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Abstract We consider ensembles of Wigner matrices, whose entries are (up to the
symmetry constraints) independent and identically distributed random variables. We
show the convergence of the Stieltjes transform towards the Stieltjes transform of
the semicircle law on optimal scales and with the optimal rate. Our bounds improve
previous results, in particular from Erdős et al. (Adv Math 229(3):1435–1515, 2012;
Electron J Probab 18(59):1–58, 2013), by removing the logarithmic corrections. As
applications, we establish the convergence of the eigenvalue counting functions with
the rate (log N )/N and the rigidity of the eigenvalues of Wigner matrices on the same
scale. These bounds improve the results of Erdős et al. (AdvMath 229(3):1435–1515,
2012; Electron J Probab 18(59):1–58, 2013), Götze and Tikhomirov (2013).
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1 Introduction and main results

Let H be an N×N Wigner matrix, whose entries are independent (up to the symmetry
constraints) and identically distributed random variables with zero mean and a fixed
variance. We are interested in the statistical properties of the eigenvalues of H in the
limit of large N . As already shown by Wigner in [37], the density of the eigenvalues
of H converges, after appropriate normalization, towards the famous semicircle law

ρsc(x) =
{

1
π

√
1 − x2

4 if |x | ≤ 2
0 if |x | > 2

Wigner’s result concerns the density of states of H on intervals with length of order
one, containing typically order N eigenvalues (we normalize Wigner matrices so that
the typical distance between eigenvalues in the bulk of the spectrum is of the order
1/N ). It is natural to ask what happens on smaller intervals, in which the typical
number of eigenvalues is large, but not macroscopically large. This question was first
addressed in [15–17], where the density of states of H was proven to converge towards
the semicircle law on microscopic intervals, containing a large but fixed number of
eigenvalues (independent of N ). In order to establish the convergence towards the
semicircle law, it is useful to study the Stieltjes transform m(z) of the Wigner matrix
H , defined for Im z > 0 by

m(z) = 1

N
Tr

1

H − z
= 1

N

N∑
α=1

1

λα − z
(1.1)

where λα, α = 1, . . . , N , denote the eigenvalues of H . We observe that

Im m(E + iη) = 1

N

N∑
α=1

η

(λα − E)2 + η2
. (1.2)

From (1.2) it is clear that the density of states in an interval of size η around E is
closely related to the imaginary part of the Stieltjes transform at the point z = E + iη.
To get information on the density of states on a small scale of order η, we need to
control the Stieltjes transform m at distances of order η from the real axis. In the limit
of large N ,m(z) approaches the Stieltjes transform of the semicircle law, given for all
x ∈ C\[−2; 2] by

msc(z) =
∫

dx
ρsc(x)

x − z
. (1.3)

There aremany reasons for analyzing the Stieltjes transform instead of looking directly
at the density of states. Since every eigenvalue contributes tom, it seems thatm should
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Stieltjes transform and the density of states of Wigner matrices 3

be more stable with respect to small fluctuations of the eigenvalues. More importantly,
theStieltjes transformmsc of the semicircle law satisfies the simplefixedpoint equation

msc(z) + 1

z + msc(z)
= 0. (1.4)

As a consequence, to prove that m is close to msc, it is enough to show that m is an
approximate solution of (1.4). Using this strategy and assuming the entries of H to
have subgaussian tails, it was shown in [17] (improving previous results from [15,16])
that, for every κ > 0, there exist constants C, c > 0 such that

P (|m(E + iη) − msc(E + iη)| ≥ δ) ≤ Ce−cδ
√
Nη (1.5)

for all |E | ≤ 2−κ (i.e. for E in the bulk of the spectrum). The estimate (1.5) establishes
the convergence of the Stieltjes transform m(E + iη) for all η � 1/N and implies
therefore the convergence of the density of states on all intervals of size η � 1/N . It is
important to observe that the scale η � 1/N is optimal. For η � 1/N , the number of
eigenvalues contained in an interval of size η is small and therefore the fluctuations of
the density of states cannot be neglected. It is clear therefore that on scales η � 1/N it
is impossible to have convergence in probability for the Stieltjes transform and for the
density of states (one has, however, convergence in expectation of the density of states,
if the probability density of the matrix entries is sufficiently regular; see [28]). While
(1.5) is optimal in the sense that it gives convergence for all η � 1/N , it turns out that
it is not optimal in the size of the fluctuations around msc. From (1.5), fluctuations are
at most of the order (Nη)−1/2. This bound was substantially improved in [22], where
the authors showed that, with high probability,

|m(E + iη) − msc(E + iη)| � (log N )c

Nη
(1.6)

uniformly in E . In fact, the results of [22] also apply to generalized Wigner matrices,
whose entries are not required to be identically distributed. Hence, up to logarith-
mic corrections, the fluctuations around msc are of the order (Nη)−1. An important
observation which was used in [22] to show (1.6) is the fact that not only the Stielt-
jes transform, given by the average of the diagonal entries G j j (z) = (H − z)−1 of
the resolvent, converges towards msc, but that also each G j j (z) approaches the same
limit. Making use of a vectorial fixed point equations for the diagonal entries of the
resolvent, it was proved in [22] that

|G j j (E + iη) − msc(E + iη)| � (log N )c√
Nη

. (1.7)

For the diagonal entries G j j of the resolvent, the rate predicted by (1.7) turns out to
be optimal, up to the logarithmic corrections. In order to improve the bound (1.7) to
the stronger rate on the r.h.s. of (1.6), two important observations are needed (which
go back to [22]); first of all, the expectation of G j j − msc turns out to be of order
(Nη)−1, hencemuch smaller than the typical size of |G j j−msc|. On the other hand, the
different resolvent entries are only weakly dependent on each other. As a consequence,
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4 C. Cacciapuoti et al.

the average

m(E + iη) − msc(E + iη) = 1

N

N∑
j=1

(
G j j (E + iη) − msc(E + iη)

)

exhibits substantial cancellations, which, similarly to what happens in the central limit
theorem, make its typical size much smaller than that of the single summands (in fact
the argument used in [22] is slightly different, controlling m − msc in terms of the
average of certain error terms Z j which are not exactly the same as G j j −msc; while
each Z j has a typical size of order (Nη)−1/2, the average is much smaller because they
are only weakly dependent random variables). To establish the validity of this picture,
terms arising in high moments ofm−msc are organized in [22] in contributions which
are either small or independent of an increasing number of variables. More recently, a
simpler expansion algorithm leading to bounds of the form (1.6) has been developed
in [10]; this paper is the basis for our analysis.

Our goal is to obtain estimates of the form (1.6) but without logarithmic corrections.
To simplify the analysis, we restrict our attention to Wigner matrices with identically
distributed entries. We believe, however, that similar arguments would also work for
generalizedWignermatrices, as considered in [10,22]. Thebounds inTheorem1below
establish the convergence of the imaginary part of the Stieltjes transform of Wigner
matrices towards the imaginary part of the Stieltjes transform of the semicircle law on
the optimal scale η � 1/N and with the optimal rate (Nη)−1, for arbitrary energies
E ∈ R. For energies inside the spectrum of H , Theorem 1 also gives convergence of
the real part of the Stieltjes transform on the optimal scale and with the optimal rate;
more precisely, it shows that

|m(E + iη) − msc(E + iη)| � 1

Nη

for all |E | ≤ 2 + η. The reason why we cannot prove the convergence of the real
part of the Stieltjes transform on the optimal scale and with the optimal rate outside
the spectrum of H (i.e. for |E | > 2 + η) is an instability of the equation for the
difference 	(E + iη) = m(E + iη) − msc(E + iη); we will discuss this point after
Proposition 2.2. If we assume E to be well inside the bulk of the spectrum of H
(i.e. |E | ≤ 2 − κ , for an arbitrary but fixed κ > 0) then Theorem 2 strengthens the
result of Theorem 1, showing a faster decay of the probability. To prove Theorem 1
and Theorem 2, we follow the general strategy of [10,22]. Since we do not allow
logarithmic corrections, however, we need to modify several steps of the proof and, in
particular, of the expansion algorithm. Since our small probabilities are independent
of N , we cannot estimate the probability of unions of many bad events with the trivial
union bound. Compared with [10,22], we have to work with high moments, instead of
taking probabilities; similar ideas were used in [17] to prove the convergence towards
the semicircle law on the optimal scale (but, in that case, not with the optimal rate).

As an application of the optimal convergence of the Stieltjes transform, we obtain
in Theorem 3 bounds on the rate of convergence of the eigenvalue counting function
n(E) = N−1|{α = 1, . . . , N : λα ≤ E}| and of the density of states. More precisely
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we show that

|n(E) − nsc(E)| � log N

N
(1.8)

for all E ∈ R. Notice that, to prove (1.8), convergence of the imaginary part ofm(E +
iη) is not enough, we really need convergence of the full Stieltjes transform, including
its real part. Fortunately, Theorem 1 does imply convergence of Re m(E + iη), for
|E | ≤ 2. This allows us to prove that, with high probability, there are at most K log N
eigenvalues outside the interval [−2; 2]; hence, we can establish convergence of the
eigenvalue counting function n(E) for all E ∈ R.

Another application of the convergence of the Stieltjes transform is the rigidity of
the eigenvalues ofWigner matrices. In Theorem 4we show that, with high probability,
the distance between an eigenvalue λα of the Wigner matrix H and the location γα

of the same eigenvalue as predicted by the semicircle law is smaller than (log N )/N .
The results that we obtain in Theorem 3 and in Theorem 4 on the eigenvalue count-
ing function, the density of states and the rigidity of the eigenvalues improve similar
results from [10,22] by removing all logarithmic factors but one.While it is known that
these bounds cannot hold true without logarithmic corrections, one expects eigenval-
ues to fluctuate on the scale

√
log N/N , rather than on the scale (log N )/N obtained

in Theorems 3 and 4 (for GUE and for hermitian ensembles whose entries have four
moments matching GUE, this follows from the results of [24] and, respectively, [32],
where the eigenvalues are shown to be, asymptotically, gaussian). We remark, more-
over, that bounds for the rate of convergence of the eigenvalue counting function, as
well as rigidity estimates for the eigenvalues of Wigner matrices, have been recently
obtained in [23]. Roughly speaking, the authors of [23] show with methods which are
different from the ones of [10,22] and of the present paper, that, with high probability,
|n(E) − nsc(E)| � (log N )4/N .

In the last years, there has been a lot of progress in the mathematical understanding
of the statistical properties of the eigenvalues of Wigner matrices. As indicated above,
the validity of the semicircle law for the density of states on microscopic scales was
established in [15–17]. In the same works, the local semicircle law was applied to
show the complete delocalization of the eigenvectors of Wigner matrices and to prove
the repulsion among the eigenvalues. In [12], the validity of the semicircle law on
microscopic intervals was used (in combination with [26]) to prove the (bulk) univer-
sality of the local eigenvalue statistics of hermitianWigner matrices; independently of
the choice of the law of the entries, the eigenvalue correlation functions always con-
verge towards the sameWigner–Dyson distribution observed for the Gaussian Unitary
Ensemble. At the same time, a different proof of universality for hermitian Wigner
matrices was obtained in [32] (the two results have been combined in [14]). Soon after,
a new argument, based on the introduction of a relaxation flow approximating Dyson
Brownian motion, was introduced in [18] to prove bulk universality of Wigner matri-
ces with arbitrary symmetry. In all these proofs of universality, the local convergence
of the density of states was a crucial ingredient. In [21], local convergence towards the
semicircle law and universality were extended to generalized Wigner matrices. Uni-
versality at the edge of the spectrum was proven in [31] and more recently in [22,33];
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6 C. Cacciapuoti et al.

a necessary and sufficient condition on the decay of the matrix entries to obtain edge
universality has been proven in [27]. For sample covariance matrices, local conver-
gence towards theMarchenko–Pastur law [29] and universality of the local eigenvalue
statistics were determined in the bulk [19,34] and at the soft edge [30,36]. Local con-
vergence towards the Marchenko–Pastur law at the hard edge of the spectrum was
proven in [3] and, implicitly, in [1,35]. The local convergence towards the circular law
for the density of states of non-symmetric random matrices with independent entries
was established in [1,2,35,38]. We notice that the local convergence of the density
of states and delocalization of eigenvectors have also been obtained, in the last years,
for more structured ensembles, such as the adjacency matrices of Erdős–Rényi graphs
[9,11] and band matrices [5–8]. A nice overview on these and other results can be
found in [4].

Next, we present our results in more details. Let H = (h�j ) be an N × N hermitian
Wigner matrix, with entries h j j = x j j/

√
N on the diagonal and

h�j = 1√
N

(x�j + iy�j )

for all � < j where x j j , x�j , y�j are independent random variables. The off-diagonal
variables x�j , y�j are identically distributed with E x�j = 0 and E x2�j = 1/2. The

diagonal entries xii are also identically distributed with E xii = 0 and Ex2i i = 1 (in
fact the variance of the diagonal entries is not important, it should only be finite). We
assume that the common distribution ν of x�j , x j j and y�j has subgaussian decay, i.e.,
there exists δ0 > 0 such that ∫

R

eδ0x2dν(x) < ∞. (1.9)

This implies that E|xi j |2q ≤ (Cq)q for any q ≥ 1. We define the Stieltjes transform
m(z) of H by (1.1) and the Stieltjes transform msc(z) of the semicircle law by (1.3).

Theorem 1 Assume (1.9) and fix η̃ > 0.

(i) There exist constants M0, N0,C, c, c0 > 0 such that

P

(
|m(E + iη) − msc(E + iη)| ≥ K

Nη

)
≤ (Cq)cq

2

Kq
(1.10)

for all η ≤ η̃, |E | ≤ 2 + η, K > 0, N > N0 such that Nη ≥ M0, q ∈ N with
q ≤ c0(Nη)1/8.

(ii) For any Ẽ > 0 there exist constants M0, N0,C, c, c0 > 0 such that

P

(
| Im m(E + iη) − Im msc(E + iη)| ≥ K

Nη

)
≤ (Cq)cq

2

Kq
(1.11)

for all η ≤ η̃, |E | ≤ Ẽ, K > 0, N > N0 such that Nη ≥ M0, q ∈ N with
q ≤ c0(Nη)1/8.
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Stieltjes transform and the density of states of Wigner matrices 7

In the bulk of the spectrum, away from the edges, we can improve the bound (1.11),
showing that it holds for all q ∈ N [in contrast to (1.11), which we only prove under
the additional condition q ≤ c(Nη)1/8].

Theorem 2 Assume (1.9), fix η̃ > 0 and κ > 0. Then there exist constants
M0, N0,C, c > 0 such that

P

(
|m(E + iη) − msc(E + iη)| ≥ K

Nη

)
≤ (Cq)cq

2

Kq

for all E ∈ [−2+ κ; 2− κ], K > 0, N > N0, η ≤ η̃ such that Nη ≥ M0 and q ∈ N.

As an application of Theorem 1, we prove the convergence of the counting function
of the eigenvalues. We define

n(E) = 1

N
|{α : λα ≤ E}|

and compare it with the cumulative distribution of the semicircle law, defined by

nsc(E) =
∫ E

−∞
ρsc(x)dx .

Theorem 3 Assume (1.9). Then there exists constants N0,C, c > 0 such that

P

(
|n(E) − nsc(E)| ≥ K log N

N

)
≤ (Cq)cq

2

Kq
(1.12)

for all E ∈ R, K > 0, N > N0, q ∈ N.

Remark Theorem 3 immediately implies the convergence of the density of states. Let
N [a; b] denote the number of eigenvalues in the interval [a; b]. From (1.12), we find

P

(∣∣∣∣∣N [E − ξ
2N ; E + ξ

2N ]
ξ

− ρsc(E)

∣∣∣∣∣ ≥ K log N

ξ

)
≤ (Cq)cq

2

Kq
(1.13)

for all ξ > 0.

Another application of Theorem 1 is the rigidity of the eigenvalues of H , as stated
in the following theorem. Recall that the classical location of the α-th eigenvalue, here
denoted by γα , is defined by

∫ γα

−∞
ρsc(x)dx = α

N
1 ≤ α ≤ N
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8 C. Cacciapuoti et al.

Theorem 4 Assume (1.9). For α = 1, . . . , N , let α̂ = min{α, N +1−α}. Then there
exist constants C, c, N0, ε > 0 such that

P

(
|λα − γα| ≥ K log N

N

(
N

α̂

) 1
3
)

≤ (Cq)cq
2

Kq
(1.14)

for all N > N0, K > 0, q ∈ N with q ≤ N ε.

Remark In contrast with (1.10) and (1.11), the bounds (1.12), (1.13) and (1.14) are
not optimal. By the results of [24] for GUE, the eigenvalues are expected to fluctuate
on the scale

√
log N/N .

