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Abstract Stricker’s theorem states that a Gaussian process is a semimartingale in its
natural filtration if and only if it is the sum of an independent increment Gaussian
process and a Gaussian process of finite variation, see Stricker (Z Wahrsch Verw Geb
64(3):303–312, 1983). We consider extensions of this result to non Gaussian infinitely
divisible processes. First we show that the class of infinitely divisible semimartingales
is so large that the natural analog of Stricker’s theorem fails to hold. Then, as the main
result, we prove that an infinitely divisible semimartingale relative to the filtration
generated by a random measure admits a unique decomposition into an independent
increment process and an infinitely divisible process of finite variation. Consequently,
the natural analog of Stricker’s theorem holds for all strictly representable processes
(as defined in this paper). Since Gaussian processes are strictly representable due to
Hida’s multiplicity theorem, the classical Stricker’s theorem follows from our result.
Another consequence is that the question when an infinitely divisible process is a
semimartingale can often be reduced to a path property, when a certain associated
infinitely divisible process is of finite variation. This gives the key to characterize
the semimartingale property for many processes of interest. Along these lines, using
Basse-O’Connor and Rosiński (Stoch Process Appl 123(6):1871–1890, 2013a), we
characterize semimartingales within a large class of stationary increment infinitely
divisible processes; this class includes many infinitely divisible processes of interest,
including linear fractional processes,mixedmoving averages, and supOUprocesses, as
particular cases. Theproof of themain theorem relies on series representations of jumps
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of càdlàg infinitely divisible processes given in Basse-O’Connor and Rosiński (Ann
Probab 41(6):4317–4341, 2013b) combined with techniques of stochastic analysis.
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1 Introduction

A process X = (Xt )t≥0 on a filtered probability space (�,F ,F = (Ft )t≥0,P) is
called a semimartingale (relative to the filtration F) if it admits a decomposition

Xt = X0 + Mt + At , t ≥ 0, (1.1)

where M = (Mt )t≥0 is a càdlàg local martingale, A = (At )t≥0 is a càdlàg adapted
process of finite variation, M0 = A0 = 0 and X0 is F0-measurable. X is called
a special semimartingale if (1.1) holds with A being also predictable. In that case
decomposition (1.1) is unique and is called the canonical decomposition of X. We
refer to [22,32] for basic properties of semimartingales.

Semimartingales play a crucial role in stochastic analysis as they form the class
of good integrators for the Itô stochastic integral, cf. the Bichteler–Dellacherie the-
orem [9,11]. Semimartingales also play a fundamental role in mathematical finance.
Roughly speaking, the (discounted) asset price process must be a semimartingale in
order to preclude arbitrage opportunities, see [9, Theorems 1.4, 1.6] for details, see also
[26]. The question whether a given process is a semimartingale is also of importance
in stochastic modeling, where long memory processes with possible jumps and high
volatility are considered as driving processes for stochastic differential equations.
Examples of such processes include various fractional, or more generally, Volterra
processes driven by Lévy processes.

The problem of identifying semimartingales within given classes of stochastic
processes has a long history. For Markov processes this problem was studied by
[15,31,38], and in the context of Gaussian processes, it was intensively studied in
1980s. Gal’chuk [19] investigated Gaussian semimartingales addressing a question
posed by Prof. A.N. Shiryayev. Key results on Gaussian semimartingales are due to
[23,24,27,39], [29, Ch. 4.9] and [2,3,5,6,14,17].

Stricker’s theorem [39, Théorème 1] is probably the most fundamental result on
Gaussian semimartingales and it is used to obtain all of the above cited results (except
[23], which it extends). An important questionwhen certain Gaussian semimartingales
admit an equivalent local martingale measure was studied by [13].

Throughout this paper, ifX is a process with index set T ⊂ R, then FX = (F X
t )t≥0

denotes its natural filtration; i.e., the least filtration satisfying the usual conditions such
that σ(Xs : s ≤ t, s ∈ T ) ⊆ F X

t , t ≥ 0.

Theorem (Stricker’s theorem) Let X be a symmetric Gaussian process. Then X is a
semimartingale relative to its natural filtration F

X if and only if it admits a decom-
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position (1.1), where (X,M,A) are jointly symmetric Gaussian, M has independent
increments andA is a predictable process of finite variation. In this case,X is a special
semimartingale and (1.1) is the canonical decomposition of X.

In this paper we investigate if (and how) Stricker’s theorem can be generalized to
the much larger class of infinitely divisible processes, which includes Gaussian, stable
and other processes of interest (see Sect. 4 for specific examples). Recall that a process
X = (Xt )t∈T is said to be infinitely divisible if all its finite dimensional distributions
are infinitely divisible, and it is called symmetric if X and −X have the same finite
dimensional distributions.

We will now do a preliminary analysis of this problem to gain more intuitions.
There are two key features of the decomposition (1.1) in the Gaussian case. The first
one is that components M and A of the canonical decomposition are in the same
distributional class as X, both are Gaussian. The second one is that M is a process
with independent increments. The following two examples show that we cannot hope
to get a direct extension of Stricker’s theorem. The first one shows that the processes
M andA in the canonical decomposition (1.1) of an infinitely divisible semimartingale
are not infinitely divisible in general.

Example 1.1 Let X = (Xt )t≥0 be the symmetric infinitely divisible process given by

Xt =
{
U + V 0 ≤ t < 1,

V t ≥ 1,

where randomvariablesU and V have standardGaussian and standard Laplace distrib-
utions, respectively, andU and V are independent. ThenX is a special semimartingale
relative to the natural filtration F

X ,but processes M and A in its canonical decompo-
sition (1.1) are not infinitely divisible (see Appendix A for details).

The second example shows thatM in the canonical decomposition (1.1) of an infinitely
divisible semimartingale need not have independent increments.

Example 1.2 Let X = (Xt )t≥0 be the symmetric infinitely divisible process given by
Xt = ∑N

k=1 Bk(t), where {Bk(t) : t ≥ 0} are independent standard Brownian motions
and N is a Poisson random variable independent of {Bk(t) : t ≥ 0, k ∈ N}. Then
X is a special semimartingale relative to F

X , with the canonical decomposition (1.1)
given by Mt = Xt and At = 0. ProcessM does not have independent increments (see
Appendix A for details).

This leads to the question:What are the special properties of Gaussian processes that
make Stricker’s theorem valid?

The key to address this question is provided by Hida’s multiplicity theorem [20,
Theorem 4.1]. We give it here in a simplified version which suffices for our purposes,
see Remark 5.2.

Theorem 1.3 (Hida’s multiplicity theorem) Let X = (Xt )t≥0 be a symmetric
Gaussian process which is right-continuous in probability. Then there exist inde-
pendent symmetric right-continuous in L2 Gaussian processes B j = (Bj (t))t∈R,
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j ≤ N ≤ ∞, each B j having independent increments and B j (0) = 0, such that for

each t ≥ 0 F X
t = ∨ jF Bj

t and

Xt =
N∑
j=1

∫ t

−∞
f j (t, s) dB j (s) a.s.

Here ( f j (t, ·))t≥0 is a family of deterministic functions such that for every t ≥ 0∫ t
−∞ f (t, s)2 m j (ds) < ∞, where m j (ds) = E[Bj (ds)2].
Definition 1.4 An infinitely divisible processX = (Xt )t≥0 is said to be representable
if there exist a countable generated measurable space V , an infinitely divisible inde-
pendently scattered randommeasure� onR×V , and a family ofmeasurable functions
{φ(t, ·)}t≥0 on R × V such that for every t ≥ 0

Xt =
∫

(−∞,t]×V
φ(t, u)�(du) a.s. (1.2)

The process X is said to be strictly representable if (1.2) holds for some (�, φ) as
above and F X

t = F�
t for every t ≥ 0. Here F

� = (F�
t )t≥0 denotes the filtration

generated by �; see Sect. 2 for the definition of � and further pertinent definitions
and related facts.

As a corollary to Hida’s multiplicity theorem it follows that Gaussian processes are
strictly representable:

Corollary 1.5 We have the following:

(i) Every symmetric right-continuous in probability Gaussian process X = (Xt )t≥0
is strictly representable by some symmetric Gaussian random measure �.

(ii) Every symmetric right-continuous in probability, or mean zero and right-
continuous in L1, infinitely divisible process X = (Xt )t≥0 is representable.

Proof (i) Applying Theorem 1.3, wemay take in (1.2) V = {1, . . . , N }, when N < ∞
or V = N when N = ∞, a Gaussian random measure � on R × V determined
by �((a, b] × { j}) = Bj (b) − Bj (a), and φ(t, (s, j)) = f j (t, s). (ii) Follows by
Proposition 5.3. 	

Typical infinitely divisible processes are defined by a stochastic integral as in (1.2)with
specific � and φ, so they are explicitly representable. Moreover, by Corollary 1.5(ii),
every right-continuous in probability symmetric infinitely divisible process is repre-
sentable. On the other hand, the strict representability may be difficult, if not impossi-
ble, to attain. For instance, processes given by Examples 1.1 and 1.2 are representable
but not strictly representable. The latter fact can easily be deduced from the next the-
orem but direct proofs are also possible, see the end of Example 1.1 in Appendix A.

