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Abstract This paper is devoted the study of the mean field limit for many-particle
systems undergoing jump, drift or diffusion processes, as well as combinations of
them. The main results are quantitative estimates on the decay of fluctuations around
the deterministic limit and of correlations between particles, as the number of particles
goes to infinity. To this end we introduce a general functional framework which reduces
this question to the one of proving a purely functional estimate on some abstract
generator operators (consistency estimate) together with fine stability estimates on
the flow of the limiting nonlinear equation (stability estimates). Then we apply this
method to a Boltzmann collision jump process (for Maxwell molecules), to a McKean–
Vlasov drift-diffusion process and to an inelastic Boltzmann collision jump process
with (stochastic) thermal bath. To our knowledge, our approach yields the first such
quantitative results for a combination of jump and diffusion processes.
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1 Introduction

Fundamental in Boltzmann’s deduction of the equation bearing his name is the
“stosszahlansatz”, or chaos assumption. Vaguely expressed this assumption means
that when two particles collide, they are statistically uncorrelated just before the colli-
sion. After the collision they are not, of course, because, for example, the knowledge
of the position and velocity of one particle that just collided gives some information on
the position of the collision partner. And while the correlations created by collisions
decrease with time, they never vanish in a system of finitely many particles, and hence
the Boltzmann assumption could only be true in the limit of infinitely many particles.

A mathematical framework for studying this limit is the so-called BBGKY hierar-
chy (see Grad [17], Cercignani [9] and the book [11] by Cercignani et al), which con-
sists of a family of Liouville equations, each describing the evolution of an N -particle
system (deterministic, in this case), and whose solutions are densities in the space of N -
particle configurations in phase space. The BBGKY hierarchy describes in a systematic
way the evolution of marginal distributions. Formally, and under appropriate assump-
tions, most notably the chaos assumption, the one-particle marginal of solutions to the
N -particle Liouville equation, converges to solutions of the Boltzmann equation.

It would take until 1974 before a mathematically rigorous proof of this statement
was given by Lanford [27]. While this is a remarkable result, it only proves that the
Boltzmann equation is a limit of the N -particle systems for a fraction of the mean free
time between collisions, and this is essentially where the problem stands today (see
however [22] for a large time limit in a near to the vacuum framework; it is worth
emphasizing that in such a framework no more collisions occur than in Lanford’s
framework).

In order to avoid some of the difficulties related to the deterministic evolution of a
real particle system, Kac [23] invented a Markov process for a particular N -particle
system, and gave a mathematically rigorous definition of propagation of chaos. He
then proved that this holds for his Markov system, and thus obtained a mathematically
rigorous derivation of a simplified (spatially homogeneous) Boltzmann equation in
this case, usually called the Kac equation.
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A new approach to quantitative propagation 3

Kac’s work provides the framework of this paper, and we will now describe our
main results. We let E be the state space of one particle (usually R

d , but metric, sep-
arable and locally compact is fine). A sequence of probability measures ( f N )

∞
N=0,

where each f N ∈ P(E N ) is symmetric in the sense that it is invariant under per-
mutation of the coordinates, is said to be f -chaotic for some probability measure
f ∈ P(E) if for each k ≥ 1 and functions φ j ∈ Cb(E), j = 1, . . . , k, (continuous
bounded),

lim
N→∞

∫

E N

k∏
j=1

φ j (z j ) f N (dz1, . . . , dzN ) =
k∏

j=1

∫

E

φ j (z) f (dz). (1.1)

We next consider a family of time dependent probability measures ( f N
t )

∞
N=0, being the

distributions of the states of Markov processes in E N . The Markov process is said to
propagate chaos if given an initial family of N -particle distributions ( f N

in )
∞
N=0, that is

fin-chaotic, there is a time dependent distribution ft such that ( f N
t )

∞
N=1 is ft -chaotic.

In this paper we are interested in specific equations that govern the evolution of ft ; but
it is important to bear in mind that they are in general nonlinear, and it may be difficult
to prove well-posedness in function spaces relevant for proving the propagation of
chaos.

The main results of this paper are abstract. We consider:

• the family of N -particle systems represented by a Markov processes (ZN
t )t≥0 in

some product space E N , with ZN
t = (Z1,t , . . . ,ZN ,t ), and the corresponding

probability distributions ( f N
t )

∞
N=1, solving Kolmogorov’s backward equations1,

and where the distributions f N
t belong to a suitable subspace of P(E N ),

• a (nonlinear) equation defined on a subspace of P(E), which is the formal limit of
the equations governing one-particle marginals of f N

t :

∂

∂t
ft = Q( ft ), fin ∈ P(E). (1.2)

Then we:

• provide conditions on the processes and related function spaces that guarantee that
( f N

t )
∞
N=1 is ft -chaotic for t ≥ 0,

• give explicit estimates of the rate of convergence in (1.1): more precisely, for any
T > 0, � ∈ N

∗ and φ j ∈ F ⊂ Cb(E) ( j = 1, . . . , �), there is a constant ε(N )
converging to zero as N → ∞ such that

sup
t∈[0,T ]

∣∣∣∣∣∣∣
∫

E N

�∏
j=1

φ j (z j ) f N
t (dz1, . . . , dzN )−

�∏
j=1

∫

E

φ j (z) ft (dz)

∣∣∣∣∣∣∣
≤ ε(N ), (1.3)

1 As we will see in the following section, the formalism also works if Z N
t satisfies a deterministic evolution,

in which case Liouville’s equations replace Kolmogorov’s backward equation.
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which holds for N ≥ 2� and a suitably chosen space F ; if F is dense in Cb(E),
this implies in particular the propagation of chaos.

To this end, our starting point is a technique that goes back at least to Grünbaum
[21], which consists in representing an N -particle configuration ZN

t as a sum of Dirac
measures,

ZN
t = (Z1,t , . . . ,ZN ,t ) ←→ μN

Z N
t

= 1

N

N∑
j=1

δZ j,t ∈ P(E)

and proving that, in a weak sense, μN
Z N

t
converges to f N

t . In fact, because ZN
t is

random, μN
Z N

t
is a random measure in P(E), which has a probability distribution

�N
t ∈ P(P(E)). Proving the propagation of chaos is here equivalent to proving that

�N
t → δ ft in P(P(E)) when N → ∞. The error ε(N ) is dominated by, on the one

hand, how well the initial measure fin can be approximated by a sum of N Dirac
measures, and, on the other hand, estimates comparing the equations for f N

t and
ft . These estimates depend on rather technical assumptions, and although the abstract
main theorem is stated in Sect. 2, the assumptions are stated in full detail only in Sect. 4.

With the main theorem of this paper in hand, proving the propagation of chaos for
a particular N -particle system is reduced to proving:

(i) a purely functional estimate on the dual generator G N of the N -particle dynamics
which establishes and quantifies that, at first order, G N is linked to the mean field
limit generator Q (consistency estimate);

(ii) some fine stability estimates on the flow of the mean field limit equation involving
the differential of the semigroup with respect to the initial data (stability estimates).

Point (i) of our method is largely inspired from the “duality viewpoint” of Grün-
baum’s paper [21] where he considered the propagation of the chaos issue for the
Boltzmann equation associated to hard-spheres (unbounded) kernel. As he confessed
himself the proof in [21] was incomplete due to the lake of suitable stability estimates,
i.e. precisely the point (ii) of our method.

It is worth emphasizing that after we had finished writing our paper, we were
told about the recent book [26] by Kolokoltsov and his series of papers on non-
linear Markov processes and kinetic equations. These interesting works focus on
fluctuation estimates of LLN and CLT types in the general framework of nonlin-
ear Markov processes, and in some sense they generalise to several other kinetic
models the Grünbaum’s duality viewpoint (although Kolokoltsov seems to not be
aware of that earlier work). However we were not able to extract from these works
a full proof in the cases when the generator is an unbounded operator and weak dis-
tances have to be used. While the comparison of generators for the many-particle
and the limit semigroup present in both [21] and [26] is reminiscent of our work, we
believe that the main novelty of the present paper is to achieve, for the first time, both
the fine stabilities estimates in point (ii) and the consistency estimate in point (i) in
appropriate spaces (with weak topologies), in such a way that they may be combined
and they lead to the already mentioned propagation of chaos result with quantitative
estimates.
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A new approach to quantitative propagation 5

We illustrate the method by proving the propagation of chaos for three different
well known examples:

(a) We first consider the Boltzmann equation for Maxellian molecules with angular
cutoff. For such a bounded kernel case the result is well-known since the pioneering
works of Kac [23,24] and McKean [29] (who prove the propagation of chaos
without any rate) and from the works by Graham and Méléard [18–20,30] (where
the authors establish the propagation of chaos with optimal rate O(1/N )). In these
papers, the cornerstone of the proof is a combinatorial argument applied to the
equation on the law (Wild sum expansion) or to the stochastic flow (stochastic
tree). These approaches are restricted to a constant (or at least bounded) collision
rate.

(b) The second example is the McKean–Vlasov model. For such a model again, prop-
agation of chaos is well-known and has been extensively studied. One of the most
popular and efficient approaches to deal with this model is the so-called “cou-
pling method” introduced in the 1970s, which yields the optimal convergence rate
O(1/

√
N ) (note that the difference between these two optimal rates in (a) and

(b) comes from the fact that they are not measured with the same distance). We
refer to the lecture notes [30,36] as well as to the references therein for a detailed
discussion of that method. We also refer to [5] and the references therein for recent
developments on the subject.

(c) The third example is a mixed collision–diffusion equation which arises from granu-
lar gas modeling. For such a model, it seems that both the “combinatorics method”
and the “coupling method” fail while our present method is robust enough to apply
and yield quantitative chaos estimates. Let us also emphasize that the BBGKY
method and the nonlinear martingale method (see again [30,36] or [1,31]) may
also apply but would give a propagation of chaos without any rate since they are
based on compactness arguments.

Let us emphasize that it is not difficult to write a uniform in time version of Theorem
2.1: in short, if the assumptions (A1) to (A5) are satisfied with T = +∞, then the
conclusion of the main abstract Theorem 2.1 holds with T = +∞ and the proof is
unchanged. But such an abstract theorem does not readily apply to the examples (a),
(b) and (c) discussed above. More precisely, it is indeed possible to prove quantitative
uniform in time propagation of chaos by our method (for the elastic Boltzmann model
for instance), but the price to pay is a significant modification to the set of assumptions
(A1) to (A5). This issue is addressed in our companion paper [32] where the abstract
method is developed in a more general framework in order to (1) apply it to Boltz-
mann collision models associated to unbounded collisions rates, (2) develop a theory
of uniform in time propagation of chaos estimates. We shall consider the question
of uniform in time chaoticity estimates for the McKean–Vlasov equation in future
works.

These three examples illustrate the generality of the method that we study: the same
abstract framework can be used to prove propagation of chaos for N -particle systems
that have not yet been analysed as well as for models that have been studied before
but with conceptually different methods. But we chose to emphasize generality over
optimality of the result. By optimizing the method of proof for a specific problem one
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6 S. Mischler et al.

can certainly obtain sharper results, for example in terms of the rate of convergence as
a function of N or in the choice of topologies for which convergence can be proven.
We did not pursue this goal in this paper.

Also, in applying the abstract theorem to a concrete model, one is faced with
the challenge of finding functional spaces that satisfy the conditions of our abstract
convergence theorem and are adapted to the model. In many cases, like for the three
examples presented here, existing theory for the N -particle systems and for the limiting
equations may give a strong hint on what choices to make, but in other cases this could
present serious difficulties. Another guiding principle is the consistency estimates
between the generators of the N -particle system and the limit equation which constrain
the norms or metrics that can be used and hint at the losses on the norms or metrics at
the basis of the scale of spaces used in the stability estimates.

In spite of a cost of technicality, the original approach proposed by Grunbaum, even
if originally incomplete, seems to us intuitively very attractive, and with Theorems 2.1,
5.1, 6.2 and 7.1 we make this approach into a mathematically rigorous theory.

The plan of the paper is as follows. In Sect. 2, we present the method in an abstract
framework, by first setting up a functional framework that is appropriate for comparing
the N -particle dynamics with the limiting dynamics, and we establish the abstract
quantitative propagation of chaos (Theorem 2.1). The main steps of the proof are
given as well, but these rely on some technical assumptions and lemmas which are
postponed to Sect. 4. The functional framework is developed with the necessary details
in Sect. 3, where we also develop a differential calculus for functions on P(E), as
needed for studying the nonlinear semigroup. In Sect. 5, we apply the method to the
Boltzmann equation associated to the Maxwell molecules collision kernel with Grad’s
cut-off. In Sect. 6, we apply the method to the McKean–Vlasov equation, and finally, in
Sect. 7, it is applied to some mixed jump and diffusion equations motivated by granular
gases.

2 Propagation of chaos for abstract N-particle systems

In this section we introduce the mathematical notation used in the paper, make precise
statements of the results, and describe the main steps of the proof, leaving the details
of the proofs to the next sections.

2.1 The N -particle system

The phase space of the N -particle system is2 E N/SN . Here E is assumed to be a
locally compact, separable metric space, and SN denotes the symmetric group of
order N . This means that we identify all points in the N -particle phase space that can
be obtained by permutation of the particles, so that if Z = (z1, . . . , zN ) ∈ E N/SN

we have (z1, . . . , zN ) ∼ (zσ1, . . . , zσN ), where (σ1, . . . , σN ) is any permutation of

2 The phase space of a realistic N -particle system may be a subspace of the N -fold product, determined
e.g. by energy constraints or by the fact that particles of finite size may not overlap. However, in the limit
N → ∞, all of E should be accessible for any given particle.
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A new approach to quantitative propagation 7

pullback

master eq. duality

duality

sym

Fig. 1 A summary of spaces and their relations. Semigroups are in most cases given together with their
generators, as in SN

t
∣∣A

{1, . . . , N }. The evolution in phase space may be a stochastic Markov process or the
solution to an Hamiltonian system of equations. In both cases, we denote by (ZN

t )t≥0
the flow of the process.

Figure 1 illustrates the relation between the different objects that we consider.
The N -particle system is represented in the upper left corner of Fig. 1. The different
mathematical objects in this diagram are explained along the following subsections.

2.2 Master equations, Liouville’s equations and their duals

Let Psym(E N ) denote the probability measures on E N that are invariant under permu-
tation of the indices in Z = (z1, . . . , zN ) ∈ E N . The flow ZN

t induces a semigroup
of operators SN

t on Psym(E N ) defined through the formula

∀ f N
in ∈ Psym(E

N ), ϕ ∈ Cb(E
N ),〈

SN
t ( f N

in ), ϕ
〉
= E

(
ϕ
(
ZN

t

))
:=
∫

E N

EZ0

(
ϕ
(
ZN

t

))
f N
in (dZ in), (2.1)

where the bracket denotes the duality bracket between P(E N ) and Cb(E N ):

〈 f, φ〉 =
∫

E N

φ(Z) f (dZ),

and EZin denotes the conditional expectation with respect to the initial condition ZN
in =

Z in. This semigroup is the solution to Kolmogorov’s forward equation in the case where
(ZN

t )t≥0 is a random process (this equation is often called the master equation), and of
the Liouville equation in the Hamiltonian case. We always assume that SN

t preserves
the symmetry under permutation, and therefore restricts to an evolution semigroup on
Psym(E N ). There is a dual semigroup of SN

t , that acts on Cb(E N ), the set of bounded
continuous functions on E N . We write this semigroup T N

t , and denote its generator
by G N . The two semigroups are related by

〈
f N , T N

t φ
〉
=
〈
SN

t f N , φ
〉
. (2.2)
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8 S. Mischler et al.

Markov processes such that (1) T N
t is a contraction in C0(E N ), the set of continuous

functions that vanish at infinity, and (2) t �→ T N
t φ is continuous for any φ ∈ C0(E N ),

are known as Feller processes.
Hence the upper part of the diagram represents a (random) process, and its distrib-

utions. The lower part of the diagram essentially shows the same thing as induced by
the map μN

Z , as we shall now see.

2.3 The limiting dynamics

The components (z1, . . . , zN ) of Z ∈ E N/SN represent the positions (in generalized
sense, i.e. in the phase space E) of the N particles. These N particles can also be
uniquely3 represented as an empirical measure, that is a sum of Dirac measures:

Z = (z1, . . . , zN ) �→ μN
Z = 1

N

N∑
j=1

δz j . (2.3)

The resulting measure is normalized so as to give a probability measure, which is
obviously independent of any permutation of the indices. The set of such empirical
measures is denoted by PN (E). Probability measures on E are denoted by P(E), so
that PN (E) ⊂ P(E).

