 , |u| ≤ 2 at a distance of order n−1 but avoiding to come close to the endpoints
±2 of the support. These segments are part of the boundary of an n-dependent region
G where bounds of Stieltjes transforms are needed. Since the Stieltjes-transform and
the diagonal elements R j j (z) of the resolvent of the Wigner-matrix W are uniformly
bounded on the segment with Im z = V by 1/V (see Sect. 3.1) proving a bound of
order O(n−1) for the latter segment near the x-axis is the essential problem.
2. In order to investigate this crucial part of the error we start with the 2nd resolvent
or self-consistency equation for the expected Stieltjes transform resp. the quantities
R j j (z) ofW (see (3.2) below) based on the difference of the resolvent ofW( j) ( j th row
and column removed) and W. For the equivalent representation for the difference of

Stieltjes transforms (see (3.3))we have to show an error bound of order O((nv)− 3
2 |z2−

4|− 1
4 ) for z ∈ G. To prove this bound we use a recursive version of this representations

as in (5.32). Obviously bounds for E|R j j |p for z = u + iv close to the real line are
needed for the sufficiently large p, which follow once the error terms ε j are small in the
region G. But proving that E|ε j |p is small requires in turn again bounds of E|R j j |2p.

An approach suggested recently in [17] turns out to be very fruitful in dealing with
this recursion problem. Assuming that E|R j j |2p ≤ C2p

0 for some z = u + iv, we can
show that E|R j j |p ≤ C p

0 with z = u + iv/s0 with some fixed scale factor s0 > 1.
This allows us to prove by induction a bound of type E|R j j |q ≤ Cq

0 for some fixed q
(independent of n) and z = u + iv with v ≥ Cn−1 starting with E|R j j |p ≤ C p

0 for
p = sq0 and z = u+iv for fixed v = 4, say. The latter assumption can be easily verified.

Note that one of the errors, that is ε j2, in (3.2) is a quadratic form in independent
random variables. Thus, in case that W has entries with exponential or even sub-
Gaussian tails, inequalities for quadratic forms of independent random variables, like
[11, Lemma 3.8] or [17, Proposition A.1], could be applied.

Assuming eight moments in Corollary 1.1 or four moments and a truncation con-
dition in Theorem 1.1 only, we can’t use these strong tail estimates for quadratic
forms anymore. Our solution is an recursive application of Burkholder’s inequality
for the pth moment resulting in a bound involving moments of order p/2 of another
quadratic form in independent variables in each step. This is the crucial part of the
moment recursion for R j j described above. Details of this procedure are described in
Sects. 5.1 and 5.2.
3. In Sect. 6 we prove a bound for the error E
n := E(mn(z) − s(z)) of the form

n−1v− 3
4 + (nv)− 3

2 |z2 −4|− 1
4 which suffices to prove the rate O(n−1) in Theorem 1.1.

Here we use a series of martingale-type decompositions to evaluate the expectation
Emn(z) combinedwith the boundE|
n|2 ≤ C(nv)−2 of Lemma 7.24 in theAppendix
which is again based on a recursive inequality forE|
n |2 in (7.71). A direct application
of this bound to estimate the error terms ε j4 would result in a less precise bound of order
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168 F. Götze, A. Tikhomirov

O(n−1 log n) in Theorem 1.1. Bounds of such type will be shown for the Kolmogorov
distance of the random spectral distribution to Wigner’s law in a separate paper. For
the expectation we provide sharper bounds in Sect. 6.2 involving m′

n(z).
4. The necessary auxiliary bounds for all these steps are collected in the Appendix.

2 Bounds for the Kolmogorov distance of spectral distributions
via Stieltjes transforms

To bound the error �n we shall use an approach developed in previous work of the
authors, see [13].

We modify the bound of the Kolmogorov distance between an arbitrary distribu-
tion function and the semi-circular distribution function via their Stieltjes transforms
obtained in [13, Lemma 2.1]. For x ∈ [−2, 2] define γ (x) := 2−|x |. Given 1

2 > ε > 0
introduce the interval Jε = {x ∈ [−2, 2] : γ (x) ≥ ε} and J′

ε = Jε/2. For a distribution
function F denote by SF (z) its Stieltjes transform.

Proposition 2.1 Let v > 0 and a > 0 and 1
2 > ε > 0 be positive numbers such that

1

π

∫
|u|≤a

1

u2 + 1
du = 3

4
, (2.1)

and
2va ≤ ε

3
2 . (2.2)

If G denotes the distribution function of the standard semi-circular law, and F is any
distribution function, there exist some absolute constants C1 and C2 such that

�(F,G) := sup
x

|F(x) − G(x)|

≤ 2 sup
x∈J′

ε

∣∣∣∣Im
∫ x

−∞

(
SF

(
u + i

v√
γ

)
− SG

(
u + i

v√
γ

))
du

∣∣∣∣+ C1v + C2ε
3
2 .

Remark 2.2 For any x ∈ Jε we have γ = γ (x) ≥ ε and according to condition (2.2),
av√
γ

≤ ε
2 .

For a proof of this Proposition see [11, Proposition 2.1].

Lemma 2.1 Under the conditions of Proposition 2.1, for any V > v and 0 < v ≤ ε3/2

2a
and v′ = v/

√
γ , γ = 2 − |x |, x ∈ J

′
ε as above, the following inequality holds

sup
x∈J′

ε

∣∣∣∣
∫ x

−∞
(Im (SF (u + iv′) − SG(u + iv′))du

∣∣∣∣

≤
∫ ∞

−∞
|SF (u + iV ) − SG(u + iV )|du

+ sup
x∈J′

ε

∣∣∣∣
∫ V

v′
(SF (x + iu) − SG(x + iu)) du

∣∣∣∣ .
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Optimal bounds for convergence... 169

Proof Let x ∈ J
′
ε be fixed. Let γ = γ (x). Put z = u + iv′. Since v′ = v√

γ
≤ ε

2a ,

see (2.2), we may assume without loss of generality that v′ ≤ 4 for x ∈ J
′
ε. Since

the functions SF (z) and SG(z) are analytic in the upper half-plane, it is enough to use
Cauchy’s theorem. We can write for x ∈ J

′
ε

∫ x

−∞
Im (SF (z) − SG(z))du = Im

{
lim
L→∞

∫ x

−L
(SF (u + iv′) − SG(u + iv′))du

}
.

By Cauchy’s integral formula, we have
∫ x

−L
(SF (z) − SG(z))du =

∫ x

−L
(SF (u + iV ) − SG(u + iV ))du

+
∫ V

v′
(SF (−L + iu) − SG(−L + iu))du

−
∫ V

v′
(SF (x + iu) − SG(x + iu))du.

Denote by ξ (resp. η) a random variable with distribution function F(x) (resp. G(x)).
Then we have

|SF (−L + iu)| =
∣∣∣∣E

1

ξ + L − iu

∣∣∣∣ ≤ v′−1 Pr{|ξ | > L/2} + 2

L
,

for any v′ ≤ u ≤ V . Similarly,

|SG(−L + iu)| ≤ v′−1 Pr{|η| > L/2} + 2

L
.

These inequalities imply that
∣∣∣∣
∫ V

v′
(SF (−L + iu) − SG(−L + iu))du

∣∣∣∣ → 0 as L → ∞,

which completes the proof. �
Combining the results of Proposition 2.1 and Lemma 2.1, we get

Corollary 2.2 Under the conditions of Proposition 2.1 the following inequality holds

�(F,G) ≤ 2
∫ ∞

−∞
|SF (u + iV ) − SG(u + iV )|du + C1v0 + C2ε

3
2

+ 2 sup
x∈J′

ε

∫ V

v′
|SF (x + iu) − SG(x + iu)|du, (2.3)

where v′ = v0√
γ
with γ = 2 − |x | and C1,C2 > 0 denote absolute constants.
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170 F. Götze, A. Tikhomirov

3 Proof of Theorem 1.1

Proof We shall apply Corollary 2.2 to prove the Theorem 1.1. We choose V = 4 and

v0 as defined in (1.10) and use the quantity ε = (2av0)
2
3 .

3.1 Estimation of the first integral in (2.3) for V = 4

Denote by T = {1, . . . , n}. In the following we shall systematically use for any
n × n matrix W together with its resolvent R, its Stieltjes transform mn etc. the
corresponding quantities W(A), its resolvent R(A) and its Stieltjes transform m(A)

n for
the corresponding sub matrix with entries X jk, j, k /∈ A, A ⊂ T = {1, . . . , n}. Let
TA = T\A. Observe that

m(A)
n (z) = 1

n

∑
j∈TA

1

λ
(A)
j − z

.

By M(A) we denote the σ -algebra generated by Xlk with l, k ∈ TA. If A = ∅ we
shall omit the set A as exponent index.

We shall use the representation

R j j = 1

−z + 1√
n
X j j − 1

n

∑
k,l∈T j

X jk X jl R
( j)
kl

, (3.1)

(see, for example, [13, equality (4.6)]). We may rewrite it as follows

R j j = − 1

z + mn(z)
+ 1

z + mn(z)
ε j R j j , (3.2)

where ε j := ε j1 + ε j2 + ε j3 + ε j4 with

ε j1 := 1√
n
X j j , ε j2 := −1

n

∑
k �=l∈T j

X jk X jl R
( j)
kl ,

ε j3 := −1

n

∑
k∈T j

(X2
jk − 1)R( j)

kk , ε j4 := 1

n
(Tr R − Tr R( j)).

Let


n := 
n(z) := mn(z) − s(z) = 1

n
Tr R − s(z).

Summing equality (3.2) in j = 1, . . . , n and solving with respect 
n , we get


n = mn(z) − s(z) = Tn
z + mn(z) + s(z)

, (3.3)
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where

Tn = 1

n

n∑
j=1

ε j R j j .

Obvious bounds like |z + s(z)| ≥ 1, |λ j − z|−1 ≤ v−1, max{|R(J)
j j (z)|, |m(J)

n (z)|} ≤
v−1, imply that for V = 4 and for any J ⊂ T,

|m(J)
n (z)| ≤ 1

4
≤ 1

2
|z + s(z)|,

|s(z) − m(J)
n (z)| ≤ 1

2
≤ 1

2
|z + s(z)|, a.s.

and therefore,

|z + m(J)
n (z) + s(z)| ≥ 1

2
|z + s(z)|, |z + m(J)

n (z)| ≥ 1

2
|s(z) + z|. (3.4)

Using equality (3.3), we may write

E
n = 1

n

n∑
j=1

E
ε j R j j

z + mn(z) + s(z)

=
4∑

ν=1

1

n

n∑
j=1

E
ε jνs(z)

z + mn(z) + s(z)
+

4∑
ν=1

1

n

n∑
j=1

E
ε jν(R j j − s(z))

z + mn(z) + s(z)
.

We use that E{ε jν |M( j)} = 0, for ν = 1, 2, 3 and obtain

1

n

n∑
j=1

E
ε jνs(z)

z + mn(z) + s(z)
= −1

n

n∑
j=1

E
ε jνε j4s(z)

(z + m( j)
n (z) + s(z))(z + mn(z) + s(z))

.

Thus, according to inequalities (3.4), Lemmas 7.8, 7.9, 7.10, 7.12 in the Appendix and
Eq. (1.9), we obtain

∣∣∣∣∣∣
1

n

n∑
j=1

E
ε jνs(z)

z + mn(z) + s(z)

∣∣∣∣∣∣
≤ 4|s(z)|3 1

n

n∑
j=1

E|ε j4ε jν | ≤ C |s(z)|2
n

3
2

,

where C depends on μ4 only. For ν = 4, Lemma 7.12 in the Appendix, inequality
(3.4) and relation (1.9) yield

1

n

n∑
j=1

|s(z)||ε j4|
|z + mn(z) + s(z)| ≤ C

n
|s(z)|2 (3.5)
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172 F. Götze, A. Tikhomirov

with some absolute constantC . Furthermore, applying the Cauchy–Schwartz inequal-
ity and inequality (3.4) and relation (1.9), we get

∣∣∣∣∣∣
4∑

ν=1

1

n

n∑
j=1

E
ε jν(R j j − s(z))

z + mn(z) + s(z)

∣∣∣∣∣∣
≤ C |s(z)|

4∑
ν=1

1

n

n∑
j=1

E
1
2 |ε jν |2E

1
2 |R j j − s(z)|2.

(3.6)

Wemay rewrite the representation (3.2) using
n = mn(z)−s(z) and (1.9) as (compare
(3.1))

R j j = s(z) − s(z)ε j R j j − s(z)
n R j j . (3.7)

Applying representations (3.3) and (3.7) together with (3.4) and |R j j | ≤ 1
4 , we obtain

E|R j j (z) − s(z)|2 ≤ C |s(z)|2 1
n

n∑
l=1

E|εl |2. (3.8)

Combining inequalities (3.6) and (3.8), we get

∣∣∣∣∣∣
4∑

ν=1

1

n

n∑
j=1

E
ε jν(R j j − s(z))

z + mn(z) + s(z)

∣∣∣∣∣∣
≤ C |s(z)|2

4∑
ν=1

1

n

n∑
j=1

E|ε jν |2. (3.9)

Applying now Lemmas 7.8, 7.9, 7.10 and 7.12, we get

∣∣∣∣∣∣
4∑

ν=1

1

n

n∑
j=1

E
ε jν(R j j − s(z))

z + mn(z) + s(z)

∣∣∣∣∣∣
≤ C |s(z)|2

n
. (3.10)

Inequality (3.5) and (3.10) together imply

|E
n| ≤ C

n
|s(z)|2. (3.11)

Consider now the integral

I nt (V ) =
∫ ∞

−∞
|Emn(u + iV ) − s(u + iV )|du

for V = 4. Using inequality (3.11), we have

|I nt (V )| ≤ C

n

∫ ∞

−∞
|s(u + V i)|2du.
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Finally, we note that

∫ ∞

−∞
|s(z)|2dx ≤

∫ ∞

−∞

∫ ∞

−∞
1

(x − u)2 + V 2 dudFn(x) ≤ π

V
. (3.12)

Therefore, ∫ ∞

−∞
|Emn(u + iV ) − s(u + iV )|du ≤ C

n
. (3.13)

3.2 Estimation of the second integral in (2.3)

To finish the proof of Theorem 1.1 we need to bound the second integral in (2.3) for

z ∈ G and v0 = A0n−1, where ε = (2av0)
2
3 is defined in such a way that condition

(2.2) holds. We shall use the results of Theorem 1.3. According to these results we
have, for z ∈ G,

|Emn(z) − s(z)| ≤ C

nv
3
4

+ C

n
3
2 v

3
2 |z2 − 4| 14

. (3.14)

We have

∫ V

v0/
√

γ

|E(mn(x + iv) − s(x + iv))|dv ≤ C

n

∫ V

v0√
γ

dv

v
3
4

+ C

n
√
nγ

1
4

∫ V

v0√
γ

dv

v
3
2

.

After integrating we get

∫ V

v0/
√

γ

|E(mn(x + iv) − s(x + iv))|dv ≤ C

n
+ Cγ

1
4

n
√
nγ

1
4 v

1
2
0

≤ C

n
. (3.15)

Inequalities (3.13) and (3.15) complete the proof of Theorem1.1. Thus Theorem1.1
is proved. �

4 The proof of Corollary 1.1

To prove the Corollary 1.1 we consider truncated random variables X̂ jl defined by

X̂ jl := X jlI{|X jl | ≤ cn
1
4 }. (4.1)

Let F̂n(x) denote the empirical spectral distribution function of the matrix Ŵ =
1√
n
(X̂ jl).

Lemma 4.1 Assuming the conditions of Theorem 1.1 there exists a constant C > 0
depending on μ8 only such that

E
{
sup
x

|Fn(x) − F̂n(x)|
}

≤ C

n
.
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Proof We shall use the rank inequality of Bai. See [3, TheoremA.43, p. 503]. Accord-
ing this inequality

E
{
sup
x

|Fn(x) − F̂n(x)|
}

≤ 1

n
E
{
rank(X − X̂)

}
.

Observing that the rank of a matrix is not larger then numbers of its non-zero entries,
we may write

E
{
sup
x

|Fn(x) − F̂n(x)|
}

≤1

n

n∑
j,k=1

EI
{
|X jk | ≥ Cn

1
4

}
≤ 1

n3

n∑
j,k=1

E|X jk |8 ≤ Cμ8

n
.

Thus, the Lemma is proved. �
Note that in the bound of the first integral in (2.3) we used the condition (1.4) only.

We shall compare the Stieltjes transform of the matrix Ŵ and the matrix obtained
from Ŵ by centralizing and normalizing its entries. Introduce X̃ jk = X̂ jk −EX̂ jk and
W̃ = 1√

n
(X̃ jk)

n
j,k=1. We normalize the r.v.’s X̃ jk . Let σ 2

jk = E|X̃ jk |2. We define the

r.v.’s X̆ jk = σ−1
jk X̃ jk . Finally, let m̆n(z) (resp. m̂n(z), m̃n(z)) denote the Stieltjes trans-

form of the empirical spectral distribution function of the matrix W̆ = 1√
n
(X̆ jk)

n
j,k=1

(resp. Ŵ, W̃).