The following result generalizes Stricker’s theorem to infinitely divisible processes.
It is a direct consequence of our main result, Theorem 3.1.
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On infinitely divisible semimartingales 137

Theorem 1.6 Suppose that X = (Xt )t≥0 is a symmetric infinitely divisible process
representable by a symmetric infinitely divisible random measure �. Then X is a
semimartingale relative to the filtration F

� if and only if

Xt = X0 + Mt + At (1.3)

whereM and A are infinitely divisible processes representable by � such thatM is a
càdlàg process with independent increments relative to F�, A is a predictable càdlàg
process of finite variation and M0 = A0 = 0. Decomposition (1.3) is unique in the
class of processes representable by �. Furthermore, X is a special semimartingale if
and only if (1.3) holds and M is a martingale with independent increments.

There is a slight difference between (1.3) and (1.1) in the meaning of M. In (1.3),
M is a process with independent increments which needs not be a (local) martingale.
It could be further decomposed into a martingale and a process of finite variation
leading to (1.1) but we would loose the predictability of A and uniqueness of the
decomposition. IfX is a Gaussian semimartingale relativeFX , then by Corollary 1.5(i)
and Theorem 1.6, X is a special semimartingale and (M,A,X) are jointly Gaussian,
which gives Stricker’s theorem. If X is a symmetric α-stable process representable by
a symmetric α-stable random measure �, for example, then X is a semimartingale
relative F� if and only if it has a decomposition (1.3) into jointly symmetric α-stable
processesM andA. If suchX is strictly representable by a symmetric α-stable random
measure, then (1.3) gives the decomposition of X relative to its natural filtration.

Our proofs rely on different techniques than those used in the Gaussian case, see
Remark 3.5.We combine series representations of càdlàg infinitely divisible processes
with detailed analysis of their jumps, which seems to be a new approach in this context.
This technique is possible because such series representations converge uniformly a.s.
on compacts, as shown in a recent work of [8, Theorem3.1].

Section 2 contains preliminary definitions and facts. Our main result, Theorem 3.1,
is stated and proved in Sect. 3, and the proof of Theorem 1.6 is given at the end of
this section. Theorem 3.1 reduces the question when an infinitely divisible process is a
semimartingale relative to F� to the one when a certain associated infinitely divisible
process is of finite variation.

In Sect. 4 we use Theorem 3.1 to obtain explicit necessary and sufficient conditions
for a large class of stationary increment infinitely divisible processes to be semimartin-
gales, see Theorems 4.2 and 4.3 and their subsequent remarks. These results extend
[27, Theorem 6.5] from Gaussian to infinitely divisible processes, see Corollary 4.8.
We then apply Theorems 4.2 and 4.3 to characterize the semimartingale property
of various type of processes including linear fractional processes, moving averages,
supOU processes and etc. These latter results generalize in a natural way results of
[4,10]. Some supplementary material was moved to Appendices A and B.

2 Preliminaries

In this sectionwewill givemore definitions and notation, and recall some facts thatwill
be used throughout this paper. Thematerial on infinitely divisible randommeasures and
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the related stochastic integral can be found in [33]. (�,F ,P)will stand for a complete
probability space, (V,V) will denote a countable generated measurable space, that is,
the σ -algebra V is generated by countable many sets, and {Vn} ⊂ V will be a fixed
sequence such that Vn ↑ V . Define

S = {
A ∈ B(R) ⊗ V : A ⊂ [−n, n] × Vn for some n ≥ 1

}
.

ThenS is a δ-ring of subsets of R × V such that σ(S ) = B(R) ⊗ V . For example,
S can be the family of bounded Borel subsets of an Euclidean space. A stochastic
process� = {�(A)}A∈S is said to be an (independently scattered) infinitely divisible
random measure if

(i) for any sequence (An)n∈N ⊆ S of pairwise disjoint sets, �(An), n = 1, 2, . . .
are independent and if

⋃∞
n=1 An ∈ S , then �(

⋃∞
n=1 An) = ∑∞

n=1 �(An) a.s.;
(ii) �(A) has an infinitely divisible distribution for every A ∈ S .

F
� = (F�

t )t≥0 will denote the natural filtration of�, i.e., the least filtration satisfying
the usual conditions of right-continuity and completeness such that

σ
(
�(A) : A ∈ S , A ⊆ (−∞, t] × V

)
⊆ F�

t , t ≥ 0.

We will now recall deterministic characteristics of � that will play a crucial role in
this paper. From [33, Proposition2.4], there exist measurable functions b : R×V → R

and σ : R × V → R+, a σ -finite measure κ on R × V , and a measurable family
{ρu}u∈R×V of Lévy measures on R such that for every A ∈ S and θ ∈ R

logEeiθ�(A) =
∫
A

[
iθb(u) − 1

2
θ2σ 2(u) +

∫
R

(
eiθx − 1 − iθ [[x]]) ρu(dx)

]
κ(du).

(2.1)
Here u = (s, v) ∈ R × V and

[[x]] = x

|x | ∨ 1
=

{
x if |x | < 1 ,

sgn(x) otherwise
(2.2)

is a truncation function. Given b, σ 2, κ , and {ρu}u∈R×V as above, there is an inde-
pendently scattered random measure � satisfying (2.1) by Kolmogorov’s extension
theorem. According to [33, Theorem2.7], the stochastic integral

∫
R×V f (u)�(du) of

a measurable deterministic function f : R × V → R exists if and only if

(a)
∫
R×V |B( f (u), u)| κ(du) < ∞,

(b)
∫
R×V K ( f (u), u) κ(du) < ∞,

where

B(x, u) = xb(u) +
∫
R

([[xy]] − x[[y]]) ρu(dy) and

K (x, u) = x2σ 2(u) +
∫
R

[[xy]]2 ρu(dy), x ∈ R, u ∈ R × V . (2.3)
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On infinitely divisible semimartingales 139

When (a)–(b) hold, then
∫
R×V f (u)�(du) is an infinitely divisible random variable.

Moreover, if f = f (t, ·)dependson aparameter t ∈ T , then
( ∫

R×V f (t, u)�(du)
)
t∈T

is an infinitely divisible process.
We will also use the following definitions and notation. For a càdlàg function

g : R+ → R, the jump size of g at t is defined as �g(t) = lims↑t,s<t (g(t) − g(s))
when t > 0 and �g(0) = 0. If X : � → [0,∞] is a measurable function, then
[X ] = {(ω, X (ω)) : ω ∈ �, X (ω) < ∞} denotes the graph of X . (Notice that [22]
write [[X ]] for the graph of X .) A random set A ⊆ � × R+ is said to be evanescent
if the set {ω ∈ � : ∃ t ∈ R+ such that (ω, t) ∈ A} is a P-null set. For two random
subsets A and B of�×R+, we say that A ⊆ B up to evanescent if B\A is evanescent.
Two processes X = (Xt )t≥0 and Y = (Yt )t≥0 are said to be indistinguishable if the
set {(ω, t) : Xt (ω) �= Yt (ω)} is evanescent. We will write X = Y when X and Y are
indistinguishable.

3 Infinitely divisible semimartingales

In this section X = (Xt )t≥0 stands for a càdlàg infinitely divisible process which is
representable by some infinitely divisible random measure �, i.e., a process of the
form

Xt =
∫

(−∞,t]×V
φ(t, u)�(du), (3.1)

whereφ : R+×(R×V ) → R is ameasurable deterministic function and� is specified
by (2.1)–(2.2). We assume that for every u = (s, v) ∈ R × V , φ(·, u) is càdlàg, cf.
Remark 3.2. Let B be given by (2.3). We further assume that

∫
(0,t]×V

∣∣B(
φ(s, s, v), (s, v)

)∣∣ κ(ds, dv) < ∞ for every t > 0. (3.2)

The following is the main result of this section.

Theorem 3.1 Under the above assumptions X is a semimartingale relative to the
filtration F� = (F�

t )t≥0 if and only if

Xt = X0 + Mt + At , t ≥ 0, (3.3)

where M = (Mt )t≥0 is a semimartingale with independent increments given by the
stochastic integral

Mt =
∫

(0,t]×V
φ(s, (s, v))�(ds, dv), t ≥ 0, (3.4)

and A = (At )t≥0 is a predictable càdlàg process of finite variation of the form

At =
∫

(−∞,t]×V

[
φ(t, (s, v)) − φ(s+, (s, v))

]
�(ds, dv). (3.5)
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Decomposition (3.3) is unique in the following sense: if X = X0 + M′ + A′, where
M′ and A′ are processes representable by � such that M′ is a semimartingale with
independent increments relative to F� and A′ is a predictable càdlàg process of finite
variation, then M′ = M + g and A′ = A − g for some càdlàg deterministic function
g of finite variation, where M and A are given by (3.4) and (3.5).

X is a special semimartingale if and only if (3.3)–(3.5) hold and E|Mt | < ∞ for
all t > 0. In this case, (Mt − EMt )t≥0 is a martingale and

Xt = X0 + (Mt − EMt ) + (At + EMt ), t ≥ 0

is the canonical decomposition of X.

In the next section we use Theorem 3.1 to characterize the semimartingale property of
various infinitely divisible processes with stationary increments. In the following we
conduct the proofs of Theorems 3.1 and 1.6, but first we consider two remarks and an
example.

Remark 3.2 If X given by (3.1) is a semimartingale relative F�, and � satisfies the
non-deterministic condition

κ
(
u ∈ R × V : σ 2(u) = 0, ρu(R) = 0

) = 0, (3.6)

then φ can be chosen such that φ(·, u) is càdlàg for every u = (s, v) ∈ R × V . The
proof of this statement is given in the Appendix A.

Remark 3.3 Condition (3.2) is always satisfied when � is symmetric. Indeed, in this
case B ≡ 0.