When the number of particles go to infinity, we may have μN
Z → f ∈ P(E),

where now f is a distribution of particles in E . We call a “limiting equation for the
N -particle systems” the (usually nonlinear) equation of the form (1.2) that is satisfied
by the probability distribution ft obtained as the limit of μN

Z , and we write its solution
in the form of a nonlinear semigroup SNL

t :

ft = SNL
t ( fin)

is the solution of

∂t ft = Q( ft ), f0 = fin.

The main result of this paper can be seen as a perturbation result: given a solution
to the limiting equation, we consider a sequence of measures μN

Zin
∈ PN (E) such that

μN
Zin

→ fin

and prove that for all t in some interval 0 ≤ t ≤ T ,

μN
Zt

→ SNL
t ( fin).

The convergence is established in the weak topology for the law of the random empir-
ical measures, as will be explained next.

3 The equivalence of particle configurations under permutation is used here.
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A new approach to quantitative propagation 9

2.4 N -particle dynamics of random measures and weak solutions of the limiting
equation

A random point Z ∈ E N with law f N ∈ Psym(E N ) can be identified with a random
measure, denoted byμN

Z ∈ PN (E), whose law is induced from f N . We denote this law
πN

P f N ∈ P(P(E)). Note that since E is a separable metric space, then so is P(E) by
Prokhorov’s Theorem, and we may define the space P(P(E)) of probability measures
on P(E), as well as the set of continuous bounded functions, denoted Cb(P(E)),
which is the dual of P(P(E)). In Sect. 3 we will discuss how the choice of topology
on P(E) influences Cb(P(E)).

The nonlinear dynamics given by the semigroup SNL
t is deterministic and defines a

semigroup of operators on Cb(P(E)), in a way that is reminiscent of the Eqs. (2.1)–
(2.2) but now using the duality structure between Cb(P(E)) and P(P(E)). We define,
for any fin ∈ P(E) and � ∈ Cb(P(E)),

T ∞
t �( fin) = �

(
SNL

t ( fin)
)
.

The semigroup T ∞
t is called the pullback semigroup of SNL

t . As we shall see, it plays
a similar role for the deterministic limiting flow SNL

t associated with the Eq. (1.2)
(lower half of the diagram), as the one the semigroup T N

t plays for the flow ZN
t at

the level of the N -particle system (upper half of the diagram): in both cases these are
the dual statistical flows. Note that for making sense of the pullback semigroup T ∞

t
on Cb(P(E)), one needs the map fin �→ SNL

t ( fin) to be continuous, and this will be
a major issue when all arguments are made precise.

To connect the N -particle dynamics with the limiting dynamics, we also need
mappings between Cb(E N ) and Cb(P(E)). On the one hand

πN :
{

Cb(P(E)) → Cb(E
N )

� �→ φ

is dual to the map P(E) � f N �→ πN
P f N ∈ P(P(E)), and is defined by

∀ Z ∈ E N , φ(Z) =
(
πN�

)
(Z) = �

(
μN

Z

)
,

where the empirical measure μN
Z is defined through (2.3). On the other hand

RN :
{

Cb(E N ) → Cb(P(E))
φ �→ �

(2.4)

is defined in the following way: for each φ ∈ Cb(E N ), RN [φ] is evaluated at the point
f ∈ P(E) as

f �→ RN [φ]( f ) = RN
φ ( f ) =

∫

E N

φ(z1, . . . , zN ) f (dz1) . . . f (dzN ), (2.5)
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10 S. Mischler et al.

which can be interpreted, as we shall see later, as a real valued polynomial taking
probability measures as arguments.

2.5 The abstract theorem

We are now ready to give a more precise version of the main abstract theorem. The
exact statement involves rather technical definitions, and its validity depends on five
assumptions, (A1) to (A5) which are properly stated in Sect. 4. The first assumption
is the requirement of symmetry under permutations that has already been stated. The
remaining conditions are (1) estimates on the regularity and stability of the nonlinear
semigroup, and (2) consistency estimates that quantifies that the N -particle systems
and the limiting semigroup are compatible.

Theorem 2.1 (Fluctuation estimate) Consider a process (ZN
t )t≥0 in E N/SN , and

the related semigroups SN
t and T N

t as defined above. Let fin ∈ P(E), and consider a
hierarchy of N-particle solutions f N

t = SN
t ( f ⊗N

in ), and a solution ft = SNL
t ( fin) of

the limit equation. We assume that (A1) to (A5) hold.
Then there is an absolute constant C > 0 and, for any T ∈ (0,∞), there are

constants CT , C̃T > 0 (depending on T ) such that for any N , � ∈ N
∗, with N ≥ 2�,

and for any

ϕ = ϕ1 ⊗ · · · ⊗ ϕ� ∈ F⊗�, ϕ j ∈ F , ‖ϕ j‖F ≤ 1,

we have

sup
[0,T )

∣∣∣∣
〈(

SN
t ( f ⊗N

in )−
(

SNL
t ( fin)

)⊗N
)
, ϕ ⊗ 1N−�

〉∣∣∣∣

≤ C
�2

N
+ CT �

2 ε(N )+ C̃T �

G3
N ( fin), (2.6)

with



G3
N ( fin) :=

∫

E N

distG3

(
μN

Z , fin

)
f ⊗N
in (dZ). (2.7)

The space F ⊂ Cb(E) and the distance distG3 are defined later in Sect. 4.

We have used the notation ϕ = ϕ1 ⊗ · · · ⊗ ϕ� to denote

ϕ(z1, . . . , z�) = ϕ1(z1)ϕ2(z2) . . . ϕ�(z�),

and ϕ ⊗ 1N−� to denote

(ϕ ⊗ 1N−�)(z1, . . . , zN ) = ϕ1(z1)ϕ2(z2) . . . ϕ�(z�).

123



A new approach to quantitative propagation 11

We first note that the left hand side of (2.6) is the same as the left hand side of (1.3),
the only difference being that the initial data to the N -particle system are assumed
to factorize: f N

in = f ⊗N
in , where fin is also the initial data to the limiting nonlinear

equation. This is a stronger hypothesis than merely requiring the initial data to be
chaotic (where the initial data to the N -particle system may factorize only in the limit
of infinitely many particles). This restriction simplifies the proof, but it can easily be
relaxed at the cost of some additional error terms.

The restriction to test functions of the form ϕ1 ⊗· · ·⊗ ϕ�⊗ 1⊗(N−�), i.e. functions
depending only on the first � variables, corresponds to analysing �-particle marginals.
Hence the theorem implies the propagation of chaos as soon as F is dense in Cb(E)
in the topology of uniform convergence on compact sets. This condition is satisfied in
all examples given below.

2.6 Main steps of the proof

The proof begins by splitting the quantity we want to estimate,

〈(
SN

t ( f ⊗N
in )−

(
SNL

t ( fin)
)⊗N

)
, ϕ ⊗ 1N−�

〉
,

in three parts, each one corresponding to one of the error terms in the right hand side
of the Eq. (2.6):

∣∣∣∣
〈
SN

t ( f ⊗N
in )−

(
SNL

t ( fin)
)⊗N

, ϕ ⊗ 1⊗N−�
〉∣∣∣∣

≤
∣∣∣
〈
SN

t ( f ⊗N
in ), ϕ ⊗ 1⊗N−�〉− 〈SN

t ( f ⊗N
in ), R�[ϕ] ◦ μN

Z

〉∣∣∣
+
∣∣∣
〈

f ⊗N
in , T N

t (R�[ϕ] ◦ μN
Z )
〉
−
〈

f ⊗N
in , (T ∞

t R�[ϕ]) ◦ μN
Z )
〉∣∣∣

+
∣∣∣
〈

f ⊗N
in , (T ∞

t R�[ϕ]) ◦ μN
Z )
〉
−
〈
(SNL

t ( fin))
⊗�, ϕ

〉∣∣∣ =: T1 + T2 + T3. (2.8)

Then each of these terms is estimated separately:

(1) The first term, T1, is bounded by C�2/N , as proven in Lemma 4.2. From the
definitions of R� and μN

Z , it follows that R�[ϕ](μN
Z ) is a sum of terms of the form

ϕ(z j1, . . . , z j� ), where each index j1, . . . , j� is taken from the set {1, . . . , N }.
The error is then due to the fraction of terms for which two or more of the indices
j1, . . . , j� are the same. Hence the estimate of T1 is of purely combinatorial
nature, and only depends on the symmetry under permutation, i.e. the assumption
(A1).

(2) The estimate of the second term, T2, relies on the convergence of the N -particle
semigroups T N

t to the limiting semigroup T ∞
t . This is where the N -particle

dynamics and the limiting dynamics are compared. The estimate can be found
in Lemma 4.3, which depends on the consistency assumption (A3) on the gen-
erators and the stability assumption (A4) on the limiting dynamics. While the
generator G N of T N

t can be defined in a straightforward manner, defining and
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12 S. Mischler et al.

estimating the generator G∞ of T ∞
t requires a more detailed analysis. It indeed

involves derivatives of functions acting on P(E), and the required differential
structure depends on the topology and metric structure chosen on P(E). The
generator G∞ is characterized in Lemma 4.1. The assumption (A4) is proved
by establishing refined stability estimates on the limiting semigroup, showing
their differentiability according to the initial data in a metric compatible with the
previous steps.

(3) For the last term T3, we note that

T ∞
t R�[ϕ](μN

Z ) = R�[ϕ]
(

SNL
t (μN

Z )
)

=
〈
(SNL

t (μN
Z ))

⊗�, ϕ
〉
,

which means that the nonlinear limiting equation is solved taking a sum of Dirac
masses as initial data, and an �-fold product of the solution is integrated against
ϕ. The resulting function of Z = (z1, . . . , zN ) is then integrated against f ⊗N

in ,
which amounts to taking an average over all initial data such that the position of
the N particles are independently taken at random from the law fin . When N is
large, the random empirical measuresμN

Z are close to fin, i.e.πN
P ( f ⊗N

in ) ⇀ δ fin in
P(P(E)). This implies that the term T3 vanish in the limit when N goes to infinity.
However the rate of this convergence sensitively depends on the regularity of the
test function ϕ and on the continuity properties of SNL

t . In all cases considered
here, the error T3 dominates the other error terms, and effectively determines the
rate of convergence in the propagation of chaos. The precise result, together with
the required assumptions, is given in Lemma 4.5.

3 Metrics on P(E) and differentiability of functions on P(E)

This section contains the technical details concerning the space of probability measures
on P(E) and its dual, that is the space of continuous functions acting on P(E).

3.1 The metric issue

P(E) is our fundamental “state space”, where we compare the marginals of the N -
particle density f N

t and the chaotic infinite-particle dynamics ft through their observ-
ables, i.e. the evolution of continuous bounded functions on E N and P(E) respectively
under the dual dynamics T N

t and T ∞
t .

There are two canonical choices of topology on the space of probabilities, which
determine two different sets Cb(P(E)).

On the one hand, for a given locally compact and separable metric space E , the
space M1(E) of finite Borel measures on E is a Banach space when endowed with the
total variation norm:

∀ f ∈ M1(E), ‖ f ‖T V := f +(E)+ f −(E)
= sup

φ∈Cb(Z), ‖φ‖∞≤1
〈 f, φ〉 = sup

φ∈C0(E), ‖φ‖∞≤1
〈 f, φ〉,
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A new approach to quantitative propagation 13

where f = f + − f − stands for the Hahn decomposition and the equality between
the two last terms comes from the fact that E is locally compact and separable.

We recall that fk
T V−−→ f (strong topology) when ( fk) and f belongs to M1(E) and

‖ fk − f ‖T V → 0 when k → ∞, and that fk ⇀ f (weak topology), if

∀ϕ ∈ Cb(Z) 〈 f, ϕ〉 = lim
k→∞〈 fk, ϕ〉 .

The associated topology is denoted by σ(M1(E),Cb(E)). However, the weak con-
vergence can be associated with different, non-equivalent metrics, and the choice of
metric plays an important role as soon as one wants to perform differential calculus
on P(E).

In the sequel, we will denote by Cb(P(E), w) the space of continuous and bounded
functions on P(E) endowed with the weak topology, and Cb(P(E), T V ) the space of
continuous and bounded functions on P(E) endowed with the total variation norm.

It is clear that Cb(P(E), w) ⊂ Cb(P(E), T V ) since fk
T V−−→ f implies fk ⇀ f .

However, the supremum norm ‖�‖L∞(P(E)) does not depend on the choice of
topology on P(E), and endows the two previous sets with a Banach space topology.
The transformations πN and RN satisfy:

∥∥∥πN�

∥∥∥
L∞(E N )

≤ ‖�‖L∞(P(E)) and ‖RN [φ]‖L∞(P(E)) ≤ ‖φ‖L∞(E N ). (3.1)

The transformation πN is well defined from Cb(P(E), w) to Cb(E N ), but it does
not map Cb(P(E), T V ) into Cb(E N ).

In the other way round, the transformation RN is well defined from Cb(E N )

to Cb(P(E), w), and therefore also from Cb(E N ) to Cb(P(E), T V ): for any φ ∈
Cb(E N ) and for any sequence fk so that the weak convergence fk ⇀ f holds, we
have f ⊗N

k ⇀ f ⊗N , and then RN [φ]( fk) → RN [φ]( f ).
The different metric structures associated with the weak topology are not seen at

the level of Cb(P(E), w). However any norm (or semi-norm) “more regular” than the
uniform norm on Cb(P(E)) (in the sense of controlling some modulus of continuity
or some differential) strongly depends on this choice, as is illustrated by the abstract
Lipschitz spaces defined below.

Definition 3.1 Let mG : E → R+ be given. Then we define the following weighted
subspace of probability measures

PG(E) := { f ∈ P(E); 〈 f,mG〉 < ∞},

together with a corresponding space of “increments”,

IPG(E) := { f1 − f2 ; f1, f2 ∈ PG(E)
}
.

If moreover there is a vector space G (with norm denoted by ‖ · ‖G) which contains
IPG(E), we then define the following distance on PG(E)
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14 S. Mischler et al.

∀ f1, f2 ∈ PG(E), distG( f1, f2) := ‖ f1 − f2‖G .

Remark 3.2 Note carefully that the space of increments IPG(E) is not a vector space
in general.

Now we can define a precised notion of equivalence of metrics:

Definition 3.3 We say that PG(E) has a bounded diameter if there exits KG > 0 such
that

∀ f ∈ PG(E), distG( f, g) ≤ KG

for some given fixed g ∈ PG(E).
Two metrics d0 and d1 on PG(E) are said to be Hölder uniformly equivalent on

bounded sets if there exists κ ∈ (0,∞) and for any a ∈ (0,∞) there exists Ca ∈
(0,∞) such that

∀ f1, f2 ∈ BPG,a,
1

Ca
[d2( f1, f2)]κ ≤ d1( f1, f2) ≤ Ca [d2( f1, f2)]κ

where

BPG,a := { f ∈ PG(E); 〈 f,mG〉 ≤ a
}
.

Finally, we say that two normed spaces G0 and G1 are Hölder uniformly equivalent
(on bounded sets) if this is the case for the corresponding metrics.

We also define the vector space UC(PG(E); R) of uniformly continuous and
bounded function � : PG(E) → R, where the continuity is related the metric topol-
ogy on PG(E) defined by distG above. Observe that this is a Banach space when
endowed with the supremum norm.

Example 3.4 With the choice mG := 1, ‖ · ‖G := ‖ · ‖T V we obtain PG(E)(E) =
(P(E), T V ) endowed with the total variation norm.

3.2 Examples of distances on measures when E = R
d

There are many ways to define distances on P(E) which are topologically equivalent
to the weak topology of measures, see for instance [6,34].

We list below some well-known distances on P(Rd) or on its subsets

Pq(R
d) := { f ∈ P(Rd); Mq( f ) < ∞}, q ≥ 0,

where the moment Mq( f ) of order q of a probability measure is defined as

Mq( f ) := 〈 f , 〈v〉q 〉 , 〈v〉2 = 1 + |v|2.

These distances are all Hölder uniformly equivalent to the weak topology σ(P(E),
Cb(E)) on the bounded subsets
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A new approach to quantitative propagation 15

BPq,a(E) :=
{

f ∈ Pq(R
d), Mq( f ) ≤ a

}

for any a ∈ (0,∞) and for q large enough. For more informations we refer to [12].

Example 3.5 (Dual-Hölder, or Zolotarev’s, distances) Denote by distE a distance on
E and fix z0 ∈ E (e.g. z0 = 0 when E = R

d in the sequel). Denote by Lip0(E) the
set of Lipschitz functions on E vanishing at one arbitrary point z0 ∈ E endowed with
the norm

[ϕ]Lip = [ϕ]1 := sup
z,z̃∈E, z �=z̃

|ϕ(z)− ϕ(z̃)|
distE (z, z̃)

.

