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Abstract We consider the natural Langevin dynamics which is reversible with respect
to the mean-field plane rotator (or classical spin XY) measure. It is well known that
this model exhibits a phase transition at a critical value of the interaction strength
parameter K , in the limit of the number N of rotators going to infinity. A Fokker–
Planck PDE captures the evolution of the empirical measure of the system as N → ∞,
at least for finite times and when the empirical measure of the system at time zero
satisfies a law of large numbers. The phase transition is reflected in the fact that
the PDE for K above the critical value has several stationary solutions, notably a
stable manifold—in fact, a circle—of stationary solutions that are equivalent up to
rotations. These stationary solutions are actually unimodal densities parametrized by
the position of their maximum (the synchronization phase or center). We character-
ize the dynamics on times of order N and we show substantial deviations from the
behavior of the solutions of the PDE. In fact, if the empirical measure at time zero
converges as N → ∞ to a probability measure (which is away from a thin set that we
characterize) and if time is speeded up by N , the empirical measure reaches almost
instantaneously a small neighborhood of the stable manifold, to which it then sticks
and on which a non-trivial random dynamics takes place. In fact the synchronization
center performs a Brownian motion with a diffusion coefficient that we compute. Our
approach therefore provides, for one of the basic statistical mechanics systems with
continuum symmetry, a detailed characterization of the macroscopic deviations from
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the large scale limit—or law of large numbers—due to finite size effects. But the
interest for this model goes beyond statistical mechanics, since it plays a central role
in a variety of scientific domains in which one aims at understanding synchronization
phenomena.

Keywords Coupled rotators · Fokker–Planck PDE · Kuramoto synchronization
model · Finite size corrections to scaling limits · Long time dynamics · Diffusion on
stable invariant manifold

Mathematics Subject Classification (2010) 60K35 · 37N25 · 82C26 · 82C31 ·
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1 Introduction

1.1 Overview

In a variety of instances partial differential equations are a faithful approximation—
in fact, a law of large numbers—for particle systems in suitable limits. This is
notably the case for stochastic interacting particle systems, for which the mathe-
matical theory has gone very far [24]. The closeness between the particle system
and PDE is typically proven in the limit of systems with a large number N of parti-
cles or for infinite systems under a space rescaling involving a large parameter N—
for example a spin or particle system on Z

d and the lattice spacing scaled down
to 1

N —and up to a time horizon which may depend on N . Of course the question
of capturing the finite N corrections has been taken up too, and the related cen-
tral limit theorems as well as large deviations principles have been established (see
[24] and references therein). Sizable deviations from the law of large numbers, not
just small fluctuations or rare events, can be observed beyond the time horizon for
which the PDE behavior has been established and these phenomena can be very rel-
evant.

The first examples that come to mind are the ones in which the PDE has multiple
isolated stable stationary points: metastability phenomena happens on exponentially
long time scales [29]. Deviations on substantially shorter time scales can also take
place and this is the case for example of the noise induced escape from stationary
unstable solutions, which is particularly relevant in plenty of situations: for example
for the model in [30, Ch. 5] phase segregation originates from homogeneous initial
data via this mechanism, on times proportional to the logarithm of the size of the
system. The logarithmic factor is directly tied to the exponential instability of the
stationary solution (see [30] for more literature on this phenomenon). Of course, the
type of phenomena happen also in finite dimensional random dynamical systems, in
the limit of small noise, but we restrict this quick discussion to infinite dimensional
models and PDEs.

In the case on which we focus the deviations also happen on time scales substan-
tially shorter than the exponential ones, but the mechanism of the phenomenon does
not involve exponential instabilities. In the system we consider there are multiple
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Synchronization and random long time dynamics 595

stationary solutions, but they are not (or, at least, not all) isolated, and hence they
are not stable in the standard sense. Deviations from the PDE behavior happen as
a direct result of the cumulative effect of the fluctuations. More precisely, this phe-
nomenon is due to the presence of whole stable manifold of stationary solutions: the
deterministic limit dynamics has no dumping effect along the tangential direction to
the manifold so, for the finite size system, the weak noise does have a macroscopic
effect on a suitable time scale that depends on how large the system is. We review
the mathematical literature on this type of phenomena in Sect. 1.6, after stating our
results.

Apart for the general interest on deviations from the PDE behavior, the model we
consider—mean-field plane rotators—is a fundamental one in mathematical physics
and, more generally, it is the basic model for synchronization phenomena. Our results
provide a sharp description of the long time dynamics of this model for general initial
data.

1.2 The model

Consider the set of ordinary stochastic differential equations

dϕ j,N
t = 1

N

N∑

i=1

J
(
ϕ

j,N
t − ϕ

i,N
t

)
dt + dW j

t . (1.1)

with j = 1, 2, . . . , N , {W j } j=1,2,... is an IID collection of standard Brownian motions

and J (·) = −K sin(·). With abuse of notation, when writing ϕ j,N
t we will actually

meanϕ j,N
t mod(2π) and for us (1.1), supplemented with an (arbitrary) initial condition,

will give origin to a diffusion process on S
N , where S is the circle R/(2πZ).

The choice of the interaction potential J (·) is such that the (unique) invariant prob-
ability of the system is

πN ,K (dϕ) ∝ exp

⎛

⎝K

N

N∑

i, j=1

cos(ϕi − ϕ j )

⎞

⎠ λN (dϕ), (1.2)

where λN is the uniform probability measure on S
N . Moreover, the evolution is

reversible with respect to πN ,K , which is the well known Gibbs measure associated
to mean-field plane rotators (or classical XY model).

We are therefore considering the simplest Langevin dynamics of mean-field plane
rotators and it is well known that such a model exhibits a phase transition, for
K > Kc := 1, that breaks the continuum symmetry of the model (for a detailed
mathematical physics literature we refer to [6]). The continuum symmetry of the
model is evident both in the dynamics (1.1) and in the equilibrium measure (1.2): if
{ϕ j,N

t }t≥0, j=1,...,N solves (1.1), so does {ϕ j,N
t +c}t≥0, j=1,...,N , c an arbitrary constant,

andπN ,K�
−1
c = πN ,K , where�c is the rotation by an angle c, that is (�cϕ) j = ϕ j +c

for every j .
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1.3 The N → ∞ dynamics and the stationary states

The phase transition can be understood also taking a dynamical standpoint. Given the
mean-field set up it turns out to be particularly convenient to consider the empirical
measure

μN ,t (dθ) := 1

N

N∑

j=1

δ
ϕ

j,N
t
(dθ), (1.3)

which is a probability on (the Borel subsets of) S. It is well known, see [6] (for detailed
treatment and original references), that ifμN ,0 converges weakly for N → ∞, then so
does μN ,t for every t > 0. Actually, the process itself t �→ {μN ,t }, seen as an element
of C0([0, T ],M1), where T > 0 and M1 is the space of probability measures on
S equipped with the weak topology, converges to a non-random limit which is the
process that concentrates on the unique solution of the non-local PDE (∗ denotes the
convolution)

∂t pt (θ) = 1

2
∂2
θ pt (θ)− ∂θ ((J ∗ pt )(θ)pt (θ)), (1.4)

with initial condition prescribed by the limit of {μN ,0}N=1,2,... (by [21] this solution is
smooth for t > 0). We insist on the fact that pt (·) is a probability density:

∫
S

pt (θ)dθ =
1. We will often commit the abuse of notation of writing p(θ) when p ∈ M1 and p
has a density. Much in the same way, if p(·) is a probability density, p, or p(dθ), is
the probability measure.

It is worthwhile to point out that (J ∗ p)(θ) = −	( p̂1)K sin(θ)+ 
( p̂1)K cos(θ)
with p̂1 := ∫

S
p(θ) exp(iθ) dθ . This is to say that the nonlinearity enters only through

the first Fourier coefficient of the solution, a peculiarity that allows to go rather far in
the analysis of the model. Notably, starting from this observation one can easily (once
again details and references are given in [6]) see that all the stationary solutions to
(1.4), in the class of probability densities, can be written, up to a rotation, as

q(θ) := exp (2Kr cos(θ))

2π I0(2Kr)
, (1.5)

where 2π I0(2Kr) is the normalization constant written in terms of the modified Bessel
function of order zero (I j (x) = (2π)−1

∫
S
(cos θ) j exp(x cos(θ))dθ , for j = 0, 1) and

r is a non-negative solution of the fixed point equation r = 	(2Kr), with 	(x) =
I1(x)/I0(x). Since 	(·) : [0,∞) → [0, 1) is increasing, concave, 	(0) = 0 and
	 ′(0) = 1/2 we readily see that if (and only if) K > 1 there exists a non-trivial (i.e.
non-constant) solution to (1.4). Let us not forget however that 	(0) = 0 implies that
r = 0 is a solution and therefore the constant density 1

2π is a solution no matter what
the value of K is. From now on we set K > 1 and choose r = r(K ), the unique
positive solution of the fixed point equation, so that the probability density q(·) in
(1.5) is non trivial and it achieves the unique maximum at 0 and the minimum at π .
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Synchronization and random long time dynamics 597

Fig. 1 The limit evolution (1.4) instantaneously smoothens an arbitrary initial probability and, unless the
Fourier decomposition such an initial condition has zero coefficients corresponding to the first harmonics
(the hyperplane U ), it drives it to a point p∞—a synchronized profile—on the invariant manifold M and of
course it stays there for all times. This has been proven in [21], here we are interested in what happens for
the finite size—N—system and we show that the PDE approximation is faithful up to times much shorter
than N : on times proportional to N synchronization is kept and the center of synchronization ψ performs
a Brownian motion on S

Note that the rotation invariance of the system immediately yields that there is a whole
family of stationary solution:

M = {qψ(·) : qψ(·) := q(· − ψ) and ψ ∈ S}, (1.6)

and, when x ∈ R, qx (·) of course means qxmod(2π)(·). M , which is more practically
viewed as a manifold (in a suitable function space, see Sect. 2.2 below), is invariant
and stable for the evolution. The proper notion of stability is given in the context of
normally hyperbolic manifolds (see [32] and references therein), but the full power
of such a concept is not needed for the remainder. Nevertheless let us stress that in
[21] one can find a complete analysis of the global dynamic phase diagram, notably
the fact that unless p0(·) belongs to the stable manifold U of the unstable solution

1
2π—the solution corresponding to r = 0 in (1.5)—pt (·) converges (also in strong
norms, controlling all the derivatives) to one of the points in M , see Fig. 1. There is
actually an explicit characterization of U :

U =
⎧
⎨

⎩p ∈ M1 :
∫

S

exp(iθ)p(dθ) = 0

⎫
⎬

⎭ . (1.7)

As a matter of fact, it is easy to realize that if p0(·) ∈ U then (1.4) reduces to the heat
equation ∂t pt (θ) = 1

2∂
2
θ pt (θ) which of course relaxes to 1

2π .

1.4 Random dynamics on M : the main result

In spite of the stability of M , qψ(·) itself is not stable, simply because if we start
nearby, say from qψ ′ , the solution of (1.4) does not converge to qψ(·). The important
point here is that the linearized evolution operator around q(·) ∈ M (q is an arbitrary
element of M , not necessarily the one in (1.5): the phaseψ of qψ is explicit only when
its absence may be misleading)
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Lqu(θ) := 1

2
u′′ − [u J ∗ q + q J ∗ u]′, (1.8)

with domain {u ∈ C2(S,R) : ∫
S

u = 0} is symmetric in H−1,1/q—a weighted
H−1 Hilbert space that we introduce in detail in Sect. 2.1—and it has compact resol-
vent. Moreover the spectrum of Lq , which is of course discrete, lies in (−∞, 0]
and the eigenvalue 0 has a one dimensional eigenspace, generated by q ′. So q ′ is
the only neutral direction and it corresponds precisely to the tangent space of M
at q(·): all other directions, in function space, are contracted by the linear evolu-
tion and the nonlinear part of the evolution does not alter substantially this fact
[21,25].

Let us now step back and recall that our main concern is with the behavior of
(1.1), with N large but finite, and not (1.4). In a sense the finite size, i.e. finite N ,
system is close to a suitable stochastic perturbation of (1.4): the type of stochastic
PDE, with noise vanishing as N → ∞, needs to be carefully guessed [19], keeping
in particular in mind that we are dealing with a system with one conservation law. We
will tackle directly (1.1), but the heuristic picture that one obtains by thinking of an
SPDE with vanishing noise is of help. In fact the considerations we have just made
on Lq suggest that if one starts the SPDE on M , the solution keeps very close to M ,
since the deterministic part of the dynamics is contractive in the orthogonal directions
to M , but a (slow, since the noise is small) random motion on M arises because in the
tangential direction the deterministic part of the dynamics is neutral. This is indeed
what happens for the model we consider for N large. The difficulty that arises in
dealing with the interacting diffusion system (1.1) is that one has to work with (1.3),
which is not a function. Of course one can mollify it, but the evolution is naturally
written and, to a certain extent, closed in terms of the empirical measure, and we do
not believe that any significative simplification arises in proving our main statement
for a mollified version. Working with the empirical measure imposes a clarification
from now: as we explain in Sect. 2.1 and Appendix A, if μ and ν ∈ M1, then μ− ν

can be seen as an element of H−1 (or, as a matter of fact, also as an element of a
weighted H−1 space).

Here is the main result that we prove (recall that K > 1):

Theorem 1.1 Choose a positive constant τ f and a probability p0 ∈ M1\U. If for
every ε > 0

lim
N→∞ P

(∥∥μN ,0 − p0
∥∥−1 ≤ ε

)
= 1, (1.9)

then there exist a constantψ0 that depends only on p0(·) and, for every N, a continuous
process {WN ,τ }τ≥0, adapted to the natural filtration of {W j

N ·} j=1,2,...,N , such that
WN ,· ∈ C0([0, τ f ]; R) converges weakly to a standard Brownian motion and for
every ε > 0

lim
N→∞ P

(
sup

τ∈[εN ,τ f ]
∥∥μN ,τN − qψ0+DK WN ,τ

∥∥−1 ≤ ε

)
= 1, (1.10)
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where εN := C/N, C = C(K , p0, ε) > 0, and

DK := 1√
1 − (I0(2Kr))−2

. (1.11)

The result is saying that, unless one starts on the stable manifold of the unstable
solution (see Remark 2.5 for what one expects if p0 ∈ U ), the empirical measure
reaches very quickly a small neighborhood of the manifold M : this happens on a time
scale of order one, as a consequence of the properties of the deterministic evolution
law (1.4) (Fig. 1), and, since we are looking at times of order N , this happens almost
instantaneously. Actually, in spite of the fact that the result just addresses the limit of
the empirical measure, the drift along M is due to fluctuations: the noise pushes the
empirical measure away from M but the deterministic part of the dynamics projects
back the trajectory to M and the net effect of the noise is a random shift—in fact, a
rotation—along the manifold (this is taken up in more detail in the next section, where
we give a complete heuristic version of the proof of Theorem 1.1).

Remark 1.2 Without much effort, one can upgrade this result to much longer times:
if we set τ f (N ) = N a with an arbitrary a > 1, there exists an adapted process W a

N ,τ
converging to a standard Brownian motion such that

lim
N→∞ P

(
sup

τ∈[εN ,τ f (N )]

∥∥∥μN ,τN a − qψ0+DK N a−1W a
N ,τ

∥∥∥−1
≤ ε

)
= 1. (1.12)

This is due to the fact that our estimates ultimately rely on moment estimates, cf.
Sect. 3. These estimates are obtained for arbitrary moments and we choose the moment
sufficiently large to get uniformity for times O(N ), but working for times O(N a)

would just require choosing larger moments. We have preferred to focus on the case
a = 1; this is the natural scale, that is the scale in which the center of the probability
density converges to a Brownian motion and not to an accelerated Brownian motion
(this is really due to the fact that we work on S and marks a difference with [4,9]
where one can rescale the space variable).

