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Abstract Under an hypothesis of non-degeneracy of the flux, we study the long-time
behaviour of periodic scalar first-order conservation lawswith stochastic forcing in any
space dimension. For sub-cubic fluxes, we show the existence of an invariant measure.
Moreover for sub-quadratic fluxes we show uniqueness and ergodicity of the invariant
measure. Also, since this invariant measure is supported by L p for some p small, we
are led to generalize to the stochastic case the theory of L1 solutions developed by
Chen and Perthame (Ann Inst H Poincaré Anal Non Linéaire 20(4):645–668, 2003).
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1 Introduction

In this work we investigate the long-time behaviour of periodic scalar first-order
conservation laws with stochastic forcing. In space dimension one, there is a famous
paper of E et al. [28] where the authors prove existence and uniqueness, and also
analyse the invariantmeasure for the periodic inviscidBurgers equationwith stochastic
forcing. The analysis is done by use of the Lax-Oleinik formula, which means that the
random unknown u is derived from a potentialψ which satisfies a periodic Hamilton–
Jacobi with stochastic forcing. This can be extended to higher dimension [19] and
has also been extended to the case of fractional noise by Saussereau and Stoica [25].
Recently, Boritchev [5] has been able to derive sharp estimates on the solutions of
the stochastic Burgers equation in the viscous case. They hold independently of the
viscosity (see Remark 2 on that point).

Note that in all these articles, the space domain is compact.A recentwork byBakhtin
[1] deals with a scalar first-order conservation law with Poisson random forcing set
on the whole line. We also would like to mention, for stochastically forced Hamilton–
Jacobi equations, the thorough analysis of the invariant measure for such problems by
Dirr and Souganidis in [12].

Our purpose is to generalize [28] to higher dimension and, mainly, to relax the
hypothesis of uniform convexity which is necessary when the Lax-Oleinik formula is
used. The first step was to have a satisfactory framework for existence and uniqueness
of solutions. This has been accomplished by several authors and this point is now
rather well understood (see [2,9–11,14,20,21,26]).

In this article we aim at proving existence and uniqueness of invariant measures
for the type of stochastic conservation laws studied in [10]. There, a general result of
existence and uniqueness result was obtained thanks to the kinetic formulation (see
[22,24]) suitably generalized to the stochastic case. This kinetic formulation seems
well adapted for this purpose since it allows to keep track of the dissipation due to the
shocks. Note that, as explained below, we need here a notion of solution in L1, which
we develop in this article in the framework of kinetic formulation.
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Invariant measure of scalar first-order conservation laws 577

Under an hypothesis of non-degeneracy of the flux, we show the existence of an
invariant measure in any dimension of space. For technical reasons we need to assume
that the flux does not grow faster than a cubic polynomial. Moreover, for sub-quadratic
fluxeswe show theuniqueness of the invariantmeasure, see ourmain result, Theorem1.
An essential tool for the proofs is the use of averaging lemma for kinetic equations.We
use such an averaging lemmawell adapted to stochastic equation issued fromBouchut
and Desvillettes [6].

More precisely, let (�,F ,P, (Ft ), (βk(t))) be a stochastic basis and let T > 0. We
study the invariant measure for the first-order scalar conservation law with stochastic
forcing

du + div(A(u))dt = �dW (t), x ∈ T
N , t ∈ (0, T ). (1)

The equation is periodic in the space variable x : x ∈ T
N where T

N is the N -
dimensional torus. The flux function A in (1) is supposed to be of class C2:
A ∈ C2(R;RN ) and its derivatives have at most polynomial growth. We assume
that the filtration (Ft )t≥0 is complete and that W is a cylindrical Wiener process:
W = ∑

k≥1 βkek , where the βk are independent Brownian processes and (ek)k≥1 is
a complete orthonormal system in a Hilbert space H . The map � : H → L2(TN ) is
defined by�ek = gk where gk is a regular function onTN . More precisely, we assume
gk ∈ C(TN ), with the bounds

G2(x) =
∑

k≥1

|gk(x)|2 ≤ D0, (2)

∑

k≥1

|gk(x) − gk(y)|2 ≤ D1|x − y|2, (3)

for all x, y ∈ T
N . Note in particular that � : H → L2(TN ) is Hilbert-Schmidt since

‖gk‖L2(TN ) ≤ ‖gk‖C(TN ) and thus

∑

k≥1

‖gk‖2L2(TN )
≤ D0.

Existence and uniqueness of a solution uω(t) to (1) satisfying a given initial condition
u(0) = u0 ∈ L∞(TN ) has been proved in [10]. This result can easily be extended
to initial data in L p(TN ) for p larger than the degree of polynomial growth of A.
However, as stated below, the invariant measure is supported by Lr (TN ) with r small
and we do not know whether r can be taken sufficiently large so that the result of
[10] cannot be used for such invariant measures. Thus, we need to develop a theory of
existence and uniqueness for initial data in Lr (TN ) for small r . In fact, we generalize
to the stochastic context the notion of solutions in L1(TN ) developed in [7]. Note
however that in [7] second-order, possibly degenerate equations are considered, so
that, strictly speaking, what we generalize is the “fully degenerate” case contained in
[7]. Anyway, what matter technically here is to prove that the kinetic measure decay
sufficiently fast at infinity.
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578 A. Debussche, J. Vovelle

Let us now give some precisions on our framework. We assume that the noise is
additive and that the functions gk satisfy the cancellation condition

∀k ≥ 1,
∫

TN
gk(x)dx = 0. (4)

The solution then satisfies ū(t) = ∫
TN u(t, x)dx = ∫

TN u(0, x)dx almost surely. We
will consider initial data with non random space average ū. Then this remains the case
for all time t ≥ 0. Changing u to u − ū, we see that it is no loss of generality to
consider the case ū = 0. Thus in all the article, we only consider such initial data.

To introduce the non-degeneracy condition on which we will work on, let us denote
a := A′ and set

ι(ε) = sup
α∈R,β∈SN−1

|{ξ ∈ R; |α + β · a(ξ)| < ε}|, (5)

and

η(ε) :=
∫ ∞

0
e−t ι(tε)dt, (6)

where |B| denotes the Lebesgue measure of a set B ⊂ R. It is known that if a satisfies
the following non-degeneracy condition:

lim
ε→0

ι(ε) = 0, (7)

then all solutions of the deterministic equation, i.e. with � = 0, converge to zero
(cf. [27] for example, in that case the condition can be localized. See also [8] for the
quasilinear parabolic case). The condition (7) is a condition of non-stationarity of
ξ �→ a(ξ).

In this paper, we use the approach developed in [6]. There, an averaging Lemma
based on the Fourier transform in x is developed. The non-degeneracy assumption is
strengthened into:

ι(ε) ≤ c1ε
b, (8)

for some c1 > 0 and b > 0. Note that b ≤ 1, unless a ≡ 0, and that (8) is equivalent
to

η(ε) ≤ c1ε
b, (9)

for possibly a different constant c1. We will use the averaging lemma (under the form
developed in [6], cf. Sects. 3 and 4) to prove the following result.

Theorem 1 (Invariant measure) Let A ∈ C2(R;RN ) satisfy the non-degeneracy con-
dition (8) where ι is defined by (5). Assume conditions (2)–(3) on the noise, the can-
cellation condition (4) and that A is at most cubic in the following sense:

|a′(ξ)| ≤ c1(|ξ | + 1), ξ ∈ R. (10)
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Invariant measure of scalar first-order conservation laws 579

Then there exists an invariant measure for (1) in L1(TN ). Moreover, it is supported
by Lr (TN ) for r < 2 + b

2 if N = 1 and r < N
N−1 if N ≥ 2. If the condition (10) is

strengthened into the hypothesis that A is sub-quadratic in the following sense:

|a′(ξ)| ≤ c2, ξ ∈ R, (11)

then the invariant measure is unique.

Thanks to the kinetic formulation, it is easy to see that a stationary solution develops
shocks (see Remark 8). Thus the noise does not have a regularizing effect here (see
[15] for a review of such effects in SPDEs). Note that the presence of shocks was
already observed in [28] and their structure was carefully studied.

In the statement of Theorem 1 and in the sequel, we use the letter C or c to denote
a constant. Its value may change from one line to another. Sometimes, we precise its
dependence on some parameters.

Remark 2 The existence of an invariant measure is closely related to existence of
uniform in time estimates for the solution to (1) (we do not specify in which norm
in this discussion). Note that such uniform estimates, with respect to time and with
respect to the viscosity parameter also since second-order equations are considered,
have been given by Boritchev [5], for the generalized Burgers equation with a flux A
satisfying an hypothesis of strict convexity and an hypothesis of (strict) sub-quadratic
growth of A′. Compare to (10) here.

To prove Theorem 1, we first describe in Sect. 2 the concept of L1 solution for (1)
used in this article. The well posedness in L1 is proved in Appendix 5. Then, in Sect. 3,
we prove some bounds uniform in time on the solution which give the existence of
the invariant measure. These bounds are used again in Sect. 4, together with a quite
classical argument of smallness of the noise, to obtain the uniqueness of the invariant
measure. The difficulty in the proof of uniqueness is that, contrary to the convex case
treated in the references above, we do not have any uniformity with respect to the
initial data on the proximity between the deterministic solution and a solution with
small noise. A similar thing appears for the 2D stochastic Navier–Stokes equations
with large viscosity (see [23]) but in this case the a priori estimates are easier to obtain
and the contraction of the trajectories is much stronger.

2 Kinetic solution

Let us give the notion of solution to (1) we need to use in this article. It has been
introduced in [10]. We slightly modify the definition to adapt the L1 setting.

Definition 3 (Kinetic measure)We say that a mapm from� to the set of non-negative
Radon measures over TN × [0, T ] × R is a kinetic measure if

1. m is measurable, in the sense that for each φ ∈ Cc(T
N ×[0, T ]×R), 〈m, φ〉 : � →

R is,
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580 A. Debussche, J. Vovelle

2. m vanishes for large ξ in the sense that

lim
n→+∞Em(An) = 0, (12)

where An = T
N × [0, T ] × {ξ ∈ R, n ≤ |ξ | ≤ n + 1},

3. for all φ ∈ Cc(T
N × R), the process

t �→
∫

TN×[0,t]×R

φ(x, ξ)dm(x, s, ξ)

is predictable.