Remark 4.1 Note that

|X̆ jl | ≤ D1n
1
4 , EX̆ jl = 0 and EX̆2

jk = 1, (4.2)

for some absolute constant D1. That means that the matrix W̆ satisfies the conditions
of Theorem 1.3.

Lemma 4.2 There exists some absolute constant C depending on μ8 such that

E|m̃n(z) − m̆n(z)| ≤ C

n
3
2 v

3
2

.

Proof Note that

m̆n(z) = 1

n
Tr (W̆ − zI)−1 =: 1

n
Tr R̆, m̃n(z) = 1

n
Tr (W̃ − zI)−1 =: 1

n
Tr R̃.

Therefore,

m̃n(z) − m̆n(z) = 1

n
Tr (R̃ − R̆) = 1

n
Tr (W̃ − W̆)R̃R̂. (4.3)

Using the simple inequalities |Tr AB| ≤ ‖A‖2‖B‖2 and ‖AB‖2 ≤ ‖A‖‖B‖2, we get

E|m̃n(z) − m̆n(z)| ≤ n−1E
1
2 ‖R̃‖2‖R̆‖22E

1
2 ‖W̃ − W̆‖22. (4.4)
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Furthermore, we note that,

W̃ − W̆ = 1√
n
((1 − σ jk)X̆ jk), (4.5)

and

‖W̃ − W̆‖2 ≤ max
1≤ j,k≤n

{1 − σ jk}‖W̆‖2.

Since

0 < 1 − σ jk ≤ 1 − σ 2
jk ≤ Cn− 3

2 μ8,

therefore
E‖W̃ − W̆‖22 ≤ Cμ2

8n
−2. (4.6)

Applying Lemma 7.6 inequality (7.11) in the Appendix we get

E
1
2 ‖R̃‖2‖R̆‖22 ≤ v−1E

1
2 ‖R̆‖22 ≤ v−1

⎛
⎝∑

j,k

E|R̆ jk |2
⎞
⎠

1
2

≤ v− 3
2
√
n(Im m̆n(z))

1
2 .

(4.7)
Using now inequalities (4.6) and (4.7), we obtain

E|m̃n(z) − m̆n(z)| ≤ Cn− 3
2 v− 3

2

⎛
⎝1

n

n∑
j=1

E|R̆ j j |
⎞
⎠

1
2

.

According Remark 4.1, we may apply Corollary 5.14 in Sect. 5 with q = 1 to prove
the claim. Thus, Lemma 4.2 is proved. �
Lemma 4.3 For some absolute constant C > 0 we have

E|m̃n(z) − m̂n(z)| ≤ Cμ8

n
3
2 v

3
2

.

Proof Similar to (4.3), we write

m̃n(z) − m̂n(z) = 1

n
Tr (R̃ − R̂) = 1

n
Tr (W̃ − Ŵ)R̃R̂.

This yields
E|m̃n(z) − m̂n(z)| ≤ n−1E‖R̂‖‖R̃‖2‖EŴ‖2. (4.8)

Furthermore, we note that, by definition (4.1) and condition (1.7), we have

|EX̂ jk | ≤ Cn− 7
4 μ8. (4.9)
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Applying (Lemma 7.6 inequality (7.11) in the Appendix) and inequality (4.9), we
obtain using ‖R̂‖ ≤ v−1,

E|m̃n(z) − m̂n(z)| ≤ n− 7
4 v− 3

2 E
1
2 |m̃n(z)|.

By Lemma 4.2,

E|m̃n(z)| ≤ E|m̆n(z)| + C,

for some constantC depending onμ8 and A0. According to Corollary 5.14 in Sect. 5.2
with q = 1

E|m̆n(z)| ≤ 1

n

n∑
j=1

E|R̆ j j | ≤ C,

with a constant C depending on μ4, D0. Using these inequalities, we get

E|m̃n(z) − m̂n(z)| ≤ Cμ8

n
7
4 v

3
2

≤ Cμ8

n
3
2 v

3
2

.

Thus Lemma 4.3 is proved. �
Corollary 4.4 Assuming the conditions of Corollary 1.1, we have for z ∈ G,

|Em̂n(z) − s(z)| ≤ C

(nv)
3
2

+ C

n2v2
√

γ
.

Proof The proof immediately follows from the inequality

|Em̂n(z) − s(z)| ≤ |E(m̂n(z) − m̆n(z))| + |Em̆n(z) − s(z)|,

Lemmas 4.2 and 4.3 and Theorem 1.3. �
The proof of Corollary 1.1 follows now from Lemma 4.1, Corollary 2.2, inequality

(3.13) and inequality

sup
x∈Jε

∫ V

v0/
√

γ

|Em̂n(x + iv) − s(x + iv)|dv ≤ C

n
.

5 Resolvent matrices and quadratic forms

The crucial problem in the proof of Theorem 1.3 is the following bound for any z ∈ G

E|R j j |p ≤ C p,
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for j = 1, . . . , n and some absolute constant C > 0. To prove this bound we use an
approach similar to the proof of Lemma 3.4 in [17]. In order to arrive at our goal we
need additional bounds of quadratic forms of type

E

∣∣∣∣∣∣
1

n

∑
l �=k

X jl X jk R
( j)
kl

∣∣∣∣∣∣

p

≤
(

Cp√
nv

)p

.

To prove this bound we recurrently use Rosenthal’s and Burkholder’s inequalities.

5.1 The key lemma

In this Section we provide auxiliary lemmas needed for the proof of Theorem 1.1.
For any J ⊂ T introduce TJ = T\J. We introduce the quantity, for some J ⊂ T,

B(J)
p :=

⎡
⎣1

n

∑
q∈TJ

⎛
⎝∑

r∈TJ

|R(J)
qr |2

⎞
⎠

p⎤
⎦ .

By Lemma 7.6, inequality (7.12) in the Appendix, we have

EB(J)
p ≤ v−p 1

n

∑
q∈TJ

E|R(J)
qq |p. (5.1)

Furthermore, introduce the quantities

Q(J,k)
ν =

∑
l∈TJ,k

∣∣∣∣∣∣
∑

r∈TJ,k∩{1,...,l−1}
Xkra

(J,k,ν)
lr

∣∣∣∣∣∣

2

,

Q(J,k)
ν1 =

∑
r∈TJ,k

a(J,k,ν+1)
rr ,

Q(J,k)
ν2 =

∑
r∈TJ,k

(X2
kr − 1)a(J,k,ν+1)

rr ,

Q(J,k)
ν3 =

∑
r �=q∈TJ,k

Xkr Xkqa
(J,k,ν+1)
qr , (5.2)

where, a(J,k,0)
qr are defined recursively via

a(J,k,0)
qr = 1√

n
R(J,k)
qr ,

a(J,k,ν+1)
qr =

∑
l∈{max{q,r}+1,...,n}∩TJ,k

a(J,k,ν)
rl a(J,k,ν)

lq , for ν = 0, . . . , L . (5.3)
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Using these notations we have

Q(J,k)
ν = Q(J,k)

ν1 + Q(J,k)
ν2 + Q(J,k)

ν3 . (5.4)

Lemma 5.1 Under the conditions of Theorem 1.1 we have

∑
r∈TJ,k

|a(J,k,ν+1)
qr |2 ≤

⎛
⎝

n∑
l,r∈TJ,k

|a(J,k,ν)
lr |2

⎞
⎠
⎛
⎝

n∑
l∈TJ,k

|a(J,k,ν)
ql |2

⎞
⎠ . (5.5)

Moreover,

∑
q,r∈TJ,k

|a(J,k,ν+1)
qr |2 ≤

⎛
⎝ ∑

q,r∈TJ,k

|a(J,k,ν)
qr |2

⎞
⎠

2

. (5.6)

Proof We apply Hölder’s inequality and obtain

|a(J,k,ν+1)
q,r |2 ≤

∑
l∈TJ,k

|a(J,k,ν)
ql |2

∑
l∈TJ,k

|a(J,k,ν)
lr |2.

Summing in q and r , (5.5) and (5.6) follow. �
Corollary 5.2 Under the conditions of Theorem 1.1 we have

∑
q,r∈TJ,k

|a(J,k,ν)
qr |2 ≤

((
Imm(J)

n (z) + 1

nv

)
v−1

)2ν

and

∑
r∈Tk

|a(J,k,ν)
qr |2 ≤

((
Imm(J)

n (z) + 1

nv

)
v−1

)2ν−1

n−1v−1Im R(J,k)
qq .

Proof By definition of a(J,k,0)
qr , see (5.3), applying (Lemma 7.6 inequality (7.11) in

the Appendix), we get

∑
q,r∈TJ,k

|a(J,k,0)
qr |2 ≤ 1

n

∑
q,r∈TJ,k

|R(J,k)
qr |2 ≤

(
Imm(J)

n (z) + 1

nv

)
v−1, (5.7)

and by definition (5.3),

∑
r∈TJ,k

|a(J,k,0)
qr |2 ≤ 1

n

∑
r∈TJ,k

|R(J,k)
qr |2. (5.8)
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The general case follows now by induction in ν, Lemma 5.1, and Lemma 7.6
inequality (7.12) in the Appendix. �
Corollary 5.3 Under the conditions of Theorem 1.1 we have

a(J,k,ν+1)
rr ≤

((
Imm(J)

n (z) + 1

nv

)
v−1

)2ν−1

n−1v−1Im R(J,k)
rr . (5.9)

Proof The result immediately follows from the definition of a(k,ν)
rr and Corollary 5.2.

�
In what follows we shall use the notations

�(J) = Imm(J)
n (z) + 1

nv
, (A(J)

ν,p)
2 = E(�(J))(2

ν−1)2p, T (J,k)
ν,p = E|Q(J,k)

ν |p,
A(J)
p := 1 + E

1
4 |�(J)|4p. (5.10)

Let s0 denote some fixed number (for instance s0 = 28). Let A1 be a constant (to be
chosen later) and 0 < v1 ≤ 4 a constant such that v0 = A0n−1 ≤ v1 for all n ≥ 1.

Lemma 5.4 Assuming the conditions of Theorem 1.1 and for p ≤ A1(nv)
1
4

E|R(J)
j j |p ≤ C p

0 , for v ≥ v1, for all j = 1, . . . , n, (5.11)

we have for v ≥ v1/s0 and p ≤ A1(nv)
1
4 , and k ∈ TJ

E
(
Q(J,k)

0

)p ≤ 6

(
C3 p√

2

)2p

v−p A(J)
p . (5.12)

Proof Using the representation (5.4) and the triangle inequality, we get

E|Q(J,k)
ν |p ≤ 3p

(
E|Q(J,k)

ν1 |p + E|Q(J,k)
ν2 |p + E|Q(J,k)

ν3 |p
)

. (5.13)

Let M(A) denote the σ -algebra generated by r.v.’s X j,l for j, l ∈ TA, for any set
A. Conditioning on M(J,k) (A = J ∪ {k}) and applying Rosenthal’s inequality (see
Lemma 7.1), we get

E|Q(J,k)
ν2 |p ≤ C p

1 p
p

⎛
⎜⎝E

⎛
⎝ ∑

r∈TJ,k

|a(J,k,ν+1)
rr |2

⎞
⎠

p
2

+
∑

r∈TJ,k

E|a(J,k,ν+1)
rr |pE|Xkr |2p

⎞
⎟⎠ ,

(5.14)

where C1 denotes the absolute constant in Rosenthal’s inequality. By Remark 4.1, we
get
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E|Q(J,k)
ν2 |p ≤ C p

1 p
p

⎛
⎜⎝E

⎛
⎝ ∑

r∈TJ,k

|a(J,k,ν+1)
rr |2

⎞
⎠

p
2

+ n
p
2
1

n

∑
r∈TJ,k

E|a(J,k,ν+1)
rr |p

⎞
⎟⎠ .

(5.15)

Analogously conditioning on M(J,k) and applying Burkholder’s inequality (see
Lemma 7.3), we get

E|Q(J,k)
ν3 |p ≤ C p

2 p
p

⎛
⎜⎝E

⎛
⎝ ∑

r∈TJ,k

∣∣∣∣
∑

q∈TJ,k∩{1,...,r−1}
Xkqa

(J,k,ν+1)
rq |2

⎞
⎠

p
2

+
n−1∑
q=1

E

∣∣∣∣∣∣
q−1∑
r=1

Xkra
(J,k,ν+1)
rq

∣∣∣∣∣∣

p

E|Xkq |p
⎞
⎟⎠ , (5.16)

whereC2 denotes the absolute constant in Burkholder’s inequality. Conditioning again
onM(J,k) and applying Rosenthal’s inequality, we obtain

E

∣∣∣∣∣∣
∑

r∈TJ,k

Xkra
(J,k,ν+1)
rq

∣∣∣∣∣∣

p

≤ C p
1 p

p

⎛
⎜⎝E

⎛
⎝

q−1∑
r=1

|a(J,k,ν+1)
rq |2

⎞
⎠

p
2

+
∑

r∈TJ,k

E|a(J,k,ν+1)
rq |pE|Xkr |p

⎞
⎟⎠ . (5.17)

Combining inequalities (5.16) and (5.17), we get

E|Q(J,k)
ν3 |p ≤ C p

2 p
pE|Q(J,k)

ν+1 | p
2 +C p

1 C
p
2 p

2p
∑

q∈TJ,k

E

⎛
⎝ ∑

r∈TJ,k

|a(J,k,ν+1)
rq |2

⎞
⎠

p
2

E|Xkq |p

+C p
1 C

p
2 p

2p
∑

q∈TJ,k

∑
r∈TJ,k

E|a(J,k,ν+1)
rq |pE|Xkq |pE|Xkr |p. (5.18)

Using Remark 4.1, this implies

E|Q(J,k)
ν3 |p ≤ C p

2 p
pE|Q(J,k)

ν+1 | p
2 + C p

1 C
p
2 p

2pn
p
4
1

n

∑
q∈TJ,k

E

⎛
⎝ ∑

r∈TJ,k

|a(J,k,ν+1)
rq |2

⎞
⎠

p
2

+C p
1 C

p
2 p

2pn
p
2
1

n2
∑

q∈TJ,k

∑
r∈TJ,k

E|a(J,k,ν+1)
rq |p. (5.19)

Using the definition (5.2) of Q(J,k)
ν1 and the definition (5.3) of coefficients a(J,k,ν+1)

rr ,
it is straightforward to check that
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E|Q(J,k)
ν1 |p ≤ E

⎡
⎣ ∑
q,r∈TJ,k

|a(J,k,ν)
qr |2

⎤
⎦

p

. (5.20)

Combining (5.15), (5.19) and (5.20), we get by (5.13)

3−pE|Q(J,k)
ν |p ≤ C p

2 p
pE|Q(J,k)

ν+1 | p
2 + C p

1 C
p
2 p

2pn
p
4
1

n

∑
q∈TJ,k

E

⎛
⎝ ∑

r∈TJ,k

|a(J,k,ν+1)
rq |2

⎞
⎠

p
2

+C p
1 C

p
2 p

2pn
p
2
1

n2
∑

q∈TJ,k

∑
r∈TJ,k

E|a(J,k,ν+1)
rq |p

+C p
1 C

p
2 E

⎡
⎣ ∑
q,r∈TJ,k

|a(J,k,ν)
qr |2

⎤
⎦

p

+C p
1 C

p
2 p

p

⎛
⎜⎝E

⎛
⎝ ∑

r∈TJ,k

|a(J,k,ν+1)
rr |2

⎞
⎠

p
2

+ n
p
2
1

n

∑
r∈TJ,k

E|a(J,k,ν+1)
rr |p

⎞
⎟⎠ .

(5.21)

Applying now Lemma 5.1 and Corollaries 5.2 and 5.3, we obtain

E|Q(J,k)
ν |p ≤ C p

3 p
pE|Q(J,k)

ν+1 | p
2 + C p

3 E
(
Immn(z) + 1

nv

)(2ν−1)p

v−(2ν−1)p

+C p
3 p

2pv−2ν pn− p
4 E
(
Imm(J)

n (z) + 1

nv

)(2ν−1) 2
p

⎛
⎝ 1

n

∑
q∈TJ,k

|R(J,k)
qq | p

2

⎞
⎠

+C p
3 p

2pn− p
2 v−2ν pE

(
Imm(J)

n (z) + 1

nv

)(2ν−1)p
⎛
⎝ 1

n

∑
q∈TJ,k

|R(J,k)
qq |p

⎞
⎠ ,

(5.22)

where C3 = 3C1C2. Applying Cauchy–Schwartz inequality, we may rewrite the last
inequality in the form

E|Q(J,k)
ν |p ≤ C p

3 ppE|Q(J,k)
ν+1 | p

2 + C p
3 E

(
Imm(J)

n (z) + 1

nv

)(2ν−1)p

v−(2ν−1)p

+C p
3 p2pv−2ν pn− p

4 E
1
2

(
Imm(J)

n (z) + 1

nv

)(2ν−1)p

E
1
4

⎛
⎝ 1

n

∑
q∈TJ,k

|R(J,k)
qq |2p

⎞
⎠

+C p
3 p2pn− p

2 v−2ν pE
1
2

(
Imm(J)

n (z) + 1

nv

)(2ν−1)2p

E
1
2

⎛
⎝ 1

n

∑
q∈TJ,k

|R(J,k)
qq |2p

⎞
⎠ .