1.5 The synchronization phenomena viewpoint

The model (1.1) we consider is actually a particular case of the Kuramoto synchroniza-
tion model (the full Kuramoto model includes quenched disorder in terms of random
constant speeds for the rotators, see [1,6] and references therein). The mathematical
physics literature and the more bio-physically oriented literature use somewhat differ-
ent notations reflecting a slightly different viewpoint. In the synchronization literature
one introduces the synchronization degree r N ,t and the synchronization center �N ,t

via

r N ,t exp(i�N ,t ) := 1

N

N∑

j=1

exp
(

iϕ j,N
t

)
⎛

⎝=
∫

S

exp(iθ)μN ,t (dθ)

⎞

⎠ , (1.13)
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which clearly correspond to the parameters r and ψ that appear in the definition of
M , but r N ,t and �N ,t are defined for N finite and also far from M . Note that if (1.9)
holds, then both r N ,t and �N ,t converge in probability as N → ∞ to the limits r and
ψ , with r exp(iψ) = ∫

S
exp(iθ)p0(dθ) and the assumption that p0 
∈ U just means

r 
= 0. Here is a straightforward consequence of Theorem 1.1:

Corollary 1.3 Under the same hypotheses and definitions as in Theorem 1.1 we have
that the stochastic process �N ,N · ∈ C0([ε, τ f ]; S) converges weakly, for every ε ∈
(0, τ f ], to (ψ0 + DK W·)mod(2π).

It is tempting to prove such a result by looking directly at the evolution of �N ,t :

d�N ,t =
(

−K + 1

2N r2
N ,t

)
1

N

N∑

j=1

sin
(

2
(
ϕ

j,N
t − �N ,t

))
dt

+ 1

r N ,t N

N∑

j=1

cos
(
ϕ

j,N
t − �N ,t

)
dW j (t). (1.14)

But this clearly requires a control of the evolution of the empirical measure, so it
does not seem that (1.14) could provide an alternative way to many of the estimates
that we develop, namely convergence to a neighborhood of M and persistence of
the proximity to M (see Sects. 3 and 5). On the other hand, it seems plausible that
one could use (1.14) to develop an alternative approach to the dynamics on M , that
is an alternative to Sect. 4. While this can be interesting in its own right, since the
notion of synchronization center that we use in the proof and �N ,t are almost iden-
tical (where they are both defined, that is close to M) we do not expect substantial
simplifications.

1.6 A look at the literature and perspectives

Results related to our work have been obtained in the context of SPDE models with
vanishing noise. In [8,15] one dimensional stochastic reaction diffusion equations
with bistable potential (also called stochastic Cahn–Allen or model A) are analyzed
for initial data that are close to profiles that connect the two phases. It is shown that
the location of the phase boundary performs a Brownian motion. These results have
been improved in a number of ways, notably to include small asymmetries that result
in a drift for the arising diffusion process [7] and to deal with macroscopically finite
volumes [4] (which introduce a repulsive effect approaching the boundary). Also the
case of stochastic phase field equations has been considered [5].

For interacting particle systems results have been obtained for the zero temperature
limit of d-dimensional Brownian particles interacting via local pair potentials in [16]:
in this case the frozen clusters perform a Brownian motion and, in one dimension,
also the merging of clusters is analyzed [17]. In this case the very small temperature
is the small noise from which cluster diffusion originates. With respect to [16,17],
our results hold for any super-critical interaction, but of course our system is of mean
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field type. It is also interesting to observe that for the model in [16,17] establishing
the stability of the frozen clusters is the crucial issue, because the motion of the center
of mass is a martingale, i.e. there is no drift. A substantial part of our work is in
controlling that the drift of the center of synchronization vanishes (and controlling the
drift is a substantial part also of [4,5,7,8,15]). This is directly related to the content
of Sect. 1.5.

As a matter of fact, in spite of the fact that our work deals directly with an interacting
system, and not with an SPDE model, our approach is closer to the one in the SPDE
literature. However, as we have already pointed out, a non negligible point is that we
are forced to perform an analysis in distribution spaces, in fact Sobolev spaces with
negative exponent, in contrast to the approach in the space of continuous functions
in [4,5,7,8,15]. We point out that approaches to dynamical mean field type systems
via Hilbert spaces of distribution has been already taken up in [14] but in our case the
specific use of weighted Sobolev spaces is not only a technical tool, but it is intimately
related to the geometry of the contractive invariant manifold M . In this sense and
because of the iterative procedure we apply—originally introduced in [8]—our work
is a natural development of [4,8].

An important issue about our model that we have not stressed at all is that prop-
agation of chaos holds (see e.g. [18]), in the sense that if the initial condition is
given by a product measure, then this property is approximately preserved, at least
for finite times. Recently much work has been done toward establishing quantitative
estimates of chaos propagation (see for example the references in [11]). On the other
hand, like for the model in [11], we know that, for our model, chaos propagation
eventually breaks down: this is just because one can show by Large Deviations argu-
ments that the empirical measure at equilibrium converges in law as N → ∞ to
the random probability density qX (·), with X a uniform random variable on S. But
using Theorem 1.1 one can go much farther and show that chaos propagation breaks
down at times proportional to N . From Theorem 1.1 one can actually extract also
an accurate description of how the correlations build up due to the random motion
on M .

It is natural to ask whether the type of results we have proven extend to the case
in which random natural frequencies are present, that is to the disordered version of
the model we consider that goes under the name of Kuramoto model. The question is
natural because for the limit PDE [13,26] there is a contractive manifold similar to M
[20]. However the results in [27] suggest that a nontrivial dynamics on the contractive
manifold is observed rather on times proportional to

√
N and one expects a dynamics

with a nontrivial random drift. The role of disorder in this type of models is not fully
elucidated (see however [12] on the critical case) and the global long time dynamics
represents a challenging issue.

The paper is organized as follows: we start off (Sect. 2) by introducing the precise
mathematical set-up and a number of technical results. This will allow us to present
quantitative heuristic arguments and sketch of proofs. In Sect. 3 we prove that if the
system is close to M , it stays so for a long time. We then move on to analyzing the
dynamics on M (Sect. 4) and it is here that we show that the drift is negligible. Section 5
provides the estimates that guarantee that we do approach M and in Sect. 6 we collect
all these estimates and complete the proof our main result (Theorem 1.1).
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2 More on the mathematical set-up and sketch of proofs

2.1 On the linearized evolution

We introduce the Hilbert space H−1,1/q or, more generally, the space H−1,w for a
general weight w ∈ C1(S; (0,∞)) by using the rigged Hilbert space structure [10]
with pivot space L

2
0 := {u ∈ L

2 : ∫
S

u = 0}. In this way given an Hilbert space
V ⊂ L

2
0, V dense in L

2
0, for which the canonical injection of V into L

2
0 is continuous,

one automatically obtains a representation of V ′—the dual space—in terms of a third
Hilbert space into which L

2
0 is canonically and densely injected. If V is the closure of

{u ∈ C1(S; R) : ∫ u = 0} under the squared norm
∫
S
(u′)2/w, that is H1,1/w, the third

Hilbert space is precisely H−1,w. The duality between H1,1/w and H−1,w is denoted
in principle by 〈 · , · 〉H1,1/w,H−1,w , but less cumbersome notations will be introduced
when the duality is needed (for example, below we drop the subscripts).

It is not difficult to see that for u, v ∈ H−1,w

(u, v)−1,w =
∫

S

w UV, (2.1)

where U , respectively V , is the primitive of u (resp. v) such that
∫
S
wU = 0 (resp.∫

S
wV = 0), see [6, § 2.2]. More precisely, u ∈ H−1,w if there exists U ∈ L

2(S; R)

such that
∫
S
Uw = 0 and 〈u, h〉 = − ∫

S
Uh′ for every h ∈ H1,1/w. One sees directly

also that by changing w one produces equivalent H1,w norms [22, §2.1] so, when the
geometry of the Hilbert space is not crucial, one can simply replace the weight by 1,
and in this case we simply write H−1. Occasionally we will need also H−2 which is
introduced in an absolutely analogous way.

Remark 2.1 One observation that is of help in estimating weighted H−1 norms is that
computing the norm of u requires access to U : in practice if one identifies a primitive
Ũ of u, then ‖u‖2−1,w ≤ ∫

S
Ũ2w. This is just because Ũ = U + c for some c ∈ R and∫

S
Ũ2w = ∫

S
U2w + c2

∫
S
w.

The reason for introducing weighted H−1 spaces is because, as one can readily
verify, Lq , given in (1.8), is symmetric in H−1,1/q . A deeper analysis (cf. [6]) shows
that Lq is essentially self-adjoint, with compact resolvent. The spectrum of −Lq lies
in [0,∞), there is an eigenvalue λ0 = 0 with one dimensional eigenspace generated
by q ′. We therefore denote the set of eigenvalues of −Lq as {λ0, λ1, . . .}, with λ1 > 0
and λ j+1 ≥ λ j for j = 1, 2, . . .. The set of eigenfunctions is denoted by {e j } j=0,1,...
and let us point out that it is straightforward to see that e j ∈ C∞(S; R). Moreover,
if u ∈ C2(S; R) is even (respectively, odd), then Lqu is even (respectively, odd): the
notion of parity is of course the one obtained by observing that u ∈ C2(S; R) can
be extended to a periodic function in C2(R; R). This implies that one can choose
{e j } j=0,1,... with e j that is either even or odd, and we will do so.

Remark 2.2 By rotation symmetry the eigenvalues do not depend on the choice of
q(·) ∈ M , but the eigenfunctions do depend on it, even if in a rather trivial way: the
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eigenfunction of Lqψ and Lqψ ′ just differ by a rotation of ψ ′ −ψ . We will often need
to be precise about the choice of q(·) and for this it is worthwhile to introduce the
notations

Lψ := Lqψ and − Lψeψ, j = λ j eψ, j . (2.2)

The eigenfunctions are normalized in H−1,1/qψ .

Remark 2.3 Some expressions involving weighted H−1 norms can be worked out
explicitly. For example a recurrent expression in what follows is (u, q ′)1,1/q , for u ∈
H−1 and q ∈ M . If U is the primitive of u such that

∫
S
U/q = 0, then we have

(u, q ′)1,1/q = ∫
S
U(q −c)/q = ∫

S
U , where c is uniquely defined by

∫
S
(q −c)/q = 0,

but of course the explicit value of c is not used in the final expression. In practice
however it may be more straightforward to use an arbitrary primitive Ũ of u (i.e.∫
S
Ũ/q is not necessarily zero) for which we have

(u, q ′)1,1/q =
∫

S

Ũ
(

1 − c

q

)
. (2.3)

Since now c appears, let us make it explicit:

c = 2π∫
S

1/q
= 1

2π I 2
0 (2Kr)

. (2.4)

2.2 About the manifold M

As we have anticipated, we look at the set of stationary solutions M , defined in (2.2),
as a manifold. For this we introduce

H̃−1 :=
{
μ : μ− 1

2π
∈ H−1

}
, (2.5)

which is a metric space equipped with the distance inherited from H−1, that is
dist(μ1, μ2) = ‖μ1 − μ2‖−1. We have M ⊂ H̃−1 and M can be viewed as a
smooth one dimensional manifold in H̃−1. The tangent space at q ∈ M is q ′

R

and for every u ∈ H−1 we define the projection Po
q on this tangent space as

Po
q u = (u, q ′)−1,1/qq ′/(q ′, q ′)−1,1/q . The following result is proven in [32, p. 501]

(see also [22, Lemma 5.1]):

Lemma 2.4 There exists σ > 0 such that for all p ∈ Nσ with

Nσ := ∪q∈M
{
μ ∈ H̃−1 : ‖μ− q‖−1 < σ

}
, (2.6)

there is one and only one q =: v(μ) ∈ M such that (μ − q, q ′)−1,1/q = 0. Fur-
thermore, the mapping μ �→ v(μ) is in C∞(H̃−1, H̃−1), and (with D the Fréchet
derivative)
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Dv(μ) = Po
v(μ). (2.7)

Note that the empirical (probability) measureμN ,t that describes our system at time
t is in H̃−1 (see Appendix A) and Lemma 2.4 guarantees in particular that as soon as
it is sufficiently close to M there is a well defined projection v(μN ,t ) on the manifold.
Since the manifold is isomorphic to S it is practical to introduce, for μ ∈ H̃−1, also
p(μ) ∈ S, uniquely defined by v(μ) = qp(μ). It is immediate to see that the projection
p is C∞(H̃−1,S).

2.3 A quantitative heuristic analysis: the diffusion coefficient

The proof of Theorem 1.1 is naturally split into two parts: the approach to M and the
motion on M . The approach to M is based on the properties of the PDE (1.4): in [21] it is
shown, using the gradient flow structure of (1.4), that if the initial condition is not on the
stable manifold U (see (1.7)) of the unstable stationary solution 1

2π , then the solution
converges for time going to infinity to one of the probability densities q = qψ ∈ M
(of courseψ is a function of the initial condition), so given a neighborhood of qψ after
a finite time (how large it depends only on the initial condition), it gets to the chosen
neighborhood: due to the regularizing properties of the PDE, such a neighborhood
can be even in a topology that controls all the derivatives [21], but here there is no
point to use a strong topology, since at the level of interacting diffusions we deal
with a measure (that we inject into H−1). And in fact we have to estimate the distance
between the empirical measure and the solution to (1.4)—controlling thus the effect of
the noise—but this type of estimates on finite time intervals is standard. However here
there is a subtle point: the result we are after is a matter of fluctuations and it will not
come as a surprise that the empirical measure approaches M but does not reach it (of
course: M just contains smooth functions, and μN ,t is not a function), but it will stay
in a N−1/2-neighborhood (measured in the H−1 norm). How long will it take to reach
such a neighborhood? The approach to M is actually exponential and driven by the
spectral gap (λ1) of the linearized evolution operator (at least close to M). Therefore
in order to enter such a N−1/2-neighborhood a time proportional to log N appears to
be needed, as the quick observation that exp(−λ1t) = O(N−1/2) for t ≥ log N/(2λ1)

suggests. The proofs on this stage of the evolution are in Sect. 5: here we just stress that

1. controlling the effect of the noise on the system on times O(log N ) is in any case
sensibly easier than controlling it on times of order N , which is our final aim;

2. on times of order N it is no longer a matter of showing that the empirical measure
stays close to the solution of the PDE: on such a time scale the noise takes over
and the finite N system, which has a non-trivial (random) dynamics, substantially
deviates from the behavior of the solution to the PDE, which just converges to one
of the stationary profiles.

Let us therefore assume that the empirical measure is in a N−1/2-neighborhood of
a given q = qψ . It is reasonable to assume that the dominating part of the dynamics
close to q is captured by the operator Lq and we want to understand the action of the
semigroup generated by Lq on the noise that stirs the system, on long times. Note
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that we cannot choose arbitrarily long times, in particular not times proportional to
N right away, because in view of the result we are after, we expect that on such a
time scale the empirical measure of the system is no longer in a neighborhood of
q, but close to qψ ′ for a ψ ′ 
= ψ . We will actually choose some intermediate time
scale N 1/10 as we will see in Sect. 2.4 and Remark 2.6, that guarantees that working
with Lq makes sense, i.e. that the projection of the empirical measure on M is still
sufficiently close to q. The point is that the effect of the noise on intermediate times
is very different in the tangential direction and the orthogonal directions to M , simply
because in the orthogonal direction there is a damping, that is absent in the tangential
direction. So on intermediate times the leading term in the evolution of the empirical
measure turns out to be the projection of the evolution on the tangential direction, that
is (q ′, μN ,t − q)−1,1/q/‖q ′‖−1,1/q . One can now use Remark 2.3 to obtain

(
q ′, μN ,t − q

)
−1,1/q = −

∫

S

K(θ) (μN ,t (dθ)− q(θ)dθ
)
, (2.8)

with K a primitive of 1 − c/q (c given in Remark 2.3). By applying Itô’s formula we
see that the term in (2.8) can be written as the sum of a drift term and of a martingale
term. It is not difficult to see that to leading order the drift term is zero (a more
attentive analysis shows that one has to show that the next order correction does not
give a contribution, but we come back to this below). The quadratic variation of the
martingale term instead turns out to be equal to t/N times

∫

S

(K′(θ))2q(θ)dθ = 1 − (2π)2∫
S

1/q
= ‖q ′‖2−1,1/q . (2.9)

Since qψ+ε = qψ −εq ′
ψ +· · · (note that q ′

ψ is not normalized), (2.9) suggests that the

diffusion coefficient DK in Theorem 1.1 is ‖q ′‖−1
−1,1/q , which coincides with (1.11).