Definition 4 (Solution) Let u0 ∈ L1(TN ). A measurable function u : TN × [0, T ] ×
� → R is said to be a solution to (1) with initial datum u0 if (u(t)) is predictable, if

E
(
ess supt∈[0,T ] ‖u(t)‖L1(TN )

)
< +∞, (13)

and if there exists a kinetic measure m such that f := 1u>ξ satisfies: for all ϕ ∈
C1
c (T

N × [0, T ) × R),

∫ T

0
〈 f (t), ∂tϕ(t)〉dt + 〈 f0, ϕ(0)〉 +

∫ T

0
〈 f (t), a(ξ) · ∇ϕ(t)〉dt

= −
∑

k≥1

∫ T

0

∫

TN
gk(x)ϕ(x, t, u(x, t))dxdβk(t)

−1

2

∫ T

0

∫

TN
∂ξϕ(x, t, u(x, t))G2(x)dxdt + m(∂ξϕ), (14)

where f0(x, ξ) = 1u0(x)>ξ .

We have used the brackets 〈·, ·〉 to denote the duality between C∞
c (TN × R) and

the space of distributions over TN ×R. In what follows, we will denote similarly the
integral

〈F,G〉 =
∫

TN

∫

R

F(x, ξ)G(x, ξ)dxdξ, F ∈ L p(TN × R),G ∈ Lq(TN × R),

where 1 ≤ p ≤ +∞ and q is the conjugate exponent of p. In (14) also, we have used
the shorthand m(φ) for

m(φ) =
∫

TN×[0,T ]×R

φ(x, t, ξ)dm(x, t, ξ), φ ∈ Cb(T
N × [0, T ] × R).

Equation (15) is naturally associated to the original problem (1). Indeed, if u is a
solution to (1), we introduce a new variable ξ and consider the equation satisfied by
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Invariant measure of scalar first-order conservation laws 581

f (t, x, ξ) = 1u(t,x)>ξ . For a smooth function φ ∈ C∞(R) with compact support, we

set θ(ξ) = ∫ ξ
−∞ φ(ζ )dζ . We have the obvious identity

(1u>ξ , φ) =
∫

R

1u>ξθ ′(ξ)dξ =
∫ u

−∞
θ ′(ξ)dξ = θ(u)

where (·, ·) is the inner product in L2(R), with respect to the variable ξ . We use the
same notations for the duality between continuous functions and measures.

By Itô Formula, we deduce

d(1u>ξ , φ) = dθ(u) = θ ′(u)(−a(u) · ∇udt + �(u)dW ) + 1

2
θ ′′(u)G2(u)dt.

Let us rewrite the three terms of the left hand side as follows:

θ ′(u)a(u) · ∇u = div

(∫ u

−∞
a(ξ)θ ′(ξ)dξ

)

= div(a1u>ξ , φ)

= (a · ∇1u>ξ , φ),

θ ′′(u)G2(u) = (G2(ξ)δu=ξ , φ
′(ξ)) = −(∂ξ (G2(ξ)δu=ξ ), φ(ξ)),

θ ′(u)�(u)dW = (δu=ξ�(ξ)dW, φ(ξ)).

We deduce

d(1u>ξ , φ) = −(a · ∇1u>ξ , φ)dt − 1

2
(∂ξ (G2δu=ξ ), φ)dt + (δu=ξ , φ�dW ).

We then multiply by a smooth functionψ of x, t with compact support inTd ×[0, T ),
integrate in x, t and perform intergration by parts to obtain (14) with ϕ(x, t, ξ) =
ψ(x, t)φ(ξ). Recall that such functions are dense in C1

c (T
N × [0, T ) × R).

Note however that the kinetic measure is missing in the above equation. The reason
is that in fact the computation is not rigorous: the solution of (1) are not smooth.

To understand why the measure is present, recall that solutions of (1) are not
expected to be unique unless an extra condition is imposed. This is the entropy con-
dition and entropy solutions are obtained as limit of solutions of the equation with an
extra viscous term.

Thus, we consider the viscous stochastic equation, with η > 0:

{
duη + div(A(uη))dt − η�uηdt = �(uη)dW (t), t > 0, x ∈ T

N ,

uη(x, 0) = u0(x), x ∈ T
N .

We proceed as above and by Itô Formula, we have, for θ(ξ) = ∫ ξ
−∞ φ(ζ )dζ ,

d(1uη>ξ , φ) = dθ(uη) = θ ′(uη)(−a(uη) · ∇uηdt + η�uηdt + �(uη)dW )

+ 1

2
θ ′′(uη)G2

ηdt.
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582 A. Debussche, J. Vovelle

We rewrite the second term as

θ ′(uη)η�uη = η�θ(uη)dt − η|∇uη|2θ ′′(uη)
= η�(1uη>ξ , θ ′)dt + (∂ξ (η|∇uη|2δuη=ξ ), θ

′),

and obtain viscous kinetic formulation

d1uη>ξ + a · ∇1uη>ξdt = δuη=ξ�(ξ)dW − ∂ξ

(
1

2
G2
ηδuη=ξ

)

dt

+ η�1uη>ξdt + ∂ξm
ηdt.

with the viscous kinetic measure mη = η|∇uη|2δuη=ξ . The sequence (mη)η>0 does
not converge to zero. At the limit η → 0, a measure m remains.

Note that since uη is smooth (see [17]), the above computation is rigorous.
Also, it is easy to derive the energy inequality:

E

(
‖uη(t)‖p

L p(TN )

)
+ ηE

∫ T

0

∫

TN
|uη(t, x)|p−2|∇uη(t)|2dxdt ≤ C(p, u0, T ).

This can rewritten as a bound on the moments of the measures mη and νη = δuη=ξ :

E

∫

TN

∫

R

|ξ |pdνηx,t (ξ)dx + E

∫

TN×[0,T ]×R

|ξ |p−2dmη(x, t, ξ) ≤ C(p, u0, T ).

Using other similar estimates, we have for a subsequence (ηn) ↓ 0

1. νηn → ν in the sense of Young measures indexed by � × T
N × [0, T ] and

f ηn = 1uηn>ξ ⇀ f in L∞(� × T
N × (0, T ) × R) − weak − ∗. Moreover

νx,t = −∂ξ f
2. mηn ⇀ m in L2(�;Mb)-weak star, whereMb denote the space of bounded Borel

measures over TN × [0, T ] × R.

Then, since the equation is linear in f, m, ν, it is easy to pass to the limit and prove
that (14) holds. We say (cf. [10]) that f is a generalized kinetic solution.

We only have f ∈ [0, 1] and νx,t is a probability measure. To get a kinetic solution,
we need f ∈ {0, 1}; then, necessarily, f = 1u>ξ and νx,t = δu=ξ . To prove this fact,
one first prove uniqueness of generalized solutions using a doubling of variables and
see that this implies the result. The difficulty at that point is to get time regularity of f .

This proof is given in [10] (see also [11] where minor errors of [10] have been
corrected) in an L p(Td) framework. It is also shown that u is an entropy solution.

As a last comment on the notion of kinetic solution, let us remark that it is sometimes
problematic to work with the unknown 1u>ξ . Indeed, it is not integrable with respect
to ξ . However, switching from 1u>ξ to χu(ξ) := 1u>ξ>0 − 10>ξ>u = 1u>ξ − 10>ξ ,
it turns out that Eq. (14) is the weak form of the following equation

(∂t + a(ξ) · ∇) f = δu=ξ Ẇ + ∂ξ

(

m − 1

2
G2δu=ξ

)

, f = χu . (15)
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Invariant measure of scalar first-order conservation laws 583

Note in particular that f ∈ L1(TN × [0, T ] × R) if u ∈ L1(TN × [0, T ]). Actually
u �→ f = χu is then an isometry. This simple fact is at the basis of the resolution
of (1) in L1. In Appendix 5 we prove the following result which generalizes [10] (cf.
Theorem 11, Corollary 12, and Theorem 19 in [10] in particular for a precise definition
of the “parabolic approximation”).

Theorem 5 (Resolution of (1) in L1) Let u0 ∈ L1(TN ). There exists a unique mea-
surable u : TN × [0, T ] × � → R solution to (1) with initial datum u0 in the sense
of Definition 4. Besides, u has almost surely continuous trajectories in L1(TN ) and u
is the a.s. limit in L1(TN × (0, T )) of the parabolic approximation to (1). Moreover,
given u10 and u20 ∈ L1(TN ), the following holds:

‖u1(t) − u2(t)‖L1(TN ) ≤ ‖u10 − u20‖L1(TN ), a.s. (16)

We need this generalization because we are not able to prove that the invariant
measure we construct has its support in L p(TN ) for p sufficiently large to apply the
result in [10]. Note that it follows from the proof that if u0 ∈ Lr (TN ) for some r > 1
then the solution lives in Lr (TN ) and an estimate similar to (13) but in Lr (TN ) holds.

By Theorem 5, we can define the transition semigroup in L1(TN ):

Ptφ(u0) = E(φ(u(t))), φ ∈ Bb(L
1(TN )).

It follows easily from the property of L1-contraction (16) that (Pt ) is Feller.
Our aim is to construct an invariant measure for (Pt ) under assumption (10). Recall

that this is a probability measure μ on L1(Td) satisfying:

P∗
t μ = μ, t ≥ 0.

We prove the first part of Theorem 1 (existence of an invariant measure) in the next
section thanks to Krylov-Bogoliubov theorem. We conclude this section with some
remarks.

Since the solution of (1) has continuous trajectories, it is easy to prove that it satisfies
the following weak formulation:

−〈 f (t), ϕ〉dt + 〈 f0, ϕ〉 +
∫ t

0
〈 f (s), a(ξ) · ∇ϕ〉ds

= −
∑

k≥1

∫ t

0

∫

TN
gk(x)ϕ(x, u(x, t))dxdβk(s)

−1

2

∫ t

0

∫

TN
∂ξϕ(x, u(x, s))G2(x)dxdt + m(∂ξϕ), (17)

for all ϕ ∈ C1
c (T

N × R).
In fact, we will even use stronger formulation by using the following remark.
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584 A. Debussche, J. Vovelle

Remark 6 (Regularity of the parabolic approximation) Let the parabolic approxima-
tion to (1) be given by:

duη + div(Aη(u))dt − η�uη = �ηdW (t), x ∈ T
N , t ∈ (0, T ), (18)

where Aη and �η are smooth. By Hofmanová [17], if uη(0) is in Wm,p(TN ) ∩
W 1,mp(TN ), then uη belongs to Lq(�;C([0, T ];Wm,p(TN )∩ W 1,mp(TN ))) for any
q ≥ 1. Also by Theorem 5, if one approximates the solution of (1) by the solution of
(18) with uη(0) → u0 in L1(TN ), then uη → u in L∞(0, T ; L1(� × T

N )).