(5.23)
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Introduce the notation

�p(z) := E
1
2

⎛
⎝1

n

∑
q∈TJ,k

|R(J,k)
qq |2p

⎞
⎠ .

We rewrite the inequality (5.23) using �p(z) and the notations of (5.10) as follows

T (J,k)
ν,p ≤ (C3 p)

pT (J,k)
ν+1,p/2 + C p

3 A
(J)
ν,pv

−(2ν−1)p

+ (C3 p
2)p

(
v−2ν pn− p

4 (A(J)
ν,p/2)

1
2 �

1
2
p (z) + v−2ν pn− p

2 A(J)
ν,p�p(z)

)
.

(5.24)

Note that

A(J)
0,p = 1, A(J)

ν,p/2ν ≤
√
1 + E(�(J))2p ≤ 1 + E

1
4 (�(J))4p,

where �(J) = Imm(J)
n (z) + 1

nv
. Furthermore,

�p/2ν ≤ �
1
2ν
p .

Without loss of generality we may assume p = 2L and ν = 0, . . . , L . We may
write

T (J,k)
0,p ≤ (C3 p)

pT (J,k)
1,p/2 + C p

3 + (C3 p
2)pv−p

(
n− p

4 �
1
2
p (z) + n− p

2 �p(z)

)
.

By induction we get

T (J,k)
0,p ≤

L∏
ν=0

(C3 p/2
ν)p/2

ν

T (J,k)
L ,1 + A(J)

p

L∑
l=1

(
l−1∏
ν=0

(C3 p/2
ν)p/2

ν

)
v−(2l−1)p/2l

+A(J)
p v−p

L∑
l=1

(
l−1∏
ν=0

(C3 p/2
ν)p/2

ν

)
(n−p�2

p)
1

2l+1

+A(J)
p

L∑
l=1

(
l−1∏
ν=0

(C3 p/2
ν)p/2

ν

)
(n−p�p

2)
1
2l . (5.25)

It is straightforward to check that

l−1∑
ν=1

ν

2ν
= 2

(
1 − l + 1

2l

)
.
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Note that, for l ≥ 1,

l−1∏
ν=0

(
C3(p/2

ν)
)p/2ν = (C3 p)2p(1−2−l )

22p(1−
2l+1
2l

)
= 22p

l
2l

(
C3 p

2

)2p(1−2−l )

. (5.26)

Applying this relation, we get

A(J)
p

L∑
l=0

(
l−1∏
ν=0

(C3 p/2
ν)p/2

ν

)
v−(2l−1)p/2l ≤ A(J)

p

(
C3 p

2

)2p

v−p
L−1∑
l=0

22p
l
2l

(
4v

C2
3 p

2

) p
2l

.

Note that for l ≥ 0, l
2l

≤ 1
2 and recall that p = 2L . Using this observation, we get

A(J)
p

L∑
l=0

(
l−1∏
ν=0

(C3 p/2
ν)p/2

ν

)
v−(2l−1)p/2l ≤ A(J)

p

(
C3 p

2

)2p

v−p2p
L−1∑
l=0

(
4v

C2
3 p

2

)2L−l

.

This implies that for 4v
C2
3 p

2 ≤ 1
2 ,

A(J)
p

L∑
l=1

(
l−1∏
ν=0

(C3 p/2
ν)p/2

ν

)
v−(2l−1)p/2l ≤ (C3 p)

2p A(J)
p v−p.

Furthermore, by definition of Tν,p, we have

T (J,k)
L ,1 = EQ(J,k)

L ≤ E
∑

q,r∈Tk

(a(J,k,L)
qr )2.

Applying Corollary 5.2 and Hölder’s inequality, we get

T (J,k)
L ,1 ≤ E(v−1�(J))p ≤ v−p A(J)

p . (5.27)

By condition (5.11), we have

�p := �p(u + iv) ≤ s2p0 C2p
0 .

Using this inequality, we get,

A(J)
p v−p

L∑
l=1

(
l−1∏
ν=0

(C3 p/2
ν)p/2

ν

)
n

− p
2l+1 �

2
2l+1
p

≤ A(J)
p v−p

L∑
l=0

(
l−1∏
ν=0

(C3 p/2
ν)p/2

ν

)
(s40C

4
0n

−1)
p

2l+1 . (5.28)
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Applying relation (5.26), we obtain

A(J)
p v−p

L∑
l=1

(
l−1∏
ν=0

(C3 p/2
ν)p/2

ν

)
n

− p
2l+1 �

1
2l
p

≤
(
C3 p

2

)2p

A(J)
p v−p

L∑
l=1

22p
l
2l

(
C3 p

2

)− 2p
2l

(s40C
4
0n

−1)
p

2l+1

=
(
C3 p

2

)2p

A(J)
p v−p

L∑
l=1

2p
l

2l−1

(
C3 p

2

)− 2p
2l−1

((s40C
4
0n

−1)
1
4 )

p
2l−1

=
(
C3 p√

2

)2p

A(J)
p v−p

L∑
l=1

(
(s0C0)

C3 pn
1
4

)2L−l+1

.

Without loss of generality we may assume that C3 ≥ 2(C0s0). Then we get

A(J)
p v−p

L∑
l=0

(
l−1∏
ν=0

(C3 p/2
ν)p/2

ν

)
n

− p
2l+1 �

1
2l
p ≤ (C3 p)

2p A(J)
p v−p.

Analogously we get

A(J)
p v−p

L∑
l=1

(
l−1∏
ν=0

(C3 p/2
ν)p/2

ν

)
n

− p
2l �

1
2l−1
p ≤ (C3 p)

2pv−p A(J)
p . (5.29)

Combining inequalities (5.25), (5.27), (5.28), (5.29), we finally arrive at

T (J,k)
0,p ≤ 6(C3 p)

2pv−p A(J)
p . (5.30)

Thus, Lemma 5.4 is proved. �

5.2 Diagonal entries of the resolvent matrix

We shall use the representation, for any j ∈ TJ,

R(J)
j j = 1

−z + 1√
n
X j j − 1

n

∑
k,l∈TJ, j

X jk X jl R
(J, j)
kl

,

(see, for example, [13, equality (4.6)]). Recall the following relations (compare (3.2),
(3.7))

R(J)
j j = − 1

z + m(J)
n (z)

+ 1

z + m(J)
n (z)

ε
(J)
j R(J)

j j , (5.31)
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or
R(J)
j j = s(z) − s(z)
(J)

n R(J)
j j − s(z)ε(J)

j R(J)
j j , (5.32)

where ε
(J)
j := ε

(J)
j1 + ε

(J)
j2 + ε

(J)
j3 + ε

(J)
j4 with

ε
(J)
j1 := 1√

n
X j j , ε

(J)
j2 :=−1

n

∑
k �=l∈TJ, j

X jk X jl R
(J, j)
kl , ε

(J)
j3 :=−1

n

∑
k∈TJ, j

(X2
jk−1)R(J, j)

kk ,

ε
(J)
j4 := 1

n
(Tr R(J) − Tr R(J, j)),
(J)

n := m(J)
n (z) − s(z) = 1

n
Tr R(J) − s(z). (5.33)

Since |s(z)| ≤ 1, the representation (5.32) yields, for any p ≥ 1,

|R(J)
j j |p ≤ 3p + 3p|ε(J)

j |p|R(J)
j j |p + 3p|
(J)

n |p|R(J)
j j |p. (5.34)

Applying the Cauchy–Schwartz inequality, we get

E|R(J)
j j |p ≤ 3p + 3pE

1
2 |ε(J)

j |2pE
1
2 |R(J)

j j |2p + 3pE
1
2 |
(J)

n |2pE
1
2 |R(J)

j j |2p. (5.35)

We shall investigate now the behavior of E|ε(J)
j |2p and E|
(J)

n |2p. First we note,

E|ε(J)
j |2p ≤ 42p

4∑
ν=1

E|ε(J)
jν |2p.

Lemma 5.5 Assuming the conditions of Theorem 1.1 we have, for any p ≥ 1, and for
any z = u + iv ∈ C+,

E|ε(J)
j1 |2p ≤ μ4

n
p
2 +1

.

Proof The proof follows immediately from the definition of ε j1 and condition (1.4).
�

Lemma 5.6 Assuming the conditions of Theorem 1.3 we have, for any p ≥ 1, and for
any z = u + iv ∈ C+,

E|ε(J)
j4 |2p ≤ 1

n2pv2p
.

Proof For a proof of this Lemma see [13, Lemma 4.1]. �
Let A1 > 0 and 0 ≤ v1 ≤ 4 be a fixed.

Lemma 5.7 Assuming the conditions of Theorem 1.1, and assuming for all J ⊂ T
with |J| ≤ L and all l ∈ TJ
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E|R(J)
ll |q ≤ Cq

0 , for 1 ≤ q ≤ A1(nv)
1
4 and for v ≥ v1, (5.36)

we have, for all v ≥ v1/s0, and for all J ⊂ T with |J| ≤ L − 1,

E|ε(J)
j3 |2p ≤ (C1 p)

2pn−ps2p0 C4p
0 , for 1 ≤ p ≤ A1(nv)

1
4 .

Proof Recall that s0 = 24 and note that if p ≤ A1(nv)
1
4 for v ≥ v1/s0 then q = 2p ≤

A1(nv)
1
4 for v ≥ v1. Let v′ := vs0. If v ≥ v1/s0 then v′ ≥ v1. We have

q = 2p ≤ 2A1(nv)
1
4 = 2A1(nv′s−1

0 )
1
4 = A1(nv′)

1
4 . (5.37)

We apply nowRosenthal’s inequality for the moments of sums of independent random
variables and get

E|ε(J)
j3 |2p ≤ (C1 p)

2pn−2p

⎛
⎝E

⎛
⎝ ∑

l∈TJ, j

|R(J, j)
ll |2

⎞
⎠

p

+ E|X jl |4p
∑
l∈TJ, j

E|R(J, j)
ll |2p

⎞
⎠ .

According to inequality (5.37) we may apply Lemma 7.7 and condition (5.36) for
q = 2p. We get, for v ≥ v1/s0,

E|ε(J)
j3 |2p ≤ (C1 p)

2pn−ps2p0 C2p
0 .

We use as well that by the conditions of Theorem 1.1, E|X jl |4p ≤ D4p−4
0 n p−1μ4, and

by Jensen’s inequality, ( 1n
∑

l∈T j
|R( j)

ll |2)p ≤ 1
n

∑
l∈T j

|R( j)
ll |2p. Thus, Lemma 5.7 is

proved. �
Lemma 5.8 Assuming the conditions of Theorem 1.1, condition (5.36), for v ≥ v1

and p ≤ A1(nv)
1
4 , we have, for any v ≥ v1/s0 and p ≤ A1(nv)

1
4 ,

E|ε(J)
j2 |2p ≤ 6(C3 p)

4pn−pv−p A(J)
p + 2(C3 p)

4pn−pv−p(C0s0)
p.

Proof We apply Burkholder’s inequality for quadratic forms. See Lemma 7.3 in the
Appendix. We obtain

E|ε(J)
j2 |2p ≤ (C1 p)

2pn−2p

⎛
⎜⎝E

⎛
⎜⎝
∑
l∈TJ, j

∣∣∣∣∣∣
∑

r∈TJ, j∩{1,...,l−1}
X jr R

(J, j)
lr

∣∣∣∣∣∣

2
⎞
⎟⎠

p

+max
j,k

E|X jk |2p
∑
l∈TJ, j

E

∣∣∣∣∣∣
∑

r∈TJ, j∩{1,...,l−1}
X jr R

(J, j)
lr

∣∣∣∣∣∣

2p
⎞
⎟⎠ .
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Using now the quantity Q(J, j)
0 for the first term and Rosenthal’s inequality and con-

dition (1.4) for the second term, we obtain with Lemma 7.6, inequality (7.12), in the
Appendix and C3 = C1C2

E|ε(J)
j2 |2p ≤ (C2 p)

2pn−pE|Q(J, j)
0 |p

+ (C3 p)
4pn− 3p

2
1

n

∑
l∈TJ, j

E

⎛
⎝ ∑

r∈TJ, j∩{1,...,l−1}
|R(J, j)

lr |2
⎞
⎠

p

+ (C3 p)
4pn−p 1

n2
∑
l∈TJ, j

∑
r∈TJ, j∩{1,...,l−1}

E|R(J, j)
lr |2p

≤ (C2 p)
2pn−pE|Q(J, j)

0 |p + (C3 p)
4pn− 3p

2 v−p 1

n

∑
l∈TJ, j

E|R(J, j)
ll |p

+ (C3 p)
4pn−pv−p 1

n2
∑
l∈TJ, j

E|R(J, j)
ll |p.

By Lemma 7.7 and condition (5.36), we get

E|ε(J)
j2 |2p ≤ (C3 p)

2pn−pE|Q(J, j)
0 |p + 2(C3 p)

3pn−pv−p(C0s0)
p.

Applying now Lemma 5.4, we get the claim. Thus, Lemma 5.8 is proved. �
Recall that


(J)
n = 
(J)

n (z) = 1

n
Tr R(J) − s(z), and T (J)

n (z) = 1

n

∑
j∈TJ

ε
(J)
j R(J)

j j .

Lemma 5.9 Assuming the conditions of Theorem 1.1, we have, for z = u + iv with
u ∈ [−2, 2],

|
(J)
n | ≤ C

(√
|T (J)

n (z)| +
√|J|√

n

)
.

Proof See e. g. [17, inequality (2.10)]. For completeness we include short proof here.
Obviously


(J)
n =

s(z)
(
T (J)
n (z) − |J|

n

)

z + 2s(z) + 

(J)
n

. (5.38)

Denote by

T̃n(z) = s(z)

(
T (J)
n (z) − |J|

n

)
.
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First we assume that |z + 2s(z)+ 

(J)
n | >

√
|T̃n(z)|. Then the claim of Lemma 5.9

holds. In the case |z + 2s(z) + 

(J)
n | ≤

√
|T̃n(z)|, we assume |
(J)

n | > 2
√

|T̃n(z)|.
Otherwise the Lemma is proved. Under these assumptions we have

|z + 2s(z)| ≥ |
(J)
n | − |z + 2s(z) + 
(J)

n | ≥
√

|T̃n(z)|. (5.39)

On the other hand

|z + s(z) + m(J)
n | ≥ Im {z + s(z)} ≥ 1

2
Im {z + 2s(z)} = 1

2
Im
√
z2 − 4. (5.40)

We take here the branch of
√
z such that Im

√
z ≥ 0. Note that, for z ∈ [−2, 2] we

have Re {z2 − 4} ≤ 0. This implies that

Im
√
z2 − 4 ≥

√
2

2
|z2 − 4| 12 =

√
2

2
|z + 2s(z)|. (5.41)

Inequalities (5.39), (5.40) and (5.41) together imply

|z + s(z) + m(J)
n | ≥ 1

2
√
2
|z + 2s(z)| ≥

√
2

2

√
|T̃n(z)|. (5.42)

The last inequality and Eq. (5.38) complete the proof of Lemma 5.9. �

Lemma 5.10 Assuming the conditions of Theorem 1.1 and condition (5.36), we
obtain, for |J| ≤ Cn

1
2

E|
(J)
n |2p ≤ C p

n
p
4

+
(

μ4

n
p
2 +1

+ 1

n2pv2p
+ (C1 p)

2pn−ps2p0 C4p
0

+ 6(C3 p)
4pn−pv−p A(J)

p + 2(C3 p)
4pn−pv−p(C0s0)

p
) 1

2

(C0s0)
p.

Proof By Lemma 5.8, we have

E|
(J)
n |2p ≤ C pE|T (J)

n (z)|p + |J| p
2

n
p
2

≤ C pE|T (J)
n (z)|p + C

n
p
4
.

Furthermore,

E|T (J)
n (z)|p ≤

⎛
⎝1

n

∑
j∈T

E|ε(J)
j |2p

⎞
⎠

1
2
⎛
⎝1

n

∑
j∈T

E|R(J)
j j |2p

⎞
⎠

1
2

.
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Lemmas 5.5–5.8 together with Lemma 7.7 imply

1

n

∑
j∈T

E|ε(J)
j |2p ≤ 42p−1

(
μ4

n
p
2 +1

+ 1

n2pv2p
+ (C1 p)

2pn−ps2p0 C4p
0

+ 6(C3 p)
4pn−pv−p A(J)

p + 2(C3 p)
4pn−pv−p(C0s0)

p
)

. (5.43)

Thus, Lemma 5.10 is proved. �
Lemma 5.11 Assuming the conditions of Theorem 1.1 and condition (5.36), there
exists an absolute constant C4 such that, for p ≤ A1(nv)

1
4 and v ≥ v1/s0, we have,

uniformly in J ⊂ T such that |J| ≤ Cn
1
2 ,

A(J)
p ≤ C p

4 .