We then define the dual norm: take mG := 1 and endow PG(E) with

∀ f, g ∈ PG(E), [g − f ]∗1 := sup
ϕ∈Lip0(E)

〈g − f, ϕ〉
[ϕ]1

. (3.2)

Example 3.6 (Monge–Kantorovich–Wasserstein distances) For q ∈ [1,∞), define

PG(E) = Pq(E) := { f ∈ P(E); 〈 f,mG〉 := 〈 f, dist (·, v0)
q 〉 < ∞}

and the Monge–Kantorovich–Wasserstein (MKW) distance Wq by

∀ f, g ∈ Pq(E), W q
q ( f, g) := inf

p∈�( f,g)

∫

E×E

distE (z, z̃)q p(dz, dz̃), (3.3)

where �( f, g) denote the set of probability measures p ∈ P(E × E) with marginals
f and g (p(A × E) = f (A), p(E × A) = g(A) for any Borel set A ⊂ E). Note that
for Z , Z̃ ∈ E N and any q ∈ [1,∞), one has

Wq

(
μN

Z , μ
N
Z̃

)
= d�q (E N /SN )

(Z , Z̃) := min
σ∈SN

(
1

N

N∑
i=1

distE (zi , z̃σ(i))
q

)1/q

,

(3.4)

and that

∀ f, g ∈ P1(E), W1( f, g) = [ f − g]∗1 = sup
φ∈Lip0(E)

〈 f − g, φ〉 (3.5)

as well as

∀ q ∈ [1,∞), ∀ f, g ∈ Pq(R
d), W1( f, g) ≤ Wq( f, g). (3.6)

We refer to [40] and the references therein for more details on the Monge–
Kantorovich–Wasserstein distances and for a proof of these claims.
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16 S. Mischler et al.

Example 3.7 (Fourier-based norms) For E = R
d ,mG := 1, let

∀ f ∈ T PG(E), ‖ f ‖G = | f |s := sup
ξ∈Rd

| f̂ (ξ)|
〈ξ 〉s

, s > 0.

We denote by H−s (which includes IPG(E) for s large enough) the Banach space
associated to the norm | · |s . Such norms first appeared in connection with kinetic
theory in [16].

Example 3.8 (Negative Sobolev norms) For E = R
d ,mG := 1, let

∀ f ∈ T PG(E), ‖ f ‖G = ‖ f ‖H−s (Rd ) :=
∥∥∥∥∥

f̂ (ξ)

〈ξ 〉s

∥∥∥∥∥
L2(Rd )

, s > 0.

We denote by H−s (which includes IPG(E) for s large enough) the Hilbert space
associated to the norm ‖ · ‖H−s .

For E = R
d ,mG := 1, and some integers k, � ≥ 0, we also define

∀ f ∈ T PG(E), ‖ f ‖G = ‖ f ‖H−k
−� (Rd )

:= sup
‖ϕ‖

Hk
�
=1

〈 f, ϕ〉,

where

‖ϕ‖2
Hk
�

:=
∑
|α|≤k

∫

Rd

|∂αϕ(z)|2 〈z〉2� dz.

We denote by H−k
−� (Rd) (which includes IPG(E) for k large enough) the Hilbert space

associated to the norm ‖ · ‖H−k
−� (Rd )

.

3.3 Differential calculus for functions of probability measures

We start with a definition of Lipschitz regularity, for which a mere metric structure is
sufficient.

Definition 3.9 For metric spaces G̃1 and G̃2 we denote by C0,1(G̃1, G̃2) the space of
functions from G̃1 to G̃2 with Lipschitz regularity, i.e. the set of functions� : G̃1 → G̃2
such that there exists a constant C > 0 so that

∀ f, g ∈ G̃1, distG̃2
(�(g),�( f )) ≤ C distG̃1

(g, f ). (3.7)

We then define the semi-norm [·]C0,1(G̃1,G̃2)
on C0,1(G̃1, G̃2) as the infimum of the

constants C > 0 such that (3.7) holds.
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A new approach to quantitative propagation 17

The next step consists in defining a higher order differential calculus; this is where
the assumption that metrics are inherited from a normed vector space structure plays
a role.

Definition 3.10 Let G1 and G2 be normed spaces, and let G̃1 and G̃2 be two metric
spaces such that G̃i − G̃i ⊂ Gi . For k ∈ N, we define Ck,1(G̃1; G̃2) to be the set of
bounded continuous functions � : G̃1 → G̃2 such that there exists D j� : G̃1 →
B j (G1,G2) continuous and bounded, where B j (G1,G2) is the space of bounded j-
multilinear applications from G1 to G2 (endowed with its canonical norm) for j =
1, . . . , k, and some constants C j > 0, j = 0, . . . , k, so that for any j = 0, . . . , k

∀ f, g ∈ G̃1,

∥∥∥∥∥∥�(g)−
j∑

i=0

〈
Di�( f ), (g − f )⊗i

〉∥∥∥∥∥∥G2

≤ C j ‖g − f ‖ j+1
G1

(3.8)

(with the convention D0� = �).
We also define the following seminorms on Ck,1(G̃1, G̃2)

[�] j,0 := sup
f ∈G̃1

∥∥∥D j�( f )
∥∥∥B j (G1,G2)

, j = 1, . . . , k,

with

‖L‖B j (G1,G2)
:= sup

hi , ‖hi ‖G1≤1, 1≤i≤ j

∥∥L
(
h1, . . . , h j

)∥∥G2
,

and

[�] j,1 := sup
f,g∈G̃1

∥∥∥�(g)−∑ j
i=0〈Di�( f ), (g − f )⊗i 〉

∥∥∥G2

‖g − f ‖ j+1
G1

.

Finally we combine these semi-norms into the norm

‖�‖Ck,1(G̃1,G̃2)
=

k∑
j=1

[�] j,0 + [�]k,1.

Remark 3.11 Observe that for any j ≥ 1 the LHS of (3.8) makes sense since

�(g)−
j∑

i=0

〈
Di�( f ), (g − f )⊗i

〉

=
[
�(g)−�( f )

]
−

j∑
i=1

〈
Di�( f ), (g − f )⊗i

〉
∈ G2
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18 S. Mischler et al.

since �(g)−�( f ) ∈ G̃2 − G̃2 ⊂ G2 and Di�( f ) ∈ B j (G1,G2). Then note that our
definition is very close to the usual Fréchet definition of differentiability in Banach
spaces for the function h �→ �( f + h) with h = g − f ∈ G1, except that the domain
and range are restricted to subsets that have no vectorial structures and are not open
within G1 and G2. We also only consider Lipschitz differentiability.

The following lemma confirms that this differential calculus is well-behaved for
composition, which seems to be a minimal requirement for further applications.

Lemma 3.12 Consider U ∈ Ck,1(G̃1, G̃2) and V ∈ Ck,1(G̃2, G̃3). Then the composi-
tion � := V ◦ U belongs to Ck,1(G̃1, G̃3). Moreover the following chain rule holds at
first order k = 1

∀ f ∈ G̃1, D�[ f ] = DV[U( f )] ◦ DU[ f ], (3.9)

with the estimates
⎧⎪⎨
⎪⎩

[�]0,1 ≤ [V]0,1 [U]0,1,

[�]1,0 ≤ [V]1,0 [U]1,0,

[�]1,1 ≤ [V]1,0 [U]1,1 + [V]1,1 [U]2
0,1.

At second order k = 2 one also has the chain rule

∀ f ∈ G̃1, D2�[ f ] = D2V[U( f )] ◦ (DU[ f ] ⊗ DU[ f ])+DV[U( f )] ◦ D2U[ f ].
(3.10)

Proof of Lemma 3.12 It is straightforward by writing and compounding the expan-
sions of U and V provided by Definition 3.10. ��

3.4 The subalgebra of polynomials in Cb(P(E))

In Sect. 2 we defined a map R� : C(E�) → Cb(P(E)), which may be used to define
a subalgebra of polyomials in Cb(P(E)). We first define the monomials:

Definition 3.13 A monomial in Cb(P(E)) of degree � is a function R�[ϕ] with ϕ =
ϕ1 ⊗ · · · ⊗ ϕ�, ϕi ∈ Cb(E) and � ∈ N. Explicitly

R�[ϕ]( f ) =
∫

E�

ϕ(z1, . . . , z�) d f ⊗�(z1, . . . , z�)

=
�∏

j=1

∫

E

ϕ j (z) d f (z) ,

which is well-defined for all f ∈ P(E).
The product of two monomials is defined in a natural way by R�1 [φ]R�2 [ψ] =

R�1+�2 [φ ⊗ψ], and the polynomial functions are linear combinations of monomials.
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These form a subalgebra of Cb(P(E)) that contains the constants and separates points
in P(E), and hence the Stone-Weierstrass Theorem implies that this subalgebra is
dense in Cb(P(E)), where the meaning of “dense” depends on the topology chosen
on P(E).

While the polynomials in R always are differentiable, the smoothness of the poly-
nomials depends on the metric structure. We need first some preliminary definitions.

Definition 3.14 • Duality of type 1: We say that a pair (F ,G) of normed vector
spaces such that F ⊂ Cb(E) and P(E)− P(E) ⊂ G satisfies a duality inequality
if

∀ f, g ∈ P(E), ∀ϕ ∈ F , |〈( f − g), ϕ〉| ≤ C ‖ f − g‖G ‖ϕ‖F . (3.11)

• Duality of type 2: More generally we say that a pair (F ,PG(E)) of a normed
vector space F ⊂ Cb(E) endowed with the norm ‖ · ‖F and a probability space
PG(E) ⊂ P(E) endowed with a metric dG satisfies a duality inequality if

∀ f, g ∈ PG(E), ∀ϕ ∈ F , |〈g − f, ϕ〉| ≤ C distG( f, g) ‖ϕ‖F . (3.12)

Lemma 3.15 If ϕ ∈ F� and the pair (F ,G) satisfy a duality of type 1, the polynomial
function R�[ϕ] is of class Ck,1(PG(E),R) for any k ≥ 0. In the more general case
where the pair (F ,PG(E)) satisfies a duality of type 2, the polynomial function R�[ϕ]
is at least of class C0,1(PG(E),R).

Proof It is clearly enough to prove the lemma for monomials, and the proof then
mainly follows from the multilinearity of R. In the case of duality of type 2, then the
conclusion follows from

R�[ϕ]( f2)− R�[ϕ]( f1) =
�∑

i=1

⎛
⎝ ∏

1≤k<i

〈ϕk, f2〉
⎞
⎠ 〈ϕi , f2 − f1〉

⎛
⎝ ∏

i<k≤�
〈ϕk, f1〉

⎞
⎠ .

In the case of duality of type 1, we define

G → R, h �→ DR�[ϕ]( f )(h) :=
�∑

i=1

⎛
⎝∏

j �=i

〈ϕ j , f 〉
⎞
⎠ 〈ϕi , h〉,

and we write

R�[ϕ]( f2)− R�[ϕ]( f1)− DR�[ϕ]( f1)( f2 − f1)

=
∑

1≤ j<i≤�

⎛
⎝ ∏

1≤k< j

〈ϕk, f2〉
⎞
⎠ 〈ϕ j , f2 − f1〉

⎛
⎝ ∏

j<k<i

〈ϕk, f1〉
⎞
⎠

×〈ϕi , f2 − f1〉
⎛
⎝ ∏

i<k≤�
〈ϕk, f1〉

⎞
⎠ .
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We deduce then

∣∣∣R�[ϕ]( f2)− R�[ϕ]( f1)

∣∣∣ ≤ ‖ϕ‖1,F⊗(L∞)�−1 ‖ f2 − f1‖G,∣∣∣DR�[ϕ]( f1)(h)
∣∣∣ ≤ ‖ϕ‖1,F⊗(L∞)�−1 ‖h‖G,∣∣∣R�[ϕ]( f2)−R�[ϕ]( f1)− DR�[ϕ]( f1)( f2 − f1)

∣∣∣ ≤ ‖ϕ‖1,F2⊗(L∞)�−2 ‖ f2 − f1‖2
G,

where

‖ϕ‖1,F k⊗(L∞)�−k :=
∑

{i1,...,ik }⊂{1,...,�}
‖ϕi1‖F · · · ‖ϕik ‖F

∏
j /∈{i1,...,ik }

‖ϕ j‖L∞(E)

≤
{
� ‖ϕ‖∞,F⊗(L∞)�−1 for k = 1,
�(�− 1)

2
‖ϕ‖∞,F2⊗(L∞)�−2 for k = 2,

and we have defined

‖ϕ‖∞,F k⊗(L∞)�−k := max{i1,...,ik }⊂{1,...,�} ‖ϕi1‖F · · · ‖ϕik ‖F
∏

j /∈{i1,...,ik }
‖ϕ j‖L∞(E)

≤ ‖ϕ‖F⊗� ,

since ‖ · ‖L∞(E) ≤ ‖ ·‖F . This proves that R�[ϕ] ∈ C1,1(PG(E),R). The cases k ≥ 2
are proved similarly. ��

4 Assumptions and technical lemmas

In this section we collect the lemmas used in the proof of Theorem 2.1, and the technical
assumptions that are needed.

The first assumption is simply the statement that the N -particle dynamics is well
defined and invariant under permutation of the particles.

(A1) N -particle semigroup. The family T N
t consists of strongly continu-

ous Markov semigroups on Cb(E N ) that are invariant under permuta-
tions of indices. We denote their generator by G N and we denote by
SN

t the dual semigroup on the N -particle distributions.

4.1 The generator of the pullback semigroup

While the definition of T N
t and its generator is rather standard, it takes more care when

defining the pullback of the nonlinear semigroup and the corresponding generator. The
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second assumption that we need to impose on the system is related to this, and relates
to our definition of a differential calculus of functions on P(E).

(A2) Nonlinear semigroup. Consider a probability space PG1(E) (defined
in Definition 3.1) associated to a weight function mG1 , endowed with
the metric induced from a normed space G1, and with bounded diam-
eter. Assume that for any τ > 0 we have:

(i) The Eq. 1.2 generates a continuous semigroup SNL
t on PG1(E)

which is uniformly Lipschitz continuous: there exists Cτ > 0
such that

∀ f, g ∈ PG1(E), sup
t∈[0,τ ]

distG1

(
SNL

t f, SNL
t g

)
≤ Cτ distG1( f, g).

(ii) There exists δ ∈ (0, 1] such that the (possibly nonlinear)
generator Q (introduced in Eq. 1.2) is bounded and δ-Hölder
continuous from PG1(E) into G1 in the following sense: there
exist L , K > 0 so that for any f, g ∈ PG1(E)

‖Q( f )‖G1 ≤ K , ‖Q( f )− Q(g)‖G1 ≤ L ‖ f − g‖δG1
.

This assumption is sufficient for defining the generator of T ∞
t :

Lemma 4.1 Under assumption (A2) the pullback semigroup T ∞
t is a contrac-

tion semigroup on the Banach space UC(PG1(E); R) and its generator G∞ is an
unbounded linear operator on UC(PG1(E); R) with domain Dom(G∞) containing
C1,1(PG1(E); R). It is defined by

∀� ∈ C1,1(PG1(E); R), ∀ f ∈ PG1(E),
(
G∞�

)
( f ) = 〈D�[ f ], Q( f )〉. (4.1)

Proof The proof is split into several steps.

Step 1 We claim that for any fin ∈ PG1(E) and τ > 0 the map

S( fin) : [0, τ ) → PG1(E), t �→ SNL
t ( fin)

is right-differentiable at t = 0+ with S( fin)
′(0) = Q( fin).

Denote ft := SNL
t fin. First, since Q( ft ) is bounded in G1 uniformly on t ∈ [0, τ ]

from (A2)-(ii), we have, uniformly on fin ∈ PG1(E),

‖ ft − fin‖G1 =
∥∥∥∥∥∥

t∫

0

Q( fs) ds

∥∥∥∥∥∥
G1

≤ K t, (4.2)
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and then using (A2)-(ii) and the inequality (4.2) we obtain

‖ ft − fin − t Q( fin)‖G1 =
∥∥∥∥∥∥

t∫

0

(Q( fs)− Q( fin)) ds

∥∥∥∥∥∥
G1

= L

t∫

0

‖ fs − fin‖δG1
ds

≤ L

t∫

0

(K s)δ ds = L K δ t1+δ

1 + δ
,

which implies the claim.