Remark 7 (Multiplicative noise) A natural extension of our study is to consider a noise
depending on the solution of the form

�(u)dW =
∑

k≥1

�(u)ekdβk =
∑

k≥1

gk(u)dβk .

With such noise, the spatial average satisfies:

∫

TN
u(x, t)dx =

∫

TN
u0(x)dx +

∑

k≥1

∫ t

0

∫

TN
gk(u(x, s)dxdβk(s).

It seems difficult to provide any bound on this average for a general noise. A first
possibility is to consider a noise satisfying

∫

TN
gk(u(x))dx = 0, k ≥ 1.

Then the mass is preserved exactly. This would hold for gk(u) = ∂
∂x hk(u) or gk(u) =

hk(u)− 1
|TN |

∫
TN hk(u)dx . But such noises are not suited to the framework of kinetic

solutions and are not covered by our theory. The first one is considered in [21] but the
longtime behaviour is not analysed there. The second noise is non local and does not
seem to be justified physically.

It would be also possible to consider noises of the form u(1 − u)dW . Then, the
solution is easily proved to live in [0, 1] and the existence of an invariant measure is
easy. The longtime behaviour in this case is expected to be completely different (see
[18] for the case of an SDE and [4] for the case of a parabolic SPDE).

Remark 8 (Shocks donot disappear)OncewehaveprovedTheorem1, it is not difficult
to construct a stationary solution of (1) with the invariant law given by this result. It
is of course a kinetic solution. Assume that N = 1, then the invariant measure is
supported by L p(TN ) for some p > 2. It is easy to see that a preliminary step of
truncation allows to take the test function ϕ(ξ) = ξ in (17) and we obtain:

E

(
‖u(t0 + 1)‖2L2(TN )

)
+ Em

(
T
N × R × [t0, t0 + 1]

)
= E

(
‖u(t)‖2L2(TN )

)
+ D0.

123



Invariant measure of scalar first-order conservation laws 585

Thus, by stationarity,

Em
(
T
N × R × [t0, t0 + 1]

)
= D0.

As expected, the lhs does not depend on t0. More interestingly, it is not 0. This shows
that shocks are present in the stationary solutions and noise has no regularizing effect.
If N ≥ 2, one can use the test functions of the proof of Proposition 16 to see that again
shocks are present for a stationary solution.

Remark 9 We could also have constructed a random dynamical system associated to
(1) and consider invariant measure in the co-cycle sense. This is the approach in [28].
It is not difficult to see that, with the results obtained in the following section, we can
prove that for almost all ω ∈ � there exists a unique solution defined on the whole
real line and that there exists a random attractor which is reduced to a single random
point.

3 Uniform bound and tightness for the stochastically forced equation

3.1 Decomposition of u

Let α, γ, δ > 0 be some positive parameters. On L2(TN ), we consider the following
regularization of the operator −a(ξ) · ∇:

Aγ := −a(ξ) · ∇ − Bγ , Aγ,δ = Aγ − δId, Bγ := γ (−�)α.

Let also SAγ (t) and SAγ,δ (t) be the associated semi-groups on L2(TN ):

SAγ (t)v(x) = (e−t Bγ v)(x − a(ξ)t), SAγ,δ (t)v(x) = e−δt (e−t Bγ v)(x − a(ξ)t).

Note that the semi-group e−t Bγ has the following regularizing properties, which we
will use later.

Lemma 10 For γ > 0, α ∈ (0, 1], let Bγ = γ (−�)α on TN and let e−t Bγ denote the
associated semi-group. Then there exists a constant c3 depending on N , n, m, α, β
such that

‖(−�)β/2e−t Bγ ‖Lm→Ln ≤ c3

(γ t)
N
2α

(
1
m − 1

n

)
+ β

2α

,

for all 1 ≤ m ≤ n ≤ +∞ and β ≥ 0.

Proof it is sufficient to consider the case γ = 1. Note that e−t B1ϕ = Kt ∗ ϕ for all
ϕ ∈ C2(TN ), where

Kt (x) =
∑

n∈Zd

e−t |n|2α+2π in·x .
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Let F denote the Fourier transform

Fu(ξ) =
∫

RN
u(x)e−2π i x ·ξdx,

for u ∈ S(RN ). Let Ht denote the inverse Fourier transform of ξ �→ e−t |ξ |2α (this
is the “heat” kernel associated to (−�)α on R

N ) and let Hper
t denote the periodic

function generated by Ht :

Hper
t =

∑

l∈ZN

Ht (x + l), x ∈ R
N .

For a fixed x ∈ R
N , we apply the Poisson formula

1

(2π)N
∑

k∈ZN

Fθ(k) =
∑

l∈ZN

θ(2πl), θ ∈ S ′(RN )

to the function θ(z) = Ht (x + z/2π). We obtain Hper
t = Kt . In particular, we have

‖Kt‖Lr (TN ) ≤ ‖Ht‖Lr (RN ), 1 ≤ r ≤ +∞.

By the Young inequality, we also have

‖e−t B1‖Lm (TN )→Ln(TN ) ≤ ‖Kt‖Lr (TN ),
1

m
+ 1

r
= 1 + 1

n
,

and, therefore,

‖e−t B1‖Lm (TN )→Ln(TN ) ≤ ‖Ht‖Lr (RN ).

By homogeneity, ‖Ht‖Lr (RN ) = c

t
N
2α

(
1
m − 1

n

) . The case β �= 0 is similar. ��

Now, we formally decompose the solutions using the following rewriting of (15):

(∂t − Aγ,δ) f = (Bγ + δId) + p + ∂ξq, f = χu . (19)

with p = δu=ξ Ẇ , q = m − 1
2G

2δu=ξ .
More precisely, by a preliminary step of regularization, wemay use the test function

S∗
Aγ,δ

(T − t)ϕ with ϕ ∈ C(TN ) in (14). Then, by the commutation identity

SAγ,δ (t)∂ξ g = ∂ξ
(
SAγ,δ (t)g

)+ t X SAγ,δ (t)g, X = a′(ξ) · ∇,

we obtain the following decomposition of the solution:

u = u0 + u� + P + Q, (20)
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where

u0(t) =
∫

R

SAγ,δ (t) f (0, ξ)dξ, (21)

u�(t) =
∫

R

∫ t

0
SAγ,δ (s)(Bγ f + δ f )(t − s, ξ)dsdξ, (22)

〈P(t), ϕ〉 =
∑

k≥1

∫

TN

∫ t

0

(
S∗
Aγ,δ (t − s)ϕ

)
(x, u(s, x))gk(x)dβk(s)dx, (23)

and

〈Q(t), ϕ〉 =
∫

TN×[0,t]×R

(t − s)a′(ξ) · ∇S∗
Aγ,δ (t − s)ϕdq(x, s, ξ), (24)

where ϕ ∈ C(TN ) and 〈M, ϕ〉 denote the duality product between the space of finite
Borel measures on T

N and C(TN ).
We estimate each term separately. In fact, we estimate the parabolic approximation

of u. Since it is as smooth as we need (cf. Remark 6), the computations below are
easily justified. In particular, for the parabolic approximation, the kinetic measure is
given by

mη = η|∇uη|2δuη=ξ

which is smooth in t and x . To lighten the computation below, we will however omit
to write the dependence on η, except in Sect. 3.7 where we derive the final estimate
on the true solution u.

3.2 Estimate of u0

We use the Fourier transform with respect to x ∈ T
d , i.e.

v̂(n) =
∫

TN
v(x)e−2π in·x , n ∈ Z

N , v ∈ L1(TN ).

After Fourier transform, SAγ,δ (t) is multiplication by e−(ia(ξ)·n+γ |n|2α+δ)t , hence, for
all n ∈ Z

N , n �= 0,

û0(n, t) =
∫

R

e−(ia(ξ)·n+γ |n|2α+δ)t f̂0(n, ξ)dξ.

Let us set, for ϕ : Z
N × R → C satisfying ϕ(n, ·) ∈ L2(R) for all n ∈ Z

N :

Gϕ(n, z) =
∫

R

e−ia(ξ)·zϕ(n, ξ)dξ. (25)
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The operator G is well-defined by [6]. Let us also define

ωn = γ |n|2α−1 + δ|n|−1. (26)

Then, for T ≥ 0, n �= 0,

∫ T

0
|û0(n, t)|2dt =

∫ T

0
e−2(γ |n|α+δ)t

∣
∣G f̂0(n, nt)

∣
∣2 dt

≤ 1

|n|
∫

R+
e−2ωns

∣
∣
∣
∣G f̂0

(

n,
n

|n| s
)∣
∣
∣
∣

2

ds,

thanks to the change of variable s = |n|t . We now use Lemma 2.4 in [6], which
gives an estimate of the oscillatory integral (25); we also use the obvious inequality
e−a ≤ 1/(1 + a2) to deduce:

∫ T

0
|û0(n, t)|2dt ≤ 1

|n|
∫

R+
1

1 + 4ω2
ns

2

∣
∣
∣
∣G f̂0

(

n,
n

|n| s
)∣
∣
∣
∣

2

ds

≤ 1

|n|
2π

2ωn
η(ωn)

∥
∥ f̂0(n, ·)

∥
∥2
L2
ξ
.

Recall that η was defined in (6) and satisfies the decay condition (9). Consequently,
we have the estimate

∫ T

0
|û0(n, t)|2dt ≤ c

1

|n|ω
b−1
n

∥
∥ f̂0(n, ·)

∥
∥2
L2
ξ
.

Clearly,

|n|ω1−b
n ≥ γ 1−b|n|2α(1−b)+b,

for n �= 0. Summing over n ∈ Z
N and noticing that

û0(0, t) =
∫

TN
u0(t, x)dx =

∫

R

∫

Td
e−δt f (0, x, ξ)dξdx

=
∫

Td
e−δt u0(x)dx = 0,

we obtain:

∫ T

0
‖u0(t)‖2

H
α+
(
1
2−α

)
b
dt ≤ cγ b−1 ‖ f0‖2L2

x,ξ
.