Proof We start from the obvious inequality, using |s(z)| ≤ 1,

E|�(J)|2p ≤ 32p(1 + (nv)−2p + E|
(J)
n (z)|2p).

Furthermore, applying Lemma 5.10, we get

E|�(J)|2p ≤ 32p
(
1 + (nv)−p +

(
μ4

n
p
2 +1

+ 1

n2pv2p
+ (C1 p)

2pn−ps2p0 C4p
0

+ 6(C3 p)
4pn−pv−p A(J)

p + 2(C3 p)
4pn−pv−p(C0s0)

p
) 1

2

(C0s0)
p

)
.

(5.44)

By definition,

A(J)
p ≤ 1 + E

1
2 (�(J))2p. (5.45)

Inequalities (5.45) and (5.44) together imply

A(J)
p ≤ 1 + 3p

(
1 + (nv)−

p
2 + (C0s0)

p
2

(
μ

1
4
4 n

− p
8 + 1

n
p
2 v

p
2

+ (C1 p)
p
2 n− p

4 s
p
2
0 C p

0

+ 3(C3 p)
pn− p

4 v− p
4 (A(J)

p )
1
4 + 2(C3 p)

pn− p
4 v− p

4 (C0s0)
p
4

))
.

Let C ′=s0 max{9,C
1
2
3 ,C

3
2
0 C

1
2
1 , 3C3C

1
2
0 ,C3C

3
4
0 }. Using Lemma 7.4 with x = (A(J)

p )
1
4 ,

t = 4, r = 1, we get

A(J)
p ≤ C ′ p

(
1 + (nv)−

p
2 + μ

1
2
4 n

− p
8 + 1

n
p
2 v

p
2

+ p
p
2 n− p

4 + ppn− p
4 v− p

4 + p
4p
3 n− p

3 v− p
3

)
.
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For p ≤ A1(nv)
1
4 , we get, for z ∈ G,

A(J)
p ≤ C p

4 ,

where C4 is some absolute constant. We may take C4 = 2C ′. �
Corollary 5.12 Assuming the conditions of Theorem 1.1 and condition (5.36), we
have , for v ≥ v1/s0, and for any J ⊂ T such that |J| ≤ √

n

E|
(J)
n |2p ≤ C2p

0

⎛
⎝4

p
4 μ

1
2
4 s

p
0

n
p
4 v

p
4

+ s
p
2
0

n pv p
+ C p

5 p
2p

n
p
2 v

p
2

⎞
⎠ , (5.46)

where

C5 := 4C2
1s

4
0 + 6

1
p C4

3C4 + 2
1
p C4

3s
3
0 .

Proof Without loss of generality we may assume that C0 > 1. The bound (5.46)
follows now from Lemmas 5.10 and 5.11. �
Lemma 5.13 Assuming the conditions of Theorem 1.1 and condition (5.36) for J ⊂ T

such that |J| ≤ L ≤ √
n, there exist positive constant A0,C0, A1 depending onμ4, D0

only , such that we have, for p ≤ A1(nv)
1
4 and v ≥ v1/s0 uniformly in J and v1

E|R(J)
j j |p ≤ C p

0

with |J| ≤ L − 1.

Proof According to inequality (5.35), we have

E|R(J)
j j |p ≤ 4p

(
1 +

(
E

1
2 |
(J)

n |2p + E
1
2 |ε(J)

j |2p
)

E
1
2 |R(J)

j j |2p
)

.

Applying condition (5.36), we get

E|R(J)
j j |p ≤ 4p

(
1 +

(
E

1
2 |
(J)

n |2p + E
1
2 |ε(J)

j1 |2p + · · · + E
1
2 |ε(J)

j4 |2p
)
s p0 C

p
0

)
.

Combining results of Lemmas 5.5–5.8 and Corollary 5.12, we obtain

E|R(J)
j j |p ≤ 5p

⎛
⎜⎝1 + s p0 C

2p
0

⎛
⎝4

p
4 μ

1
4
4 s

p
0

n
p
4 v

p
4

+ s p0
n pv p

+ C p
5 p

2p

n
p
2 v

p
2

⎞
⎠

1
2

+ s p0 C
3p
0

⎛
⎝4

p
4 μ

1
4
4

n
p
4 v

p
4

+ s p0
n pv p

+ C p
5 p

2p

n
p
2 v

p
2

⎞
⎠
⎞
⎟⎠ .
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We may rewrite the last inequality as follows

E|R(J)
j j |p ≤ C p

0

⎛
⎝ 5p

C p
0

+ Ĉ
p
8
1

(nv)
p
8

+ (Ĉ2 p4)
p
4

(nv)
p
4

+ (Ĉ3 p4)
p
2

(nv)
p
2

+ Ĉ p
4

(nv)p

⎞
⎠ ,

where

Ĉ1 = 58s120 C8
0μ

1
p
4 ,

Ĉ2 = 54s40C
4
0C

2
5

(
1 + 2C4

0μ
2
p
4

)
,

Ĉ3 = 52s20C
2
0

(
s0 + C2

5

)
,

Ĉ4 = 5C2
0s

2
0 .

Note that for

A0 ≥ 28A4
1 max{Ĉ1, . . . , Ĉ4} (5.47)

and C0 ≥ 25, we obtain that

E|R(J)
j j |p ≤ C p

0 .

Thus Lemma 5.13 is proved. �
Corollary 5.14 Assuming the conditions of Theorem 1.1, we have, for p ≤ 8 and
v ≥ v0 = A0n−1 there exist a constant C0 > 0 depending on μ4 and D0 only such
that for all 1 ≤ j ≤ n and all z ∈ G

E|R j j |p ≤ C p
0 , (5.48)

and

E
1

|z + mn(z)|p ≤ C p
0 . (5.49)

Proof Let L = [− logs0 v0] + 1. Note that s−L
0 ≤ v0 and A1

n
1
4

s
L
4
0

≥ A1(nv0)
1
4 . We

may choose C0 = 25 and A0, A1 such that (5.47) holds and

A1(nv)
1
4 ≥ 8.

Then, for v = 1, and for any p ≥ 1, for any set J ⊂ T such that |J| ≤ L

E|R(J)
j j |p ≤ C p

0 . (5.50)
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By Lemma 5.13, inequality (5.50) holds for v ≥ 1/s0 and for p ≤ A1n
1
4 /s

1
4
0 and for

J ⊂ T such that |J| ≤ L − 1. After repeated application of Lemma 5.13 (with (5.50)
as assumption valid for v ≥ 1/s0) we arrive at the conclusion that the inequality (5.50)

holds for v ≥ 1/s20 , p ≤ A1n
1
4 /s

1
2
0 and all J ⊂ T such that |J| ≤ L − 2. Continuing

this iteration inequality (5.50) finally holds for v ≥ A0n−1, p ≤ 8 and J = ∅.
The proof of inequality of (5.49) is similar: We have by (1.9)

1

|z + mn(z)| ≤ 1

|s(z) + z| + |
n|
|z + mn(z)||z + s(z)| ≤ |s(z)|

(
1 + |
n|

|z + mn(z)|
)

.

(5.51)

Furthermore, using that |m′
n(z)| ≤ | 1nTr R2| ≤ 1

n

∑n
j=1 E|R j j |2 and Lemma 7.6,

inequality (7.11) in the Appendix, we get

∣∣∣∣
d

dz
log(z + mn(z))

∣∣∣∣ ≤ |1 + m′
n(z)|

|z + mn(z)| ≤ 1

v

v + Immn(z)

|z + mn(z)| ≤ 1

v
.

By integration, this implies that (see the proof of Lemma 7.7)

1

|(u + iv/s0) + mn(u + iv/s0)| ≤ s0
|(u + iv) + mn(u + iv)| . (5.52)

Inequality (5.51) and the Cauchy–Schwartz inequality together imply

E
1

|z + mn(z)|p ≤ 2p|s(z)|p
(
1 + E

1
2 |
n|2pE

1
2

1

|z + mn(z)|2p
)

.

Applying inequality (5.52), we obtain

E
1

|z + mn(z)|p ≤ 2p|s(z)|p(1 + E
1
2 |
n|2ps p0 C p

0 ).

Using Corollary 5.12, we get, for v ≥ 1/s0

E
1

|z + mn(z)|p ≤ 2p|s(z)|p
⎛
⎝1 +

⎛
⎝4

p
8 μ

1
4
4 s

p
2
0

n
p
8 v

p
8

+ s
p
4
0

n
p
2 v

p
2

+ C p
5 p

p

n
p
4 v

p
4

⎞
⎠ s p0 C

2p
0

⎞
⎠ .

Thus inequality (5.49) holds for v ≥ 1/s0 as well. Repeating this argument inductively
with A0, A1,C) satisfying (5.47) for the regions v ≥ s−ν

0 , for ν = 1, . . . , L and z ∈ G,
we get the claim. Thus, Corollary 5.14 is proved. �
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6 Proof of Theorem 1.3

We return now to the representation (5.32) which implies that

sn(z) = 1

n

n∑
j=1

ER j j = s(z) + E
n = s(z) + E
Tn(z)

z + s(z) + mn(z)
. (6.1)

We may continue the last equality as follows

sn(z) = s(z) + E
1
n

∑n
j=1 ε j4R j j

z + s(z) + mn(z)
+ E

T̂n(z)

z + s(z) + mn(z)
, (6.2)

where

T̂n =
3∑

ν=1

1

n

n∑
j=1

ε jνR j j .

Note that the definition of ε j4 in (5.32) and equality (7.34) together imply

1

n

n∑
j=1

ε j4R j j = 1

n2
Tr R2 = 1

n

dmn(z)

dz
. (6.3)

Thus we may rewrite (6.2) as

sn(z) = s(z) + 1

n
E

m′
n(z)

z + s(z) + mn(z)
+ E

T̂n(z)

z + s(z) + mn(z)
. (6.4)

Denote by

T = E
T̂n(z)

z + s(z) + mn(z)
. (6.5)

6.1 Estimation of T

We represent T

T = T1 + T2,

where

T1 = −1

n

n∑
j=1

3∑
ν=1

E
ε jν

1
z+m( j)

n (z)

z + mn(z) + s(z)
,

T2 = 1

n

n∑
j=1

3∑
ν=1

E
ε jν(R j j + 1

z+m( j)
n (z)

)

z + mn(z) + s(z)
.
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6.1.1 Estimation of T1

We may decompose T1 as

T1 = T11 + T12, (6.6)

where

T11 = −1

n

n∑
j=1

3∑
ν=1

E
ε jν

1
z+m( j)

n (z)

z + m( j)
n (z) + s(z)

,

T12 = −1

n

n∑
j=1

3∑
ν=1

E
ε jνε j4

1
z+m( j)

n (z)

(z + m( j)
n (z) + s(z))(z + mn(z) + s(z))

.

It is easy to see that, by conditional expectation

T11 = 0. (6.7)

Applying the Cauchy–Schwartz inequality, for ν = 1, 2, 3, we get
∣∣∣∣∣∣
E

ε jνε j4
1

z+m( j)
n (z)

(z + m( j)
n (z) + s(z))(z + mn(z) + s(z))

∣∣∣∣∣∣

≤ E
1
2

∣∣∣∣∣
ε jν

(z + m( j)
n (z))(z + m( j)

n (z) + s(z))

∣∣∣∣∣
2

E
1
2

∣∣∣∣
ε j4

z + mn(z) + s(z)

∣∣∣∣
2

. (6.8)

Applying the Cauchy–Schwartz inequality again, we get

E
1
2

∣∣∣∣∣
ε jν

(z + m( j)
n (z))(z + m( j)

n (z) + s(z))

∣∣∣∣∣
2

≤ E
1
4

|ε jν |4
|z + m( j)

n (z) + s(z)|4
E

1
4

1

|z + m( j)
n (z)|4

. (6.9)

Inequalities (6.8), (6.9), Corollaries 7.23 and 5.14 together imply
∣∣∣∣∣∣
E

ε jνε j4
1

z+m( j)
n (z)

(z + m( j)
n (z) + s(z))(z + mn(z) + s(z))

∣∣∣∣∣∣
≤ C

nv
E

1
4

|ε jν |4
|z + m( j)

n (z) + s(z)|4
.

(6.10)

By Lemmas 7.14 and 7.5 we have for ν = 1

E
1
4

|ε jν |4
|z + m( j)

n (z) + s(z)|4
≤ C√

n
√|z2 − 4| . (6.11)
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By Corollary 7.17, inequality (7.31) with α = 0 and β = 4 in the Appendix we have
for ν = 2, 3

E
1
4

|ε jν |4
|z + m( j)

n (z) + s(z)|4
≤ C

√
nv|z2 − 4| 14

. (6.12)

with some constant C > 0 depending on μ4 and D0 only. Using that, by Lemma 7.13,
for z ∈ G,

1√
n
√|z2 − 4| ≤

√
v√

nv
√|z2 − 4| ≤ C

√
nv|z2 − 4| 14

(6.13)

we get from (6.10), (6.11) and (6.12) that for z ∈ G,

|T1| ≤ C

(nv)
3
2 |z2 − 4| 14

(6.14)

with some constant C > 0 depending on μ4 and D0 only.

6.1.2 Estimation of T2

Using the representation (5.32), we write

T2 = 1

n

n∑
j=1

E
ε̃2j R j j

(z + m( j)(z))(z + s(z) + mn(z))
.

Furthermore we note that

ε̃2j = ε2j2 + η j ,

where

η j = (ε j1 + ε j3)
2 + 2(ε j1 + ε j3)ε j2.

We now decompose T2 as follows

T2 = T21 + T22 + T23, (6.15)

where

T21 = 1

n

n∑
j=1

E
ε2j2R j j

(z + m( j)(z))(z + s(z) + mn(z))
,

T22 = 1

n

n∑
j=1

E
η j R j j

(z + m( j)(z))(z + s(z) + m( j)
n (z))

,

T23 = 1

n

n∑
j=1

E
η j R j jε j4

(z + m( j)(z))(z + s(z) + m( j)
n (z))(z + s(z) + mn(z))

.
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Applying the Cauchy–Schwartz inequality, we obtain

|T22| ≤ 1

n

n∑
j=1

E
1
2

|η j |2
|z + m( j)(z)|2|z + s(z) + m( j)

n (z)|2
E

1
2 |R j j |2. (6.16)

In what follows we denote by C a generic constant depending on μ4 and D0 only. We
note that

E{|η j |2|M( j)} ≤ C(E{|ε j1|4|M( j)} + E{|ε j3|4|M( j)})

+ C
(

E{|ε j1|4|M( j)} + E{|ε j3|4|M( j)}
) 1

2
E

1
2 {|ε j2|4|M( j)}.

Using Lemmas 7.14, 7.15, 7.16, we get

E{|η j |2
∣∣∣M( j)} ≤ C

n2
+ C

n2
1

n

∑
l∈T j

|R( j)
ll |4

+
⎛
⎜⎝C

n
+ C

n

⎛
⎝1

n

∑
l∈T j

|R( j)
ll |4

⎞
⎠

1
2
⎞
⎟⎠ C

nv
Imm( j)

n (z). (6.17)

This inequality and Lemma 7.5 together imply

E
1
2

|η j |2
|z + m( j)(z)|2|z + s(z) + m( j)

n (z)|2
≤ C

n
√|z2 − 4|E

1
2

1

|z + m( j)
n (z)|2

+ C

n
√|z2 − 4|

⎛
⎝1

n

∑
l∈T j

E|R( j)
ll |4

⎞
⎠

1
4

E
1
4

1

|z + m( j)
n (z)|4

+ C

n
√

v|z2 − 4| 14

⎛
⎜⎝1 +

⎛
⎝1

n

∑
l∈T j

E|R( j)
ll |4

⎞
⎠

1
4
⎞
⎟⎠E

1
4

1

|z + m( j)
n (z)|4

(6.18)

Inequality (6.18) and Corollary 5.14 together imply

|T22| ≤ C

n
√|z2 − 4| + C

n
√

v|z2 − 4| 14
.

Applying Lemma 7.13 for z ∈ G, we get

|T22| ≤ C

n
√

v|z2 − 4| 14
≤ C

nv
3
4

. (6.19)
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By Hölder’s inequality, we have

|T23| ≤ 1

n

n∑
j=1

E
1
2

|η j |2
|z + m( j)(z)|2|z + s(z) + m( j)

n (z)|2

× E
1
4

|ε j4|4
|z + s(z) + mn(z)|4 E

1
4 |R j j |4.

