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Abstract Let X = (X jk)’}, v~ denote a Hermitian random matrix with entries X j,
which are independent for 1 < j < k < n. We consider the rate of convergence of
the empirical spectral distribution function of the matrix X to the semi-circular law
assuming that EX j; = 0, EX%k =1 and that

sup sup E|Xjk|4 =: U4 < OO,
n>11<jk<n

and

1
sup | X k| < Don#.

1<j.k=n

By means of a recursion argument it is shown that the Kolmogorov distance between

the expected spectral distribution of the Wigner matrix W = \/LEX and the semicircular

law is of order O (n™1).
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164 F. Gotze, A. Tikhomirov

1 Introduction

Consider a family X = {X k1 <j<k=<n, of independent real random variables
defined on some probability space (2, M, Pr), forany n > 1. Assume that X jx = Xy;,
for 1 <k < j < n, and introduce the symmetric matrices

X X2 o0 Xm
W 1 | X2 X2 - Xop
N : .o
an Xn2 T Xnn
The matrix W has a random spectrum {A{, ..., A, } and an associated spectral dis-

tribution function F,(x) = rl; card{j < n : A; < x},x € R. Averaging over the
random values X;;(w), define the expected (non-random) empirical distribution func-
tions F,,(x) = E F,,(x). Let G(x) denote the semi-circular distribution function with
density g(x) = G'(x) = %«/4 — xZH[,gyz] (x), where I, 1 (x) denotes the indicator-
function of the interval [a, b]. The rate of convergence to the semi-circular law has
been studied by several authors. We proved in [13] that the Kolmogorov distance
between F, (x) and the distribution function G (x), A% := sup, |F,(x) — G(x)| is of
order Op(l’l_%) (i.e. n% A is bounded in probability). Bai et al. [1,2] and Girko [8]
showed that A, := sup, |F,(x) — G(x)| = O(n_%). Bobkov, Gotze and Tikhomirov
[4] proved that A, and EA” have order O (n™ .%) assuming a Poincaré inequality for the
distribution of the matrix elements. For the Gaussian Unitary Ensemble respectively
for the Gaussian Orthogonal Ensemble, see [12] respectively [21], it has been shown
that A,, = O(n’l). Denote by y,1 < -+ < ¥un, the quantiles of G, i.e. G(yyj) = ﬁ,
and introduce the notation llog, := loglogn. Erdos et al. [6,7] showed, for matrices
with elements X j; which have a uniformly sub exponential decay, i.e.

Pr{|X js| > t} < Aexp{—*}, (1.1)

for some » > 0, A > 0 and for any ¢ > 1, the following result

Pr{EI i hg = yuil = (ogm)C M8 [min(j, N — j + )]~ rf%}
< Cexp{—(logn)“ %%}, (1.2)

for n large enough. It is straightforward to check that this bound implies that
Pr {sup | Fn(x) — G(x)| < Cn~'(logn)C Mo ] > 1 —Cexp{—(ogn)°°&}. (1.3)
X

From the last inequality it follows that EAY < C n~!(logn)€ 1% Similar results
were obtained in [20, Theorem 32], assuming additionally that the distributions of the
entries of matrices have vanishing third moment.
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In this paper we derive the optimal bound for the rate of convergence of the expected
spectral distribution to the semi-circular law. Using arguments similar to those used
in [17] we provide a self-contained proof based on recursion methods developed in
the papers of Gotze and Tikhomirov [9,13] and [22]. It follows from the results of
Gustavsson [14] that the best possible bound in the Gaussian case for the rate of
convergence in probability is O (n~!/Togn). The best possible bound for A, is of
order O (n~"). For Gaussian matrices such bounds were obtained in [12] and [21]. Our
setup includes the case that the distributions of X j; = X y,? may depend on #. In the
following we shall investigate the rate of convergence of expected spectral distribution
function F, (x) = EF; (x) to the semi-circular distribution function by estimating the
quantity A,. The main result of this paper is the following

Theorem 1.1 Let EX ji = 0, EX3, = 1. Assume that

sup sup E[Xjp* =: g < 0. (1.4)

n>11<j,k<n

Assume as well that there exists a constant Dq such that for all n > 1

sup | X | < Don. (1.5)

1<j,k<n

Then, there exists a positive constant C = C(Dy, ia) depending on Do and 4
only such that
A, =sup|F(x) — G(x)| < Cn L (1.6)
X

Corollary 1.1 Let EX ;; =0, EX?,{ = 1. Assume that

sup sup E|Xjk|8 =: g < Q. (1.7)

n>11<j,k<n
Then, there exists a positive constant C = C(uug) depending on g only such that
Ap < Cnl. (1.8)

Remark 1.2 Note that the bound (1.6) in Theorem 1.1 and the bound (1.8) in the
Corollary 1.1 are not improvable and coincide with the corresponding bounds in the
Gaussian case.

We state here as well the results for the Stieltjes transform of the expected spectral
distribution of the matrix W. Let R denote the resolvent matrix of the matrix W,

R:=R(z) = (W—-zD)~".
Here and in what follows I denotes the unit matrix of corresponding dimension. For

any distribution function F(x) we define the Stieltjes transform sp(z), forz = u +iv
with v > 0, via formula
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166 F. Gotze, A. Tikhomirov

SF(2) z/ ;dF(x).
o X — 2

Denote by m, (z) the Stieltjes transform of the distribution function F,(x). It is a
well-known fact that

mp(2) = — = —1IrR.
nis nj_l)\j—z n

By s(z) we denote the Stieltjes transform of the semi-circular law,

—z4+ 72 —4
s(z) = —

The Stieltjes transform of the semi-circular distribution satisfies the equation
22 +zs@) +1=0 (1.9)

(see, for example, [13, equality (4.20)]).
Introduce for z = u + iv and a positive constant Ag > 0

vo:=Aon~', and y:=y(2) =12 — |ull. (1.10)
Forany 0 < ¢ < %, and Ay > 0, define a region G = G(Ag, n, ¢) C C4, by
G:= {z=u+iveC+ S d4e<u<2-—¢ vzvo/\/y(z)}. (1.11)

Let a > 0 be a positive number such that

! / Uogu=? (1.12)
— —adli = —. .
T Ju|<a u? +1 4

We prove the following result.

Theorem 1.3 Let % > & > 0 be a sequence of positive numbers in (1.11) such that

[SI[%)

2 = 2upa. (1.13)

Assuming the conditions of Theorem 1.1, there exists a positive constant C
C(Dy, Ao, a) depending on D, Ay and 4 only, such that, for z € G

C

C
[Em,(z) =52 = —5 + —5— T
nv# 2v7|z2 — 4|3
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1.1 Sketch of the proof

1. We start with an estimate of the Kolmogorov-distance to the Wigner distribution via
an integral over the difference of the corresponding Stieltjes transforms along a contour
in the upper half-plane using a smoothing inequality (2.1) and Cauchy’s formula
developed by the authors in [11]. The resulting bound (2.3) involves an integral over a
segment at a fixed distance, say V = 4, from the real axis and a segment u+-i Aon_1 22—
|u|)’% , |u| <2 atadistance of order n~! but avoiding to come close to the endpoints
42 of the support. These segments are part of the boundary of an n-dependent region
G where bounds of Stieltjes transforms are needed. Since the Stieltjes-transform and
the diagonal elements R;;(z) of the resolvent of the Wigner-matrix W are uniformly
bounded on the segment with Imz = V by 1/V (see Sect. 3.1) proving a bound of
order O(n~") for the latter segment near the x-axis is the essential problem.

2. In order to investigate this crucial part of the error we start with the 2nd resolvent
or self-consistency equation for the expected Stieltjes transform resp. the quantities
R;j(z) of W (see (3.2) below) based on the difference of the resolvent of W ( jthrow
and column removed) and W. For the equivalent representation for the difference of

Stieltjes transforms (see (3.3)) we have to show an error bound of order O ((n v)_% Iz2 —

41~ %) for z € G. To prove this bound we use a recursive version of this representations
as in (5.32). Obviously bounds for E|R;;|” for z = u + iv close to the real line are
needed for the sufficiently large p, which follow once the error terms ¢ ; are small in the
region G. But proving that E|e;|” is small requires in turn again bounds of E|R ;; |27,

An approach suggested recently in [17] turns out to be very fruitful in dealing with
this recursion problem. Assuming that E|R; |21’ < Cgp for some z = u + iv, we can
show that E|R ;|7 < Céj with z = u + iv/sg with some fixed scale factor so > 1.
This allows us to prove by induction a bound of type E|R ;|7 < Cg for some fixed ¢
(independent of n) and z = u + iv with v > cn! starting with E|R;;|7 < Cg for
p= sg and z = u+iv forfixed v = 4, say. The latter assumption can be easily verified.

Note that one of the errors, that is €7, in (3.2) is a quadratic form in independent
random variables. Thus, in case that W has entries with exponential or even sub-
Gaussian tails, inequalities for quadratic forms of independent random variables, like
[11, Lemma 3.8] or [17, Proposition A.1], could be applied.

Assuming eight moments in Corollary 1.1 or four moments and a truncation con-
dition in Theorem 1.1 only, we can’t use these strong tail estimates for quadratic
forms anymore. Our solution is an recursive application of Burkholder’s inequality
for the pth moment resulting in a bound involving moments of order p/2 of another
quadratic form in independent variables in each step. This is the crucial part of the
moment recursion for R;; described above. Details of this procedure are described in
Sects. 5.1 and 5.2.

3. In Sect. 6 we prove a bound for the error EA, := E(m,(z) — s(z)) of the form
n_lv_% + (nv)_% |22 — 4|_% which suffices to prove the rate O (n~") in Theorem 1.1.
Here we use a series of martingale-type decompositions to evaluate the expectation
Em,,(z) combined with the bound E|A,,|> < C(nv)~? of Lemma 7.24 in the Appendix
which is again based on a recursive inequality for E| A, |> in (7.71). A direct application
of this bound to estimate the error terms ¢ j4 would resultin a less precise bound of order
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168 F. Gotze, A. Tikhomirov

O(n~"logn) in Theorem 1.1. Bounds of such type will be shown for the Kolmogorov
distance of the random spectral distribution to Wigner’s law in a separate paper. For
the expectation we provide sharper bounds in Sect. 6.2 involving m), (z).

4. The necessary auxiliary bounds for all these steps are collected in the Appendix.

2 Bounds for the Kolmogorov distance of spectral distributions
via Stieltjes transforms

To bound the error A, we shall use an approach developed in previous work of the
authors, see [13].

We modify the bound of the Kolmogorov distance between an arbitrary distribu-
tion function and the semi-circular distribution function via their Stieltjes transforms
obtainedin[13,Lemma?2.1]. Forx € [—2, 2] define y (x) := 2—|x|.Given% >¢e>0
introduce the interval J, = {x € [-2,2] : y(x) > ¢}and J, = J¢ /2. For a distribution
function F denote by Sr(z) its Stieltjes transform.

Proposition 2.1 Let v > 0 and a > 0 and % > ¢ > 0 be positive numbers such that

1 / 1 d 3 @.0)
— u=-, .
T Ju|<a u? 41 4
and R
2va < eg2. 2.2)

If G denotes the distribution function of the standard semi-circular law, and F is any
distribution function, there exist some absolute constants C1 and C, such that

A(F,G) :=sup|F(x) — G(x)|

Im/_; (SF (wﬂ\”ﬁ) — g (u—i—i\j?))du

Remark 2.2 For any x € J, we have y = y(x) > ¢ and according to condition (2.2),
ay - &

< 2 sup +C1U+C28%.

/
xel;

W
For a proof of this Proposition see [11, Proposition 2.1].

.. .. 3/2
Lemma 2.1 Under the conditions of Proposition 2.1, forany V > vand(0 < v < 82—‘1

andv' = v/ /Y,y =2 — |x|, x € I}, as above, the following inequality holds

/x (Im (Sp(u +iv') — Sg(u +iv"))du

—00

sup
xel)

oo
5/ 1Spu+iV) — Sg(u+iV)|du

—00

+ sup

!
xell,

1%
/ Sr(x +iu) — Sg(x +iu))du
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Proof Let x € J, be fixed. Let y = y(x). Put z = u + iv'. Since v’ = % < %,

see (2.2), we may assume without loss of generality that v' < 4 for x € J.. Since
the functions Sr(z) and Sg (z) are analytic in the upper half-plane, it is enough to use
Cauchy’s theorem. We can write for x € J,

—00 —

/x Im (SF(2) — Sg(z))du = Im {Llimw /XL(SF(u +iv') — Sg(u+ iv/))du} .
By Cauchy’s integral formula, we have
/_XL(SF(Z) = S6(2))du = /_XL(SF(M +iV) = Sg(u+iV))du
—i—/v/v(Sp(—L +iu) — Sg(—L + iu))du
—//V(SF(x +iu) — Sg(x + iu))du.