Example 3.4 Consider the setting in Theorem 3.1 and suppose that � is an α-stable
random measure and α ∈ (0, 1). ThenX is a semimartingale with respect to F� if and
only if it is of finite variation. This follows by Theorem 3.1 because the process M
given by (3.4) is of finite variation. Indeed, the Lévy–Itô decomposition ofM [22, II,
2.34] combined with [22, II, 1.28] show that M is of finite variation.

Proof of Theorem 3.1 The sufficiency is obvious. To show the necessary part we need
to show that a semimartingaleX has a decomposition (3.3) where the processesM and
A have the stated properties. We will start by considering the case where � does not
have a Gaussian component, i.e. σ 2 = 0. We may and will assume that φ(0, u) = 0
for all u corresponding to X0 = 0 a.s., and that φ(t, (s, v)) = 0 for s > t and v ∈ V .

Case 1. � has no Gaussian component: We divide the proof into the following six
steps.

Step 1. Let X0
t = Xt − β(t), with

β(t) =
∫
U
B

(
φ(t, u), u

)
κ(du), U = R × V .
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Wewill give the series representation forX0 that will be crucial for our considerations.
To this end, define for s �= 0 and u ∈ U = R × V

R(s, u) =
{
inf{x > 0 : ρu(x,∞) ≤ s} if s > 0,

sup{x < 0 : ρu(−∞, x) ≤ −s} if s < 0.

Choose a probabilitymeasure κ̃ onU equivalent to κ , and let h(u) = 1
2 (d κ̃/dκ)(u). By

an extension of our probability space if necessary [36], Proposition 2 and Theorem 4.1,
shows that there exists three independent sequences (�i )i∈N, (εi )i∈N, and (Ti )i∈N,
where �i are partial sums of i.i.d. standard exponential random variables, εi are i.i.d.
symmetric Bernoulli random variables, and Ti = (T 1

i , T 2
i ) are i.i.d. random variables

in U with the common distribution κ̃ , such that for every A ∈ S ,

�(A) = ν0(A) +
∞∑
j=1

[
R j1A(Tj ) − ν j (A)

]
a.s. (3.7)

where R j = R(ε j� j h(Tj ), Tj ), ν0(A) = ∫
A b(u) κ(du), and for j ≥ 1

ν j (A) =
∫ � j

� j−1

E[[R(ε1rh(T1), T1)]]1A(T1) dr.

It follows by the same argument that

X0
t =

∞∑
j=1

[
R jφ(t, Tj ) − α j (t)

]
a.s.,

where

α j (t) =
∫ � j

� j−1

E[[R(ε1rh(T1), T1)φ(t, T1)]] dr.

Step 2. Set J = {t ≥ 0 : κ({t} × V ) > 0},

T 1,c
i = T 1

i 1{T 1
i ∈R+\J } and T 1,d

i = T 1
i 1{T 1

i ∈J }.

Since κ is a σ -finite measure the set J is countable. Furthermore, P(T 1,c
i = x) = 0

for all x > 0 and T 1,d
i is discrete. We will show that for every i ∈ N

�XT 1,c
i

= Riφ
(
T 1,c
i , Ti

)
a.s. (3.8)

Since X is càdlàg, the series

X0
t =

∞∑
j=1

[
R jφ(t, Tj ) − α j (t)

]

123
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converges uniformly for t in compact intervals a.s., cf. [8, Corollary 3.2]. Moreover,
β is càdlàg, see [8, Lemma 3.5], and by Lebesgue’s dominated convergence theorem
it follows that α j , for j ∈ N, are càdlàg as well. Therefore, with probability one,

�Xt = �β(t) +
∞∑
j=1

[
R j�φ(t, Tj ) − �α j (t)

]
for all t > 0.

Hence, for every i ∈ N almost surely

�XT 1,c
i

= �β
(
T 1,c
i

)
+

∞∑
j=1

[
R j�φ

(
T 1,c
i , Tj

)
− �α j

(
T 1,c
i

)]
. (3.9)

Since β has at most countable many discontinuities (it is càdlàg), with probability
one T 1,c

i is a continuity point of β since P(T 1,c
i = x) = 0 for all x > 0. Hence

�β(T 1,c
i ) = 0 a.s. Since (� j ) j∈N are independent of T 1,c

i , the argument used for β

also yields �α j (T
1,c
i ) = 0 a.s. By (3.9) this proves

�XT 1,c
i

=
∞∑
j=1

R j�φ
(
T 1,c
i , Tj

)
. (3.10)

Furthermore, for i �= j we get

P

(
�φ

(
T 1,c
i , Tj

)
�= 0

)
=

∫
U
P

(
�φ

(
T 1,c
i , Tj

)
�= 0 | Tj = u

)
κ̃(du)

=
∫
U
P

(
�φ

(
T 1,c
i , u

)
�= 0

)
κ̃(du) = 0

again because φ(·, u) has only countably many jumps and the distribution of T 1,c
i is

continuous on (0,∞). If j = i then

�φ
(
T 1,c
i , Ti

)
= lim

h↓0, h>0

[
φ
(
T 1,c
i ,

(
T 1
i , T 2

i

))
− φ

(
T 1,c
i − h,

(
T 1
i , T 2

i

))]

= φ
(
T 1,c
i , Ti

)

as φ(t, (s, v)) = 0 whenever t < s and v ∈ V . This simplifies (3.10)–(3.8).
Step 3.Next we will show thatM, defined in (3.4), is a well-defined càdlàg process

satisfying
�MT 1,c

i
= �XT 1,c

i
a.s. for all i ∈ N. (3.11)
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Since any semimartingale has finite quadratic variation, we have in particular

∑
0<s≤t

(
�Xs

)2
< ∞ a.s.

Let X′ be an independent copy of X and set X̃ = X − X′. Let R̄ j =
R(ε j� j h(Tj )/2, Tj ) and (ξ j ) j∈N be i.i.d. symmetric Bernoulli random variables
defined on a probability space (�′,F ′,P′). By [35, Theorem2.4] it follows that for all
t ≥ 0 the series

X̄t =
∞∑
j=1

ξ j R̄ jφ(t, Tj )

defined on � × �′ converge a.s. under P ⊗ P
′ and X̄ equals X̃ in finite dimensional

distributions. Thus X̄ has a càdlàg modification satisfying

∑
s∈(0,t]

(
�X̄s)

2 < ∞ P ⊗ P
′-a.s. (3.12)

By [8, Corollary 3.2], we have P ⊗ P
′-a.s. for all t ≥ 0 that

�X̄t =
∞∑
j=1

ξ j R̄ j�φ(t, Tj ). (3.13)

By (3.12) and (3.13) we have for P-a.a. ω ∈ � that

∑
s∈A

Y 2
s < ∞ P

′-a.s., where Ys =
∞∑
j=1

a(s, j)ξ j ,

a(s, j) = R̄ j (ω)�φ(s, Tj (ω)) and A = ∪
j∈N

{s ∈ (0, t] : �φ(s, Tj (ω)) �= 0}.

For a fixed ω ∈ � as above, A is a countable deterministic set and Y = (Ys)s∈A is
a Bernoulli/Rademacher random element in �2(A) defined on (�′,F ′,P′). By [28,
Theorem 4.8], E′[‖Y‖2

�2(A)
] < ∞ which implies that

∞ > E
′
[∑
s∈A

Y 2
s

]
=

∑
s∈A

E
′[Y 2

s ] =
∑
s∈A

∞∑
j=1

a(s, j)2 =
∞∑
j=1

(∑
s∈A

a(s, j)2
)

. (3.14)

Equation (3.14) implies that P-a.s.

∞ >
∑

i : T 1
i ∈(0,t]

∣∣∣R̄i�φ
(
T 1
i , Ti

)∣∣∣2 =
∑

i : T 1
i ∈(0,t]

∣∣∣R̄iφ
(
T 1
i , Ti

)∣∣∣2 .
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Put for t, r ≥ 0 and (ε, s, v) ∈ {−1, 1} × R × V

H(t; r, (ε, s, v)) = R
(
εrh(s, v)/2, (s, v)

)
φ(s, (s, v))1{0<s≤t}.

The above bound shows that for each t ≥ 0

∞∑
i=1

∣∣∣H (
t;�i ,

(
εi , T

1
i , T 2

i

))∣∣∣2 < ∞ a.s.

That implies, by [36, Theorem4.1], that the following limit is finite

lim
n→∞

∫ n

0
E

[[
H

(
t; r,

(
ε1, T

1
1 , T 2

1

))2]]
dr

=
∫ ∞

0
E

[[
H

(
t; r,

(
ε1, T

1
1 , T 2

1

))2]]
dr.

Evaluating this limit we get

∞ >

∫ ∞

0
E

[[
R(ε1rh(T1)/2, T1)φ

(
T 1
i , Ti

)
1{0<T 1

i ≤t}
]]2

dr

=
∫ ∞

0

∫
R×V

E
[[
R(ε1rh(s, v)/2, (s, v))φ(s, (s, v))1{0<s≤t}

]]2
κ̃(ds, dv) dr

= 4
∫ ∞

0

∫
R×V

E
[[
R(ε1z, (s, v))φ(s, (s, v))1{0<s≤t}

]]2
κ(ds, dv) dz

= 2
∫
R×V

∫
R

[[
xφ(s, (s, v))1{0<s≤t}

]]2
ρ(s,v)(dx) κ(ds, dv)

= 2
∫

(0,t]×V

∫
R

min{|xφ(s, (s, v))|2, 1} ρ(s,v)(dx) κ(ds, dv).