The plan of the paper is as follows. In Sect. 2 we collect some preliminary results
which will be needed in our analysis. In particular, we prove some bounds on the
Stieltjes transform of the semicircle law, and we discuss certain algebraic identities
concerning the entries of the resolvent G(z) = (H − z)−1. In Sect. 3, we derive a
first non-optimal estimate on the fluctuations of the Stieltjes transform m around msc,
see, in particular, Lemma 3.5. In Sect. 4, we prove Theorem 1, assuming a bound
for the high moments of certain error terms, as stated in Lemma 4.1. Section 5 is
then devoted to the proof of Lemma 4.1; it is here that, to obtain optimal bounds on
m−msc, we make use of an expansion algorithm similar to the one introduced in [10].
In Sect. 6, we prove Theorem 2. Finally, in Sect. 7 and Sect. 8, we prove Theorem 3
and, respectively, Theorem 4.

2 Preliminary results

2.1 Properties of the Stieltjes transform of the semicircle law

In the next proposition, we give simple proofs of several useful bounds on the Stieltjes
transform msc of the semicircle law, as defined in (1.3).

Proposition 2.1 Let z = E + iη. For arbitrary E ∈ R and η > 0, we have (1 +
|z|)−1 < |msc(z)| < 1 and the bounds

Im msc(z)

|m2
sc(z) − 1| ≤ 1 and

η

|m2
sc(z) − 1| ≤ √

η (1 + √
η). (2.1)

Proof We rewrite the equation for msc(z) as

z + msc(z) = − 1

msc(z)
. (2.2)

Writing explicitly the real and imaginary part we get

(Re msc(z))

(
1 + 1

|msc(z)|2
)

+ i (Im msc(z))

(
1 − 1

|msc(z)|2
)

= −E − iη.
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Stieltjes transform and the density of states of Wigner matrices 9

Therefore, we get

(1 − |msc(z)|2) Im msc(z) = η|msc(z)|2. (2.3)

Since Im msc(z) > 0 for η > 0, it follows that |msc(z)| < 1. The bound |msc(z)| >

(1 + |z|)−1 follows then immediately from (2.2).
To prove the first bound in (2.1), we rewrite

|m2
sc(z) − 1| = |msc(z) − 1||msc(z) + 1|.

We distinguish two cases. If |Re msc(z) − 1| ≥ 1, we use |msc(z) − 1| ≥ 1 and
|msc(z)+1| ≥ Im msc(z). If |Re msc(z)−1| ≤ 1we use |msc(z)+1| ≥ |Re msc(z)+
1| ≥ 2 − |Re msc(z) − 1| ≥ 1 and |msc(z) − 1| ≥ Im msc(z). In both cases, we find
|m2

sc(z) − 1| ≥ Im msc(z).
Also to prove the second bound in (2.1), we distinguish two cases. If Im msc(z) ≥√
η, we use

|m2
sc(z) − 1| ≥ Im msc(z) ≥ √

η ≥
√

η

1 + √
η
.

If, on the other hand, Im msc(z) ≤ √
η, Eq. (2.3) gives

η |msc(z)|2 = (1 − |msc(z)|2) Im msc(z) ≤ √
η (1 − |msc(z)|2)

and therefore

|msc(z)|2 ≤ 1

1 + √
η
.

The desired bound follows then from |m2
sc(z) − 1| ≥ 1 − |msc(z)|2. 
�

2.2 Identities for resolvent entries and for the Stieltjes transform

We use the following notation

G(z) = (H − z)−1

for the resolvent of the Wigner matrix H , so that

m(z) = 1

N
Tr G(z).

To shorten the notation, we will often omit from the notation the dependence on z
from the resolvent G(z) and from the Stieltjes transform m(z) (and also from the
Stieltjes transform of the semicircle law msc(z)), writing G ≡ G(z), m ≡ m(z) (and
msc ≡ msc(z)).
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10 C. Cacciapuoti et al.

We denote by H ( j) the j-th minor of the matrix H and by G( j) the matrix G( j) =
(H ( j) − z)−1. For any j = 1, . . . , N , we can express the ( j, j)-entry of the resolvent
G as

G j j = 1

h j j − z − a∗
j G

( j)a j
(2.4)

where a j ∈ C
N−1 is a vector, whose components are the off-diagonal entries of the

j-th column of H . We will label the components of a j with indices in {1, . . . , N }\{ j}.
To compare the diagonal entries of G with the diagonal entries of G( j), we will

make use of the identity

Gkk = G( j)
kk + G jkGkj

G j j
(2.5)

valid for all k �= j . A proof of (2.4) and of (2.5) can be found, for example in [4].
Let

	(z) = m(z) − msc(z).

Also in this case, we will often omit the z dependence from the notation, writing just
	 ≡ 	(z). Next, we are going to obtain a self-consistent equation for 	; we follow
here Section 5.1 in [10]. From (2.4), we have

G j j = − 1

−h j j + z + (I − E j ) a∗
j G

( j)a j + E j a∗
j G

( j)a j

where E j denotes the expectation with respect to a j . Since the components of a j are
independent of G( j), we find

E j a∗
j G

( j)a j = 1

N

∑
k �= j

G( j)
kk = m + 1

N

∑
k �= j

(G( j)
kk − Gkk) − 1

N
G j j .

Hence

G j j = − 1

z + msc + 	 + ϒ j
(2.6)

with

ϒ j = −h j j − 1

N
G j j − 1

N

∑
k �= j

(Gkk − G( j)
kk ) + (I − E j )a∗

j G
( j)a j

= −h j j − 1

G j j

1

N

∑
k

G jkGkj + (I − E j )a∗
j G

( j)a j . (2.7)
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Stieltjes transform and the density of states of Wigner matrices 11

Setting

g j = G j j − msc,

we find from (2.6) that

g j = msc(	 + ϒ j )G j j . (2.8)

Averaging over j , we find

	 = 1

N

N∑
j=1

g j = msc	

N

N∑
j=1

G j j + msc

N

N∑
j=1

ϒ j G j j

= m2
sc	 + msc	

2 + msc

N

N∑
j=1

ϒ j G j j

and hence, rearranging the terms and dividing by msc,

	2 + m2
sc − 1

msc
	 + R = 0 (2.9)

where we set

R = 1

N

N∑
j=1

ϒ j G j j . (2.10)

Using Eq. (1.4), we can rewrite (2.9) as

	2 + (2msc + z)	 + R = 0 (2.11)

This quadratic equation for 	 has two solutions. However, only one of them satisfies
the condition Im 	 > −Im msc. We find

	 = −msc − z

2
+
√(

msc + z

2

)2 − R (2.12)

where, for any w ∈ C, we denote by
√

w the square root of w with Im w ≥ 0 (for w

real and positive, we choose
√

w ≥ 0). Notice that, since

msc(z) = − z

2
+
√
z2

4
− 1.

123



12 C. Cacciapuoti et al.

for any z with Im z > 0, we can write

	 = −
√
z2

4
− 1 +

√
z2

4
− 1 − R (2.13)

In the following proposition we use the algebraic identity (2.12) to bound |	| and
|Im 	| in terms of |R|. These bounds are crucial in the proof of Theorem 1.

Proposition 2.2 Let z = E + iη. As in (2.10) and (2.12), (2.13) we use the shorthand
notations 	 = 	(z) and R = R(z). There exists a constant C > 0 such that

|	| ≤ C min

{ |R|
|m2

sc − 1| ,
√|R|

}
(2.14)

for all η > 0 and |E | ≤ 2 + η and such that

| Im 	| ≤ C min

{ |R|
|m2

sc − 1| ,
√|R|

}
(2.15)

min (|	|, |	 + (2msc + z)|) ≤ C
√|R| (2.16)

for all η > 0 and E ∈ R.

Remark Note that, for |E | > 2 + η, Proposition 2.2 only controls the imaginary part
of 	 in terms of R. This is the origin of the distinction between part (i) and part (ii) of
Theorem 1. The reasonwhywe cannot control the real part of	 for |E | > 2+η is clear
from (2.13). Recall that

√
w denotes the square root ofw with positive imaginary part,

which is discontinuous across the positive real axis. For |E | > 2+η, Re (z2/4−1) > 0
and |Im (z2/4 − 1)| = |E |η/2 can be very small (for small η). For this reason even
for very small |R| it is possible that z2/4 − 1 and z2/4 − 1 − R are on opposite
sides of the positive real axis. In this case, 	 � −2

√
z2/4 − 1 would not be small.

Notice, however, that the discontinuity of the square root concerns only its real part;
the imaginary part is continuous on the whole complex plane. This is why we still get
control of the imaginary part of 	 in (2.15) also for |E | > 2 + η.

Proof As before we denote by
√

w the square root of w ∈ C with Im w ≥ 0 (and
with

√
w > 0 for w > 0 real). We claim that

• for any fixed c > 0, there exists a constant C > 0 such that

∣∣∣√a + b − √
a
∣∣∣ ≤ C

|b|√|a| + |b| (2.17)

for all a, b ∈ C with |Im a| ≥ cRe a.
• there exists a constant C > 0 such that∣∣∣Im √

a + b − Im
√
a
∣∣∣ ≤ C

|b|√|a| + |b| (2.18)

for all a, b ∈ C.
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Stieltjes transform and the density of states of Wigner matrices 13

The bounds (2.14) and (2.15) follow directly from (2.12), (2.13), applying (2.18)
and, respectively, (2.17) with a = (msc + z/2)2 = (m2

sc − 1)2/m2
sc and b = −R

(since |msc| ≤ 1; see Proposition 2.1). Here, to prove (2.14), we use the fact that
a = z2/4 − 1, and therefore, with z = E + iη, that

Re a = E2 − η2

4
− 1 and Im a = Eη

2

This implies that |Im a| ≥ cRe a for all |E | ≤ 2 + η (for |E | ≤ 2, Re a < 0 and the
bound |Im a| ≥ cRe a is trivial).

To prove (2.16), we observe from (2.11) that 	(	 + (2msc + z)) = −R. This
implies that

|	 + (2msc + z)| = |R|
|	|

and hence that either |	| ≤ √|R| or |	 + (2msc + z)| ≤ √|R|.
We conclude with the proof of the bounds (2.17) and (2.18). Both estimates clearly

hold when |b| > |a|/2, since then
∣∣∣√a + b − √

a
∣∣∣ ≤ C |b|1/2 ≤ C

|b|√|a| + |b|

Hence, we can assume that |b| ≤ |a|/2. If |Im a| ≥ cRe a, we have Im
√
a ≥ c̃ |a|1/2

for an appropriate constant c̃ > 0. This implies that∣∣∣√a+b−√
a
∣∣∣= ∣∣∣∣ b√

a+b+√
a

∣∣∣∣≤ |b|
Im

√
a+Im

√
a+b

≤C
|b|

|a|1/2 ≤C
|b|√|a|+|b|

from the assumption |b| ≤ |a|/2 and because Im
√
a + b ≥ 0.

It remains to prove (2.18) for |Im a| < cRe a and |b| ≤ |a|/2. To this end, we
consider first the case a > 0 real. If Im b ≥ 0, we find∣∣∣Im √

a + b − Im
√
a
∣∣∣ ≤

∣∣∣√a + b − √
a
∣∣∣ ≤ |b|

|√a + b + √
a|

≤ |b|
Re

√
a + b + √

a
≤ |b|√

a
≤ C

|b|√|a| + |b|

since Re
√
a + b ≥ 0 and |b| < c |a|. If instead Im b < 0, we have (again, for a > 0

real) ∣∣∣Im √
a + b − Im

√
a
∣∣∣ =

∣∣∣Im √
a + b + Im

√
a
∣∣∣ ≤ ∣∣∣√a + b + √

a
∣∣∣

≤ |b|
|√a − √

a + b| ≤ |b|√|a| ≤ |b|√|a| + |b|

because, in this case, Re
√
a + b < 0.
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14 C. Cacciapuoti et al.

Now, we consider general a, b ∈ C with |Im a| < cRe a and |b| ≤ c |a|. Again,
we distinguish two cases. If Im (a + b) > 0, we have Re

√
a + b > 0 and therefore

∣∣∣Im √
a + b − Im

√
a
∣∣∣ ≤ |b|

Re
√
a

≤ |b|√|a| ≤ |b|√|a| + |b|
since the assumption |Im a| < cRe a implies that Re

√
a ≥ c

√|a|. Finally, let us
assume that Im (a + b) < 0. Then we find λ ∈ (0, 1) such that a + λb = d > 0 is
real. Hence, we can estimate∣∣∣Im √

a + b − Im
√
a
∣∣∣ ≤

∣∣∣Im √
a + b − Im

√
d
∣∣∣+ ∣∣∣Im √

d − Im
√
a
∣∣∣

=
∣∣∣Im √d + (1 − λ)b − Im

√
d
∣∣∣+ ∣∣∣Im √

d − λb − Im
√
d
∣∣∣

≤ C
|b|√|d| + |b| ≤ C

|b|√|a| + |b|
where we applied the bounds obtained above for a > 0 real. 
�

The inequalities in Proposition 2.2 are the starting point for all our estimates on the
random variable	. In the next section, wewill prove a non-optimal bound on	, based
on the second bound in (2.14), proportional to

√|R| [for z = E+ iη with |E | > 2+η,
we cannot apply (2.14); instead, we will control the imaginary part of 	 using (2.15)
and we will get some bound on its real part using (2.16)]. Afterwards, in Sect. 4, we
will prove Theorem 1, which gives an optimal estimate on |	|. To achieve this goal,
we will apply the first bound in (2.14), proportional to |R| in the bulk of the spectrum
(where the denominator |m2

sc − 1| is of order one) and we will use the second bound
in (2.14), proportional to

√|R|, close to the edges of the spectrum (where |m2
sc − 1|

is small). Also in this case, for |E | > 2 + η we cannot apply (2.14); instead, in this
region we will apply (2.15) (getting only a bound for the imaginary part of 	).

3 Non-optimal bound on � = m − msc

3.1 Bound on moments of ϒ j

According to (2.15) and (2.14), in order to show smallness of	we need bounds on the
quantity R = N−1∑N

j=1 ϒ j G j j , introduced in (2.10). We will prove in Lemma 3.4
that the diagonal entries G j j of the resolvent are bounded with high probability, hence
it is possible to bound R by controlling the coefficients ϒ j . This is the goal of the next
lemma.

Lemma 3.1 Assume (1.9). Let ϒ1 be defined as in (2.7). Then there exists a universal
constant C such that

E|ϒ1|2q ≤ (Cq)2q
(

(Im msc)
q + E| Im 	|q
(Nη)q

+ 1

(Nη)2q
+ 1

Nq

)
(3.1)

for all E ∈ R, N ≥ 1, η ≥ 1/N and q ∈ N.
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Stieltjes transform and the density of states of Wigner matrices 15

Remarks Of course, the same bound is valid for ϒ j , for any j = 2, . . . , N , since all
these variables have the same law. From (3.1), we conclude that the typical size of
|ϒ j | is of the order (Nη)−1/2 (assuming that Im 	| is at least bounded by a constant).
Combined with an upper bound on the diagonal entries of the resolvent, this would
allow us to show that R = N−1∑

j ϒ j G j j is at most of the order (Nη)−1/2. From

(2.14), thiswould imply (at least in the bulk of the spectrum) that |	| � (Nη)−1/2,with
high probability. This result, however, is still far from the optimal bound |	| � (Nη)−1

that we are aiming at. To obtain the optimal bound, it is crucial to use the cancellations
among the different terms in the average defining R. We will do so in Sects. 4 and 5.

Proof We observe that

∣∣∣∣∣ 1

G11

1

N

N∑
k=1

G1kGk1

∣∣∣∣∣ = |(G2)11|
N |G11| .

Since

|(G2(z))11| = |〈e1,G2(z)e1〉| ≤ ‖G∗(z)e1‖‖G(z)e1‖ ≤ |G(z)|211
and

|G(z)|2 = G(z)G(z̄) = Im G(z)

η
(3.2)

we obtain

|(G2(z))11| ≤ Im G11(z)

η

and therefore

∣∣∣∣∣ 1

G11

1

N

N∑
k=1

G1kGk1

∣∣∣∣∣ ≤ 1

Nη

and hence, using also the assumption (1.9), we find

E |ϒ j |2q ≤ (Cq)q

Nq
+ 1

(Nη)2q
+ Cq

E|Z j |2q

where we defined

Z j = (I − E j ) a∗
j G

( j)a j . (3.3)

The claim now follows from Proposition 3.2 below, where we bound the moments of
Z j . 
�
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16 C. Cacciapuoti et al.

In the next proposition, we bound the moments of the variable Z1, defined in (3.3),
in terms of the moments of Im 	.