Denote by & (resp. ) a random variable with distribution function F (x) (resp. G(x)).
Then we have

1

Sp(—L +iu)| = | E———
|Sp(—L + iw)] ‘E+L—m

_ 2
‘ < v 'Pr{lE] > L/2) + -
for any v’ < u < V. Similarly,
. -1 2
|Sg(—L +iu)| <v Pr{|n| > L/2} + I
These inequalities imply that

v
/ (Sp(=L +iu) — Sg(—=L +iu))du| - 0 as L — oo,
v/

which completes the proof. O
Combining the results of Proposition 2.1 and Lemma 2.1, we get

Corollary 2.2 Under the conditions of Proposition 2.1 the following inequality holds

o0
A(F,G) < 2/ [SF(u+iV) —Sg(u+iV)|du+C1vo+C28%
—00
v
+25up/ |Sp(x +iu) — Sg(x +iu)|du, 2.3)
xel, JV'

where v/ = ;—‘;7 withy =2 — |x| and C1, C2 > 0 denote absolute constants.
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170 F. Gotze, A. Tikhomirov

3 Proof of Theorem 1.1

Proof We shall apply Corollary 2.2 to prove the Theorem 1.1. We choose V = 4 and
vo as defined in (1.10) and use the quantity ¢ = (2a vo)%.

3.1 Estimation of the first integral in (2.3) for V =4

Denote by T = {1,...,n}. In the following we shall systematically use for any
n x n matrix W together with its resolvent R, its Stieltjes transform m,, etc. the
corresponding quantities W@ jts resolvent R and its Stieltjes transform mS,A) for
the corresponding sub matrix with entries X j, j,k ¢ A, A C T = {1,...,n}. Let
T = T\A. Observe that

1 1
W)y 2 -
jeTa %) <

By M we denote the o-algebra generated by Xj; with [, k € Ty. If A = ¢ we
shall omit the set A as exponent index.
We shall use the representation

1
Rj;j = — 3.1
1 1 ()
—2+ = Xjj =y 2ier, Xk X i1 Ry

(see, for example, [13, equality (4.6)]). We may rewrite it as follows

R ! + ! R (3.2)

o giR;i. )
H 24muz)  zHmu(z) Y
where ¢ :=¢;1 +€j2 + €3 + &4 with
&j1 = Lij o= - > XpXRg
— 5 Jj2 = J k]
v nk;éle’]l‘_,-
1 2 () 1 i
ej3 ==~ D X —DR. ejai= ~(TrR — TrRY).
kETj
Let
1
Ay i= A (2) i =myu(2) —5(2) = ;TrR —5(2).
Summing equality (3.2) in j = 1, ..., n and solving with respect A,, we get
T,
Ny =mp(z) —5(2) = (3.3)

Z+my(z) +5(2)
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Optimal bounds for convergence... 171

where
1 n
= - E gjiR;j;j.
n 4 Jjj
j=1

Obvious bounds like |z + s(z)] > 1, |A; — 27 <™ max{|R(°H)(z)| Im(J)(Z)I} <
v™!, imply that for V = 4 and for any J C T,

1
—|z +s(@)l,

Im{P ()| < 5

N = ]
A

IA

G 1
Is(z) —m;” ()] < 2Iz—i-s(z)l, a.s.

and therefore,

1 1
lz+mP @) +s2)| = 3l 5@l iz4+mP )| > SIs@ +2l (3.4)

Using equality (3.3), we may write

E "= N b P A
A Z z+mn(z)+s(z)

j=1

=ilz £7v5(2) i;z ev(Rjj — 5(2))
“n & 24+ mu(2) +5(2) e Z+mn(Z)+S(Z)'
We use that E{ajv|im(j)} =0, forv =1, 2, 3 and obtain

n

1 < givs(2) 1 £iveias(2)
EZEz—l—mJ(z)—l—s(z):_;zE () — ’
= n =1 @+ my (@) + 5@ +ma(z) +5(2)

Thus, according to inequalities (3.4), Lemmas 7.8, 7.9, 7.10, 7.12 in the Appendix and
Eq. (1.9), we obtain

n2

1 & £iv8(2) 1 & C|S(Z)|2
njzzl 24+ mp(2) +s)| ~ s (2)] n; lejagjy] < -

where C depends on p4 only. For v = 4, Lemma 7.12 in the Appendix, inequality
(3.4) and relation (1.9) yield

1 s@lleal €
Z Tt @) +s@)] ' @F (3-5)
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172 F. Gotze, A. Tikhomirov

with some absolute constant C. Furthermore, applying the Cauchy—Schwartz inequal-
ity and inequality (3.4) and relation (1.9), we get

4 1 n & (R" S(Z)) 4 1 n 1 1
E _E EL < Cls _ EZle; ZEjR"—SZ 2.
—n~ z4+mu(z)+s@ | | (Z)|Zn Z lejvl IRjj (2|
v=1 j=1 v=1 j=1

3.6)

We may rewrite the representation (3.2) using A,, = m; (z)—s(z) and (1.9) as (compare

(3.1)
Rjj =S(Z)—S(Z)8jRjj—S(Z)AnRjj. (37)
Applying representations (3.3) and (3.7) together with (3.4) and |R;| < le’ we obtain
1 n
E[Rjj(z) —s(2)]* < CIS(Z)IZZ > Elal*. (3.8)
=1
Combining inequalities (3.6) and (3.8), we get
4 n 4 n
1 giv(Rii —5(2)) 1
—SELH T2 < Cls@P Y = Elgjyl’ 3.9

Applying now Lemmas 7.8, 7.9, 7.10 and 7.12, we get

4 n ) L 2
leE gjv(Rj; —s(2)) < Cls(2)| _ (3.10)
oo etma@) ) n

Inequality (3.5) and (3.10) together imply
C
EA,| < —ls@)I (3.11)
Consider now the integral

Int(V) = /OO [Em,(u +iV) —s(u+iV)|du

—00

for V = 4. Using inequality (3.11), we have

C o0
umwng—/‘uw+vm%w
n

—00
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Finally, we note that

dx < ————dudF, < —. 3.12
/—oo @I x_[w[w (x_u)2+V2 ud Fn(x) < \%4 ( )
Therefore,
© C
/ [Em,(u +iV) —su+iV)|du < —. (3.13)
o0 n

3.2 Estimation of the second integral in (2.3)

To finish the proof of Theorem 1.1 we need to bound the second integral in (2.3) for
z € Gand vy = Agn~!, where ¢ = (2av0)% is defined in such a way that condition
(2.2) holds. We shall use the results of Theorem 1.3. According to these results we

have, for z € G,
C

C
[Em,(z) =s@)| < —5 + 55— (3.14)
nvi  nivi|z2 — 4|3
We have
v , , c [V dv C V' dv
[E(n,(x +iv) —s(x +iv))|ldv < — [ =~ — + o PR
/Y nJE v ongnydJE o2
After integrating we get
1% 1
. . C Cy* C
[E(m,,(x +iv) —s(x +iv))|dv < —+ﬁ < —. (3.15)
e bondayivg "

Inequalities (3.13) and (3.15) complete the proof of Theorem 1.1. Thus Theorem 1.1
is proved. O

4 The proof of Corollary 1.1

To prove the Corollary 1.1 we consider truncated random variables X ji defined by

< 1

Xj=Xl{|X | <cnt}. 4.1
Let fn (x) denote the empirical spectral distribution function of the matrix W =
X,

Lemma 4.1 Assuming the conditions of Theorem 1.1 there exists a constant C > 0
depending on g only such that

E {sup | F, (x) —fn(xn] <<

n
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174 F. Gotze, A. Tikhomirov

Proof We shall use the rank inequality of Bai. See [3, Theorem A.43, p. 503]. Accord-
ing this inequality

E [sup | T (x) — Fo (x)|] < %E {rank(X — X)} .

Observing that the rank of a matrix is not larger then numbers of its non-zero entries,
we may write

~ 1 & 1 — C
E{supm(x)—fn(xn}s— BI{1Xl = Cni} == > Eixl® < =2,
X n : I’l n
J.k=1 J.k=1

Thus, the Lemma is proved. O

Note that in the bound of the first integral in (2.3) we used the condition (1.4) only.
We shall compare the Stieltjes transform of the matrix w and the matrix obtained
from W by centralizing and normalizing its entries. Introduce X k= Xk — EX; jk and
W= ﬁ(X./k)j,k:l' We normalize the r.v.’s X]k. Let U,k = EIX]k|2. We define the

LV.’s )V(jk = aﬁcl )?jk. Finally, let 1, (z) (resp. m,(z), m, (z)) denote the Stieltjes trans-
form of the empirical spectral distribution function of the matrix W = \/LZ (X jk);'., rel
(resp. W, W).

Remark 4.1 Note that

Xl < Din®, EXj; =0 and EX% =1, 42)

for some absolute constant D;. That means that the matrix W satisfies the conditions
of Theorem 1.3.

Lemma 4.2 There exists some absolute constant C depending on jug such that

E|m,(2) — mu(2)| <

3 3
n2v2
Proof Note that
. 1 - 1 1« _ 1 ~ 1 |
my(z) = -Tr(W—-zI)"" = =TrR, m,(z) = -Tr(W —zI)7" =: —TrR.
n n n n
Therefore, . .
fiin(z) — ity (z) = =Tr (R — R) = —Tr (W — W)RR. (4.3)
n n

Using the simple inequalities |Tr AB| < ||A||2||B]|2 and ||AB|>» < ||A]|||B]2, we get
~ - “IR3 IRIZIRIZES W — W2
Eim,(z) —mn(2)] = n” E2|R|I7IR[ZE2 W — W]5. (4.4)
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Furthermore, we note that,
~ » 1 o
W= W= ==X, 4.5)
and
[W—Wl < max {I—oj}lW].
1<j,k<n

Since
4.6)

3
O<l—op<l—0} <Cn 2,
E|W—W|3 < Cugn?

therefore
Applying Lemma 7.6 inequality (7.11) in the Appendix we get
1

2

1~ v 1 v - 3 o 1
EZ[RIPIR[; < v "E2RI3 < v | D ERP | < v 2/n(Imii, (2))2.
J.k
4.7

Using now inequalities (4.6) and (4.7), we obtain
1
2

3 3 1< .
Ty 2 | - ER;;
n; IRj|

E|m,(2) —mu(2)] = Cn
m

According Remark 4.1, we may apply Corollary 5.14 in Sect. 5 with g = 1 to prove

the claim. Thus, Lemma 4.2 is proved.
Lemma 4.3 For some absolute constant C > 0 we have
Cus

E|”7n(z)_7ﬁn(z)|§ 33 -
n2v2

Proof Similar to (4.3), we write
- ~ 1 ~ ~ o~
m,(z) —m,(z) = -Tr(R —R) = —=Tr (W — W)RR
n n
Elifin () — i (2)] < n 'E|R|||R]2|EW]],. (4.8)

This yields
4.9)

Furthermore, we note that, by definition (4.1) and condition (1.7), we have

~ 7
IEX x| < Cn™%pus.
@ Springer
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176
Applying (Lemma 7.6 inequality (7.11) in the Appendix) and inequality (4.9), we
R 1

>

obtain using |R|| < v~
. A _7 3.1
E|m,(z) —mp(2)| < n~ v 2E2|m,(2)|.

By Lemma 4.2,
Elmy(2)| < Elmy(2)| + C,

for some constant C depending on ug and Ag. According to Corollary 5.14 in Sect. 5.2

withg = 1
1 n
Elritn ()| < ~ > EIRj;| = C,
j=1

Cus Cus

E|nA’in(Z) - fﬁn(zﬂ = 7 3 3 °
niv

with a constant C depending on 14, Dg. Using these inequalities, we get

3 3 3
2 nzv2
O

Thus Lemma 4.3 is proved.
Corollary 4.4 Assuming the conditions of Corollary 1.1, we have for z € G,

C

€ 4
3 n2v2ﬁ'

[En, (z) —s(2)| <
(nv)2

Proof The proof immediately follows from the inequality

[Enn, (2) — s(2)| < [E@,(2) = ma(2))] + [Enitn (2) — s(2)],
O

Lemmas 4.2 and 4.3 and Theorem 1.3.
The proof of Corollary 1.1 follows now from Lemma 4.1, Corollary 2.2, inequality

(3.13) and inequality
. : . C

|Enm,(x +iv) —s(x +iv)|dv < —.
n

\%4
sup /
vo//Y

xeJe

5 Resolvent matrices and quadratic forms
The crucial problem in the proof of Theorem 1.3 is the following bound for any z € G

E|R;;|’ < CP,
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for j = 1,...,n and some absolute constant C > 0. To prove this bound we use an
approach similar to the proof of Lemma 3.4 in [17]. In order to arrive at our goal we
need additional bounds of quadratic forms of type

14

(0 Cp

z XjiXpR)| < (—=
2k —(m)

Ly

To prove this bound we recurrently use Rosenthal’s and Burkholder’s inequalities.