Since ‖ f0‖2L2
x,ξ

= ‖ f0‖L1
x,ξ

= ‖u0‖L1
x
, this gives

∫ T

0
‖u0(t)‖2

H
α+
(
1
2−α

)
b
dt ≤ cγ b−1 ‖u0‖L1

x
. (27)
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3.3 Estimate of u�

Recall that

u�(t) =
∫

R

∫ t

0
SAγ,δ (s)(Bγ f + δ f )(t − s, ξ)dsdξ.

We use the same argument as above. We first notice that

û�(0, t) =
∫

TN
u�(x, t)dx = 0

for all t ≥ 0, almost surely. This is easily seen using that

∫

TN

∫

R

f (x, t, ξ)dξ dx = 0,

which follows from (4) and (17) with test functions approximating ϕ(x, ξ) = 1. Then,
we write the Fourier transform of u� for n �= 0:

û�(n, t) =
∫ t

0

∫

R

(γ |n|2α + δ)e−s(−ia(ξ)·n+γ |n|2α+δ) f̂ (n, ξ, t − s)dξds

=
∫ t

0
(γ |n|2α + δ)e−s(γ |n|2α+δ)G f̂ (n, ns, t − s)ds,

with, as in (25),

G f̂ (n, z, s) =
∫

R

e−ia(ξ)·z f̂ (n, ξ, s)dξ.

By Jensen’s inequality, we have

|û�(n, t)|2 ≤
∫ t

0
(γ |n|2α + δ)e−s(γ |n|2α+δ)

∣
∣G f̂ (n, ns, t − s)

∣
∣2 ds.

Then, by simplemanipulation andLemma2.4 in [6],wededuce the following sequence
of inequality for T ≥ 0 (recall that ωn is defined by (26)):

∫ T

0
|û�(n, t)|2dt ≤

∫ T

0

∫ t

0
(γ |n|2α + δ)e−s(γ |n|2α+δ)

∣
∣G f̂ (n, ns, t − s)

∣
∣2 dsdt

≤
∫ T

0

∫ T

0
(γ |n|2α + δ)e−s(γ |n|2α+δ)

∣
∣G f̂ (n, ns, t)

∣
∣2 dsdt

≤
∫ T

0

∫

R+
ωne

−ωns
∣
∣
∣
∣G f̂

(

n,
n

|n| s, t
)∣
∣
∣
∣

2

dsdt

123



590 A. Debussche, J. Vovelle

≤
∫ T

0

∫

R+
ωn

1

1 + ω2
ns

2

∣
∣
∣
∣G f̂

(

n,
n

|n| s, t
)∣
∣
∣
∣

2

dsdt

≤ cωb
n

∫ T

0

∣
∣ f̂ (n, t)

∣
∣2
L2
ξ
dt.

We conclude by summing over n ∈ Z
N , n �= 0:

∫ T

0
‖u�(t)‖2

H

(
1
2−α

)
b
dt ≤ cγ b

∫ T

0
‖ f (t)‖2

L2
x,ξ

.

Since ‖ f (t)‖2
L2
x,ξ

= ‖u(t)‖L1
x
, we obtain

∫ T

0
‖u�(t)‖2

H

(
1
2−α

)
b
dt ≤ cγ b

∫ T

0
‖u(t)‖L1

x
dt. (28)

3.4 Estimate of P

Recall that P is a random measure on T
N given by:

〈P(t), ϕ〉 =
∑

k≥1

∫

TN

∫ t

0

(
S∗
Aγ,δ (t − s)ϕ

)
(x, u(s, x))gk(x)dβk(s)dx, ϕ ∈ C(TN ).

Note that, for each k ∈ N,
∫

TN

∫ t

0

(
S∗
Aγ,δ (t − s)ϕ

)
(x, u(s, x))gk(x)dβk(s)dx

=
∫

TN

∫ t

0
e−δ(t−s)

(
e−Bγ (t−s)ϕ

)
(x + a(u(s, x))(t − s)) gk(x)dβk(s)dx

=
∫

TN

∫ t

0
e−δ(t−s)ϕ(x)e−Bγ (t−s) (gk(· − a(u(·, s))(t − s))) (x)dβk(s)dx .

By (2), the mapping x �→ gk(x − a(u(x, s))(t − s)) is a bounded function, therefore
by Lemma 10 we can write for σ ≥ 0:

‖eBγ (t−s) (gk(· − a(u(·, s))(t − s))) ‖Hσ (TN ) ≤ c (γ (t − s))−
σ
2α ‖gk‖L2(TN ).

We deduce that, for σ ∈ [0, α), this defines a function in Hσ (TN ) and

E

(∥
∥
∥
∥

∫ t

0
e−δ(t−s)e−Bγ (t−s) (gk(· − a(u(·, s))(t − s))) dβk(s)

∥
∥
∥
∥

2

Hσ (TN )

)

≤ c
∫ t

0
e−2δ(t−s) (γ (t − s))−

σ
α ds‖gk‖2L2(TN )

≤ cγ− σ
α δ

σ
α
−1
∫

R+
e2ss− σ

α ds‖gk‖2L2(TN )
(29)
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Since the sum over k of the right hand side of (29) is finite, we may then conclude:

E

⎛

⎜
⎝

∥
∥
∥
∥
∥
∥

∑

k≥1

∫ t

0
eBγ (t−s) (gk(· − a(u(·, s))(t − s))) dβk(s)

∥
∥
∥
∥
∥
∥

2

Hσ (TN )

⎞

⎟
⎠

≤ cγ− σ
α δ

σ
α
−1
(∫

R+
e−2ss− σ

α ds

)

D0.

This shows that in fact P(t) is more regular than a measure. It is in the space
L2(�; Hσ (TN )) for σ < α and

E

(
‖P(t)‖2Hσ (TN )

)
≤ cγ− σ

α δ
σ
α
−1
(∫

R+
e−2ss− σ

α ds

)

D0. (30)

3.5 Bound on the kinetic measure

Before we estimate Q, we give an estimate on the kinetic measure.

Lemma 11 Let u : TN × [0, T ] × � → R be the solution to (1) with initial datum
u0. Then the measure q := m − 1

2G
2δu=ξ satisfies

E

∫

TN×[0,T ]×R

θ(ξ)d|q|(x, t, ξ) ≤ D0E‖θ(u)‖L1(TN×[0,T ]) + E

∫

TN
�(u0(x))dx

(31)
for all non-negative θ ∈ Cc(R), where �(s) = ∫ s

0

∫ σ
0 θ(r)drdσ .

Proof Let θ ∈ Cc(R) be non-negative. Set

�(s) =
∫ s

0

∫ σ

0
θ(r)drdσ.

We test the kinetic formulation (14) with �′(ξ) and sum over x ∈ T
N , ξ ∈ R:

d

dt

∫

TN
E�(u)dx = 1

2
E

∫

TN
G2θ(u)dx − E

∫

TN×R

θ(ξ)dm(x, t, ξ).

Since �(0) = 0 and �(u) ≥ 0, we deduce that

E|〈|q|, θ〉| ≤ 1

2
E

∫

TN×[0,T ]
G2θ(u)dx + E

∫

TN×[0,T ]×R

θ(ξ)dm(x, t, ξ),

≤ E

∫

TN×[0,T ]
G2θ(u)dx + E

∫

TN
�(u0(x))dx

≤ D0E‖θ(u)‖L1(TN×[0,T ]) + E

∫

TN
�(u0(x))dx .

��
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3.6 Estimate of Q

Recall that

〈Q(t), ϕ〉 =
∫

TN×[0,t]×R

(t − s)a′(ξ) · ∇S∗
Aγ,δ (t − s)ϕdq(x, s, ξ).

For ε > 0, we define the measure:

〈Qε(t), ϕ〉 =
∫

TN×[0,(t−ε)∧0]×R

(t − s)a′(ξ) · ∇S∗
Aγ,δ (t − s)ϕdq(x, s, ξ),

where ϕ ∈ C(TN ). We choose ϕ depending also on ω ∈ � and t ∈ [0, T ]. We then
have, for λ ∈ (0, 2],

E

∫ T

0
〈(−�)

λ
2 Qε(t), ϕ(t)〉dt

= E

∫ T

ε

∫

TN×[0,t−ε]×R

(t − s)a′(ξ) · ∇(−�)
λ
2 S∗

Aγ,δ (t − s)ϕ(t)dq(x, s, ξ)dt.

By Lemma 10, for p ≥ 1 and p′ its conjugate exponent, we have

‖(−�)
λ
2 ∇S∗

Aγ,δ (t − s)ϕ(t)‖L∞(TN×R)

= e−δ(t−s)‖(−�)
λ
2 ∇eBγ (t−s)ϕ(t)‖L∞(TN )

≤ c(γ (t − s))−2+μN ,α,λ,p e−δ(t−s)‖ϕ(t)‖L p′ (TN )
,

with

μN ,α,λ,p = 2 − N + λ + 1

2α
+ N

2pα
. (32)

Assume μN ,α,λ,p > 0. By the Fubini Theorem, we have then

E

∫ T

0
〈(−�)

λ
2 Qε(t), ϕ(t)〉dt

≤ κ

γ
‖ϕ‖L∞(�×(0,T );L p′ (TN ))

E

∫

TN×[0,T ]×R

|a′(ξ)|d|q|(x, s, ξ),

where

κ = sup
s∈[0,T ], T>0

∫ T

s+ε

(γ (t − s))−1+μe−δ(t−s)dt ≤ γ−1+μδ−μ

∫

R+
σμ−1e−σdσ,

with μ = μN ,α,λ,p . It follows that for all ε > 0, Qε ∈ L1(� × (0, T );W λ,p(TN ))

with
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E‖Qε‖L1((0,T );Wλ,p(TN ))

≤ CN ,α,λ,pγ
−2
(γ

δ

)μN ,α,λ,p
E

∫

TN×[0,T ]×R

|a′(ξ)|d|q|(x, s, ξ),

for some constant CN ,α,λ,p . We let ε → 0 and use Lemma 11 to obtain eventually the
following estimate on Q:

E‖Q‖L1((0,T );Wλ,p(TN ))

≤ CN ,α,λ,pγ
−2
(γ

δ

)μN ,α,λ,p
(

D0E‖a′(u)‖L1(TN×(0,T )) + E

∫

TN
�(u0)dx

)

,

(33)
where �(s) = ∫ s

0

∫ σ
0 |a′(r)|drdσ , provided μN ,α,λ,p > 0.