Step 2. We claim that (T ∞
t ) is a C0-semigroup of linear and bounded (in fact contrac-

tion) operators on UC(PG1(E); R). Indeed, first for any � ∈ UC(PG1(E); R) and
denoting by ω� the modulus of continuity of �, we have

∣∣(T ∞
t �)(g)− (T ∞

t �)( f )
∣∣ =

∣∣∣�(SNL
t (g))−�(SNL

t (g))
∣∣∣

≤ ω�

(
distG1

(
SNL

t (g), SNL
t ( f )

))

≤ ω�
(
Cτ distG1( f, g)

)

so that T ∞
t � ∈ UC(PG1(E); R) for any t ≥ 0. Next, we have

‖T ∞
t ‖ = sup

‖�‖≤1
‖T ∞

t �‖ = sup
‖�‖≤1

sup
f ∈PG1 (E)

∣∣∣�(SNL
t ( f ))

∣∣∣ ≤ 1,

‖�‖ = sup
h∈PG1 (E)

|�(h)|.

Finally, from (4.2), for any � ∈ UC(PG1(E); R), we have

∥∥T ∞
t �−�

∥∥ = sup
f ∈PG1 (E)

∣∣∣�(SNL
t ( f ))−�( f )

∣∣∣ ≤ ω�(K t) → 0 as t → 0+.

As a consequence, Hille–Yosida Theorem (see for instance [33, Theorem 3.1]) implies
that (T ∞

t ) is associated to a closed generator G∞ with dense domain dom(G∞) ⊂
UC(PG1(E); R).

Step 3. A candidate for this generator is defined as follows. Let G̃∞ be defined by

∀� ∈ C1,1(PG1(E); R), ∀ f ∈ PG1(E), (G̃∞�)( f ) := 〈D�[ f ], Q( f )〉.
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The RHS is well defined since D�( f ) ∈ B(G1,R) = G′
1 and Q( f ) ∈ G1 by assump-

tion. Moreover, since both f �→ D�[ f ] and f �→ Q( f ) are uniformly continuous
so is the map f �→ (G̃∞�)( f ). It yields G̃∞� ∈ UC(PG1(E); R).

Step 4. Finally, by composition,

∀ f ∈ PG1(E), t �→ T ∞
t �( f ) = � ◦ SNL

t ( f )

is right-differentiable at t = 0+ and

d

dt
(T ∞

t �)( f )|t=0 := d

dt
(� ◦ S( f )(t))|t=0

=
〈

D�(S( f )(0)),
d

dt
S( f )(0)

〉

= 〈D�[ f ], Q( f )〉 =
(

G̃∞�
)
( f ),

which implies � ∈ Dom(G∞) and (4.1). ��

4.2 Estimates in the proof of Theorem 2.1

The proof of Theorem 2.1 relies on the three following lemmas, together with their
assumptions.

4.2.1 Estimate of T1

The first error term is estimated by the following combinatorial argument.

Lemma 4.2 Let SN
t , μ

N
Z and R�[ϕ] as defined in Sect. 2 (see Fig. 1), and let ϕ ∈

Cb(E�). For any t ≥ 0 and any N ≥ 2�

T1 :=
∣∣∣
〈
SN

t ( f ⊗N
in ), ϕ ⊗ 1⊗N−�〉− 〈SN

t ( f ⊗N
in ), R�[ϕ] ◦ μN

Z

〉∣∣∣ ≤ 2 �2 ‖ϕ‖L∞(E�)

N
.

(4.3)

Proof Since SN
t ( f ⊗N

in ) is a symmetric probability measure, estimate (4.3) is a direct
consequence of the following estimate: For any ϕ ∈ Cb(E�) and any N ≥ 2�we have

∣∣∣∣
(
ϕ ⊗ 1⊗N−�)

sym
− πN R�[ϕ]

∣∣∣∣ ≤
2 �2 ‖ϕ‖L∞(E�)

N
. (4.4)

Here the symmetrized version of a function φ ∈ Cb(E N ), is defined as

φsym = 1

|SN |
∑
σ∈SN

φσ . (4.5)
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As a consequence for any symmetric measure f N ∈ Psym(E N ) we have

∣∣∣〈 f N , R�[ϕ](μN
Z )〉 − 〈 f N , ϕ〉

∣∣∣ ≤ 2 �2 ‖ϕ‖L∞(E�)

N
. (4.6)

To establish the inequality (4.4), we let � ≤ N/2 and introduce

AN ,� :=
{
(i1, . . . , i�) ∈ {1, . . . , N }� : ∀ k �= k′, ik �= ik′

}
and BN ,� := Ac

N ,�.

Since there are N (N − 1) . . . (N − �+ 1) ways of choosing � distinct indices among
{1, . . . , N } we get

∣∣BN ,�
∣∣

N �
= 1 −

(
1 − 1

N

)
. . .

(
1 − �− 1

N

)
= 1 − exp

(
�−1∑
i=0

ln

(
1 − i

N

))

≤ 1 − exp

(
−2

�−1∑
i=0

i

N

)
≤ �2

N
,

where we have used

∀ x ∈ [0, 1/2], ln(1 − x) ≥ −2 x and ∀ x ∈ R, e−x ≥ 1 − x .

Then we compute

R�[ϕ](μN
Z ) = 1

N �

N∑
i1,...,i�=1

ϕ(zi1 , . . . , zi� )

= 1

N �

∑
(i1,...,i�)∈AN ,�

ϕ(zi1 , . . . , zi� )+ 1

N �

∑
(i1,...,i�)∈BN ,�

ϕ(zi1 , . . . , zi� )

= 1

N �

1

(N − �)!
∑
σ∈SN

ϕ(zσ(1), . . . , zσ(�))+ O
(
�2

N
‖ϕ‖L∞

)

= 1

N !
∑
σ∈SN

ϕ(zσ(1), . . . , zσ(�))+ O
(

2 �2

N
‖ϕ‖L∞

)

and the proof of (4.4) is complete. Next for any f N ∈ P(E N ) we have

〈
f N , ϕ

〉
=
〈

f N ,
(
ϕ ⊗ 1⊗N−�)

sym

〉
,

and (4.6) follows from (4.4). ��
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4.2.2 Estimate of T2

The second error term is estimated thanks to a consistency result for the generators of
the N particle system and the limiting dynamics, and stability estimates on the limiting
dynamics. To proceed we need to introduce the two corresponding assumptions.

(A3) Convergence of the generators. Let PG1(E) be the probability space
endowed with a metric considered in (A2). For k = 1 or 2 there is a
function ε(N ) with limN→∞ ε(N ) = 0 such that for all N ∈ N: and all
� ∈ Ck,1(PG1(E); R), the generators G N satisfy

∥∥∥G N (πN �)− πN G∞(�)
∥∥∥

L∞(E N )
≤ ε(N ) ‖�‖Ck,1(PG1 (E))

. (4.7)

where Q is the nonlinear operator involved in Eq. 1.2, and G∞(�) =
〈Q, D�〉 is the generator of the pullback semigroup T ∞.

(A4) Differential stability of the limiting semigroup. We assume that the
flow SNL

t is Ck,1(PG1(E),PG2(E)) in the sense that there exists CT > 0
such that

T∫

0

∥∥∥SNL
t

∥∥∥
Ck,1(PG1 (E),PG2 (E))

dt ≤ CT (4.8)

where PG2(E) is the same subset of probabilities as PG1(E), endowed
with the norm associated to a normed space G2 ⊃ G1 possibly larger than
G1 and where k is the same integer as above.

Lemma 4.3 Suppose that the assumptions (A1) to (A4) are satisfied, and let T2 be as
defined in Eq. (2.8). Then

T2 :=
∣∣∣
〈

f ⊗N
in , T N

t (R�[ϕ] ◦ μN
Z )
〉
−
〈

f ⊗N
in ,

(
(T ∞

t R�[ϕ]) ◦ μN
Z

)〉∣∣∣ (4.9)

≤ C(k, �)CT ε(N ) ‖ϕ‖F k
1 ⊗(L∞)�−k

for an explicitly given constant C(k, �) depending only on k and �.

Proof We start from the following identity

T N
t πN − πN T ∞

t = −
t∫

0

∂

∂s

(
T N

t−s π
N T ∞

s

)
ds

=
t∫

0

T N
t−s

[
G NπN − πN G∞] T ∞

s ds,
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which we evaluate on � = R�[φ] ∈ Cb(P(E)). From assumption (A3) we have for
any t ∈ [0, T ]∣∣∣

〈
f ⊗N
in , T N

t πN R�[ϕ] − πN T ∞
t R�[ϕ]

〉∣∣∣

=
∣∣∣∣∣∣

t∫

0

〈
SN

t−s

(
f N
in

)
,
[
G NπN − πN G∞] (T ∞

s R�[ϕ])
〉

ds

∣∣∣∣∣∣

≤
T∫

0

∥∥∥
[
G NπN − πN G∞] (T ∞

s R�[ϕ])
∥∥∥

L∞(E N )
ds

≤ ε(N )

T∫

0

∥∥∥T ∞
s R�[ϕ]

∥∥∥
Ck,1(PG1 (E))

ds. (4.10)

Since T ∞
t (R�[ϕ]) = R�[ϕ] ◦ SNL

t with SNL
t ∈ Ck,1(PG1(E),PG2(E)) thanks to

assumption (A4) and R�[ϕ] ∈ Ck,1(PG2(E),R) because ϕ ∈ F⊗�
2 (see Sect. 3.4), we

obtain with the help of Lemma 3.12 that T ∞
t (R�[ϕ]) ∈ Ck,1(PG1(E)) with uniform

bound. We hence conclude that

T∫

0

∥∥∥T ∞
s (R�[ϕ])

∥∥∥
Ck,1(PG1 (E))

ds ≤ C(k, �)CT

∥∥∥R�[ϕ]
∥∥∥

Ck,1(PG2 )
, (4.11)

where C(k, �) ≤ �2 since k = 1 or k = 2.
Going back to the computation (4.10), and plugging (4.11) we deduce (4.9). ��

4.2.3 Estimate of T3

The error term T3 from Eq. (2.8) depends on estimating how well the initial data for
the nonlinear equation fin can be approximated by an empirical measure, and how
well this error is then propagated along the semigroup. To this purpose we need to
make a stability assumption for the limiting semigroup.

(A5) Weak stability of the limiting semigroup. There is probability space
PG3(E) (corresponding to a weight function mG3 and metric distG3 ) such
that every T > 0 there exists a constant C̃T > 0 such that

∀ f1, f2 ∈ PG3(E), sup
[0,T )

distG3

(
SNL

t ( f1), SNL
t ( f2)

)
(4.12)

≤ C̃T distG3( f1, f2).

Remark 4.4 Observe that when PG1(E) = PG1(E) = PG3(E) with the same weights
and distances, the assumption (A5) is included in (A4). However it is crucial to have
the flexibility to play with different metric structures in these assumptions.
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Lemma 4.5 Assume that the limiting semigroup SNL
t satisfies assumption (A5) for

some probability space PG3(E). Let F3 satisfy a duality inequality with PG3(E) as
defined in Definition 3.14. Let ϕ ∈ Cb(E�).

Then for any fin ∈ P(E), t > 0 and N ≥ 2� we have

T3 :=
∣∣∣∣
〈

f ⊗N
in ,

(
T ∞

t R�[ϕ]
)

◦ μN
Z

〉
−
〈(

SNL
t ( fin)

)⊗k
, ϕ

〉∣∣∣∣
≤ � C̃T 


G3
N ( fin) ‖ϕ‖F3⊗(L∞)�−1 , (4.13)

where 
G3
N ( fin) is defined in (2.7) and ‖ϕ‖F3⊗(L∞)�−1 is defined in the proof of

Lemma 3.15.

Proof We split T3 in two terms, the first one being

T3,1 :=
〈

f ⊗N
in ,

(
T ∞

t R�[ϕ]
)

◦ μN
Z

〉

=
∫

E N

R�[ϕ]
(

SNL
t

(
μN

Z

))
fin(dz1) . . . fin(dzN )

=
∫

E N

(
�∏

i=1

ai (Z)

)
fin(dz1) . . . fin(dzN ),

with

∀ i = 1, . . . , �, ai = ai (Z) :=
∫

E

ϕi (w) SNL
t (μN

Z )(dw).

Similarly, we write for the second term

T3,2 =
〈(

SNL
t ( fin)

)⊗�
, ϕ

〉
=
∫

E N

(
�∏

i=1

bi

)
fin(dz1) . . . fin(dzN ),

with

∀ i = 1, . . . , �, bi :=
∫

E

ϕi (w) SNL
t ( fin)(dw).

Using the identity

�∏
i=1

ai −
�∏

i=1

bi =
�∑

i=1

a1 . . . ai−1 (ai − bi ) bi+1 . . . b�,

we get

T3 ≤
�∑

i=1

⎛
⎝ ∏

j �=i

‖ϕ j‖L∞(E)

⎞
⎠
∫

E N

|ai (Z)− bi | fin(dz1) . . . fin(dzN ). (4.14)
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Then by using the duality bracket together with assumption (A5) we have

|ai (Z)− bi | :=
∣∣∣∣∣∣
∫

E

ϕi (w)
(

SNL
t ( fin)(dw)− SNL

t (μN
V )(dw)

)∣∣∣∣∣∣
≤ ‖ϕi‖F3 distG3

(
SNL

t ( fin), SNL
t (μN

Z )
)

≤ C̃T ‖ϕi‖F3 distG3

(
fin, μ

N
Z

)
. (4.15)

Therefore combining (4.14) and (4.15) (for any 1 ≤ i ≤ �), we conclude that (4.13)
holds. ��

In order to use Lemma 4.5 we need an estimate on the term 

G3
N ( fin). This infor-

mation is provided by the following quantitative version of the law of large number for
empirical measures taken from [34]. We refer to [32] for a more detailed discussion
of this issue.

Lemma 4.6 For any fin ∈ Pd+5(R
d) and any N ≥ 2 there exists a constant C which

only depends on d and Md+5( fin) so that



W 2

2
N ( fin) =

∫

Rd N

W2(μ
N
Z , fin)

2 f ⊗N
in (dZ) ≤ C N− 2

d+4 .

4.3 A remark on assumption (A4)

In this section we briefly explain how our key estimate (A4) can be obtained in the
case of a nonlinear operator Q which splits into a linear part and a bilinear part:

∀ f ∈ P(E), Q( f ) = Q1( f )+ Q2( f, f ) (4.16)

with Q1 linear and Q2 bilinear symmetric.
For two initial data fin and gin in a space PG(E) of probability measures, and some

initial data hin ∈ G we introduce the following evolution equations,

⎧⎪⎨
⎪⎩
∂t g = Q(g) = Q1(g)+ Q2(g, g), g|t=0 = gin,

∂t f = Q( f ) = Q1( f )+ Q2( f, f ), f|t=0 = fin,

∂t h = DQ[ f ](h) = Q1(h)+ 2 Q2( f, h), h|t=0 = hin

In the third equation the solution ht depends linearly on hin (but also nonlinearly on
fin): it is formally the first-order variation of the semigroup, i.e. DSNL

t fin(hin) = ht .
We now want to write a second-order variation of the semigroup. To this purpose

we consider ht and h̃t two solutions to the third equation above and write

∂t r = DQ[ f ](r)+ 1

2
D2 Q( f )(h, h̃) = Q1(r)+ 2 Q2( f, r)+Q2(h, h̃), r|t=0 = 0.
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In this fourth equation rt depends bilinearly on ht and h̃t which are two solutions
to the third equation, and therefore bilinearly on hin, h̃in (it also depends nonlin-
early on fin again): it is formally the second-order derivative of the semigroup
D2SNL

t [ fin](hin, h̃in) = rt . Observe that the initial data rin are always zero for this
second variation problem since the map ( ft )t≥0 �→ fin is linear.

Consider now hin = h̃in = gin − fin (which implies ht = h̃t ). Let us define
s := f + g,d := g − f, ω := g − f − h, ψ := g − f − h − r , for which we get the
following evolution equations

⎧⎪⎨
⎪⎩
∂t d = Q1(d)+ Q2(s,d), d|t=0 = din = gin − fin,

∂tω = Q1(ω)+ Q2(s, ω)+ Q2(h,d), ω|t=0 = 0,

∂tψ = Q1(ψ)+ Q2(s, ψ)+ Q2(h, ω)+ Q2(r,d), ψ|t=0 = 0.

Now we can translate the regularity estimates on SNL
t in terms of estimates on these

solutions on some given time interval [0, T ]:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

sup
t∈[0,T ]

‖dt‖G2 ≤ CT ‖din‖G1 �⇒ SNL
t ∈ C0,1(PG1(E), PG2(E))

⎧⎪⎨
⎪⎩

SNL
t ∈ C0,1(PG1(E), PG2(E))

supt∈[0,T ] ‖ht‖G2 ≤ CT ‖hin‖G1

supt∈[0,T ] ‖ωt‖G2 ≤ CT ‖din‖2
G1

⎫⎪⎬
⎪⎭ �⇒ SNL

t ∈ C1,1(PG1(E), PG2(E))

⎧⎪⎪⎨
⎪⎪⎩

SNL
t ∈ C1,1(PG1(E), PG2(E))

supt∈[0,T ] ‖rt‖G2 ≤ CT ‖hin‖G1‖h̃in‖G1

supt∈[0,T ] ‖ψt‖G2 ≤ CT ‖din‖3
G1

⎫⎪⎪⎬
⎪⎪⎭

�⇒ SNL
t ∈ C2,1(PG1(E), PG2(E)).