Using now Lemmas 7.22, 7.13 and Corollary 5.14, we may write, for z ∈ G,

|T23| ≤ C

n
√

v|z2 − 4| 14
≤ C

nv
3
4

. (6.20)

We continue now with T21. We represent it in the form

T21 = H1 + H2, (6.21)

where

H1 = −1

n

n∑
j=1

E
ε2j2

(z + m( j)(z))2(z + s(z) + mn(z))
,

H2 = 1

n

n∑
j=1

E
ε2j2(R j j + 1

z+m( j)
n

)

(z + m( j)(z))(z + s(z) + mn(z))
.

Furthermore, using the representation

R j j = − 1

z + m( j)
n (z)

+ 1

z + m( j)
n (z)

(ε j1 + ε j2 + ε j3)R j j (6.22)

(compare with (3.2)), we bound H2 in the following way

|H2| ≤ H21 + H22 + H23,

where

H21 = 1

n

n∑
j=1

E
4|ε j1|3|R j j |

|z + m( j)(z)|2|z + s(z) + mn(z)| ,

H22 = 1

n

n∑
j=1

E
2|ε j2|3|R j j |

|z + m( j)(z)|2|z + s(z) + mn(z)| ,

H23 = 1

n

n∑
j=1

E
2|ε j3|3|R j j |

|z + m( j)(z)|2|z + s(z) + mn(z)| .
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Using inequality (7.42) in the Appendix and Hölder inequality, we get, for ν = 1, 2, 3

H2ν ≤ 1

n

n∑
j=1

E
4|ε jν |3|R j j |

|z + m( j)(z)|2|z + s(z) + m( j)
n (z)|

+ 1

n

n∑
j=1

E
4|ε jν |3|R j j ||ε j4|

|z + m( j)(z)|2|z + s(z) + m( j)
n (z)||z + s(z) + mn(z)|

≤ C

n

n∑
j=1

E
3
4

|ε jν |4
|z + m( j)(z)| 83 |z + s(z) + m( j)

n (z)| 43
E

1
4 |R j j |4. (6.23)

Applying Corollary 7.17 with β = 4
3 and α = 8

3 , we obtain, for z ∈ G, and for
ν = 1, 2, 3

E
3
4

|ε jν |4
|z + m( j)(z)| 83 |z + s(z) + m( j)

n (z)| 43
≤ C

(nv)
3
2

.

This yields together with Corollary 5.14 and inequality (6.23)

H2 ≤ C

(nv)
3
2

. (6.24)

Consider now H1. Using the equality
1

z + mn(z) + s(z)
= 1

z + 2s(z)
− 
n(z)

(z + 2s(z))(z + mn(z) + s(z))

and


n = 

( j)
n + ε j4, (6.25)

we represent it in the form

H1 = H11 + H12 + H13, (6.26)

where

H11 = − 1

(z + s(z))2
1

n

n∑
j=1

E
ε2j2

z + s(z) + mn(z)

= −s2(z)
1

n

n∑
j=1

E
ε2j2

z + s(z) + mn(z)
,

H12 = − 1

(z + s(z))

1

n

n∑
j=1

E
ε2j2


( j)
n

(z + m( j)
n (z))2(z + s(z) + mn(z))

,

H13 = − 1

(z + s(z))2
1

n

n∑
j=1

E
ε2j2


( j)
n

(z + m( j)
n (z))(z + s(z) + mn(z))

.
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In order to apply conditional independence, we write

H11 = H111 + H112,

where

H111 = −s2(z)
1

n

n∑
j=1

E
ε2j2

z + m( j)
n (z) + s(z)

,

H112 = s2(z)
1

n

n∑
j=1

E
ε2j2ε j4

(z + s(z) + mn(z))(z + m( j)
n (z) + s(z))

.

It is straightforward to check that

E{ε2j2|M( j)} = 1

n2
Tr (R( j))2 − 1

n2
∑
l∈T j

(R( j)
ll )2.

Using equality (6.3) for m′
n(z) and the corresponding relation for m( j)

n
′
(z), we may

write

H111 = L1 + L2 + L3 + L4,

where

L1 = −s2(z)
1

n
E

m′
n(z)

z + mn(z) + s(z)
,

L2 = s2(z)
1

n

n∑
j=1

E
1
n2
∑

l∈T j
(R( j)

ll )2

z + m( j)
n (z) + s(z)

, (6.27)

L3 = s2(z)
1

n

n∑
j=1

E
1
n ((m( j)

n (z))′ − m′
n(z))

z + m( j)
n (z) + s(z)

, (6.28)

L4 = s2(z)
1

n

n∑
j=1

E
1
n ((m( j)

n (z))′ − m′
n(z))ε j4

(z + mn(z) + s(z))(z + m( j)
n (z) + s(z))

.

Using Lemmas 7.5, 7.18, 7.26, and Corollary 5.14, it is straightforward to check that

|L2| ≤ C

n
√|z2 − 4| ,

|L3| ≤ C

n2v2
√|z2 − 4| ,

|L4| ≤ C

n3v3|z2 − 4| .
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Applying inequality (7.42), we may write

|H12| ≤ C

n

n∑
j=1

E
|ε j2|2|
( j)

n |
|z + m( j)

n (z)||z + m( j)
n (z) + s(z)|

.

Conditioning onM( j) and applying Lemma 7.15, Lemma 7.5, inequality (7.8), Corol-
lary 5.14 and equality (6.25), we get

|H12| ≤ C

nv

1

n

n∑
j=1

E
|
( j)

n |
|z + m( j)

n (z)|
≤ C

nv
E

1
2 |
n|2 + C

n2v2
.

By Lemma 7.24, we get

|H12| ≤ C

n2v2
. (6.29)

Similar we get

|H13| ≤ C

n2v2
. (6.30)

We rewrite now the equations (6.2) and (6.4) as follows, using the remainder term
T3, which is bounded by means of inequalities (6.14), (6.19), (6.20), (6.24).

E
n(z) = Emn(z) − s(z) = (1 − s2(z))

n
E

m′
n(z)

z + mn(z) + s(z)
+ T3, (6.31)

where

|T3| ≤ C

nv
3
4

+ C

n
3
2 v

3
2 |z2 − 4| 14

.

Note that

1 − s2(z) = s(z)
√
z2 − 4.

In (6.31) we estimate now the remaining quantity

T4 = − s(z)
√
z2 − 4

n
E

m′
n(z)

z + mn(z) + s(z)
.

6.2 Estimation of T4

Using that 
n = mn(z) − s(z) we rewrite T4 as

T4 = T41 + T42 + T43,
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where

T41 = − s(z)s′(z)
n

,

T42 = s(z)
√
z2 − 4

n
E

m′
n(z) − s′(z)

z + mn(z) + s(z)
,

T43 = s(z)

n
E

(m′
n(z) − s′(z))
n

z + mn(z) + s(z)
.

6.2.1 Estimation of T42

First we investigate m′
n(z). The following equality holds

m′
n(z) = 1

n
Tr R2 =

n∑
j=1

ε j4R j j = s2(z)
n∑
j=1

ε j4R
−1
j j + D1, (6.32)

where

D1 =
n∑
j=1

ε j4(1 + R−1
j j s(z))(R j j − s(z)) (6.33)

Using equality (7.34), we may write

m′
n(z) = s2(z)

n

n∑
j=1

⎛
⎝1 + 1

n

∑
l,k∈T j

X jl X jk[(R( j))2]lk
⎞
⎠+ D1.

Denote by

β j1 = 1

n

∑
l∈T j

[(R( j))2]ll − 1

n

n∑
l=1

[(R)2]ll = 1

n

∑
l∈T j

[(R( j))2]ll − m′
n(z)

= 1

n

d

dz
(Tr R − Tr R( j)),

β j2 = 1

n

∑
l∈T j

(X2
jl − 1)[(R( j))2]ll ,

β j3 = 1

n

∑
l �=k∈T j

X jl X jk[(R( j))2]lk . (6.34)

Using these notation we may write

m′
n(z) = s2(z)(1 + m′

n(z)) + s2(z)

n

n∑
j=1

(β j1 + β j2 + β j3) + D1.
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Solving this equation with respect to m′
n(z) we obtain

m′
n(z) = s2(z)

1 − s2(z)
+ 1

1 − s2(z)
(D1 + D2), (6.35)

where

D2 = s2(z)

n

n∑
j=1

(β j1 + β j2 + β j3).

Note that for the semi-circular law

s2(z)

1 − s2(z)
= s2(z)

1 + s(z)
z+s(z)

= − s(z)

z + 2s(z)
= s′(z).

Applying this relation we rewrite equality (6.35) as

m′
n(z) − s′(z) = 1

s(z)(z + 2s(z))
(D1 + D2). (6.36)

Using the last equality, we may represent T42 now as follows

T42 = T421 + T422,

where

T421 = 1

n
E

D1

z + mn(z) + s(z)
,

T422 = 1

n
E

D2

z + mn(z) + s(z)
.

Recall that, by (6.33),

T421 = −1

n

n∑
j=1

E
ε j4(1 + s(z)R−1

j j )(R j j − s(z))

z + mn(z) + s(z)
. (6.37)

Applying the Cauchy–Schwartz inequality, we get for z ∈ G,

|T421| ≤ 1

n

n∑
j=1

E
1
2 |R j j − s(z)|2E

1
4

|ε j4|4
|z + s(z) + mn(z)|4 (1 + |s(z)|E 1

4 |R j j |−4).

Using Corollary 7.23 and Corollary 5.14, we get

|T421| ≤ C

n
3
2 v

3
2

. (6.38)
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6.2.2 Estimation of T422

We represent now T421 in the form

T422 = T51 + T52 + T53,

where

T5ν = 1

n2

n∑
j=1

E
β jν

z + mn(z) + s(z)
, for ν = 1, 2, 3.

At first we investigate T53. Note that, by Lemma 7.26,

|β j1| ≤ C

nv2
.

Therefore, for z ∈ G, using Lemma 7.5, inequality (7.9), and Lemma 7.13,

|T51| ≤ C

n2v2
√|z2 − 4| ≤ C

n
3
2 v

3
2 |z2 − 4| 14

. (6.39)

Furthermore, we consider the quantity T5ν , for ν = 2, 3. Applying the Cauchy–
Schwartz inequality and inequality (7.42) in the Appendix as well, we get

|T5ν | ≤ C

n2

n∑
j=1

E
1
2

|β jν |2
|z + m( j)

n (z) + s(z)|2
.

By Lemma 7.25 together with Lemma 7.5 in the Appendix, we obtain

E
1
2

|β jν |2
|z + m( j)

n (z) + s(z)|2
≤ C

n
1
2 v

3
2 |z2 − 4| 14

.

This implies that

|T5ν | ≤ C

n
3
2 v

3
2 |z2 − 4| 14

. (6.40)

Inequalities (6.39) and (6.40) yield

|T422| ≤ C

n
3
2 v

3
2 |z2 − 4| 14

.

Combining (6.38) and (6.41), we get, for z ∈ G,

|T42| ≤ C

n
3
2 v

3
2 |z2 − 4| 14

. (6.41)
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6.2.3 Estimation of T43

Recall that

T43 = s(z)

n
E

(m′
n(z) − s′(z))
n

z + mn(z) + s(z)
.

Applying equality (6.36), we obtain

T43 = T431 + T432,

where

T431 = 1

n(z + 2s(z))
E

D1
n

z + mn(z) + s(z)
, (6.42)

T432 = 1

n(z + 2s(z))
E

D2
n

z + mn(z) + s(z)
.

Applying the Cauchy–Schwartz inequality, we get

|T431| ≤ 1

n|z + 2s(z)|E
1
2

|D1|2
|z + mn(z) + s(z)|2 E

1
2 |
n|2.

By definition of D1 and Lemmas 7.18 and 7.24 , we get

|T431| ≤ C

n3v2|z2 − 4|
1

n

n∑
j=1

(1 + |s(z)|E 1
4 |R j j |−4)E

1
4 |R j j − s(z)|4.

Applying now Corollary 5.14 and Lemma 7.22, we get

|T431| ≤ 4

n3v2|z2 − 4| 12
.

For z ∈ G this yields

|T431| ≤ 4

n
3
2 v

3
2 |z2 − 4| 14

.

Applying again the Cauchy–Schwartz inequality, we get for T432 accordingly

|T432| ≤ C

n|z2 − 4| 12
E

1
2 |D2|2E

1
2 |
n|2.

By Lemma 7.24, we have

|T432| ≤ C

n2v|z2 − 4| 12
E

1
2 |D2|2. (6.43)
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By definition of D2,

E|D2|2 ≤ 1

n

n∑
j=1

(E|β j1|2 + E|β j2|2 + E|β j3|2).

Applying Lemmas 7.25 with ν = 2, 3, and 7.26, we get

E|D2|2 ≤ C

n2v4
+ C

nv3
. (6.44)

Inequalities (6.43) and (6.44) together imply, for z ∈ G,

|T432| ≤ C

n3v3|z2 − 4| 12
+ C

n
5
2 v

5
2 |z2 − 4| 12

≤ C

n
3
2 v

3
2 |z2 − 4| 14

.

Finally we observe that

s′(z) = − s(z)√
z2 − 4

and, therefore

|T41| ≤ C

n|z2 − 4| 12
.

For z ∈ G we may rewrite it

|T41| ≤ C

n
√

v
. (6.45)

Combining now relations (6.31), (6.26), (6.24), (6.39), (6.41), (6.45),we get for z ∈ G,

|E
n| ≤ C

nv
3
4

+ C

n
3
2 v

3
2 |z2 − 4| 14

.

The last inequality completes the proof of Theorem 1.3.

7 Appendix

7.1 Rosenthal’s and Burkholder’s inequalities

In this subsection we state the Rosenthal and Burkholder inequalities, starting with
Rosenthal’s inequality. Let ξ1, . . . , ξn be independent random variables with Eξ j = 0,
Eξ2j = 1 and for p ≥ 1 E|ξ j |p ≤ μp for j = 1, . . . , n.

123



206 F. Götze, A. Tikhomirov

Lemma 7.1 (Rosenthal’s inequality) There exists an absolute constant C1 such that

E

∣∣∣∣∣∣
n∑
j=1

a jξ j

∣∣∣∣∣∣

p

≤ C p
1 p

p

⎛
⎜⎝
⎛
⎝

n∑
j=1

|a j |2
⎞
⎠

p
2

+ μp

n∑
j=1

|a j |p
⎞
⎟⎠ .

Proof For a proof see [19, Theorem 3] and [16, inequality (A)]. �
Let ξ1, . . . ξn be a martingale-difference with respect to the σ -algebras M j =

σ(ξ1, . . . , ξ j−1). Assume that Eξ2j = 1 and E|ξ j |p < ∞.

Lemma 7.2 (Burkholder’s inequality) There exist an absolute constant C2 such that

E

∣∣∣∣∣∣
n∑
j=1

ξ j

∣∣∣∣∣∣

p

≤ C p
2 p

p

⎛
⎝E

(
n∑

k=1

E{ξ2k |Mk−1}
) p

2

+
n∑

k=1

E|ξk |p
⎞
⎠ .

Proof For a proof of this inequality see [5, Theorem 3.2] and [15, Theorem 4.1]. �
We rewrite the Burkholder inequality for quadratic forms in independent random

variables. Let ζ1, . . . , ζn be independent randomvariables such thatEζ j = 0,E|ζ j |2 =
1 and E|ζ j |p ≤ μp. Let ai j = a ji for all i, j = 1, . . . n. Consider the quadratic form

Q =
∑

1≤ j �=k≤n

a jkζ jζk .

Lemma 7.3 There exists an absolute constant C2 such that

E|Q|p ≤ C p
2

⎛
⎜⎜⎝E

⎛
⎜⎝

n∑
j=2

⎛
⎝

j−1∑
k=1

a jkζk

⎞
⎠

2
⎞
⎟⎠

p
2

+ μp

n∑
j=2

E

∣∣∣∣∣∣
j−1∑
k=1

a jkζk

∣∣∣∣∣∣

p
⎞
⎟⎟⎠ .

Proof Introduce the random variables, for j = 2, . . . , n,

ξ j = ζ j

j−1∑
k=1

a jkζk .

It is straightforward to check that

E{ξ j |M j−1} = 0,

and that ξ j areM j measurable. That means that ξ1, . . . , ξn are martingale-differences.
We may write

Q = 2
n∑
j=2

ξ j .
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Applying now Lemma 7.2 and using

E{|ξ j |2|M j−1} =
⎛
⎝

j−1∑
k=1

a jkζk

⎞
⎠

2

Eζ 2
j ,

E|ξ j |p = E|ζ j |pE

∣∣∣∣∣∣
j−1∑
k=1

a jkζ j

∣∣∣∣∣∣

p

, (7.1)

we get the claim. Thus, Lemma 7.3 is proved. �
We prove as well the following simple Lemma

Lemma 7.4 Let t > r ≥ 1 and a, b > 0. Any x > 0 satisfying the inequality

xt ≤ a + bxr (7.2)

is explicitly bounded as follows

xt ≤ ea +
(
2t − r

t − r

) t
t−r

b
t

t−r . (7.3)

Proof First assume that x ≤ a
1
t . Then inequality (7.3) holds. If x ≥ a

1
t , then according

to inequality (7.2)

xt−r ≤ a
t−r
t + b,

or

xt ≤ (a
t−r
t + b)

t
t−r .