5.1 The key lemma

In this Section we provide auxiliary lemmas needed for the proof of Theorem 1.1.
For any J C T introduce Ty = T\J. We introduce the quantity, for some J C T,

p

BY = | = Z > IRDP

qETI reTy

By Lemma 7.6, inequality (7.12) in the Appendix, we have

EBY) < v~ Z E[R()|”. (5.1)
qGTJ

Furthermore, introduce the quantities

oUh — > > Xira®*?)|

1€Tx |reTypN{l,....[—1}

Tk
0GP = S ke,

}’ETJ]J(
k
Q(J ) — Z (X]%r _ l)dfg'k’v_l—l)»
rETJk
k
0% = D XuXegallhty, (5.2)
r#q€Ty i
where, a(J ) are defined recursively via

1
J,k,0) _ J.k)
aqr \/—Rqr ’

alkvth) — > a*Va Y for v=0,... L. (53)

le{max{q,r}+1,...,n}NTy &
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Using these notations we have

Lemma 5.1 Under the conditions of Theorem 1.1 we have

n

J.k, Jk
Z |a(ka+1) Z |al(r V)|2 Z | ¢ U)|2 . (55)

VET.H,k lvreT.]].k lET_]]_k
Moreover,
2
q,FET‘]]vk q,rGTJ,k
Proof We apply Holder’s inequality and obtain
(J k)2 (JI k, v)
IET‘]]‘k ZGT“]],k
Summing in ¢ and r, (5.5) and (5.6) follow. O

Corollary 5.2 Under the conditions of Theorem 1.1 we have

1 o
> lal i < ((Immﬁﬂ”(z) + —) u‘)
nv

q’rETJ.k

and

-1
1 _ o
Z |af1°]£’k’”)|2 < ((Imm,ﬁj)(z) + %) v 1) n 1ImR;“g"‘).

rGTk

Proof By definition of a(J k.0)

the Appendix), we get

1 1
D lagt <~ IR((,‘JE”‘)IZS(Imm;J)(z)JrE)v_l, (5.7)

q,reTJ,k q,reTJ,k

, see (5.3), applying (Lemma 7.6 inequality (7.11) in

and by definition (5.3),

Z |a;°]l‘k’0)|2 Z | (Jk) (5.8)

rET.]]vk VETJ] k
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The general case follows now by induction in v, Lemma 5.1, and Lemma 7.6
inequality (7.12) in the Appendix. O

Corollary 5.3 Under the conditions of Theorem 1.1 we have
1 2V —1
a kv < ((Immgj)(z) + —) vl) o Im RGP (5.9)
nv

Proof The result immediately follows from the definition of a( ") and Corollary 5.2.

O
In what follows we shall use the notations
W = mmP () + % (AD)? = B@D)@ =02 70k _ g0,
AD =1 L EHD, (5.10)

Let 5o denote some fixed number (for instance sy = 28). Let A; be a constant (to be
chosen later) and 0 < v; < 4 a constant such that vy = Aon_1 <wy foralln > 1.

Lemma 5.4 Assuming the conditions of Theorem 1.1 and for p < A (nv)%

ERO)P <Cl. for v=v. forall j=1,..n, (5.11)
we have for v > v /sg and p < Al(nv)%, and k € Ty
E(0f™)" <6 (C”’) v PAD. (5.12)
ﬁ 14

Proof Using the representation (5.4) and the triangle inequality, we get

El00 01 <37 (100 Y17 + EIOG 1P + EIQGY1P) . (5.13)

Let 9™ denote the o-algebra generated by r.v.’s X;; for j,I € Ty, for any set
A. Conditioning on MUK (A = J U {k}) and applying Rosenthal’s inequality (see
Lemma 7.1), we get

S

J.k ’
EIQLY1 < Cfp? [E 30 1afh 0P ) 4+ 3 Elaf PRI P |
reTy . reTy

(5.14)

where C1 denotes the absolute constant in Rosenthal’s inequality. By Remark 4.1, we
get
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S

J.k Jk,v+1) 2 rl kw41
B0 1P < Cfp? | E( D0 1af R | nf o ST Elafhrthp
reTy reTyk

(5.15)

Analogously conditioning on 9Y-X and applying Burkholder’s inequality (see
Lemma 7.3), we get

SIS

EQG P <cipr |E( D]

reTJ,k

Z qua(J] Jk, V+1)|2
quJ.kﬂ{l ,,,,, r—1}

14
+ZE Zxk all vt B XeglP | (5.16)

where C; denotes the absolute constant in Burkholder’s inequality. Conditioning again
on MUK and applying Rosenthal’s inequality, we obtain

SS]

Zxk a(ka+1) <CP P|E Z|a(Jku+l)
re']I‘Jk

+ D" Elal TUPE X P | (5.7)

rET_]]_k

Combining inequalities (5.16) and (5.17), we get

DI

J.k J.k
EIQ5Y1 = Y pPEIQS)IZ+CICEp™ DT B[ D lafy*TUP) ElXpgl”

qET_]],k VET_]]’](

+CPCE P > D" Elaly TV IPE X |PE| X |7 (5.18)
qGT‘]],k VGT‘]],/(

Using Remark 4.1, this implies

]

1
E|Q‘()°];k)|1’ < CgppE|Q‘(){_li)|2 +CpCp 2[7n4_ Z E Z |a(ﬂk v+1)

qETJ k FETJyk

+C{’C§p2pn§ - > > ElaJkpe, (5.19)
qGTJkrETJk

Using the definition (5.2) of Q(“U ©) and the definition (5.3) of coefficients a(“]I k, U+1)
it is straightforward to check that
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Jk
EQG1P<E| > jalkvR | (5.20)
q,r€Ty 1

Combining (5.15), (5.19) and (5.20), we get by (5.13)

s

— J.k
3SPRIQUIY < L prEIQS E 4yt S R (Y P

qETJ k reTyk

cetetpnty S By
qETJk reTIk

p

+CICTE| D ladhmP?
q.r€Ty i

]

p 1
+CPCIp? |E| D0 laf P | kat s S Ela ety
IETJ_k rETJ’k

(5.21)

Applying now Lemma 5.1 and Corollaries 5.2 and 5.3, we obtain

2"=Dp
EIQURP < ¢l pPEIQTR|% + CPE (Immnm n U) p=@'=Dp

v 2
y 1\% Y5 [1
+C?p?Py~ 2Py~ 5E (1mm® _ Z Ak 5
3P n mm, (Z)+nv . Z|R |
q€Tyk

@-np (4
po2p —L 2vp o 1 1 k) (p
+CypPn~2v E(Immn (z)—l—nv) . E IRy ™17 ] s
q€Ty«
(5.22)

where C3 = 3C1C,. Applying Cauchy—Schwartz inequality, we may rewrite the last
inequality in the form

1\@-bp
k —(V—
EQ0P )P < clpPEIQU % 4 CLE (Imm@)(z) + ) p= @ =bp

1
_ J.k)2p
o2 IR

q€Tyk

i

v P 1 1 (2 —l)p
+ Cgppzptf2 Pp=iE2 (Immgﬂ)(z) + —) E
nv

, ) 1 2'-1)2p
+Clp2 =iy 2 PES (Immﬁﬂ“ (@) + —) Kz Z IR 2P
nv
qETJA

(5.23)
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Introduce the notation

11
FP(Z) = E2 ; Z |Rt(lu]gl,k)|2p

g€y

We rewrite the inequality (5.23) using I",(z) and the notations of (5.10) as follows

TR < (Cp)P T, + LA v @ br

+(C3pH)P (v—z"l’n—uAﬂ, /z)zrg )+ v—Z”Pn—’z’Ag«?;,r,,(z)) :

(5.24)
Note that
AP =1, AD < I+ E@O)2 < 14+ BT D),
where W) = Imm(“]]) (z) + ;- Furthermore,
>
Pppr <Tp
Without loss of generality we may assume p = 2L and v = 0, ..., L. We may

write

& k _ 3 _p
TP < (C3p)P TN + Cf o+ (CapPyPu™? (n TT2(2)+n zr,,(z)).
By induction we get

L -1
J.k v .,]]k v _(l_ !
T()(’p ) < H(C p/zv)p/2 T( ) A(J) Z(H(C3p/2V)p/2 )U Q2'=1)p/2

v=0 =1 \v=0

L -1
v _ 1
+ADyP Z“(H(Qp/z”)!’/2 )(n Pr2)7

=1 \v=0

L -1
+A(J)Z(H(Csp/2”)‘”/2 )(n‘f’r o (5.25)

=1 \v=0
It is straightforward to check that

-1

[+1
122(1_L).
2v 2!
|

v
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Note that, for [ > 1,

-1 2p(1—2-h 2p(1-271

2 (C3p)-P 204 (C3
[T (C3(p/27)" = —Zp(l—zH'l) — 2% Tp . (5.26)
v=0 2 P

Applying this relation, we get

P

L yi-1 } l C3p\ ¥ L=r o 4 VY
[€)] vyp/2¥ —-2'=Dp/2 (€))] s - Por
Aj Z(g@p/z » )v eap () ey 21(C32p2> |

=0 =0

Note that for [ > 0, % < % and recall that p = 2L, Using this observation, we get

2L—l

Lo/ i ! C 2p L 4v
A(J)Z(H(C3p/2”)p/2v)v_(2_l)p/z sA}ﬂ”( ;P) U_PZPZ(CZPZ)
=0 \“3

v=0

1

v
7 =7

L -1
A Z(H(csp/zvv’/z”)v@’”"/2’ < (C3p)*P AP v

=1 \v=0

Furthermore, by definition of 7, ,, we have

J.k J.k
T[("] ) —EQ( )<E Z (a(JkL)
q,reTy

Applying Corollary 5.2 and Holder’s inequality, we get
100 < E@ ')y < v7rAD. (5.27)
By condition (5.11), we have
T, :=T,u+iv) <s"CP.

Using this inequality, we get,

L yl-1 2
v __P ST
AT (I [(Cap/21y7”? )n Y

=1 \v=0
L -1 »
< ADyr Z“(]_[(cyp/zvy’/2 )(sécgnl)zl“. (5.28)
=0 \v=0
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Applying relation (5.26), we obtain

S

ADy ‘PZ(H(Czp/ZV)P/Z) N

I=1 \v=0

L _2
C3p\?? T — 2w (C3p\ " 2 4 g
< ( 5 ) A;,)v P ?_1 2P 5 (sqgCan~H

L _ 2
Cip 2p _ L (C3p\ T 4 a4 gl P
:( > ) Ag)” PE P31 5 ((sgCgn~Hyr) 2T

=1
_ %) AD P ((50C0))
( V2 z C3pn#

Without loss of generality we may assume that Cz > 2(Coso). Then we get

pL—l+1

L -1 1
v __Pr —-
A;J)v*p z (I I(C3p/2v)p/2 )n AT [gl (C3p)2pA(J)v7p

=0 \v=0

Analogously we get

L -1
A“”U”Z(l_[wuv/Z“)”/2 )” SR < oA, 629)

=1 \v=0

Combining inequalities (5.25), (5.27), (5.28), (5.29), we finally arrive at
To0 < 6(Cap)* v P A, (5.30)

Thus, Lemma 5.4 is proved. O

5.2 Diagonal entries of the resolvent matrix

We shall use the representation, for any j € T},

RO _ 1
i 1 1 €.
2+ X = a 2kiemy Xk X iRy

(see, for example, [13, equality (4.6)]). Recall the following relations (compare (3.2),
(3.7)

1 1
Rﬁ) = @ @ 8§J) Rﬁ‘)’ (53D
z+my, (z) Z+my (2)
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or
R(.‘H) =s(z) — s(z)A,(;H)R;J) s(z)a(“ﬂ) Rg), (5.32)
@ . (JI) @, .d A
wheres/ —i-e/z +8/3 +814 with
@ ._ 1 0 . J.j), (J) 2 d.
e ==X £ = Z XX IRy = z XH=DRy”.
k;ﬁlET‘]]/ kETJ/

8;“? = %(TrR(J) TrRY: Dy, A(J) = m(J)(z) —s5(2) = —Tr RY — s(z). (5.33)
Since |s(z)| < 1, the representation (5.32) yields, for any p > 1,
RP1? =37+ 371617 IRSD 1P + 37| A0 1P |RD ). (5.34)
Applying the Cauchy—Schwartz inequality, we get
EIRD P <37 + 37 eV PR RO + 3P B2 ADPPEZ RV PP, (5.35)
We shall investigate now the behavior of E|£§J) |27 and E|AE,J) |>P. First we note,

El (J)|2p < 421) ZE|8(J) 21).

v=1

Lemma 5.5 Assuming the conditions of Theorem 1.1 we have, for any p > 1, and for
anyz =u+iv e Cy,

D2 A4
Blej/1*" = 7
n:2

Proof The proof follows immediately from the definition of ¢;; and condition (1.4).
]

Lemma 5.6 Assuming the conditions of Theorem 1.3 we have, for any p > 1, and for
anyz =u+iv e Cy,

n2ry2p’
Proof For a proof of this Lemma see [13, Lemma 4.1]. O

Let Ay > 0and 0 < vy < 4 be a fixed.

Lemma 5.7 Assuming the conditions of Theorem 1.1, and assuming for all ] C T
with |J| < L and alll € Ty
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ERV1 <Cl, for 1<q<Ai(mv)é andfor v>v, (5.36)
we have, for all v > vy /sg, and for all] C T with |J| < L — 1,

E|g%>|2p < (C\p)*nPs2PCI . for 1< p < Aj(nv)7.