Finiteness of this integral in conjunction with (3.2) yield the existence of the stochastic
integral

Mt =
∫

(0,t]×V
φ(s, s, v)�(ds, dv)

by (a) and (b) on page 7. The fact thatM has independent increments is obvious since
� is independently scattered. Furthermore,M is càdlàg in probability by the continuity
properties of stochastic integrals, and by Lemma 6.2 it has a càdlàgmodificationwhich
will also be denoted byM.

Let (ζt )t≥0 be the shift component of M. By (3.2) and the fact that

ζt =
∫

(0,t]×V
B

(
φ(s, s, v), (s, v)

)
κ(ds, dv), t ≥ 0,

see [33, Theorem 2.7], we deduce that (ζt )t≥0 is of finite variation. Therefore the
independent increments ofM and [22, II, 5.11] show thatM is a semimartingale. For
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On infinitely divisible semimartingales 145

t ≥ 0 we can write Mt as a series using the series representation (3.7) of �. It follows
that

Mt = ζt +
∞∑
i=1

[
Riφ

(
T 1
i , Ti

)
1{0<T 1

i ≤t} − γ j (t)

]

where

γ j (t) =
∫ � j

� j−1

E

[[
R(ε1rh(T1), T1)φ

(
T 1
1 , T1

)
1{0<T 1

j ≤t}
]]

dr.

By arguments as above we have �MT 1,c
i

= Riφ(T 1,c
i , Ti ) a.s. and hence by (3.8)

we obtain (3.11).
Step 4. In the following we will show the existence of a sequence (τk)k∈N of totally

inaccessible stopping times such that all local martingales Z = (Zt )t≥0 with respect
to F� are purely discontinuous and up to evanescent

{�Z �= 0} ⊆ (� × J ) ∪
(

∪
k∈N

[τk]
)

, ∪
k∈N

[τk] ⊆ ∪
k∈N

[
T 1,c
k

]
. (3.15)

Recall that {�Z �= 0} denotes the random set {(ω, t) ∈ � × R+ : Zt (ω) �= 0}
and J is the countable subset of R+ defined in Step 2. Set V0 = {A ∈ V : A ⊆
Vk for some k ∈ N} where (Vk)k∈N is given in the Sect. 2. To show (3.15) choose
a sequence (Bk)k≥1 ⊆ V0 of disjoint sets which generates V and for all k ∈ N let
Uk = (Uk

t )t≥0 be given by
Uk
t = �((0, t] × Bk).

For k ∈ N, Uk is a càdlàg in probability infinitely divisible process with independent
increments and has therefore a càdlàg modification by Lemma 6.2 (which will also be
denoted Uk). Hence U = {(Uk

t )k∈N : t ∈ R+} is a càdlàg R
N-valued process with no

Gaussian component. Let E = R
N\{0}. Then E is a Blackwell space and μ defined

by
μ(A) = �

{
t ∈ R+ : (t,�Ut ) ∈ A

}
, A ∈ B(R+ × E)

is an extended Poisson random measure on R+ × E , in the sense of [22, II, 1.20]. Let
ν be the intensity measure of μ. We have that F� is the least filtration for which μ is
an optional random measure. Thus according to [22, III, 1.14(b) and the remark after
III, 4.35], μ has the martingale representation property, that is for all real-valued local
martingales Z = (Zt )t≥0 with respect to F� there exists a predictable function φ from
� × R+ × E into R such that

Zt = φ ∗ (μ − ν)t , t ≥ 0 (3.16)

(in (3.16) the symbol ∗ denotes integration with respect to μ − ν as in [22, II, 1.]).
Note that {t ≥ 0 : ν({t} × E) > 0} ⊆ J . By definition, see [22, II, 1.27(b)], Z is
a purely discontinuous local martingale and �Zt (ω) = φ(ω, t,�Ut (ω))1{�Ut (ω) �=0}
for (ω, t) ∈ � × J c up to evanescent, which shows that

{�Z �= 0} ⊆ (� × J ) ∪ {�U �= 0} up to evanescent.
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Lemma 6.1 and a diagonal argument show the existence of a sequence of totally
inaccessible stopping times (τk)k∈N such that up to evanescent

{�U �= 0} = (� × J ) ∪ (∪k∈N[τk]).

Arguing as in Step 2 with φ(t, (s, v)) = 1(0,t](s)1Bk (v) shows that with probability
one

�Uk
t = �ζ(t) +

∞∑
j=1

[
R j1{t=T 1

j }1{T 2
j ∈Bk } − �γ j (t)

]
for all t > 0

where

ξ(t) =
∫
R×V

1{0≤s≤t}1{v∈Bk }b(s, v) κ(ds, dv),

γ j (t) =
∫ � j

� j−1

E

[[
R(ε1rh(T1), T1)1{T 1

j ≤t}1{T 2
j ∈Bk }

]]
dr.

The functions ξ and γ j , for j ∈ N, are continuous onR+\J and hence with probability
one

�Uk
t =

∞∑
j=1

R j1{t=T 1
j }1{T 2

j ∈Bk } for all t ∈ R+\J. (3.17)

Since each τk is totally inaccessible and J is countable, we have P(τk ∈ J ) = 0.
Hence by (3.17) we conclude that

∪k∈N[τk] ⊆ ∪k∈N
[
T 1,c
k

]
up to evanescent.

This completes the proof of Step 4.
Step 5. Fix r ∈ N and let X′ = (X ′

t )t≥0 be given by

X ′
t = Xt −

∑
s∈(0,t]

�Xs1{|�Xs |>r}.

We will show that X′ is a special semimartingale with martingale component M′ =
(M ′

t )t≥0 given by

M ′
t = M̃t − EM̃t where M̃t = Mt −

∑
s∈(0,t]

�Ms1{|Ms |>r}.

Recall that M is given by (3.4). By [22, II, 5.10c)] it follows that M′ is a martingale
(and well-defined). The process X′ is a special semimartingale since its jumps are
bounded by r in absolute value; denote byW andN the finite variation and martingale
compnents, respectively, in the canonical decomposition X′ = X0 + W + N of X′.
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That is, we want to show that N = M′. By (3.11) we have for all i ∈ N

�M ′
T 1,c
i

= �MT 1,c
i

1{|�M
T 1,ci

|≤r} = �XT 1,c
i

1{|�X
T 1,ci

|≤r} = �X ′
T 1,c
i

a.s. (3.18)

Let (τk)k∈N be a sequence of totally inaccessible stopping times satisfying (3.15) for
both Z = N and Z = M′. Since W is predictable and τk is a totally inaccessible
stopping time we have that �Wτk = 0 a.s. cf. [22, I,2.24] and hence

�Nτk = �X ′
τk

− �Wτk = �X ′
τk

= �M ′
τk

a.s. (3.19)

the last equality follows by (3.18) and the second inclusion in (3.15).
Since J is countable we may find a set K ⊆ N such that J = {tk}k∈K . Next we

will show that for all k ∈ K
�Ntk = �Mtk a.s. (3.20)

By linearity, A, define in (3.5), is a well-defined càdlàg process. For all k ∈ K we
have almost surely

Atk =
∫

(−∞,tk ]×V

[
φ(tk, (s, v)) − φ(s, (s, v))

]
�(ds, dv)

=
∫

(−∞,tk )×V

[
φ(tk, (s, v)) − φ(s, (s, v))

]
�(ds, dv)

which shows that Atk is F�
tk−-measurable. Define a process Z = (Zt )t≥0 by

Zt =
∑
k∈K

(
�Atk − �Wtk

)
1{t=tk }. (3.21)

Since �Atk − �Wtk is F�
tk−-measurable for all k ∈ K , (3.21) shows that Z is a pre-

dictable process. Let pY denote the predictable projection of any measurable process
Y, see [22, I, 2.28]. Since Z is predictable

Z = pZ = p(1�×J (�A+�W)
) = 1�×J

p(�A−�W) = 1�×J
p(�M′−�N) = 0

(3.22)
where the third equality follows by [22, I, 2.28(c)] and the fact that � × J is a
predictable set, the last equality follows by [22, I, 2.31] and the fact that M′ and N
are local martingales. Equation (3.22) shows that �At = �Wt for all t ∈ J , which
implies (3.20).

By (3.19), (3.20) and the fact that

{�N �= 0} ⊆ (� × J ) ∪ (∪k∈N[τk]), {�M′ �= 0} ⊆ (� × J ) ∪ (∪k∈N[τk])

we have shown that �N = �M′. By Step 4, N andM′ are purely discontinuous local
martingale which implies that N = M′, cf. [22, I, 4.19].This completes Step 5.

Step 6. We will show that A is a predictable càdlàg process of finite variation.
According to Step 5 the process W := X′ − X0 − M′ is predictable and has càdlàg
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paths of finite variation. Thus with V = (Vt )t≥0 given by

Vt =
∑

s∈(0,t]
�Xs1{|Xs |>r} −

∑
s∈(0,t]

�Ms1{|Ms |>r}

we have by the definitions of W and V that

At = Xt − X0 − Mt = Wt + Vt − EM̃t . (3.23)

This shows that A has càdlàg sample paths of finite variation. Next we will show
that A is predictable. Since the processesW, V and M̃ depend on the truncation level
r they will be denoted Wr , Vr and M̃r in the following. As r → ∞, Vr

t (ω) → 0
point wise in (ω, t), which by (3.23) shows that Wr

t (ω) − EM̃r
t → At (ω) point wise

in (ω, t) as r → ∞. For all r ∈ N, (Wr
t − EM̃r

t )t≥0 is a predictable process, which
implies that A is a point wise limit of predictable processes and hence predictable.
This completes the proof of Step 6 and the proof of the decomposition (3.3) in Case 1.