Such estimates are typically obtained by energy estimates for the equations satisfied
by d, r, ω and ψ , for a well chosen “cascade” of norms connecting ‖ · ‖G1 to ‖ · ‖G2

(see later in the applications).

5 Maxwell molecule collisions with cut-off

5.1 The model

In this section we assume that E = R
d , d ≥ 2, and we consider an N -particle

system undergoing a space homogeneous random Boltzmann collisions according to
a collision kernel b ∈ L1([−1, 1]) only depending on the deviation angle and locally
integrable. This is usually called Maxwellian molecules with Grad’s angular cut-off,
as introduced in [23,24,29]. We make the normalization hypothesis

‖b‖L1 =
∫

Sd−1

b(σ1) dσ = 1.
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Let us now describe the stochastic process. Since the phase space E N corresponds
to the velocities of the particles, we shall denote Z = V in this section. Given a
pre-collisional N -system of velocity particles V = (v1, . . . , vN ) ∈ E N = (Rd)N , the
stochastic runs as follows:

(i) for any i ′ �= j ′, we draw randomly for the pair of particles (vi ′ , v j ′) a random time
Ti ′, j ′ of collision according to an exponential law of parameter 1, and then choose
the collision time T1 and the colliding pair (vi , v j ) (which is a.s. well-defined)
in such a way that

T1 = Ti, j := min
1≤i ′ �= j ′≤N

Ti ′, j ′ ;

(ii) we then choose σ ∈ S
d−1 at random according to the law b(cos θi j ) where we

define the angular deviation θi j by cos θi j = σ · (v j − vi )/|v j − vi |;
(iii) the new state after collision at time T1 becomes

V ∗ = V ∗
i j = Ri j,σV = (v1, . . . , v

∗
i , . . . ., v

∗
j , . . . , vN ),

where the rotation Ri j,σ on the (i, j) pair with vector σ is defined by

v∗
i = wi j

2
+ u∗

i j

2
, v∗

j = wi j

2
− u∗

i j

2
, (5.1)

with

wi j = vi + v j , u∗
i j = |ui j | σ, ui j = vi − v j .

Scaling the time by a factor 1/N and repeating the above construction lead to the
definition of a Markov process (V N

t ) on (Rd)N . It is associated to a Feller semigroup
(T N

t ) with generator G N . Moreover the master equation on the law f N
t is given in

dual form by

d

dt
〈 f N

t , ϕ〉 = 〈 f N
t ,G Nϕ〉 (5.2)

with

(G Nϕ)(V ) = 1

N

N∑
1≤i< j≤N

∫

Sd−1

b(cos θi j )
[
ϕ∗

i j − ϕ
]

dσ (5.3)

where ϕ∗
i j = ϕ(V ∗

i j ) and ϕ = ϕ(V ) ∈ Cb(R
Nd). Finally, the flow f N

in �→ f N
t defines a

semigroup SN
t for the N -particle distributions which is nothing but the dual semigroup

of T N
t .
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Note that the collision process is invariant under permutation of the velocities, and
satisfies the microscopic conservations of momentum and energy at any collision time

∀α = 1, . . . , d,
∑

k

v∗
kα =

∑
k

vkα, |V ∗|2 = |V |2 :=
N∑

k=1

|vk |2.

We write V = (vi )1≤i≤N = (v1, . . . , vN ) ∈ E N and v = (vα)1≤α≤d ∈ R
d , so that

V = (viα) ∈ R
Nd with viα ∈ R.

As a consequence, for any symmetric initial law f ⊗N
in ∈ Psym(R

Nd) the law density
f N
t remains a symmetric probability and conserves momentum and energy

⎧⎨
⎩

∀α = 1, . . . , d,
∫
Rd N

( ∑N
k=1 vkα

)
f N
t (dv) = ∫

Rd N

(∑N
k=1 vkα

)
f ⊗N
in (dv),

∀ θ : R+ → R+,
∫
Rd N θ(|V |2) f N

t (dv) = ∫
Rd N θ(|V |2) f ⊗N

in (dv).

The formal limit of this N -particle system is the nonlinear homogeneous Boltzmann
equation on P(Rd) defined by

∂

∂t
ft = Q( ft , ft ) (5.4)

where the quadratic Boltzmann collision operator Q is defined by

〈Q( f, f ), ϕ〉 :=
∫

R2d×Sd−1

b(θ) (φ(w∗
2)− φ(w2)) dσ f (dw1) f (dw2) (5.5)

for ϕ ∈ Cb(R
d) and f ∈ P(Rd), with

w∗
1 = w1 + w2

2
+ |w2 − w1|

2
σ, w∗

2 = w1 + w2

2
− |w2 − w1|

2
σ (5.6)

and cos θ = σ · (v − w)/|v − w|. Equations (5.4)–(5.5) is the space homogeneous
Boltzmann equation for elastic collisions associated to the Maxwell molecules cross
section with Grad’s cutoff. We refer to the textbooks [10] and [39] and the numer-
ous references therein for both the physical background and the mathematical theory
of the Boltzmann equation. This equation generates a nonlinear semigroup SNL

t on
P(Rd) defined by SNL

t fin := ft for any fin ∈ P(Rd), which satisfies conservation of
momentum and energy:

∀ t ≥ 0,
∫

Rd

v ft (dv) =
∫

Rd

v fin(dv),
∫

Rd

|v|2 ft (dv) =
∫

Rd

|v|2 fin(dv).
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5.2 Statement of the result

On the one hand, it is well known that for the collision kernel that we have chosen
the N -particle Markov process (V N

t ) described above is well defined for any initial
velocity V N

0 , and in particular, for any given initial law f N
in ∈ Psym((R

d)N ) there
exists a unique solution f N

t ∈ Psym((R
d)N ) to Eqs. (5.2)–(5.3) so that the N -particle

semigroup SN
t is well defined, see [24,25,30,37]. On the other hand, it is also well

known that for any fin ∈ Pq(R
d), q ≥ 0 the nonlinear Boltzmann equation (5.4)–(5.5)

has a unique solution ft ∈ Pq(R
d). This solution conserves momentum and energy

as soon as q ≥ 2, see for instance [14,37–39].
Our mean field limit result then states as follows.

Theorem 5.1 (The Boltzmann equation for Maxwell molecules with Grad’s cut-off)
Consider an initial distribution fin ∈ Pq(R

d), q ≥ 2, the hierarchy of N-particle dis-
tributions f N

t = SN
t ( f ⊗N

in ) following (5.2), and the solution ft = SNL
t ( fin) following

(5.4).
Then there is a constant C > 0 and, for any T > 0, there are constants CT , C̃T > 0

such that for any

ϕ = ϕ1 ⊗ · · · ⊗ ϕ� ∈ F⊗�, F := Cb(R
d) ∩ Lip(Rd), ‖ϕ j‖F ≤ 1,

we have for N ≥ 2�:

sup
[0,T ]

∣∣∣∣
〈(

SN
t ( f N

in )−
(

SNL
t ( fin)

)⊗N
)
, ϕ

〉∣∣∣∣ ≤ C
�2

N
+ CT

�2

N
+ C̃T �


W2
N ( fin)

(5.7)

where 
W2
N was defined in (2.7) and W2 is the quadratic MKW distance defined in

(3.3).
As a consequence of (5.7) and Lemma 4.6, this implies propagation of chaos

with rate ε(N ) ≤ C(�, T, fin) N− 1
d+4 for any initial data fin ∈ Pd+5(R

d), where
C(�, T, fin) is an explicitly computable constant.

For the Boltzmann equation with bounded kernel, propagation of chaos has been
established by McKean in [29], where he adapted the method introduced by Kac in
[24] based on the Wild sum representation of the solutions to the Boltzmann equation.
Grünbaum in [21] gave an alternative proof based on the same “duality viewpoint”
as developed in the present paper. Sznitman in [35] also gave a proof of propagation
of chaos based on a nonlinear martingale approach. In all these works, propagation
of chaos is proved but without any rate of convergence (as the number of particles
goes to infinity). Graham and Méléard in [18,19,30] were then able to prove the
propagation of the chaos with the sharp rate C(�, T )/N . Their proof is based on
the construction of a stochastic tree associated to the process V N

t which is specific
to the Boltzmann equation with bounded kernel. More recently Kolokoltsov in [26]
proved a fluctuation estimate for similar processes using a “duality view point” like
the one developed by Grünbaum and used also in our work. His fluctuation estimate
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is similar to our Lemma 4.9 (and of the same order), but pays less attention to the
remaining terms of our estimate. Fournier and Godinho [15] prove the propagation
of chaos for a one-dimensional caricature of the Boltzmann equation using a cou-
pling method in the spirit of [36,37]. Their chaoticity estimate is of the same rate as
ours.

5.3 Proof of Theorem 5.1

The assumptions (A1)–(A2)–(A3)–(A4)–(A5) needed to apply Theorem 2.1 will be
verified step by step. In this proof we fix F1 = F2 = C0(R

d) and F3 = Lip(Rd)

and define PG1(E) = PG2(E) := P(Rd) endowed with the total variation norm
‖ · ‖T V ,PG3(E) := P2(R

d) endowed with the quadratic MKW distance W2. Notice
that (G1,F1) and (G2,F2) satisfy a duality inequality of type 1, and (PG3 ,F3) satisfy
a duality of type 2 (see Definition 3.13).

Proof of (A1) The symmetry assumption is satisfied because of the well-known prop-
erties of the Boltzmann-Kac N -particle system, and we refer to the previous works
[18,19,21,29,30] for details.

Proof of (A3) We claim that there exists C1 ∈ R+ such that for all � ∈
C1,1(PG1(E),R)

∥∥∥G N (� ◦ μN
V )−

〈
Q(μN

V , μ
N
V ), D�[μN

V ]
〉∥∥∥

L∞(E N )
≤ C1

N
‖�‖C1,1(PG1 (E),R)

, (5.8)

which is nothing but (A3) with k = η = 1 and ε(N ) = C1 N−1.
Take � ∈ C1,1(PG1(E),R), set φ = D�[μN

V ] and compute

G N (� ◦ μN
V ) = 1

N

∑
1≤i< j≤N

∫

Sd−1

b(θi j )
[
�(μN

V ∗
i j
)−�(μN

V )
]

dσ

= 1

N

∑
1≤i< j≤N

∫

Sd−1

b(θi j ) 〈μN
V ∗

i j
− μN

V , φ〉 dσ (= I1(V ))

+ 1

N

∑
1≤i< j≤N

∫

Sd−1

O
(

‖�‖C1,1

∥∥∥μN
V ∗

i j
− μN

V

∥∥∥2

T V

)
dσ (= I2(V )).

On the one hand, we have

I1 = 1

2N 2

N∑
i, j=1

∫

Sd−1

b(θi j )
[
φ(v∗

i )+ φ(v∗
j )− φ(vi )− φ(v j )

]
dσ

= 1

2

∫

Rd

∫

Rd

∫

Sd−1

b(θ)
[
φ(v∗)+ φ(w∗)− φ(v)− φ(w)

]
μN

V (dv)μ
N
V (dw) dσ

=
〈
Q(μN

V , μ
N
V ), φ

〉
.
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On the other hand, we have

I2(V ) = 1

2N

N∑
i, j=1

∫

Sd−1

O
(

‖�‖C1,1

(
4

N

)2
)

dσ

≤ 8
‖�‖C1,1

N

N∑
i, j=1

1

N 2 ≤ 8 ‖b‖‖�‖C1,1

N
.

Collecting these two terms we have proved that (5.8) holds.

Proof of (A4) Here we prove that for any f, h ∈ P(Rd) and for any T > 0

sup
t∈[0,T ]

∥∥∥SNL
t (g)−SNL

t ( f )−LS∞
t [ f ](g − f )

∥∥∥
T V

≤ e4 ‖γ ‖∞ T ‖g − f ‖2
T V , (5.9)

where LS∞
t [ f ] is the linearization of SNL

t at f . As a consequence, this implies that
(A4) holds with k = η = 1 and the previous definitions of PG1(E) and PG2(E). We
denote by ft , gt , ht the solutions to the following equations:⎧⎨

⎩
∂t ft = Q( ft , ft ), f|t=0 = fin,

∂t gt = Q(gt , gt ), g|t=0 = gin,

∂t ht = 2Q̃( ft , ht ) := Q( ft , ht )+ Q(ht , ft ), h|t=0 = hin,

where Q̃ denotes the symmetrized form of the bilinear collision operator. The third
equation corresponds to the first-order variation of the semigroup: LS∞

t [ f ](hin) = ht

solution to this equation.
Standard Gronwall arguments show the existence and uniqueness of such solutions,

which moreover satisfy, uniformly on [0, T ]
‖ht‖T V ≤ e2 T ‖hin‖T V , ‖gt − ft‖T V ≤ e2 T ‖gin − fin‖T V .

Next, writing rt := gt − ft − ht , we find that this expression satisfies the equation

∂t rt = Q̃( ft + gt , rt )+ Q̃(gt − ft , ht ), rin = 0.

Introducing yt := ‖rt‖T V , we have

y′
t ≤ 1

2
‖Q̃( ft + gt , rt )‖T V + ‖Q̃(gt − ft , ht )‖T V

≤ ‖γ ‖∞ ‖ ft + gt‖T V ‖rt‖T V + C ‖gt − ft‖T V ‖ht‖T V

≤ C yt + C e4t ‖h − f ‖2
T V ,

from which we deduce

∀ t ∈ [0, T ], yt ≤ e4T ‖h − f ‖2
T V .

This concludes the proof of (5.9).
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Proof of (A2) Assumption (A2)-(i) is clearly a consequence of (A4). For (A2)-(ii) we
write

‖Q( f, f )− Q(g, g)‖T V = sup
‖ϕ‖L∞≤1

∫

E

(Q( f, f )− Q(g, g)) ϕ dv

= sup
‖ϕ‖L∞≤1

∫

E×E

( f f∗ − g g∗)
∫

Sd−1

b (ϕ′ − ϕ) dσ dv dv∗

≤ 4 ‖b‖L1 ‖ f − g‖T V ,

so that the function f �→ Q( f, f ) is Lipshitz from PG1(E) to M1(Rd).

Proof of (A5) It is known since the seminal work of Tanaka [37] that the nonlinear
Boltzmann flow associated to Maxwellian molecules is a contraction for the quadratic
MLW distance W2: for any fin, gin ∈ P1(R

d) the solutions ft , gt to the Boltzmann
Eq. (5.4) satisfy

sup
[0,T ]

W2( ft , f gt ) ≤ W2( fin, gin).

That immediately implies (A5) in the space PG3(E) defined above. ��

6 Vlasov and McKean–Vlasov equations

6.1 The model

In this section we assume that E = R
m (where m = d or m = 2d with d the

physical space dimension, see later) and we consider an N -particle system which
undergoes McKean–Vlasov type stochastic dynamics, i.e. a drift deterministic force
field combined with diffusion. We refer to the lecture notes [30,36] and the references
therein for more details on the model, and among many references, we highlight
the recent paper [5] for recent results and references (using the so-called “coupling”
method). The method we shall present here does not rely on any of these references.
The results in this section are mostly not new but compare to the latest results of mean
field limit on this equation as far as we know. Indeed we shall make strong smoothness
assumptions on the coefficients of the evolution equation in order to avoid technical
difficulties and our goal is to advocate for our new method and show its power and
ability to deal with very different models.

We assume that the N particles ZN
t = (Z1,t , . . . ,ZN ,t ) satisfies the stochastic

differential equation

dZi,t = σi (Zi,t ) dBi,t + T Zi,t dt + F N
i (ZN

t ) dt 1 ≤ i ≤ N , (6.1)

where the σ(zi ) are the diffusion m × m-matrices, the Bi,t are independent standard
Wiener processes valued in R

m,T is an m × m-matrix and the F N
i : R

m → R
m are
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the force fields acting on each particle. Because of indistinguishability we assume

F N
i (Z) := F N

(
zi , μ

N−1
Ẑ N

i

)

with Ẑ N
i := (z1, . . . , zi−1, zi+1, . . . , zN ) and F N : R

m × P(Rm) → R
m . (Note that

here and below the Latin letters “i, j , …” label the particles, whereas the Greek letters
“α, β, …” label the coordinates).