Proof Recall that so = 2* and note that if p < Al(nv)% forv > vy /sotheng = 2p <
Al(nv)% for v > vy. Let v’ := vsg. If v > vy /5o then v/ > v;. We have

g =2p <2A1(nv)F =24,(v'sy)F = Aj(nv))d. (5.37)

We apply now Rosenthal’s inequality for the moments of sums of independent random
variables and get

p
J J, J,j
| ()|2p < (C p)2pn 2p E z |R( ]) +E|le|4p Z E|R[([ J)|2p

1€Ty, 1€Ty,;

According to inequality (5.37) we may apply Lemma 7.7 and condition (5.36) for
q = 2p. We get, for v > vy /s,

J —p 2p 2
El}) 177 < (Cip)*n Ps" €y

We use as well that by the conditions of Theorem 1.1, E| X i il |41’ < Dgp P14, and

by Jensen’s inequality, ( Zle'[[‘ |R(])| w <1 Zle’]l‘ |R |2p. Thus, Lemma 5.7 is
proved. O

Lemma 5.8 Assuming the conditions of Theorem 1.1, condition (5.36), for v > v;
and p < Al(nv)%, we have, for any v > v1/sg and p < Al(nv)%,

Ele}y) 27 < 6(C3p)*Pn~Pv P AD +2(C3p)*Pn~ PP (Coso)”.

Proof We apply Burkholder’s inequality for quadratic forms. See Lemma 7.3 in the
Appendix. We obtain

2\ P

A L DY D Y.
IETJ]’/' FETQU’jﬂ{l ,,,,, -1}

1.9
+maxE|X]k| 2p Z E Z xR
leTy; |reTy;nf{l,...I—1}
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Using now the quantity Q(()J’j ) for the first term and Rosenthal’s inequality and con-
dition (1.4) for the second term, we obtain with Lemma 7.6, inequality (7.12), in the
Appendix and C3 = C1C3

Ele}y) *” < (Cop)*n PE|QG 1P

p
_pl .
+(C3p) T >R S RSP
leTﬂj reTy ;N{l,....I—1}
LD YD Y Ll

IETIJVETJJQ{I ,,,,, -1}

3 1 ;
< (€2 nPEIQF) + (Cap)rnF v ST IR
ZET.]]V_/

| 1.
+(C3p)*Pn Py Py > EIR P,
IET_]]’J‘

By Lemma 7.7 and condition (5.36), we get
Ele$) 12 < (C3p)*n PEIQ§ 1P +2(C3p)*PnPv™P (Coso)”.
Applying now Lemma 5.4, we get the claim. Thus, Lemma 5.8 is proved. O

Recall that

1 1
@ — AD — _ @ _ @) I @) p@
A=A () = nTrR s(z), and T,7(z) = . ET £; Rjj .
jeTy

Lemma 5.9 Assuming the conditions of Theorem 1.1, we have, for z = u + iv with

uel-2,2]
AP =c (\/ 7.7 )] + —ﬁ') :
n

Proof Seee. g.[17, inequality (2.10)]. For completeness we include short proof here.
Obviously

5(2) (T(J) (2) — un)
2+252) + AP

AD = (5.38)

Denote by
T,(z) = 5(2) (T@)( ) — 'J')
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First we assume that |z + 2s(z) + Ag)l > /|T,,(z)|. Then the claim of Lemma 5.9
holds. In the case |z + 25(z) + AY| < V|Tn(2)], we assume [AL| > 2J/1T,(2)].

Otherwise the Lemma is proved. Under these assumptions we have
lz+25@) 2 AP — 1z +25) + AP | = VITa (@)1 (5.39)
On the other hand
o ! ! 2
|z +s(@) +m,;”| > Im{z +5(2)} > Elm {z+25(2)} = Elm 2 —4. (5.40)

We take here the branch of ,/z such that Im ./z > 0. Note that, for z € [—2, 2] we
have Re {z> — 4} < 0. This implies that

S

N 1
Imvz2 —4 > 7|12_4|7 :7|Z+2s(z)|. (5.41)

Inequalities (5.39), (5.40) and (5.41) together imply

Iz +s5@) +mP| > 2f|z+2s(z)| > Q T, (2)]. (5.42)

The last inequality and Eq. (5.38) complete the proof of Lemma 5.9. O

Lemma 5.10 Assuming the conditions of Theorem 1.1 and condition (5.36), we
obtain, for |J| < Cn%

cr 1
EADP < = + (—'u4 + o+ (C1p) P Psy " CF
n4

natl o n2py2p
1

2
+ 6(C3p)4pn_pv_pAg;U) +2(C3p)*Pn—PuP (Coso)p) (Coso)?.

Proof By Lemma 5.8, we have

)4

Jlz
EADR < cPETO ) + 2 < crpir@op + &
n n4

Furthermore,
1 1
1 2 2
) (1P 2 M 2p @ 2
BT @1 < (=~ > Elef| ZE|R
jeT ]e’]l'
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Lemmas 5.5-5.8 together with Lemma 7.7 imply

1 @ 2p 2p—1 [ M4 1 2p. —p 2P ~4p
;%ij ¥ <4 B+l + 2P 02 + (Cip)n~"sy" Cy
je

+6(C3 p)“f’n—f’v—PA;J) +2(C3 p)4pn_pv_p(C0s0)p) . (5.43)

Thus, Lemma 5.10 is proved. O

Lemma 5.11 Assuming the conditions of Theorem 1.1 and condition (5.36), there

exists an absolute constant C4 such that, for p < A1(n v)% and v > v1/sg, we have,
1

uniformly in J C T such that |J| < Cn?2,

J p
AP <cl.
Proof We start from the obvious inequality, using [s(z)| < 1,
EWDPP <321 + (o)™ + EIAD @),

Furthermore, applying Lemma 5.10, we get

2p 2p —-p Ha ! 2p,—p 2P 4P
E|W |77 <3 (1+(nv) +(n,2,+1 +n2pv2p+(C1p) n~Psy"Cy

1

2
+6(C3p)4f’n—f’v—"A§,J>+2(c3p)4f’n—f’u—f’(coso)") (Cos0)? ).
(5.44)

By definition,
AD <14 EX WD), (5.45)
Inequalities (5.45) and (5.44) together imply

1

AD <1437 (1 + (nv) "% + (Coso) (Mi‘n

oo

+

po—p 5 p
7 g—i-(Clp)Zn 54 Cp

nv

+3(C3pyPnEuF APyt 4+ 2(C3p)l’n—i’v—§(coso)5)) :

1 3 1 1 3
Let C'=so max{9, CZ, C¢ C7,3C3C . C3Cy ). Using Lemma 7.4 with x = (AY)3,
t=4,r =1, we get

D l p 1
A;J)fC’p (1+(nv)_12 YT/ M——
nzvz
P _p _pr _p 4p _p _p
+p27’l 4+ppn i 4+p3n 3v 3).
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For p < Al(nv)%, we get, for z € G,
J p
AP <y,
where Cy4 is some absolute constant. We may take C4 = 2C’. O

Corollary 5.12 Assuming the conditions of Theorem 1.1 and condition (5.36), we
have , for v > vy /s, and for any J C T such that |J| < \/n

1 P
I 2 P 2p
2 op [ 45145y 5o Csp
EAD P < )" | % ot = |- (5.46)
nav4 nrv n2v?2

where
1 1
Cs 1= 4Cisg + 67 C3Cs + 27 Cis;.

Proof Without loss of generality we may assume that Co > 1. The bound (5.46)
follows now from Lemmas 5.10 and 5.11. O

Lemma 5.13 Assuming the conditions of Theorem 1.1 and condition (5.36) forJ C T
suchthat |J| < L < /n, there exist positive constant Ag, Co, A1 depending on 14, Do

only , such that we have, for p < Al(nv)% and v > vy /so uniformly in J and v,
@ p
E|R; |7 <C,
with |J| < L — 1.

Proof According to inequality (5.35), we have
1 1 1
EIRG|P <47 (1+ (E3AD P+ E2 1 127) B2 (RGP
Applying condition (5.36), we get
1 1 1
E|R§.“E.)|P < 4P (1 + (Ez |A§lﬂ)|2p 4+ E2 |8§Ji)|2p L. 4+ RE2 |8§£)|2P) S(l)’cé’) .

Combining results of Lemmas 5.5-5.8 and Corollary 5.12, we obtain

1

b acp p cPp2p

Dy — ap p2p [ 4T M 8o 50 sP
E|Rjj| <5 1+55C, y— > 7
nav4 ntv nzvz

p o J4 P 2p

P3P 49y ) Csp

S0 ~o 7 1 PP 7z

niv4 ntv nzv2
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We may rewrite the last inequality as follows

~P ~ ~ > ~
s CF @Yt GphE O

) p
ERY|? <C +
7 ‘Nl anF owE T ani @)
where
. 1
C =58> Cins,
2
G, = 5%sgcyc? (1 + 2C§p¢j) ,
Cs = 5253C3 (so + 052) :
Cy =5C3s3.
Note that for

Ag > 28At max{C}, ..., Cy} (5.47)
and Co > 25, we obtain that
(@) p
E[RY)1” <.
Thus Lemma 5.13 is proved. O
Corollary 5.14 Assuming the conditions of Theorem 1.1, we have, for p < 8 and

v > vy = Agn~! there exist a constant Co > 0 depending on 4 and Do only such
thatforalll1 < j <nandallz € G

E[R;;|1” <}, (5.48)
and

E—— ol 5.49
1z +mu ()P~ O 49

i

Proof Let L = [—logs0 vo]| + 1. Note that sO_L <wvoand A1 > Al(nvo)%. We
by
So

may choose Cyp = 25 and Ag, A such that (5.47) holds and
Al(v) > 8.
Then, for v = 1, and for any p > 1, for any set J C T such that |J| < L
E|Rg)|f’ <cl. (5.50)
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1
By Lemma 5.13, inequality (5.50) holds for v > 1/s¢ and for p < Aln%/sé‘ and for
J C T such that |J| < L — 1. After repeated application of Lemma 5.13 (with (5.50)

as assumption valid for v > 1/5¢) we arrive at the conclusion that the inequality (5.50)
1

holds for v > l/sg, p < Aln%/sg and all J C T such that |J] < L — 2. Continuing
this iteration inequality (5.50) finally holds for v > Aon~ 1, p <8andJ = 0.
The proof of inequality of (5.49) is similar: We have by (1.9)

S B I 3 |S(Z)|(1+ I )
lz+mu(@)| ~ 5@ +zl  |z+mp@llz+s@)| ~ lz+mu2)|)"
(5.51)

Furthermore, using that |m),(z)| < |%Tr R?| < %Z’}:l E|Rjj|2 and Lemma 7.6,
inequality (7.11) in the Appendix, we get

_ 14+ m)(2)| _ 1o+ Imm,(2)
T lz+my (] T v |z +mp(2)]

d 1
— log(z + mu(2)) <.
dz v

By integration, this implies that (see the proof of Lemma 7.7)

1 S0
< .
[+ iv/50) + ma(u +iv/s0)] ~ |+ iv) +mu(u + iv)]

(5.52)

Inequality (5.51) and the Cauchy—Schwartz inequality together imply

1
< 2%|s(z)|” (1 +EilAniz"E%—) '

|z + my(2)|P |z + mn(z)|?P

Applying inequality (5.52), we obtain

1
— < 2P|s(@)|P(1 + E2|A,)PPsECY).
EEreaT Is (2)[7( | An|™s5 Cp)

Using Corollary 5.12, we get, for v > 1/s¢

E——  <2°Is)I” |1+
|z +myu(2)|P n

r P 2P
g+ PP SOCO

Thus inequality (5.49) holds for v > 1/sq as well. Repeating this argument inductively
with Ag, Ay, C) satisfying (5.47) for the regions v > so_”, forv=1,...,Landz € G,
we get the claim. Thus, Corollary 5.14 is proved. O
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6 Proof of Theorem 1.3

We return now to the representation (5.32) which implies that

1 n Tn(Z)
()= LSTER, = 5+ BA, s+ E— & (61
sn(2) =~ ; Rjj=s@ + s(2) + 2+ 5(2) +mu(z) ©b

We may continue the last equality as follows

> €jaRjj T,(2)

5,(2) = s(z) + E-L , 6.2
n(@) =s() 2+5@) +muz)  z+5@) +mu2) ©2
where
= - v
v=1 n j=1
Note that the definition of ¢4 in (5.32) and equality (7.34) together imply
1dm ()
2 _
_Ze,mu_ LR - d”z : (6.3)
Thus we may rewrite (6.2) as
1 my,(2) T,(2)
s,(2) =s5(2) + —E n +E . 6.4
n(@) @ n z+s)+m,z) 2+ 5(2) +my(2) ©
Denote by
T,
s_p__ @ (6.5)

Z+s(z) +my(2)

6.1 Estimation of ¥

We represent T
T=T1+%,,
where
— = +mn(z) + s(z)
gjv(Rjj + m)

- ;;;E 24+ mu(2) + 5(2)
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6.1.1 Estimation of T

We may decompose ¥ as

T =% + %2, (6.6)

where

, 1
n 3 £j 5]

T __l E Y 4m{ 2)
= nzz )

vt 2+ my(2) +5(2)

Sjv5j4

1 e
Ty = —— E z+m’ (z
n=— 2.2

TE ctm? @+ 5@+ ma@ + ()

It is easy to see that, by conditional expectation
T =0. 6.7)
Applying the Cauchy—Schwartz inequality, for v = 1, 2, 3, we get
1
E Ejveja 4mP @)
@+ m @) + 5@+ ma(@) +5)