Case 2. � is symmetric Gaussian: suppose that � is a symmetric Gaussian random
measure. By [3, Theorem 4.6] used on the sets Ct = (−∞, t] × V , X is a special
semimartingale in F� with martingale component M = (Mt )t≥0 given by

Mt =
∫

(0,t]×V
φ(s, (s, v))�(ds, dv), t ≥ 0,

see [3, Equation (4.11)], which completes the proof in the Gaussian case.
Case 3. � is general: Let us observe that it is enough to show the theorem in

the above two cases. We may decompose � as � = �G + �P , where �G ,�P are
independent, independently scattered random measures. �G is a symmetric Gaussian
random measure characterized by (2.1) with b ≡ 0 and κ ≡ 0 while �P is given by
(2.1) with σ 2 ≡ 0. Observe that

F
� = F

�G ∨ F
�P ,

which can be deduced from the Lévy-Itô decomposition, see [22, II, 2.35], used on the
processesY = (Yt )t≥0 of the form Yt = �((0, t]×B)where B ∈ V0 (V0 is defined on
page 13).We haveX = XG +XP , whereXG andXP are defined by (3.1) with�G and
�P in the place of �, respectively. Since (�,X) and (�P − �G ,XP −XG) have the
same distributions, the processXP −XG has a modification which is a semimartingale
with respect to F�P−�G = F

�P ∨ F
−�G = F

�.
Consequently, processes XG and XP have modifications which are semimartin-

gales with respect to F
�, and so, they are semimartingales relative to F

�G and F
�P ,

respectively, and the general result follows from the above two cases.
The uniqueness: LetM,M′,A and A′ be as in the theorem. We will first show that

(M,M′) is a bivariate process with independent increments relative to F
�. To this

aim, choose 0 ≤ s < t and A1, . . . , An ∈ S such that Ai ⊂ (−∞, s] × V , i ≤ n,
n ≥ 1. Consider random vectors ξ = (ξ1, ξ2) := (Mt − Ms, M ′

t − M ′
s) and η =

(η1, . . . , ηn) := (�(A1), . . . , �(An)). Since M and M′ are processes representable
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by �, (ξ, η) has an infinitely divisible distribution in R
n+2. Since M and M′ have

independent increments relative to F�, ξi is independent of η j for every i ≤ 2, j ≤ n.
It follows from the formcharacteristic function and the uniqueness ofLévy–Khintchine
triplets that the pairwise independence between blocks of jointly infinitely divisible
random variables is equivalent to the independence of blocks (this is a straightforward
extension of [21, Theorem 4]). Therefore, ξ is independent of η. We infer that ξ is
independent ofF�

s , so that (M,M′) is a process with independent increments relative
to F�, so isM := M′ − M.

Since X = X0 + M + A = X0 + M′ + A′ by assumption, we have

M = M′ − M = A′ − A,

so that the independent increment semimartingale M is predictable. For each n ∈ N

define the truncated process M
(n) = (M

(n)

t )t≥0 by

M
(n)

t = Mt −
∑
s≤t

�Ms1{|�Ms |>n}.

According to [22, II, 5.10], there exists a càdlàg deterministic function gn of finite

variation with gn(0) = 0 such thatM
(n) − gn is a martingale. SinceM

(n) − gn is also

predictable and of finite variation, M
(n) = gn , cf. [22, I, 3.16]. Letting n → ∞ we

obtain that M is deterministic and obviously càdlàg and of finite variation.
The special semimartingale part: To prove the part concerning the special semi-

martingale property of X we note that the process A in (3.5) is a special semimartin-
gale since it is a predictable càdlàg process of finite variation. Thus X is a special
semimartingale if and only if M is special semimartingale. Due to the independent
increments, M is a special semimartingale if and only if E|Mt | < ∞ for all t > 0,
cf. [22, II, 2.29(a)], and in that case Mt = (Mt − EMt ) + EMt is the canonical
decomposition of M. This completes the proof. 	


Proof of Theorem 1.6 We only need to prove the only if -implication. Suppose that
X is a semimartingale with respect to F

�. According to Remark 3.2 we may and do
choose φ such that t �→ φ(t, u) is càdlàg of all u. By Remark 3.3, assumption (3.2)
is satisfied and hence by letting M and A be defined by (3.4) and (3.5), respectively,
we obtain the representation of X as claimed in Theorem 1.6. To show the uniqueness
part we note that by symmetric, the deterministic function g in Theorem 3.1 satisfies
that g(t) equals −g(t) in law, which implies that g(t) = 0 for all t ≥ 0. Since the
expectation of a symmetric random variable is zero whenever it exists the last part
regarding the special semimartingale property follows as well. 	


Remark 3.5 Weconclude this section by recalling that the proof of any of the results on
Gaussian semimartingales X mentioned in the Introduction relies on the approxima-
tions of thefinite variation componentA bydiscrete timeDoob–Meyer decompositions
An = (An

t )t≥0 given by
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An
t =

[2n t]∑
i=1

E[Xi2−n − X(i−1)2−n |F(i−1)2−n ], t ≥ 0

and showing that the convergence limn An
t = At holds in an appropriate sense, see

[30,39]. This technique does not seem effective in the non-Gaussian situation since it
relies on strong integrability properties of functionals of X, which are in general not
present and can not be obtained by stopping arguments.

4 Some stationary increment semimartingales

In this sectionwe consider infinitely divisible processeswhich are stationary increment
mixed moving averages (SIMMA). Specifically, a process X = (Xt )t≥0 is called a
SIMMA process if it can be written in the form

Xt =
∫
R×V

[
f (t − s, v) − f0(−s, v)

]
�(ds, dv), t ≥ 0, (4.1)

where the functions f and f0 are deterministic measurable such that f (s, v) =
f0(s, v) = 0 whenever s < 0, and f (·, v) is càdlàg for all v. � is an independently
scattered infinitely divisible random measure that is invariant under translations over
R. If V is a one-point space [or simply, there is no v-component in (4.1)] and f0 = 0,
then (4.1) defines a moving average (a mixed moving average for a general V , cf.
[40]). If V is a one-point space and f0(x) = f (x) = xα+ for some α ∈ R, then X is a
fractional Lévy process.

The finite variation property of SIMMA processes was investigated in [7] and
these results, together with Theorem 3.1, are crucial in our description of SIMMA
semimartingales.

The random measure � in (4.1) is as in (2.1) but the functions b and σ 2 do not
depend on s and the measure κ is a product measure: κ(ds, dv) = ds m(dv) for some
σ -finite measure m on V . In this case, for A ∈ S and θ ∈ R

logEeiθ�(A) (4.2)

=
∫
A

(
iθb(v) − 1

2
θ2σ 2(v) +

∫
R

(eiθx − 1 − iu[[x]]) ρv(dx)

)
ds m(dv).

The function B in (2.3) is independent of s, so that with B(x, v) = B(x, (s, v)) we
have

B(x, v) = xb(v) +
∫
R

([[xy]] − x[[y]]) ρv(dy), x ∈ R, v ∈ V .

The SIMMA process (4.1) is a special case of (3.1) if we take φ(t, (s, v)) =
f (t − s, v) − f0(−s, v). Therefore, from Theorem 3.1 we obtain:

Theorem 4.1 Suppose that∫
V

∣∣B(
f (0, v), v

)∣∣m(dv) < ∞. (4.3)
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Then X is a semimartingale with respect to the filtration F� = (F�
t )t≥0 if and only if

Xt = X0 + Mt + At , t ≥ 0, (4.4)

where M = (Mt )t≥0 is a Lévy process given by

Mt =
∫

(0,t]×V
f (0, v)�(ds, dv), t ≥ 0,

and A = (At )t≥0 is a predictable process of finite variation given by

At =
∫
R×V

[g(t − s, v) − g(−s, v)] �(ds, dv) (4.5)

where g(s, v) = f (s, v) − f (0, v)1{s≥0}.

Now we will give specific and closely related necessary and sufficient conditions
on f and � that make X a semimartingale.

Theorem 4.2 (Sufficiency) LetX = (Xt )t≥0 be specified by (4.1)–(4.2). Suppose that
(4.3) is satisfied and that for m-a.e. v ∈ V , f (·, v) is absolutely continuous on [0,∞)

with a derivative ḟ (s, v) = ∂
∂s f (s, v) satisfying

∫
V

∫ ∞

0

(| ḟ (s, v)|2σ 2(v)
)
ds m(dv) < ∞, (4.6)∫

V

∫ ∞

0

∫
R

(|x ḟ (s, v)| ∧ |x ḟ (s, v)|2) ρv(dx) ds m(dv) < ∞. (4.7)

Then X is a semimartingale with respect to F�.

Proof We need to verify the conditions of Theorem 4.1. With g(s, v) = f (s, v) −
f (0, v)1{s≥0} we have for m-a.e. v ∈ V , g(·, v) is absolutely continuous on R with
derivative ġ(s, v) = ḟ (s, v) for s > 0 and ġ(s, v) = 0 for s < 0. By Jensen’s
inequality, for each fixed t > 0, the function

(s, v) �→ g(t − s, v) − g(−s, v) =
∫ t

0
ġ(u − s, v) du,

when substituted for ḟ (s, v) in (4.6)–(4.7), satisfies these conditions. Indeed, it is
straightforward to verify (4.6). To verify (4.7) we use the fact that ψ : u �→ 2

∫ |u|
0 (v ∧

1) dv is convex and satisfies ψ(u) ≤ |ux | ∧ |ux |2 ≤ 2ψ(u). In particular, (s, v) �→
g(t − s, v) − g(−s, v) satisfies (b) of the Sect. 2, and so does the function

(s, v) �→ f (0, v)1(0,t](s) = g(t − s, v) − g(−s, v) − [ f (t − s, v) − f (−s, v)].