To make this procedure work one has to carefully put together the analysis on the
intermediate time scale, by setting up an adequate iterative scheme. Several delicate
issues arise and one of the challenging points is precisely to control that the drift can
be neglected. In fact the first order expansion of the projection that we have used

p
(
qψ + h

) = ψ − (h, q ′)−1,1/q

(q ′, q ′)−1,1/q
+ O(‖h‖2−1), (2.10)

is not accurate enough and one has to go to the next order, see Lemma 7.5. This is
due to the fact that the random contribution, which in principle appears as first order,
fluctuates and generates a cancellation, so in the end the term is of second order.

Remark 2.5 It is natural to expect that Theorem 1.1 holds true also when p0 ∈ U and
this is just because the evolution is attracted to 1

2π and then the noise will cause an
escape from this unstable profile after a time ∝ log N , since the exponential instability
will make the fluctuations grow exponentially with a rate which is just given by the
linearized dynamics (linearized around 1

2π of course). Arguments in this spirit can
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be found for example in [30, Ch. 5], see [3] and references therein for the finite
dimensional counterpart. However

1. this is not so straightforward because it requires a good control on the dynamics
on and around the heteroclinic orbits linking 1

2π to M0 [21, Section 5];
2. the statement would require more details about the initial condition: the simple

convergence to a point on U is largely non sufficient (the fluctuations of the initial
conditions now matter!);

3. in general the initial phase ψ0 on M is certainly going to be random: if the ini-
tial condition is rotation invariant (at least in law), like if {ϕ j,N

0 } j=1,...,N are IID

variables uniformly distributed on S or if ϕ j,N
0 = 2π j/N , one expects ψ0 to be

uniformly distributed on S. Note however that uniform distribution of ψ0 is def-
initely not expected in the general case and asymmetries in the initial condition
should affect the distribution of ψ0.

2.4 The iterative scheme

As we have explained in Sect. 2.3, the analysis close to M requires an iterative pro-
cedure, which we introduce here. We assume that at t = 0 the system is already close
to M , while in practice this will happen after some time: in Sect. 6 we explain how
to put together the results on the early stage of the evolution and the analysis close to
M , that we start here. So, for μ0 = μN ,0 = 1

N

∑N
j=1 δϕ j,N

0
such that dist(μ0,M) ≤ σ

(here and below dist(·, ·) is the distance built with the norm of H−1), by Lemma 2.4
we can define ψ0 = p(μ0). Applying the Itô formula to νt = μt − qψ0 (μt = μN ,t ),
we see that

νt = e−t Lψ0 ν0 −
t∫

0

e−(t−s)Lψ0 ∂θ [νs J ∗ νs]ds + Zt , (2.11)

where

Zt = 1

N

N∑

j=1

t∫

0

∂θ ′Gψ0
t−s

(
θ, ϕ

j,N
s

)
dW j

s , (2.12)

and Gψ0
s (θ, θ ′) is the kernel of e−sLψ0 in L

2. The evolution equation (2.11) and the
noise term (2.12) have a meaning in H−1, as well as the recentered empirical measures
νt , and it is in this sense that we will use them: we detail this in Appendix A, where
one finds also an explicit expression and some basic facts about the kernel Gψ0

s (θ, θ ′).
We have started here an abuse of notation that will be persistent through the text:
∂θ ′Gψ0

t−s(θ, ϕ
j,N
s ) stands for ∂θ ′Gψ0

t−s(θ, θ
′)|
θ ′=ϕ j,N

s
.

Equations (2.11)–(2.12) are useful tools as long as we can properly define the phase
associated to the empirical measure of the system and that this phase is close to ψ0:
in view of the result we want to prove, this is expected to be true for a long time, but
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it is certainly expected to fail for times of the order of N , since on this timescale the
phase does change of an amount that does not vanish as N becomes large.

The idea is therefore to divide the evolution of the particle system up to a final time

proportional to N into n = nN
N→∞−→ ∞ time intervals [Ti , Ti+1], where Ti = iT and

T = T (N ) is chosen close to a fractional power of N (see Remark 2.6). Moreover
i runs from 1 up to n = nN so that nN T (N ) = TnN and limN TnN /N is equal to
a positive constant (the τ f of Theorem 1.1). If the empirical measure μt stays close
to the manifold M , we can define the projections of μTk and successively update the
reentering phase at all times Tk . The point then will be essentially to show that the
process given by these phases, on the time scale ∝ N , converges to a Brownian motion.

More formally, we construct the following iterative scheme: we choose

σ = σN :=
⌈

N 2ζ
√

T/N
⌉

N→∞−→ 0, (2.13)

for a suitable ζ > 0 (see Remark 2.6), we set τ 0
σN

= 0 and for k = 1, 2, . . . we define

ψk−1 := p(μTk−1), (2.14)

if dist(μTk−1 ,M) ≤ σN and

τ k
σN

=τ k−1
σN

1{τ k−1
σN <Tk−1} + inf{s ∈ [Tk−1, Tk] : ‖μs − qψk−1‖−1 > σN }1{τ k−1

σN �Tk−1}.
(2.15)

Then we set

νk
t := μt − qψk−1 , (2.16)

for t ∈ [Tk−1, Tk] and t ≤ τ k
σN

, and otherwise νk
t := νk

τ k
σN

for every t ≥ τ k
σN

(of course

τ k
σN

can be smaller than Tk−1 and, in this case, the definition becomes redundant).
Therefore the ν process we have just defined solves for t ∈ [Tk−1, Tk]
νk

t = 1{τ k
σN
<Tk−1}ν

k
Tk−1

+ 1{τ k
σN

�Tk−1}

×

⎛

⎜⎜⎝e−(t∧τ k
σN

−Tk−1)Lψk−1 νk
Tk−1

−
t∧τ k

σN∫

Tk−1

e−(t∧τ k
σN

−s)Lψk−1 ∂θ [νk
s J ∗ νk

s ]ds + Zk
t∧τ k

σN

⎞

⎟⎟⎠,

(2.17)

where

Zk
t = 1

N

N∑

j=1

t∫

Tk−1

∂θ ′Gψk−1
t−s

(
θ, ϕ

j,N
s

)
dW j

s . (2.18)

Once again, we refer to Appendix A for the precise meaning of (2.17) and (2.18).
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Remark 2.6 For the remainder of the paper we choose T (N ) ∼ N 1/10 and ζ ≤ 1/100.
The two exponents do not have any particular meaning: a look at the argument shows
that the exponent for T (N ) has in any case to be chosen smaller than 1/2, but then
a number of technical estimates enter the game and we have settled for a value 1/10
without trying to get the optimal value that comes out of the method we use.

3 A priori estimates: persistence of proximity to M

The aim of this section is to prove that, if we are (say, at time zero) sufficiently close
to M , we stay close to M for times O(N ). The arguments in this section justify the
choice of the proximity parameter σN that we have made in the iterative scheme. We
first prove some estimates on the size of the noise term and then we will give the
estimates on the empirical measure.

3.1 Noise estimates

We define the event

B N =
{

sup
1�k�n−1

sup
t∈[Tk ,Tk+1]

∥∥∥Zk
t

∥∥∥−1
�
√

T

N
N ζ

}

⋂
{

sup
1�k�n−1

sup
t∈[Tk ,Tk+1]

∥∥∥Zk,⊥
t

∥∥∥−1
� 1√

N
N ζ

}
, (3.1)

where Zk,⊥
t is defined precisely like Zk

t , see (2.18), except for the replacement of

Gψt−s(·, ·) with Gψt−s(θ, θ
′)− eψk−1,0(θ) fψk−1,0(θ

′) [see (3.3)].

Lemma 3.1 limN→∞ P
(
B N

) = 1.

Proof In order to perform the estimates we introduce and work with approximated
versions of Zk

t and Zk,⊥
t (see Lemma 7.4). Define for Tk−1 < t ′ < t

Zk
t,t ′ = 1

N

N∑

j=1

t ′∫

Tk−1

∂θ ′Gψk−1
t−s (θ, ϕ

j,N
s )dW j

s . (3.2)

The kernel Gψk−1· in this case is (cf. Appendix A)

Gψk−1
s (θ, θ ′) =

∞∑

l=0

e−sλl eψk−1,l(θ) fψk−1,l(θ
′), (3.3)

where λl are the ordered eigenvalues of −Lψk−1 , eψk−1,l are the associated eigenfunc-
tions of unit norm in H−1,1/qψk−1

, cf. Remark 2.2, and fψk−1,l are the eigenfunctions

of L∗
ψk−1

, the adjoint in L
2 (see Appendix A).
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Very much in the same way we define

Zk,⊥
t,t ′ = 1

N

N∑

j=1

t ′∫

Tk−1

∂θ ′Gψk−1,⊥
t−s (θ, ϕ

j,N
s )dW j

s , (3.4)

with

Gψk−1,⊥
s (θ, θ ′) =

∞∑

l=1

e−sλl eψk−1,l(θ) fψk−1,l(θ
′). (3.5)

We decompose for Tk−1 < s′ < s < t and s′ < t ′ < t

Zk
t,t ′ − Zk

s,s′ = 1

N

N∑

j=1

s′∫

Tk−1

(
∂θ ′Gψk−1

t−u (θ, ϕ
j,N
u )− ∂θ ′Gψk−1

s−u (θ, ϕ
j,N
u )

)
dW j

u

+ 1

N

N∑

j=1

t ′∫

s′
∂θ ′Gψk−1

t−u (θ, ϕ
j,N
u )dW j

u , (3.6)

and an absolutely analogous formula holds for Zk,⊥: in fact the bounds for Zk and Zk,⊥
are obtained with the same technique even if the results are slightly different due to the
presence of the zero eigenvalue in Zk . Moreover we apply ‖a+b‖2 � 2(‖a‖2+‖b‖2),
so that we can estimate the two terms in the right-hand side of (3.6) separately.

And we start with the second term of the right-hand side in (3.6): by the orthogo-
nality properties of the eigenvectors we obtain

∥∥∥∥∥∥∥

1

N

N∑

j=1

t ′∫

s′
∂θ ′Gψk−1

t−u (·, ϕ j,N
u )dW j

u

∥∥∥∥∥∥∥

2

−1,1/q

= 1

N 2

∞∑

l=0

N∑

j, j ′=1

t ′∫

s′

t ′∫

s′
e−(2t−u−u′)λl f ′

ψk−1,l(ϕ
j,N
u ) f ′

ψk−1,l(ϕ
j ′,N
u′ )dW j

u dW j ′
u′ , (3.7)

and by taking the expectation

E

⎡

⎢⎣

∥∥∥∥∥∥∥

1

N

N∑

j=1

t ′∫

s′
∂θ ′Gψk−1

t−u (·, ϕ j,N
u )dW j

u

∥∥∥∥∥∥∥

2

−1,1/q

⎤

⎥⎦

= 1

N 2

∞∑

l=0

N∑

j=1

t ′∫

s′
e−2(t−u)λl E

[
( f ′
ψk−1,l(ϕ

j,N
u ))2

]
du. (3.8)
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By Corollary 8.6 there exists a constant C1 such that

E

⎡

⎢⎣

∥∥∥∥∥∥∥

1

N

N∑

j=1

t ′∫

s′
∂θ ′Gψk−1

t−u (·, ϕ j,N
u )dW j

u

∥∥∥∥∥∥∥

2

−1,1/q

⎤

⎥⎦� C1

N

∞∑

l=0

t ′∫

s′
e−2(t−u)λl du. (3.9)

Proposition 8.4, Remark 8.3, leads us to

∞∑

l=0

t ′∫

s′
e−2(t−u)λl du �

∞∑

l=0

t ′∫

s′
e−(t−u) l2

C du �C
∞∑

l=0

1

l2

(
1 − e−(t ′−s′) l2

C

)
, (3.10)

where the addend with l = 0 (times C) has to be read as t ′ − s′. The right-most term
in (3.10) for t ′ − s′ ≥ 1 can be bounded by C(t ′ − s′)+ C

∑∞
l=1 1/ l2 ≤ 3C(t ′ − s′).

Instead for t ′ − s′ < 1 we decompose the same term and then estimate as follows:

C
�(t ′−s′)−1/2�∑

l=0

1

l2

(
1 − e−(t ′−s′) l2

C

)
+ C

∞∑

l=�(t ′−s′)−1/2�+1

1

l2

(
1 − e−(t ′−s′) l2

C

)

�
�(t ′−s′)−1/2�∑

l=0

(t ′ − s′)+
∞∑

l=�(t ′−s′)−1/2�+1

C

l2 ≤ (3 + 2C)
√

t ′ − s′, (3.11)

where for the first term we have used (1 − exp(−a)) ≤ a, for a ≥ 0. Therefore we
have proven that there exists C such that for every k and every s, s′, t , t ′ such that
Tk−1 < s′ < s < t and s′ < t ′ < t we have

E

⎡

⎢⎣

∥∥∥∥∥∥∥

1

N

N∑

j=1

t ′∫

s′
∂θ ′Gψk−1

t−u (·, ϕ j,N
u )dW j

u

∥∥∥∥∥∥∥

2

−1,1/q

⎤

⎥⎦ � Ch1(t ′ − s′)
N

. (3.12)

with

h1(u) := u1/21[0,1)(u)+ u1[1,∞). (3.13)

We can do better in the case of Gψk−1,⊥, for which a direct inspection of the argument
we have just presented shows that the linearly growing term in the estimate can be
avoided (since the term l = 0 is no longer there) and the net result is

E

⎡

⎢⎣

∥∥∥∥∥∥∥

1

N

N∑

j=1

t ′∫

s′
∂θ ′Gψk−1,⊥

t−u (·, ϕ j,N
u )dW j

u

∥∥∥∥∥∥∥

2

−1,1/q

⎤

⎥⎦ � Ch2(t ′ − s′)
N

. (3.14)
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with h2 defined as

h2(u) = u1/21[0,1)(u)+ 1[1,∞). (3.15)

For what concerns the first term in the right-hand side of (3.6), we have

E

⎡

⎢⎣

∥∥∥∥∥∥∥

1

N

N∑

j=1

s′∫

Tk−1

(
∂θ ′Gψk−1

t−u (·, ϕ j,N
u )− ∂θ ′Gψk−1

s−u (·, ϕ j,N
u )

)
dW j

u

∥∥∥∥∥∥∥

2

−1,1/q

⎤

⎥⎦

= 1

N 2

∞∑

l=1

N∑

j=1

s′∫

Tk−1

(
e−(t−u)λl − e−(s−u)λl

)2
E

[
( f ′
ψk−1,l(ϕ

j,N
u ))2

]
du, (3.16)

and, by proceeding like for (3.9), we see that the expression in (3.16) is bounded by

C1

N

∞∑

l=1

(
1 − e−λl (t−s′)

)2

λl
≤ C1C

N

∞∑

l=1

(
e−(t−s′) l2

C − 1

)2

l2 . (3.17)

This last term is estimated once again by separating the two cases of t − s′ small and
large. The net result is that there exists C > 0 such that for every k, every s, s′ and t
such that Tk < s′ < s < t we have

E

⎡

⎢⎣

∥∥∥∥∥∥∥

1

N

N∑

j=1

s′∫

Tk−1

(
∂θ ′Gψk−1

t−u (·, ϕ j,N
u )− ∂θ ′Gψk−1

s−u (·, ϕ j,N
u )

)
dW j

u

∥∥∥∥∥∥∥

2

−1,1/q

⎤

⎥⎦

� Ch2(t − s′). (3.18)