2 2
<E? G G (68)
@+m! e +m] @ +s@)| 2 tm@) +5@)
Applying the Cauchy—Schwartz inequality again, we get
2
E: v
@+mP @)@ +m (@) +5)
4
<Ei (l.ff” Ei 1(.) . (6.9)
lz4+mi’ @ +s@IF 2 +mi’ @
Inequalities (6.8), (6.9), Corollaries 7.23 and 5.14 together imply
. 8/u8]4z+m511>(z) _ EE% |gjv|4
@+ m @ +s@)@+m@ +s@)| W 4m @)+ 5@
(6.10)
By Lemmas 7.14 and 7.5 we have forv =1
4
i 20| 6.11)

C
- < .
lz+md @) +s@P ~ Va2 -4
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By Corollary 7.17, inequality (7.31) with « = 0 and B = 4 in the Appendix we have
forv=2,3
| | joul* - C

) ;= ! (6.12)
|z +my " (2) + s(2)] Jnu|z? — 4|2

with some constant C > 0 depending on 14 and Dg only. Using that, by Lemma 7.13,
forz € G,

Jv C
f«lz BTN TR AT

we get from (6.10), (6.11) and (6.12) that for z € G,

S s — & 6.14)

(nv)2 |22 — 4|3

(6.13)

with some constant C > 0 depending on jt4 and Dy only.
6.1.2 Estimation of %>

Using the representation (5.32), we write
1 < E2Rj;
Tr = — ZE - j .
n3 (z+mD(2))(z + 5(2) +mu(2))

Furthermore we note that
~2 2
g;=¢p +nj,

where

nj = (ej1 +&;3)° +2(ej1 +e3)e ).
We now decompose ¥, as follows
T = To1 + Top + T3, (6.15)
where

2
1 e Rjj
T = /

->'E : ,
n = @ +mP @)+ @) +ma2)

1 n
T = ;Z
j=1

T3 = li niRji€ 4 :
S emD@) @+ 5@ +m @)@+ 5@) +my(2)

(z +mW () (z + s(z) + m(J)(Z))’
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Applying the Cauchy—Schwartz inequality, we obtain

| |7’/'|2 1 5
[Tnl< - > E2 / E2|R;;|°. (6.16)
" ; 2+ mD@PRIz+5@) +m @O

In what follows we denote by C a generic constant depending on w4 and Dy only. We
note that

E{n; 7MY} < CE(le;1*19MD) + E{lej3]9mP)))

l .
+C (Elleji 199} + Efle ;319 )) T B3 {le ol om0},
Using Lemmas 7.14, 7.15, 7.16, we get

C Cl
() (J)
E{|n|(5m1}< 5+ § IR
leT

=

c, cf1 C
+l=+= Z IR1* “Imm$(2). (6.17)
n n IET nv

This inequality and Lemma 7.5 together imply

|77'|2 C 1 1
Do = — )
lz+mWD@) Pz +s@) +mi’ (@2 n/l22 =4 |z+m (2)?

i

C 1 1
T ) T R —
|22 —4| \n leT, 124+ mS ()

N—=

E

1
1
C 1
ny/vlz? — 4| " leT, 2 +mi @)

=

(6.18)

Inequality (6.18) and Corollary 5.14 together imply

C C
+ T
122 —4]  nJv|z2 —4|3

|Tn] <
n

Applying Lemma 7.13 for z € G, we get
C C
<

v - (6.19)
nJ/vlz2 — 4|3 nv

|T0n| <

Slw
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By Holder’s inequality, we have

| 2

1< 1 [n;
T3l < - > E2 . ] .
" ; 2+ mD @)z + ) +m @)2
1 le jal*

1
E? E4#|R;;*.
Iz +5(z) +mu(2)* IRl

Using now Lemmas 7.22, 7.13 and Corollary 5.14, we may write, for z € G,

C C
%3] £ ———— < —5.
nJv|z2 — 4|3 noi
We continue now with T>;. We represent it in the form

T = H + Ha,

where
2

1 < €
H Z__ZE j 2 £ ’
n4= (z+mPD@)*z +5) +ma(2)
2 1
1 e5r(Rjj +—z+m,(,j))

>E : :
n= @ +mD@) e+ 5@ +ma ()

Furthermore, using the representation

1
- T :
+mP@  z+mP @

Rjj = (ej1 +¢ej2+¢€3)Rjj

(compare with (3.2)), we bound Hj in the following way
|Ha| < Hyy + Hao + Hos,

where

vl 4lej1I’IRj|
2= ZZ |2+ mD @)z +5(2) + ma ()]
j=1 "

S S T,
n Iz +mWD(2))2z + s(z) +mu(2)|’

I < 2le 3P IR
Hyy=->E ) JJ )
23 n/é |z +mW ()2 |z + 5(2) + my(2)|

(6.20)

6.21)

6.22)
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Using inequality (7.42) in the Appendix and Holder inequality, we get, forv = 1,2, 3

1 < 4lejul IR}
H <—2E J JJ
AV n

Sz AmD@Pz+ 5@ +mi @)

LIS 4lejul’IRjllejal
n g mD@PL + 5@+ m @1z + 5@) + ma ()]

C
n

~

|<9jv|4

< E3|R;;|*. (6.23)

™

E% . 8 () 4
T 12+ mD @5z +s@) +mil ()3

J
Applying Corollary 7.17 with § = % and o = %, we obtain, for z € G, and for
v=1,2,3
|<‘3jv|4 C

D (2)]3 Dol ~ i
|z +m(2)|3]z +s(2) +my " (2)|3  (nv)2

!

This yields together with Corollary 5.14 and inequality (6.23)

H, < (6.24)
(nv)2
Consider now H;. Using the equality
1 B 1 B Ay (2)
ctma(@) +5()  2+25()  (@+25() @ +ma() +5(2)
and

A=A +ejs, (6.25)

we represent it in the form
Hy = Hy + Hi2 + His, (6.26)

where

1 1 < €5
) e
(z4+s5@)%n = 24+ 5(2) +my(2)
1 < 82’2
2 j
= —5 (Z)— E—7
()”,Zz; 24 5(2) +mu(2)

n 2 A ()
11 Ejp
(z+s@)n oG +m,? (2)2(z + 5(2) + mp(2))
1 1 e2, AV
Hjy=————5->E 5) 2 '
(z+s(2)*n @ +mi’ @)z +5@) +mu(z))

j=1
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In order to apply conditional independence, we write
Hyy = Hin + Hio,

where

2

Hijp = —s*(2)— Z (j)

] 1 Z+my (z)+s(z)

1 n
H = SZ(Z)_ ‘
2 2 D TGP

2 ..
E5E ja

It is straightforward to check that

. 1 . 1 .
E{e?, M)} = T (RU)? — — Z(Rz(/))z-
ZET_/'

Using equality (6.3) for m),(z) and the corresponding relation for m(J ! (z), we may
write

Hiin =Li+ Lo+ L3 + Ly,

where

m,(2)
24+ mu(z) +5@)’

()2
,,2 Zle’]l‘ (Rll] )

2 1
L =—5°(z)-E
n

L, = sz(z) (6.27)
2T le z+m,(1])(z)+s(z)
n 1 ) ’ /

Ly=s (Z) Z ((m (@) — mn(Z)) ’ (6.28)

o oiml @45

n 1 ) /A )
Ly = sz(z)l ZE o (i ()" —my, ((Z)))‘9/4 .
T @Hma@ +s@) @+ mi (@) + 5(2)

Using Lemmas 7.5, 7.18, 7.26, and Corollary 5.14, it is straightforward to check that

|Ly| <

C
= n /—|Z2_4|’

C
IL3| = ———F=—,
n2v2\/|z2 — 4|
|L4| < <
MR EDEI PR
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Applying inequality (7.42), we may write

n

()

C le 221 A

\Ha| < — ZE () ’ () ’
Tz my @llz +my(2) +5(2)]

Conditioning on M) and applying Lemma 7.15, Lemma 7.5, inequality (7.8), Corol-
lary 5.14 and equality (6.25), we get

()

Ay C

o= Sl I Cpyy e, O
vn’ “lz+mP ) T v

By Lemma 7.24, we get

Cc
|Hiz| < PYVE (6.29)
Similar we get
C
|Hi3| = P (6.30)

We rewrite now the equations (6.2) and (6.4) as follows, using the remainder term
%3, which is bounded by means of inequalities (6.14), (6.19), (6.20), (6.24).

(1—5%(2)) m, (2)
EA,(2) = Em,(2) — s(2) = E : +3, 631
n(2) my(z) — s(2) n 7+ mu(2) +5(2) ’ (©3D
where
C C
Bl =5+ 55—
nv4 n2v2|Z _4|4
Note that

1—5%(2) =s(x)Vz2 — 4.

In (6.31) we estimate now the remaining quantity

s(2)V/z2? —4e m; (z)

Ty=— .
n Z+myu(z2) +5(2)

6.2 Estimation of T4
Using that A,, = m,(z) — s(z) we rewrite T4 as

T4 = Tu1 + Tap + T3,
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where
Ty = —S(Z)nﬂ’
g, SOVZ Ay m@) = 5@
42 = n Z+mn(Z)+s(z)’
Tyz = @E(mn(z) —5'(2)An

2+ my(2) + ()
6.2.1 Estimation of T2

First we investigate m/, (z). The following equality holds

Lo, , .
m () = TR =3 ejuRjj =572) D ejaRj + D1 (632)
j=1 j=I1
where .
— —1
Dy = eju(l+ Ry's@)(Rj; — 5(2)) (6.33)
j=1

Using equality (7.34), we may write

2 n
57(2) 1 i
m),(z) = 2|1+ 20 XXl Rl | + D
j=1 1,keT;
Denote by
Bit =~ D RV Iy — ! i[(R)z]u _ DRy —my, (2)
J n n n "
leT; =1 1eT;
1d ;
= ——(TrR — TrRY)),
ndz
_ 1 2 ()2
B =~ D (X5 = DIRY I,
ZET/'
1 .
P oY ()2
Biz=~ 2. XXl (RV) . (6.34)
I#keT
Using these notation we may write
52(2) <
my,(2) = s> (@) (1 +m),(2) + . D (Bj1 + Bj2 + Bj3) + Di.
j=1
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202
Solving this equation with respect to m/,(z) we obtain

Lo s (@) 1
mn(z) - 1 _ SZ(Z) + _ S2(Z) (Dl + DZ), (635)

where
2
D (Z) Z(,Bll+ﬂ]2+ﬂ]3)

j=1

Note that for the semi-circular law
s(z
(2) — 5.

P s
s(Z)  z+2s5(2)

1—s2(z) 1+ -

Applying this relation we rewrite equality (6.35) as
(D1 + Dy). (6.36)

1
! /
mi\z)—SZ2)=——7"——"—"—
O T IR )
Using the last equality, we may represent T4> now as follows
Ta2 = Tap1 + Zun,

where
1 Dy
T4 = —E
n z+my(z) +s5(2)

1 D
T4 = -E 2
n z+mu(z)+s(2)

—s(2)
(6.37)

Recall that, by (6.33),
"L e+ s@RDR;

_le
n < 24+ mu(2) + 5(2)

1 =

Applying the Cauchy—Schwartz inequality, we get for z € G
1 —4
Is)EZ[Rj;|™).

] n 1 1 |8'4|4
Tl <= E2|R;i —s(2)|*E* ’ I+
[Ta21] < nZ IRjj =5 |z+s(z)+mn(z)|4(

Jj=1
Using Corollary 7.23 and Corollary 5.14, we get
(6.38)

[Ta01] <

3 3
n2v?
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6.2.2 Estimation of %2>
We represent now T3 in the form
Tao = Ts1 + Tsp + Ts3,

where

Tsp = for v=1,2,3.

1 < Bjv
n2z Z+mn(Z)+S(Z)’

j=1

At first we investigate ¥53. Note that, by Lemma 7.26,

C
. < —,
Bl = -
Therefore, for z € G, using Lemma 7.5, inequality (7.9), and Lemma 7.13,
o _ C
n2v2/122 — 4] T pivi|? —4)i

Furthermore, we consider the quantity ¥, for v = 2, 3. Applying the Cauchy—
Schwartz inequality and inequality (7.42) in the Appendix as well, we get

1T51] < (6.39)

C < vl
Tol < 5 > R
AT lzEmi (@) + s

By Lemma 7.25 together with Lemma 7.5 in the Appendix, we obtain

Bivl* - C
lz+m @) +s@P2 " nivi|2 —4)i

=

E

This implies that

C
1T50] = — (6.40)

Tonivr2—4pi
Inequalities (6.39) and (6.40) yield
C
[Tl < —— .
nivi|z2 — 4|2
Combining (6.38) and (6.41), we get, for z € G,

C
Za2] < ——

. (6.41)
n2vi|z2 —4)3
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6.2.3 Estimation of %43

Recall that

5(z) . (m,(2) — 5" (2)) An
— g )
= O +50)

Applying equality (6.36), we obtain

La3 = Tuz1 + L432,

where
1 DA
Tizt = —— (6:42)
n(z +2s(2)) z+mu(z) +s(z)
1 Dy A,
30 = .
n(z+2s(2)) z+mu(z)+s(2)
Applying the Cauchy—Schwartz inequality, we get
1 Dy?
Taat| < gl PIE g2
nlz+2s(2)| |2+ mu(2) +s(2)|
By definition of Dy and Lemmas 7.18 and 7.24 , we get
C 1 “ 1 /R | 4
Tl < A D (L +Is@IETR;;1™HET R} — s@)*.
j=1
Applying now Corollary 5.14 and Lemma 7.22, we get
4
[T431] £ —.
n3v?(z2 — 4|2
For z € G this yields
4
|(£’431| E 3 3 1 °
n2v2|z2 — 4|3
Applying again the Cauchy—Schwartz inequality, we get for T432 accordingly
C 1 1
|Tan2| £ ———EZ| D2 EZ| A%
nl|z= — 4|2
By Lemma 7.24, we have
C 1
|Tanl < ————E2| Dy (6.43)
n?v|z? — 4|2
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By definition of Dy,

1 n
E|Do < — > (EIBjiI* + ElBjl* + Elfj3l).
j=1

Applying Lemmas 7.25 with v = 2, 3, and 7.26, we get

EDP << 4+ C (6.44)
2= A T '

Inequalities (6.43) and (6.44) together imply, for z € G,
C C
<

+ :
1 5 5 1 — 3 3 1
ndv3|z2 — 412 n2v2(22 — 42 n2vl|2 - 4|3

|Ta32] <

Finally we observe that

s'(z) = __f@
2 —4
and, therefore
|Za1] < -
n|z? — 4|2
For z € G we may rewrite it
C
Tl < ——. 6.45
1Ta1] < no (6.45)

Combining now relations (6.31), (6.26), (6.24), (6.39), (6.41), (6.45), we getfor z € G,

C

C
EAp| = — + 55—
2 5512 S
nvd  nlv2|zc —4|%

The last inequality completes the proof of Theorem 1.3.