3.7 Conclusion and proof of the existence part in Theorem 1

Under the growth hypothesis (10) (sub-linearity of a′), the bound (33) gives

E‖Q‖L1((0,T );Wλ,p(TN ))

≤ CN ,α,λ,p,D0γ
−2
(γ

δ

)μN ,α,λ,p
(
1 + E‖u‖L1(TN×(0,T )) + E‖u0‖3L3(TN )

)
.

We choose γ, δ > 0 such that:

CN ,α,λ,p,D0γ
−2
(γ

δ

)μN ,α,λ,p ≤ 1

4

and obtain

E‖Q‖L1(0,T ;Wλ,p(TN ))

≤ 1

4
E‖u‖L1(0,T ;L p(T1)) + C(N , α, λ, p, γ, δ, D0)(E‖u0‖3L3(TN )

+ 1). (34)

Consider now the estimates (27), (28), (30) and assume that H

(
1
2−α

)
b
and Hσ are

both imbedded in a given Sobolev spaceWs,q(TN )with s > 0 (the exponent s, q will
be determined later). Then (27), (28), (30) give

E

(
‖u0 + u� + P‖2L2(0,T ;Ws,q (TN ))

)

≤ C(δ, γ, D0)
(
1 + E‖u‖L1(TN×(0,T )) + E‖u0‖L1(T1) + T

)
.

By the Cauchy-Schwarz inequality and the Young inequality, we obtain

E

(
‖u0 + u� + P‖L1(0,T ;Ws,q (TN ))

)

≤ C(δ, γ, D0)
(
1 + E‖u0‖L1(TN ) + T

)+ 1

4
E‖u‖L1(0,T ;L1(TN )). (35)
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Assuming also thatW λ,p(TN ) is embedded inWs,q(TN ), we deduce from (20), (34),
(35) the estimate

E‖u‖L1(0,T ;Ws,q (TN ))

≤ C(N , α, λ, p, γ, δ, D0)(E‖u0‖3L3(T1)
+ 1 + T ) + 1

2
E‖u‖L1(0,T ;L1(TN )),

and thus

E‖u‖L1(0,T ;Ws,q (TN )) ≤ C(N , α, λ, p, γ, δ, D0)(E‖u0‖3L3(TN )
+ 1 + T ). (36)

Recall that the estimates above are actually obtained for uη, the solution of (18) which
converges to the solution of (1) in L∞(0, T ; L1(� × T

1)). Thanks to the closedness
of balls of L1(�× (0, T );W λ,p(T1)) for the L∞(0, T ; L1(�×T

1)) topology, these
estimates actually hold for the true solution u. Then, by Krylov-Bogoliubov theorem
and the compactness of the embedding of Ws,q(TN ) in L1(TN ), existence of an
invariance measure follows. Moreover, by the Sobolev embedding (37) below, this
invariant measure is supported by Lr (TN ) for any r such that s

N − 1
q ≥ − 1

r .
There remains to determine for which s, q we do have (36). Let us recall that we

have the injection
Wr,p(TN ) ↪→ Ws,q(TN ) (37)

if r ≥ s and r
N − 1

p ≥ s
N − 1

q , where
s
N − 1

q can be considered as the index of regularity

of the Sobolev space Ws,q(TN ). Then (27), (28) and (30) provide us with the indices

ind0 = α + ( 1
2 − α

)
b

N
− 1

2
, ind� =

( 1
2 − α

)
b

N
− 1

2
, indP = α−

N
− 1

2
,

where α− denotes any positive number σ < α. The condition μN ,α,λ,p > 0 on the
parameter μN ,α,λ,p (defined by (32)) reads

indQ := λ

N
− 1

p
< ind+

Q := 4α

N
− N + 1

N
,

where indQ is associated to (33). Clearly, we have ind0 > ind�. We look for a sobolev
space Ws,q(TN ) of index lower than the minimum of ind�, indP , ind

+
Q , i.e.

s <
N

q
+ min

((
1

2
− α

)

b − N

2
, α − N

2
, 4α − (N + 1)

)

, (38)

and satisfying also

0 < s, (39)

s < min

((
1

2
− α

)

b, α

)

. (40)
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The constraint (40) is contained in (38) as soon as q ≥ 2. The constraint (39), together
with (38) gives (for the maximal admissible value α = 1

2 ) the condition
1
N + 1

q > 1,
which is compatible with q ≥ 2 only if N = 1. Therefore we treat separately the cases
N = 1 and N > 1.

Case N = 1: We choose q = 2 and then optimize the right-hand side of (38).
The maximum is b

2(b+4) , reached for α = b+3
2(b+4) . Then we choose p = q and s =

λ ∈ (0, b
2(b+4)

)
. We obtain that the invariant measure is supported by Lr (T1) for any

r < 2 + b
2 .

Case N > 1: take q satisfying 1
N + 1

q = 1 + η
N , η > 0 small. We then have to

consider the maximum of

min

((
1

2
− α

)

b, α, 4α − 2 + η

)

,

for α ∈ [0, 1
2 ], which is ηb

b+4 , obtained for α = 1
2 − η

b+4 . We choose then p = q,

λ = s ∈
(
0, ηb

b+4

)
. We obtain that the invariant measure is supported by Lr (TN ) for

any r < N
N−1 . ��

4 Uniqueness of the invariant measure, ergodicity

We have proved in (36) that there exists q > 1 and s > 0 such that:

E‖u‖L1(0,T ;Ws,q (TN )) ≤ κ0(E‖u0‖3L3(TN )
+ 1 + T ) (41)

where κ0 depends on λ, p, D0. Below, in Sect. 4.1, we prove that this estimate implies
that any solution enters a ball of some fixed radius in finite time. Then in the case of
subquadratic flux A, we show that if the driving noise is small for some time, then the
solution becomes very small, cf. Sect. 4.2. This smallness depends on the size of the
initial data. These two facts are then shown to imply the second part of Theorem 1
(Sect. 4.3).

4.1 Time to enter a ball in L1(TN )

For further purposes, we need to consider two solutions u1 and u2 starting from u10,
u20 deterministic and in L3(TN ). It is easy to generalize (41) to two solutions on the
interval [t, t + T ] for t, T ≥ 0. This implies:

E

(∫ t+T

t
‖u1(s)‖L1(TN ) + ‖u2(s)‖L1(TN )ds

∣
∣Ft

)

≤ κ1(‖u1(t)‖3L3(TN )
+ ‖u2(t)‖3L3(TN )

+ 1 + T ) (42)
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Moreover, we easily prove for i = 1, 2, thanks to the Itô formula:

‖ui (t)‖3L3(TN )

≤ ‖ui0‖3L3(TN )
+ 3

∫ t

0
((ui )2(s),�dW (s))L2(TN ) + 3D0

∫ t

0
‖ui (s)‖L1(TN )ds.

(43)

It follows that

E

(∫ t+T

t
‖u1(s)‖L1(TN ) + ‖u2(s)‖L1(TN )ds

∣
∣Ft

)

≤ κ1

[

‖u10‖3L3(TN )
+ ‖u20‖3L3(TN )

+ 3D0

∫ t

0
‖u1(s)‖L1(TN ) + ‖u2(s)‖L1(TN )ds

+ 3
∫ t

0
((u1(s))2 + (u2(s))2,�dW (s))L2(TN ) + 1 + T

]

We now define recursively the sequences of deterministic times (tk)k≥0 and (rk)k≥0
by

t0 = 0,

tk+1 = tk + rk,

where (rk)k≥0 will be chosen below. We also define the events:

Ak =
{

inf
s∈[t�,t�+1]

(
‖u1(s)‖L1(TN ) + ‖u2(s)‖L1(TN )

)
≥ 2κ1, � = 0, . . . , k − 1

}

.

Then, for all k ≥ 0,

P

(

inf
s∈[tk ,tk+1]

(
‖u1(s)‖L1(TN ) + ‖u2(s)‖L1(TN )

)
≥ 2κ1

∣
∣Ftk

)

≤ P

(
1

rk

∫ tk+rk

tk
‖u1(s)‖L1(TN ) + ‖u2(s)‖L1(TN )ds ≥ 2κ1

∣
∣
∣
∣Ftk

)

≤ 1

2rk

[

‖u10‖3L3(TN )
+ ‖u20‖3L3(TN )

+ 3D0

∫ tk

0
‖u1(s)‖L1(TN ) + ‖u2(s)‖L1(TN )ds + 1

]

+ 1

2
+ 3

2rk

∫ tk

0
((u1(s))2 + (u2(s))2,�dW (s))L2(TN ). (44)

We will choose rk so that the following inequality is satisfied for all k ≥ 0:

1

2rk
(‖u10‖3L3(TN )

+ ‖u20‖3L3(TN )
+ 1) ≤ 1

8
.
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Let us then multiply (44) by 1Ak and take the expectation to obtain

P (Ak+1) ≤ 5

8
P (Ak) + 3D0

2rk
E

(∫ tk

0
‖u1(s)‖L1(TN ) + ‖u2(s)‖L1(TN )ds1Ak

)

+ 3

2rk
E

(∫ tk

0
((u1(s))2 + (u2(s))2,�dW (s))L2(TN )1Ak

)

.

By the Cauchy-Schwarz inequality, Itô isometry and the bound (2) on the covariance
of the noise, we have:

E

(∫ t

0
((u1(s))2 + (u2(s))2,�dW (s))L2(TN )1Ak

)

≤ (2D0)
1/2
(

E

∫ t

0
‖u1(s)‖4L2(TN )

+ ‖u2(s)‖4L2(TN )
ds

)1/2

P(Ak)
1/2.

By Itô formula applied to ‖ui (t)‖2
L2(TN and ‖ui (t)‖4

L2(TN , i = 1, 2, we obtain the
bound:

E

(
‖ui (t)‖2L2(TN )

)
≤ E

(
‖ui0‖2L2(TN )

)
+ D0t

and

E

(
‖ui (t)‖4L2(TN )

)
≤ E

(

‖ui0‖4L2(TN )
+ 6D0

∫ t

0
‖ui (s)‖2L2(TN )

ds

)

.