Proposition 3.2 Assume (1.9) and let Z1 be defined as in (3.3). Then there exists a
constant C > 0 such that

E |Z1|2q ≤ (Cq)2q
(

(Im msc)
q + E| Im 	|q
(Nη)q

+ 1

(Nη)2q

)
, (3.4)

for all E ∈ R, N ≥ 1, η ≥ 1/N and q ∈ N.

Proof We keep the randomness in the entries of the minor H (1) fixed. By the Hanson–
Wright large deviation estimate, the fluctuations of the quadratic form around its
mean can be controlled by the Hilbert–Schmidt norm of G(1). In fact, it follows from
Proposition 9.1 that

P1

(∣∣∣(I − E1) a∗
1G

(1)a1
∣∣∣ ≥ t

)
≤ C exp

(
− ct N(

Tr |G(1)|2)1/2
)

and therefore that

E |Z1|2q = E

∫ +∞

0
P1

(
|(I − E1)a∗

1G
(1)a1|2q ≥ t

)
dt ≤ (Cq)2q E

(
Tr |G(1)|2

N 2

)q

.

To conclude the proof of (3.4), we notice that, similarly to (3.2),

|G(1)(z)|2 = Im G(1)(z)

η
(3.5)

and hence that

Tr |G(1)|2
N 2 = 1

N

1

Nη
Im
∑
k �=1

G(1)
kk

= − 1

N

1

Nη
Im

1

G11

∑
k

Gk1G1k + Im m

Nη

≤ 1

(Nη)2
+ Im msc + | Im 	|

Nη
. (3.6)


�

3.2 Bound on moments of 	 in terms of moments of G11

In the next lemma, we estimate the moments of |Im 	| in terms of the moments of the
diagonal entries of the resolvent. In the region |E | ≤ 2 + η, the lemma also gives a
bound on the moments of |	| (including also the real part of 	).
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Stieltjes transform and the density of states of Wigner matrices 17

Lemma 3.3 Assume (1.9), fix η̃ > 0 and set z = E + iη.

(i) There exists a constant C > 0 such that

E|	|2q ≤ (Cq)4q/3

(Nη)q/2

[
(E|G11|2q)2/3 + 1

]
, (3.7)

for all |E | ≤ 2 + η, η ≤ η̃, N ≥ 1 such that Nη ≥ 1, and for all q ∈ N.
(ii) There exists a constant C > 0 such that

E| Im 	|2q ≤ (Cq)4q/3

(Nη)q/2

[
(E|G11|2q)2/3 + 1

]
, (3.8)

for all E ∈ R, η ≤ η̃, N ≥ 1 such that Nη ≥ 1, and for all q ∈ N.

Proof We show (3.8). To this end, we use the bound (2.15) proportional to
√|R|. We

find

E|Im 	|2q ≤ Cq
E|R|q ≤ Cq

E

∣∣∣∣∣∣
1

N

∑
j

ϒ j G j j

∣∣∣∣∣∣
q

≤ Cq
E|ϒ1G11|q

≤ Cq
√

E|ϒ1|2q E|G11|2q

≤ (Cq)q
√

E|G11|2q
√

(Im msc)q + E| Im 	|q
(Nη)q

+ 1

Nq
+ 1

(Nη)2q
.

By Cauchy–Schwarz we find

E| Im 	|2q ≤ (Cq)q
√

E|G11|2q
(Nη)q/2

(
4
√

E| Im 	|2q + 1
)

.

Since x1/4 ≤ δx + δ−1/3 for all x, δ > 0, we find

E| Im 	|2q ≤ (Cq)4q/3

[(
E|G11|2q
(Nη)q

)2/3

+
(

E|G11|2q
(Nη)q

)1/2
]

≤ (Cq)4q/3

(Nη)q/2

[
(E|G11|2q)2/3 + 1

]
.

The bound (3.7) follows analogously, using (2.14) instead of (2.15). 
�

3.3 Bound on moments of G11

To obtain a (non-optimal) bound on themoments of |Im	| and (in the region |E | ≤ 2+
η) of |	|, we still need control on the moments of the diagonal entries of the resolvent.
This is the content of the following lemma, which makes use of the bound (2.16) (in
the region |E | ≤ 2, we could also apply (2.14) to arrive at the same conclusions).
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18 C. Cacciapuoti et al.

Lemma 3.4 Assume (1.9), fix Ẽ > 0 and η̃ > 0. We set z = E + iη and use the
shorthand notation G j j = G j j (z). Then there exist constants C0, M > 0 such that

E |G11|q ≤ Cq
0 , (3.9)

for all |E | < Ẽ, η ≤ η̃, N ≥ 1 such that Nη ≥ M, and for all q ∈ N with
q ≤ (Nη)1/4.

Proof We show first how to relate G11(E + iη/s) to G11(E + iη). We consider
G11(E + iν) as a function of ν, with fixed E . We find

d

dν
log G11(E + iν) = i

G11(E + iν)

〈
e1,

1

(H − E − iν)2
e1

〉
.

Taking absolute value, and arguing as in (3.5), we find

∣∣∣∣ ddν
log G11(E + iν)

∣∣∣∣ ≤ 1

|G11(E + iν)| ‖G(E + iν)e1‖ ‖G(E − iν)e1‖ ≤ 1

ν
.

Hence

|log G11(E + iη) − logG11(E + iη/s)| =
∣∣∣∣
∫ η

η/s
dν

d

dν
log G11(E + iν)

∣∣∣∣
≤
∫ η

η/s
dν

1

ν
= log s.

This gives

|Re log G11(E + iη) − Re log G11(E + iη/s)| ≤ log s

and therefore

log |G11(E + iη/s)| ≤ log |G11(E + iη)| + log s.

Exponentiating, we find

|G11(E + iη/s)| ≤ s |G11(E + iη)|. (3.10)

The proof of (3.9) now proceeds by induction in the distance η from the real axis. We
fix |E | ≤ Ẽ and we use the notation G11(E + iη) ≡ G11(η), and similarly for the
other quantities depending on z. To start the induction, we recall that for η ≥ 0.1,
|G11(η)| ≤ 10, so E|G11(η)|q ≤ 10q . Next, we assume that, for some η0 > 0,

E|G11(η0)|q ≤ Cq
0 for all 1 ≤ q ≤ (Nη0)

1/4. (3.11)

We show that the same bounds hold true, if we replace η0 by η1 = η0/16.
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Stieltjes transform and the density of states of Wigner matrices 19

We set s = 16 in (3.10); from the assumption (3.11) we get that

E|G11(η1)|q ≤ (50C0)
q (3.12)

for any q ≤ (Nη0)
1/4. To iterate further this bound, we need to improve it and get back

to the constant Cq
0 . To this end, we recall the identity G11 = msc +msc(	 + ϒ1)G11

[see (2.8)], valid for all z ∈ C. On the one hand, this implies that

|G11| ≤ 1 + |	||G11| + |ϒ1||G11|. (3.13)

for all z ∈ C. On the other hand, it also implies that

G11 = msc + msc(	 + 2msc + z + ϒ1)G11 − msc(2msc + z)G11

Since 1 + msc(2msc + z) = m2
sc, we conclude that

|G11| ≤ 1

|msc| + 1

|msc| |	 + 2msc + z||G11| + 1

|msc| |ϒ1||G11|.

Using the bound |msc|−1 ≤ 1 + |z|, and combining with (3.13), we obtain that there
exists a constant C depending on Ẽ and η̃ such that

|G11| ≤ C (1 + min (|	|, |	 + 2msc + z|) |G11| + |ϒ1||G11|)
≤ C

(
1 +√|R| |G11| + |ϒ1||G11|

)

for all z = E + iη with |E | ≤ Ẽ and 0 < η < η̃. In the second inequality, we used
(2.16). Taking the q-th moment, using the definition (2.10) and Cauchy–Schwarz, we
find

E|G11|q ≤ (3C)q
(
1 + (E|G11|2q)3/4(E|ϒ1|2q)1/4 + (E|G11|2q)1/2(E|ϒ1|2q)1/2

)
(3.14)

for all z = E + iη with |E | ≤ Ẽ and 0 < η < η̃. Plugging (3.8) into (3.1), we find

E|ϒ1|2q ≤ (C̃q)8q/3

(Nη)q

(
1 + (E|G11|2q)1/3

)

for all z = E + iη with |E | ≤ Ẽ and 0 < η < η̃. Next, we insert the last bound
into (3.14). We specialize to z = E + iη1 and to q ≤ (Nη1)

1/4 [which implies that
2q ≤ (Nη0)

1/4 and therefore that we can use (3.12) to bound E|G11|2q ]. We find
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20 C. Cacciapuoti et al.

E|G11(η1)|q ≤ (3C)q
(
1 + (C̃q)2q/3

(Nη1)q/4 (1 + (E|G11(η1)|2q)1/12)(E|G11(η1)|2q)3/4

+ (C̃q)4q/3

(Nη1)q/2 (1 + (E|G11(η1)|2q)1/6)(E|G11(η1)|2q)1/2
)

≤ (3C)q
(
1 + (C̃q)2q/3

(Nη1)q/4 (E|G11(η1)|2q)5/6

+ (C̃q)4q/3

(Nη1)q/2 (E|G11(η1)|2q)2/3
)

≤ (3C)q
(
1 + (C̃q)2q/3

(Nη1)q/4 (50C0)
5q/3 + (C̃q)4q/3

(Nη1)q/2 (50C0)
4q/3

)

≤ (3C)q
(
1 + Kq

(Nη1)q/12

)
.

for a constant K > 0dependingonly onC0 (andon the universal constant C̃). Choosing
first C0 > 6C and then M > K 12, it follows that, for Nη1 > M , Kq/(Nη1)

q/12 < 1
and therefore that

E|G11(η1)|q ≤ Cq
0 .

This concludes the proof of Lemma 3.4. 
�

3.4 Non-optimal bound on moments of 	

Combining Lemma 3.3 with Lemma 3.4, we obtain a non-optimal upper bound on the
moments of 	.

Lemma 3.5 Assume (1.9) and fix η̃ > 0. As usual, we set z = E + iη and denote
	 = 	(z).

(i) There exist constants C, M > 0 such that

E|	|q ≤ (Cq)
2q
3

(Nη)
q
4

for all 0 < η ≤ η̃, |E | ≤ 2+η, N ≥ 1 such that Nη ≥ M, and for all q ∈ N with
q ≤ (Nη)1/4.

(ii) Fix Ẽ > 0. Then there exist constants C, M > 0 such that

E|Im 	|q ≤ (Cq)
2q
3

(Nη)
q
4

for all 0 < η ≤ η̃, |E | ≤ Ẽ, N ≥ 1 such that Nη ≥ M, and for all q ∈ N with
q ≤ (Nη)1/4.
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4 Optimal bound on �; proof of Theorem 1

To prove Theorem 1, we will control the moments of the error term (2.10) through the
control parameters

Eq = max

{
1

(Nη)2q
,
(Im msc)

q + E|Im 	|q
(Nη)q

}
+ 1

Nq
.

We notice that, by definition, Eq ≥ (Nη)−2q . Moreover, assuming that E | Im 	|2q ≤
1 and E | Im 	|p ≤ 1 (by Lemma 3.5, we know that these assumptions hold true, for
max (p, 2q) ≤ (Nη)1/4), there exist universal constants C, c > 0 such that

cEp ≤ Eq ≤ CEq/p
p (4.1)

for all 1 ≤ q ≤ p. In fact, the second inequality is a consequence of E | Im 	|q ≤
(E | Im 	|p)q/p. The first inequality in (4.1), on the other hand, can be proven as
follows. If (Im msc)

p + E| Im 	|p ≤ (Nη)−p, then

Ep = 1

(Nη)2p
+ 1

N p
≤ 1

(Nη)2q
+ 1

Nq
≤ Eq .

If instead (Im msc)
p + E| Im 	|p > (Nη)−p, then

Ep = (Im msc)
p + E| Im 	|p
(Nη)p

+ 1

N p
.

For p ≥ 2q, we find (under the assumption that E | Im 	|p ≤ 1)

Ep ≤ 2

(Nη)2q
+ 1

N 2q ≤ 2Eq .

For q ≤ p < 2q, we write p = 2αq+ (1−α)q (with α = (p−q)/q) and we observe
that, by Hölder’s inequality (under the assumption E| Im 	|2q ≤ 1)

E| Im 	|p ≤ (E| Im 	|q)1−α (E| Im 	|2q)α ≤ (E| Im 	|q)1−α.

This gives

(Im msc)
p + E| Im 	|p
(Nη)p

≤ C

(
(Im msc)

q + E| Im 	|q
(Nη)q

)1−α ( 1

(Nη)2q

)α

≤ C max

{
1

(Nη)2q
,
(Im msc)

q + E| Im 	|q
(Nη)q

}

and proves that Ep ≤ CEq .
The proof of Theorem 1 is based on the following lemma.
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Lemma 4.1 Assume (1.9), fix Ẽ > 0 and η̃ > 0. Set z = E+iη. There exist constants
C, M, c0 > 0 such that

E

∣∣∣∣∣ 1N
∑
k

ZkGkk

∣∣∣∣∣
2q

≤ (Cq)cq
2E

1
2
4q ,

for all |E | ≤ Ẽ, 0 < η ≤ η̃, N ≥ 1 such that Nη ≥ M, and for all q ∈ N with
q ≤ c0(Nη)1/8.

Technically, the proof of this lemma is the main part of the paper. We defer it to the
next section. Assuming the result of Lemma 4.1, we can now proceed with the proof
of Theorem 1.

Proof of Theorem 1 We prove first the bound (1.11) for the imaginary part of 	.
According to (2.15), we need to control the moments of R = N−1∑N

j=1 ϒ j G j j .
Recalling the definition (2.7) of the coefficients ϒ j , we obtain

E|R|2q ≤Cq

⎛
⎜⎝E

∣∣∣∣∣∣
1

N

∑
j

hkk Gkk

∣∣∣∣∣∣
2q

+E

∣∣∣∣∣∣
1

N 2

∑
k, j

Gk jG jk

∣∣∣∣∣∣
2q

+E

∣∣∣∣∣ 1N
∑
k

ZkGkk

∣∣∣∣∣
2q
⎞
⎟⎠
(4.2)

where Zk = (I − Ek) a∗
kG

(k)ak . From the assumption (1.9) and Lemma 3.4, the first
term in the parenthesis can be bounded by

E

∣∣∣∣∣∣
1

N

∑
j

hkk Gkk

∣∣∣∣∣∣
2q

≤ E|h11G11|2q ≤ (Cq)q

Nq
(E|G11|4q)1/2 ≤ (Cq)q

Nq
(4.3)

for all 1 ≤ q ≤ (Nη)1/4. As for the second term on the r.h.s. of Eq. (4.2), we get

E

∣∣∣∣∣∣
1

N 2

∑
k, j

Gk jG jk

∣∣∣∣∣∣
2q

≤ E

⎛
⎝ 1

N 2

∑
k, j

|G jk |2
⎞
⎠

2q

≤ E

(
Im m

Nη

)2q

≤ Cq (Im msc)
2q + E| Im 	|2q
(Nη)2q

. (4.4)

Combining (4.3) and (4.4) with Lemma 4.1, we find

E|R|2q ≤ (Cq)cq
2E

1
2
4q (4.5)

for all 1 ≤ q ≤ c0(Nη)1/8. Next, we fix N , η and q with 1 ≤ q ≤ c0(Nη)1/8, and
we insert the last bound on the r.h.s. of (2.15). We distinguish several cases. We can
assume that
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(Im msc)
4q + E| Im 	|4q ≥ 1

(Nη)4q

since otherwise there is nothing to prove. In this case,

E2q = (Im msc)
2q + E| Im 	|2q
(Nη)2q

+ 1

N 2q = (Im msc)
2q + η2q + E| Im 	|2q

(Nη)2q
.

If E| Im 	|2q ≤ (Im msc)
2q + η2q , we use the bound proportional to |R| in (2.15).

We find

E| Im 	|q ≤ Cq
E|R|q

|m2
sc − 1|q ≤ (Cq)cq

2

|m2
sc − 1|q

(
(Im msc)

2q + η2q

(Nη)2q

) 1
2

≤ (Cq)cq
2

(Nη)q

[
Im msc

|m2
sc − 1| + η

|m2
sc − 1|

]q
.

From Proposition 2.1, we conclude

E | Im 	|q ≤ (Cq)cq
2

(Nη)q
. (4.6)

If, on the other hand, (Im msc)
2q + η2q ≤ E| Im 	|2q , we use the bound propor-

tional to |R|1/2 on the r.h.s. of (2.15). We find

E| Im 	|2q ≤ Cq
E|R|q ≤ (Cq)cq

2
(

E| Im 	|2q
(Nη)2q

) 1
2

.