This fact together with assumption (4.3) guarantee that M of Theorem 4.1 is well-
defined. Then A is well-defined by (4.4). The process A is of finite variation by [7,
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Theorem 3.1] because g(·, v) is absolutely continuous on R and ġ(·, v) = ḟ (·, v)

satisfies (4.6)–(4.7). 	

Theorem 4.3 (Necessity) Suppose thatX is a semimartingale with respect to F� and
for m-almost every v ∈ V we have either

∫ 1

−1
|x | ρv(dx) = ∞ or σ 2(v) > 0. (4.8)

Then for m-a.e. v, f (·, v) is absolutely continuous on [0,∞) with a derivative ḟ (·, v)

satisfying (4.6) and

∫ ∞

0

∫
R

(|x ḟ (s, v)| ∧ |x ḟ (s, v)|2)(1 ∧ x−2) ρv(dx) ds < ∞. (4.9)

If, additionally,

lim sup
u→∞

u
∫
|x |>u |x | ρv(dx)∫

|x |≤u x
2 ρv(dx)

< ∞ m-a.e. (4.10)

then for m-a.e. v,

∫ ∞

0

∫
R

(|x ḟ (s, v)|2 ∧ |x ḟ (s, v)|) ρv(dx) ds < ∞. (4.11)

Finally, if

sup
v∈V

sup
u>0

u
∫
|x |>u |x | ρv(dx)∫

|x |≤u x
2 ρv(dx)

< ∞ (4.12)

then ḟ satisfies (4.6)–(4.7).

Proof Assume that X is a semimartingale with respect to F
�. By a symmetrization

argument we may assume that � is a symmetric random measure. Indeed, let �′ be
an independent copy of � and X′ be defined by (4.1) with � replaced by �′. Then
X′ is a semimartingale with respect to F

�′
. By the independence, both X and X′ are

semimartingales with respect to F� ∨ F
�′

and since F�−�′ ⊆ F
� ∨ F

�′
, the process

X − X′ is a semimartingale with respect to F
�−�′

. This shows that we may assume
that � is symmetric. Then (4.3) holds since B = 0.

By Theorem 4.1 process A in (4.5) is of finite variation. It follows from [7, Theo-
rem 3.3] that form-a.e. v, g(·, v) is absolutely continuous onRwith a derivative ġ(·, v)

satisfying (4.6) and (4.9). Furthermore ġ satisfies (4.11) under assumption (4.10), and
under assumption (4.12), ġ satisfies (4.7). Since f (s, v) = g(s, v) + f (0, v)1{s≥0},
f (·, v) is absolutely continuous on [0,∞) with a derivative ḟ (·, v) = ġ(·, v) for
m-a.e. v satisfying the conditions of the theorem. 	

Remark 4.4 Theorem 4.3 becomes an exact converse to Theorem 4.2 when (4.8) holds
and either (4.10) holds and V is a finite set, or (4.12) holds.
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Remark 4.5 Condition (4.8) is in general necessary to deduce that f has absolutely
continuous sections. Indeed, let V be a one point space so that � is generated by
increments of a Lévy process denoted again by �. If (4.8) is not satisfied, then taking
f = 1[0,1] weget that Xt = �t−�t−1 is of finite variation andhence a semimartingale,
but f is not continuous on [0,∞).

Next we will consider several consequences of Theorems 4.2 and 4.3. When there
is no v-component, (4.3) is always satisfied and � is generated by a two-sided Lévy
process. In what follows,Z = (Zt )t∈R will denote a non-deterministic two-sided Lévy
process, with characteristic triplet (b, σ 2, ρ), Z0 = 0 and natural filtration FZ .

The following proposition characterizes fractional Lévy processes which are semi-
martingales, and completes results of [4, Corollary 5.4] and parts of [10, Theorem 1].

Proposition 4.6 (Fractional Lévy processes) Let γ > 0, x+ := max{x, 0} for x ∈ R,
Z be a Lévy process as above, and X be a fractional Lévy process defined by

Xt =
∫ t

−∞
{
(t − s)γ+ − (−s)γ+

}
dZs (4.13)

where the stochastic integrals exist. Then X is a semimartingale with respect to FZ if
and only if σ 2 = 0, γ ∈ (0, 1

2 ) and

∫
R

|x | 1
1−γ ρ(dx) < ∞. (4.14)

Proof First we notice that, as a consequence of X being well-defined, γ < 1
2 and

∫
|x |>1

|x | 1
1−γ ρ(dx) < ∞. (4.15)

Indeed, since the stochastic integral (4.13) is well-defined [33, Theorem 2.7] shows
that

∫ t

−∞

∫
R

(
1 ∧ |{(t − s)γ − (−s)γ+}x |2) ρ(dx) ds < ∞, t ≥ 0. (4.16)

This implies that γ < 1
2 if ρ(R) > 0. A similar argument shows that γ < 1

2 if σ
2 > 0,

and thus, by the non-deterministic assumption on Z, we have shown that γ < 1
2 .

Putting t = 1 in (4.16) and using the estimate |(1 − s)γ − (−s)γ+| ≥ |γ (1 − s)γ−1|
for s ∈ (−∞, 0] we get
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∞ >

∫ 0

−∞

∫
R

(
1 ∧ |γ (1 − s)γ−1x |2) ρ(dx) ds

=
∫
R

∫ ∞

1

(
1 ∧ |γ sγ−1x |2) ds ρ(dx)

≥
∫
R

∫
1≤s≤|γ x |

1
1−γ

ds ρ(dx) ≥
∫

|γ x |>1

(
|γ x | 1

1−γ − 1

)
ρ(dx),

which shows (4.15).
Suppose that X is a semimartingale. If σ 2 > 0, then according to Theorem 4.3, f

is absolutely continuous on [0,∞) with a derivative ḟ satisfying

∫ ∞

0
| ḟ (t)|2 dt =

∫ ∞

0
γ 2t2(γ−1) dt < ∞

which is a contradiction and shows that σ 2 = 0. By the non-deterministic assumption
on Z we have ρ(R) > 0. To complete the proof of the necessity part, it remains to
show that ∫

|x |≤1
|x | 1

1−γ ρ(dx) < ∞. (4.17)

Since ḟ (t) = γ tγ−1 for t > 0, we have

∫ ∞

0

{|x ḟ (t)| ∧ |x ḟ (t)|2} dt = C |x | 1
1−γ (4.18)

where C = γ
1

1−γ (γ −1 + (1 − 2γ )−1). In the case
∫
|x |≤1|x | ρ(dx) < ∞ (4.17) holds

since 1 < 1
1−γ

. Thus we may assume that
∫
|x |≤1|x | ρ(dx) = ∞, that is, Eq. (4.8) of

Theorem 4.3 is satisfied. By Theorem 4.3 (4.9) and (4.18) we have

∫
|x |≤1

|x | 1
1−γ ρ(dx) ≤

∫
R

|x | 1
1−γ (1 ∧ x−2) ρ(dx) < ∞

which completes the proof of the necessity part.
On the other hand, suppose that σ 2 = 0, γ ∈ (0, 1

2 ) and (4.14) is satisfied. By
(4.14) and (4.18), f is absolutely continuous on [0,∞) with a derivative ḟ satisfying
(4.7) and hence X is a semimartingale with respect to FZ , cf. Theorem 4.2. 	


Below we will recall the conditions from [7] under which (4.10) or (4.12) hold.
Recall that a measure μ on R is said to be regularly varying if x �→ μ([−x, x]c) is a
regularly varying function; see [12].

Proposition 4.7 [7, Proposition 3.5] Condition (4.10) is satisfied when one of the
following two conditions holds for m-almost every v ∈ V

(i)
∫
|x |>1 x

2 ρv(dx) < ∞ or
(ii) ρv is regularly varying at ∞ with index β ∈ [−2,−1).
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Suppose that ρv = ρ for all v, where ρ satisfies (4.10) and is regularly varying with
index β̄ ∈ (−2,−1) at 0. Then (4.12) holds.

Theorems 4.2 and 4.3 and Proposition 4.7 extend [27, Theorem 6.5] from the case
where Z is a Brownian motion to quite general Lévy processes in the following way.

Corollary 4.8 Suppose that Z = (Zt )t∈R is a two-sided Lévy process as above, with
paths of infinite variation on compact intervals. Let X = (Xt )t≥0 be a process of the
form

Xt =
∫ t

−∞
{
f (t − s) − f0(−s)

}
dZs .

Suppose that the random variable Z1 is either square-integrable or has a regularly
varying distribution at ∞ of index β ∈ [−2,−1). Then X is a semimartingale with
respect to F

Z if and only if f is absolutely continuous on [0,∞) with a derivative ḟ
satisfying

∫ ∞

0
| ḟ (t)|2 dt < ∞ if σ 2 > 0,∫ ∞

0

∫
R

(|x ḟ (t)| ∧ |x ḟ (t)|2) ρ(dx) dt < ∞. (4.19)

Proof of Corollary 4.8 The conditions imposed on Z1 are equivalent to that ρ satisfies
(i) or (ii) of Proposition 4.7, respectively, cf. [16, Theorem 1] and [37, Theorem 25.3].
Moreover, (4.8) of Theorem 4.3 is equivalent to that Z has sample paths of infinite
variation on bounded intervals and hence the result follows by Theorems 4.2 and 4.3.