Using that for any α > 0 and a > 0, b > 0

(a + b)α ≤
(
a + a

α

)α + (b + αb)α ≤ eaα + (1 + α)αbα,

we get the claim. �
In what follows we prove several lemmas about the resolvent matrices. Recall the

equation, for j ∈ TJ, (compare with (3.2))

R(J)
j j = − 1

z + m(J)
n (z)

+ 1

z + m(J)
n (z)

ε
(J)
j R(J)

j j ,

where

ε
(J)
j1 = 1√

n
X j j , ε

(J)
j2 = −1

n

∑
k �=l∈TJ, j

X jk X jl R
(J, j)
kl ,

ε
(J)
j3 = −1

n

∑
k∈T j

(X2
jk − 1)R(J, j)

kk , ε
(J)
j4 = m(J)

n (z) − m(J, j)
n (z).

123



208 F. Götze, A. Tikhomirov

Summing these equations for j ∈ TJ, we get

m(J)
n (z) = − n − |J|

n(z + m(J))
n (z))

+ T (J)
n

z + m(J)
n (z)

, (7.4)

where

T (J)
n = 1

n

n∑
j=1

ε
(J)
j R(J)

j j .

Note that

1

z + m(J)
n (z)

= 1

z + s(z)
− m(J)

n (z) − s(z)

(s(z) + z)(z + m(J)
n (z))

= −s(z) + s(z)
(J)
n (z)

z + m(J)
n (z)

, (7.5)

where


(J)
n = 
(J)

n (z) = m(J)
n (z) − s(z).

Equalities (7.4) and (7.5) together imply


(J)
n = − s(z)
(J)

n

z + m(J)
n (z)

+ T (J)
n

z + m(J)
n (z)

+ |J|
n(z + m(J)

n (z))
. (7.6)

Solving this with respect to 

(J)
n , we get


(J)
n = T (J)

n

z + m(J)
n (z) + s(z)

+ |J|
n(z + m(J)

n (z) + s(z))
. (7.7)

Lemma 7.5 Assuming the conditions of Theorem 1.1, there exists an absolute constant
c0 > 0 such that for J ⊂ T,

|z + m(J)
n (z) + s(z)| ≥ Imm(J)

n (z), (7.8)

moreover, for any z ∈ G

|z + m(J)
n (z) + s(z)| ≥ c0

√
|z2 − 4|. (7.9)

Proof Firstly note that Im (z + s(z)) ≥ 0 and Imm(J)
n (z) ≥ 0. Therefore

|z + m(J)
n (z) + s(z)| ≥ Im (z + m(J)

n (z) + s(z)) ≥ Imm(J)
n (z).
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Furthermore,

|z + m(J)
n (z) + s(z)| ≥ Im (z + s(z)) = 1

2
Im (z +

√
z2 − 4) ≥ 1

2
Im
√
z2 − 4.

Note that for z ∈ G

Re (z2 − 4) < 0. (7.10)

Therefore,

Im
√
z2 − 4 ≥

√
2

2

√
|z2 − 4|.

Thus Lemma 7.5 is proved. �
Lemma 7.6 For any z = u + iv with v > 0 and for any J ⊂ T, we have

1

n

∑
l,k∈TJ

|R(J)
kl |2 ≤ v−1Imm(J)

n (z). (7.11)

For any l ∈ TJ ∑
k∈TJ

|R(J)
kl |2 ≤ v−1Im R(J)

ll . (7.12)

and ∑
k∈TJ

|[(R(J))2]kl |2 ≤ v−3Im R(J)
ll . (7.13)

Moreover, for any J ⊂ T and for any l ∈ TJ we have

1

n

∑
l∈TJ

|[(R(J))2]ll |2 ≤ v−3Imm(J)
n (z), (7.14)

and, for any p ≥ 1

1

n

∑
l∈TJ

|[(R(J))2]ll |p ≤ v−p 1

n

∑
l∈TJ

Im p R(J)
ll . (7.15)

Finally,

1

n

∑
l,k∈TJ

|[(R(J))2]lk |2 ≤ v−3Imm(J)
n (z), (7.16)

and

1

n

∑
l,k∈TJ

|[(R(J))2]lk |2p ≤ v−3p 1

n

∑
l∈TJ

Im p R(J)
ll , (7.17)
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We have as well

1

n2
∑

l,k∈TJ

|[(R(J))2]lk |2p ≤ v−2p

⎛
⎝1

n

∑
l∈TJ

Im p R(J)
ll

⎞
⎠

2

. (7.18)

Proof For l ∈ TJ let us denote by λ
(J)
l for l ∈ TJ eigenvalues of matrix W(J). Then

we may write (compare (7.20))

1

n

∑
l,k∈TJ

|R(J)
kl |2 ≤ 1

n

∑
l∈TJ

1

|λ(J)
l − z|2

. (7.19)

Note that, for any x ∈ R
1

Im
1

x − z
= v

|x − z|2 .

We may write

1

|λ(J)
l − z|2

= v−1Im
1

λ
(J)
l − z

and

1

n

∑
l,k∈TJ

|R(J)
kl |2 ≤ v−1Im

⎛
⎝1

n

∑
l∈TJ

1

λ
(J)
l − z

⎞
⎠ = v−1Imm(J)

n (z).

So, inequality (7.11) is proved. Let denote now by u(J)
l = (u(J)

lk )k∈TJ
the eigenvector

of matrix W(J) corresponding to the eigenvalue λ
(J)
l . Using this notation we may write

R(J)
lk =

∑
q∈TJ

1

λ
(J)
q − z

u(J)
lq u(J)

kq . (7.20)

It is straightforward to check the following inequality
∑
k∈TJ

|R(J)
kl |2 ≤

∑
q∈TJ

1

|λ(J)
q − z|2

|u(J)
lq |2

= v−1Im

⎛
⎝∑

q∈TJ

1

λ
(J)
q − z

|u(J)
lq |2

⎞
⎠ = v−1Im R(J)

ll . (7.21)

Thus, inequality (7.12) is proved. Similar we get
∑
k∈TJ

|[(R(J))2]kl |2 ≤
∑
q∈TJ

1

|λ(J)
q − z|4

|u(J)
lq |2 ≤ v−3Im R(J)

ll . (7.22)

123



Optimal bounds for convergence... 211

This proves inequality (7.13). To prove inequality (7.14) we observe that

|[(R(J))2]ll | ≤
∑
k∈TJ

|R(J)
lk |2. (7.23)

This inequality implies

1

n

∑
l∈TJ

|[(R(J))2]ll |2 ≤ 1

n

∑
l∈TJ

⎛
⎝∑

k∈TJ

|R(J)
lk |2

⎞
⎠

2

.

Applying now inequality (7.12), we get

1

n

∑
l∈TJ

|[(R(J))2]ll |2 ≤ v−2 1

n

∑
l∈TJ

Im2R(J)
ll .

This leads (using |R(J)
ll | ≤ v−1 ) to the following bound

1

n

∑
l∈TJ

|[(R(J))2]ll |2 ≤ v−3 1

n

∑
l∈TJ

Im R(J)
ll = v−3Imm(J)

n (z).

Thus inequality (7.14) is proved. Furthermore, applying inequality (7.23), we may
write

1

n

∑
l∈TJ

|[(R(J))2]ll |4 ≤ 1

n

∑
l∈TJ

⎛
⎝∑

k∈TJ

|R(J)
lk |2

⎞
⎠

4

.

Applying (7.12), this inequality yields

1

n

∑
l∈TJ

|[(R(J))2]ll |4 ≤ v−4 1

n

∑
l∈TJ

Im4R(J)
ll .

The last inequality proves inequality (7.15). Note that

1

n

∑
l,k∈TJ

|[(R(J))2]lk |2 ≤ 1

n
Tr |R(J)|4 = 1

n

∑
l∈TJ

1

|λ(J)
l − z|4

≤ v−3Im
1

n

∑
l∈TJ

1

λ
(J)
l − z

= v−3Imm(J)
n (z).
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Thus, inequality (7.16) is proved. To finish we note that

1

n

∑
l,k∈TJ

|[(R(J))2]lk |4 ≤ 1

n

∑
l∈TJ

⎛
⎝∑

k∈TJ

|[(R(J))2]lk |2
⎞
⎠

2

.

Applying inequality (7.13), we get

1

n

∑
l,k∈TJ

|[(R(J))2]lk |4 ≤ v−6 1

n

∑
l∈TJ

(Im R(J)
ll )2.

To prove inequality (7.18), we note

|[(R(J))2]lk |2 ≤
⎛
⎝∑

q∈TJ

|R(J)
lq |2

⎞
⎠
⎛
⎝∑

q∈TJ

|R(J)
kq |2

⎞
⎠ .

This inequality implies

1

n2
∑

l,k∈TJ

|[(R(J))2]lk |2p ≤
⎛
⎝1

n

∑
l,k∈TJ

⎛
⎝∑

q∈TJ

|R(J)
lq |2

⎞
⎠

p⎞
⎠

2

.

Applying inequality (7.11), we get the claim. Thus, Lemma 7.6 is proved. �
Lemma 7.7 For any s ≥ 1, and for any z = u + iv and for any J ⊂ T, and j ∈ TJ,

|R(J)
j j (u + iv/s)| ≤ s|R(J)

j j (u + iv)|.

Proof See [17,Lemma3.4]. For the readers conveniencewe include the short argument
here. Note that, for any j ∈ TJ,

∣∣∣∣
d

dv
log R(J)

j j (u + iv)

∣∣∣∣ ≤ 1

|R(J)
j j (u + iv)|

| d
dv

R(J)
j j (u + iv)|.

Furthermore,

d

dv
R(J)
j j (u + iv) = [(R(J))2] j j (u + iv)

and

|[(R(J))2] j j (u + iv)| ≤ v−1Im R(J)
j j .
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From here it follows that

∣∣∣∣
d

dv
log R(J)

j j (u + iv)

∣∣∣∣ ≤ v−1.

We may write now

∣∣∣log R(J)
j j (u + iv) − log R(J)

j j (u + iv/s)
∣∣∣ ≤

∫ v

v/s

du

u
= log s.

The last inequality yields the claim. Thus Lemma 7.7 follows. �
Lemma 7.8 Assuming the conditions of Theorem 1.1, we get

E|ε j1|2 ≤ C

n
.

Proof The proof follows immediately from the definition of ε j1 and conditions of
Theorem 1.1. �

7.1.1 Some auxiliary bounds for resolvent matrices for Im z = 4

We need the bound for the ε jν , and η j for V = 4.

Lemma 7.9 Assuming the conditions of Theorem 1.1, we get

E|ε j2|2 ≤ C

n
.

Proof Conditioning on M( j), we get

E|ε j2|2 ≤ n−2
∑

k,l∈T j

E|R( j)
kl |2.

Applying now Lemma 7.6, inequality (7.12), we get with Im R(J) ≤ 1
4 ,

E|ε j2|2 ≤ 1

4
n−2

∑
l∈T j

Im R( j)
ll ≤ 1

16n
.

Thus Lemma 7.9 is proved. �
Lemma 7.10 Assuming the conditions of Theorem 1.1, we get

E|ε j3|2 ≤ C

n
.
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Proof Conditioning on M( j), we obtain as above

E|ε j3|2 ≤ μ4

n2
E
∑
l∈T j

|R( j)
ll |2 ≤ μ4

16n
.

Thus Lemma 7.10 is proved. �
Lemma 7.11 Assuming the conditions of Theorem 1.1, we get

E|η j |2 ≤ C

n
.

Proof The proof is similar to proof of Lemma 7.9. We need to use that |[(R( j))2]kl | ≤
V−2 = 1

16 and
∑

l∈T j
|[(R( j))2]kl |2 ≤ V−4. �

Lemma 7.12 Assuming the conditions of Theorem 1.1, we get

E|ε j4|q ≤ Cq

nq
.

k,

Proof The result follows immediately from the bound

|ε j4| ≤ 1

nv
, a.s.

See for instance [10, Lemma 3.3]. �

7.2 Some auxiliary bounds for resolvent matrices for z ∈ G

Introduce now the region

G := {z = u + iv ∈ C
+ : u ∈ Jε, v ≥ v0/

√
γ }, where v0 = A0n

−1, (7.24)

Jε = [−2 + ε, 2 − ε], ε := c1n
− 2

3 , γ = γ (u) = min{2 − u, 2 + u}.

In the next lemma we state some useful inequalities for the region G.

Lemma 7.13 For any z ∈ G we have

|z2 − 4| ≥ 2max{γ, v}, nv
√

|z2 − 4| ≥ 2A0.

Proof We observe that

|z2 − 4| = |z − 2||z + 2| ≥ 2
√

γ 2 + v2.

This inequality proves the Lemma. �
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Lemma 7.14 Assuming the conditions of Theorem 1.1, there exists an absolute con-
stant C > 0 such that for any j = 1, . . . , n,

E{|ε j1|4
∣∣M( j)} ≤ Cμ4

n2
. (7.25)

Proof The result follows immediately from the definition of ε j1. �
Lemma 7.15 Assuming the conditions of Theorem 1.1, there exists an absolute con-
stant C > 0 such that for any j = 1, . . . , n,

E{|ε j2|2
∣∣M( j)} ≤ C

nv
Imm( j)

n (z), (7.26)

and

E{|ε j2|4
∣∣M( j)} ≤ Cμ2

4

n2v2
Im2m( j)

n (z). (7.27)

Proof Note that r.v.’s X jl , for l ∈ T j are independent of M( j) and that for l, k ∈ T j

R( j)
lk are measurable with respect to M( j). This implies that ε j2 is a quadratic form

with coefficients R( j)
lk independent of X jl . Thus its variance and fourth moment are

easily available.

E{|ε j2|2
∣∣M( j)} = 1

n2
∑

l �=k∈T j

|R( j)
lk |2 ≤ 1

n2
Tr |R( j)|2.

Here we use the notation |A|2 = AA∗ for any matrix A. Applying Lemma 7.6,
inequality (7.11), we get equality (7.26).

Furthermore, direct calculations show that

E{|ε j2|4
∣∣M( j)} ≤ C

n2

⎛
⎝1

n

∑
l �=k∈T j

|R( j)
lk |2

⎞
⎠

2

+ Cμ2
4

n2
1

n2
∑
l∈T j

|R( j)
lk |4

≤ Cμ2
4

n2

⎛
⎝1

n

∑
l �=k∈T j

|R( j)
lk |2

⎞
⎠

2

≤ Cμ2
4

n2v2
(Imm( j)

n (z))2.

Here again we used Lemma 7.6, inequality (7.11). Thus Lemma 7.15 is proved. �
Lemma 7.16 Assuming the conditions of Theorem 1.1, there exists an absolute con-
stant C > 0 such that for any j = 1, . . . , n,

E{|ε j3|2
∣∣M( j)} ≤ Cμ4

n

1

n

∑
l∈T j

|R( j)
ll |2, (7.28)
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and

E{|ε j3|4
∣∣M( j)} ≤ C

n2

⎛
⎝1

n

∑
l∈T j

|R( j)
ll |2

⎞
⎠

2

+ Cμ4

n2
1

n

∑
l∈T j

|R( j)
ll |4. (7.29)

Proof The first inequality is easy. To prove the second, we apply Rosenthal’s inequal-
ity. We obtain

E{|ε j3|4
∣∣M( j)} ≤ Cμ4

n2

⎛
⎝1

n

∑
l∈T j

|R( j)
ll |2

⎞
⎠

2

+ Cμ8

n3
1

n

∑
l∈T j

|R( j)
ll |4.

Using |X jl | ≤ Cn
1
4 we get μ8 ≤ Cnμ4 and the claim. Thus Lemma 7.16 is proved. �

Corollary 7.17 Assuming the conditions of Theorem 1.1, there exists an absolute
constant C > 0, depending on μ4 and D0 only, such that for any j = 1, . . . , n,
ν = 1, 2, 3 z ∈ G, and 0 ≤ α ≤ 1

2 A1(nv)
1
4 and β ≥ 1

E
|ε jν |2

|z + m( j)
n (z) + s(z)|β |z + m( j)

n (z)|α
≤ C

nv|z2 − 4| β−1
2

(7.30)

and for β ≥ 2

E
|ε jν |4

|z + m( j)
n (z) + s(z)|β |z + m( j)

n (z)|α
≤ C

n2v2|z2 − 4| β−2
2

. (7.31)

We have as well, for ν = 2, 3, and β ≥ 4

E
|ε jν |8

|z + m( j)
n (z) + s(z)|β |z + m( j)

n (z)|α
≤ C

n4v4|z2 − 4| β−4
2

(7.32)

Proof For ν = 1, by Lemma 7.5, we have

E
|ε jν |2

|z + m( j)
n (z) + s(z)||z + m( j)

n (z)|α
≤ 1

n|z2 − 4| β
2

E|X j j |4E
1

|z + m( j)
n (z)|α

.