This implies that E| Im 	|2q ≤ (Cq)2cq
2
/(Nη)2q and therefore that

E| Im 	|q ≤
√

E| Im 	|2q ≤ (Cq)cq
2

(Nη)q
.

Combined with (4.6), this implies that

P

(
| Im m(z) − Im msc(z)| ≥ K

Nη

)
≤ (Nη)q

Kq
E| Im 	|q ≤ (Cq)cq

2

Kq
.

for all 1 ≤ q ≤ c0(Nη)1/8 and concludes the proof of (1.11).
To prove (1.10), we proceed similarly, using however (2.15) instead of (2.14). 
�
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5 Proof of Lemma 4.1

We rewrite the quantity we are interested in in a more convenient form. Set

Wk = ZkGkk,

then

1

N

∑
k

ZkGkk = 1

N

∑
k

Wk = 1

N

∑
k

(I − Ek)Wk + 1

N

∑
k

EkWk .

By Hölder inequality we get

E

∣∣∣∣∣ 1N
∑
k

ZkGkk

∣∣∣∣∣
2q

≤ Cq
E

∣∣∣∣∣ 1N
∑
k

(I − Ek)Wk

∣∣∣∣∣
2q

+ Cq
E |E1W1|2q . (5.1)

Next we claim that under the assumptions of Theorem 1

E |E1W1|2q ≤ (Cq)4qE
1
2
4q (5.2)

and

E

∣∣∣∣∣ 1N
∑
k

(I − Ek)Wk

∣∣∣∣∣
2q

≤ (Cq)cq
2E

1
2
4q . (5.3)

Lemma 4.1 then follows by inserting the bounds (5.2) and (5.3) in (5.1). The rest of
this section is devoted to the proof of (5.2) and (5.3).

5.1 Proof of Eq. (5.2)

Recalling that

Zk = −(I − Ek)
1

Gkk
,

we find

EkWk = Ek
Gkk

(Ek
1

Gkk
)

(
(I − Ek)

1

Gkk

)2

= EkGkk Z2
k

(Ek
1

Gkk
)

. (5.4)

for any k = 1, . . . , N . To bound the denominator on the r.h.s. of the last equation, we
make use of the following lemma.
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Lemma 5.1 Assume (1.9) and fix Ẽ > 0, η̃ > 0. Set z = E+iη. There exist constants
c,C1, M > 0 such that

E

∣∣∣∣∣ 1

E1
1

G11

∣∣∣∣∣
q

≤ Cq
1 , (5.5)

for all |E | ≤ Ẽ, η ≤ η̃, N ≥ 1 such that Nη ≥ M, and for all q ∈ N with
q ≤ c(Nη)1/4.

Proof Define

G̃11 ≡ 1

E1
1

G11

= − 1
N−1
N m(1) + z − h11

with m(1) = 1
N−1 Tr G

(1). We notice that

∣∣∣∣ ddν
log G̃11(E + iν)

∣∣∣∣ =
∣∣∣∣∣ i + N−1

N
d
dν
m(1)

N−1
N m(1) + z − h11

∣∣∣∣∣ ≤ ν + N−1
N Im m(1)

ν| N−1
N m(1) + z − h11|

≤ 1

ν
.

As argued in the proof of Lemma 3.4, this implies that

|̃G11(E + iη/s)| ≤ s |̃G11(E + iη)|.
Next we observe that

G̃11 = G11 + G11̃G11Z1

where we recall the definition Z1 = (I − E1)a∗
1G

(1)a1 = (I − E1)G
−1
11 . From Propo-

sition 3.2 and Lemma 3.4 we get

E|̃G11|q ≤ Cq + (Cq)q

(Nη)q/2 (E|̃G11|3q)1/3,

provided 3q ≤ (Nη)1/4. Here we used the fact that |msc| < 1 and E| Im 	|3q ≤ 1 by
Lemma 3.5. At this point, we can use a bootstrap argument similar to the one used in
Lemma 3.4 to conclude the proof. 
�

Applying (5.5) to (5.4) and using also Lemma 3.4 and Proposition 3.2 we conclude
that

E |E1W1|2q ≤ (E|G11|8q) 1
4

⎛
⎝E

∣∣∣∣∣ 1

E1
1

G11

∣∣∣∣∣
8q
⎞
⎠

1
4

(E|Z1|8q) 1
2

≤ (Cq)4q
(

(Im msc)
4q + E| Im 	|4q
(Nη)4q

+ 1

(Nη)8q

) 1
2

,

This immediately implies (5.2).
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5.2 Preliminaries to the proof of Eq. (5.3): the expansion algorithm

In order to prove the bound (5.3), we will follow Theorems 4.6 and 4.7 in [10] to
expand the expectation on the l.h.s. in a sum over indices k1, . . . , k2q of products of
terms of the form

(I − Ek j )Wk j = (I − Ek j )

[
(I − Ek j )

1

Gk j k j

]
Gk j k j . (5.6)

In each one of these factors, we will expand further the resolvent entries (both in the
numerator and in the denominator) using the relation (2.5). The gain here is that we
either gain independence [the first term on the r.h.s. of (2.5) does not depend on the
randomness in the j-th row and column of the original matrix] or, alternatively, we
gain smallness [the second term on the r.h.s. of (2.5) has twomore off-diagonal entries,
which are typically of size (Nη)−1/2 � 1]. Recursively, we continue to expand the
resulting terms using either (2.5) or a similar formula for the off-diagonal entries [see
(5.7) below], either until there are no more variables over which we can expand (in
which casewe reachedmaximal independence) or until there are sufficientlymany off-
diagonal terms [to show that (2.5) is of the order (Nη)−2q ]. This type of expansions for
resolvent entries have first been applied in the analysis of Wigner matrices in [20–22];
we follow here the more recent work [10].

Next, we give a precise and detailed definition of the expansion algorithm. After-
wards, we apply it to the resolvent entries Gk j k j and 1/Gk j k j appearing in (5.6).

5.2.1 A general description of the expansion algorithm

Let T ⊂ {1, . . . , N } be a set of indices. We denote by H (T) the (N −|T|)× (N −|T|)
minor of the matrix H obtained by deleting the rows and columns of H corresponding
to the indices in T; the entries of the matrix H (T) are hi j with i, j ∈ {1, . . . , N }\T.
We denote by G(T) the matrix

G(T) =
(
H (T) − z

)−1
.

Rows and columns of G(T) are also labelled with indices i, j ∈ {1, . . . , N }\T.
Similarly to (2.5), we have (see, e.g., Eq. (4.6) in [10])

G(T)
i j = G(Tk)

i j + G(T)
ik G(T)

k j

G(T)
kk

∀i, j, k /∈ T and i, j �= k. (5.7)

Setting i = j , we find

G(T)
i i = G(Tk)

i i + G(T)
ik G(T)

ki

G(T)
kk

∀i, k /∈ T and i �= k (5.8)

and thus
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1

G(T)
i i

= 1

G(Tk)
i i

− G(T)
ik G(T)

ki

G(T)
i i G(Tk)

i i G(T)
kk

∀i, k /∈ T and i �= k. (5.9)

For any k = (k1, . . . , k2q), with ks ∈ {1, . . . , N } for s = 1, . . . , 2q, let P(k) be the
partition of {1, . . . , 2q} induced by the coincidences in k. In other words, P(k) is the
partition induced by the equivalence relation on {1, . . . , 2q} defined by r ∼ s if and
only if kr = ks . We denote, moreover, by P2q the set of all partitions of {1, . . . , 2q}.

Following [10], we can write the expectation on the l.h.s. of Eq. (5.3) as

E

∣∣∣∣∣ 1N
∑
k

(I − Ek)Wk

∣∣∣∣∣
2q

= 1

N 2q

∑
P∈P2q

∑
k

1(P(k) = P)V (k) (5.10)

where each coordinate of k = (k1, . . . , k2q) is summed over the set {1, . . . , N }, and
V (k) = E(I − Ek1)Wk1 · · · (I − Ekq )Wkq (I − Ekq+1)Wkq+1 · · · (I − Ek2q )Wk2q .

(5.11)

For any fixed k we say that s ∈ {1, . . . , 2q} is a lone label if ks �= kr for any
r ∈ {1, . . . , 2q}\{s}, i.e., if s is the only element in its equivalence class in the partition
P(k). We denote by L(k) the set of lone indices and by kL ⊂ k the set of coordinates
of k associated with lone labels.

For a fixed k, we say that a resolvent entry G(T)
i j with i, j �∈ T is maximally

expanded if kL ⊆ T∪{i, j}. Similarly, we say that a factorG(T)
i i or 1/G(T)

i i with i �∈ T

is maximally expanded, if kL ⊂ T ∪ {i}.
Let Q be a product of diagonal and/or off-diagonal resolvent entries of the form

Q = G(T)
i i or Q = 1

G(T1)
i1i1

· · · 1

G(Tl )
il il

G(Tl+1)

il+1 jl+1
· · ·G(Tl+m )

il+m jl+m
(5.12)

for arbitrary non-negative integers l,m and for ir �= jr and ir , jr /∈ Tr , and i /∈ T. We
assume the resolvent entries on the r.h.s. of Eq. (5.12) to be ordered in some way.

For fixed k, we define, similarly to [10], the operation w on monomials of the form
of Q.

– The operation w(Q) can be performed only if at least one resolvent entry in Q
(either in the numerator or in the denominator) is not maximally expanded.

– If at least one of the resolvent entries of Q is not maximally expanded,w acts only
on the first (according to the previously chosen order) resolvent entry of Q which
is not maximally expanded. We set then w(Q) = w0(Q) + w1(Q) where w0 and
w1 are defined by the following rules:
• If the first not maximally expanded resolvent entry is G(T)

i j , we use (5.7) to
define w0 and w1 in the following way:

G(T)
i j

w0−→ G(Tu)
i j and G(T)

i j
w1−→ 1

G(T)
uu

G(T)
iu G(T)

u j (5.13)
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where u is the smallest index such that u ∈ kL\(T ∪ {i, j}).
• the first not maximally expanded resolvent entry isG(T)

i i , we use (5.8) to define
w0 and w1 in the following way:

G(T)
i i

w0−→ G(Tu)
i i and G(T)

i i
w1−→ G(T)

iu G(T)
ui

G(T)
uu

(5.14)

where u is the smallest index such that u ∈ kL\(T ∪ {i}).
• If the first not maximally expanded resolvent entry is 1/G(T)

i i , we use (5.9) to
define w0 and w1 in the following way:

1

G(T)
i i

w0−→ 1

G(Tu)
i i

and
1

G(T)
i i

w1−→ − 1

G(T)
i i

1

G(T)
uu

1

G(Tu)
i i

G(T)
iu G(T)

ui

(5.15)

where u is the smallest index such that u ∈ kL\(T ∪ {i}).
• With this definition, we rewrite Q as w(Q) = w0(Q) + w1(Q) where w0(Q)

and w1(Q) are two new monomials in diagonal and off-diagonal resolvent
entries of the form (5.12).

For any starting monomial Q, we use the operation w repeatedly; we decompose Q
in a sum of terms having the form (5.12). To keep track of all the resulting terms, let
σ be a (ordered, finite) string of 0 and 1. For any fixed σ we construct, analogously to
[10], the monomial Qσ through the following recursion

Q0 = w0(Q) and Q1 = w1(Q)

and

Qσ ′0 = w0(Qσ ′) and Qσ ′1 = w1(Qσ ′).

To write Q as an appropriate sum of factors Qσ we apply recursively the operation w

as many times as allowed by the following stopping rule:

(SR) Continue to apply w to Qσ until either all the resolvent entries of Qσ are
maximally expanded or the number of off-diagonal resolvent entries in Qσ is
greater than 2q.

In this way we obtain

Q =
∑

σ∈LQ

Qσ

where LQ is the set of all strings σ such that Qσ satisfies the stopping rule.

5.2.2 Application to terms of the form (5.6)

We use now the expansion algorithm to expand terms of the form (5.6), which arise
from (5.3). We consider theinitial monomials Ar = 1/Gkr kr and Br = Gkr kr (in [10]
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there were only terms of the type Ar ; this is the reason why the operation (5.14) was
not used there). Applying the expansion algorithm presented in the previous section,
we find

Ar := 1

Gkr kr
:=
∑
σ∈Lr

Ar
σ (5.16)

and

Br := Gkr kr :=
∑

ρ∈Mr

Br
ρ (5.17)

where the sets Lr and Mr are chosen such that Ar
σ and Br

ρ satisfy the stopping rule
(SR).

We denote by γ (Ar
σ ) (respectively γ (Br

ρ)) the number of off-diagonal resolvent
entries in Ar

σ (respectively Br
ρ). From the stopping rule (SR), it follows that for all

σ ∈ Lr , we can have only two possibilities: either all resolvent entries in Ar
σ are

maximally expanded and γ (Ar
σ ) ≤ 2q, or alternatively, 2q + 1 ≤ γ (Ar

σ ) ≤ 2q + 2.
This follows because, by (5.13)–(5.15), the operation w increases the number of off-
diagonal resolvent entries by at most two. Analogously, we find for Br

ρ that, for all
ρ ∈ Mr , either all resolvent entries are maximally expanded and γ (Br

ρ) ≤ 2q, or,
alternatively, 2q + 1 ≤ γ (Br

ρ) ≤ 2q + 2.
We denote by δ(Ar

σ ) (respectively δ(Br
ρ)) the number of diagonal resolvent entries

in Ar
σ (respectively Br

ρ), appearing either in the numerator or in the denominator. We
note that the difference δ(Ar

σ ) − γ (Ar
σ ) is invariant with respect to the operation w

[because, when dealing with terms arising from the initial Ar , we only apply (5.13)
or (5.15), never (5.14)]. This implies that

δ(Ar
σ ) = γ (Ar

σ ) + 1. (5.18)

On the other hand, the difference δ(Br
ρ) − γ (Br

ρ) is not always invariant. In fact,
the operation w1 applied to a resolvent entry in the numerator, according to (5.14),
decreases it by two. We remark, however, that this operation can take place at most
once (because w1 in (5.14) removes the diagonal entry from the numerator). As a
consequence, we have either δ(Br

ρ) = 1 and γ (Br
ρ) = 0 (if the operation w1 in (5.14)

never occurs) or δ(Br
ρ)−γ (Br

ρ) = −1 (if the operationw1 in (5.14) takes place once).
We conclude that

δ(Br
ρ) = max{γ (Br

ρ) − 1, 1}. (5.19)

It follows from (5.18) and (5.19) and from the previous bounds on the number of
off-diagonal entries, that the number of diagonal entries in Ar

σ and Br
ρ is always

bounded by (2q + 3) (even by (2q + 1) in the Br
ρ terms). Hence the total number of

resolvent entries in Ar
σ and in Br

ρ (diagonal and off-diagonal, in the numerator and in
the denominator) is bounded by 4q + 5.
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Following [10], we denote by b(σ ) and b(ρ) the number of ones in the strings σ

and ρ, respectively. For any r ∈ {1, . . . , 2q} and for any σ ∈ Lr and ρ ∈ Mr , we
have:

1. If b(σ ) ≥ 1 then γ (Ar
σ ) ≥ b(σ ) + 1. Analogously, if b(ρ) ≥ 1 then γ (Br

ρ) ≥
b(ρ)+1. This follows from the observation that the first application ofw1 generates
[according to (5.14) and (5.15)] two off-diagonal entries while all further applica-
tions create [according to (5.13), (5.14), (5.15)] at least one additional off-diagonal
entry.

2. b(σ ) ≤ 2q and b(ρ) ≤ 2q. The first application of w1 generates two off-diagonal
terms. Each subsequent application ofw1 generates at least one more off-diagonal
term. Hence 2q applications of w1 create at least (2q + 1) off diagonal terms,
which are enough to satisfy the stopping rule (SR).

3. The number of zeros in the stringsσ and inρ is boundedby2q(4q+5). This follows
because every application of w0 produces one additional “top” index (indicating
that the generated entry is independent of on additional row and column). The
total number of “top” indices is bounded, however, by the number of resolvent
entries (which, as discussed above, is at most (4q + 5)) times 2q (the number of
coordinates of k).

4. The length of σ and ρ is bounded by 4q(2q + 3) (this follows combining the
bounds for the number of zeros and the number of ones in the strings).