In order to complete the proof of Lemma 3.1 quadratic estimates do not suffice:
we need to generalize (3.12), (3.14) and(3.18) to larger exponents. We actually need
estimates on moments of order 2m, with m finite, but sufficiently large, so to apply the
standard Kolmogorov Lemma type estimates and get uniform bounds. We are going
to use

‖a + b‖m � m(‖a‖m + ‖b‖m), (3.19)

but actually we will not track the m dependence of the constants. We aim at showing
that the expectation of the moments of order 2m of the quantities we are interested in
are bounded by the mth power of the estimate we found in the quadratic case, times
an m-dependent constant.
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For m = 1, 2, . . ., the mth-power of the expression in (3.7) gives

∥∥∥∥∥∥∥

1

N

N∑

j=1

t ′∫

s′
∂θ ′Gψk−1

t−u (θ, ϕ
j,N
u )dW j

u

∥∥∥∥∥∥∥

2m

−1,1/q

= 1

N 2m

∞∑

l1,...,lm=0

N∑

j1, j ′1,..., jm , j ′m=1

F j1
l1
(t, s′, t ′)F j ′1

l1
(t, s′, t ′) · · ·

×F jm
lm
(t, s′, t ′)F j ′m

lm
(t, s′, t ′), (3.20)

in which we have introduced the random variables

F j
l (t, s′, t ′) =

t ′∫

s′
e−λl (t−u) f ′

ψk−1,l(ϕ
j,N
u )dW j

u . (3.21)

We now take the expectation of both terms in (3.20) and all the terms in the sum that do
not include an even number of each Brownian motion vanish. The number of non-zero
terms in the expectation can thus be bounded by (2m)!N m . Applying the Itô formula
to each of these non-zero terms, we get at most (2m)!/(2mm!) terms (the number of
possibilities classifying 2m elements in couples) of the type I1 · · · Im , where

Ik = Ik(l1, l2) =
t ′∫

s′
e−(λl1 +λl2 )(t−u)

E

[
f ′
ψk−1,l1(ϕ

j,N
u ) f ′

ψk−1,l2(ϕ
j,N
u )

]
du. (3.22)

We now observe that

|Ik(l1, l2)| ≤ √
Ik(l1, l1)Ik(l2, l2), (3.23)

and for each index li in the first sum in the right-hand side of (3.20) gives rise either
directly to a term Ik(li ) (for this it is needed that the two terms share the Brownian
motion), or in the arising products the terms Ik(li , li ′) are associated with a term of
the type Ik(li , li ′′). Therefore the expression obtained after applying Itô formula can
be bounded by a sum of terms of the type Î1 · · · Îm , with

Îk = Ik(l, l) =
t ′∫

s′
e−2λl (t−u)

E

[
( f ′
ψk−1,l(ϕ

j,N
u ))2

]
du. (3.24)

Therefore we are facing the same estimates that we have encountered in the quadratic
case, see (3.8) and (3.9), except of course for combinatorial contribution. In the end
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we obtain that there exists C = Cm such that

E

⎡

⎢⎣

∥∥∥∥∥∥∥

1

N

N∑

j=1

t ′∫

s′
∂θ ′Gψk−1

t−u (·, ϕ j,N
u )dW j

u

∥∥∥∥∥∥∥

2m

−1,1/q

⎤

⎥⎦ � C
hm

1 (t
′ − s′)

N m
, (3.25)

E

⎡

⎢⎣

∥∥∥∥∥∥∥

1

N

N∑

j=1

t ′∫

s′
∂θ ′Gψk−1,⊥

t−u (·, ϕ j,N
u )dW j

u

∥∥∥∥∥∥∥

2m

−1,1/q

⎤

⎥⎦ � C
hm

2 (t
′ − s′)

N m
. (3.26)

In a similar way

∥∥∥∥∥∥∥

1

N

N∑

j=1

s′∫

Tk−1

(
∂θ ′Gψk−1

t−u (·, ϕ j,N
u )− ∂θ ′Gψk−1

s−u (·, ϕ j,N
u )

)
dW j

u

∥∥∥∥∥∥∥

2m

−1,1/q

= 1

N 2m

∞∑

l1,...,lm=0

N∑

j1, j ′1,..., jm , j ′m=1

G j1
l1
(s, t, s′)G j ′1

l1
(s, t, s′) · · ·

×G jm
lm
(s, t, s′)G j ′m

lm
(s, t, s′) (3.27)

with

G j
l (s, t, s′) =

s′∫

Tk−1

(
e−λl (t−u) − e−λl (s−u)

)
f ′
ψk−1,l(ϕ

j,N
u )dW j

u . (3.28)

We reduce the problem as above to the study of products of integral terms J1 · · · Jk

with

Jk =
s′∫

Tk−1

(
e−λl1 (t−u) − e−λl1 (s−u)

) (
e−λl2 (t−u) − e−λl2 (s−u)

)

×E

[
f ′
ψk−1,l1(ϕ

j,N
u ) f ′

ψk−1,l2(ϕ
j,N
u )

]
du, (3.29)

and then, like before, in terms of products of diagonal terms of the type

Ĵk =
s′∫

Tk−1

(
e−λl (t−u) − e−λl (s−u)

)2
E

[
( f ′
ψk−1,l(ϕ

j,N
u ))2

]
du. (3.30)
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Again we are reduced to the estimating terms that have already appeared in the
quadratic case, see (3.16), so we obtain that there exists C = Cm such that

E

⎡

⎢⎣

∥∥∥∥∥∥∥

1

N

N∑

j=1

s′∫

Tk−1

(
∂θ ′Gψk−1

t−u (·, ϕ j,N
u )− ∂θ ′Gψk−1

s−u (·, ϕ j,N
u )

)
dW j

u

∥∥∥∥∥∥∥

2m

−1,1/q

⎤

⎥⎦

� C
hm

2 (t − s)

N m
. (3.31)

We now let t ′ ↗ t and s′ ↗ s and by applying Fatou’s Lemma and Lemma 7.4,
from(3.6), (3.25), (3.26) and (3.31) we get

E

[∥∥∥Zk
t − Zk

s

∥∥∥
2m

−1

]
� C

hm
1 (t − s)

N m
, (3.32)

and

E

[∥∥∥Zk,⊥
t − Zk,⊥

s

∥∥∥
2m

−1

]
� C

hm
2 (t − s)

N m
. (3.33)

The fact that we are allowed to drop the weight in the H−1 norm is of course due to
the norm equivalence.

We are now in good condition to apply the Garsia–Rodemich–Rumsey Lemma [33]:

Lemma 3.2 Let p and	 be continuous, strictly increasing functions on (0,∞) such
that p(0) = 	(0) = 0 and limt↗∞	(t) = ∞. Given T > 0 and φ continuous on
(0, T ) and taking its values in a Banach space (E, ‖.‖), if

T∫

0

T∫

0

	

(‖φ(t)− φ(s)‖
p(|t − s|)

)
dsdt � B < ∞, (3.34)

then for 0 � s � t � T :

‖φ(t)− φ(s)‖ � 8

t−s∫

0

	−1
(

4B

u2

)
p(du). (3.35)

We apply Lemma 3.2 with

φ(t) = Zk
t−Tk−1

, p(u) = u
2+ζ
2m and 	(u) = u2m, (3.36)

and ζ = 1/100 (Remark 2.6). With these choices we can find an explicit constant
C = C(m, ζ ) such that

‖Zk
t − Zk

s ‖2m−1 ≤ C(t − s)ζ B, (3.37)
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for every s and t such that Tk−1� s<t�Tk and B is a positive random variable such
that

E[B] ≤ C

N m

T∫

0

T∫

0

hm
1 (|t − s|)
|t − s|2+ζ dsdt, (3.38)

where C is the constant in (3.32). For m > 4 the function t �→ hm
1 (t)/t2+ζ , defined

for t > 0, is increasing (and it tends to zero for t ↘ 0). So E[B] is bounded by
C N−mhm

1 (T )/T ζ and therefore

E

[
sup

Tk−1�s<t�Tk

‖Zk
t − Zk

s ‖2m−1

|t − s|ζ
]

� C
T m−ζ

N m
, (3.39)

which leads to

P

[
sup

Tk−1�t�Tk

‖Zk
t ‖−1 �

√
T

N
N ζ

]
� C

1

N mζ
. (3.40)

Then, (recall n = nN = N
T ) we deduce

P

[
sup

1�k�n
sup

Tk−1�t�Tk

‖Zk
t ‖−1 �

√
T

N
N ζ

]
� C

1

T N mζ−1 , (3.41)

where the right hand side tends to 0 when m is chosen sufficiently large. A similar
argument gives for Zk,⊥

t

P

[
sup

1�k�n
sup

Tk−1�t�Tk

‖Zk,⊥
t ‖−1 � 1√

N
N ζ

]
� C

T ζ−1

N mζ−1 . (3.42)

��
We now give the main result of the section:

Proposition 3.3 If ‖ν1
0‖−1 � N 2ζ√

N
and if the event B N defined in (3.1) is realized

(then, with probability approaching 1 as N → ∞) we have

sup
1�k�n

sup
t∈[Tk−1,Tk ]

∥∥∥νk
t

∥∥∥−1
�
√

T

N
N 2ζ , (3.43)

and

max
1�k�n

∥∥∥νk
Tk−1

∥∥∥−1
� N 2ζ

√
N
. (3.44)
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Proof From (2.17) and Lemma 7.2, we get,for all k = 1 . . . n and t ∈ [Tk−1, Tk]

‖νk
t ‖−1 �Ce−λ1(t−Tk−1)‖νk

Tk−1
‖−1 + C

t∫

Tk−1

(
1 + 1√

t − s

)
‖νk

s ‖2−1ds + ‖Zk
t ‖−1.

(3.45)

The constant C in front of the first term of the right hand side above would be equal to
1 if we were using the ‖.‖−1,1/qψk−1

norm. Let us assume that ‖νk
Tk−1

‖−1 ≤ N 2ζ /
√

N ,

since we are working in B N we obtain

‖νk
t ‖−1 �Ce−λ1(t−Tk−1)

N 2ζ

√
N

+C(T +√
T ) sup

Tk−1�s�t
‖νk

s ‖2−1+
√

T√
N

N ζ . (3.46)

Therefore we readily see that if we define

t∗ = sup

{
t ∈ [Tk−1, Tk] : ‖νk

t ‖−1 >

√
T√
N

N 2ζ

}
, (3.47)

we have that for t ≤ t∗

‖νk
t ‖−1 ≤ C N 2ζ− 1

2 + 2CT 2 N 4ζ−1 + √
T N ζ− 1

2 . (3.48)

Therefore since limN T 3 N−1+4ζ = 0 (see Remark 2.6), for N large enough, we have
t∗ = Tk and (3.43) is reduced to proving n ‖νk

Tk−1
‖−1 ≤ N 2ζ /

√
N for k = 1, 2, . . . , n.

This holds for k = 1: we are now going to show by induction (3.44) and therefore that
the assumption propagates from k to k + 1.

To prove the bound on νk+1
Tk

, assuming the bound on νk
Tk−1

, we use the smoothness

of the manifold M . Since we are working in B N , τ k
σ = Tk and we have

νk+1
Tk

= qψk−1 + νk
Tk

− qψk

= P⊥
ψk

[
qψk−1 + νk

Tk
− qψk

]

=
(

P⊥
ψk

− P⊥
ψk−1

) [
qψk−1 + νk

Tk
− qψk

]
+ P⊥

ψk−1

[
qψk−1 − qψk

] + P⊥
ψk−1

νk
Tk
,

(3.49)

Since the mapping ψ �→ P⊥
ψ is smooth on the compact M , we have (cf. Sect. 2.2)

∥∥∥P⊥
ψk

− P⊥
ψk−1

∥∥∥L(H−1,H−1)
� C |ψk − ψk−1| , (3.50)

and the identities

ψk − ψk−1 = p(μTk )− p(μTk−1), (3.51)
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and

μTk − μTk−1 = νk
Tk

− νk
Tk−1

, (3.52)

combined with the smoothness of p, lead to [using (3.43)]

∥∥∥P⊥
ψk

− P⊥
ψk−1

∥∥∥L(H−1,H−1)
� C

√
T√
N

N 2ζ . (3.53)

On the other hand, the smoothness of qψ with respect to ψ , (3.51) and (3.52) imply

∥∥∥qψk−1 + νk
Tk

− qψk

∥∥∥−1
� C

(
‖νk

Tk−1
‖−1 + ‖νk

Tk
‖−1

)
, (3.54)

so the first term in the last line of (3.49) is of order T
N N 4ζ , which is much smaller than

N 2ζ√
N

nor N → ∞, since limN T N 2ζ− 1
2 = 0 (see Remark 2.6). Moreover, Lemma 2.4

implies

∥∥∥P⊥
ψk−1

[
qψk−1 − qψk

]∥∥∥−1
=
∥∥∥P⊥

ψk−1

[
v(μTk−1)−v(μTk )

]∥∥∥−1
�C

∥∥μTk−1 −μTk

∥∥−1 ,

(3.55)

so the second term in the last line of (3.49) is also of order T
N N 4ζ . Finally, projecting

(2.17) on Range
(
Lqψk−1

)
and by using again Lemma 7.2, we get

∥∥∥P⊥
ψk−1

νk
t

∥∥∥−1
� Ce−λ1(t−Tk−1)‖νk

Tk−1
‖−1

+C

t∫

Tk−1

(
1 + 1√

t − s

)
‖νk

s ‖2−1ds + ‖Zk,⊥
t ‖−1, (3.56)

which, since limN T 4 N 1−5ζ = 0 (see Remark 2.6), leads for N large enough to

∥∥∥P⊥
ψk−1

νk
Tk

∥∥∥−1
� N 3ζ/2

√
N
. (3.57)

This takes care of the third term in the last line of (3.49) and by collecting the three
estimates we obtain (3.44) and the proof is complete. ��

4 The effective dynamics on the tangent space

The following result states that each rotation increment of our discretization scheme
is well approximated by the projection the dynamical noise on the tangent space.
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Proposition 4.1 We have the first order approximation in probability: for every ε > 0

P

(∣∣∣∣∣

n∑

k=1

(ψk − ψk−1)−
n∑

k=1

(Zk
Tk
, q ′
ψk−1

)−1,1/qψk−1

(q ′, q ′)−1,1/q

∣∣∣∣∣ ≤ ε

)
= 1. (4.1)

Proof Lemma 7.5 and Proposition 3.3 give (assuming that B N is realized: we will do
this through all the proof)

ψk − ψk−1 = − (ν
k
Tk
, q ′
ψk−1

)−1,1/qψk−1

(q ′, q ′)−1,1/q

− 1

2π I 2
0 (2Kr)

(νk
Tk
, (log qψk−1)

′′)−1,1/qψk−1

(q ′, q ′)−1,1/q

(νk
Tk
, q ′
ψk−1

)−1,1/qψk−1

(q ′, q ′)−1,1/q

+o

(
T

N

)
. (4.2)

Since log(qψk−1)
′′ is in R(Lqψk−1

), we have

(νk
Tk
, (log qψk−1)

′′)−1,1/qψk−1
= ((νk

Tk
)⊥, (log qψk−1)

′′)−1,1/qψk−1
, (4.3)

and thus using again Proposition 3.3 we get for the second term of the right-hand side

∥∥∥∥∥
1

2π I 2
0 (2Kr)

(νk
Tk
, (log qψk−1)

′′)−1,1/qψk−1

(q ′, q ′)−1,1/q

(νk
Tk
, q ′
ψk−1

)−1,1/qψk−1

(q ′, q ′)−1,1/q

∥∥∥∥∥−1

� C
1√
N

N 2ζ

√
T√
N

N 2ζ , (4.4)

and hence it is o(T/N ), since limN N 4ζ /
√

T = 0 (see Remark 2.6). So only the
component on the tangent space of M at the point ψk−1 is of order T/N :

ψk − ψk−1 = − (ν
k
Tk
, q ′
ψk−1

)−1,1/qψk−1

(q ′, q ′)−1,1/q
+ o

(
T

N

)
. (4.5)