7 Appendix
7.1 Rosenthal’s and Burkholder’s inequalities
In this subsection we state the Rosenthal and Burkholder inequalities, starting with

Rosenthal’s inequality. Let &1, . . ., &, be independent random variables with E&; = 0,
Eg} =landfor p > 1 E|&|P < ppforj=1,...,n.
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Lemma 7.1 (Rosenthal’s inequality) There exists an absolute constant Cy such that

n P n g n
2
ED ajgi| <Clp? | [ Dllail* ] +up D lajl?
j=1 j=1 j=1

Proof For a proof see [19, Theorem 3] and [16, inequality (A)]. O

Let &, ...&, be a martingale-difference with respect to the o-algebras IM; =
o(&1,...,&j_1). Assume that Eg} =land E|§;|? < oco.

Lemma 7.2 (Burkholder’s inequality) There exist an absolute constant Cy such that

n p n lzl n
ED & <cfpr E(ZE{s,?mk_l}) + D El&l
j=1 k=1 k=1
Proof For a proof of this inequality see [5, Theorem 3.2] and [15, Theorem 4.1]. O

We rewrite the Burkholder inequality for quadratic forms in independent random
variables. Let{y, .. ., ¢, beindependentrandom variables such that E¢; = 0,E|¢; |2 =
land E|¢;|” < up.Leta;; = aj; foralli, j = 1,...n. Consider the quadratic form

0= > apljt

I<j#k=n

Lemma 7.3 There exists an absolute constant Co such that

2\ 5
n j—1 n j—1 P
EIQIP <CY|E[D (D aite| | +upD E|D ai
j=2 \k=1 j=2  |k=1
Proof Introduce the random variables, for j = 2, ..., n,

j—1

=10 D ajl.
k=1

It is straightforward to check that
E{§;9M;_1} =0,

and that &; are 91; measurable. That means that &y, . . ., &, are martingale-differences.
We may write

0=2>¢&.
j=2
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Applying now Lemma 7.2 and using

. 2
j—1
E(& 2191} = | D aut | B¢},
k=1
j-1 b
E§;|” = E|jIPE (D" ajg;| (7.1)
k=1
we get the claim. Thus, Lemma 7.3 is proved. O

We prove as well the following simple Lemma

Lemma 7.4 Lett >r > 1anda,b > 0. Any x > 0 satisfying the inequality

x' <a+bx" (7.2)
is explicitly bounded as follows
P 2t —r ﬁ t
x' <ea-+ br-r. (7.3)
t—r

Proof Firstassumethatx < a%.Then inequality (7.3) holds. If x > a%,then according
to inequality (7.2)

or

Using that forany ¢ > O anda > 0,5 > 0

(a+b)* < (a n f)a + b+ ab)® <ea® + (1 + )b,
o

we get the claim. O

In what follows we prove several lemmas about the resolvent matrices. Recall the
equation, for j € Ty, (compare with (3.2))

a _ 1 1 @ D
Rjj =— PN EAE
(2)

;= +
o 7+ mflj) () z4+my

where

a_ 1 @ _ 1 J.J)
&1 = ﬁxjj’ €jp = o Z XX jiRig™" s
kAT

J 1 3.J J 3.
ey == 2 (G- DRET. e =mP @) —mi ).
kGTj
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Summing these equations for j € T, we get

o)
Oy =l Ty
my(2) = ) D, 7.4
n(z +my, (Z)) z+my (2)
where
Il 0,0
@ _ 1 @ pd)
LY = 2 R
j=1
Note that
| | mP(2) - s(2) s)AP (2)
Do B o= @ @, 7
z4+mi (@) 2+5@  (s()+ 2@ +m (@) z+m$(2)
where
AP = AP (@) =mP ) = 562).
Equalities (7.4) and (7.5) together imply
0 s@AY T, 1]
A @ DT D (7.6)
z24+m;’ () z4+my’ () n(z+my(2)
Solving this with respect to A,({H), we get
o))
T, |J]
AD = L (7.7)

4+ m,({H)(Z) +s(z) n(z+ mf{ﬂ)(z) + s(z))'

Lemma 7.5 Assuming the conditions of Theorem 1.1, there exists an absolute constant
co > 0 such that for J C T,

2+ mP @ + 5@ = ImmP (), (7.8)
moreover, for any 7 € G
2+ mP @) + 5@ = cov/Iz2 — 4l. (7.9)

Proof Firstly note that Im (z + s(z)) > 0 and Imm$” (z) > 0. Therefore

lz+mP@) +s@) > Imiz+mP ) +52) = ImmP(2).
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Furthermore,

1z+mP ) +5@)| = Im(z +s(2) = %Im(z +Vz2—4) > %Im\/ﬁ —4.

Note that forz € G

Re(z* —4) < 0. (7.10)
Therefore,
2
Imvz2 —4 > %ﬂzz — 4.
Thus Lemma 7.5 is proved. O

Lemma 7.6 Forany z = u + iv withv > 0 and for any J C T, we have

1

= >RGP < v 'imm ). (7.11)
l,kETDU
Foranyl € Ty
STIRG P < v ' ImR). (7.12)
kETJ
and
STIRDY P < v ImRY. (7.13)
kETJ

Moreover, for any J] C T and for any | € Ty we have

1 _
= 2 MR < v tmm D @), (7.14)
IGTJ
and, for any p > 1
1 )2 ! o)
=SUIRD? P <077 = > Im PR (7.15)
n n
[€Ty €Ty
Finally,
1 _
=3 RO < v D) o), (7.16)
1,keT;
and
1 1
= > IRD P <07 > PR, (7.17)
" l,kE’]TJ] " lETJ
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We have as well
2

1 1
— DR <07 [~ > PR (7.18)

n n
l,kGTJ IETJ

Proof For | € Ty let us denote by AI(“H) for I € Ty eigenvalues of matrix W), Then
we may write (compare (7.20))

M2 1
z IR} Z—IA(J) 3 (7.19)

l kET_]] ZGTJ

Note that, for any x € R!

We may write

and

_ 1 1
— Z |R,£“IH)|2 <vim [ = Z —(J) = 1Imm(J])(z).
l,kETJ IETJ )\

So, inequality (7.11) is proved. Let denote now by u(“H) (u(“]])) keT; the eigenvector

@

of matrix W) corresponding to the eigenvalue A;~. Using this notation we may write

@ LG I6))
R =" ao up, u - (7.20)
q€Ty

It is straightforward to check the following inequality

S RPE <Y = (J) DR

kETJ qET_]] Z|
_ D2\ _ g gD
=v'Im [ D] (J) )17 = v ' Im Ry, (7.21)
q€Ty

Thus, inequality (7.12) is proved. Similar we get

1 _
D MR < ] (J)—4|u,°ﬂ)| < v mRY. (7.22)
kETJ quJ |
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This proves inequality (7.13). To prove inequality (7.14) we observe that

RO < >R (7.23)

kGTJ
This inequality implies
—Z ROy ? < Z STIRPP
€Ty IETJ keTy

Applying now inequality (7.12), we get

1
1 ROV 12 < Im 2R(J).
o z (R yl” < v~ E

1eTy ZETJ

This leads (using |RI(IJ)| < v~1) to the following bound

1 ;1 _
S MR <0 S mRY =1 Imm ).

IETJ] ZETJ

Thus inequality (7.14) is proved. Furthermore, applying inequality (7.23), we may
write

4

= Z I[RD )], [ Z > IRPP

IETJ] IETJ kET.]]

Applying (7.12), this inequality yields

1 a1
SO RO vt S m R

IETJ] ZGTJ}

The last inequality proves inequality (7.15). Note that

A
<
&
—
=i
| —
|
<
w
-
8
3
Sl
~
N
N
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Thus, inequality (7.16) is proved. To finish we note that

2
1 1
= 20 MRyt < = 37| T IRD) I ?
l,kETJ ZETJ kGTJ
Applying inequality (7.13), we get
1
= > IRD? )t < 0™ Zﬂ R
n
l,kGTJ ZETJ
To prove inequality (7.18), we note
RO < | TR D0 1RGP
q€Ty q€Ty
This inequality implies
P\ 2
1
= D MRO < (=37 (3 1R
l,kETJ} l,kETJ ETJ
Applying inequality (7.11), we get the claim. Thus, Lemma 7.6 is proved. O

Lemma 7.7 Foranys > 1, and for any z = u + iv and for any J C T, and j € Ty,
IRD @+ iv/s)] < sIRY @+ iv)].

Proof See[17,Lemma 3.4]. For the readers convenience we include the short argument
here. Note that, for any j € Ty,

%logRﬁ.‘]})(u +iv)| < m% R (u +iv)).
Furthermore,
j R (u +iv) = [RD)?](u + iv)
and

LRDY)ju +iv)] < v Im R,
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From here it follows that

51)71.

d 7 .
‘% log R;.j)(u +1iv)

We may write now

v d
log R(.J.)(u +iv) — log R(J)(u + iv/s)‘ < o _ logs.
Ji Jji ojs U

The last inequality yields the claim. Thus Lemma 7.7 follows. O
Lemma 7.8 Assuming the conditions of Theorem 1.1, we get
C
Elej1|* < —.
n

Proof The proof follows immediately from the definition of ;1 and conditions of
Theorem 1.1. O

7.1.1 Some auxiliary bounds for resolvent matrices for Imz = 4

We need the bound for the ¢;,, and n; for V = 4.

Lemma 7.9 Assuming the conditions of Theorem 1.1, we get
C
Elejr* < —.
n

Proof Conditioning on M), we get

Elepl> <n™ > EIRYP.
k,lETj

Applying now Lemma 7.6, inequality (7.12), we get with Im RY) < %,

1 ; 1
212 ()
Elejp|” < 4n E Ilel < _16n'
IET]'

Thus Lemma 7.9 is proved. O

Lemma 7.10 Assuming the conditions of Theorem 1.1, we get

2 C
Elej3|” < —.
n
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Proof Conditioning on /), we obtain as above

Elej3)> < —E SR <
leT;

Thus Lemma 7.10 is proved. O

Lemma 7.11 Assuming the conditions of Theorem 1.1, we get
C
Eln;I> < —.
n

Proof The proof is similar to proof of Lemma 7.9. We need to use that |[(R(j ))2]k1| <
V2= jgand Xcp, IRV Iu > < v+ o

Lemma 7.12 Assuming the conditions of Theorem 1.1, we get
foll
L9 < 2
E|5]4| = nd
k,
Proof The result follows immediately from the bound
1
lejal < —,as.
nv

See for instance [10, Lemma 3.3]. O

7.2 Some auxiliary bounds for resolvent matrices for z € G

Introduce now the region

={z=u+iveC:uel,v>v/yy}, where vy= Aon~',  (7.24)
Jo=[-2+4+¢e2—c¢], ¢€:= cin”3, y =y@) =min{2 —u, 2 + u}.

In the next lemma we state some useful inequalities for the region G.

Lemma 7.13 For any z € G we have

122 — 4] > 2max{y, v}, nvV|z2 — 4| > 2A,.

Proof We observe that

122 — 4] = |z = 2|]z + 2| = 2\/y2 + 2.

This inequality proves the Lemma. O
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Lemma 7.14 Assuming the conditions of Theorem 1.1, there exists an absolute con-

stant C > 0 such that forany j =1,...,n,
; C
Eflej1 4|0} < =24, (7.25)
Proof The result follows immediately from the definition of €. o

Lemma 7.15 Assuming the conditions of Theorem 1.1, there exists an absolute con-

stant C > 0 such that forany j = 1,...,n,
. C .
E{le2P MY} < —Immy (2), (7.26)
nv
and
C .
B(Je o ¥l = 4 S 4im?m (2). (727)

Proof Note that r.v.’s X j;, for I € T} are independent of M) and that for [,k € T;
Rl(k’ ) are measurable with respect to 91, This implies that €j2 1s a quadratic form

with coefficients Rl(,f ) independent of X j;. Thus its variance and fourth moment are
easily available.