5. Considering that the length of σ and ρ is at most 4q(2q + 3) and that the number
of ones is at most 2q, we can bound the cardinality of Lr and Mr by

|Lr |, |Mr | ≤
2q∑
k=0

(
4q(2q + 3)

k

)
≤ (Cq)2q . (5.20)

5.3 Preliminaries to the proof of Eq. (5.3): bounds on resolvent entries

We are going to use (5.16) and (5.17) to expand the initial resolvent entries Ar =
1/Gkr kr and Br = Gkr kr . To prove a bound of the form (5.3), we need to estimate the
resolvent entries appearing in the expanded terms Ar

σ and Br
ρ . More precisely, after

applying Hölder’s inequality to separate the many factors in the products Ar
σ , B

r
ρ , we

will need control on high moments of quantities of the form

|G(T)
kk |, 1

|G(T)
kk |

,

∣∣∣∣∣(I − Ek)
1

G(T)
kk

∣∣∣∣∣ , |G(T)
kl |. (5.21)

While the first two terms in (5.21) are typically of order one, the last two are expected
to be small. To show (5.3), it is important to extract the correct small factor in the
bounds for these quantities.

Bounds for moments of |Gkk | have already been obtained in Lemma 3.9. Similarly
one can also estimate moments of |G(T)

kk |, for T ⊂ {1, . . . , N } with |T| ≤ 2q and
k �∈ T.

123



Stieltjes transform and the density of states of Wigner matrices 31

Lemma 5.2 Assume (1.9), fix Ẽ > 0, η̃ > 0. Set z = E + iη. There exist constants
c,C, M1, M2 > 0 such that

E
1

|G(T)
11 |2q

≤ Cq

for all |E | ≤ Ẽ, η ≤ η̃, N > M1 such that Nη ≥ M2, q ∈ N with q ≤ c(Nη)1/4 and
T ⊂ {1, . . . , N } with |T| ≤ 2q.

Remark For T ⊂ {1, . . . , N } with |T| ≤ 2q, let 	(T) = m(T) − msc, where m(T) is
the Stieltjes transform of H (T). By the interlacing properties of the eigenvalues of H
and H (T) it is easy to check that |m − m(T)| ≤ C |T|/(Nη), which implies

E|	(T)|q ≤ Cq
E|	|q + (Cq)q

(Nη)q
and E| Im 	(T)|q ≤ Cq

E| Im 	|q + (Cq)q

(Nη)q
.

(5.22)

We will use this observation to reduce our analysis to the case T = ∅.
Proof By the above remark, we can take T = ∅. We have

E
1

|G11|2q = E|h11 − z − a∗
1G

(1)a1|2q ≤ (Cq)q

Nq
+ Cq + Cq

E |a∗
1G

(1)a1|2q

≤ Cq + Cq
E |a∗

1G
(1)a1|2q .

We write

E|a∗
1G

(1)a1|2q = E|a∗
1G

(1)a1 − E1a∗
1G

(1)a1 + E1a∗
1G

(1)a1|2q
≤ Cq(E|a∗

1G
(1)a1 − E1a∗

1G
(1)a1|2q + E|E1a∗

1G
(1)a1|2q).

(5.23)

For the first term we use the Hanson–Wright large deviation estimate (see Propo-
sition 3.2). We find

E|a∗
1G

(1)a1 − E1a∗
1G

(1)a1|2q ≤ (Cq)2q
(

(Im msc)
q + E| Im 	|q
(Nη)q

+ 1

(Nη)2q

)
≤ 1

since, by Lemma 3.5, E| Im 	|q < 1 for all q ≤ (Nη)1/4, and N large enough.
As for the second term on the r.h.s. of (5.23), we find

E|E1a∗
1G

(1)a1|2q = E

∣∣∣∣ 1N Tr G(1)
∣∣∣∣
2q

≤ Cq

(
E

∣∣∣∣ 1N Tr G

∣∣∣∣
2q

+ 1

(Nη)2q

)
≤ Cq

from E
∣∣ 1
N Tr G

∣∣2q ≤ E|G11|2q ≤ Cq (by Lemma 3.4). 
�
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To estimate the third term in (5.21), we recall that [similarly to (3.3)]

(I − Ek)
1

G(T)
kk

= −Z (T)
k ,

where we set Z (T)
k = (I − Ek)a

(T)∗
k G(T)a(T)

k , and where a(T)
l is the l-th column

of the matrix H without the elements corresponding to the labels in T. Applying
Proposition 3.2 to Z (T)

k and using the remark after Lemma 5.2, we find that (for
q ≤ N/2)

E

∣∣∣∣∣(I − Ek)
1

G(T)
kk

∣∣∣∣∣
2q

≤ (Cq)2q

(
(Im msc)

q + E| Im 	(T)|q
((N − |T|)η)q

+ 1

((N − |T|)η)2q

)

≤ (Cq)3qEq .

Finally, we show how to estimate the last term in (5.21). To this end, we use the
formula (see, e.g., Eq. (2.8) in [4])

G(T)
kl = G(T)

ll G(Tl)
kk (hkl − a(Tl)∗

k G(Tkl)a(Tk)
l ) = G(T)

ll G(Tl)
kk K (T)

kl (5.24)

valid for any k �= l, k, l ∈ {1, . . . , N }\T, with

K (T)
kl = (hkl − a(Tl)∗

k G(Tkl)a(Tk)
l ). (5.25)

Highmoments of the diagonal entriesG(T)
ll andG(Tl)

kk can be boundedwith Lemma 3.9.

High moments of K (T)
kl , on the other hand, are controlled (and shown to be small) in

the next lemma.

Lemma 5.3 Assume (1.9), set z = E + iη and let K (T)
kl be defined as in (5.25) (with

T = ∅). Then there exist constants c, c0,C, M1, M2 > 0 such that

E|K (T)
kl |2q ≤ (Cq)cqEq , (5.26)

for all E ∈ R, N > M1, η > 0 with Nη > M2, k �= l ∈ {1, . . . , N }, q ∈ N with
q ≤ c0N.

Proof By the remark following Lemma 5.2 we can restrict our attention to the case
T = ∅.

By the definition of Kkl we get

E|Kkl |2q ≤Cq
(
E|hkl |2q+E|a(l)∗

k G(kl)a(k)
l |2q

)
≤Cq

(
(Cq)q

Nq
+E|a(l)∗

k G(kl)a(k)
l |2q

)
.
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Let b(k) = G(kl)a(k)
l . Then

E|a(l)∗
k G(kl)a(k)

l |2q

= E|(a(l)
k ,b(k))|2q ≤ Cq

(
E

∣∣∣∣∣|(a(l)
k ,b(k))|2 − ‖b(k)‖2

N

∣∣∣∣∣
q

+ E
‖b(k)‖2q

Nq

)
.

Noticing that Ek |(a(l)
k ,b(k))|2 = N−1 ‖b(k)‖2, the Hanson–Wright large deviation

estimate (see Proposition 9.1) implies that

E

∣∣∣∣∣|(a(l)
k ,b(k))|2 − ‖b(k)‖2

N

∣∣∣∣∣
q

≤ (Cq)q E
‖b(k)‖2q

Nq
. (5.27)

Hence

E |a(l)∗
k G(kl)a(k)

l |2q ≤ (Cq)q E
‖G(kl)a(k)

l ‖2q
Nq

. (5.28)

Noticing that El‖G(kl)a(k)
l ‖2 = N−1 Tr |G(kl)|2, applying again Proposition 9.1, we

conclude that

E
‖G(kl)a(k)

l ‖2q
Nq

≤ Cq

⎛
⎝(Cq)q E

(
Tr |G(kl)|4

N 4

)q/2

+ E

(
Tr |G(kl)|2

N 2

)q
⎞
⎠

≤ (Cq)q

(
(Im msc)

q + E| Im 	(kl)|q
(Nη)q

+ (Im msc)
q
2 + E| Im 	(kl)| q2
(Nη)

3
2 q

)
,

(5.29)

where we used the bound Tr |G(kl)|4 ≤ η−2 Tr |G(kl)|2 and the estimate

1

N 2 Tr |G(kl)|2 = 1

Nη
Im m(kl) ≤ 1

(Nη)2
+ Im msc + | Im 	(k�)|

Nη

proven as in (3.6). Inserting (5.29) into (5.28) and then into (5.3), we find

E|Kkl |2q ≤ (Cq)2q

(
(Im msc)

q+E| Im 	(kl)|q
(Nη)q

+(Im msc)
q
2+E| Im 	(kl)| q2
(Nη)

3
2 q

+ 1

Nq

)
.

(5.30)

From the interlacing properties of the eigenvalues of H and of its minors, it is easy to
check that |m − m(kl)| ≤ C/(Nη). This implies that
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E| Im 	(kl)|q ≤ Cq
(
E| Im 	|q + E| Im m − Im m(kl)|q

)
≤ Cq

(
E| Im 	|q + 1

(Nη)q

)
,

and hence, from (5.30), that

E|Kkl |2q ≤ (Cq)2q

(
1

(Nη)2q
+ (Im msc)

q + E| Im 	|q
(Nη)q

+ (Im msc)
q
2 + E| Im 	| q2

(Nη)
3
2 q

+ 1

Nq

)
.

To conclude the proof, we observe that

(Im msc)
q
2 + E| Im 	| q2

(Nη)
3
2 q

≤ 1

(Nη)q

√
(Im msc)q + E | Im 	|q

(Nη)q

≤ 1

(Nη)2q
+ (Im msc)

q + E| Im 	|q
(Nη)q

.


�

5.4 Proof of Eq. (5.3)

For a fixed k we use (5.16) and (5.17) to expand V (k) in Eq. (5.11) as

V (k) =
∑

σ1∈L1
ρ1∈M1

· · ·
∑

σ2q∈L2q
ρ2q∈M2q

E((I − Ek1)((I − Ek1)A
1
σ1

)B1
ρ1

)

· · · ((I − Ek2q )((I − Ek2q )A
2q
σ2q )B

2q
ρ2q ).

We claim that∣∣∣∣E((I − Ek1)((I − Ek1)A
1
σ1

)B1
ρ1

) · · · ((I − Ek2q )((I − Ek2q )A
2q
σ2q )B

2q
ρ2q )

∣∣∣∣
≤ (Cq)cq

2E
1
2
2q+|L(k)| (5.31)

for any k, σ1 ∈ L1, ρ1 ∈ M1, . . . , σ2q ∈ L2q , ρ2q ∈ M2q and for all q ≤ c0(Nη)1/8

and (Nη) and N large enough. Here |L(k)| is the number of lone labels associated
with the vector k. Using the bounds (5.20) on the cardinality of the sets L j ,M j ,
(5.31) implies that

|V (k)| ≤ (Cq)cq
2E

1
2
2q+|L(k)|.

From Eq. (5.10), we get
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E

∣∣∣∣∣ 1N
∑
k

(I − Ek)Wk

∣∣∣∣∣
2q

≤ (Cq)cq
2

N 2q

∑
P∈P2q

∑
k

1(P(k) = P) E
1
2
2q+|L(k)|

≤ (Cq)cq
2 ∑
P∈P2q

1

N 2q−|P| E
1
2
2q+|L(P)|. (5.32)

Here we wrote |L(P)| to indicate the number of lone labels associated with any vector
k such that P(k) = P (it is clear that the number of lone labels only depends on the
partition P), and we used the fact that

|{k : P(k) = P}| ≤ N |P|

where |P| denotes the size of the partition P (the number of sets in which {1, . . . , 2q}
is divided). Since, by definition, Eq ≥ N−q , we have

1

N 2q−|P| E
1
2
2q+|L| ≤ E2q−|P| E

1
2
2q+|L| ≤ CE

2q−|P|
4q

4q E
1
2

(
2q+|L|

4q

)
4q = CE

1
2+ q+ |L|

2 −|P|
4q

4q ≤ CE
1
2
4q

(5.33)

where we used (4.1) and the bound

|P| ≤ |L| + 2q − |L|
2

⇒ q + |L|
2

− |P| ≥ 0.

Inserting (5.33) into (5.32), and using the fact that the number of partitions of 2q
elements is bounded by (Cq)q , we obtain that

E

∣∣∣∣∣ 1N
∑
k

(I − Ek)Wk

∣∣∣∣∣
2q

≤ (Cq)cq
2E

1
2
4q

which concludes the proof of (5.3).
Next, we prove Eq. (5.31), for fixed k, σ1, ρ1, . . . , σ2q , ρ2q . We distinguish two

cases.
Case 1 For any r ∈ {1, . . . , 2q} all resolvent entries in Ar

σr
and Br

ρr
are maximally

expanded.
The l.h.s. of (5.31) vanishes if there exists a lone label r such that, for all s ∈

{1, . . . , 2q}\{r}, the monomials As
σs

and Bs
ρs

do not depend on r , i.e. if there exists a
lone label r such that kr appears as an upper index in all resolvent entries in As

σs
, Bs

ρs
,

for all s ∈ {1, . . . , 2q}\{r}.
For r ∈ L(k), we say, following [10], that s ∈ {1, . . . , 2q}\{r} is a partner label of

r if kr appears as lower index in one of the resolvent entries of As
σs

or of Bs
ρs
. Since,

by the definition of the expansion algorithm, the same index cannot appear both as a
lower and as an upper index in the same resolvent entry, we conclude that non-zero
terms on the l.h.s. of Eq. (5.31) are characterized by the fact that for every lone label
r ∈ L(k) there exists at least one partner label s.
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We denote by �(s) the number of lone labels having s as a partner. In order for the
l.h.s. of (5.31) not to vanish, we must have (as remarked in [10])

2q∑
s=1

�(s) ≥ |L(k)|.

This follows because all resolvent entries are maximally expanded and therefore, for
every lone label r , and every s ∈ {1, 2, . . . , 2q}\{r}, kr either appears as lower label
in at least one resolvent entry in As

σs
or Bs

ρs
(in which case, s has r as a partner), or

every resolvent entry in As
σs

or Bs
ρs

has r as an upper index. This is the point where
the assumption that all entries are maximally expanded is used.

The combined number of lower indices different from ks in As
σs

and Bs
ρs

is at least
�(s). Since the operation w1 produces only one additional lower index, while w0 does
not produce new lower labels, we find that

b(σs) + b(ρs) ≥ �(s).

(Recall that b(σ ) denotes the number of ones occurring in the string σ ). We notice,
moreover, that for any T ⊆ {1, . . . , 2q} the operation w1, applied on a diagonal entry
like G(T)

kk or 1/G(T)
kk , adds a new lower index, associated with a lone label from L(k).

Since any subsequent operation will not remove the new lower index, �(s) = 0 if and
only if the strings σs and ρs contain only zeros. Since we assumed all entries to be
maximally expanded, we have that

�(s) = 0 if and only if As
σs

= 1

G(L(k)\{s})
ss

and Bs
ρs

= G(L(k)\{s})
ss . (5.34)

Let us assume that in the term on the l.h.s. of (5.31) there are t labels s1, . . . , st with
�(s j ) = 0. Then there will be u = 2q − t labels r1, . . . , ru with �(r j ) ≥ 1. Without
loss of generality we can assume the first t labels in (5.31) to be s1, . . . , st and the last
u labels to be r1, . . . , ru (the fact that some terms are complex conjugated is irrelevant
for our argument). For s = 1, . . . , t (so that �(s) = 0), we observe that

|(I − Es)((I − Es)A
s
σs

)Bs
ρs

|
≤ |((I − Es)A

s
σs

)Bs
ρs

| + Es |(I − Es)A
s
σs

)Bs
ρs

|
≤ |(I − Es)A

s
σs

||Bs
ρs

| + (Es |(I − Es)A
s
σs

|2)1/2(Es |Bs
ρs

|2)1/2
≤ Cmsm̃s (5.35)

where we defined the random variables

ms = |(I − Es)A
s
σs

| + (Es |(I − Es)A
s
σs

|2) 1
2 ,

m̃s = |Bs
ρs

| + (Es |Bs
ρs

|2) 1
2 (5.36)
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for all s = 1, . . . , t . We will estimate high moments of ms, m̃s using the bounds
established in Sect. 5.3. Notice that, while m̃s is only bounded, the quantity ms is
expected to be small. It is important that the estimates that we will use reflect this
smallness.