We now decompose this tangent term. Our goal is to show that the projection of
the noise ZTk is the only term that gives a non negligible contribution when N
goes to infinity. However, a direct domination of the remainder—the nonlinear part

of the evolution equation (2.17)—using the a priori bound ‖νk
t ‖−1 �

√
T√
N

N 2ζ is not
sufficient. In fact

∣∣∣∣∣∣∣∣

⎛

⎜⎝
Tk∫

Tk−1

e
−(Tk−s)Lqψk−1 ∂θ [νk

s J ∗ νk
s ]ds, q ′

ψk−1

⎞

⎟⎠

−1,1/qψk−1

∣∣∣∣∣∣∣∣
� T 2

N
N 4ζ . (4.6)
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In order to improve this estimate the strategy is to we re-inject (2.17) into the projection
(Ik(Tk), qψk−1)−1,1/qψk−1

, where

Ik(t) = 1{τ k
σN

�Tk−1}

t∧τ k
σN∫

Tk−1

e
−(Tk−s)Lqψk−1 ∂θ [νk

s J ∗ νk
s ]ds, (4.7)

and this leads to a rather long expression

n∑

k=1

(ψk − ψk−1) =
n∑

k=1

(Zk
Tk
, q ′
ψk−1

)−1,1/qψk−1

(q ′, q ′)−1,1/q
+

n∑

k=1

9∑

i=1

Ak,i + o(1), (4.8)

with

Ak,1 = 1E

⎛

⎝
∫

�

e
−(Tk−s)Lqψk−1 ∂θ

[
e
−(s−Tk−1)Lqψk−1 νk

Tk−1
J∗

×
(

e
−(s−Tk−1)Lqψk−1 νk

Tk−1

)]
ds, q ′

ψk−1

⎞

⎠

�

Ak,2 = 1E

⎛

⎝
∫

�

e
−(Tk−s)Lqψk−1 ∂θ [Ik(s)J ∗ Ik(s)] ds, q ′

ψk−1

⎞

⎠

�

Ak,3 = 1E

⎛

⎝
∫

�

e
−(Tk−s)Lqψk−1 ∂θ

[
Zk

s J ∗ Zk
s

]
ds, q ′

ψk−1

⎞

⎠

�

Ak,4 = 1E

⎛

⎝
∫

�

e
−(Tk−s)Lqψk−1 ∂θ

[
e
−(s−Tk−1)Lqψk−1 νk

Tk−1
J ∗ Ik(s)

]
ds, q ′

ψk−1

⎞

⎠

�

Ak,5 = 1E

⎛

⎝
∫

�

e
−(Tk−s)Lqψk−1 ∂θ

[
Ik(s)J ∗

(
e
−(s−Tk−1)Lqψk−1 νk

Tk−1

)]
ds, q ′

ψk−1

⎞

⎠

�

Ak,6 = 1E

⎛

⎝
∫

�

e
−(Tk−s)Lqψk−1 ∂θ

[
e
−(s−Tk−1)Lqψk−1 νk

Tk−1
J ∗ Zk

s

]
ds, q ′

ψk−1

⎞

⎠

�

Ak,7 = 1E

⎛

⎝
∫

�

e
−(Tk−s)Lqψk−1 ∂θ

[
Zk

s J ∗
(

e
−(s−Tk−1)Lqψk−1 νk

Tk−1

)]
ds, q ′

ψk−1

⎞

⎠

�
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Ak,8 = 1E

⎛

⎝
∫

�

e
−(Tk−s)Lqψk−1 ∂θ

[
Ik(s)J ∗ Zk

s

]
ds, q ′

ψk−1

⎞

⎠

�

Ak,9 = 1E

⎛

⎝
∫

�

e
−(Tk−s)Lqψk−1 ∂θ

[
Zk

s J ∗ Ik(s)
]

ds, q ′
ψk−1

⎞

⎠

�

, (4.9)

where we have used the shortcuts E = {τ k
σN

� Tψk−1},
∫
�

stands for
∫ T ∧τ k

σN
Tk−1

and (·, ·)�
is (·, ·)−1,1/qψk−1

.
The following bound (a direct consequence of Lemmas 7.2 and 7.3) is now going

to be of help:

∥∥∥∥∥∥∥

Tk∫

Tk−1

e
−(Tk−s)Lqψk−1 ∂θ [h1(s)J ∗ h2(s)]ds

∥∥∥∥∥∥∥−1

� C

Tk∫

Tk−1

(
1 + 1√

Tk − s

)
‖h1(s)‖−1‖h2(s)‖−1ds. (4.10)

In fact it is not difficult to see that by using Proposition 3.3 and (4.10) we can efficiently
bound all the Ak, j ’s, except Ak,3:

|Ak,1|� 1

N
N 5ζ , |Ak,2|� T 5

N 2 N 9ζ , |Ak,4|� T 2

N 3/2 N 7ζ , |Ak,5|

� T 2

N 3/2 N 7ζ ,

|Ak,6|� T 1/2

N 3/2 N 4ζ , |Ak,7|� T 1/2

N 3/2 N 4ζ , |Ak,8|� T 7/2

N 3/2 N 6ζ and |Ak,9|

� T 7/2

N 3/2 N 6ζ . (4.11)

Since T 4 N 9ζ−1 → 0 and N 5ζ /T → 0 (see Remark 2.6), we get (recall that n =
nN = N

T )

n∑

k=1

(ψk − ψk−1) =
n∑

k=1

(Zk
Tk
, q ′
ψk−1

)−1,1/qψk−1

(q ′, q ′〉 +
n∑

k=1

Ak,3 + o(1). (4.12)

For the Ak,3 terms we need to use something more sophisticate. To deal with these
terms in fact we rely on an averaging phenomena. This method has been used in [4]
for the same kind of problem. We write the Doob decomposition
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m∑

k=1

Ak,3 = Mm +
m∑

k=1

γk, (4.13)

where

γk = E
[
Ak,3|FTk−1

]
, (4.14)

and Mm is a FTm -martingale with brackets

〈M〉m =
m∑

k=1

(
E

[
A2

k,3|FTk−1

]
− γ 2

k

)
. (4.15)

We have

γk = E

⎡

⎢⎢⎣
1

N 2

N∑

i, j=1

Tk∧τ k
σN∫

Tk−1

dW i
s

Tk∧τ k
σN∫

Tk−1

dW j
s′

∫

S

dθ

(
1 − 1

2π I 2
0 (2Kr)qψk−1(θ)

)

×
∫

S

dθ ′′∂Gψk−1
Tk−s (θ, ϕ

i,N
s )J (θ − θ ′′)∂Gψk−1

Tk−s′(θ ′′, ϕ j,N
s′ )

∣∣∣∣FTk−1

⎤

⎥⎥⎦ 1τ k
σN

�Tk−1
,

(4.16)

where ∂Gψt (θ, θ ′) := ∂θ ′Gψt (θ, θ ′), and from this we obtain

γk = E

⎡

⎢⎣
1

N

T ∧τ̃σN∫

0

ds
∫

S

μ̃s(dθ
′)
∫

S

dθ

(
1 − 1

2π I 2
0 (2Kr)qψk−1(θ)

)

∫

S

dθ ′′∂θ ′Gψk−1
T −s (θ, θ

′)J (θ − θ ′′)∂θ ′Gψk−1
T −s (θ

′′, θ ′)

⎤

⎥⎦ 1τ k
σN

�Tk−1
, (4.17)

with

μ̃s := 1

N

N∑

j=1

δ
ϕ̃

j,N
s
, (4.18)

where {ϕ̃ j,N
s }s≥0 is a solution of (1.1) depending on FTk−1 only through the initial

condition

ϕ̃
j,N
0 = ϕ

j,N
Tk−1

. (4.19)
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The stopping time τ̃σN is defined as follows:

τ̃σN := inf{s > 0, ‖μ̃s − qψTk−1
‖−1 > σN }. (4.20)

We now write μ̃s(dθ ′) = qψk−1(θ
′)dθ ′ + ν̃k

s (dθ
′) and split the for right hand-side of

(4.17) into the corresponding two terms.
The term coming qψk−1(θ

′)dθ ′ is zero as one can see by using the symmetry:

Gψk−1
s (ψk−1 + θ, ψk−1 + θ ′) = Gψk−1

s (ψk−1 − θ, ψk−1 − θ ′) (4.21)

which follows from the same statement withψk−1 = 0, which in turn is a consequence
of the representation (Appendix A) and of the fact that if e j is even (respectively, odd)
then f j is even (respectively, odd) too (see Sect. 2.1 and Appendix A).

For the term containing ν̃k
s (dθ

′) instead we get the bound

∣∣∣∣∣∣∣
E

⎡

⎢⎣
1

N

Tk∧τ̃σN∫

Tk−1

ds
∫

S

d̃νk
s (θ

′)
∫

S

dθ
∫

S

dθ ′′
(

1 − 1

2π I 2
0 (2Kr)qψk−1(θ)

)

× ∂θ ′Gψk−1
Tk−s (θ, θ

′)J (θ − θ ′′)∂θ ′Gψk−1
Tk−s (θ

′′, θ ′)

⎤

⎥⎦

∣∣∣∣∣∣∣

� E

⎡

⎢⎢⎣
1

N

Tk∧τ k
σN∫

Tk−1

ds‖̃νk
s ‖−1‖Hk

s ‖H1

⎤

⎥⎥⎦ (4.22)

where

Hk
s (θ

′) =
∫

S

dθ
∫

S

dθ ′′
(

1 − 1

2π I 2
0 (2Kr)qψk−1(θ)

)

×∂θ ′Gψk−1
Tk−s (θ, θ

′)J (θ − θ ′′)∂θ ′Gψk−1
Tk−s (θ

′′, θ ′). (4.23)

We now plug in the explicit representation for the kernels:

Hk
s (θ

′) =
∞∑

l1,l2=0

e−(λl1+λl2 )(Tk−s)

2π∫

0

dθ

2π∫

0

dθ ′′
(

1 − 1

2π I 2
0 (2Kr)qψk−1(θ)

)

×eψk−1,l1(θ)J (θ − θ ′′)eψk−1,l2(θ
′′) f ′

ψk−1,l1(θ
′) f ′

ψk−1,l2(θ
′). (4.24)
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We obtain

‖Hk
s ‖1 �

∞∑

l,m=0

e−(λl1 +λl2 )(Tk−s)

∣∣∣∣∣∣

2π∫

0

dθ

2π∫

0

dθ ′′
(

1 − 1

2π I 2
0 (2Kr)qψk−1(θ)

)

× eψk−1,l1(θ)J (θ − θ ′′)eψk−1,l2 (θ
′′)

∣∣∣∣∣∣

(
‖ f ′′
ψk−1,l1‖2‖ f ′

ψk−1,l2‖∞+‖ f ′
ψk−1,l1‖∞‖ f ′′

ψk−1,l2‖2

)
.

(4.25)

We aim at proving the convergence of this sum. For the integral term, thanks to
the rotation symmetry, we can limit the study to ψk−1 = 0. Since J (θ − θ ′′) =
−K sin(θ − θ ′′) = −K sin(θ) cos(θ ′′)+ K cos(θ) sin(θ ′′), we can split these double
integrals into products of two simple ones. Corollary 8.5 implies that there exists l0 in
N such that e0,l0+2p and e0,l0+2p+1 can be written as

e0,l0+2p = pq1/2
0 (c1,l0+2pv1,l0+p + c2,l0+2pv2,l0+p)+ O

(
1

p

)
, (4.26)

e0,l0+2p+1 = pq1/2
0 (c1,l0+2p+1v1,l0+p + c2,l0+2p+1v2,l0+p)+ O

(
1

p

)
, (4.27)

where

sup
l�l0

{|c1,l |, |c2,l |} < ∞ (4.28)

and the functions vi,l are defined in Proposition 8.4. The vi,l are sums and products
of sines and cosines, and there exists h ∈ N such that the only non-zero Fourier
coefficients of vi,l0+p are of index included between h + p − 2 and h + p + 2 and
are bounded with respect to p. We deduce that the simple integral terms containing
e0,l0+2p, which are of the form

C

2π∫

0

q±1/2
0 (θ)e0,l0+2p(θ)g(θ)dθ, (4.29)

where g is sine or cosine and C is a constant independent of p, are up to a correction
of order 1/p a bounded linear combination of the Fourier coefficients of q1/2

0 or q−1/2
0

of index taken between h + p − 3 and h + p + 3. The same argument applies for
e0,l0+2p+1. Since these Fourier terms decrease faster than exponentially (this can be
seen by observing that

∫
S

exp(a cos θ)dθ = 2π In(a) and that exp(a cos(·)) is an
entire function), these simple integral terms are of order 1/p. Using Remark 8.3 and
Corollary 8.6 we deduce the following bound for ‖Hk

s ‖1:
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‖Hk
s ‖1 � C + C

∞∑

l1,l2=1

l1 + l2
l1l2

e(Tk−s)
l21+l22

C + C
∞∑

l=1

e(Tk−s) l2
C , (4.30)

where the first term of the right hand side corresponds to the case l1 = 0, l2 = 0
in (4.25), the second term corresponds to l1 > 0, l2 > 0 and the third term to l1 =
0, l2 > 0 or l2 = 0, l1 > 0. Applying (4.22) and Proposition 3.3, we get:

|γk |�C
T 1/2

N 3/2 N 2ζ

Tk∫

Tk−1

ds‖Hk
s ‖1

� C
T 1/2

N 3/2 N 2ζ

⎛

⎝T +
∞∑

h,l=1

h + l

hl(h2 + l2)
+

∞∑

l=1

1

l2

⎞

⎠ � C
T 3/2

N 3/2 N 2ζ , (4.31)

and thus for N large enough

n∑

k=1

|γk | �
√

T

N
N 3ζ . (4.32)

On the other hand, applying Doob Inequality, (4.9) and Proposition 3.3, it comes

P

[
sup

1�m�n
|Mm | �

√
T

N
N 3ζ

]
� N

T N 6ζ E [〈M〉n]

� N 1−6ζ

T

n∑

m=1

E

[
A2

k,3

]
� T 3

N 1+2ζ . (4.33)

Since T N−1−2ζ → 0 (see Remark 2.6), the combination of (4.32) and (4.33) leads to

P

[∣∣∣∣∣

n∑

i=1

Ak,3

∣∣∣∣∣ �
√

T

N
N 3ζ

]
→ 0, (4.34)

and the proof is complete. ��

5 Approach to M

The long time behavior of the solutions to (1.4) is rather well understood, so, in
particular, we know that if p0 is not on the set attracted to the unstable solution

1
2π , then it converges to one probability density in M (cf. Proposition 5.2) and, in
particular, it reaches a given (N independent) neighborhood of M in finite time: this
is directly extracted from [6,21]). This takes care of the first stage of the evolution,
because the deterministic result directly extends to the empirical measure by standard
arguments since the time horizon is finite. But we do need to get to distances of about
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N−1/2 and this requires a more attentive control of the dynamics. In fact, we exploit
the approximate contracting properties of the dynamics when the empirical measure
is close to qψ . We talk about approximate contracting properties because the noise
plays against getting to M and limits the contraction effect of the linearized operator.
Nevertheless, the proof mimics the deterministic proof of nonlinear stability, to which
the control of the noise is added. In principle the argument is straightforward: one
exploits the spectral gap of the linearized evolution. In practice, one has to set up
an iterative procedure similar to the one developed in Sect. 3, because the center of
synchronization may change somewhat over long times. This procedure is however
substantially easier than the one presented in Sect. 3, mostly because here the control
required on the noise is for substantially shorter times (log N versus N !), so we will
not go through the arguments in full detail again.