Thus, integrating in time, we obtain a bound

E

∫ tk

0
‖u1(s)‖4L2(TN )

+ ‖u2(s)‖4L2(TN )
ds ≤ 2[‖u10‖4L2(TN )

+‖u20‖4L2(TN )
]tk+24D2

0 t
3
k .

Similarly, we have the estimate

E

∣
∣
∣
∣

∫ tk

0
‖u1(s)‖L1(TN ) + ‖u2(s)‖L1(TN )ds

∣
∣
∣
∣

2

≤ t2k [‖u10‖2L2(TN )
+‖u20‖2L2(TN )

]+D0t
3
k .

It follows that

P (Ak+1) ≤ 3

4
P (Ak) + C

r2k

(
[‖u10‖4L2(TN )

+ ‖u20‖4L2(TN )
]tk + t4k + 1

)
,

where the constant C can be written explicitely in term of D0. We choose rk so that:

C

r2k

(
[‖u10‖4L2(TN )

+ ‖u20‖4L2(TN )
]tk + t4k + 1

)
≤
(
3

4

)k

,

123



598 A. Debussche, J. Vovelle

and obtain: P (Ak+1) ≤ 3
4P (Ak) + ( 3

4

)k
, which gives therefore

P (Ak) ≤ k

(
3

4

)k−1

.

By Borel–Cantelli Lemma, we deduce that

k0 = inf{k ≥ 0 | inf
s∈[t�,t�+1]

‖u1(s)‖L1(TN ) + ‖u2(s)‖L1(TN ) ≤ 2κ1}

is almost surely finite. We then define the stopping time

τ u
1
0,u

2
0 = inf{t ≥ 0 | ‖u1(t)‖L1(TN ) + ‖u2(t)‖L1(TN ) ≤ 2κ1}.

Clearly τ u
1
0,u

2
0 ≤ tk0+1 so that τ u

1
0,u

2
0 < ∞ almost surely. It follows that for T > 0 the

following stopping times are also almost surely finite:

τ� = inf{t ≥ τ�−1 + T | ‖u1(t)‖L1(TN ) + ‖u2(t)‖L1(TN ) ≤ 2κ1}, τ0 = 0.

4.2 The solution is small if the noise is small

Proposition 12 Assume that a satisfies (11). Then, for any ε > 0, there exists T > 0
and η > 0 such that:

1

T

∫ T

0
‖u(s)‖L1(TN )ds ≤ ε

2

if

‖u(0)‖L1(TN ) ≤ 2κ1 and sup
t∈[0,T ]

‖W‖W 1,∞(TN ) ≤ η.

Proof We first take ũ0 ∈ L2(TN ) such that

‖u0 − ũ0‖L1(TN ) ≤ ε

8
, ‖ũ0‖L2(TN ) ≤ Cκ1ε

−N/2.

It is easy to see that this can be achieved by taking ũ0 = ρε ∗ u0 for some regularizing
kernel (ρε)ε>0. By (16), we know that

‖u(t) − ũ(t)‖L1(TN ) ≤ ε

8
, t ≥ 0,

where ũ is the solution starting from ũ0. We set v = ũ − W so that v is a kinetic
solution to

∂tv + divA(v + W ) = 0
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and g = 1v(x,t)>ξ − 10>ξ satisfies:

∂t g + a(ξ) · ∇g = ∂ξn + (a(ξ) − a(ξ + W )) · ∇g − a(ξ + W ) · ∇Wδv=ξ . (45)

The kinetic measure n is easily related to the kinetic measure in the equation satisfied
by f = 1u>ξ − 10>ξ . Also since both u and W have a zero spatial average, so does v.

We use again Bγ and Aγ,δ introduced in Sect. 3.1. We now take α = 1
2 . Then (45)

rewrites:

∂t g + Aγ,δg = (Bγ + δId)g + ∂ξn + (a(ξ) − a(ξ + W ))

·∇g − a(ξ + W ) · ∇Wδv=ξ . (46)

By solving (46) and summing over ξ , we are led to the following decomposition of v:

v = v0 + v� + v# + PW + NW ,

where

v0(t) :=
∫

R

SAγ,δ (t)g(0, ξ)dξ,

v�(t) :=
∫

R

∫ t

0
SAγ,δ (s) (Bγ + δId)g(t − s, ξ)dsdξ,

v#(t) :=
∫

R

∫ t

0
SAγ,δ (s)(a(ξ) − a(ξ + W )) · ∇g(t − s, ξ) dsdξ,

〈PW (t), ϕ〉 := −
∫

TN×[0,t]
(a(v + W ) · ∇W ) (x, s)

(
S∗
Aγ ,δ(t − s)ϕ

)
(x, v(x, s)) dsdx,

〈NW (t), ϕ〉 :=
∫

TN×[0,t]×R

(t − s)a′(ξ) · ∇S∗
Aγ ,δ(t − s)ϕdn(x, s, ξ),

where 〈·, ·〉 is the duality product between the space of finite Borel measures on T
N

and C(TN ).
Reproducing the argument of Sect. 3.2 and 3.3, we obtain the estimates:

∫ T

0
‖v0(t)‖2

H
1
2 (TN )

dt ≤ c γ b−1 ‖u0‖L1(TN ) (47)

and ∫ T

0
‖v�(t)‖2L2(TN )

dt ≤ c γ b
∫ T

0
‖v(t)‖L1(TN ) dt. (48)

We estimate v# similarly. We take the Fourier transform in x (denoted by F here) and
integrate in time. Note that

F [(a(·) − a(· + W )) · ∇g] (n, ξ, t)

= 2π iF [(a(·) − a(· + W ))g] (n, ξ, t) · n + F [(a′(· + W ) · ∇W )g
]
(n, ξ, t)
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and thus

∫ T

0
|v̂#(n, t)|2dt

≤ c
∫ T

0

∣
∣
∣
∣

∫

R

∫ t

0
e−i(a(ξ)·n+γ |n|+δ)sF [(a(·) − a(·+W ))g] (n, ξ, t−s) · n dsdξ

∣
∣
∣
∣

2

dt

+ c
∫ T

0

∣
∣
∣
∣

∫

R

∫ t

0
e−i(a(ξ)·n+γ |n|+δ)sF [(a′(·+W ) · ∇W )g

]
(n, ξ, t−s) dsdξ

∣
∣
∣
∣

2

dt.

Denote by A1 and A2 the two terms on the right hand side. A1 is of the form

A1 =
∫ T

0

∣
∣
∣
∣

∫ t

0
e−(γ |n|+δ)sn · Gh(n, ns, t − s)ds

∣
∣
∣
∣

2

dt,

where

h(n, ξ, t) = F [(a(·) − a(· + W )) g] (n, ξ, t)

and the integral operator G has been defined in (25). We proceed as in Sect. 3.2 and
3.3 (in particular we use Lemma 2.4 of [6] for the estimate of the oscillatory integral
Gh) to obtain

A1 ≤ cγ−2+b
∫ T

0
‖h(n, ξ, t)‖2L2(ξ)

dt,

and, similarly,

A2 ≤ cγ−2+b

|n|
∫ T

0
‖k(n, ξ, t)‖2

L2
ξ

dt

with k(n, ξ, t) = F [(a′(· + W ) · ∇W )g
]
(n, ξ, t). Summing over n �= 0, we get

therefore

∫ T

0
‖v#,1(t)‖2L2(TN )

dt

≤ Cγ−2+b
∫ T

0
‖ (a(·) − a(· + W )) g‖2

L2
x,ξ

+ ‖(a′(· + W ) · ∇W )g‖2
L2
x,ξ
dt,

where v#,1 = v# − ∫
TN v

#dx . We then use the hypothesis (11), i.e. a sublinear, and
the “smallness” of the noise (actually no smallness assumption on η has been done up
to now) to write

|a(ξ) − a(ξ + W )| ≤ c |W | ≤ c η, |a′(ξ + W ) · ∇W | ≤ c η
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and deduce

∫ T

0
‖v#,1(t)‖2L2(TN )

dt ≤ Cη2γ−2+b
∫ T

0
‖v‖L1(TN )dt (49)

since ‖g‖2
L2
x,ξ

= ‖v‖L1(TN ). The total mass
∫
TN v

#dx will be estimated later, once we

have finished to estimate PW and NW . Regarding PW , we have, by Hypothesis (11),

〈PW (t), ϕ〉 ≤ C
∫ t

0
(1 + ‖v(s)‖L1(TN ) + ‖W (s)‖L1(TN ))

×‖∇W (s)‖L∞(TN )‖S∗
Aγ ,δ(t − s)ϕ‖L∞(TN ) ds.

Therefore PW is more regular than a measure and Lemma 10 implies, for η ≤ 1,

‖PW (t)‖L1(TN ) ≤ Cη
∫ t

0
(1 + ‖v(s)‖L1(TN ))e

−δ(t−s)ds.

In particular, we have

∫ T

0
‖PW (t)‖L1(TN )dt ≤ C

η

δ

∫ T

0
(1 + ‖v(s)‖L1(TN ))ds. (50)

We finally estimate the last term containing the measure n. We write, using again
Lemma 10 and the hypothesis (11),

〈NW (t), ϕ〉 =
∫

TN×[0,t]×R

(t − s)a′(ξ) · ∇S∗
Aγ (t − s)ϕdn(x, s, ξ)

≤ c ‖ϕ‖L∞(TN )

∫

TN×[0,t]×R

e−δ(t−s)d|n|(x, s, ξ).

Again, we may prove that NW is more regular than a measure and deduce:

∫ T

0
‖NW (t)‖L1(TN )dt ≤ C

δ

∫

TN×[0,T ]×R

d|n|(x, s, ξ). (51)

To complete our estimate, it remains to evaluate themass of themeasure n.We proceed
as in Lemma 11 and test equation (46) against ξ to obtain:

1

2
‖v(t)‖2L2(TN )

+ |n|([0, t] × T
N × R)

≤ 1

2
‖u0‖2L2(TN )

+
∣
∣
∣
∣

∫

[0,t]×TN×R

ξ(a(ξ) − a(ξ + W )) · ∇g dx dξ ds

∣
∣
∣
∣

+
∣
∣
∣
∣

∫

[0,t]×TN
v(x, s)a(v(x, s) + W (x, s)) · ∇W (x, s)dxds

∣
∣
∣
∣ .
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We use an integration by parts in the second term. By (11) we obtain after easy
manipulations:

1

2
‖v(t)‖2L2(TN )

+ |n|([0, t] × T
N × R) ≤ 1

2
‖ũ0‖2L2(TN )

+ηC
∫ t

0

(
‖v(s)‖2L2(TN )

+ 1
)
ds.