Applying now Corollary 5.14 and Lemma 7.13, we get the claim. The proof of the
second inequality for ν = 1 is similar. For ν = 2 we apply Lemmas 7.15 and 7.5,
inequality (7.26) and obtain, using inequality (7.8),
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E
|ε j2|2

|z + m( j)
n (z) + s(z)||z + m( j)

n (z)|α

≤ 1

nv|z2 − 4| β−1
2

E
Imm( j)

n (z)

|z + m( j)
n (z) + s(z)||z + m( j)

n (z)|α

≤ C

nv
E

1

|z + m( j)
n (z)|α

.

Similar, using Lemma 7.15, inequality (7.27), and inequality (7.8) we get

E
|ε j2|4

|z + m( j)
n (z) + s(z)|β |z + m( j)

n (z)|α

≤ C

n2v2|z2 − 4| β−2
2

E
Im2m( j)

n (z)

|z + m( j)
n (z) + s(z)|2|z + m( j)

n (z)|α

≤ C

n2v2|z2 − 4| β−2
2

E
1

|z + m( j)
n (z)|α

.

Applying Corollary 5.14, we get the claim. For ν = 3, we apply Lemma 7.16, inequal-
ities (7.28) and (7.29) and Lemma 7.5. We get

E
|ε j3|2

|z + m( j)
n (z) + s(z)||z + m( j)

n (z)|α

≤ C

n
√|z2 − 4

E
1

|z + m( j)
n (z)|α

⎛
⎝1

n

∑
l∈T j

|R( j)
ll |2

⎞
⎠ , (7.33)

and

E
|ε j3|4

|z + m( j)
n (z) + s(z)|2|z + m( j)

n (z)|α

≤ C

n2|z2 − 4|E
1

|z + m( j)
n (z)|α

⎛
⎝1

n

∑
l∈T j

|R( j)
ll |4

⎞
⎠ .

Using now the Cauchy–Schwartz inequality and Corollary 5.14, we get the claim. �
Lemma 7.18 Assuming the conditions of Theorem 1.1, there exists an absolute con-
stant C > 0 such that for any j = 1, . . . , n,

|ε j4| ≤ C

nv
a.s.
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Proof This inequality follows from

Tr R − Tr R( j) =
⎛
⎝1 + 1

n

∑
l,k∈T j

X jl X jk[(R( j))2]kl
⎞
⎠ R j j = R−1

j j
d R j j

dz
, (7.34)

which may be obtained using the Schur complement formula. See, for instance [10,
Lemma 3.3]. �
Corollary 7.19 Assuming the conditions of Theorem 1.1, there exists an absolute
constant C > 0 such that for any j = 1, . . . , n,

E|ε j |4 ≤ C

n2v2
. (7.35)

Proof By definition of ε j (see (3.2)), we have

E|ε j |4 ≤ 43(E|ε j1|4 + · · · + E|ε j4|4).

Applying nowLemmas 7.14, 7.15 (inequality (7.27)), 7.16 (inequality (7.29)) and 7.18
and taking expectation where needed (7.35) follows. Thus the Corollary is proved. �

Introduce quantities

η j1 = 1

n

∑
l∈T j

[(R( j))2]ll = 1

n
Tr (R( j))2,

η j2 = 1

n

∑
l �=k∈T j

X jl X jk[(R( j))2]lk,

η j3 = 1

n

∑
l∈T j

(X2
jl − 1)[(R( j))2]ll . (7.36)

Lemma 7.20 Assuming the conditions of Theorem 1.1, we have, for z ∈ G, for any
j = 1, . . . , n

E{|η j3|4
∣∣M( j)} ≤ Cn−2v−6Im2m( j)

n (z) + Cn−2v−4μ4
1

n

∑
l∈T j

Im4R( j)
ll , (7.37)

E{|η j3|8
∣∣M( j)} ≤ Cμ4

4

n4v12
Im4m( j)

n (z) + Cμ4
4

n4v8
1

n

∑
l∈T j

Im8R( j)
ll . (7.38)

Proof Direct calculation shows

E{|η j3|4
∣∣M( j)} ≤ Cμ4

n2

⎛
⎝∑

l∈T j

|[(R( j))2]ll |2
⎞
⎠

2

+ Cμ8

n3
1

n

∑
l∈T j

|[(R( j))2]ll |4.
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Applying Lemma 7.6, the inequality (7.15) and the inequality μ8 ≤ Cnμ4, we get

E{|η j3|4
∣∣M( j)} ≤ Cn−2v−6Im2m( j)

n (z) + Cn−2μ4
1

n

∑
l∈T j

Im4R( j)
ll .

Thus, inequality (7.37) is proved. Consider now the 8th moment of η j3. Applying
Rosenthal’s inequality, we get

E{|η j3|8
∣∣M( j)} ≤ Cμ4

4

n4

⎛
⎝1

n

∑
l∈T j

|[(R( j))2]ll |2
⎞
⎠

4

+ Cμ16

n7
1

n

∑
l∈T j

|[(R( j))2]ll |8.

Using now Lemma 7.6, inequalities (7.14) and (7.15), and that μ16 ≤ Cn3μ4, we
obtain

E{|η j3|8
∣∣M( j)} ≤ Cμ4

4

n4v12
Im4m( j)

n (z) + Cμ4
4

n4v8
1

n

∑
l∈T j

Im8R( j)
ll .

Thus, inequality (7.38) is proved. �

Lemma 7.21 Assuming the conditions of Theorem 1.1, we have, for z ∈ G, for any
j = 1, . . . , n

E{|η j2|4
∣∣M( j)} ≤ CIm2m( j)

n (z)

n2v6
+ Cμ2

4

n3v6
1

n

∑
l∈T j

|R( j)
ll |2, (7.39)

E{|η j2|8
∣∣M( j)} ≤ C

n4v12

(
Imm( j)

n (z)
)4 + Cμ2

4

n4v8

⎛
⎝ 1

n

∑
l∈T j

Im4R( j)
ll

⎞
⎠

2

+ Cμ2
4

n4v8

⎛
⎝ 1

n

∑
l∈T j

Im3R( j)
ll

⎞
⎠

2 (
Imm( j)

n (z)
)

+ Cμ4
4

n6v12

⎛
⎝ 1

n

∑
l∈T j

(
Im R( j)

ll

)2
⎞
⎠

2

+ Cμ2
4

n6v12

⎛
⎝ 1

n

∑
l∈T j

(
Im R( j)

ll

)2
⎞
⎠(Imm( j)

n (z)
)2

. (7.40)

Proof Direct calculation shows that

E{|η j2|4
∣∣M( j)} ≤ C

n2

⎛
⎝1

n

∑
l �=k∈T j

|[(R( j))2]kl |2
⎞
⎠

2

+ Cμ2
4

n4
∑

l �=k∈T j

|[(R( j))2]kl |4.
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Applying inequalities (7.16) and (7.17) of Lemma 7.6, we get

E{|η j2|4
∣∣M( j)} ≤ CIm2m( j)

n (z)

n2v6
+ Cμ2

4

n3v6
1

n

∑
l∈T j

|R( j)
ll |2.

Furthermore, we have

E{|η j2|8
∣∣M( j)} ≤ C

n4

⎛
⎝1

n

∑
l �=k∈T j

|[(R( j))2]kl |2
⎞
⎠

4

+ Cμ2
8

n8
∑

l �=k∈T j

|[(R( j))2]kl |8

+ Cμ2
6

n6

⎛
⎝1

n

∑
l �=k∈T j

|[(R( j))2]kl |6
⎞
⎠
⎛
⎝1

n

∑
l �=k∈T j

|[(R( j))2]kl |2
⎞
⎠

+ Cμ4
4

n6

⎛
⎝1

n

∑
l �=k∈T j

|[(R( j))2]kl |4
⎞
⎠

2

+ Cμ2
4

n6

⎛
⎝1

n

∑
l �=k∈T j

|[(R( j))2]kl |4
⎞
⎠
⎛
⎝1

n

∑
l �=k∈T j

|[(R( j))2]kl |2
⎞
⎠

2

.

Note that

μ6 ≤ C
√
nμ4, μ8 ≤ Cnμ4.

Using this relations, we get

E{|η j2|8
∣∣M( j)} ≤ C

n4

⎛
⎝1

n

∑
l �=k∈T j

|[(R( j))2]kl |2
⎞
⎠

4

+ Cμ2
4

n6
∑

l �=k∈T j

|[(R( j))2]kl
∣∣∣8

+ Cμ2
4

n5

⎛
⎝1

n

∑
l �=k∈T j

|[(R( j))2]kl |6
⎞
⎠
⎛
⎝1

n

∑
l �=k∈T j

|[(R( j))2]kl |2
⎞
⎠

+ Cμ4
4

n6

⎛
⎝1

n

∑
l �=k∈T j

|[(R( j))2]kl |4
⎞
⎠

2

+ Cμ2
4

n6

⎛
⎝1

n

∑
l �=k∈T j

|[(R( j))2]kl |4
⎞
⎠
⎛
⎝1

n

∑
l �=k∈T j

|[(R( j))2]kl |2
⎞
⎠

2

.
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Applying now Lemma 7.6, we obtain

E{|η j2|8
∣∣M( j)} ≤ C

n4v12
(Imm( j)

n (z))4 + Cμ2
4

n4v8

⎛
⎝ 1

n

∑

l∈T j

(Im R( j)
ll )4

⎞
⎠
2

+ Cμ2
4

n5v12

⎛
⎝ 1

n

∑

l∈T j

Im3R( j)
ll

⎞
⎠ (Imm( j)

n (z))+ Cμ4
4

n6v12

⎛
⎝ 1

n

∑

l∈T j

(Im R( j)
ll )2

⎞
⎠
2

+ Cμ2
4

n6

⎛
⎝ 1

n

∑

l∈T j

(Im R( j)
ll )2

⎞
⎠ (Imm( j)

n (z))2.

Thus, the Lemma is proved. �
Lemma 7.22 Assuming the conditions of Theorem 1.1, we have

E
|ε j4|4

|z + s(z) + mn(z)|4 ≤ C

n4v4
.

Proof Using the representations (7.34)–(7.36) we have

ε j4 = 1

n

⎛
⎝1 + 1

n

∑
l,k∈T j

X jl X jk[(R( j))2]lk
⎞
⎠ R j j = 1

n
(1 + η j1 + η j2 + η j3)R j j .

(7.41)
Applying the Cauchy–Schwartz inequality, we get

E| ε j4

z + s(z) + mn(z)
|4

≤ C

n4

⎛
⎝1 + E

1
2

( | 1n
∑

l,k∈T j
X jl X jk[(R( j))2]lk |

|z + s(z) + mn(z)|

)8
⎞
⎠E

1
2 |R j j |8.

Using Corollary 5.14, we may write

E| ε j4

z + s(z) + mn(z)
|4

≤ C

n4

(
1 + E

1
2

∣∣∣∣
η j1

z + mn(z) + s(z)

∣∣∣∣
8

+ E
1
2

∣∣∣∣
η j2

z + mn(z) + s(z)

∣∣∣∣
8

+E
1
2

∣∣∣∣
η j3

z + mn(z) + s(z)

∣∣∣∣
8
)

.

Observe that,

1

|z + s(z) + mn(z)| ≤ 1

|z + s(z) + m( j)
n (z)|

(1 + |ε j4|
|z + s(z) + mn(z)| ).
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Therefore, by Lemmas 7.18, 7.5 and 7.13, for z ∈ G,

1

|z + s(z) + mn(z)| ≤ C

|z + s(z) + m( j)
n (z)|

. (7.42)

Using (7.42) we get by definition of η j1, Lemma 7.6, and inequality (7.11)

E
1
2

∣∣∣∣
η j1

z + mn(z) + s(z)

∣∣∣∣
8

≤ CE
1
2

v−8Im8m( j)
n (z)

|z + m( j)
n (z) + s(z)|8

≤ v−4.

Furthermore, applying inequality (7.42) again, we obtain

E
1
2

∣∣∣∣
η j2

z + mn(z) + s(z)

∣∣∣∣
8

≤ E
1
2

∣∣∣∣∣
η j2

z + m( j)
n (z) + s(z)

∣∣∣∣∣
8

.

Conditioning with respect toM( j) and applying Lemma 7.20, we obtain

E
1
2

∣∣∣∣
η j2

z + mn(z) + s(z)

∣∣∣∣
8

≤ E
1
2

C

|z + m( j)
n (z) + s(z)|8

⎛
⎝ 1

n4v12
(Imm( j)

n (z))4

+ μ4
4

n4v8
1

n

∑
l∈TJ

(Im R( j)
ll )8

⎞
⎠ .

Using Lemma 7.5, inequality (7.8), together with Corollary 5.14 we get

E
1
2

∣∣∣∣
η j2

z + mn(z) + s(z)

∣∣∣∣
8

≤ C

n2v6|z2 − 4| + Cμ2
4

n2v4|z2 − 4|2 .

Applying inequality (7.42) and conditioning with respect to M( j) and applying
Lemma 7.21, we get

E
1
2

∣∣∣∣
η j3

z + mn(z) + s(z)

∣∣∣∣
8

≤ E
1
2

1

|z + s(z) + m( j)
n (z)|8

⎛
⎜⎝ C

n4v12
(Imm( j)

n (z))4

+ Cμ2
4

n4v8

⎛
⎝1

n

∑
l∈T j

(Im R( j)
ll )4

⎞
⎠

2

+ Cμ2
4

n5v12

⎛
⎝1

n

∑
l∈T j

(Im R( j)
ll )3

⎞
⎠ (Imm( j)

n (z))

+ Cμ4
4

n6v12

⎛
⎝1

n

∑
l∈T j

(Im R( j)
ll )2

⎞
⎠

2

+ Cμ2
4

n6v12

⎛
⎝1

n

∑
l∈T j

(Im R( j)
ll )2

⎞
⎠ (Imm( j)

n (z))2

⎞
⎟⎠ .

(7.43)
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Using that |z + m( j)
n (z) + s(z)| ≥ Imm( j)

n (z) together with Lemma 7.6, we arrive at

E
1
2

∣∣∣∣
η j3

z + mn(z) + s(z)

∣∣∣∣
8

≤ C

n2v6|z2 − 4| + C

n2v4|z2 − 4|2
+ C

n
5
2 v6|z2 − 4| 74

+ C

n3v6|z2 − 4|2 + C

n3v6|z2 − 4| 32
.

Summarizing we may write now, for z ∈ G,

E
|ε j4|4

|z + s(z) + mn(z)|4 ≤ C

n4v4
+ C

n6v6|z2 − 4| + C

n6v4|z2 − 4|2
+ C

n
13
2 v6|z2 − 4| 74

+ C

n7v6|z2 − 4|2 + C

n7v6|z2 − 4| 32
.

For z ∈ G, see (7.24) and Lemma 7.13, this inequality may be simplified by means of
the following bounds (with v0 = A0n−1)

n
5
2 v2|z2 − 4| 74 ≥ n

5
2 v20γ

−1+ 7
4 ≥ C

√
nγ

3
4 ≥ C,

n3v2|z2 − 4| ≥ C, n3v2|z2 − 4| 32 ≥ C,

n2|z2 − 4|2 ≥ C. (7.44)

Using these relation, we obtain

E
|ε j4|4

|z + s(z) + mn(z)|4 ≤ C

n4v4
.

Thus Lemma 7.22 is proved. �
Corollary 7.23 Assuming the conditions of Theorem 1.1, we have

E
|ε j4|2

|z + s(z) + mn(z)|2 ≤ C

n2v2
.

Proof The result follows immediately from Lemma 7.22 and Jensen’s inequality. �
Lemma 7.24 Assuming the conditions of Theorem 1.1, we have, for z ∈ G,

E|
n|2 ≤ C

n2v2
. (7.45)

Proof We write

E|
n|2 = E
n
n = E
Tn

z + mn(z) + s(z)

n =

4∑
ν=1

E
Tnν

z + mn(z) + s(z)

n,
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where

Tnν := 1

n

n∑
j=1

ε jνR j j , for ν = 1, . . . , 4.

First we observe that by (7.34)

|Tn4| = 1

n
|m′

n(z)| ≤ 1

nv
Immn(z).

Hence |z + mn(z) + s(z)| ≥ Immn(z) and Jensen’s inequality yields

|E Tn4
z + mn(z) + s(z)


n| ≤ 1

nv
E

1
2 |
n|2. (7.46)

Furthermore, we represent Tn1 as follows

Tn1 = Tn11 + Tn12,

where

Tn11 = −1

n

n∑
j=1

ε j1
1

z + mn(z)
,

Tn12 = 1

n

n∑
j=1

ε j1

(
R j j + 1

z + mn(z)

)
.