Proposition 5.1 Choose p0 ∈ M1\U such that (1.9) is satisfied. Then there exists
ψ0 (non random!), that depends on K and p0(·), C, that depends only on K , and a
random variable 	N such that

lim
N→∞ P

(∥∥μN ,̃εN N − q	N

∥∥−1 ≤ N 2ζ

√
N

)
= 1, (5.1)

where ε̃N := �C log N�/N, and limN 	N = ψ0 in probability. Moreover for ε and
εN as in Theorem 1.1 we have

lim
N→∞ P

(
sup

t∈[εN N ,̃εN N ]
∥∥μN ,t − qψ0

∥∥−1 ≤ ε

)
= 1, (5.2)

Proof The proof is divided in two parts. First we prove, using the convergence of
μt = μN ,t to the deterministic solution pt , that for a given h > 0 (arbitrarily small),
there exists t0 such that for ε small enough, P(dist(μN ,t0 ,M) � h) → 1 when
N → ∞. Then we show that after a time of order log N , the empirical measure μt

moves to a distance N ζ−1/2 from M , without a macroscopic change of the phase.

The first part of the proof relies on the following result:

Proposition 5.2 If p0 ∈ M1\U then there exists ψ ∈ S such that limt→∞ pt = qψ
in Ck(S; R) (for every k).

Proposition 5.2 is essentially taken from [21], in the sense that it follows by piecing
together some results taken from [21]. We give below a proof that of course relies on
[21]. We point out that the very same result can be proven also by adapting entropy
production arguments, like in [2].

Proposition 5.2 guarantees that the deterministic solution pt converges to a element
qψ0 of M . Therefore for t ≥ t0, we have that pt is no farther than h/2 from qψ0 (this
is a statement that can be made for example in Ck , but here we just need it in H−1).
Actually, it is not difficult to see that one can choose t0 = − 2

λ1
log h, for h sufficiently

small (λ1 is the spectral gat of Lqψ0
), but this is of little relevance here. Applying the

Itô formula
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μt − pt = et �2 (μ0 − p0)−
t∫

0

e(t−s) �2 [μs J ∗ μs − ps J ∗ ps]ds + zt , (5.3)

where

zt = 1

N

N∑

j=1

∂θ ′H(θ, φ j,N
s )dW j

s , (5.4)

et �2 is the semi-group of the Laplacian and H is the kernel of es �2 in L
2. Define

WN = {w, ‖μ0 − p0‖−1 � ε}. Using the classical estimate ‖et�/2u‖−1 � C√
t
‖u‖−2

and similar argument as in Sect. 3, we deduce that there exist events W̃N ⊂ WN such
that P(W̃N ) → 1 and that for all outcomes in W̃N we have

sup
0�t�t0

‖zt‖−1 �
√

t0
N

N ζ . (5.5)

From now, we restrict ourselves to W̃N . From (5.3) we get for all t ∈ [0, t0]

‖μt − pt‖−1 � ε + C

t∫

0

1√
t − s

‖μs − ps‖−1ds +
√

t0
N

N ζ . (5.6)

The Gronwall–Henry inequality (see [32]) implies that there existsγ > 0 (independent
of ε and N ) such that

sup
t≤t0

‖μt0 − pt0‖−1 �
(
ε +

√
t0
N

N ζ

)
eγ t0 . (5.7)

So for ε = h/4 and N large enough, ‖μt0 − qψ0‖−1 � h on the event W̃N .
To show that we enter a neighborhood of size slightly larger than N−1/2, it will be

N 2ζ−1/2, we set up an iterative scheme. It is very similar to the one given in Sect. 2.4,
but with times ti bounded with respect to N . This times are chosen such that after each
iteration, the distance between the empirical measure and M is at least divided by 2.
We define h0 := h and for m � 1

tm := tm−1 + 1

λ1
| logα|, (5.8)

hm := 1

2
hm−1, (5.9)

until the index m f defined by

m f := inf
{

m � 1, hm � N 2ζ−1/2
}
. (5.10)

The constant α above does not depends on N and will be chosen below. It is now easy
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to check that m f is of order log N . Then we define τ̃0 := t0, and for 1�m �m f + 1

ψ̃m−1 := p(μtm−1), (5.11)

ν̃m
tm−1

:= μtm−1 − qψ̃m−1
(5.12)

if dist(μtm−1 ,M) � σ (see Lemma 2.4). We consider for 1 � m � m f the stopping
times

τ̃m := τ̃m−11{̃τm−1<tm−1}
+ inf{s ∈ [tm−1, tm], ‖μs − qψ̃m−1

‖−1 � σ }1{̃τm−1�tm−1}. (5.13)

and the process solution of

ν̃m
t =1{̃τm<tm−1 }̃νm

τ̃m
+1{̃τm�tm−1}

×
⎛

⎝e
−(t∧τ̃m−tm−1)Lψ̃m−1 ν̃m

tm−1
−

t∧τ̃m∫

tm−1

e
−(t∧τ̃m−s)Lψ̃m−1 ∂θ [̃νm

s J ∗ ν̃m
s ]ds+ Z̃m

t∧τ̃m

⎞

⎠,

(5.14)

where

Z̃m
t = 1

N

N∑

j=1

t∫

tm−1

∂θ ′Gψ̃m−1
t−s

(
θ, ϕ

j,N
s

)
dW j

s . (5.15)

With the same arguments as given in Lemma 3.1, we can prove (recall that m f is of
order log N ) that the probability of the event

�N :=
{

sup
1�m�m f

sup
tm−1�t�tm

∥∥Z̃m
t

∥∥−1 �
√

tm − tm−1

N
N ζ

}
(5.16)

tends to 1 when N → ∞. From now, we assume that �N is verified. We insist on the
fact that the generic constants C appearing in the following do not depend on N , and
if not mentioned do not depend on α. From Lemma 7.2 and (5.14) we get that for all
1 � m � m f ,

‖̃νm
t ‖−1 � Chm−1 + C(t + √

t) sup
s∈[tm−1,t]

‖̃νm
s ‖−1 +

√
tm − tm−1

N
N ζ . (5.17)

We now prove that for 1 � m � m f −1, ‖νm
tm−1

‖−1 � hm−1 implies ‖νm+1
tm ‖−1 � hm ,

and that ‖̃νm f
tm f −1

‖−1 � hm f −1 implies ‖̃νm f +1
tm f

‖−1 � N 2ζ−1/2. Define

s∗
m := sup{s ∈ [tm−1, tm], ‖̃νm

s ‖−1 � h3/4
m−1}. (5.18)
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Then for s < s∗
m , if ‖νm

tm−1
‖−1 � hm−1 ,we get using (5.17)

‖̃νm
s ‖−1 � Chm−1 + C(s + √

s)h3/2
m−1 +

√
tm − tm−1

N
N ζ . (5.19)

Since N 2ζ−1/2 � hm−1, we deduce that s∗
m = tm if h0 is small enough. Then using

(5.14) we get

‖̃νm
tm ‖−1 � Cαhm−1 + Ch3/2

m−1 +
√

tm − tm−1

N
N ζ . (5.20)

Since h3/2
m−1 � αhm−1 for h0 small enough, it leads us to (recall that hm−1 = 2hm)

‖̃νm
tm ‖−1 � 4Cαhm +

√
tm − tm−1

N
N ζ . (5.21)

If m < m f ,
√

tm−tm−1
N N ζ�Cαhm and thus ‖̃νm

tm ‖−1 �5Cαhm . If m = m f , hm �
N 2ζ−1/2 and thus ‖̃νm

tm ‖−1 � 5CαN 2ζ−1/2. We now have a good control on μtm =
qψ̃m−1

+ ν̃m
tm , and project it with respect to ψ̃m (writing μtm = qψ̃m

+ ν̃m+1
tm ) to get a

bound for ‖̃νm+1
tm ‖−1. We use the same decomposition as the proof of Proposition 3.3:

ν̃m+1
tm = qψ̃m−1

+ ν̃m
tm − qψ̃m

= P⊥̃
ψm

[qψ̃m−1
+ ν̃m

tm − qψ̃m
]

=
(

P⊥̃
ψm

− P⊥̃
ψm−1

)
[qψ̃m−1

+ ν̃m
tm − qψ̃m

] + P⊥̃
ψm−1

[qψ̃m−1
− qψ̃m

] + P⊥̃
ψm−1

ν̃m
tm .

(5.22)

Since the projection p is smooth, we get the bound

|ψ̃m − ψ̃m−1| = |p(μtm )− p(μtm1
)| � C‖μtm − μtm1

‖−1 � C ‖̃νm
tm − ν̃m

tm−1
‖−1.

(5.23)

But (5.21) implies in particular that

‖̃νm
tm ‖−1 � C(1 + 4α)hm−1, (5.24)

which implies, using also (5.23),

|ψ̃m − ψ̃m−1| � 2C(1 + 4α)hm−1. (5.25)

Using similar arguments as in the proof of Proposition 3.3 (using in particular the
smoothness of the projection P⊥

ψ ), we see that the two first terms of the right hand side
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in (5.22) are of order h2
m−1. More precisely, there exists a constant C ′[α] depending

in α (increasing in α) such that

‖̃νm+1
tm ‖−1 � C ′[α]h2

m−1 + C ‖̃νm
tm ‖−1. (5.26)

So, since ‖̃νm
tm ‖−1�5Cαhm for m < m f and ‖̃νm f

tm f
‖−1�5CαN 2ζ−1/2, if h0 and α are

small enough we get ‖̃νm+1
tm ‖−1 � hm for m < m f and ‖̃νm f +1

tm f
‖−1 � N 2ζ−1/2.

We have therefore shown that after a time of order log N , the empirical measure
comes at distance N 2ζ−1/2 from qψ̃m f

. This angle ψ̃m f corresponds to the angle 	N

in the Proposition 5.1. So it remains to prove that ψ̃m f converges to ψ0 in probability
as N goes to infinity. We decompose

|ψ̃m f − ψ0| � |ψ̃0 − ψ0| +
m f∑

m=1

|ψ̃m − ψ̃m−1|. (5.27)

We restrict our study on the event �N
⋂

W̃N , whose probability tends to 1. Since
‖μt0 − qψ0‖−1 � h and the projection p is smooth, we get

|ψ̃0 − ψ0| � Ch (5.28)

and (5.25) implies (recall h0 = h and hm−1 = 2hm)

|ψ̃m − ψ̃m−1| � C21−mh. (5.29)

Consequently for C large enough P[|ψ̃m f − ψ0| > Ch] →N→∞ 0, which com-
pletes the proof of (5.1). The bound (5.2) is much rougher and it follows directly
from the argument we have used for establishing (5.1). This completes the proof of
Proposition 5.1 ��
Proof of Proposition 5.2 The crucial issues are the gradient flow structure of (1.4)
and its dissipativity properties. The gradient structure of (1.4) [6] implies that the
functional

F(p) := 1

2

∫

S

p(θ) log p(θ)dθ − K

2

∫

S

∫

S

p(θ) cos(θ − θ ′)p(θ ′)dθdθ ′, (5.30)

is non increasing along the time evolution. The dissipativity properties proven in
[21, Theorem 2.1] show that for every k ∈ N and a > 0 we can find t̃ such that
‖pt‖Ck < a for every t ≥ t̃ . Therefore for any k there exists {tn}n=1,2,... such that
tn+1 − tn > 1 and limn ptn exists in Ck and we call it p∞. An immediate consequence
is that limn F(ptn ) = F(p∞). But we can go beyond by introducing the semigroup St

associated to (1.4), by setting St ′ pt = pt+t ′ . [21, Theorem 2.2] implies the continuity
of this semigroup in Ck , so that, since for t ∈ [0, 1] we have tn ≤ tn + t < tn+1, we
obtain F(St p∞) = F(p∞). Therefore ∂tF(St p∞) = 0, but the condition ∂tF(pt ) =
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0, for a solution of (1.4), directly implies that ∂2
θ pt = 2∂θ (pt J ∗ pt ), which is the

stationarity condition for (1.4). Therefore pt is either qψ , for some ψ , or it coincides
with 1

2π [see (1.5)–(1.6)].
Let us point out that if ptn converges to 1

2π then {pt }t>0 itself converges to 1
2π .

This is just because F ( 1
2π

)
> F(qψ), so that if limn pt ′n = qψ and limn ptn = 1

2π
then it suffices to choose n such that F(pt ′n ) < F ( 1

2π

)
and m such that tm > t ′n to get

F(pt ′n ) ≥ F(ptm ) ≥ F ( 1
2π

)
, which is impossible.

So we have seen that either limt→∞ pt = 1
2π or all limit points are in M . The

stronger result we need is the convergence also when the limit point is not 1
2π . This

result is provided by the nonlinear stability result [21, Therem 4.6] which says that if p0
is in a neighborhood of M (the result is proven for a L

2 neighborhood, which is much
more than what we need here), then there exists ψ such that limt→∞ pt = qψ in Ck .

To complete the proof we need to characterize the portion of M1 which is attracted
by 1

2π , that is we need to identify the stable manifold of the unstable point with the
set U in (1.7). But this is the content of [21, Proposition 4.4]. ��

6 Proof of Theorem 1.1

The proof of Theorem 1.1 relies on the results of the previous sections and on a
convergence argument of the process in the tangent space that we give here.

Proof of Theorem 1.1 First of all Proposition 5.1 takes care of the evolution up to time
N ε̃N = C log N and provides an estimate on the closeness of the empirical measure to
the manifold M that allows to apply directly Proposition 3.3 and then Proposition 4.1.
Note that the iterative scheme that we have set up in Sect. 2.4 has been presented
without asking ψ0 not to be random or not to depend on N . In fact we start the
iterative scheme at time N ε̃N and from the random phase 	N of Proposition 5.1 that
converges in probability to the (non random) valueψ0. Of course there is here an abuse
of notation in the use of ψ0, but notice actually that, by the rotation invariance of the
system, we can actually consider without loss of generality that the empirical measure
μN ,C log N has precisely the phase ψ0. Moreover we make a time shift of N ε̃N , so that
the phase is ψ0 at time T0 = 0. The result in Theorem 1.1 is given for times starting
from NεN and not N ε̃N , but as stated in Proposition 5.1, the empirical measure stays
close to qψ0 in the time interval [NεN , N ε̃N ]. Therefore we have the finite sequence of
times T0, T1, . . . , Tn , with the corresponding phases ψ0, ψ1, ·, . . . , ψn and we define
ψt for every t ∈ [0, Tn] by linear interpolation. We assume Tn > τ f N .

We then note that, in view of (3.43), the control on the phases, see Proposition 4.1,
on the times T1, T2, . . . of our iteration scheme suffices not only to control the distance
between the empirical measure μN ,t and qψt , in the H−1 norm, for t = Tk , but for
every t ∈ [0, Tn]. We are now ready to identify the process WN ,· of Theorem 1.1:

WN ,τ := ψτN − ψ0

DK
, (6.1)
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where we recall that τ ∈ [0, Tn/N ]. We are therefore left with showing that WN ,·
converges to standard Brownian motion.

In proving the convergence to Brownian motion we apply Proposition 4.1 and
replace the process ψ· with the cadlag process ψ0 + MN ,· ∈ D([0, Tn/N ]; R) defined
by

MN ,τ :=
∑

k∈N:Tk≤Nτ

�MN ,k, (6.2)

and

�MN ,k := (Zk
Tk
, q ′
ψk−1

)−1,1/qψk−1

(q ′, q ′)−1,1/q
. (6.3)

It is straightforward to see that MN ,· is a martingale with respect to the filtration
F̃τ := F�τT �/T , where F· is the natural filtration of {W j

N ·} j=1,...,N : the martingale
is actually in L p, for every p, as the moment estimates is Sect. 3 show. We can now
apply the Martingale Invariance Principle in the form given by [23, Corollary 3.24,
Ch. VIII] to MN ,· for continuous time martingales: the hypotheses to verify in the
case of piecewise constant cadlag martingales boil down to the variance convergence
condition that for every τ ∈ [0, τ f ]

lim
N→∞

∑

k∈N:Tk≤τN

E

[(
�MN ,Tk

)2
∣∣∣FTk−1

]
= τD2

K , (6.4)

in probability, and the Lindeberg condition that for every ε > 0 in probability we have

lim
N→∞

∑

k∈N:Tk≤τN

E

[(
�MN ,Tk

)2 ;�M2
N ,Tk

> ε

∣∣∣FTk−1

]
= 0. (6.5)

For what concerns (6.4) we have

E

[(
�MN ,Tk

)2
∣∣∣FTk−1

]
= 1

N‖q ′‖2−1,1/q

Tk∫

Tk−1

∫

S

(
f ′
ψk−1,0(θ)

)2
μN ,s(dθ)ds. (6.6)

Now take the sum over k and use the uniform estimate (3.43) of Proposition 3.3 to
replace the empirical measure with qψTk−1

(θ)dθ . Since a direct computation shows

that
∫
S
( f ′(θ)ψ,0)2qψ(θ)dθ = 1, (6.4) follows.