	

Example 4.9 In the following we will consider X and Z given as in Corollary 4.8
where Z is either a stable or a tempered stable Lévy process.

(i) Stable.Assume thatZ is a symmetricα-stable Lévy processwith indexα ∈ (1, 2),
that is, ρ(dx) = c|x |−α−1 dx where c > 0, and σ 2 = b = 0. Then X is a
semimartingale with respect to F

Z if and only if f is absolutely continuous on
[0,∞) with a derivative ḟ satisfying

∫ ∞

0
| ḟ (t)|α dt < ∞. (4.20)

We use Corollary 4.8 to show the above. Note that
∫
|x |≤1|x | ρ(dx) = ∞ and ρ is

regularly varying at ∞ of index −α ∈ (−2,−1). Moreover, the identity

∫
R

(|xy| ∧ |xy|2) ρ(dx) = C |y|α, y ∈ R, (4.21)

with C = 2c((2 − α)−1 + (α − 1)−1), shows that (4.19) is equivalent to (4.20).
Thus the result follows by Corollary 4.8.
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(ii) Tempered stable. Suppose that Z is a symmetric tempered stable Lévy process
with indexs α ∈ [1, 2) and λ > 0, i.e., ρ(dx) = c|x |−α−1e−λ|x | dx where c > 0,
and σ 2 = b = 0. Then X is a semimartingale with respect to FZ if and only if f
is absolutely continuous on [0,∞) with a derivative ḟ satisfying

∫ ∞

0

(| ḟ (t)|α ∧ | ḟ (t)|2) ds < ∞. (4.22)

Again wewill use Corollary 4.8. The conditions imposed onZ in Corollary 4.8 are sat-
isfied due to the fact that

∫
|x |≤1|x | ρ(dx) = ∞ and

∫
|x |>1|x |2 ρ(dx) < ∞. Moreover,

using the asymptotics of the incomplete gamma functions we have that

∫
R

(|xu| ∧ |xu|2) ρ(dx) ∼
{
C1uα as u → ∞
C2u2 as u → 0

(4.23)

where C1,C2 > 0 are finite constants depending only on α, c and λ, and we write
f (u) ∼ g(u) as u → ∞ (resp. u → 0) when f (u)/g(u) → 1 as u → ∞ (resp.
u → 0). Equation (4.23) shows that (4.19) is equivalent to (4.22), and hence the result
follows by Corollary 4.8.

Example 4.10 A supOU process X = (Xt )t≥0 is a stochastic process of the form

Xt =
∫
R−×(−∞,t]

ev(t−s) �(ds, dv) (4.24)

where R− := (−∞, 0), ρv = ρ does not depend on v and m is a probability measure.
SupOU processes, which is short for superposition of Ornstein–Uhlenbeck processes,
were introduced by [1]. Suppose for simplicity that σ 2 = 0. ProcessX is well-defined
if and only if

∫
R
log(1+|x |) ρ(dx) < ∞ and

∫ 0
−∞

1
|v| m(dv) < ∞, cf. [18, page 343].

Let X be a supOU process of the form (4.24) and suppose that the Lévy measure ρ

satisfies following (1)–(2):

(1) Either
∫
|x |≥1 |x |2 ρ(dx) < ∞, or ρ is regularly varying at ∞ with index β ∈

[−2,−1).
(2) ρ is regularly varying at 0 with index β̄ ∈ (−2,−1).

Then X is a semimartingale relative F� if and only if

∫ 0

−∞

( ∫
R

(|xv|2 ∧ |xv|) ρ(dx)
)
|v|−1m(dv) < ∞. (4.25)

In particular if � is symmetric α-stable with α ∈ (1, 2), i.e. ρ(dx) = c|x |−1−α dx ,
c > 0. Then X is a semimartingale with respect to F� if and only if

∫ 0

−∞
|v|α−1m(dv) < ∞. (4.26)
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To see this we observe that f (t, v) := evt is absolutely continuous in t ∈ [0,∞) with
ḟ (t, v) = vevt . For all v ∈ R− and x ∈ R a simple computation shows that

∫ ∞

0
|x ḟ (t, v)| ∧ |x ḟ (t, v)|2 dt = |xv|2

2|v| 1{|xv|≤1} + |xv| − 1/2

|v| 1{|xv|>1}

which is bounded from below and above by constants times

1

|v|
(
|xv|2 ∧ |xv|

)
.

Thus (4.25) follows by Theorems 4.2 and 4.3 together with Proposition 4.7. When
� is symmetric α-stable with α ∈ (1, 2), the above (1) and (2) are satisfied and∫
R

(|xv|2 ∧ |xv|) ρ(dx) = |v|α . Hence (4.26) follows by (4.25).

Example 4.11 (Multi-stable) In this examplewe extend Example 4.9(i) to the so called
multi-stable processes, that is, we will consider X given by (4.1) with

ρv(dx) = c|x |−α(v)−1 dx

where α : V → (0, 2) is a measurable function, c > 0 and b = σ 2 = 0. For v ∈ V , ρv

is the Lévy measure of a symmetric stable distribution with index α(v). Assume that
there exists an r > 1 such that α(v) ≥ r for all v ∈ V . Then X is a semimartingale
with respect to F

� if and only if for m-a.e. v, f (·, v) is absolutely continuous on
[0,∞) with a derivative ḟ (·, v) satisfying

∫
V

∫ ∞

0

(
1

2 − α(v)
| ḟ (s, v)|α(v)

)
ds m(dv) < ∞. (4.27)

To show the above we will argue similarly as in Example 4.9. By the symmetry, Eq.
(4.3) is satisfied. For all v ∈ V ,

∫
|x |≤1|x | ρv(dx) = ∞, which shows that (4.8) of

Theorem 4.3 is satisfied. By basic calculus we have for v ∈ V that

u
∫

|x |>u
|x | ρv(dx) = K (v)

∫
|x |≤u

x2 ρv(dx) (4.28)

where K (v) = (2 − α(v))/(α(v) − 1). Since α(v) ≥ r we have that K (v) ≤ 2/(r −
1) < ∞ which together with (4.28) implies (4.12). From (4.21) we infer that (4.7) is
equivalent to (4.27), and thus Theorems 4.2 and 4.3 conclude the proof.

Example 4.12 (supFLP) Consider X = (Xt )t≥0 of the form

Xt =
∫
R×V

(
(t − s)γ (v)

+ − (−s)γ (v)
+

)
�(ds, dv), (4.29)

where γ : V → (0,∞) is a measurable function. Processes of the form (4.29) may
be viewed as superpositions of fractional Lévy processes with (possible) different
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indexes; hence the name supFLP. If m-a.e. we have γ ∈ (0, 1
2 ), σ

2 = 0 and

∫
V

( ∫
R

|x | 1
1−γ (v) ρv(dx)

)( 1
2 − γ (v)

)−1
m(dv) < ∞, (4.30)

then X is a semimartingale with respect to F
�. Conversely, if X is a semimartingale

with respect to F
� and

∫
|x |≤1|x | ρv(dx) = ∞ for m-a.e. v, then m-a.e. γ ∈ (0, 1

2 ),

σ 2 = 0 and ∫
R

|x | 1
1−γ (v) ρv(dx) < ∞, (4.31)

and if in addition ρ satisfies (4.12), then (4.30) holds.
To show the above let f (t, v) = tγ (v)

+ for t ∈ R, v ∈ V . Since f (0, v) = 0 for all
v, Eq. (4.3) is satisfied. As in Example 4.6, we observe that the conditions

∫
|x |≥1

|x | 1
1−γ (v) ρv(dx) < ∞ and γ (v) < 1

2 m-a.e. (4.32)

follow from the fact that X is a well-defined. For γ (v) ∈ (0, 1
2 ), f (·, v) is absolutely

continuous on [0,∞). By (4.18) we deduce that

c|x | 1
1−γ (v)

1
2 − γ (v)

≤
∫ ∞

0
{|x ḟ (t, v)| ∧ |x ḟ (t, v)|2} dt ≤ c̃|x | 1

1−γ (v)

1
2 − γ (v)

(4.33)

for all x ∈ R, where c, c̃ > 0 are finite constants not depending v and x .
By Theorem 4.2 and (4.33), the sufficient part follows. To show the necessary part

assume that X is a semimartingale with respect to F� and that
∫
|x |≤1|x | ρv(dx) = ∞

form-a.e. v. By Theorem 4.3, f (·, v) is absolutely continuous with a derivative ḟ (·, v)

satisfying (4.6) and (4.9). From (4.6) we deduce that σ 2 = 0 m-a.e. and from (4.9)
and (4.33) we infer that

∫
|x |≤1

|x | 1
1−γ (v) ρv(dx) < ∞ m-a.e.v. (4.34)

By (4.32)–(4.34), condition (4.31) follows. Moreover, if ρ satisfies (4.12), then The-
orem 4.3 together with (4.33) show (4.30). This completes the proof.

Acknowledgments Jan Rosiński’s research was partially supported by a Grant #281440 from the Simons
Foundation.