To bound the terms on the l.h.s. of (5.31) with s = t + 1, . . . , 2q we proceed as
follows. Since here �(s) ≥ 1, either As

σs
or Bs

ρs
must contain at least one off-diagonal

entry. Using (5.24), we can express the off-diagonal entries in terms of the variable
K (T)
kl , defined in Eq. (5.25). We collect all the factors K (T)

kl appearing in As
σs

(one for
every off-diagonal resolvent entry) in a singlemonomial Os and all the diagonal entries
(appearing in As

σs
, either in the numerator or in the denominator) in a monomial Ps ;

accordingly As
σs

= Os Ps . We proceed similarly for Bs
ρs

and we obtain Bs
ρs

= Õs P̃s .
We estimate

|(I − Es)((I − Es)A
s
σs

)Bs
ρs

|
= ∣∣(I − Es)((I − Es)Os Ps)Õs P̃s

∣∣
≤ |Os ||Õs ||Ps ||P̃s | + |Õs P̃s Es(Os Ps)| + |Es(Os Ps Õs P̃s)| + |Es(Os Ps)Es(Õs P̃s)|
≤ |Os ||Õs ||Ps ||P̃s | + |Õs ||P̃s |(Es |Os |2)1/2(Es |Ps |2)1/2

+(Es |Os Õs |2)1/2(Es |Ps P̃s |2)1/2 + (Es |Os |2)1/2(Es |Ps |2)1/2(Es |Õs |2)1/2(Es |P̃s |2)1/2
≤ CMs M̃s (5.37)

for all s = t + 1, . . . , 2q. Here we defined the random variables

Ms = |Os ||Õs | + (Es |Os |2) 1
2 |Õs | + (Es |Os Õs |2) 1

2 + (Es |Os |2) 1
2 (Es |Õs |2) 1

2

M̃s = |Ps ||P̃s | + (Es |Ps |2) 1
2 |P̃s | + (Es |Ps P̃s |2) 1

2 + (Es |Ps |2) 1
2 (Es |P̃s |2) 1

2 .

Combining (5.35) with (5.37), and applying Cauchy–Schwarz’s inequality, we find

∣∣∣E((I − Ek1)((I − Ek1)A
1
σ1

)B1
ρ1

) · · · ((I − Ek2q )((I − Ek2q )A
2q
σ2q )B

2q
ρ2q )

∣∣∣
≤ C (Em2

1 · · ·m2
t M

2
t+1 · · · M2

2q)
1
2 (E m̃2

1 · · · m̃2
t M̃

2
t+1 · · · M̃2

2q)
1
2 . (5.38)

We bound the first factor on the r.h.s. of the last equation. Recall that Os and Õs are
the product of respectively γs := γ (As

σs
) and γ̃s := γ (Bs

σs
) entries of the form K (T)

kl .
With Hölder’s inequality we obtain

Em2
1 · · ·m2

t M
2
t+1 · · · M2

2q ≤
t∏

s=1

[
Em

2(t+∑s (γs+γ̃s ))
s

] 1
t+∑s (γs+γ̃s )

×
2q∏

s=t+1

[
E M

2
t+∑s (γs+γ̃s )

γs+γ̃s
s

] γs+γ̃s
t+∑s (γs+γ̃s )

. (5.39)
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According to (5.34) we have, for s = 1, . . . , t ,

m2
s ≤ C

∣∣∣∣∣(I − Es)
1

G(Ts )
ksks

∣∣∣∣∣
2

+ C Es

∣∣∣∣∣(I − Es)
1

G(Ts )
ksks

∣∣∣∣∣
2

(5.40)

where we set Ts = L(k)\{s}. This implies that

Em
2(t+∑s (γs+γ̃s ))
s ≤ Ct+∑s (γs+γ̃s ) E

∣∣∣∣∣(I − Es)
1

G(Ts )
ksks

∣∣∣∣∣
2(t+∑s (γs+γ̃s ))

. (5.41)

To bound the Ms variables, we observe that, for any s = t + 1, . . . , 2q,

M2
s ≤ C(|Os |2|Õs |2 + (Es |Os |2)|Õs |2 + (Es |Os Õs |2) + (Es |Os |2)(Es |Õs |2)).

(5.42)

Inserting the contribution of

|Os |2|Õs |2 =
γs+γ̃s∏
j=1

|K (T j )

i j l j
|2

(for appropriate indices i j , l j and sets T j ) in the expectation on the r.h.s. of (5.39), we
find, again by Hölder’s inequality,

[
E (|Os ||Õs |)2

t+∑s (γs+γ̃s )
γs+γ̃s

] γs+γ̃s
t+∑s (γs+γ̃s ) ≤

γs+γ̃s∏
j=1

[
E |K (T j )

i j l j
|2(t+

∑
s (γs+γ̃s ))

] 1
t+∑s (γs+γ̃s )

.

The contribution of the second term on the r.h.s. of (5.42), having the form

(Es |Os |2)|Õs |2 =
⎛
⎝Es

γs∏
j=1

|K (T j )

i j l j
|2
⎞
⎠ γs+γ̃s∏

j=γs+1

|K (T j )

i j l j
|2

≤
γs∏
j=1

(
Es |K (T j )

i j l j
|2γs
) 1

γs
γs+γ̃s∏
j=γs+1

|K (T j )

i j l j
|2,
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to (5.39) can be estimated by

E

[
(Es |Os |2)

t+∑s (γs+γ̃s )
γs+γ̃s |Õs |2

t+∑s (γs+γ̃s )
γs+γ̃s

]

≤ E

γs∏
j=1

(
Es |K (T j )

i j l j
|2γs
) t+∑s (γs+γ̃s )

γs (γs+γ̃s )
γs+γ̃s∏
j=γs+1

|K (T j )

i j l j
|2

t+∑s (γs+γ̃s )
γs+γ̃s

≤
γs∏
j=1

[
E(Es |K (T j )

i j l j
|2γs )

t+∑s (γs+γ̃s )
γs

] 1
γs+γ̃s

γs+γ̃s∏
j=γs+1

[
E |K (T j )

i j l j
|2(t+

∑
s (γs+γ̃s ))

] 1
γs+γ̃s

≤
γs+γ̃s∏
j=1

[
E |K (T j )

i j l j
|2(t+

∑
s (γs+γ̃s ))

] 1
γs+γ̃s

.

The contributions from the last two terms on the r.h.s. (5.42) can also be bounded
similarly. We obtain

[
E M

2
t+∑s (γs+γ̃s )

γs+γ̃s
s

] γs+γ̃s
t+∑s (γs+γ̃s )

≤ C
γs+γ̃s∏
j=1

[
E |K (T j )

i j l j
|2(t+

∑
s (γs+γ̃s ))

] 1
t+∑s (γs+γ̃s )

.

Inserting (5.41) and the last equation into (5.39), we conclude that

Em2
1 · · ·m2

t M
2
1 . . . M2

u ≤
t∏

s=1

⎡
⎣E

∣∣∣∣∣(I − Es)
1

G(Ts )
ksks

∣∣∣∣∣
2(t+∑s (γs+γ̃s ))

⎤
⎦

1
t+∑s (γs+γ̃s )

×
2q∏

s=t+1

γs+γ̃s∏
j=1

[
E |K (T j,s)

i j,s l j,s
|2(t+

∑
s (γs+γ̃s ))

] 1
t+∑s (γs+γ̃s )

≤ (Cq)cq
2E

t+∑2q
s=t+1(γs+γ̃s )

≤ (Cq)cq
2E2q+|L(k)| (5.43)

where we used Lemma 5.3, Eq. (3.4), the bound t +∑2q
s=t+1(γs + γ̃s) ≤ cq2 (which

follows from t, γ̃s, γs ≤ 2q), and the estimate

t +
2q∑

s=t+1

(γs + γ̃s) ≥ 2q +
u∑

s=1

�(s) ≥ 2q + |L(k)|,

which follows from Remark (1) in Sect. 5.2.2.
To bound the second factor on the r.h.s. of (5.38), we observe that all resolvent

entries in m̃s and M̃s are diagonal and that their total number is at most cq2. Applying
Lemma 3.9 and Lemma 5.2 (using the assumption q2 ≤ c(Nη)1/4), we find
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E m̃2
1 · · · m̃2

t M̃
2
t+1 · · · M̃2

2q ≤ (Cq)cq
2
. (5.44)

Inserting in (5.38), we obtain

∣∣∣E((I − Ek1 )((I − Ek1 )A
1
σ1

)B1
ρ1

) · · · ((I − Ek2q )((I − Ek2q )A
2q
σ2q )B

2q
ρ2q )

∣∣∣ ≤ (Cq)cq
2E1/2

2q+|L(k)|

which concludes the proof of (5.31) in Case 1.
Case 2 For some r ∈ {1, . . . , 2q} there is at least one resolvent entry, either in

Ar
σr

or in Br
ρr
, which is not maximally expanded. Among the other 2q − 1 indices in

{1, . . . , 2q}\{r} let us say that for t of them (denoted by s1, . . . , st ), the strings σs j
and ρs j only contain zeros, while for the other u = 2q −1− t labels, st+1, . . . , s2q−1,
either the string σs j or the string ρs j contain at least a one. Without loss of generality,
we can assume that s1 = 1, . . . , st = t , st+1 = t+1, . . . , s2q−1 = 2q−1 and r = 2q.

For s = 1, . . . , t , we use the estimate

|(I − Es)((I − Es)A
s
σs

)Bs
ρs

| ≤ Cmsm̃s

established in (5.35) with ms and m̃s defined as in (5.36). Since, for s = 1, . . . , t , the
strings σs and ρs only contain zeros, we have

As
σs

= 1

G(Ts )
ss

, and Bs
ρs

= G
(T′

s )
ss

for appropriate sets Ts and T
′
s . This implies that [like in (5.40)]

m2
s ≤ C

∣∣∣∣∣(I − Es)
1

G(Ts )
ksks

∣∣∣∣∣
2

+ C Es

∣∣∣∣∣(I − Es)
1

G(Ts )
ksks

∣∣∣∣∣
2

. (5.45)

For s = t + 1, . . . , 2q − 1, either As
σs

or Bs
ρs

contains at least two off-diagonal
resolvent entries. Let us assume, for example, that As

σs
contains two off-diagonal

entries (it is easy to invert the roles of As
σs

and Bs
ρs
, if it is Bs

ρs
which contains the

off-diagonal entries). In this case, we write As
σs

= Os Ps , where the monomial Os

is given by the product of γs = γ (As
σs

) ≥ 2 terms of the form K
(T j )

i j l j
while Ps is a

product of diagonal entries (appearing either in the numerator or in the denominator).
We bound (for any s = t + 1, . . . , 2q − 1)

∣∣(I − Es)((I − Es)A
s
σs

)Bs
ρs

∣∣ ≤ CLs L̃s

where we defined

Ls = |Os | + (Es |Os |2) 1
2

L̃s = (|Ps | + (Es |Ps |4) 1
4 )(|Bs

ρs
| + (Es |Bs

ρs
|4) 1

4 ).
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We observe that

L2
s ≤ |Os |2 + Es |Os |2 =

γs∏
j=1

|K (T j,s)

i j,s l j,s
|2 +

γs∏
j=1

[
Es |K (T j,s)

i j,s l j,s
|2γs
] 1

γs (5.46)

for appropriate indices i j,s, l j,s and appropriate setsT j,s , and for all s = t+1, . . . , 2q−
1.

Finally, we consider s = 2q, for which one of the resolvent entries, either in A2q
σ2q

or in B2q
ρ2q is not maximally expanded. Let us assume that the entry which is not

maximally expanded is in A2q
σ2q . In this case, we write

A2q
σ2q

= OP,

where O is a monomial given by the product of γ ≡ γ (A2q
σ2q ) terms of the form K (T)

kl

and P contains only diagonal entries. Note that, since we assumed A2q
σ2q not to be

maximally expanded, we must have 2q + 1 ≤ γ ≤ 2q + 2. We estimate

∣∣∣(I − E1)((I − E1)OP)B2q
ρ2q

∣∣∣ ≤ CL L̃

where we set

L = |O| + (E2q |O|2) 1
2

L̃ = (|P| + (E2q |P|4) 1
4 )(|B1

ρ1
| + (E2q |B1

ρ1
|4) 1

4 ).

Similarly to (5.46), we find

L2 ≤
γ∏
j=1

|K (T j )

i j l j
|2 +

γ∏
j=1

[
Es |K (T j )

i j l j
|2γs
] 1

γs
. (5.47)

By Cauchy–Schwarz, we can bound the l.h.s. of Eq. (5.31) by

∣∣∣E((I − Ek1)((I − Ek1)A
1
σ1

)B1
ρ1

) · · · ((I − Ek2q )((I − Ek2q )A
2q
σ2q )B

2q
ρ2q )

∣∣∣
≤ C(Em2

1 · · ·m2
t L

2
t+1 . . . L2

2q−1L
2)

1
2 (E m̃2

1 · · · m̃2
t L̃

2
t+1 · · · L̃2

2q−1 L̃
2)

1
2 .

(5.48)

Proceeding as in (5.43), and using the bounds (5.45), (5.46), (5.47), we find

Em2
1 · · ·m2

t L
2
t+1 · · · L2

2q−1L
2

≤ (Cq)2q
t∏

s=1

⎡
⎣E

∣∣∣∣∣(I − E1)
1

G(Ts )
ks ks

∣∣∣∣∣
2(t+γ+∑s γs ))

⎤
⎦

1
2(t+γ+∑s γs ))

123



42 C. Cacciapuoti et al.

×
2q−1∏
s=t+1

γs∏
j=1

[
E |K (T j,s )

i j,s ,l j,s
|2(t+γ+∑s γs )

] 1
2(t+γ+∑s γs )

γ∏
j=1

[
E |K (T)

i j l j
|2(t+γ+∑s γs )

] 1
2(t+γ+∑s γs )

≤ (Cq)cq
2Et+γ+∑s γs

≤ (Cq)cq
2 E4q . (5.49)

Here we used the fact that t + γ +∑s γs ≤ cq2 and the bound

t + γ +
∑
s

γs ≥ t + 2q + 1 + u ≥ 4q,

because γ ≥ 2q + 1 and γs ≥ 1 for all s = t + 1, . . . , 2q − 1. On the other hand we
have that, similarly to (5.44),

E m̃2
1 . . . m̃2

t L̃
2
t+1 · · · L̃2

2q−1 L̃
2 ≤ (Cq)cq

2
.

Inserting (5.49) and the last inequality into (5.48), we obtain

∣∣∣E((I − Ek1)((I − Ek1)A
1
σ1

)B1
ρ1

) · · · ((I−Ek2q )((I−Ek2q )A
2q
σ2q )B

2q
ρ2q )

∣∣∣ ≤ (Cq)cq
2E1/2

4q

Equation (5.31) follows because 2q + |L(k)| ≤ 4q [and because of (4.1)].

6 Improved optimal bound in the bulk

In this section, we prove Theorem 2, which gives a stronger bound on the fluctuations
of the Stieltjes transform in the bulk of the spectrum. Compared with Theorem 2, here
there is no upper bound on the size of the power q. Looking at the proof of Theorem 1,
we observe that there are two results, in which the restriction q ≤ c(Nη)1/8 played an
important role, namely the proof of Lemma 3.4, containing a bound for E|G11|q , and
of Lemma 5.1, giving an estimate for E|(E1G

−1
11 )−1|q . In Lemma 6.4 and Lemma 6.3

below, we show that, in the bulk of the spectrum, at distances of order one from the
edges, these moments can be bounded for arbitrary q ∈ N. Using these estimates,
Theorem 2 can then be shown exactly as we proved Theorem 1.

In order to bound themoments of |G11| and |(E1G
−1
11 )−1| in the bulk of the spectrum,

we will need, first of all, an upper bound on the density of states, as stated in the next
proposition.

Proposition 6.1 Assume (1.9), fix η̃ > 0 and 0 < κ < 2 and set z = E + iη. Then
there exist constants c,C, M, K0 > 0 such that

P

(N [E − η
2 , E + η

2 ]
Nη

≥ K

)
≤ Ce−c

√
K Nη

for all E ∈ (−2 + κ, 2 − κ), N > M, K > K0, η > 1/N. Here N [a; b] denotes the
number of eigenvalues in the interval [a; b].
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Proof We set I = [E − η
2 , E + η

2 ] and denote by NI the number of eigenvalues in
the interval I . For Nη ≥ (log N )4, the claim follows from Theorem 4.6 in [17]. So,
we can assume that 1 ≤ Nη ≤ (log N )4. We distinguish two cases.

• If K ≤ CNβ/(Nη), for a 0 < β < 1/16, we use Theorem 5.1 of [17], with
ν = 1/4, to estimate

P

(NI

Nη
≥ K

)
≤
(
C

K

)K Nη/4

≤ e−cK Nη

which holds true for any interval I = [E − η/2, E + η/2] with 1 ≤ Nη ≤ CNβ

(and in particular holds for all 1 ≤ Nη ≤ (log N )4).
• If K ≥ CNβ/(Nη) we use the bound in Theorem 4.6 of [17]. We consider a
new interval Ĩ = [E − η̃/2, E + η̃/2] with (log N )4 ≤ N η̃ ≤ 2(log N )4. Since
obviously N Ĩ ≥ NI , we find

P

(NI

Nη
≥ K

)
=P (NI ≥ K Nη) ≤ P

(N Ĩ ≥ K Nη
) = P

(N Ĩ

N η̃
≥ Kη

η̃

)
≤ Ce−c

√
K Nη

where we used Theorem 4.6 of [17], and the fact that Kη/η̃ ≥ CNβ/(log N )4 is
large. 
�
Secondly, we will need an upper bound on the size of the gap between eigenvalues;

more precisely, we need to know that, if we consider an interval larger than Kp/N
the probability of finding fewer than p eigenvalues tends to zero, as K → ∞.