For what concerns (6.5) we remark that, by the Markov inequality, it suffices to
show that

lim
N→∞

∑

k∈N:Tk≤τN

E

[(
�MN ,Tk

)4
∣∣∣FTk−1

]
= 0. (6.7)

Actually one can show that there exists a non random constant C such that almost surely
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E

[(
�MN ,Tk

)4
∣∣∣FTk−1

]
≤ C

(
T

N

)2

. (6.8)

This is an immediate consequence of (3.32), but of course, since we are projecting
on q ′ and since we are just considering the fourth moment, a similar estimate can
be easily obtained explicitly by proceeding like for (6.4) and by using the fact that
‖ f ′
ψ,0‖∞ = ‖ f ′

0‖∞ < ∞. Of course (6.7) follows from (6.8).
Therefore MN ,· ∈ D([0, τ f ]; R) converges in law to W·/‖q ′‖−1,1/q , where W·

is a standard Brownian motion. This is almost the result we want (recall that
DK = 1/‖q ′‖−1,1/q ), since MN ,·/DK differs from WN ,· just for the fact that they
interpolate in a different way between the times Tk (where the coincide) and that
in the case of WN ,· the convergence is in C0([0, τ f ]; R). But (6.8) guarantees that
the sum of the fourth power of the jumps of MN ,· adds up to O(T 2/N ) = o(1) in
probability, so the supremum of the jumps is o(1), and therefore the convergence for
MN ,· ∈ D([0, τ f ]; R) implies the convergence of WN ,· ∈ C0([0, τ f ]; R). The proof
of Theorem 1.1 is therefore complete. ��
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Appendix A: The evolution in H−1

In what follows we fix q in the invariant manifold M (see (1.6)). Unlike the rest of
the paper here we do not identify q with qψ and then with ψ , so in particular we write

Lq (and not Lψ ), Gq
t (·) (and not Gψt (·) like in (2.12)), and so on. We work with the

signed measure

νN ,t (dθ) := μN ,t (dθ)− q(θ)dθ, (7.1)

which can be seen as an element of H−1. This is simply because it is the difference of
two probability measures. In fact, ifμ ∈ M1, θ �→ μ([0, θ ]) is a primitive ofμ and, by
Remark 2.1, ‖μ−ν‖2−1 ≤ ∫

S
(μ([0, θ ])−ν([0, θ ]))2dθ ≤ 2π . Therefore ‖μ−ν‖−1 ≤√

2π : of course this quick argument needs to be cleaned up by first smoothing the mea-
sures. That is, we introduce an approximate identity φn ∈ C∞ (φn ≥ 0, φn(θ) = 0 for
θ ∈ [1/n, 2π−1/n], ∫

S
φn = 1 and limn

∫
S

Fφn = F(0) for every F ∈ C0). We then
introduce the probability density θ �→ μn(θ) := ∫

S
φn(θ − θ ′)μ(dθ ′) and verify that

‖μn − μm‖2−1 ≤ 4

min(n,m)
, (7.2)

so that limn μn exists in H−1 (of course the limit exists also weakly and it is μ).
We aim at proving:
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Proposition 7.1 If {ϕ j,N
t }t≥0, j=1,...,N solves (1.1) then νN ,· ∈ C0([0,∞); H−1) and

we have

νN ,t = exp(t Lq)νN ,0 −
t∫

0

exp((t − s)Lq)∂
(
(J ∗ νN ,s)νN ,s

)
ds + Z N ,t , (7.3)

where Z N ,t is the limit in H−1 as τ ↗ t of Z N ,t,τ , where

Z N ,t,τ (θ) := 1

N

N∑

j=1

τ∫

0

∂θ ′Gq
t−s(θ, ϕ

j,N
s )dW j

s (7.4)

Moreover all the terms appearing in the right-hand side of (7.3), as functions of time,
are in C0([0,∞); H−1).

Proof For (t, θ) �→ Ft (θ) in C1,2(R+ × S; R), from (1.1) we directly obtain

∫

S

Ft (θ)νN ,t (dθ) =
∫

S

F0(θ)νN ,0(dθ)+
t∫

0

∫

S

(
L∗

q Fs

)
(θ)νN ,s(dθ)ds

+
t∫

0

∫

S

∂s Fs(θ)νN ,s(dθ)ds +
t∫

0

∫

S

∂θ Fs(θ)(J ∗ νN ,s)(θ)νN ,s(dθ)ds + Z F
N ,t ,

(7.5)

where

Z F
N ,t = 1

N

t∫

0

N∑

j=1

∂θ Fs(θ)

∣∣∣
θ=ϕ j,N

s
dW j

s , (7.6)

and L∗
q is the adjoint in L

2
0 of Lq , that is

L∗
qv = 1

2
v′′ + (J ∗ q)v′ − J ∗ (qv′)−

∫

S

(J ∗ q)v′, (7.7)

for v ∈ C2(S; R) such that
∫
S
v = 0

We sum up here some useful properties of L∗
q :

1. In [6] it is shown that the L
2
0-norm is equivalent to the Dirichlet form norm of

Lq : the squared Dirichlet form norm of u is ‖u‖2−1,1/q + (
u, (−Lq)u

)
−1,1/q . On

the other hand it is straightforward to see that the properties of Lq in H−1,1/q ,
notably the fact that it is self-adjoint and that it has compact resolvent, still hold
true in the space of the Dirichlet form. So Lq has compact resolvent in L

2
0, which
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directly implies that L∗
q has compact resolvent and the very same spectrum (see

e.g. [31, VI.5]).
2. Recall that we denote by {e j } j=0,1,... a complete set of eigenvectors of Lq which

is orthonormal in H−1,1/q and observe that there is a unique solution f j to

Aq f j (θ) := −∂θ
(
q(θ)∂θ f j (θ)

) = e j (θ), (7.8)

such that
∫
S

f j = 0. More generally, Aq is a bijection from {u ∈ C∞ : ∫
S

u = 0}
to itself: in fact, v = Aqu is equivalent to u′ = −V/q in our standard notations,
which determines u since

∫
S

u = 0. In particular f ′
j = −E j/q and f j ∈ C∞,

since e j is C∞, and one obtains

(
fi , e j

)
2 =

∫

S

fi e j = −
∫

S

f ′
i E j =

∫

S

EiE j

q
= δi, j . (7.9)

By using the fact that q(·) is even, one verifies directly also that if e j is even
(respectively, odd)—recall from Sect. 2.1 that e j is either even or odd—the f j is
even (respectively, odd) too.

3. By observing also that LqAq = Aq L∗
q one verifies that { f j } j=0,1,... is a complete

set of eigenfunctions for L∗
q and, of course, L∗

q f j = −λ j f j .

Therefore for every t > 0 and s ≤ t we can define Fs(θ) = (exp((t − s)L∗
q)F)(θ)

for F ∈ L
2
0 and standard parabolic regularity results imply that Fs(·) is C∞ for

s < t (in our case this can be proven directly by using the Fourier transform, like in
[21], but for what follows we choose F ∈ C2 and the regularity result is even more
straightforward). By plugging this choice into (7.5) we obtain

∫

S

F(θ)νN ,t (dθ) =
∫

S

(exp(t L∗
q)F)(θ)νN ,0(dθ)

+
t∫

0

∫

S

∂θ (exp((t − s)L∗
q)F)(θ)(J ∗ νN ,s)(θ)νN ,s(dθ)ds + Z F

N ,t . (7.10)

At this point we step to looking at νN ,t as an element of H−1 and we reconsider
(7.10) with this novel viewpoint.

First of all
∫
S

F(θ)νN ,t (dθ)=〈F, νN ,t 〉1,−1, where 〈 · , · 〉1,−1 is the duality between
H1 and H−1 (cf. Sect. 2.1). For the first term in the right-hand side we observe that,
for v ∈ H−1 we have 〈exp(t L∗

q)F, v〉1,−1 = 〈F, exp(t Lq)v〉1,−1: this is because this
relation holds when v ∈ L

2
0 (in this case the duality can be replaced by the L

2 scalar
product) and because one can choose a sequence {vn}n=1,2,..., vn ∈ L

2
0 such that

vn → v in H−1 (one can choose vn = φn ∗ v) so that

〈exp(t L∗
q)F, v〉1,−1 = lim

n
(F, exp(t Lq)vn)2 = 〈F, exp(t Lq)v〉1,−1, (7.11)
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where we have used the continuity properties of the duality and of the semigroup
operator.

For the second term in the right-hand side of (7.10) we write

t∫

0

∫

S

∂θ (exp((t − s)L∗
q)F)(θ)(J ∗ νN ,s)(θ)νN ,s(dθ)ds

=
t∫

0

〈(J ∗ νN ,s)∂ exp((t − s)L∗
q)F, νN ,s〉1,−1ds, (7.12)

We now introduce vn,s := φn ∗ νN ,s so that for every s ∈ [0, t)

〈(J ∗ νN ,s)∂ exp((t − s)L∗
q)F, νN ,s〉1,−1

= − lim
n

(
F, exp((t − s)Lq)∂((J ∗ νN ,s)vn,s)

)
2

= −〈F, exp((t − s)Lq)∂((J ∗ νN ,s)νN ,s)〉1,−1, (7.13)

where in the last step we have used the fact that exp((t −s)Lq) is a continuous operator
from H−2 to H−1 (Lemma 7.2). Notice moreover that we have

| (F, exp((t − s)Lq)∂((J ∗ νN ,s)vn,s)
)

2 |
≤ ‖φn‖1‖∂((J ∗ νN ,s)∂ exp((t − s)L∗

q)F)‖2‖νN ,s‖−1, (7.14)

and, since J (·) = −K sin(·), one sees that this expression is bounded by a constant
times ‖F ′′‖2, uniformly in n and s ≤ t . Such a bound tells us that one can exchange
limit and integration in

t∫

0

lim
n

(
F, exp((t − s)Lq)∂((J ∗ νN ,s)vn,s)

)
2 ds, (7.15)

and then, for fixed n one can of course exchange integral in ds and integral in dθ . At
this point we appeal again to Lemma 7.2 that guarantees that

∫ t
0 exp((t − s)Lq)∂((J ∗

νN ,s)vn,s)ds converges, in H−1, to
∫ t

0 exp((t − s)Lq)∂((J ∗νN ,s)νN ,s)ds: note in fact
that ‖∂((J ∗ νN ,s)v)‖−2 ≤ cJ ‖v‖−1 so that (by Lemma 7.2)

∥∥∥∥∥∥

t∫

0

exp((t − s)Lq)∂((J ∗ νN ,s)(vn,s − vn′,s)ds

∥∥∥∥∥∥
−1

≤ cJ C

t∫

0

(
1 + 1√

t − s

)
‖vn,s − vn′,s‖−1ds, (7.16)
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and the right-hand side vanishes for min(n, n′) → ∞. Therefore we obtain

t∫

0

∫

S

∂θ (exp((t − s)L∗
q)F)(θ)(J ∗ νN ,s)(θ)νN ,s(dθ)ds

=
〈

F,

t∫

0

exp((t − s)Lq)∂((J ∗ νN ,s)νN ,s)ds

〉

1,−1

. (7.17)

We are left with the last term in (7.10). It is now useful to use the kernel of the
Lq -semigroup in L

2
0

Gq
s (θ, θ

′) :=
∞∑

l=0

exp(−sλl)el(θ) fl(θ
′), (7.18)

so that

(
u, exp(sLq)v

)
2 =

(
exp(sL∗

q)u, v
)

2
=
∫

S

∫

S

u(θ)Gq
s (θ, θ

′)v(θ ′)dθdθ ′. (7.19)

Note also that, for s > 0, Gq
s is C∞ in both variables, by the standard parabolic

regularity results we have mentioned above. So, for every τ < t , θ �→ Z N ,t,τ (θ) [recall
(7.4)] is well defined and smooth in θ . But Lemma 7.4 tells us that limτ↗t Z N ,t,τ )

exists in H−1. If we call the limit Z N ,t ) we directly see that [recall (7.6)]

Z F
N ,t = 〈F, Z N ,t 〉1,−1. (7.20)

Therefore we have shown that (7.10) implies the validity of (7.3) if we take the duality
with respect to an arbitrary F ∈ C2. But we have also shown that every term in (7.3)
is in H−1, therefore the equation extends to F ∈ H1 and (7.3) is proven.

The continuity claimed in the statement follows by the continuity of the three
terms in the right-hand side of (7.3). The continuity of the first term is immediate
from the properties of the semigroup. The continuity of the second term follows from
a direct estimate by applying both bounds in Lemma 7.2. Finally the continuity of
the third term is claimed in Lemma 7.4. The proof of Proposition 7.1 is therefore
complete. ��

Lemma 7.2 For τ > 0 the operator exp(τ Lq) extends to a bounded operator from
H−2 to H−1 and there exists C > 0 such that for every τ > 0

∥∥exp(τ Lq)u
∥∥−1 ≤ C

(
1 + 1√

τ

)
‖u‖−2, (7.21)
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and such that for every ε ∈ (0, 1/2) we have

∥∥exp((τ + δ)Lq)u − exp(τ Lq)u
∥∥−1 ≤ Cδε

(
1 + 1

τ ε+1/2

)
‖u‖−2, (7.22)

for every τ > 0 and δ ≥ 0.

Proof We introduce the interpolation spaces associated to Lq that is the (Hilbert)
spaces

V m :=
{

u =
∞∑

k=0

ukek,

∞∑

k=0

(1 + λk)
mu2

k < ∞
}
, (7.23)

associated with the norms

‖u‖2
V m := ‖(1 − Lq)

m/2u‖2−1,1/q =
∞∑

k=0

(1 + λk)
mu2

k . (7.24)

It is proven in [22, Remark A.1] that the norms ‖.‖V n and ‖.‖n−1 are equivalent. This
equivalence can also be deduced from Remark 8.3. In particular ‖.‖V −1 and ‖.‖−2 are
equivalent, so we will prove (7.2) with ‖.‖−1,1/q and ‖.‖V −1 . For all u = ∑∞

k=0 ukek ,
we extend eτ Lq u as

eτ Lq u =
∞∑

k=0

e−λkτukek, (7.25)

and we deduce

‖eτ Lq u‖2−1,1/q =
∞∑

k=0

(1 + λk)e
−2λkτ

u2
k

1 + λk
. (7.26)

But if we define f (y) := (1 + y)e−2yτ , it is easy to see that for all y � 0, there
exist C such that f (y) � C2(1 + 1√

τ
)2, which with (7.24). and (7.26) gives the first

inequality.
For the second inequality we make a similar spectral decomposition and we obtain

‖e(τ+δ)Lq u − eτ Lq u‖2−1,1/q =
∞∑

k=0

(1 + λk)e
−2λkτ (1 − exp(−δλk))

2 u2
k

1 + λk
.