We assume that F N is uniformly bounded and Lipschitz in both variables (when
endowing P(Rm) with a distance inherited from a negative Sobolev norm). More
precisely, we assume that for any k > m/2 there exists CF,k > 0 such that for any
z, z̃ ∈ R

m, f, f̃ ∈ P(Rm)

∀ N ∈ N
∗,

∣∣∣F N (z, f )− F N (z̃, f̃ )
∣∣∣ ≤ CF,k

[
|z − z̃| + ‖ f − f̃ ‖H−k

]
. (6.2)

It is also natural for the limit to exist to assume that there exists a function F :
R

m × P(Rm) → R
m such that F N → F , in the sense that there is a constant

CF,lim > 0 such that

∀ N ∈ N
∗, ∀ z ∈ R

m, ∀ f ∈ P(Rm),

∣∣∣F N (z, f )− F(z, f )
∣∣∣ ≤ CF,lim

N
. (6.3)

A simple example which satisfies these assumptions is

F N
i

(
Z , μN−1

Ẑi

)
= N

N − 1
F N
(

zi , Ẑi

)
, F N

(
zi , Ẑi

)
:= 1

N

∑
j �=i

U (zi − z j )

(6.4)

for a smooth vector field U : R
m → R

m , so that F(z, f ) = (U ∗ f )(z).
Under the smoothness assumptions (6.2) on the N -particle force fields, for any

N ≥ 1 there exists a Markov process (ZN
t )t≥0 which solves the system of stochastic

differential equations (6.1), see [30,36].
The time-dependent law f N

t of the process ZN
t satisfies the following linear master

equation corresponding to (6.1), given in dual form by

∀ϕ ∈ D(Rm), ∂t

〈
f N
t , ϕ

〉
=
〈

f N
t ,G N ϕ

〉
(6.5)

where G N is defined by

∀ Z ∈ R
m N , (G Nϕ)(Z) =

N∑
i=1

A(zi ) : ∇2
i ϕ +

N∑
i=1

(T zi ) · ∇iϕ

+
N∑

i=1

F N
(

zi , μ
N−1
Ẑi

)
· ∇iϕ.
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The nonnegative diffusion matrix A, the gradient ∇i and the Hessian matrix ∇2
i asso-

ciated to the variable zi = (zi,1, . . . , zi,m) ∈ R
m corresponding to the i-th particle are

given by

A = 1

2
σ σ ∗ = (Aα,β)1≤α,β≤m , Aα,β =

d∑
γ=1

σα,γ σβ,γ ,

and

∇iϕ = (∂zi,αϕ
)

1≤α≤m , ∇2
i ϕ =

(
∂2

zi,αzi,β
ϕ
)

1≤α,β≤m
.

We also introduce the nonlinear mean field McKean–Vlasov equation on P(Rm):

∂

∂t
f = Q( ft ), f|t=0 = fin in P(Rm), (6.6)

with

Q( f ) =
m∑

α,β=1

∂2
α,β

(
Aα,β f

)−
m∑
α=1

∂α[(T )α f ] −
m∑
α=1

∂α (Fα(z, f ) f ) .

There is an important literature on this class of nonlinear partial differential equa-
tions. See fore example [8] and [28] where more details and more references can be
found.

In the sequel, we make the following strong structure, smoothness and boundedness
assumptions on the coefficients:

(A ≡ 0, κ := 0) or (A ≥ κ Id, κ > 0, A ∈ W k,∞(Rm)), (6.7)

as well as

∀ z ∈ R
m, ∀ f ∈ P(Rm), F(z, f ) =

∫

Rm×Rm

U (z − z̃) f (dz̃) (6.8)

where U ∈ H2k
6 (Rm) for some k ∈ N, k > m/2 + 3.

When the diffusion matrix A = 0 is zero, m = 2d, z = (x, v) ∈ R
2d , our assump-

tions cover the case of the mean-field Vlasov equation. Indeed the classical Vlasov
equation reads

∂t f + v · ∇x f + (∇xψ ∗ ρ[ f ]) · ∇v f = 0, f = f (t, x, v), x, v ∈ R
d ,

with

ρ[ f ](t, x) =
∫

Rd

f (t, x, v) dv,
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and it falls into our structural assumptions with z = (x, v) ∈ R
d × R

d ,U (z) =
U (x) = (0,∇xψ(x)) with ∇xψ is Hd+6+0 and

T =
(

0xx Idxv

0vx 0vv

)
.

Then F = (Fx , Fv) defined by (6.8) is given by

Fx (x, v) = 0, Fv(x, v) = ∇xψ ∗ ρ[ f ]

for the limiting system, and, with X ∈ (Rd)N and V ∈ (Rd)N , we have for the
N -particle system T defined as above and F N = (F N

X , F N
V ) given by

F N
X = 0, (F N

V )i = 1

N

N∑
j �=i

∇xψ(Xi − X j ), i = 1, . . . , N .

Observe in particular that it does not allow for the Coulomb or Newton interactions
in this Vlasov setting due to the smoothness assumption on ψ .

6.2 Statement of the result

Our main result in the section is a quantitative propagation of chaos result for the
class of equations described above. We state two separate results respectively for the
McKean–Vlasov case (possibly non-zero diffusion matrix) and the Vlasov case (zero
diffusion matrix).

Theorem 6.1 (The McKean–Vlasov equation) Consider an initial distribution fin ∈
Pq(R

m), q ≥ 2, the hierarchy of N-particle distributions f N
t = SN

t ( f ⊗N
in ) following

(6.5) and the nonlinear evolution ft = SNL
t ( fin) following (6.6). Assume that (6.7)

and (6.8) hold.
Then there is k ∈ N and a constant C > 0 and, for any T > 0, there are constants

CT , C̃T > 0 such that for any

ϕ = ϕ1 ⊗ · · · ⊗ ϕ� ∈ F⊗�, F := Hk
6 (R

m) ∩ Lip(Rm), ‖ϕ j‖F ≤ 1,

we have for N ≥ 2�:

sup
[0,T ]

∣∣∣∣
〈(

SN
t ( f N

in )−
(

SNL
t ( fin)

)⊗N
)
, ϕ

〉∣∣∣∣ ≤ C
�2

N
+ CT

�2

N
+ C̃T �


W2
N ( fin).

(6.9)

As a consequence of (6.9) and Lemma 4.6, this implies the propagation of chaos

with rate ε(N ) ≤ C(�, T, fin) N− 1
m+4 for any initial data fin ∈ Pm+5(R

m).
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Now we consider the case of the Vlasov equation. As will be clear from the proof,
when A = 0 and U (0) = 0, the error ε(N ) = 0 vanishes in assumption (A3). This
leads to the following improved result.

Theorem 6.2 (The Vlasov equation) Suppose, in addition to the assumptions for The-
orem 6.1, that A ≡ 0 and U (0) = 0. Then there is a constant C > 0 and, for any
T > 0, a constant C̃T > 0 such that for any ϕ ∈ Lip(R�m) and any N ≥ �:

sup
[0,T ]

∣∣∣∣
〈(

SN
t ( f ⊗N

in )−
(

SNL
t ( fin)

)⊗N
)
, ϕ

〉∣∣∣∣ ≤ C ‖∇ϕ‖L∞(R�m )

�

N
+ C̃T 


W1
N ( fin)

(6.10)

(observe the replacement of W2 by W1 in the last term) which in turn implies

sup
[0,T ]

1

N
W1

(
(SN

t ( f ⊗N
in ),

(
SNL

t ( fin)
)⊗N

)
≤ C

N
+ C̃T 


W1
N ( fin)

N
.

Remark 6.3 Note that the coupling method introduced in [36] leads to a rate of chaotic-
ity of order O(1/

√
N ) for the normalized Wasserstein distance W2 between the law

of ZN
t and the tensor product f ⊗N

t . This is better than our estimate, which is limited
by the estimate in Lemma 4.6. However, the coupling method is usually limited to the
quadratic interaction given by (6.4).

6.3 Proof of Theorem 6.1

As in the proof of Theorem 5.1 we prove that Theorem 6.1 is a consequence of
Theorem 2.1, by verifying that assumptions (A1)–(A2)–(A3)–(A4)–(A5) hold. How-
ever, in the present model we cannot, as in Sect. 5, use the total variation norm for
the key consistency estimate (A3) and differential stability estimate (A4). The rea-
son is that G NπN� involves derivatives of Z �→ �(φN

Z ), and hence of Z �→ μN
Z

which is not differentiable from R
m N to P(Rm) when P(Rm) is endowed with the

total variation norm. We therefore make the following choice of functional spaces:
E := R

m with

{
G1 := H−s1−2 (R

m), F1 = Hs1
2 (R

m), s1 >
m
2 + 2

G2 := H−s2−6 (R
m), F2 = Hs2

6 (R
m), s2 := s1 + 2,

and the weight mG1(z) = mG2(z) = 1, and F3 = Lip(Rm) and PG3(E) := P2(R
m)

endowed with the quadratic MKW distance W2.

Proof of assumption (A1) The symmetry assumption is a consequence of the fact that
first (6.5) is well posed for any f N

in ∈ Psym(R
m N ) so that f N

t is a probability measure
for any t ≥ 0, and second the generator G N commutes with the permutations.
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Proof of assumption (A3) We claim that for any s1 > m/2 + 1 there exists a constant
Cs1 such that for all � ∈ C2,1(PG1(E),R)

∥∥∥G N (� ◦ μN
Z )−

〈
Q(μN

Z ), D�[μN
Z ]
〉∥∥∥

L∞(E N )
≤ Cs1

N
‖�‖C2,1(PG1 (E),R)

, (6.11)

which is nothing but (A3) with k = 2, η = 1 and ε(N ) = Cs1 N−1.

Proof of 6.11 First, the map

R
m N → H−s1(Rm), Z �→ μN

Z

is C2 with

∂zi,αμ
N
Z = 1

N
∂αδzi , ∂2

zi,α,zi,β
μN

Z = 1

N 2 ∂
2
αβδzi .

Take � ∈ C2,1
b (PG1(E)). Then the map

R
m N → R, Z �→ �(μN

Z )

is C2
b . Indeed, denoting φ = φZ (·) = D�

[
μN

Z

] ∈ (H−s1−2 (R
m))′ = Hs1

2 (R
m), we can

write:

∂zi,α�
(
μN

Z

)
=
〈

D�
[
μN

Z

]
,

1

N
∂αδzi

〉
= 1

N
∂αφZ (vi )

∂2
zi,α,zi,β

�
(
μN

Z

)
=
〈

D�
[
μN

Z

]
,

1

N
∂2

zi,α,zi,β
δzi

〉

+D2�
[
μN

Z

]( 1

N
∂zi,α δzi ,

1

N
∂zi,β δzi

)

= 1

N
∂2
α,βφZ (zi )+ 1

N 2 D2�
[
μN

Z

] (
∂zi,α δzi , ∂zi,β δzi

)

and both ∂zi,α δzi and ∂2
zi,α,zi,β

δzi belong to H−s1−2 (R
m) thanks to the condition s1 >

m/2 + 2.
As a consequence, we compute(

G NπN�
)
(Z) = G N �(μN

Z )

=
N∑

i=1

A(zi ) : ∇2
i

(
�(μN

Z )
)

+
N∑

i=1

(T zi ) · ∇i

(
�(μN

Z )
)
+

N∑
i=1

F N
(

zi , μ
N−1
Ẑi

)
· ∇i

(
�(μN

Z )
)

=: I1(Z)+ I2(Z)
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with

I1(Z) := 1

N

N∑
i=1

m∑
α,β=1

Aα,β(zi ) ∂
2
α,βφZ (zi )

+
N∑

i=1

m∑
α,β=1

(Tαβ zi ) ∂βφZ (zi )+ 1

N

N∑
i=1

m∑
α=1

Fα
(

zi , μ
N
Z

)
∂αφZ (zi )

and

I2(Z) := 1

N 2

N∑
i=1

m∑
α,β=1

Aα,β(zi ) D2�
[
μN

Z

] (
∂zi,α δzi , ∂zi,β δzi

)

+ 1

N

N∑
i=1

m∑
α=1

[
F N
α

(
zi , μ

N−1
Ẑi

)
− Fα

(
zi , μ

N
Z

)]
D�
[
μN

Z

] (
∂zi,α δzi

)
.

On the one hand, using that
∥∥∥μN−1

Ẑi
− μN

Z

∥∥∥
H

−s1−2 (Rm)
≤ 2

N
sup

zi

∥∥δzi

∥∥
H−s1 (Rm)

≤ C

N

as well as (6.2) and (6.3), we deduce that

|I2(Z)| ≤ N
m2

N 2 ‖A‖∞ ‖D2�‖∞ ‖∂1δ‖2
H

−s1−2 (Rm )

+N m

(
CF

N

)
1

N
‖D�‖∞ ‖∂1δ‖H

−s1−2 (Rm)
≤ C�

N
.

On the other hand, we recognize

I1(Z) =
〈
μN

Z ,

m∑
α,β=1

Aα,β ∂
2
α,βφZ

〉

+
〈
μN

Z ,

m∑
α=1

(T ·)α ∂αφZ

〉
+
〈
μN

Z ,

m∑
α=1

Fα
(
·, μN

Z

)
∂αφZ

〉

=
〈
Q(μN

Z ), φZ

〉
=
〈
Q(μN

Z ), D�(μN
Z )
〉
=
(
πN G∞�

)
(Z),

thanks to the calculation of the limit dual generator made in Sect. 4.1. ��
Proof of assumption (A4) We need here to perform a second-order expansion of the
limit semigroup.

We consider

• for any two given initial data fin, gin ∈ P(Rm) the corresponding solutions ft and
gt to the nonlinear McKean–Vlasov (or Vlasov) Eq. (6.6),
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• for any given initial data hin ∈ P(Rm) the solution ht to the following equation,
which is the linearization around ft :

∂t h = ∇2 : (A h)− ∇ · ((T ) h)− ∇ · [h (U ∗ f )+ f (U ∗ h)
]
, ht=0 = hin,

(6.12)

• rt the solution to the following second variation equation around ft

⎧⎪⎨
⎪⎩
∂t r = ∇2 : (A r)− ∇ · ((T z) r)− ∇ · [r (U ∗ f )+ f (U ∗ r)]

−1

2
∇ ·
[
h̃ (U ∗ h)

]
− 1

2
∇ ·
[
h (U ∗ h̃)

]
,

r|t=0 = rin = 0

(6.13)

for two solutions h, h̃ of the first variation equation.

Then we shall prove the following a priori estimates.

Lemma 6.4 For any s1 ∈ N, s1 > m/2 + 1, � ∈ {1, 2, 3} and for any T > 0, there
exists CT such that

sup
[0,T ]

‖gt − ft‖H
−s1−� (Rm)

≤ CT ‖gin − fin‖H
−s1−� (Rm)

, (6.14)

sup
[0,T ]

‖ht‖H
−s1−� (Rm)

≤ CT ‖hin‖H
−s1−� (Rm)

, (6.15)

sup
[0,T ]

‖rt‖H
−(s1+1)
−4 (Rm)

≤ CT ‖hin‖H
−s1−2 (Rm)

‖h̃in‖H
−s1−2 (Rm )

, (6.16)

and when h̃in = hin = gin − fin we have

sup
[0,T ]

‖gt − ft − ht‖H
−(s1+1)
−4 (Rm)

≤ CT ‖gin − fin‖2
H

−s1−2 (Rm)
, (6.17)

sup
[0,T ]

‖gt − ft − ht − rt‖H
−(s1+2)
−6 (Rm)

≤ CT ‖gin − fin‖3
H

−s1−2 (Rm)
. (6.18)

This shows that the nonlinear semigroup SNL
t associated to the nonlinear McKean–

Vlasov equation (6.6) is C2,1
b (PG1(E),PG2(E)).

Proof of Lemma 6.4 The proof is carried out in several steps.

Step 1. We will several times consider the equation

∂tζt = ∇2 : (A ζt )− ∇ · ((T z)ζt )− ∇ · (u1 ζt + u2 (U ∗ ζt )) (6.19)

with given initial data ζin and with an R
m-valued function u1 and an R-valued measure

u2 to be specified [chosen in order to “match” equations (6.6), (6.12) and (6.13)]. We
claim that for any k ∈ N, k > m/2 + 1, � ∈ {1, 2, 3} and any T > 0,

∀ t ∈ [0, T ], ‖ζt‖H−k
−� (Rm)

≤ ‖ζin‖H−k
−� (Rm )

eCk (U ,u1,u2) T (6.20)
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with

Ck(U , u1, u2) := C(k) sup
t∈[0,T ]

[
‖u1‖W k,∞(Rm) + ‖U ‖Hk

� (R
m ) ‖u2‖T V (Rm)

]
.