, 1 1 .
EfleplP ) = — 3 IR < S Tr RO
I#keT;

Here we use the notation |[A|> = AA* for any matrix A. Applying Lemma 7.6,
inequality (7.11), we get equality (7.26).
Furthermore, direct calculations show that

2
: C (1
Eflep*|lmPy < = |~ >0 IRYP ;S zm(ﬂ
1#keT; leT;
2 : 2
Cu 1 ; Cu ;
<t 2 IRPP) = S amm @)

1#keT;
Here again we used Lemma 7.6, inequality (7.11). Thus Lemma 7.15 is proved. O

Lemma 7.16 Assuming the conditions of Theorem 1.1, there exists an absolute con-
stant C > 0 such that forany j =1, ..., n,

Efje 32 my < =2 Z IR\, (7.28)
le’]I‘
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and

2

L Cmal
Efle ;3] mV) < = Z R ) + =52 3 IR, (7.29)
le’IF le’IF

Proof The first inequality is easy. To prove the second, we apply Rosenthal’s inequal-
ity. We obtain

2

Cug 1 ;
Ellepl 'm0 = 50 (LS RPP) + SHEL S R
le'ﬂ‘ LeT;

Using | X j;| < Cn% we get g < Cnpg and the claim. Thus Lemma 7.16 is proved. O

Corollary 7.17 Assuming the conditions of Theorem 1.1, there exists an absolute
constant C > 0, depending on p4 and Do only, such that for any j = 1,...,n,

v:1,2,3zeG,andO§a§%Al(nv)%andﬁzl

lejul” ¢ (7.30)
) B ) a = —1 ’
|z +m;" (2) +s(2)|Plz + m;” (2)] nv|z —4|
and for g > 2
|8ju|4 C
¥ 5 Dyva = 225 B2 (7.3D)
|z +my" (2) +5(2)IPlz + my" ()] n2v2|z2 — 4|2
We have as well, forv =2,3, and > 4
|“‘3jv|8 C
5 5 Dt = aas g B2 (7.32)
|z +m," (2) + 5P|z + my" ()] ntv4|z2 — 4|2
Proof For v = 1, by Lemma 7.5, we have
12
lz4+mP @)+ 5@z +mP @~ nj2 — 4= |z+m’ ()|

Applying now Corollary 5.14 and Lemma 7.13, we get the claim. The proof of the
second inequality for v = 1 is similar. For v = 2 we apply Lemmas 7.15 and 7.5,
inequality (7.26) and obtain, using inequality (7.8),
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le j21?
2+ mP @) + 5@z +m (D)

1 E Imm(J)(z)
)22 — 4" 24+ mP @) + 5@z +mi (2]
C 1

n |z 4+ mi ()]

IA

IA

Similar, using Lemma 7.15, inequality (7.27), and inequality (7.8) we get
le j2|*
2 +m @ +s@IPlz+mi @)
C Im2mS (z)
= B2 () ()
n2v2|z2 — 4|7 lz 4+ my"” (2) + 52|z + my” (2)|¢
C 1

E .
< —
2022 — 45 24+ mY @)

Applying Corollary 5.14, we get the claim. For v = 3, we apply Lemma 7.16, inequal-
ities (7.28) and (7.29) and Lemma 7.5. We get

le j31?
1z +mP @) + 5@z +m )]

c
E Z IRV, (7.33)
1eT;

nJ/|2—4 |z —i—m(])(z)l"‘

and

lejal*
iz +m{ (@) +s@Plz +m @)

2
2% — 4| Iz—i—m(])(z)l"‘ " T,

Using now the Cauchy—Schwartz inequality and Corollary 5.14, we get the claim. O

Lemma 7.18 Assuming the conditions of Theorem 1.1, there exists an absolute con-
stant C > 0 such that forany j = 1,...,n,

C
gi4l < — a.s.
lejal <

nv
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Proof This inequality follows from

; 1 : dR:;
TrR—TrRY = [ 1+ - XX al(RIN1, | R = p=1 228 34
T r + nl% Jjl ]k[( ) Tkt Jj i Tdz (7.34)
’ J

which may be obtained using the Schur complement formula. See, for instance [10,

Lemma 3.3]. O
Corollary 7.19 Assuming the conditions of Theorem 1.1, there exists an absolute
constant C > 0 such that forany j =1,...,n,

Ele;|* < PR (7.35)

Proof By definition of ¢; (see (3.2)), we have
Elg;|* <4 (Elsji|* + - +Elgjal).

Applying now Lemmas 7.14, 7.15 (inequality (7.27)), 7.16 (inequality (7.29)) and 7.18
and taking expectation where needed (7.35) follows. Thus the Corollary is proved. O

Introduce quantities

1 N 1 .2
njr = 2 IRl = ~Tr RV,

1eT;
nj2 = Z X X i l(RYN Yy,
l;éke’]I‘
2 i)\2
njs = IZT (X3 — DIRY) . (7.36)
elj

Lemma 7.20 Assuming the conditions of Theorem 1.1, we have, for z € G, for any
j=1,...,n

|
E{ln;31*|mP} < cn 20~ m (2) + Cn o7t = D Im R, (7.37)
n
leT;

C
Eflnj3l* [} < “4 o)+ 21 SR, (7.38)
le’]I‘

Proof Direct calculation shows

2

Bl 0} = B4 (SRR ) + S5 ST iR)20

leT; 1eT;

@ Springer



Optimal bounds for convergence... 219

Applying Lemma 7.6, the inequality (7.15) and the inequality ug < Cnu4, we get

. , 1 |
Ellnjs[M0) < Cn =20~ m) ) + Cn =g~ > Im* R,
IET]‘

Thus, inequality (7.37) is proved. Consider now the 8th moment of 7;3. Applying
Rosenthal’s inequality, we get

4

Cpuie 1 ;
E @) (027,12 Z (021,18,
{Inj3l® |2 p< & o 2 LR Wl ) + = n§ IL(RY)? 1
le'JI‘ 1eT;

Using now Lemma 7.6, inequalities (7.14) and (7.15), and that p1e < Cn3u4, we
obtain

C .
E{lns/*|m?) = — “4 —L i (2 )+ ZI SRY.

Thus, inequality (7.38) is proved. O

Lemma 7.21 Assuming the conditions of Theorem 1.1, we have, for z € G, for any
j=1,...,n

; CIm?Zm (j)(z) Cu?
14 () 4 ()2
E{lnja|*|MP) < ——5—= 4 5~ § IR, (7.39)

. C
E{|njp[¥|m} <
}’l U

2
0 )4 Cus 4p0)
Im =S5 m*R
( mi (2) 08 | Z 1l

1Ty
Cuj 3 p() 2 0 Cuj (1 % i
j j j
+ 408 ZI Rj; (Imm" (Z)) + 2602 \ Z (Im Rji )
leT leT;

2 . )
Y T

IET]'

Proof Direct calculation shows that

, c (1 , Cul ,
A4 () I U217, 12 4 ()27, 14
E{|nj2[*|MmV)} < poll I E IL(RY)) i + e E (R Tu ™.

I#£keT; 1#keT;

@ Springer



220 F. Gotze, A. Tikhomirov

Applying inequalities (7.16) and (7.17) of Lemma 7.6, we get

CIm m(])(z) C,u4

j ()2
E{lnjo|*|mV) < : 6 2 IR
11 v n v IET
Furthermore, we have
¢ 2
; C [1 . Cu .
E(lnplf MmO} < = | = > MRl | + =55 > IRV Jul’
I1#keT; I#keT;
Cug (1 ()N27. 16 1 (27,12
=5 20 MRl | [~ >0 IR ]
1#keT; 1#keT;
4 2
Cu 1 .
+—5 (7 20 Rl
I1#keT;
5 2
Cuy (1 (N2 4 1 UN21,,12
=5 (- 22 Rl | [~ >0 IRl
1#keT; 1#keT;
Note that
pe < Cy/npa, pg < Cnpg.
Using this relations, we get
¢ 2
; C (1 ; Cu . 8
E(lnplf [Py < o { = >0 MRl | + = (R 1
l;ﬁkETj l;ﬁkETj
cul (1
=5 20 Rl > IR Il
1#keT; l;éke’]l‘
Cug (1 U2, 4
+7 o Z [(RY) Tul
I1#keT;
5 2
C 1 .
=5 22 IRl R 1ul |
I#keT; l;éke']l‘
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Applying now Lemma 7.6, we obtain

2
. C . Cﬂz 1 )
Ellnj2l*|m) <~ ammi @) + 5 ( > (m Rf/““)
lETj
2
ClE (1S 132D ) @ ona S (LS g g2
+m n Z m= Ky; (Immy; (Z))+n6v12 N Z(m I )
lETj IET]'

Cuj (1 ()2 () (2
+—5 {5 > amRH* ) (amm,” (2)°.
lETj

Thus, the Lemma is proved. O

Lemma 7.22 Assuming the conditions of Theorem 1.1, we have

le jal* _C
24 5(z) +ma()|* ~ ntot

Proof Using the representations (7.34)—(7.36) we have

1 1 ; 1
£ =" 1+ - Z XX l(ROY 1y | Rjj = ;(1 +nj1+nj2+n3)Rjj.
l,kET_,‘
(7.41)
Applying the Cauchy—Schwartz inequality, we get

€4 K
24+ 5(2) +my(2)

. 8
|1 XXl (RY |
S% 1+E% nZl,ke'JI‘J JIAj E%|Rjj|8-
n |z 4+ 5(2) + my,(2)]

E|

Using Corollary 5.14, we may write

Ej4
E|+|4
2+ 5(2) +myu(2)
' , 8
<£ ]+E% . mr o mr
“n 2+ mu(2) +5(2) 24+ mu(2) +5(2)

n;j3
Z4+my(z) + 5(2)

+E?

)

1 - 1 ‘ - € 4] .
2 +5@ +ma@] 7 |z 4 52) +m (@) 1z +5(z) +mp(2)]

Observe that,
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Therefore, by Lemmas 7.18, 7.5 and 7.13, for z € G,

1 C

_ (7.42)
|z 4+ 5(2) +mu(2)| ~ |z+S(Z)+m(/)(Z)|

Using (7.42) we get by definition of 71, Lemma 7.6, and inequality (7.11)

1

£ nj1

Z+mp(2) +52)

1 v 8mdm (2) P
<y
|z + m(])(z) +5(2)|8

Furthermore, applying inequality (7.42) again, we obtain

8
nj2

7+ m,(ﬂ)(z) +5(2)

nj2
2+ mp(2) +5(2)

D=

E?

Conditioning with respect to 9t/) and applying Lemma 7.20, we obtain

8 c

|z+m<l)(z) +5(2)[8

4 8 Z(ImRU)
n

IETJ

o nj2

— 1 Y
7+ mp(2) +5(2) 5 (Imm;i(2))

n4vl

Using Lemma 7.5, inequality (7.8), together with Corollary 5.14 we get

8 c Cu3

12 -
T n20|z2 — 4] 2t — 41

Z+my(z) +5(z)

=

E

Applying inequality (7.42) and conditioning with respect to 9t") and applying
Lemma 7.21, we get

1
|z +5) +mP ()8

1

E? 13

24+ mu(z) +5(2)

C
4 = (Imm(])(z))4

2
Cuj cu? .
My Z(I R(J))4 + My Z(I R(J))3 (Imm,(,])(z))

4,8 5,12

n leT nv le’JT

Cpy ()\2 Cﬂﬁ 1 (1)\2 () 2

Stz [ 2R |+ = D Am R ) Amm (2))
le']I‘ 1eT;

(7.43)
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Using that |z + mfzj ) () +s(2)| = Im mf,j )(z) together with Lemma 7.6, we arrive at
n;3 8 - C n C
24+ mp(z) +s@)| T n2v0|z2 — 4] n2v%z2 —4]2
C n C n C
R e e L

=

E

Summarizing we may write now, for z € G,

& jal? c ¢ <
< + +
1z +5z) +mp2)* = n%v* " 0|72 —4] T nbvd|z2 —4)2
c L ¢ ¢
nFu6|2 — 45 nOIZ2 =4 762 g)r

For z € G, see (7.24) and Lemma 7.13, this inequality may be simplified by means of
the following bounds (with vg = Agn™")

Bl
v

5 7 5 7 3
n?vzlz2 — 4|4 > nfv(z)yfprZ > C/ny

’

C

3
B2 -4 = C, PP —42 =C,
C

n?|z? — 4> > (7.44)
Using these relation, we obtain
lejal* _C
|z +5(2) +mu(2)|* ~ n*o*
Thus Lemma 7.22 is proved. O

Corollary 7.23 Assuming the conditions of Theorem 1.1, we have

lejal® _ ¢
24 5(z) + mp(2)1? ~ n2v?