Gronwall lemma then gives ‖v(t)‖2
L2(T1)

≤ eηCt (‖ũ0‖2L2(T1)
+ C), and therefore

|n|([0, T ] × T
N × R) ≤ eηCT (‖ũ0‖2L2(TN )

+ C).

Since ‖ũ0‖L2(TN ) ≤ Cκ1ε−N/2, it follows by (51) that

∫ T

0
‖NW (t)‖L1(TN )dt ≤ C

δ
eηCT (κ21ε

−N + 1). (52)

Finally, since v, v0 and v� have zero spatial averages, we have

∫

TN
v# + PW + NWdx = 0.

Consequently we can estimate the total mass of v# by

∣
∣
∣
∣

∫

TN
v#dx

∣
∣
∣
∣ ≤ ‖PW‖L1(TN ) + ‖NW‖L1(TN ).

We may now gather all the estimates obtained, i.e. (47), (48), (49), (50), (52), and
deduce:

∫ T

0
‖v0(t) + v�(t) + v#,1(t)‖L1(T1)dt

≤ T 1/2
(∫ T

0
‖v0(t)‖2L2(T1)

+ ‖v�(t)‖2L2(T1)
+ ‖v#,1(t)‖2L2(T1)

dt

)1/2

≤ CT 1/2
(

γ b−1κ1 + (γ b + η2γ−2+b)

∫ T

0
‖v(t)‖L1(T1)dt

)1/2

≤ 1

4

∫ T

0
‖v(t)‖L1(T1)dt + CT (γ b + η2γ−2+b) + C(T γ b−1κ1)

1/2
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and

∫ T

0

∥
∥
∥
∥

∫

TN
v#(x)dx + PW (t) + N (t)

∥
∥
∥
∥
L1(TN )

≤ C

(
η

δ

∫ T

0
(1 + ‖v(t)‖L1(TN ))dt + 1

δ
eηCT (κ21ε

−N + 1)

)

.

Let r > 0 be a ratio that we will fix later. We choose (in that order), γ , T , δ such that

Cγ b ≤ rε, C

(
γ b−1κ1

T

)1/2

≤ rε,
C

δ
eCT (κ21ε

−N + 1) ≤ rε,

and then η small enough so that

C
η

δ
≤ min

(

rε,
1

4

)

, Cη2γ−2+b ≤ rε.

With those choices, and for r = 1
40 , we obtain, if furthermore η ≤ ε

8 ,

1

T

∫ T

0
‖v(t)‖L1(TN )dt ≤ ε

4
,

1

T

∫ T

0
‖ũ(t)‖L1(TN )dt ≤ 3ε

8

and

1

T

∫ T

0
‖u(t)‖L1(TN )dt ≤ ε

2
< ε.

This is the desired conclusion. ��

4.3 Conclusion

We assume that (11) holds. Let u10, u20 be in L1(TN ). Let ε > 0, we take ũ10, ũ20
in L3(TN ) such that ‖ui0 − ũi0‖L1(TN ) ≤ ε

4 . We denote by u1, u2, ũ1, ũ2 the
corresponding solutions. We associate to ũ10, ũ20 the sequence of stopping times con-
structed in Sect. 4.1. We choose T and η given by Proposition 12 and obtain thanks
to the L1-contraction (16),

P

(
1

T

∫ τ�+T

τ�

‖u1(s) − u2(s)‖L1(TN )ds ≤ ε
∣
∣ Fτ�

)

≥ P

(
1

T

∫ τ�+T

τ�

‖ũ1(s) − ũ2(s)‖L1(TN )ds ≤ ε

2

∣
∣
∣
∣ Fτ�

)

≥ P

(

sup
[τ�,τ�+T ]

‖W (t) − W (τ�)‖W 1,∞(TN ) ≤ η
∣
∣ Fτ�

)

.
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By the strong Markov property, the right hand side is non random and independent on
�. It is clearly positive. We denote it by λ. For �0, k ∈ N we then have

P

(
1

T

∫ τ�+T

τ�

‖u1(s) − u2(s)‖L1(TN )ds ≥ ε, for � = �0, . . . , �0 + k

)

≤ (1 − λ)k,

and therefore

P

(

lim
�→∞

1

T

∫ τ�+T

τ�

‖u1(s) − u2(s)‖L1(TN )ds ≥ ε

)

= P

(

∃�0 ∈ N ; 1

T

∫ τ�+T

τ�

‖u1(s) − u2(s)‖L1(TN )ds ≥ ε, for � ≥ �0

)

= 0. (53)

Note the limit exists since, by (16), t �→ ‖u1(t)− u2(t)‖L1(TN is a.s. non-increasing.
This latter property is again used to deduce from (53) that

P

(
lim
t→∞ ‖u1(t) − u2(t)‖L1(TN ) ≥ ε

)
= 0.

We have thus proved:

lim
t→∞ ‖u1(t) − u2(t)‖L1(TN ) = 0, a.s.

This easily implies the second statement (uniqueness part) of Theorem 1.

5 Appendix: Solutions in L1

In this section, we develop the L1-theory for the Cauchy Problem associated to (1).
In the deterministic framework, this has been done in Bénilan et al. [3] and in [7].
In [3], a concept of renormalized entropy solution is introduced. In [7] it is noticed
that the kinetic formulation for scalar (parabolic degenerate here) conservation laws
can be expanded from the L∞ to the L1 framework with quite minor adaptations, and
this is the approach we will follow here: although, for u ∈ L1, it may be impossible
to give a sense to div(A(u)), still we will show that the problem is well-posed. Note
that the basic reason for this is that (on the whole space at least) non-uniqueness for
(1), in the case gk = 0, requires some growth at infinity: this fact is illustrated by the
counter-examples constructed in Goritskii and Panov [16] in particular.

5.1 Generalized solutions

In [10,11], the notion of solution is extended to a notion of generalized solution. The
notion of solution given by Definition 4 can be extended accordingly. The proof of
Theorem 5 is a rather straightforward extension of the L∞ result. Only the decay of
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Invariant measure of scalar first-order conservation laws 605

the kinetic measure and Lemma 7 in [11], needed to prove time continuity, have to be
revised. We will do this below in Sects. 5.2 and 5.3

Definition 13 (Youngmeasure) Let (X, λ) be a finitemeasure space. LetP1(R) denote
the set of probability measures on R. We say that a map ν : X → P1(R) is a Young
measure on X if, for all φ ∈ Cb(R), the map z �→ νz(φ) from X to R is measurable.
We say that a Young measure ν vanishes at infinity if

∫

X

∫

R

|ξ |dνz(ξ)dλ(z) < +∞. (54)

Definition 14 (Kinetic function) Let (X, λ) be a finite measure space. A measurable
function f : X × R → [0, 1] is said to be a kinetic function if there exists a Young
measure ν on X that vanishes at infinity such that, for λ-a.e. z ∈ X , for all ξ ∈ R,

f (z, ξ) = νz(ξ,+∞).

We say that f is an equilibrium if there exists a measurable function u : X → R such
that f (z, ξ) = 1z>ξ a.e., or, equivalently, νz = δu(z) for a.e. z ∈ X .

Definition 15 (Generalized solution) Let f0 : � × T
N × R → [0, 1] be a kinetic

function. A measurable function f : � × T
N × [0, T ] × R → [0, 1] is said to be a

generalized solution to (1) with initial datum f0 if ( f (t)) is predictable and is a kinetic
function such that ν := −∂ξ f satisfies

E

(

ess supt∈[0,T ]
∫

TN

∫

R

|ξ |dνx,t (ξ)dx
)

< +∞, (55)

and such that there exists a kineticmeasurem such that for allϕ ∈ C1
c (T

N×[0, T )×R),

∫ T

0
〈 f (t), ∂tϕ(t)〉dt + 〈 f0, ϕ(0)〉 +

∫ T

0
〈 f (t), a(ξ) · ∇ϕ(t)〉dt

= −
∑

k≥1

∫ T

0

∫

TN

∫

R

gk(x, ξ)ϕ(x, t, ξ)dνx,t (ξ)dxdβk(t)

−1

2

∫ T

0

∫

TN

∫

R

∂ξϕ(x, t, ξ)G2(x, ξ)dν(x,t)(ξ)dxdt + m(∂ξϕ), a.s. (56)

What differ mostly between Definition 3 of kinetic measure and the corresponding
definition in [10] is the condition at infinity 2. This condition is for example crucial
to show the equivalence between Definition 4 and the notion of renormalized solution
(what we will not do here since we will not need the latter). As we will see, this decay
condition is related to the decay of k �→ (u − k)±. We explore this link and then use
it to prove that solutions in the sense of Definition 4 lead to a well-posed problem.
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5.2 Decay of the kinetic measure

Proposition 16 Let u0 ∈ L1(TN ). Let a measurable function u : TN ×[0, T ]×� →
R be a solution to (1) according to Definition 4. Let T > 0. There exists a decreasing
function ε : R+ → R+ with limk→+∞ ε(k) = 0 depending on T and on the functions

k �→ ‖(u0 − k)+‖L1(TN ), k �→ ‖(u0 − k)−‖L1(TN )

only such that, for all k ≥ 1,

E
(
ess supt∈[0,T ] ‖(u(t) − k)±‖L1(TN )

)+ Em(Ak) ≤ ε(k),

where Ak = T
N × [0, T ] × {ξ ∈ R, k ≤ |ξ | ≤ k + 1}.

Proof Step 1. For k ≥ 0, set

θk(u) = 1k<u<k+1, �k(u) =
∫ u

0

∫ r

0
θk(s)dsdr.