Using these notations we may write

V1 := E
Tn11

z + mn(z) + s(z)

n = −E

(
1
n

∑n
j=1 ε j1

)

(z + mn(z))(z + s(z) + mn(z))

n .

Applying the Cauchy–Schwartz inequality twice and using the definition of ε j1 (see
(3.2)), we get by Lemma 7.5

|V1| ≤ 1

|z2 − 4| 12
E

1
4

∣∣∣∣∣∣
1

n
√
n

n∑
j=1

X j j

∣∣∣∣∣∣

4

E
1
4 | 1

z + mn(z)|4 E
1
2 |
n|2.

By Rosenthal’s inequality, we have, for z ∈ G

|V1| ≤ C

n|z2 − 4| 12
E

1
2 |
n|2 ≤ 1

nv
E

1
2 |
n|2. (7.47)
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Using (3.2) we rewrite Tn12, obtaining

V2 := E
Tn12

z + mn(z) + s(z)

n = 1

n
√
n

n∑
j=1

E
X j jε j R j j

(z + mn(z))(z + mn(z) + s(z))

n .

By the Cauchy–Schwartz inequality, using the definition of ε j (see representation
(3.2)), we obtain

|V2| ≤ 1√
n

4∑
ν=1

E
1
2

| 1n
∑n

j=1 ε jνX j j R j j |2
|z + mn(z) + s(z)|2|z + mn(z)|2 E

1
2 |
n|2 =:

4∑
ν=1

V2ν . (7.48)

For ν = 1, we have

V21 ≤ 1

n
E

1
2

∣∣∣ 1n
∑n

j=1 X
2
j j R j j

∣∣∣2

|z + mn(z) + s(z)|2|z + mn(z)|2 E
1
2 |
n|2.

Applying the Cauchy–Schwartz inequality twice and Lemma 7.5, we arrive at

V21≤ 1

n
√|z2 − 4|E

1
4

⎛
⎝1

n

n∑
j=1

X4
j j

⎞
⎠

2

E
1
8

⎛
⎝1

n

n∑
j=1

|R j j |2
⎞
⎠

4

E
1
8

1

|z + mn(z)|8 E
1
2 |
n|2.

(7.49)

Observe that

E

⎛
⎝1

n

n∑
j=1

X4
j j

⎞
⎠

2

=
⎛
⎝1

n

n∑
j=1

EX4
j j

⎞
⎠

2

+ E

⎛
⎝1

n

n∑
j=1

(X4
j j − EX4

j j )

⎞
⎠

2

≤ μ2
4 + 2

n2

n∑
j=1

E|X j j |8 ≤ (μ4 + D4
0)μ4 ≤ C. (7.50)

The last inequality, inequality (7.49), Corollary 5.14 and Lemma 7.13 together imply

V21 ≤ C

n
√|z2 − 4|E

1
2 |
n|2 ≤ C

nv
E

1
2 |
n|2. (7.51)

Furthermore, for ν = 4, by Lemma 7.18 we have

V24 ≤ 1

nv
√
n

E
1
2

1
n

∑n
j=1 |X j j |2|R j j |2

|z + mn(z) + s(z)|2|z + mn(z)|2 E
1
2 |
n|2.
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Applying the Cauchy–Schwartz inequality and Lemma 7.5, we get

V24 ≤ 1

nv
√
n
√

|z2 − 4|E
1
4

⎛
⎝ 1

n

n∑
j=1

X4
j j

⎞
⎠
2

E
1
8

⎛
⎝ 1

n

n∑
j=1

|R j j |2
⎞
⎠
4

E
1
8

1

|z + mn(z)|8 E
1
2 |
n |2.

Similar to inequality (7.51), applying Lemma 7.13, inequality (7.50) and Corol-
lary 5.14, we get

V24 ≤ C

nv
E

1
2 |
n|2. (7.52)

By Hölder’s inequality, we have for ν = 2, 3,

V2ν ≤ 1√
n

1

n

n∑
j=1

E
1
4

|ε jν |4|X j j |4
|z + mn(z) + s(z)|4 E

1
8

1

|z + mn(z)|8 E
1
8 |R j j |8E

1
2 |
n|2.

Note that for ν = 2, 3, r.v. X j j doesn’t depend on ε jν and on σ -algebra M( j). Using
inequality (7.42) for z ∈ G, we get

E
|ε jν |4|X j j |4

|z + mn(z) + s(z)|4 ≤ CE
|ε jν |4|X j j |4

|z + m( j)
n (z) + s(z)|4

≤ Cμ4E
|ε jν |4

|z + m( j)
n (z) + s(z)|4

.

Applying now Lemmas 7.15, 7.16 and 7.13, arrive at

V2ν ≤ C

nv
E

1
2 |
n|2, for ν = 2, 3. (7.53)

Inequalities (7.51), (7.52), (7.53) together imply

V2 ≤ C

nv
E|
n|2. (7.54)

Consider now the quantity

Yν := E
Tnν

z + mn(z) + s(z)

n,

for ν = 2, 3. We represent it as follows

Yν = Yν1 + Yν2,

where

Yν1 = −1

n

n∑
j=1

E
ε jν
n

(z + m( j)
n (z))(z + mn(z) + s(z))

,

Yν2 = 1

n

n∑
j=1

E
ε jν(R j j + 1

z+m( j)
n (z)

)
n

z + mn(z) + s(z)
.

123



Optimal bounds for convergence... 227

By the representation (5.32), which is similar to (3.2) we have

Yν2 =
3∑

μ=1

1

n

n∑
j=1

E
ε jνε jμ
n R j j

(z + mn(z) + s(z))(z + m( j)
n (z))

.

Using inequality (7.42), we may write, for z ∈ G

|Yν2| ≤
3∑

μ=1

C

n

n∑
j=1

E
|ε jν ||ε jμ||
n||R j j |

|z + m( j)
n (z) + s(z)||z + m( j)

n (z)|
.

Applying the Cauchy–Schwartz inequality and the inequality ab ≤ 1
2 (a

2 + b2), we
get

|Yν2| ≤
3∑

μ=1

C

n

n∑
j=1

E
1
2

|ε jν |2|ε jμ|2|R j j |2
|z + m( j)

n (z) + s(z)|2|z + m( j)
n (z)|2

E
1
2 |
n|2

≤
3∑

μ=2

C

n

n∑
j=1

E
1
2

|ε jμ|4|R j j |2
|z + m( j)

n (z) + s(z)|2|z + m( j)
n (z)|2

E
1
2 |
n|2

+ C

n

n∑
j=1

E
1
2

|ε jν |2|ε j1|2|R j j |2
|z + m( j)

n (z) + s(z)|2|z + m( j)
n (z)|2

E
1
2 |
n|2

≤
3∑

μ=2

C

n

n∑
j=1

E
1
4

|ε jμ|8
|z + m( j)

n (z) + s(z)|4|z + m( j)
n (z)|4

E
1
2 |
n|2E

1
4 |R j j |4

+ C

n

n∑
j=1

E
1
4

|ε jν |4|ε j1|4
|z + m( j)

n (z) + s(z)|4|z + m( j)
n (z)|4

E
1
2 |
n|2E

1
4 |R j j |4.

Using Corollary 7.17 with α = 2, we arrive at

|Yν2| ≤ C

nv
E

1
2 |
n|2. (7.55)

In order to estimate Yν1 we introduce now the quantity



( j1)
n = 1

n
Tr R( j) − s(z) + s(z)

n
+ 1

n2
Tr R( j)2s(z).

Recall that

η j1 = 1

n

∑
l∈T j

[(R( j))2]ll , η j2 = 1

n

∑
k �=l∈T j

X jk X jl [(R( j))2]kl ,

η j3 = 1

n

∑
l∈T j

(X2
jl − 1)[(R( j))2]ll . (7.56)
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Note that

|η j1| = 1

n
|Tr R( j)2| ≤ v−1Imm( j)

n (z). (7.57)

We use that (see Lemma 5.5 in [11])

ε j4 = 1

n
(1 + η j1 + η j2 + η j3)R j j . (7.58)

Note that

δnj := 
n − 
̃
( j)
n = ε j4 − s(z)

n
− 1

n
η j0s(z)

= 1

n
(R j j − s(z))(1 + η j1) + 1

n
(η j2 + η j3)R j j .

This yields

|δnj | ≤ 1

n
(1 + |η j1|)|R j j − s(z)| + 1

n
|η j2 + η j3|)|R j j |. (7.59)

We represent Yν1 in the form

Yν1 = Zν1 + Zν2 + Zν3,

where

Zν1 = −1

n

n∑
j=1

E
ε jν


( j1)
n

(z + m( j)
n (z))(z + m( j)

n (z) + s(z))
,

Zν2 = 1

n

n∑
j=1

E
ε jνδnj

(z + m( j)
n (z))(z + mn(z) + s(z))

,

Zν3 = 1

n

n∑
j=1

E
ε jν
nε j4

(z + m( j)
n (z))(z + m( j)

n (z) + s(z))(z + mn(z) + s(z))
,

Zν4 = −1

n

n∑
j=1

E
ε jνε j4δnj

(z + m( j)
n (z))(z + m( j)

n (z) + s(z))(z + mn(z) + s(z))
.

First, note that by conditional independence

Zν1 = 0. (7.60)

Furthermore, applying Hölder’s inequality, we get

|Zν3| ≤ 1

n

n∑
j=1

E
1
4

|ε jν |4
|z + m( j)

n (z)|4|z + m( j)
n (z) + s(z)|4

× E
1
4

|ε j4|4
|z + mn(z) + s(z)|4 E

1
2 |
n|2.
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Using Corollary 7.17 with α = 4 and Lemmas 7.22 and 7.5, we obtain

|Zν3| ≤ C

(nv)
3
2 |z2 − 4| 14

E
1
2 |
n|2.

For z ∈ G we may rewrite this bound using Lemma 7.13

|Zν3| ≤ C

nv
E

1
2 |
n|2. (7.61)

Furthermore, note that

|1 + η j1| ≤ v−1Im {z + m( j)
n (z)} ≤ Im {z + m( j)

n (z) + s(z)}.

This inequality together with (7.59) implies that

|Zν4| ≤ Z̃ν4 + Ẑν4, (7.62)

where

Z̃ν4 = 1

n2v

n∑
j=1

E
|ε jνε j4||R j j − s(z)|

|z + m( j)
n (z)||z + mn(z) + s(z)|

Ẑν4 = 1

n2

n∑
j=1

E
|ε jνε j4||η j2 + η j3||R j j |

|z + m( j)
n (z)||z + m( j)

n (z) + s(z)||z + mn(z) + s(z)|
.

By representation (3.2), we have

|R j j − s(z)| ≤ |
n||R j j | + |ε j ||R j j |. (7.63)

This implies that

Z̃ν4 ≤ Z̃ν41 + Z̃ν42,

where

Z̃ν41 = 1

n2v

n∑
j=1

E
|ε jνε j4||
n||R j j |

|z + m( j)
n (z)||z + mn(z) + s(z)|

Z̃ν42 = 1

n2v

n∑
j=1

E
|ε jνε j4||ε j ||R j j |

|z + m( j)
n (z)||z + mn(z) + s(z)|

.

Applying Hölder inequality, we get

Z̃ν41 ≤ 1

nv
E

1
2 |
n|2E

1
8

⎛
⎝1

n

n∑
j=1

|ε jν |4
⎞
⎠

2

E
1
16

⎛
⎝1

n

n∑
j=1

|R j j |16
⎞
⎠

×E
1
16

⎛
⎝1

n

n∑
j=1

1

|z + m( j)
n |16

⎞
⎠ 1

n

n∑
j=1

E
1
4

|ε j4|4
|z + mn(z) + s(z)|4 .
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By Lemma 7.21, inequality (7.39) and Corollary 5.14, we have

Z̃ν41 ≤ C

n2v2
E

1
2 |
n|2. (7.64)

Furthermore, applying Hölder inequality again, we get

Z̃ν42 ≤ 1

nv
E

1
4

⎛
⎝1

n

n∑
j=1

|ε jν |4
⎞
⎠E

1
4

⎛
⎝1

n

n∑
j=1

|ε j4|4
|z + mn(z) + s(z)|4

⎞
⎠

×E
1
4

⎛
⎝1

n

n∑
j=1

|ε j |4
⎞
⎠E

1
8

⎛
⎝1

n

n∑
j=1

|R j j |8
⎞
⎠E

1
8

⎛
⎝1

n

n∑
j=1

1

|z + m( j)
n |8

⎞
⎠ . (7.65)

The last inequality, Corollaries 5.14, 7.17, Lemma 7.22 together imply

Z̃ν42 ≤ C

n2v2
. (7.66)

Inequalities (7.64) and (7.66) together imply

|Zν4| ≤ C

nv
E

1
2 |
n|2 + C

n2v2
. (7.67)

To bound Zν2 we first apply inequality (7.42) and obtain

|Zν2| ≤ C

n

n∑
j=1

E
|ε jν ||δnj |

|z + m( j)
n (z)||z + m( j)

n (z) + s(z)|
.

Furthermore, similar to bound of Zν4—inequality (7.62)—we may write

|Zν2| ≤ Z̃ν2 + Ẑν2,

where

Z̃ν2 = C

n2

n∑
j=1

E
|ε jν ||R j j − s(z)|

|z + m( j)
n (z)|

,

Ẑν2 = C

n2

n∑
j=1

E
|ε jν ||η j2 + η j3||R j j |

|z + m( j)
n (z)||z + m( j)

n (z) + s(z)|
.

Applying inequality (7.63) and Cauchy–Schwartz inequality, we get

Z̃ν2 ≤ E
1
2 |
n|2 C

n2

n∑
j=1

E
1
4 |ε jν |4E

1
8

1

|z + m( j)
n (z)|8

E
1
8 |R j j |8

+ C

n2

n∑
j=1

E
1
4 |ε jν |4E

1
4 |ε j |4E

1
8

1

|z + m( j)
n (z)|8

E
1
8 |R j j |8. (7.68)
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Lemmas 7.15, 7.16, 7.22, inequality (7.39) and Corollary 5.14 together imply

Z̃ν2 ≤ C

nv
E| 12 |
n|2 + C

n2v2
. (7.69)

Applying now Hölder’s inequality, we get

|Ẑν2| ≤ C

n2

n∑
j=1

E
1
4

|ε jν |4
|z + m( j)

n (z) + s(z)|2
E

1
4

|η j2 + η j3|4
|z + m( j)

n (z) + s(z)|2

×E
1
4 |R j j |4E

1
4

1

|z + m( j)
n (z)|4

.

The last inequality together with Lemmas 7.22, 7.20, 7.21 and Corollary 5.14, 7.17
implies

|Ẑν2| ≤ C

n2v2
. (7.70)

Combining now inequalities (7.46), (7.47), (7.54), (7.55), (7.60), (7.61), (7.67), (7.69),
(7.70), we get

E|
n|2 ≤ C

nv
E

1
2 |
n|2 + C

n2v2
. (7.71)

Applying Lemma 7.4 with t = 2, r = 1 completes the proof of Lemma 7.24. �

We relabel η j2, η j3 and introduce the following quantity

β j1 = 1

n

∑
l∈T j

[(R( j))2]ll − 1

n

n∑
l=1

[(R)2]ll ,

β j2 = 1

n

∑
l �=k∈T j

X jl X jk[(R( j))2]lk = η j2,

β j3 = 1

n

∑
l∈T j

(X2
jl − 1)[(R( j))2]ll = η j3.

Lemma 7.25 Assuming the conditions of Theorem 1.1, we have, for ν = 2, 3,

E{|β jν |2|M( j)} ≤ C

nv3
Imm( j)

n (z).

Proof We recall that by C we denote the generic constant depending on μ4 and D0
only. By definition of β jν for ν = 2, 3, conditioning on M( j), we get
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E{|β j2|2
∣∣M( j)} ≤ C

n2
∑

l �=k∈T j

|[(R( j))2]kl |2 ≤ C

n2
∑

l,k∈T j

|[(R( j))2]kl |2,

E{|β j3|2
∣∣M( j)} ≤ C

n2
∑
l∈T j

|[(R( j))2]ll |2 ≤ C

n2
∑

l,k∈T j

|[(R( j))2]kl |2.

Applying Lemma 7.6, we get the claim. Thus Lemma 7.25 is proved. �
Lemma 7.26 Assuming the conditions of Theorem 1.1, we have, for j = 1, . . . , n,

E|β j1| ≤ C

nv2
.

Proof Let F ( j)
n (x) denote empirical spectral distribution function of matrix W( j).

According to interlacing eigenvalues Theorem (see [18, Theorem 4.38]) we have

sup
x

|Fn(x) − F ( j)
n (x)| ≤ C

n
.

Furthermore, we represent

β j1 =
∫ ∞

−∞
1

(x − z)2
d(Fn(x) − F ( j)

n (x)) + 1

n(n − 1)
Tr (R( j))2.

Integrating by parts, we get the claim.
Thus Lemma 7.26 is proved. �
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