Proof The result follows immediately from Lemma 7.22 and Jensen’s inequality. O

Lemma 7.24 Assuming the conditions of Theorem 1.1, we have, for z € G,

E|A° < —s. (7.45)
Proof We write
T u T,
ElA)? =EA A, =E———" A, = ZEéKn,
2+ mp(z) +5(2) = A ma(2) +5(2)
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where
l n
Tuv ::;Z;EJURH, for v=1,...,4.
J:

First we observe that by (7.34)
1, 1
|Thal = —Im, (2)| < —Imm,(2).
n nv

Hence |z + my(z) + s(z)| = Imm, (z) and Jensen’s inequality yields

Tna Y 1 100
[E—— A, < —EZ|A,]°.
Z+my(2) +5(2) nv

Furthermore, we represent 7,,1 as follows

T = Tar1 + Thaos
where

1 - 1

Tl = - 8'1—1
nll n;]Z_'_mn(Z)

1 < 1
Top=-> ¢i|Rii+ —1).
niz njz_; "1( M z+mn(z))

Using these notations we may write

1 n
T, _ (-Z-=1€./1)
Vi=E—"1L R, =— e

z2+mp(2) +5(2)

(z+mu(2)(z+ 5(2) +my(2))

(7.46)

Applying the Cauchy—Schwartz inequality twice and using the definition of &;; (see

(3.2)), we get by Lemma 7.5

4

IS

7+ my, ()4

1 T I R 1 1 1
Vil < Zij Ei|—— E2|A
j=1

E
12242 |[nV/n L
By Rosenthal’s inequality, we have, for z € G

C 1 1 1
Vil < ————E2|A,|* < —E2|A, %
n|z2 — 4|2 nv
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Using (3.2) we rewrite T,12, obtaining

_ Thi2 XjjejRjj ~
V2 '_Ez+mn(z)+S(z) " n«/_z (2 +mp(2))(z+mu(2) +5(2)) An-

By the Cauchy—Schwartz inequality, using the definition of &; (see representation
(3.2)), we obtain

1
Val < ZE2 2 X R
- f |z +mu(2) + 52z + my(2)|?

4

1

EZ[A)> =D Vo (748)
v=I1

For v = 1, we have

1 n 2 2
1. w 2 j=1 Xj;Rjj

Var < —E? 3 3
n |24+ mu(2) + sz + my(2)]

EZ|A, 2.

Applying the Cauchy—Schwartz inequality twice and Lemma 7.5, we arrive at

n 2 n 4
1 11 1 [ 1 1 1 1
Vop<——E3 [ =) X4 ) Es [ =) R1P| ES————E2|A, %
/12 — 4 n Z{ Y n ; 7 lz +mpu(2)8 !
(7.49)
Observe that
2 2 2
1 4 1o s 1w, .
,‘,ZXJJ = ;ZEXJJ +E ,‘,Z(ij —EXj)
j=1 j=1 j=1
SM _22E|ij| = (M4+D0)M4 <C. (7.50)
j=1

The last inequality, inequality (7.49), Corollary 5.14 and Lemma 7.13 together imply

C C
Vol € ———E2[A > < —EZ|A, . (7.51)
nv

T ony|z2 — 4]
Furthermore, for v = 4, by Lemma 7.18 we have

1 n 2 2
1 X 2R
1 n Z,_l 1XjilI7IR i E; |2

Vou < E 2
v 1 ma@ + 5@ Pl + ma)P s
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Applying the Cauchy—Schwartz inequality and Lemma 7.5, we get

1 (1 & ? (1 < * 1 1 1
Vog< —— Ei (=S x4 ) B (=SR2 BS—— _E3 A2
nvy/ny/:2 4| ”Z%” ”Z;” e+ ma "

Similar to inequality (7.51), applying Lemma 7.13, inequality (7.50) and Corol-
lary 5.14, we get

C
Vas < —E2|A, % (7.52)
nv

By Holder’s inequality, we have for v = 2, 3,

n 4 4
lejul™1X 1 1

Vo= o S
YV ST e m @ +s@F e ma )P

1 1
Es|R;;|I*E2|A, %

Note that for v = 2, 3, r.v. X;; doesn’t depend on ¢, and on o -algebra o), Using
inequality (7.42) for z € G, we get

4 4 4 4
lejul™1X < |8ng [ Xl <Cus |'8jv|4 .
|2+ ma(2) +52)| 2+ my @) + ()4 2 +m (@) + 5@
Applying now Lemmas 7.15, 7.16 and 7.13, arrive at
Vo, < —EZ2|A,|°, for v =23 (7.53)
nv
Inequalities (7.51), (7.52), (7.53) together imply
C
Vo < —E|A, % (7.54)
nv

Consider now the quantity

. Thy e
Y, =E——" A,
Z+my(z) +5(z)

for v = 2, 3. We represent it as follows

Y, =Yy + Yo,

where

1 « A,
le = _—ZE - Eivin
ne @ m (@) @+ ma2) +5(2))
A
Yo=lS o Rii + P
=

n = Z+mu(2) +5(2)
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By the representation (5.32), which is similar to (3.2) we have

7, = 23: 1 Z":E £jvejnhnRjj

S Grm@ +s@)@Hmi @)

Using inequality (7.42), we may write, for z € G

lejollejullAnlIRjj|
1Y, <Z Z vlEjn ji

=S i m @ +s@llz+m @

Applying the Cauchy—Schwartz inequality and the inequality ab < %(a2

get

T
V. n
ST irmd @+ s@Pl+my ()

1 lejul*IR;j;1? L
< Z > E2|A,|

S iAm? @+ s@PRlz+m ()

PO Rt Pl PR
- n
n lz+m @) +s@)Plz+m @)

+ b?), we

¢ i l&jul® A PR 4
=2 D E E2|A,°E3 |Rjj]

lz4+mP @)+ s@*z +mS @)

C 1 lejul*lel? 1 1
+;ZE4 v EZ|A,*E4|R;;[*.

2+ my (2) + 54z + my? @)[*
Using Corollary 7.17 with o = 2, we arrive at

C_1
Y2l < —EZ|A,[%

nv

In order to estimate Y,,; we introduce now the quantity

1
APV = ZTeRY) — 5(2) + ﬁ +- LR,
n

Recall that

1 ) 1 .
B ROV, nip =+ X X 3 [(RYY 1.
nji =" E [(RY) T, nj2 " E kX i [RY) gy

IETI' k;éle’IF_,-

1 .
njs = > (X = DIRY) .

IETI'

(7.55)

(7.56)

@ Springer



228 F. Gotze, A. Tikhomirov

Note that

1 N2 i
Injil = —ITrRD?| < v 'Imm (2). (7.57)
n

We use that (see Lemma 5.5 in [11])

1
8j4=;(1+77j1+77j2+’7j3)Rjj- (7.58)
Note that
~ (i s(z) 1
Suj = Ay — Ay = eja — —> — —njos(2)
n n
1 1
= r—l(Rjj —s@)(A +mn;1) + ;(7712 +n3)Rjj.
This yields
1 1
[8nj < ;(1 +In1DIR;; — s(@)| + ;|77j2 +n3DIRj|. (7.59)

We represent Yy,; in the form

Yoi=2v1+Zw+ Zy3,

where
n =G
Zn = _le ) Lt ) ’
T @A my (@)@ +my (2) +5(2)
1< &iv0ni
Zv — E . jvOonj ,
FTn ; @+ mP (@)@ + mu@) +5(2)
1 <& s»uxnszl
Zv3 = - E : - / / s
n ,; @+ m @)@ +m @) +5) (@ +mu @) +52)
1 < £-v£~4§,-
Loy = —— E - A el .
o ,Z_; @ +mi @)@ +my @)+ 5@) @ +mu @) +52)

First, note that by conditional independence

Zy1 =0. (7.60)

Furthermore, applying Holder’s inequality, we get

l - 1 lein|*
Z3l <= D E4 : o
e g m @F i+ my @) + 5@

2

1 lejal* YA,
al”.

E3
|z 4+ my,(z) + s(2)|*
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Using Corollary 7.17 with « = 4 and Lemmas 7.22 and 7.5, we obtain

c 1
1Z3] < ————EZ|A, %
(nv)2|z2 — 4|3

For z € G we may rewrite this bound using Lemma 7.13
C_1
1Zy3| < —EZ|A, % (7.61)
nv
Furthermore, note that
1+l < v Iz +m () < Im{z +m (2) + ().

This inequality together with (7.59) implies that

|Zval < Zoa + Zoa, (7.62)
where
Fu— L i lejvejallRjj — s(2)]
va — 2 i
720 Sz m @)1z + ma @) + 5(2)
n
7= izZE - |8jv5jzlj|)|7lj2+77j3||Rjj| '
Tzt my @z +my (@) + 5@z + ma(2) + 5(2)]

By representation (3.2), we have
[Rjj —s@)| = |AnlIRjj| + lejlIRjjl. (7.63)

This implies that

Z}4 < Zv41 + Zu42:

where

n
s 2.E ()
=1zt my (@Dllz 4+ mu(2) +5(2)]
n
E

= 1 lejvejall AnlIR ;]
Z = —
val = 72 Z
1
2

]=
5 lejvejallejlI R
Zoi = Z (j)]v jallejlIRj '
Vio e my (@12 + ma(2) + 5(2)]

Applying Holder inequality, we get
2

~ 1 1 2 1 1 " 4 €1 1 " 16
Zyy < %EZIAM Es ;Zl|8jv| ETe ;ZI|R/'J'|
j= j=

B (12— | p et
X — —_— - .
A 2+ m{16 | n o |2+ ma(2) + 5214
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By Lemma 7.21, inequality (7.39) and Corollary 5.14, we have

~ cC .1,
Zua1 < ——E2 A% (7.64)
n<v

Furthermore, applying Holder inequality again, we get

Zun < B Zi et (2 et
J— 8 p— -
v42 = nv v n = |z +mu(2) +s(2)*

1< 1< 1< 1
xE7? —Z|8j|4 E3 —ZIRJ‘jI8 Es —Z 0s | (7.65)
n n m N+ my|
The last inequality, Corollaries 5.14, 7.17, Lemma 7.22 together imply
Inequalities (7.64) and (7.66) together imply
C_1 C
1Zoal < —E2|A,)* + . (7.67)
nv n*v

To bound Z,, we first apply inequality (7.42) and obtain

n

C € v [18nj]
1Zv2] = _ZE 0 = nj(n :
AT lemy (@llz 4+ my(2) +5(2)]

Furthermore, similar to bound of Z,s—inequality (7.62)—we may write

|Zv2| =< z1)2 + 2\)%

where

_giijvnR,-j—s(zn
=SS pt S
n

= k+mP eI
= C < lejullnjz + nj3lIRjj|
"22_22 () () '
=z my (@llz +my(2) + 5 (2)]

Applying inequality (7.63) and Cauchy—Schwartz inequality, we get

~ 1 1
Zur <E2A =5 D Eifej['ES ————ES|R;;°
Z |Z+m(J)(Z)|8
+CZE%| *Et|e; |*E? ESIR;[5.  (7.68)
— oF £ —_— il . .
2 JVv J J]
n? 2+ my (2)8
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Lemmas 7.15, 7.16, 7.22, inequality (7.39) and Corollary 5.14 together imply

~ C_ 1 C
Zyy < —E7|A) + 5. (7.69)
nv n-<v

Applying now Holder’s inequality, we get

n .4 . 14
Zual = 5 > B 10 gt 2 X
AT e Aml @ Fs@F lzEmi (@) + s )
1 4l 1
XE4|R]']'| E+

lz+m{ )+

The last inequality together with Lemmas 7.22, 7.20, 7.21 and Corollary 5.14, 7.17
implies

~ C
|Zv2| =

—- (7.70)

Combining now inequalities (7.46), (7.47), (7.54), (7.55), (7.60), (7.61), (7.67), (7.69),
(7.70), we get

C
ElA? < —E2 A + —— (7.71)
nv

n2v?’

Applying Lemma 7.4 with t = 2, r = 1 completes the proof of Lemma 7.24. O

We relabel 712, n;3 and introduce the following quantity

1 , 1 -

R N2y, _ — 2
Bit =~ D IR = =3[R,
lETj =1

1 )
o=~ 2. XpXpl (Rl = np,
1#keT;
1 5 .
P 2 _ N2, — 9.
Bz =~ 2 (X5 = IRl = 3.
lETj

Lemma 7.25 Assuming the conditions of Theorem 1.1, we have, forv = 2,3,
2o < € 0
E{|By 7197} < mlmmn (2).

Proof We recall that by C we denote the generic constant depending on 4 and Do
only. By definition of 8, for v = 2, 3, conditioning on M), we get
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. C .
E(IfplP (M7} < 5 >0 MRl < Z [(RY) T,

1#keT; 1keT;

. C . .
E(I8;31° (M7} < = D IR Il < n—2 > IRl

IET_/' l,kETj

Applying Lemma 7.6, we get the claim. Thus Lemma 7.25 is proved. O

Lemma 7.26 Assuming the conditions of Theorem 1.1, we have, for j = 1,...,n,
C
ElBi| < —.
Iﬂjll = 02

Proof Let F,(lj )(x) denote empirical spectral distribution function of matrix W,
According to interlacing eigenvalues Theorem (see [18, Theorem 4.38]) we have

; C
sup | 5, (x) — ol () < =
X n
Furthermore, we represent

* 1 1 ;
Bin = / ol E = AP 4 e TR,

Integrating by parts, we get the claim.
Thus Lemma 7.26 is proved. O
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