Let γ ∈ C1
c ([0, T )) be non-negative and satisfy γ (0) = 1, γ ′ ≤ 0. After a prelim-

inary step of approximation that uses the monotone convergence Theorem, we take
ϕ(x, t, ξ) = γ (t)�′

k(ξ) in (14) to obtain

∫ T

0

∫

TN
�k(u(x, t))|γ ′(t)|dxdt +

∫

A+
k

γ (t)dm(x, t, ξ)

= 1

2

∫ T

0

∫

TN
γ (t)G2(x)θk(u(x, t))dxdt +

∫

TN
�k(u0(x))dx

+
∑

j≥1

∫ T

0

∫

TN
g j (x)�

′
k(u(x, t))γ (t)dxdβk(t), (57)

where A+
k = T

N × [0, T ] × {ξ ∈ R, k ≤ ξ ≤ k + 1}. Taking then expectation, we
have

E

∫ T

0

∫

TN
�k(u(x, t))|γ ′(t)|dxdt + E

∫

A+
k

γ (t)dm(x, t, ξ)

= 1

2
E

∫ T

0

∫

TN
γ (t)G2(x)θk(u(x, t))dxdt +

∫

TN
�k(u0(x))dx . (58)

Note that
(u − (k + 1))+ ≤ �k(u) ≤ (u − k)+, (59)

for all k ≥ 0, u ∈ R. Note also

θk2(u) ≤ 1k2≤u ≤ (u − k1)+

k2 − k1
, 0 ≤ k1 < k2.
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In particular, using that m ≥ 0, (58), using (2) and taking k1 = k, k2 = k1 + θ − 1
where θ > 1 in (58) gives

E

∫ T

0

∫

TN
(u(x, t) − (k + θ))+|γ ′(t)|dxdt

≤ D0

2(θ − 1)
E

∫ T

0

∫

TN
(u(x, t) − k)+γ (t)dxdt +

∫

TN
(u0(x) − k)+dx . (60)

Choose θ large enough so that D0
2(θ−1) = α < 1. Denote by ψn(t) the function

ψn(t) = E

∫

TN
(u(x, t) − nθ)+dx

and let In ⊂ [0, T ] be the set of Lebesgue points of ψn . Then I = ∩n∈N In is of full
measure. For t ∈ I , t < T , we take k = nθ , γ (s) = min(1, 1

ε
(s − (t + ε))−) for

ε < T − t in (60) and let ε → 0. This yields the following inequality:

ψn+1(t) ≤ α

∫ t

0
ψn(s)ds + ψn(0). (61)

For n = 0, using the bound

ψ0(t) ≤ ψ1(t) + θ T,

(61) and Gronwall’s Lemma, we obtain a bound

ψ0(t) = E

∫

TN
(u(x, t))+dx ≤ M := C(T, ‖u0‖L1(TN )), (62)

for t ∈ I . From (61) we also show recursively

ψn+1(t) ≤ αn+1 tn+1

(n + 1)!M +
n∑

j=0

α j t
j

j !ψn− j (0).

We deduce ψn+1(t) ≤ (M + 1)eT δ(n + 1), where

δ(n) = αn +
n−1∑

j=0

α jψn−1− j (0).

Then limn→+∞ δ(n) = 0 since limk→+∞ ψk(0) = 0. Set ε+(k) = δ([ k
θ
]), then since

the left hand side below is a decreasing function of k,

ess supt∈[0,T ] E
∫

TN
(u(x, t) − k)+dx ≤ ε+(k), (63)
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and ε+ : R+ → R+ is a function depending on T and on the function k �→ ‖(u0 −
k)+‖L1(TN ) only such that limk→+∞ ε+(k) = 0.

Step 2. The estimate on m(Ak) follows from (58). Therefore, to conclude, we
need to show an estimate on E(ess supt∈[0,T ]

∫
TN (u(x, t) − nθ)+dx). This is the

classical argument for semi-martingales that we will use. We will merely focus on
the martingale term in (57). We first let γ approach 1(0,t) as in Step 1. Then, by the
Burkholder–Davis–Gundy inequality, we have, for a constant C > 0,

E

⎡

⎣ess supt∈[0,T ]

∣
∣
∣
∣
∣
∣

∑

j≥1

∫ t

0

∫

TN
g j (x)�

′
k(u(x, t))dxdβk(t)

∣
∣
∣
∣
∣
∣

⎤

⎦

≤ CE

⎡

⎣
∫ T

0

∑

j≥1

(∫

TN
|g j (x)||�′

k(u(x, t))|dx
)2
⎤

⎦

1/2

≤ CD1/2
0 E

[∫ T

0

∫

TN
|�′

k(u(x, t))|2dx
]1/2

,

where we have used the Cauchy-Schwarz inequality and (2) in the last line. Since

|�′
k(u)|2 ≤ 1k≤u ≤ (u − (k + 1))+

and EX1/2 ≤ (EX)1/2 by Jensen’s inequality, we obtain by (63)

E

⎡

⎣ess supt∈[0,T ]

∣
∣
∣
∣
∣
∣

∑

j≥1

∫ t

0

∫

TN
g j (x)�

′
k(u(x, t))dxdβk(t)

∣
∣
∣
∣
∣
∣

⎤

⎦ ≤ CD1/2
0 T ε+(k + 1),

as desired. This concludes the proof of the Proposition. ��

5.3 Uniqueness

The condition at infinity 2. in Definition 3, although weaker than the condition in [10]
is enough to perform the proof of uniqueness, and of reduction of generalized solutions
to solutions (cf. Theorem 15. in [11]). What is more problematic in the L1 framework
is the proof of pathwise continuity of solutions, cf. Corollary 16. in [11]. Indeed the
proof of this result uses the equivalence between convergence to an equilibrium at the
kinetic level and strong convergence at the level of functions. This is Lemma 7 in [11],
that we adapt here in the following way.

Lemma 17 (Convergence to an equilibrium) Let (X, λ) be a finite measure space. Let
( fn) be a sequence of kinetic functions on X × R: fn(z, ξ) = νnz (ξ,+∞) where νn

are Young measures on X satisfying

sup
n

∫

X

∫

R

|ξ |dνz(ξ)dλ(z) < +∞.
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Let f be a kinetic function on X×R such that fn ⇀ f in L∞(X×R)weak-*. Assume
that fn and f are equilibria:

fn(z, ξ) = 1un(z)>ξ , f (z, ξ) = 1u(z)>ξ

and assume that the following equi-integrability condition is satisfied:

sup
n

‖(un − k)±‖L1(X) = o(1) [k → +∞]. (64)

Then un → u in L1(X) strong.

Proof We simply give the sketch of the proof of Lemma 17. Assume first

R = sup
n

‖un‖L∞(X) < +∞. (65)

By testing the convergence fn ⇀ f against ϕ(z)1ξ>−R , where ϕ ∈ L2(X), we obtain
un ⇀ u in L2(X)-weak. By testing the convergence fn ⇀ f against ξ1ξ>−R , we
obtain the convergence in norm ‖un‖2L2(X)

→ ‖u‖2
L2(X)

and since L2(X) is a Hilbert

space, we conclude to un → u in L2(X) strong, and in particular in L1(X) strong.
In the general case, we observe that the above arguments can be applied to Tk(un),
where Tk is the truncation operator

Tk(u) = max(−k,min(u, k)). (66)

We then use (64) to conclude to the convergence un → u in L1(X). ��
Proposition 16 yields the equi-integrability estimate that we need. Therefore, as in

[11], we obtain the following two results.

Theorem 18 (Uniqueness, Reduction) Let u0 ∈ L1(TN ). Assume (2)-(3). Then, there
is at most one solution in the sense of Definition 4 with initial datum u0 to (1). Besides,
any generalized solution f is actually a solution, i.e. if f is a generalized solution to
(1) with initial datum 1u0>ξ , then there exists a solution u to (1) with initial datum u0
such that f (x, t, ξ) = 1u(x,t)>ξ a.s., for a.e. (x, t, ξ).

Theorem 19 (Continuity in time) Let u0 ∈ L1(TN ). Assume (2)-(3) are satisfied.
Then the solution u to (1) with initial datum u0 has a representative in the space
L1(�; L∞(0, T ; L1(TN ))) with almost sure continuous trajectories in L1(TN ).

5.4 Existence

Theorem 20 (Existence) Let u0 ∈ L1(TN ). Assume (2)-(3). Then, there exists a
solution in the sense of Definition 4 with initial datum u0 to (1).
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610 A. Debussche, J. Vovelle

Proof We approach u0 by un0 := Tn(u0), where the truncation operator is defined in
(66). By [10] this defines a sequence of solutions (un) and by the contraction property
in L1 it is a Cauchy sequence, hence converges to a u ∈ L1(� × T

N × (0, T )). This
u is predictable. Let now mn be the kinetic measure associated to un . By (57) in the
proof of Proposition 16, we can prove

sup
n

E
(
mn(Kr )

)2 ≤ Cr (67)

for r ∈ N
∗, where Kr := T

N × [0, T ] × [−r, r ]. Let Mr denote the space of
bounded Borel measures over Kr (with norm given by the total variation of measures).
It is the topological dual of C(Kr ), the set of continuous functions on Kr . Since
Mr is separable (C(Kr ) is) the space L2(�;Mr ) is the topological dual space of
L2(�,C(Kr )), c.f. Théorème 1.4.1 in [13]. The estimate (67) gives a uniform bound
on (mn) in L2(�,Mr ): there exists mr ∈ L2(�,Mr ) such that up to subsequence,
mn ⇀ mr in L2(�;Mr )-weak star. By a diagonal process, we obtain, for r ∈ N

∗,
mr = mr+1 in L2(�;Mr ) and the convergence in all the spaces L2(�;Mr )-weak
star of a single subsequence still denoted (mn). Let us then set m = mr on Kr ,
a.s. The conditions 1. and 3. in Definition 3 are stable by weak convergence, hence
satisfied by m. We deduce that condition 2. is satisfied thanks to the uniform estimate
of Proposition 16. This shows that u is a solution to (1) with initial datum u0. ��

Wemay also prove the existence of solution by convergence of the parabolic approx-
imation as in [10]. We will not give the details of the proof. Our final result is the
following one.

Theorem 21 (Resolution of (1) in L1) Let u0 ∈ L1(TN ). There exists a unique
measurable u : TN × [0, T ] × � → R solution to (1) with initial datum u0 in the
sense of Definition 4. Besides, u has almost surely continuous trajectories in L1(TN )

and u is the a.s. limit in L1(TN × (0, T )) of the parabolic approximation to (1).
Moreover, given u10 and u20 ∈ L1(TN ), the following holds:

‖u1(t) − u2(t)‖L1(TN ) ≤ ‖u10 − u20‖L1(TN ), a.s.

Remark 22 (Multiplicative noise) Here we have developed the L1 theory for an addi-
tive noise (the functions gk are independent on u) since this was assumed from the
start, but all the statement above remain true if the noise is multiplicative with the
same hypotheses as in [10] for example.
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