We argue by duality and we consider a smooth solution θ to the following linear
equation (which is the dual equation of (6.19))

⎧⎪⎨
⎪⎩
∂tθ = L∗

1θ + L∗
2θ,

L∗
1θ := A : ∇2θ + (T z) · ∇θ,

L∗
2θ := u1 · ∇θ + Ǔ ∗ (u2 ∇θ) ,

(6.21)

with Ǔ (x) := U (−x).
For a given multi-index ν ∈ N

m with |ν| = k′ ≤ k, we compute

d

dt

∫

Rm

∣∣∂νθ ∣∣2� 〈z〉2� dz

=
∫

Rm

(∂νL∗
1θ) ∂

νθ 〈z〉2� dz +
∫

Rm

(∂νL∗
2θ) ∂

νθ 〈z〉2� dz =: L1 + L2.

By integrations by parts, we get

L1 ≤ −κ
∫

Rm

∣∣∇∂νθ ∣∣2 〈z〉2� dz + C
(
‖T ‖∞ + ‖A‖W k′+2,∞(Rm)

)
‖θ‖2

Hk′
� (R

m)

and (using Sobolev embedding inequalities for the last term)

L2 ≤ C
(
‖u1‖W k′,∞(Rm )

+ ‖u2‖T V (Rm) ‖U ‖Hk′
� (R

m )

)
‖θt‖2

Hk
� (R

m )

which shows that

∀ t ∈ [0, T ], ‖θt‖Hk
� (R

m) ≤ ‖θin‖Hk
� (R

m ) eCk (U ,u1,u2) T .

Denoting by Ut the linear semigroup associated to (6.19), the associated dual semi-
group U∗

t is generated by (6.21). As a consequence, for any θin ∈ Hk(Rm), we have

〈ζt , θin〉 = 〈
ζin,U∗

t θin
〉 ≤ ‖ζin‖H−k

−� (Rm)
‖U∗

t θin‖Hk
� (R

m )

≤ eCk (U ,u1,u2) T ‖ζin‖H−k
−� (Rm )

‖θin‖Hk
� (R

m),

which concludes the proof of the claim (6.20).
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Step 2. Proof of (6.14). The equation satisfied by the difference dt = gt − ft is

{
∂t dt = ∇2 : (A dt )− ∇ · ((T z)dt )− ∇ · (dt (U ∗ f )+ g (U ∗ dt )) ,

d|t=0 = din = gin − fin,
(6.22)

which fits in the form (6.19) with u1 := U ∗ f and u2 = g. Now, since

∥∥∥∇k(U ∗ f )
∥∥∥

L∞(Rm)
=
∥∥∥(∇kU ) ∗ f

∥∥∥
L∞(Rm)

≤
∥∥∥∇kU

∥∥∥
L∞(Rm )

we conclude that

Ck(U ,U ∗ f, g) ≤ C ‖U ‖Hk
3 ∩W k,∞(Rm)

and that (6.14) holds. Proceeding in the same way for the function h we end up with

sup
[0,T ]

‖ht‖H
−s1−� (Rm )

≤ CT ‖hin‖H
−s1−� (Rm )

, (6.23)

for any s1 ∈ N, s1 > m/2 + 1.
Step 3. Inequalities for products and convolutions in Sobolev spaces. We define the
weighted L∞-based Sobolev spaces as usual:

‖ f ‖L∞−�(Rm) :=
∥∥∥〈·〉−� f

∥∥∥
L∞(Rm )

,

‖ f ‖W k,∞
−� (Rm)

:=
∑

0≤k′≤k

∥∥∥〈·〉−�∂k′
f
∥∥∥

L∞(Rm )
.

We have the three following inequalities on functions S, ψ in the appropriate spaces:

‖S ∗ U ‖L∞−�(Rm ) ≤ ‖U ‖Hk
� (R

m ) ‖S‖H−k
−� (Rm)

and more generally

‖S ∗ U ‖W k,∞
−� (Rm)

≤ ‖U ‖H2k
� (Rm ) ‖S‖H−k

−� (Rm)

and finally

‖S ψ‖H−k
−� (Rm )

≤ Ck,� ‖S‖H−k
−� (Rm)

‖ψ‖W k,∞(Rm)

for any k, � ∈ N, and some constant Ck,� > 0. The proofs are elementary and we omit
them for the sake of conciseness.
Step 4. Proof of (6.17). Let ωt := gt − ft − ht = dt − ht , which satisfies the equation

∂tω = L ω +�, ω|t=0 = ωin = 0, (6.24)
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with {
L ω := ∇2 : (Aω)− ∇ · ((T z)ωt )− ∇ · (ω (U ∗ f )+ f (U ∗ ω)) ,
�t = ∇ · (dt (U ∗ dt )) .

Denoting by �s,tw the unique solution of the linear, non-autonomous equation

∂twt = Lwt , ws = w,

the Duhamel formula for Eq. (6.24) yields

ωt =
t∫

0

�s,t �s ds.

Therefore we obtain, using (6.20) and the estimates established in the Step 3, that for
any t ∈ [0, T ]

‖ωt‖H−k
−4 (R

m)
≤ CT

t∫

0

‖∇ (ds (U ∗ ds))‖H−k
−4 (R

m)
ds

≤ CT,k

t∫

0

‖∇ds‖H−k
−2 (R

m )
‖U ∗ ds‖W k,∞

−2 (Rm)
ds

+CT,k

t∫

0

‖ds‖H−k
−2 (R

m)
‖U ∗ (∇ds)‖W k,∞

−2 (Rm)
ds

≤ CT,k ‖U ‖H2k
2 (Rm )

t∫

0

‖ds‖H−(k−1)
−2 (Rm)

‖ds‖H−k
−2 (R

m)
ds,

which together with (6.14) for the control of the norms of dt implies (6.17).

Step 5. Proof of (6.16) and (6.18). The second variation r satisfies the equation

∂t r = L r + Rt , r|t=0 = 0,

with L as above and

Rt := 1

2
∇ ·
(

h̃t (U ∗ ht )
)

+ 1

2
∇ ·
(

ht (U ∗ h̃t )
)
.

We proceed as in Step 4, taking advantage of the bound (6.23), and we obtain

sup
[0,T ]

‖rt‖H−k
−4 (R

m)
≤ CT ‖hin‖H−(k−1)

−2 (Rm )
‖h̃in‖H−(k−1)

−2 (Rm)
, (6.25)

which is nothing but (6.16).
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Finally we introduce ψt := gt − ft − ht − rt = dt − ht − rt = ωt − rt , with the
initial data h̃in = hin = gin − fin. It satisfies the equation

{
∂tψ = L ψ +�t , ψ|t=0 = 0,
�t := ∇ (ωt (U ∗ dt )+ ht (U ∗ ωt ))

(6.26)

Therefore, we deduce

∀ t ∈ [0, T ], ‖ψt‖H−k
−6 (R

m)
≤
∥∥∥∥∥∥

t∫

0

�s,t �s ds

∥∥∥∥∥∥
H−k

−6 (R
m )

≤ CT

t∫

0

(
‖hs‖H−(k−1)

−2 (Rm)
+ ‖ds‖H−(k−1)

−2 (Rm)

)
‖ωs‖H−(k−1)

−4 (Rm)
ds,

which together with (6.14)–(6.15) and (6.17) implies (6.18). ��
Proof of (A2) The first property (A2)-(i) is a consequence of (6.14) in Lemma 6.4. we
have

⎧⎪⎪⎨
⎪⎪⎩

‖Q( f1)‖H−k
−2 (R

m)
≤ CU ,1

‖Q( f2)‖H−2
−2 (R

m )
≤ CU ,1

‖Q( f2)− Q( f1)‖H−k
−2 (R

m)
≤ CU ,2 ‖ f2 − f1‖1/5

H−k
−2 (R

m )
.

(6.27)

We write

Q( f ) = Q1( f )+ Q2( f )

with

Q1( f ) = ∇2 : (A f )− ∇ · ((T z) f ), Q2( f ) = −∇ · ((U ∗ f ) f ).

The linear term Q1 satisfies the first part of (6.27) (first equation) by direct inspection
combined with the use of Sobolev embeddings. In order to see that Q1 also satisfies
the second part of (6.27) (on the difference), we write

‖Q1( f2)− Q1( f1)‖H−k
−2 (R

m)
≤ ‖A‖W k−2,∞(Rm) ‖ f2 − f1‖H−(k−2)

−2 (Rm)

+‖T ‖∞ ‖ f2 − f1‖H−(k−1)
−1 (Rm )

,

and we conclude by using interpolation and Sobolev embeddings (noticing that k −
2 − 1/2 > m/2 allows for the Sobolev embedding in the first term).

Concerning the quadratic term Q2, using estimates proved in Step 3 of the proof
of (A4), on the one hand we get

123



A new approach to quantitative propagation 47

‖Q2( f )‖H−k
−2 (R

m )
≤ ‖Q2( f )‖H−k (Rm) ≤ ‖U ∗ f ‖W k−1,∞(Rm) ‖ f ‖H−(k−1)(Rm )

≤ Ck ‖U ‖H2(k−1)(Rm ) ‖ f ‖2
H−(k−1)(Rm )

≤ Ck ‖U ‖H2(k−1)(Rm)

where we have used P(Rm) ⊂ H−(k−1)/2(Rm) with continuous embedding. On the
other hand, we have with d := f2 − f1

‖Q2( f2)− Q2( f1)‖H−k
−2 (R

m )
≤ ‖(U ∗ d) 〈·〉−2‖W k−1,∞(Rm ) ‖ f2‖H−(k−1)(Rm )

+‖U ∗ f1‖W k−1,∞(Rm) ‖d‖
H−(k−1)

−2 (Rm)
.

In order to estimate the first term in the above inequality, we remark that

〈z〉−2 |(∂αU ∗ d)(z)| ≤ 〈z〉−2 ‖∂αU (z − ·) 〈·〉2‖Hk (Rm) ‖d 〈·〉−2‖H−k (Rm)

≤ C ‖∂αU ‖Hk
2 (R

m) ‖d‖H−k
−2 (R

m)

uniformly for any z ∈ R
m . All together, we have for the quadratic term

‖Q2( f2)− Q2( f1)‖H−k
−2 (R

m )
≤ C ′

U ,2 ‖ f2 − f1‖H−(k−1)
−2 (Rm)

,

and we conclude the proof of (A2)-(ii) by using interpolation and Sobolev embeddings
again.
Proof of (A5) We use the well known following estimate (see [36]): for any q ≥
1, fin, gin ∈ Pq(R

d) and T > 0 there exists CT such that

sup
t≥0

Wq(S
NL
t ( fin), SNL

t (gin)) ≤ CT Wq( fin, gin),

that we use with q = 2. Alternatively, estimate (6.14) precisely says that assumption
(A5) holds in PG1(E).

7 Inelastic collisions with thermal bath

7.1 The model

In this section we assume that E = R
d , d ≥ 1, and we are interested in the fol-

lowing Boltzmann equation for diffusively excited granular media on the distribution
f (t, v) ≥ 0, v ∈ R

d of particles:

∂ ft

∂t
= Q( ft ), f|t=0 = fin in P(Rd), (7.1)

with

Q( f ) = Qα( f, f )+ ν � f
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for some ν > 0, and where the quadratic Boltzmann collision kernel Qα is defined by
the following dual formulation

〈Qα( f, f ), ϕ〉 :=
∫

R2d×Sd−1

b(cos θ)
(
φ(w∗

2)− φ(w2)
)

dσ f (dw1) f (dw2) (7.2)

for any ϕ ∈ C0(R
d), f ∈ P(Rd), and with cos θ = σ · (w2 − w1)/|w2 − w1| and

similarly as in Eqs. (5.1) and (5.6)

w∗
2 = w1 + w2

2
+ u∗

2
,

but with

u∗ =
(

1 − α

2

)
(w1 − w2)+

(
1 + α

2

)
|w2 − w1| σ,

for some α ∈ (0, 1). (Note that the case α = 1 and ν = 0 would correspond to the
elastic Boltzmann kernel considered in Sect. 5.) This corresponds to a situation where
particles lose energy when they collide. We refer to [3,7] for a physical motivation to
these equations. The mathematical theory is treated in e.g. [2–4], where, for example, it
is proven that this equation generates a nonlinear semigroup SNL

t fin := ft for any fin ∈
Pq(R

d), q ≥ 2. Notice that unlike the classical Boltzmann equation the kinetic energy
is not conserved. For the sake of simplicity we make the normalization assumptions

‖b‖L1(Sd−1) =
∫

Sd−1

b(σ1) dσ = 1, ν = 1.

One of these quantities, say the first, can be set to one just by a rescaling of time but
the two cannot be changed independently. However, the result would be the same for
any value of ν. Note that due to the normalization ‖b‖L1(Sd−1) = 1 and the fact that
f ∈ P(Rd), the bilinear operator Qα splits into a quadratic part and a linear part

Q( f ) = Q+
α ( f, f )− f +� f,

where Q+ is defined through the positive part of the expression (7.2).
We now want to introduce a N -particle system associated to the above Boltzmann

equation for diffusively excited granular media by mimicking the Kac’s construction.
We consider the velocities process (V N

t ) with values in R
d N , of mixed jump and

diffusion nature, defined through the stochastic differential equations

V N
t = V N

0 +
t∫

0

∫

Sd−1

N∑
i, j=1

 i, j,σ (V N
s−) 1z<b(σ ·ûi, j (V N

s− ))
N N (ds, dσ, i, j, dz)+ √

2 BN
t .

Here BN
t is a R

d N valued standard Brownian motions, N N (ds, dσ, i, j, dz) is a Pois-
son measure on [0,∞)× S

d−1 × {1, . . . , N }2 × R+ with intensity
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ds dσ
1

N

N∑
i ′, j ′=1

1i ′ �= j ′δ(i ′, j ′)(i, j) du

independent of BN
t , and the two functions  i, j,σ : R

d N → R
d N and ûi, j : R

d N →
S

d−1 are a.e. defined through the following expressions: for any V = (v1, . . . , vN ) ∈
R

d N we set

ûi, j (V ) := ui j

|ui j | , ui j := vi − v j

and

 i, j,σ (V ) := V ∗
i j − V,

where

V ∗
i j = (v1, . . . , vi−1, v

∗
i , vi+1, . . . , v j−1, v

∗
j , v j+1, . . . , vN )

and, as in Eq. (5.1),

v∗
i = wi j

2
+ u∗

i j

2
, v∗

j = wi j

2
− u∗

i j

2
, (7.3)

but here with

wi j = vi + v j , u∗
i j =

(
1 − α

2

)
ui j +

(
1 + α

2

)
|ui j | σ.

The associated forward Kolmogorov equation on the probability law f N
t of (V N

t )

in R
d N reads

∂t 〈 f N
t , ϕ〉 = 〈 f N

t ,G Nϕ〉 (7.4)

with generator G N = G N
1 + G N

2 , where G N
1 is associated to an inelastic Boltzmann

collision process whose collision kernel only depends on the deviation angle as in
Sect. 5

(G N
1 ϕ)(V ) = 1

N

N∑
i, j=1

∫

Sd−1

b(cos θi j )
[
ϕ(V ∗

i j )− ϕ(V )
]

dσ, (7.5)

with cos θi j = σ · (v j −vi )/|v j −vi | and V ∗
i j defined in (7.3), and G N

2 is the generator
associated to the Brownian motion

(G N
2 ϕ)(V ) =

N∑
i=1

�iϕ, (7.6)
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where vi := (vi,1, . . . , vi,d) and �i denotes the Laplacian in R
d associated to the i-th

particle:

�i :=
d∑

α=1

∂2
vi,α,vi,α

.

It is classical to prove that V N
t is a Feller process and we refer to the textbooks [13,33]

where the theory is set up with full details (one can also refer to [15,30,36] where
similar processes are considered).

7.2 Statement of the result

The main result in this section is a quantitative estimate of propagation of chaos for
the mixed collision and diffusion model introduced above.

Theorem 7.1 Consider an initial distribution fin ∈ Pq(R
d), q ≥ 2, the hierarchy

of N-particle distributions f N
t = SN

t ( f ⊗N
in ) following the evolution (7.4), and the

nonlinear semigroup ft = SNL
t ( fin) following the evolution (7.1).

Then there is a constant C > 0 and, for any T > 0, there are constants CT , C̃T ∈
(0,∞) only depending T ∈ (0,∞) such that for any

ϕ = ϕ1 ⊗ · · · ⊗ ϕ� ∈ F⊗�, F := W 9,1(Rd) ∩ W 1,∞(Rd), ‖ϕ j‖F ≤ 1,

we have for N ≥ 2�:

sup
[0,T ]

∣∣∣∣
〈(

SN
t ( f N

in )−
(

SNL
t ( fin)

)⊗N
)
, ϕ

〉∣∣∣∣ ≤ C
�2

N
+ CT

�2

N
+ C̃T �


W2
N ( fin).