Proposition 6.2 Assume (1.9), fix η̃ > 0 and 0 < κ < 2 and set z = E + iη. Then
there exist constants c,C, M, K0 > 0 such that

P

(∣∣∣∣
{
α : |λα − E | ≤ Kp

N

}∣∣∣∣ ≤ p

)
≤ Ce−cK 1/4

for any E ∈ [−2 + κ, 2 − κ], p ≥ 1, N > M, K > K0.

Proof Set η = p
√
K/N and z = E + iη. We consider the intervals

I0 = [E − √
Kη, E + √

Kη] and

I j = [E−2 j
√
Kη, E−2 j−1

√
Kη] ∪ [E+2 j−1

√
Kη, E+2 j

√
Kη] for all j ≥ 1.

We denote by N j the number of eigenvalues in I j . For a large constant M , we define
the event

� :=
{
max

j

N j

N |I j | ≥ M

}
.

From the upper bound in Proposition 6.1, we find

P(�) ≤
∞∑
j=0

Ce−c
√

MN |I j | ≤
∞∑
j=0

Ce−c
√

MKp 2 j ≤ Ce−cK 1/2
. (6.1)
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On �c, and assuming that |{α : |λα − E | ≤ Kp/N }| ≤ p, we find

Im m(E + iη) = 1

N

N∑
α=1

η

(λα − E)2 + η2

= 1

N

∞∑
j=0

∑
α: λα∈I j

η

(λα − E)2 + η2

≤ p

Nη
+ C√

K

∞∑
j=1

1

2 j
≤ C√

K
. (6.2)

On the other hand, since we are away from the edges, we have c0 = Im msc(z) > 0.
Hence, for K large enough, (6.2) implies that the fluctuations ofm(z) from the Stieltjes
transform of the semicircle law are larger than, say, c0/2. Using Theorem 3.1 of [17],
we know that the probability for such large fluctuations is small. More precisely, we
find

P

(
�c and

∣∣∣∣
{
α : |λα − E | ≤ Kp

N

}∣∣∣∣ ≤ p

)
≤ P

(
Im m(E + iη) ≤ C√

K

)

≤ P

(
|m(z) − msc(z)| ≥ c0

2

)
≤ Ce−c

√
Nη ≤ Ce−cK 1/4

.

Together with (6.1), this concludes the proof of the proposition. 
�
Weare now ready to prove upper bounds for arbitrarymoments of diagonal resolvent

entries. The next lemma gives an improvement, in the bulk, of Lemma 3.4.

Lemma 6.3 Assume (1.9), fix η̃ > 0 and 0 < κ < 2 and set z = E + iη. Then there
exist constants c,C, M > 0 such that

E|G11|q ≤ (Cq)cq

for all E ∈ [−2 + κ, 2 − κ], η > 1/N , N > M, q ∈ N.

Proof We fix K ≥ 1. From (2.4), estimating |1/w| ≤ 1/| Im w|, we find

|G11| ≤
[

η

N

N−1∑
α=1

ξα

(λ
(1)
α − E)2 + η2

]−1

≤
⎡
⎢⎣ 1

NK 2η

∑
α: |λ(1)

α −E |≤Kη

ξα

⎤
⎥⎦

−1

where ξα = N |a1 · u(1)
α |2 and λ

(1)
α ,u(1)

α are the eigenvalues and the eigenvectors of
the minor obtained by removing the first row and column from the original Wigner
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matrix. We find

P

(
|G11| ≥ K 3

)
≤ P

(
|{α : |λ(1)

α − E | ≤ Kη}| ≤ √
K Nη

)

+P

⎛
⎝ 1√

K Nη

√
K Nη∑
j=1

ξα j ≤ 1

K 3/2

⎞
⎠ . (6.3)

From Proposition 6.2, with p = √
K Nη, we obtain

P

(
|{α : |λ(1)

α − E | ≤ Kη}| ≤ √
K Nη

)
≤ Ce−cK 1/8

(6.4)

for all K > K0 large enough. On the other hand, the large deviation estimates in
Proposition 9.1 imply (see for example Lemma 4.7 in [17]) that

P

⎛
⎝ 1√

K Nη

√
K Nη∑
j=1

ξα j ≤ 1

K 3/2

⎞
⎠ ≤ e−c

√√
K Nη ≤ e−cK 1/4

. (6.5)

Inserting (6.5) and (6.4) into (6.3), we obtain that there exists a constant t0 such that

P (|G11| ≥ t) ≤ Ce−ct1/24

for all t ≥ t0. This implies that

E|G11|q =
∫ ∞

0
P(|G11| ≥ t1/q)dt ≤ t0 + C

∫ ∞

t0
e−ct1/(24q)

dt ≤ (Cq)cq .


�
Finally, we establish also bounds for arbitrary moments of |(E1G

−1
11 )−1| which

improve, in the bulk of the spectrum, the results of Lemma 5.1.

Lemma 6.4 Assume (1.9), fix η̃ > 0 and 0 < κ < 2 and set z = E + iη. Then there
exist constants c,C, M > 0 such that

E

∣∣∣∣∣ 1

E1
1

G11

∣∣∣∣∣
q

≤ (Cq)cq (6.6)

for all E ∈ [−2 + κ, 2 − κ], η > 1/N , N > M, q ∈ N.

Proof Let K ≥ 1. Using (2.4) and estimating |1/w| ≤ 1/| Im w|, we find
∣∣∣∣∣ 1

E1
1

G11

∣∣∣∣∣ ≤
[

η

N

N−1∑
α=1

1

(λ
(1)
α − E)2 + η2

]−1

≤
[

|{α : |λ(1)
α − E | ≤ Kη}|
NK 2η

]−1
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where λ
(1)
α are the eigenvalues of the minor obtained by removing the first row and

column from the original Wigner matrix. Using Proposition 6.2 with p = Nη, we
conclude that, for all K > K0 large enough,

P

(∣∣∣∣∣ 1

E1
1

G11

∣∣∣∣∣ ≥ K 2

)
≤ P

(
|{α : |λ(1)

α − E | ≤ Kη}| ≤ Nη
)

≤ Ce−cK
1
4
,

which clearly implies the claim (6.6). 
�

7 Convergence of the eigenvalue counting function

In this section we apply Theorem 1 to prove the convergence of the counting function
of the eigenvalues, as stated in Theorem 3. We adapt here the approach developed in
[10,20,22].

Proof of Theorem 3 We are going to show that there exist constants C, c > 0 such
that

E |(n(E2) − n(E1)) − (nsc(E2) − nsc(E1))|q ≤ (Cq)cq
2 (log N )q

Nq
(7.1)

for all −2 ≤ E1 < E2 ≤ 2, N > 1 and for all q ∈ N. This gives

P

(
|(n(E2) − n(E1)) − (nsc(E2) − nsc(E1))| ≥ K log N

N

)
≤ (Cq)cq

2

Kq
(7.2)

for all −2 ≤ E1 < E2 ≤ 2, K > 0 and q ∈ N. In particular,

P

(
|(n(2) − n(−2)) − 1| ≥ K log N

N

)
≤ (Cq)cq

2

Kq

for all K > 0 and q ∈ N. This implies that, with high probability, there are at
most K log N eigenvalues outside the interval [−2; 2]; this observation allows us to
conclude the proof of Theorem 3. Indeed, for E ≤ 2we have nsc(E) = 0 and therefore

P

(
|n(E) − nsc(E)| ≥ K log N

N

)
= P

(
n(E) ≥ K log N

N

)

≤ P

(
|n(2) − n(−2) − 1| ≥ K log N

N

)

≤ (Cq)cq
2

Kq
(7.3)
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because, for E ≤ −2, n(E) + n(2) − n(−2) ≤ 1. For E ≥ 2, we have nsc(E) = 1
and hence

P

(
|n(E) − nsc(E)| ≥ K log N

N

)
= P

(
1 − n(E) ≥ K log N

N

)

≤P

(
|n(2)−n(−2)−1| ≥ K log N

N

)
≤ (Cq)cq

2

Kq

because, for E ≥ 2, 1 − n(E) + n(2) − n(−2) ≤ 1. Finally, for −2 < E < 2, we
have |n(E) − nsc(E)| ≤ |n(E) − n(−2) − nsc(E)| + n(−2). Since nsc(−2) = 0, we
find

P

(
|n(E) − nsc(E)| ≥ K log N

N

)

≤ P

(
|(n(E) − n(−2)) − (nsc(E) − nsc(−2))| ≥ K log N

2N

)

+P

(
n(−2) ≥ K log N

2N

)

≤ (Cq)cq
2

Kq

from (7.2) and (7.3).
To conclude the proof of Theorem 3, we show (7.1), following [10]. We define the

empirical eigenvalue distribution

ρ(λ) = 1

N

N∑
α=1

δ(λ − λα)

and we denote by 1[E1,E2] the characteristic function of the interval [E1, E2]. With
this notation we have

(n(E2) − n(E1)) − (nsc(E2) − nsc(E1)) =
∫
R

1[E1,E2](λ) (ρ(λ) − ρsc(λ)) dλ.

Next, we approximate 1[E1,E2] with a smooth function f . For a given q ∈ N, we
choose M = Cq8 for a sufficiently large constant C > 0 and we set η̃ = M/N
(we choose the constant C > 0 large enough and consider N ≥ q8 large enough,
so that we can apply Theorem 1 to bound 	(E + i η̃); if N < q8, (7.1) is trivial
since, by definition, 0 ≤ n(E) ≤ 1 for all E ∈ R). We choose f ∈ C∞

0 (R) such
that supp f ⊂ (E1, E2) and f = 1 in [E1 + η̃, E2 − η̃]. Notice that, since we are
considering −2 ≤ E1 < E2 ≤ 2, we can apply part (i) of Theorem 1 to bound
|	(E + i η̃)| for all E ∈ supp f . We also assume that | f ′| ≤ C/η̃ and | f ′′| ≤ C/η̃2.
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From the boundedness of ρsc, we find∣∣∣∣
∫
R

(1[E1,E2](λ) − f (λ))ρsc(λ)dλ

∣∣∣∣
q

≤ Cq η̃q = CqMq

Nq
.

Moreover, recalling the bound

|n(E + η) − n(E − η)| ≤ Cη Im m(E + iη) ≤ Cη (1 + | Im 	(E + iη)|)

we find
∣∣∣∣
∫
R

(1[E1,E2](λ) − f (λ))ρ(λ)dλ

∣∣∣∣ ≤ C
∑
j=1,2

∣∣n(E j + η̃) − n(E j − η̃)
∣∣ ≤ C η̃(1 + | Im 	(E + i η̃)|)

where, as usual, 	(z) = m(z) − msc(z). Taking the q-th moment, we obtain

E

∣∣∣∣
∫
R

(1[E1,E2](λ) − f (λ))ρ(λ)dλ

∣∣∣∣
q

≤ Cq η̃q(1 + E| Im 	(E + i η̃)|q) ≤ CqMq

Nq

where we applied the bound E| Im 	(E + i η̃)|q ≤ 1 from Lemma 3.5 (using that
q ≤ c(N η̃)1/8). We conclude that

E|(n(E2) − n(E1)) − (nsc(E2) − nsc(E1))|q

≤ Cq

Nq
+ Cq

E

∣∣∣∣
∫
R

f (λ)(ρ(λ) − ρsc(λ))dλ

∣∣∣∣
q

. (7.4)

Next, we use Helffer–Sjöstrand functional calculus. We introduce the notation I =
[E1, E2] and Ĩ = [E1, E1+ η̃]∪[E2− η̃, E2]. Notice that | Ĩ | = 2η̃. For a χ ∈ C∞

0 (R)

with χ(y) = 1 on [−1, 1] and χ(y) = 0 on [−2, 2]c, we can define the almost analytic
extension of f on C given by

f̃ (x + iy) = ( f (x) + iy f ′(x))χ(y).

Then, we have, see Eq. (B.12) in [13],

f (λ) = 1

2π

∫
R2

∂z̄ f̃ (x + iy)

λ − x − iy
dx dy

= 1

2π

∫
R2

iy f ′′(x)χ(y) + i( f (x) + iy f ′(x))χ ′(y)
λ − x − iy

dx dy.

Since f is real, we find∫
R

f (λ)(ρ(λ) − ρsc(λ))dλ

= 1

2π
Re
∫
R2

[iy f ′′(x)χ(y) + i( f (x) + iy f ′(x))χ ′(y)]	(x + iy)dx dy.
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Taking the q-th moment, and recalling that f and χ are compactly supported, we find,
similarly to Eq. (7.33) in [10],

E

∣∣∣ ∫
R

f (λ)(ρ(λ) − ρsc(λ))dλ

∣∣∣q

≤ Cq
E

{∣∣∣∣
∫
I
dx
∫ 2

1
dy f (x)χ ′(y)	(x + iy)

∣∣∣∣
q

+
∣∣∣∣
∫
Ĩ
dx
∫ 2

1
dy f ′(x)yχ ′(y)	(x + iy)

∣∣∣∣
q

+
∣∣∣∣∣
∫
Ĩ
dx
∫ η̃

0
dy f ′′(x)yχ(y) Im 	(x + iy)

∣∣∣∣∣
q

+
∣∣∣∣
∫
Ĩ
dx
∫ 2

η̃

dy f ′′(x)yχ(y) Im 	(x + iy)

∣∣∣∣
q
}

. (7.5)

Recalling that | f | ≤ 1 and χ ′ ≤ C , the first term on the right hand side of (7.5) is
bounded by

E

∣∣∣∣
∫
I
dx
∫ 2

1
dy f (x)χ ′(y)	(x + iy)

∣∣∣∣
q

≤ Cq
∫
I
dx
∫ 2

1
dy E |	(x + iy)|q .

From Theorem 1, part (i), we find

E

∣∣∣∣
∫
I
dx
∫ 2

1
dy f (x)χ ′(y)	(x + iy)

∣∣∣∣
q

≤ (Cq)cq
2

Nq
. (7.6)

The second term on the r.h.s. of Eq. (7.5) can be bounded similarly. In this case
| f ′| ≤ C/η̃ is large but it is compensated by the volume factor | Ĩ | ≤ 2η̃. We find,
again by part (i) of Theorem 1, that

E

∣∣∣∣
∫
Ĩ
dx
∫ 2

1
dy f ′(x)yχ ′(y)	(x + iy)

∣∣∣∣
q

≤ Cq η̃−1
∫
Ĩ
dx
∫ 2

1
dy E |	(x + iy)|q ≤ (Cq)cq

2

Nq
. (7.7)

The third term on the r.h.s. of Eq. (7.5) can be estimated by

E

∣∣∣∣∣
∫
Ĩ
dx
∫ η̃

0
dy f ′′(x) y χ(y) Im 	(x + iy)

∣∣∣∣∣
q

≤ Cq

η̃2

∫
Ĩ
dx
∫ η̃

0
dy yq E |Im 	(x + iy)|q (7.8)
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because of the assumption | f ′′| ≤ C/η̃2. Here we cannot apply directly Theorem 1,
because we are arbitrarily close to the real axis. We follow instead an argument of
Theorem2.2 in [22]. For any x ∈ R,wenote that the functions y → y Im m(x+iy) and
y → y Im msc(x + iy) are monotone increasing on R+ (they are Stieltjes transforms
of positive measures). This implies that

y| Im 	(x + iy)| ≤ η̃(Im m(x + i η̃) + Im msc(x + i η̃)) ≤ η̃ (2 + | Im 	(x + i η̃)|).

From (7.8), we get therefore

E

∣∣∣ ∫
Ĩ
dx
∫ η̃

0
dy f ′′(x)y χ(y) Im 	(x + iy)

∣∣∣q

≤ Cq

η̃2

∫
Ĩ
dx
∫ η̃

0
dy η̃q (1 + E| Im 	(x + i η̃)|q) ≤ Cq η̃q ≤ CqMq

Nq
(7.9)

because, by Lemma 3.5, E| Im 	(x + i η̃)|q ≤ 1 (since η̃ was chosen so that q ≤
c(N η̃)1/8).