Appendix A

In this appendix we will treat several of the results stated in the Sects. 1 and 3.We have
stated Stricker’s theorem in a slightly extended version where it is combined with [22,
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II, §4d]. In the following we treat Examples 1.1 and 1.2 in detail, discuss Theorem 1.3,
and prove some facts about the representation (3.1).
Example 1.1 (Continued) Recall that Xt = V + U for t ∈ [0, 1) and Xt = V for
t ≥ 1 where V is a Laplace distributed random variable, that is, has a density pV (v) =
(1/2)e−|v|, v ∈ R, and U is a standard Gaussian random variable independent of V .
Process X is a special semimartingale with respect to F

X = (F X
t )t≥0 with canonical

decomposition Xt = X0 + At + Mt , where At = 0 for t < 1 and

At = E

[
�X1 |F X

1−
]

= −E[U |U + V ], t ≥ 1.

Recall F X
1− = σ(∪s∈[0,1)F X

s ). The below Lemma 5.1 shows that A1 is not infinitely
divisible.

On the other hand, we may represent X by a random measure as

Xt =
∫

(−∞,t]×V
φ(t, u)�(du)

where V = {1, 2} and � is the random measure on R× V such that for all A ∈ B(R)

and B ⊆ {1, 2}
�

(
A × B

) = δ0(A)(δ1(B)V + δ2(B)U ).

ProcessX is a special semimartingalewith respect toF� with canonical decomposition
Xt = X0 + At + Mt where At = Xt − X0 and Mt = 0. In particular, the processesM
and A in the canonical decomposition of X in the filtration F� are infinitely divisible.

In the following we will give a direct proof for that X is not strictly representable.
Notice that F X

t = σ(U + V ) for t < 1 and F X
t = σ(U, V ) for t ≥ 1. Suppose to the

contrary that

Xt =
∫

(−∞,t]×V
φ(t, u)�(du)

and F X
t = F�

t , for every t ≥ 0. We have

U + V = X0 =
∫

(−∞,0]×V
φ(0, u)�(du) = J0 and

V = X1 =
∫

(−∞,0]×V
φ(1, u)�(du) +

∫
(0,1]×V

φ(1, u)�(du) = J1 + J2,

where J2 is independent of {J0, J1}. Since V does not have Gaussian component, so
do J1 and J2. Now U = J0 − J1 − J2 is Gaussian, so that J2 cannot have Poissonian
component either. Thus J2 is deterministic, implying that V isF�

0 = F X
0 -measurable.

Hence V = f (V + U ) a.s. for some Borel function f : R → R. Conditioning on V
we infer that, except of a set of Lebesgue measure zero, f equals to a constant, a
contradiction.

Lemma 5.1 LetU and V be given as in Example 1.1. ThenE[U |U+V ] is a bounded
random variable and therefore not infinitely divisible.
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Proof Set Y = U + V . In addition, set �(y) = (2π)−1/2
∫ y
−∞ e−x2/2 dx , c1 =

(2
√
2π)−1 and c2 = √

e/2. By a calculation we get

E[U | Y = y] =
∫
R

u
pU,Y (u, y)

pY (y)
du

= −c1e−y2/2 + c2e−y�(y − 1) + c1e−y2/2 − c2ey
[
1 − �(y + 1)

]
c2e−y�(y − 1) + c2ey

[
1 − �(y + 1)]

from which we deduce that y �→ E[U | Y = y] is locally bounded and

lim
y→±∞E[U | Y = y] = ±1.

Hence y �→ E[U | Y = y] is bounded and E[U | Y ] is a bounded random variable.
Since E[U | Y ] is non-deterministic we conclude that it is not infinitely divisible, see
[37, Corollary 24.4]. 	

Example 1.2 (Continued) Set Bt = B1(t). For all 0 ≤ s1 < · · · < sn = s < t and
u1, . . . , un ∈ R,

E

[
(Xt − Xs)e

i
∑n

j=1 u j Xs j

]
= 1

i

∂

∂θ
E

[
eiθ(Xt−Xs )+i

∑n
j=1 u j Xs j

] ∣∣∣
θ=0

(5.1)

= 1

i

∂

∂θ
exp

(
E

[
eiθ(Bt−Bs )+i

∑n
j=1 u j Bs j

]
− 1

) ∣∣∣
θ=0

= exp
(
E

[
ei

∑n
j=1 u j Bs j

]
− 1

)
E

[
(Bt − Bs)e

i
∑n

j=1 u j Bs j
]

= 0. (5.2)

Equations (5.1)–(5.2) show that E[Xt − Xs |F X
s ] = 0, that is, X is a martingale. For

contradiction suppose thatX has independent increments which, in particular, implies
that

E[eiθ(X2−X1)+iuX1 ] = E[eiθ(X2−X1)]E[eiuX1 ] (5.3)

for all θ, u ∈ R. By (5.3) it follows that

E[eiθ(B2−B1)+iuB1 ] = E[eiθ(B2−B1)] + E[eiuB1 ] − 1,

and hence
e−θ2/2−u2/2 = e−θ2/2 + e−u2/2 − 1. (5.4)

Letting θ, u → ∞ the right-hand side of (5.4) tends to −1 while the left-hand side is
positive. Thus, X can not have independent increments.

Remark 5.2 Theorem 1.3 follows from [20, Theorem 4.1′] applied to the process
(X̄t )t∈R defined by X̄t = Xt for t ≥ 0 and X̄t = 0 for t < 0. Notice that N and Bj in
Theorem 1.3 are different from the corresponding terms given in [20, Theorem 4.1′].
Simply, we have added the continuous and discontinuous components together to get
a simpler representation.
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Proposition 5.3 LetX = (Xt )t≥0 be an infinitely divisible process which is either (a)
symmetric and right-continuous in probability or (b) mean zero and right-continuous
in L1. Then X is representable, i.e., it can be written in the form (1.2).

Proof By [33, Theorem 4.11], under assumptions (a) or (b) there exist an infinitely
divisible random measure �̄ = (�̄(A))A∈V on a countable generated measurable
space (V,V) and deterministic functions φ̄(t, v) such that for all t ≥ 0

Xt =
∫
V

φ̄(t, v) �̄(dv) a.s.

Moreover, under (a) �̄ is symmetric and �̄ has mean zero under (b). We extend now
�̄ to an infinitely divisible randommeasure� onR×V by�(A×B) := δ0(A)�̄(B),
A ∈ B(R), B ∈ V . Then (1.2) holds with φ(t, u) = φ̄(t, v), u = (s, v) ∈ R × V ,
t ≥ 0. 	

Proof of Remark 3.2 Recall that X = (Xt )t≥0 is a semimartingale relative F� given
by (3.1), where � satisfies the non-deterministic assumption (3.6), i.e.,

κ
(
u ∈ R × V : σ 2(u) = 0, ρu(R) = 0

) = 0. (5.5)

Then there exists a càdlàg modification of φ. More precisely, under (5.5) there exists
a mapping φ̃ : R+ × (R × V ) → R such that for all u, t �→ φ̃(t, u) is càdlàg and
for all t ≥ 0, φ(t, ·) = φ̃(t, ·) κ-a.e. In fact, for a càdlàg process X on the form (3.1)
there exists a function φ1 : R+ × (R × V ) → R such that φ(·, u) is càdlàg and for
all t ≥ 0, φ(t, u) = φ1(t, u) for κ-a.e. u with ρu(R) > 0, by similar arguments
as in [34, Theorem 4.1 and p. 86]. On the other hand, if X is a symmetric Gaussian
semimartingale then there exists a function φ2 : R+ × (R×V ) → R such that φ(·, u)

is càdlàg and for t ≥ 0, φ(t, u) = φ2(t, u) for κ-a.e. u with σ 2(u) > 0, cf. [5,
Theorem 4.6]. Hence by the symmetrization argument used in Case 3 in the proof of
Theorem 3.1 we obtain the càdlàg modification from the above two cases. 	


Appendix B: Two lemmas

In this appendix we collect two results which are more or less well-known, but for
which we have not been able to find a reference.

Lemma 6.1 Let Y = (Yt )t≥0 be a càdlàg process with independent increments with
respect to some filtration F and let J = {t ≥ 0 : P(�Yt �= 0) > 0} be the set of fixed
discontinuities ofY. Then there exists totally inaccessible stopping times (τk)k∈N such
that {�Y �= 0} = (� × J ) ∪ (∪k∈N[τk]) up to evanescent.

Proof When Y is continuous in probability (i.e. J = ∅), Lemma 6.1 follows by [22,
II, 5.12 and I, 2.26]. The general case may be shown as follows: by the decomposition
theorem of stopping times, see [22, I, 1.32 and I, 2.22], it is enough to show that for
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any predictable stopping time S we have

P(�YS �= 0, S ∈ J c) = 0. (5.6)

By the independent increments of Y and [22, II, 1.17] it follows that the predictable
support of the random set {�Y �= 0} is � × J . For a given predictable stopping time
S let A = {S /∈ J } and SA = S1A + ∞1Ac . Then S is FS−-measurable since it is
a stopping time, cf. [22, I, 1.14]. We have A ∈ FS− since Ac = ∪t∈J {S = t} and
J is coutable. Thus by [22, I, 2.10], SA is a predictable stopping time. Moreover,
(� × J ) ∩ [SA] = ∅ which implies that {�Y �= 0} ∩ [SA] is evanescent, see [22, I,
2.33], which is equivalent to (5.6). 	

Lemma 6.2 Let X = (Xt )t≥0 be an infinitely divisible process with independent
increments. If X is càdlàg in probability then X has a càdlàg modification.

Using that the characteristic function of any infinitely divisible random variable is
non-zero everywhere the proof of Lemma 6.2 follows the lines of the proof of [25,
Theorem 15.1].
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