(7.7)

As a consequence of (7.7) and Lemma 4.6, this shows the quantitative propagation of

chaos with rate ε(N ) ≤ C(�, T, fin) N− 1
d+4 for any initial data fin ∈ Pd+5(R

d).

We are not aware of any result of propagation of chaos in this setting. A conceivable
alternative approach would be to use the general nonlinear martingale approach, but
that would most likely not provide any quantitative rate of propagation of chaos. The
techniques developed recently in [15] for the elastic Kac equation without cut-off is
yet another alternative technique that could be tried on this model, but we have not
made any attempts in this direction, and, would it work, it is not clear as to what kind
of convergence rate one could hope to achieve.

7.3 Proof of Theorem 7.1

We shall prove that Theorem 7.1 is a consequence of Theorem 2.1 by proving that the
assumptions (A1)–(A2)–(A3)–(A4)–(A5). We consider the phase space E = R

d and
the following choice of functional spaces
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⎧⎪⎪⎪⎨
⎪⎪⎪⎩

G1 := H−s1(Rd), s1 := 3,

G2 := H−s2(Rd), s2 := 3s1 = 9,

F1 = W s1,1(Rd),

F2 = W s2,1(Rd),

where the Fourier based space H−s(Rd) and the norms |·|s are defined in Example 3.7,
and the corresponding spaces PG1(E) and PG2(E) (without weight). We finally define
F3 = Lip(Rd) and PG3(E) := P2(R

d) endowed with the quadratic MKW distance
W2.

Proof of (A1) The well-posedness of Eqs. (7.4)–(7.5) is a variation on the well-
posedness result for Eq. (7.1) as obtained in [2,4]. We also refer to [13,15,30,36]
for a proof of the fact that t ZN

t is a Feller process.
Proof of (A2) First we prove (A2)-(i), and more precisely we prove that

SNL
t ∈ C0,1(PG1(E),PG1(E)),

which is a consequence of the following result:

Lemma 7.2 For any fin, gin ∈ P(Rd) and any final time T > 0, the associated
solutions ft and gt to the diffusive inelastic Boltzmann equation (7.1) satisfy for any
s ≥ 0

sup
t∈[0,T ]

| ft − gt |s ≤ e2T | fin − gin|s . (7.8)

Proof of Lemma 7.2 We recall Bobylev’s identity for Maxwellian inelastic collision
kernel (see for instance [2])

F
(
Q+
α ( f, g)

)
(ξ) = Q̂+

α (F,G)(ξ) =: 1

2

∫

Sd−1

b
(
σ · ξ̂

)
[F+ G− + F− G+] dσ,

with F = f̂ ,G = ĝ, F± = F(ξ±),G± = G(ξ±) and

ξ+ = 3 − α

4
ξ + 1 + α

4
|ξ | σ, ξ− = 1 + α

4
(ξ − |ξ | σ).

Denoting D = ĝ − f̂ , S = ĝ + f̂ , the following equation holds

∂t D =
∫

S2

b
(
σ · ξ̂

) [D+ S−

2
+ D− S+

2

]
dσ − D − |ξ |2 D. (7.9)
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Using that ‖S‖∞ ≤ 2 and then |ξ±| ≤ |ξ |, we deduce in distributional sense

d

dt

|D|
〈ξ 〉s

≤
(

sup
ξ∈Rd

|D|
〈ξ 〉s

) ⎛
⎜⎝ sup
ξ∈Rd

∫

Sd−1

b(σ · ξ̂ )
{ 〈ξ+〉s

〈ξ 〉s
+ 〈ξ−〉s

〈ξ 〉s

}
dσ

⎞
⎟⎠

≤ 2 sup
ξ∈Rd

|D|
〈ξ 〉s

,

from which we conclude that (7.8) holds. ��
Next we prove (A2)-(ii), as a consequence of the following result:

Lemma 7.3 For any f, g ∈ P(Rd) and s ≥ 0, we have

|Qα( f, f )|s ≤ 2 (7.10)

and

|Qα( f + g, f − g)|s ≤ 3 | f − g|s . (7.11)

Moreover for any s > 2 there exists δ ∈ (0, 1) such that

|� f −�g|s ≤ 2 | f − g|δs . (7.12)

Proof of Lemma 7.2 We prove the second inequalities (7.11). We write in Fourier:

F (Qα( f + g, f − g)) = Q̂α(D, S)

= 1

2

∫

Sd−1

b(σ · ξ̂ ) (S(ξ+) D(ξ−)+ S(ξ−) D(ξ+)− 2 D(ξ)
)

dσ

where Q̂α is the Fourier transform of the symmetric version of the collision operator
Qα , which yields

∣∣∣Q̂α(D, S)
∣∣∣

〈ξ 〉s
≤ T1 + T2 + T3,

with

T1 :=

∣∣∣∣∣∣∣
1

2 〈ξ 〉s

∫

Sd−1

b(σ · ξ̂ ) S(ξ+) D(ξ−) dσ

∣∣∣∣∣∣∣
≤
∫

Sd−1

b(σ · ξ̂ )
∣∣S(ξ+)

∣∣
2

∣∣D(ξ−)
∣∣

〈ξ−〉s

〈ξ−〉s

〈ξ 〉s
dσ ≤ |D|s .
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Similar estimates hold for the two other terms T2 and T3. The proof of the
first inequality (7.10) is similar (and simpler): we use the Fourier representation of
Qα( f, f ) and the bound ‖ f̂ ‖L∞ ≤ 1. We finally prove the last inequality. We compute

|� f −�g|s = sup
ξ∈Rd

|ξ |2 |F − G|
〈ξ 〉s

≤ sup
ξ∈Rd

(
|F − G|1−δ

( |F − G|
〈ξ 〉s

)δ)

with δ := (s − 2)/s. ��

Proof of (A3) We claim that for any s1 ≥ 3 there exists C1 ∈ R+ such that for all
� ∈ C2,1(PG1(E),R)

∥∥∥G N (� ◦ μN
Z )−

〈
Q(μN

Z , μ
N
Z ), D�[μN

Z ]
〉∥∥∥

L∞(E N )
≤ C1

N
‖�‖C2,1(PG1 (E),R)

, (7.13)

which is (A3) with k = 2, η = 1 and ε(N ) = C1 N−1.
We begin with a technical lemma which shows that the norm | · |s is well-adapted

for obtaining differentiability of the empirical measures. It is worth emphasizing that
the choice of s1 = 3 (in fact we only need s1 > 2 by modifying slightly the arguments)
comes from the requirement that the function V �→ �(μN

Z ) be C2.

Lemma 7.4 The map R
d N → PG1(E), V �→ μN

Z is C2,1 and

∂(vi )α (μ
N
Z ) = 1

N
∂αδvi , ∂2

(vi )α,(vi )β
(μN

Z ) = N−1 ∂2
αβδvi .

Proof of Lemma 7.2 For v,w ∈ R
d , we have

|δv − δw|s = sup
ξ∈Rd

∣∣e−i v·ξ − e−i w·ξ ∣∣
〈ξ 〉s

≤ |v − w| sup
ξ∈Rd

∥∥∇ve−i v·ξ∥∥
L∞(Rd

v )

〈ξ 〉s

≤ |v − w| sup
ξ∈Rd

|ξ |
〈ξ 〉s

≤ |v − w|

which shows that v �→ δv is C0,1. For the sake of simplicity we present the proof of
differentiability when d = 1, the case d > 1 being similar. For v ∈ R and h ∈ R

∗, we
have

∣∣δv+h − δv − h δ′v
∣∣
s = sup

ξ∈R

∣∣(e−i ξ h − 1 + i ξ h) e−i v ξ
∣∣

〈ξ 〉s
≤ sup

ξ∈R

|ξ h|2
〈ξ 〉s

≤ |h|2,
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from which we deduce that v �→ δv is C1,1. Similarly we can go to second order:

∣∣∣∣δv+h − δv − h δ′v + h2

2
δ′′v
∣∣∣∣
s

= sup
ξ∈R

∣∣(e−i ξ h − 1 + i ξ h − ξ2 h2
)

e−i v ξ
∣∣

〈ξ 〉s
≤ sup

ξ∈R

|ξ h|3
〈ξ 〉s

≤ |h|3,

and we easily conclude that v �→ δv is C2,1. When the dimension d is greater than 1,
one can perform the same argument for the partial derivatives of the Dirac mass. ��

We come back to the proof of (7.13). Take � ∈ C2,1(PG1(E),R) and compute
separately the contributions of G N

i , i = 1, 2. Proceeding as in the proof of (A3) in
Theorem 5.1 we have

G N
1

(
� ◦ μN

Z

)
=
〈
Qα

(
μN

Z , μ
N
Z

)
, D�(μN

Z )
〉
+ I2(V )

with

|I2(V )| ≤ 1

2N

N∑
i, j=1

∫

Sd−1

b(cos(θi j ))‖�‖C2,1

∣∣∣μN
V ∗

i j
− μN

Z

∣∣∣2
s1

dσ

≤ 8

N
‖�‖C2,1(PG1 (E),R)

,

since for any i �= j

∣∣∣μN
V ∗

i j
− μN

Z

∣∣∣
s1

= 1

N

∣∣∣δv′
i
+ δv′

j
− δvi − δv j

∣∣∣
s1

≤ 1

N

(∣∣∣δv′
i

∣∣∣
s1

+
∣∣∣δv′

j

∣∣∣
s1

+ ∣∣δvi

∣∣
s1

+ ∣∣δv j

∣∣
s1

)
= 4

N
.

On the other hand, as in the proof of assumption (A3) in Sect. 6, the map R
d N →

R, V �→ �(μN
Z ) is C2,1 thanks to Lemma 7.4 and denoting φZ = D�

[
μN

Z

] ∈
(Hs1(Rd))′, we compute

G N
2 (�(μ

N
Z )) =

N∑
i=1

�i�(μ
N
Z )

=
N∑

i=1

{
1

N
(�φZ )(vi )+ 1

N 2

d∑
α=1

D2�
[
μN

Z

] (
∂αδvi , ∂αδvi

)}

= 〈�μN
Z , φZ 〉 + O

(‖�‖C2,1(PG1 (E),R)

N

)
.

123



A new approach to quantitative propagation 55

We conclude the proof by combining the previous estimates. ��
Proof of (A4) For fin, gin ∈ P(Rd), we define the associated solutions ft and gt to
the nonlinear Boltzmann equation; we define ht := LNL

t [ fin](gin − fin) the solution
of the linearized Boltzmann equation around ft ; and we define rt the solution to the
“second variation” equation around ft . More precisely, we define

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂t ft = Qα( ft , ft )+� ft , f|t=0 = fin

∂t gt = Qα(gt , gt )+� gt , g|t=0 = gin

∂t ht = Qα( ft , ht )+ Qα(ht , ft )+� ht , h|t=0 = hin,

∂t rt = Qα( ft , rt )+ Qα(rt , ft )+� rt + 1
2 Qα(ht , h̃t )+ 1

2 Qα(h̃t , ht ), r|t=0 = 0

where in the last equation (second-order variation) ht and h̃t are two solutions to the
third equation (first-order variation).

We then define when hin = h̃in = gin − fin the following error terms

⎧⎨
⎩

dt := gt − ft

ωt := gt − ft − ht = SNL
t (gin)− SNL

t ( fin)− LNL
t [ fin](gin − fin)

ψt := gt − ft − ht − rt .

Lemma 7.5 Fix s ≥ 0 and T ∈ (0,∞). There exists CT such that for any fin, gin ∈
P(Rd), the following estimates hold

∀ t ∈ [0, T ], |ht |s ≤ CT |hin|s, (7.14)

∀ t ∈ [0, T ], |rt |2s ≤ CT |hin|s |h̃in|s, (7.15)

and when hin = h̃in = gin − fin we have furthermore

∀ t ∈ [0, T ], |ωt |2s ≤ CT | fin − gin|2s , (7.16)

∀ t ∈ [0, T ], |ψt |3s ≤ CT | fin − gin|3s . (7.17)

This proves that SNL
t ∈ C2,1(PG1(E), PG2(E)).

Proof of Lemma 7.5 We skip the proof of (7.14) since it is similar to the proof of
(7.8). We then deal with each term successively. We work in Fourier variable and
we introduce the notations F = f̂ , D = d̂, H = ĥ, H̃ = (h̃)̂, 
 = ω̂, R = r̂ and
� = ψ̂ .

Step 1. The evolution equation satisfied by 
 is

∂t
 = Q̂α(
, F)+ Q̂α(F,
)− |ξ |2 
− Q̂α(D, D). (7.18)

We deduce in distributional sense

d

dt

|
(ξ)|
〈ξ 〉2s

≤ T1 + T2,
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where

T1 := sup
ξ∈Rd

∫

Sd−1

b
(
σ · ξ̂

)

〈ξ 〉2s

( ∣∣∣∣
(ξ
+) F(ξ−)

2

∣∣∣∣+
∣∣∣∣
(ξ

−) F(ξ+)
2

∣∣∣∣

−F(ξ)
(0)− F(0)
(ξ)

)
dσ

≤ sup
ξ∈Rd

∫

Sd−1

b
(
σ · ξ̂

) (∣∣
(ξ+)
∣∣

〈ξ+〉2s

〈ξ+〉2s

〈ξ 〉2s
+
∣∣
(ξ−)

∣∣
〈ξ−〉2s

〈ξ−〉2s

〈ξ 〉2s

+|
(ξ)|
〈ξ 〉2s

+ |
(0)| |F(ξ)|
〈ξ 〉2s

)
dσ

≤ C sup
ξ∈Rd

|
(ξ)|
〈ξ 〉2s

+ |
(0)| sup
ξ∈Rd

|F(ξ)|
〈ξ 〉2s

,

for some constant C > 0, and

T2 := 1

2
sup
ξ∈Rd

∫

Sd−1

b
(
σ · ξ̂

)

〈ξ 〉2s

∣∣D(ξ+) D(ξ−)+ D(ξ−) D(ξ+)
∣∣ dσ

≤ 1

2
sup
ξ∈Rd

∫

Sd−1

b
(
σ · ξ̂

) ( |D(ξ+)|
〈ξ+〉s

|D(ξ−)|
〈ξ−〉s

+ |D(ξ+)|2
〈ξ+〉s

|D(ξ−)|2
〈ξ−〉s

)
dσ

≤ |dt |2s ≤ CT | fin − gin|2s ,

using the estimates (7.8). We then conclude thanks to a Gronwall lemma.

Step 2. The evolution equation satisfied by R is

∂t R = Q̂α(F, R)+ Q̂α(R, F)− |ξ |2 R

+1

2
Q̂α(H, H̃)+ 1

2
Q̂α(H̃ , H), R|t=0 = 0. (7.19)

Equation (7.19) being similar to Eq. (7.18), with the same computations as in Step 1
we deduce that (7.15) holds.

Step 3. Choosing now hin = h̃in = din, the equation satisfied by � is

∂t� = Q̂α(F, �)+ Q̂α(�, F)− |ξ |2 � − Q̂α(
, H)− Q̂α(D,
), �|t=0 = 0.

Observe that by conservation of mass�t (0) = 0 for all times, and with these choices of
initial data Q̂α(
, H) = Q̂+

α (
, H) and Q̂α(D,
) = Q̂+
α (D,
). Then we perform
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similar computations as in Step 1, and we deduce in distributional sense

d

dt

|�(ξ)|
〈ξ 〉3s

≤ T1 + T2 + T3,

where

T1 := sup
ξ∈R3

|Q̂α(F, �)+ Q̂α(�, F)|
〈ξ 〉3s

≤ C sup
ξ∈R3

|�(ξ)|
〈ξ 〉3s

,

T2 := sup
ξ∈R3

|Q̂+
α (
, H)|
〈ξ 〉3s

≤ 2

(
sup
ξ∈R3

|
(ξ)|
〈ξ 〉2s

) (
sup
ξ∈R3

|H(ξ)|
〈ξ 〉s

)
,

T3 := sup
ξ∈R3

|Q̂+
α (D,
)|
〈ξ 〉3s

≤ 2

(
sup
ξ∈R3

|D(ξ)|
〈ξ 〉s

) (
sup
ξ∈R3

|
(ξ)|
〈ξ 〉2s

)
.

Finally we then conclude the proof of (7.17) using the already established estimates
(7.8), (7.14), (7.16), and the Gronwall lemma. ��
Proof of (A5) We use the following result proved in [4] (see also [2] for a similar result)

sup
t≥0

W2(S
NL
t fin, SNL

t gin) ≤ W2( fin, gin),

which concludes the proof.
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