To estimate the fourth term on the r.h.s. of Eq. (7.5), we integrate by parts, first in
x and then in y. We obtain

E

∣∣∣ ∫
Ĩ
dx
∫ 2

η̃

dy f ′′(x)yχ(y) Im 	(x + iy)
∣∣∣q

≤ E

∣∣∣∣
∫
Ĩ
dx
∫ 2

η̃

dy f ′′(x)yχ(y)	(x + iy)

∣∣∣∣
q

≤ Cq
E

{∣∣∣∣
∫
Ĩ
dx f ′(x)η̃	(x + i η̃)

∣∣∣∣
q

+
∣∣∣∣
∫
Ĩ
dx
∫ 2

η̃

dy f ′(x)χ(y)	(x + iy)

∣∣∣∣
q

+
∣∣∣∣
∫
Ĩ
dx
∫ 2

1
dy f ′(x)yχ ′(y)	(x + iy)

∣∣∣∣
q
}

(7.10)

where we used the observation that χ(η̃) = 1 and χ ′(x) = 0 for x �∈ [1; 2] in the
first and, respectively, in the third term. By part (i) of Theorem 1 (and using that
| f ′(x)| ≤ C/η̃) the first term on the r.h.s. of (7.10) can be bounded by

E

∣∣∣∣
∫
Ĩ
dx f ′(x)η̃	(x + i η̃)

∣∣∣∣
q

≤ Cq

η̃

∫
Ĩ
dx η̃q E |	(x + i η̃)|q ≤ (Cq)cq

2

Nq
. (7.11)

The third term on the r.h.s. of (7.10), on the other hand, can be controlled by

E

∣∣∣∣
∫
Ĩ
dx
∫ 2

1
dy f ′(x)yχ ′(y)	(x + iy)

∣∣∣∣
q

≤ Cq

η̃

∫
Ĩ
dx
∫ 2

1
dy E |	(x + iy)|q

≤ (Cq)cq
2

Nq
. (7.12)
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As for the second term on the r.h.s. of Eq. (7.10), we find that

E

∣∣∣ ∫
Ĩ
dx
∫ 2

η̃

dy f ′(x)χ(y)	(x + iy)
∣∣∣q

≤
∫
Ĩ
dx1 · · ·

∫
Ĩ
dxq

∫ 2

η̃

dy1 · · ·
∫ 2

η̃

dyq

q∏
j=1

| f ′(x j )||χ(y j )| E
q∏
j=1

|	(x j + iy j )|

≤
q∏
j=1

∫
Ĩ
dx j

∫ 2

η̃

dy j | f ′(x j )||χ(y j )|
(
E|	(x j + iy j )|q

)1/q

applying Hölder’s inequality to the expectation. With the usual bounds on | f ′| and
|χ |, we obtain

E

∣∣∣ ∫
Ĩ
dx
∫ 2

η̃

dy f ′(x)χ(y)	(x + iy)
∣∣∣q

≤ (Cq)cq
2

η̃q

[∫
Ĩ
dx
∫ 2

η̃

dy
1

Ny

]q
≤ (Cq)cq

2 (log η̃)q

Nq
≤ (Cq)cq

2 (log N )q

Nq
.

(7.13)

Inserting (7.11), (7.12) and (7.13) in (7.10) we find

E

∣∣∣∣
∫
Ĩ
dx
∫ 2

η̃

dy f ′′(x)yχ(y) Im 	(x + iy)

∣∣∣∣
q

≤ (Cq)cq
2 (log N )q

Nq
.

Inserting last equation, together with (7.6), (7.7) and (7.9), into (7.5), we get

E

∣∣∣ ∫
R

f (x)(ρ(x) − ρsc(x))dx
∣∣∣q ≤ (Cq)cq

2 (log N )q

Nq
.

Combined with (7.4), this implies (7.1). 
�

8 Rigidity of the semicircle law

The goal of this section is to prove Theorem 4, giving precise bounds on the fluctua-
tion of eigenvalues of a Wigner matrix with respect to the locations predicted by the
semicircle law. We will need, here, bounds on the location of the largest and smallest
eigenvalues. As a first rough bound, we will use Lemma 7.2 in [21], which states that,
for any x > 3 and for an appropriate ε > 0,

E n(−x) ≤ e−N ε log x , and E n(x) ≥ 1 − e−N ε log x . (8.1)

Toobtain better estimates for the extremal eigenvalues,wemakeuse of the following
bounds for the Stieltjes transform of the semicircle law. For E ∈ R, we set κ =
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||E | − 2|. For any fixed E0 > 2 and η0 > 0, there exist constants c,C > 0 such that
(see Eq. (4.3) in [10])

c
√

κ + η ≤ |1 − m2
sc(E + iη)| ≤ C

√
κ + η ∀ |E | ≤ E0, 0 < η ≤ η0

and

c
η√

κ + η
≤ Im msc(E + iη) ≤ C

η√
κ + η

∀ 2 ≤ |E | ≤ E0, 0 < η ≤ η0.

(8.2)

From Theorem 1 part (ii), we have

E|Im 	|2q ≤ (Cq)cq
2

(Nη)2q
,

for all q ≤ c(Nη)1/8. Inserting this estimate and the bound (8.2) into the r.h.s. of (4.5),
we conclude that, for 2 ≤ |E | ≤ E0 and η ≤ η0 with Nη ≥ M large enough, we have

E|R|q ≤ (Cq)cq
2
(
max

{
1

(Nη)4q
,
(Im msc)

2q + E| Im 	|2q
(Nη)2q

}
+ 1

N 2q

) 1
2

≤ (Cq)cq
2
(

1

(Nη)4q
+ 1

(N
√

κ + η)2q
+ 1

N 2q

) 1
2

≤ (Cq)cq
2
(

1

(Nη)2q
+ 1

(N
√

κ + η)q

)

for all q ≤ c(Nη)1/8. Plugging back into (2.15), we obtain a stronger bound for the
imaginary part of 	, given by

E| Im 	|q ≤ (Cq)cq
2
(

1

(N (κ + η))q
+ 1

((Nη)2
√

κ + η)q

)
, (8.3)

and valid for 2 ≤ |E | ≤ E0, η ≤ η0 with Nη ≥ M large enough, 1 ≤ q ≤ c(Nη)1/8

(a similar bound is given in Eq. (2.20) in [10]).
The next lemma (which is similar to Theorem 7.3 in [10]) estimates the probability

of having eigenvalues outside the interval [−2, 2], making use of the bound (8.3).

Lemma 8.1 Assume (1.9). Then there exist C, c, ε > 0 such that

P

(
max

α
|λα| ≥ 2 + K

N 2/3

)
≤ (Cq)cq

2

Kq
(8.4)

for all K > 0 and q ∈ N with q ≤ N ε.
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Proof We prove that

P

(
λ1 ≤ −2 − K

N 2/3

)
≤ (Cq)cq

2

Kq
,

where λ1 is the smallest eigenvalue of H . The proof of the analogous bound for the
largest eigenvalue λN is similar and we omit it.

We can assume that K is large enough, since otherwise (8.4) is trivial. We can also
assume that K ≤ N , since otherwise we can apply (8.1) to estimate

P

(
λ1 ≤ −2 − K

N 2/3

)
≤ P

(
n

(
− K

N 2/3

)
≥ 1

N

)
≤ N E n

(
− K

N 2/3

)

≤ e−N ε log K ≤ 1

Kq

for all q ≤ N ε.
We fix E0 > 3. From (8.1) we find that, for any small ε < 0, K ≤ N , q ≤ N ε

P(λ1≤−E0)≤P

(
n(−E0)≥ 1

N

)
≤NEn(−E0)≤e−N2ε log E0 ≤ e−N ε log K ≤ 1

Kq
.

(8.5)

We still have to bound the probability that −E0 < λ1 ≤ −2− K/N 2/3. We define

κ j = (K + j)

N 2/3 ; η j = (K + j)
1
8

N 2/3 . (8.6)

Moreover we define the intervals I j = [−2 − κ j+1,−2 − κ j
]
for j = 0, . . . , jmax ,

where jmax is the smallest integer with 2+ κ j+1 ≥ E0 (clearly jmax ≤ E0N 2/3). We
denote by x j = −2 − κ j the endpoints of the intervals I j .

We observe that

P

(
−E0 ≤ λ1 ≤ −2 − K

N
2
3

)
≤

jmax∑
j=0

P
(
λ1 ∈ I j

)
. (8.7)

We note that |I j | = N−2/3, so that if λ1 ∈ I j one has |λ1 − x j | ≤ |I j | ≤ η j . Hence,
setting z j = x j + iη j , the event λ1 ∈ I j implies that

Im m(z j ) = 1

N

∑
α

η

(λα − x j )2 + η2j
≥ 1

2Nη j
.

On the other hand, since 2 ≤ |x j | ≤ 2E0, the bound (8.2) gives

Im msc(z j ) ≤ Cη j√
κ j

.
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Since, by (8.6),

Cη j√
κ j

≤ 1

4Nη j

for K > K0 large enough (depending only on the value of C), we conclude that, if
λ1 ∈ I j ,

Im m(z j ) − Im msc(z j ) ≥ 1

2Nη j
− Cη j√

κ j
≥ 1

4Nη j
. (8.8)

Next we observe that, again by the definition of κ j and η j , and for K > K0 large
enough,

1

Nη j
≥ C(K + j)

1
2

Nκ j
≥ C(K + j)

1
2

N (κ j + η j )

and

1

Nη j
≥ C(K + j)

1
2

(Nη j )2
√

κ j
≥ C(K + j)

1
2

(Nη j )2
√

κ j + η j
.

Hence, (8.8) implies that

Im m(z j ) − Im msc(z j ) ≥ C(K + j)
1
2

(
1

N (κ j + η j )
+ 1

(Nη j )2
√

κ j + η j

)
.

With Eq. (8.7) and by the bound (8.3) we conclude that

P

(
−E0 ≤ λ1 ≤ −2 − K

N
2
3

)
≤

jmax∑
j=0

P
(
λ1 ∈ I j

)

≤
jmax∑
j=0

P

(
| Im 	(z j )| ≥ C(K + j)

1
2

×
(

1

N (κ j + η j )
+ 1

(Nη j )2
√

κ j + η j

))

≤
jmax∑
j=0

(Cq)cq
2

(K + j)q/2 ≤ (Cq)cq
2

Kq/2−2

jmax∑
j=0

1

j2
≤ (Cq)cq

2

Kq/2−2 .

Changing q/2 − 2 → q, this concludes, together with (8.5), the proof of the lemma.

�

We are now ready to prove Theorem 4; we proceed here similarly as in the proof
of Theorem 7.6 in [10].
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Proof of Theorem 4 We prove the theorem only for α ≤ N/2, i.e., α̂ = α, the case
α > N/2 is similar. We will make use of the inequalities

c(2 + x)
3
2 ≤ nsc(x) ≤ C(2 + x)

3
2 , and cnsc(x)

1
3 ≤ ρsc(x) ≤ Cnsc(x)

1
3 (8.9)

which hold true for every x ∈ [−2, 1] (see Eq. (7.31) in [10]). In particular, the second
inequality implies that

c(α/N )
1
3 ≤ ρsc(γα) ≤ C(α/N )

1
3 , (8.10)

for any α ≤ N/2.
We have

P

(
|λα − γα | ≥ K log N

N

(
N

α

)1/3
)

≤ P

(
|λα − γα | ≥ K log N

N

(
N

α

)1/3

and λα ≥ γα

)

+P

(
|λα − γα | ≥ K log N

N

(
N

α

)1/3

and λα < γα

)

= A + B.

We consider first the term A. We set

� = K log N

N

(
N

α

)1/3

.

From |λα −γα| ≥ � and λα ≥ γα we find λα ≥ γα +�. This implies that n (γα + �) ≤
nsc(γα). Therefore, by the mean value theorem, there exists x∗ ∈ [γα; γα + �] such
that

nsc (γα + �) − n (γα + �)

= nsc(γα) + ρsc(x
∗)� − n (γα + �) ≥ ρsc(x

∗)K log N

N

(
N

α

)1/3

. (8.11)

If γα + � > 1, then λα ≥ γα + � implies λα > 1. On the other hand, if γα + � ≤ 1,
then x∗ ∈ [γα, 1] and (8.10) implies that

ρsc(x
∗) ≥ min(ρsc(γα), ρsc(1)) ≥ c

( α

N

)1/3
.

From (8.11), we conclude that

A ≤ P(λα > 1) + P

(
|n (γα + �) − nsc (γα + �)| ≥ c

K log N

N

)
.
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The event λα > 1 implies that n(1) < 1/2 and therefore that |n(1) − nsc(1)| >

nsc(1) − 1/2 > c for some c > 0. Theorem 3 implies therefore that

A ≤ P(|n(1) − nsc(1)| > c) + P

(
|n (γα + �) − nsc (γα + �)| ≥ c

K log N

N

)

≤ (Cq)cq
2
[(

log N

N

)q
+ 1

Kq

]
.

If, say, K ≤ 10N/(log N ), this implies that

A ≤ (Cq)cq
2

Kq
. (8.12)

If, on the other hand, K > 10N/(log N ), then (8.12) follows from (8.1) since

P

(
|λα − γα| ≥ K log N

N

(
N

α

)1/3

and λα > γα

)

≤ P(λN > 8) ≤ P(1 − n(8) > 1/N ) ≤ N (1 − E n(8)) ≤ Ne−CN ε ≤ (Cq)cq

Nq

for all q ∈ N.
Next, we estimate the term B. We distinguish two cases, α ≤ c̃K log N and α >

c̃K log N , for some sufficiently small constant c̃ > 0.
Case 1 We assume here that α ≤ c̃K log N . From (8.9), we get γα ≤ −2 +

C(α/N )1/3 Hence, |λα − γα| ≥ � and λα < γα imply that

λα < γα − �

≤ −2 + C
( α

N

)1/3 −
(
K log N

N

)(
N

α

)1/3

≤ −2 + 1

N 2/3

(
Cα2/3 − K log N

α1/3

)
≤ −2 − 1

2

(
K log N

N

)2/3

if the constant c̃ is small enough. From Lemma 8.1, we conclude that

P(|λα − γα| > �, λα < γα and α ≤ c̃K log N ) ≤ (Cq)cq
2

Kq
(8.13)

for all q ≤ N ε.
Case 2 Assume now that α > c̃K log N . From (8.9), we have γα ≥ −2 +

c (α/N )2/3, for some small constant c > 0. We define

y = −2 + c

2

( α

N

)2/3
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and consider the cases γα − � > y and γα − � ≤ y separately. Let us first assume
γα − � > y. Then λα < γα − � implies that n(γα − �) ≥ nsc(γα). Hence, from the
mean value theorem, we find x∗ ∈ [γα − �; γα] ⊂ [y; γα] such that

n(γα−�)−nsc(γα−�)=n(γα−�)−nsc(γα)+ρsc(x
∗)� ≥ ρsc(x

∗)K log N

N

(
N

α

)1/3

.

Since ρsc is increasing on (−∞; 0], we have

ρsc(x
∗) ≥ ρsc(y) ≥ c

√
2 + y ≥ c

( α

N

)1/3
.

From Theorem 3, we conclude that

P

(
|λα − γα| > �, λα < γα, α > c̃K log N and γα − � > y

)

≤ P

(
n(γα − �) − nsc(γα − �) ≥ c

K log N

N

)
≤ (Cq)cq

2

Kq
(8.14)

for any q ∈ N. Finally, we consider the case γα −� ≤ y. Then λα < γα −� also implies
λα < y and therefore n(y)−nsc(γα) ≥ 0. Hence, from the mean value theorem, there
exists x∗ ∈ [y, γα] with

n(y) − nsc(y) = n(y) − nsc(γα) + ρsc(x
∗)(γα − y) ≥ cρsc(x

∗)
( α

N

)2/3
(8.15)

by the very definition of y. Since x∗ > y, we find again

ρsc(x
∗) ≥ c

( α

N

)1/3
.

With (8.15), we conclude from Theorem 3 that

P

(
|λα − γα| > �, λα < γα, α > c̃K log N and γα − � ≤ y

)

≤ P

(
n(y) − nsc(y) > c

( α

N

))
≤ P

(
n(y) − nsc(y) > c

K log N

N

)
≤ (Cq)cq

2

Kq
.

(8.16)

Combining (8.13), (8.14) and (8.16), we obtain that B ≤ (Cq)cq
2
K−q . 
�
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Appendix: Large deviation estimates for quadratic forms

In the following proposition we recall an inequality for the fluctuations of quadratic
forms, this is a well known result due to Hanson and Wright. For the proof we refer
to [17, Prop. 4.5], see also [21, App. B] and [25].

Proposition 9.1 For j = 1, . . . , N let x j = Re x j+i Im x j ,where {Re x j , Im x j }Nj=1
is a sequence of 2N real iid random variables, whose common distribution ν has sub-
gaussian decay. Let A = (ai j ) be a N × N complex matrix. Then there exist constants
c,C > 0 such that, for any δ > 0

P

⎛
⎝
∣∣∣∣∣∣

N∑
i, j=1

ai j
(
xi x̄ j − Exi x̄ j

)∣∣∣∣∣∣ ≥ δ
√
Tr A∗A

⎞
⎠ ≤ Ce−cmin{δ,δ2}.
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