(7.27)

We then use (1 − exp(−x)) ≤ xε for x ≥ 0 and (1 + x)x2ε exp(−xτ) ≤ C2(1 +
τ−ε−1/2)2, for a suitable C which can be chosen independent of ε ∈ (0/1/2). ��
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Lemma 7.3 For all u, v ∈ H−1, there exists C > 0 such that

‖∂θ (u J ∗ v)‖H−2 � C‖u‖H−1‖v‖H−1 . (7.28)

Proof For this proof it is practical to write the H−1-norms by using the Fourier coef-
ficients. In fact if u ∈ H−s , here s = 1 or s = 2, we can define un = 〈u, bn〉,
where bn(θ) = exp(inθ)/2π (note that u0 = 0) and θ �→ ∑

n∈Z:|n|≤N un exp(inθ)
converges as N → ∞ in Hs to u. Moreover we have

‖u‖−s :=
(

1

2π

∑

m∈Z

u2
m

m2s

)1/2

. (7.29)

Since J (θ) = −K sin(θ), a direct calculation gives

∂θ (u J ∗ v) = Kπ

[
(m − 1)v−1

∑

m∈Z

ei(m−1)θum − (m + 1)v1

∑

m∈Z

ei(m+1)θum

]
,

(7.30)

from which we extract

‖∂θ (u J ∗ v)‖2−2 = K 2π

2

∑

m∈Z,m 
=0

m−4 |m(v−1um+1 − v1um−1)|2

� K 2π max(|v−1|2, |v1|2)
∑

m∈Z,m 
=0

m−2(u2
m−1 + u2

m+1)

� 4K 2π‖v‖2−1‖u‖2−1. (7.31)

��
Lemma 7.4 The almost sure limit of Z N ,t,τ as τ ↗ t exists in H−1 and, if we call
the limit point Z N ,t , we can choose a continuous version of Z N ,·, that is Z N ,· ∈
C0([0,∞); H−1).

Proof The claim follows from the same estimates as the one that we have obtained
for the proof of Lemma 3.1, which are however substantially more precise than what
we need here: recall that now N is fixed, while in Sect. 3 one of the crucial points
is to follow the N dependence of the results. Therefore we will not go through the
arguments in detail, but we just point out that one goes from Z N ,t,τ to Zk

t,t ′ , see (3.2)
by making obvious changes. So, in particular, proceeding like for (3.25) we easily gets

E

[∥∥Z N ,t,τ − Z N ,t,τ ′
∥∥2m

−1

]
≤ Chm

1 (|τ − τ ′|), (7.32)

where C depends on N and m and 0 ≤ τ, τ ′ < t . An estimate like (7.32) implies almost
sure Hölder continuity of Z N ,t,·, by a direct application of Kolmogorov continuity
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Lemma [33] or by using the Garsia–Rodemich–Rumsey Lemma (Lemma 3.2). That
is, there exists a (positive) random variable X and a positive constant c > 0 such that

∥∥Z N ,t,τ − Z N ,t,τ ′
∥∥−1 ≤ X |τ − τ ′|c, (7.33)

for every 0 ≤ τ, τ ′ < t . Therefore the almost sure limit of Z N ,t,τ , as τ ↗ t , exists.
The continuity of the limit follows in the same way, this time using also (3.31).

Actually, in the proof of Lemma 3.1 we use Lemma 7.4 only to define Zk
t as almost

sure limit in H−1: the proof of continuity is strictly contained in the argument that
starts from (3.32) and goes till the end of that proof (but, once again, that proof is
substantially more informative and involved, since it follows the N -dependence). ��

A.1 Second order estimates of the projection

As anticipated in Sect. 2.3 our approach requires a control up to and including the
second order for the projection map p(·) (recall Sect. 2.2 for the definition). The
expansion is with respect to the H−1 distance from the manifold M .

Lemma 7.5 For all q = qψ ∈ M and h ∈ H−1 with ‖h‖−1 < σ , we have

p(q + h)=ψ− (h, q ′)−1,1/q

(q ′, q ′)−1,1/q

(
1 − 1

2π I 2
0 (2Kr)

(h, (log q)′′)−1,1/q

(q ′, q ′)−1,1/q

)
+O(‖h‖3−1).

(7.34)
Proof For h as in the statement we have that

(qψ + h − qψ+ε, q ′
ψ+ε)−1,1/qψ+ε = 0, (7.35)

for ε := p(qψ +h)−ψ . Since p(·) is smooth, we have ε = O(‖h‖−1). By expanding
qψ+ε with respect to ε we see that (7.35) implies

(
h + εq ′

ψ − ε2

2
q ′′
ψ, q ′

ψ+ε
)

−1,1/qψ+ε
= O(ε3). (7.36)

Let us rewrite (7.36) more explicitly (recall Remark 2.3) as
∫

S

(
H(θ)+ εqψ(θ)− ε2

2
q ′
ψ(θ)

)(
1 − 1

2π I 2
0 (2Kr)

1

qψ+ε(θ)

)
dθ = O(ε3),

(7.37)
where H is the primitive of h such that

∫
S

H
qψ

= 0. At this point we expand also qψ+ε
with respect to ε and, using ε = O(‖h‖−1), the parity of qψ(· + ψ) and Remark 2.3,
we get to

(h, q ′
ψ)−1,1/qψ +ε(q ′

ψ, q ′
ψ)−1,1/qψ +ε 1

2π I 2
0 (2Kr)

(h, (log q)′′)−1,1/qψ = O
(
‖h‖3−1

)
.

(7.38)
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Now it suffices to solve this equation for ε and perform one last Taylor expansion. ��

Appendix B: Spectral estimates

The aim of this section is to find approximations of the eigenvalues and eigenfunctions
of the operators Lψ for large eigenvalues. In such a regime we expect the Laplacian to
dominate and the spectrum of Lψ should get close to the one of the Laplacian (as long as
we deal with large eigenvalues). These are standard estimates, developed for example
in [28] that we follow, but we could not find in the literature the result for the non-local
operators we consider. Without loss of generality, we can focus on L0. We have

L0u = 1

2
u′′ − (u J ∗ q0 + q0 J ∗ u)′

= 1

2
u′′ − (J ∗ q0)u

′ − (J ∗ q ′
0)u − q ′

0 J ∗ u − q0 J ′ ∗ u. (8.1)

We make a change of variable to get rid of the coefficient of order 1: if we define

u == √
q0 y, (8.2)

and we observe that
√

q = eJ̃∗q0 , with J̃ (θ) := K cos(θ), then we get

u′ = √
q0 y′ + (J ∗ q0)

√
q0 y, (8.3)

u′′ = √
q0 y′′ + 2(J ∗ q0)

√
q0 y′ + (J ∗ q ′

0)
√

q0 y + (J ∗ q0)
2√q0 y, (8.4)

and these two last equations together with (8.1) give

L0
√

q0 y = 1

2
[√q0 y′′ + 2(J ∗ q0)

√
q0 y′ + (J ∗ q ′

0)
√

q0 y + (J ∗ q0)
2√q0 y]

− (J ∗ q0)[√q0 y′ + (J ∗ q0)
√

q0 y] − (J ∗ q ′
0)

√
q0 y − q ′

0 J ∗ (√q0 y)

− q0 J ′ ∗ (√q0 y) (8.5)

which leads, after simplification, to the new operator

L̃ y := 1

2
y′′ − m(y), (8.6)

where we have set

m(y) := 1

2
((J ∗ q0)

2 + J ∗ q ′
0)y + q ′

0√
q0

J ∗ (√q0 y)+ √
q0 J ′ ∗ (√q0 y). (8.7)

Of course m(y) is a function and when we want to make explicit the θ -dependence
we use mθ (y). Since the operator L0 is negative, we are interested in couples (ρ, y)
solution of
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L̃ y = −ρ2 y, (8.8)

where ρ is a positive real number. The method of variation of the parameters shows
that such solutions exist (for all ρ > 0 if we do not restrict the study to the 2π -periodic
eigenfunctions of l̃) and are of the form

y(θ) = c1e
√

2ρiθ + c2e−√
2ρiθ − 1√

2ρ

θ∫

0

G(θ, θ ′, ρ)mθ ′(y)dθ ′ (8.9)

where

G(θ, θ ′, ρ) = ie
√

2ρi(θ−θ ′) − ie−√
2ρi(θ−θ ′). (8.10)

We define y1 the solution such that c1 = 1, c2 = 0, and y2 the solution such that c1 = 0,
c2 = 1. In what follows we start by getting a first estimate of the eigenfunctions y1 and
y2 with respect to ρ −→ ∞. This estimate implies a first estimate of the eigenvalue
−λ = −ρ2, and this leads to a new approximation of the eigenfunctions, and thus a
new approximation of −λ. This procedure can be repeated recursively, but for us two
steps will suffice.

Lemma 8.1 For each λ > 0, there exist y1 and y2 independent (non necessarily
periodic) eigenfunctions of L̃ associated to −λ such that (recall that ρ=

√
λ):

y1(θ, ρ) = e
√

2ρiθ + O

(
1

ρ

)
, (8.11)

y2(θ, ρ) = e−√
2ρiθ + O

(
1

ρ

)
, (8.12)

y′
1(θ, ρ) = √

2ρie
√

2ρiθ + O(1), (8.13)

y′
2(θ, ρ) = −√

2ρie−√
2ρiθ + O(1), (8.14)

where θ ∈ [0, 2π ] and O(·) is as ρ tends to infinity (and we stress that here and below
the O(·) term does not depend on θ or, equivalently, it is uniform in θ ∈ [0, 2π ]).
Proof We prove the result for y1. The proof for y2 is similar. We define

A0(θ, θ
′, v) = − 1√

2ρ
G(θ, θ ′, ρ)mθ ′(v)1θ ′<θ (8.15)

so that for θ ∈ [0, 2π ],

y1(θ) = e
√

2ρiθ +
2π∫

0

A0(θ, θ
′, y1)dθ

′. (8.16)
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The expression for y1; cf. (8.9), can be iterated arbitrarily many times and it leads to a
series expression for y1, at least for ρ sufficiently large. To see this set f0(θ) := e

√
2ρiθ

and observe that

y1(θ0) = f0(θ0)+
m∑

j=1

2π∫

0

· · ·
2π∫

0

A0(θ0, θ1, A0(θ1, θ2, · · · A0(θi−1, θi , f0) · · · ))dθ1 · · · dθm

+
2π∫

0

2π∫

0

· · ·
2π∫

0

A0(θ0, θ1, A0(θ1, θ2, · · · A0(θm, θm+1, y1) · · · ))dθ1 · · · dθm+1.

(8.17)

One directly verifies that there exists C = C(K ) such that for θ, θ ′ ∈ [0, 2π ],

|A0(θ, θ
′, v)| � C

ρ
‖v‖, (8.18)

where ‖v‖ := supθ∈[0,2π ] |v(θ)|. From (8.17) and using ‖ f0(·)| ≡ 1 we see that

‖y1‖ ≤ 1 +
m∑

j=1

(
2πC

ρ

)m

+
(

2πC

ρ

)m+1

‖y1‖, (8.19)

so for ρ > 2πC we see that ‖y1‖ < ∞ and we have a series expression for y1, from
which we directly obtain (8.11).

To deal with y′
1 we take the derivative of both sides of (8.9) with c1 = 1 and c2 = 0,

so that

y′
1(θ) = √

2ρie
√

2ρiθ − 1√
2ρ

θ∫

0

∂θG(θ, θ ′, ρ)mθ ′(y1)dθ
′. (8.20)

We define the new kernel

A1(θ, θ
′, v) := − 1√

2ρ2
∂θG(θ, θ ′, ρ)mθ ′(v)1θ ′<θ , (8.21)

so we can write

1

ρ
y′

1(θ) = √
2ie

√
2ρiθ +

2π∫

0

A1(θ, θ
′, y1)dθ

′. (8.22)

Also A1 verifies

|A1(θ, θ
′, v)| � C

ρ
sup

θ∈[0,2π ]
|v(θ)|, (8.23)
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for a suitable C = C(K ) and the same argument as above gives

1

ρ
y′

1(θ) = √
2ie

√
2ρiθ + O

(
1

ρ

)
, (8.24)

which is equivalent to (8.12). ��
Lemma 8.2 There exists l0 ∈ N such that for all p ∈ N the eigenvalues of L0 satisfy

λl0+2p = p2

2
+ O(

√
p), (8.25)

λl0+2p+1 = p2

2
+ O(

√
p). (8.26)

Remark 8.3 An immediate consequence of Lemma 8.2 and of the basic properties of
L0 is that there exist C > 1 such that for j = 0, 1, . . ..

j2

C
≤ λ j ≤ C j2. (8.27)

Proof Let y1 and y2 the eigenfunctions of L̃ given by Lemma 8.1 associated to the
eigenvalue −λ = −ρ2. As a linear combination of y1 and y2 is 2π -periodic, the
following determinant is equal to zero:

∣∣∣∣∣
y1(2π)− y1(0) y2(2π)− y2(0)

y′
1(2π)− y′

1(0) y′
2(2π)− y′

2(0)

∣∣∣∣∣ = 0. (8.28)

Lemma 8.1 implies

∣∣∣∣∣∣

e2
√

2πρi − 1 + O
(

1
ρ

)
e−2

√
2πρi − 1 + O

(
1
ρ

)

√
2ρi(e2

√
2πρi − 1)+ O(1) −√

2ρi(e−2
√

2πρi − 1)+ O(1)

∣∣∣∣∣∣
= 0, (8.29)

and thus we get

|e2
√

2πρi − 1|2 = O

(
1

ρ

)
. (8.30)

We deduce that there exits k ∈ N such that

ρ = k√
2

+ O

(
1√
k

)
. (8.31)

Reciprocally, all ρ satisfying (8.31) satisfies (8.29), so the Lemma follows. ��
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Proposition 8.4 There exists l0 ∈ N such that for all p ∈ N the eigenvalues of L0
satisfy

λl0+2p = p2

2
− K 2r2

8
+ O

(
1

p

)
, (8.32)

λl0+2p+1 = p2

2
− K 2r2

8
+ O

(
1

p

)
, (8.33)

and any eigenfunction of L0 associated to λl0+2p or λl0+2p+1 is, up to a correction

of order 1/p2, a linear combination of the two functions q1/2
0 v1,l0+p and q1/2

0 v2,l0+p,
where

v1,l0+p(θ) = cos(pθ)− sin(pθ)

p

[
Kr

2
sin(θ)+ K 2r2

8
sin(2θ)

]
,

v2,l0+p(θ) = sin(pθ)+ cos(pθ)

p

[
Kr

2
sin(θ)+ K 2r2

8
sin(2θ)

]
. (8.34)

From Proposition 8.4 one can directly extract some important conclusions: let us
give them before the proof of the proposition.

Corollary 8.5 There exists l0 ∈ N such that for all p ∈ N and ψ ∈ S, the unitary (in
H−1,1/qψ ) eigenfunctions eψ,l0+2p and eψ,l0+2p+1 of Lψ are up to a correction of order

1/p a bounded (with respect to p) linear combination of θ �→ pq1/2
ψ (θ)v1,l0+p(θ−ψ)

and θ �→ pq1/2
ψ (θ)v2,l0+p(θ − ψ) (see Proposition 8.4 for the definition of v1,l and

v2,l).

Proof We set ψ = 0 without loss of generality. Proposition 8.4 tells us that the
normalized eigenfunctions of L0 can be written either as

cp

(
cos(pθ)− sin(pθ)

p

[
Kr

2
sin(θ)+ K 2r2

8
sin(2θ)

]
+ rp(θ)

)
(8.35)

where rp(θ) = O(1/p2) and cp is the normalizing constant, or with the analogous
expression coming from the second line in (8.34) (but we will deal only with (8.35)
because the other case is treated analogously). To estimate cp let us observe that the
first two addends in (8.35) are in H−1 (since they are smooth, it suffices to remark
that their integral from 0 to 2π is zero), so rp ∈ H−1, since the eigenfunction is: of
course rp is smooth, since the eigenfunction is. Now we claim that the H−1,1/q norm
of cos(p·), that is the first addendum, is proportional to 1/p, apart for a correction
that is beyond all orders in 1/p, while the norm of the two other terms is O(1/p2). In
fact if we set u(θ) := cos(pθ), then U(θ) = sin(pθ)/p so

‖u‖−1,1/q = 1

p

√√√√
∫

S

1 − cos(2pθ)

2q(θ)
dθ. (8.36)
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If we use the standard estimate

Ik(x) = 1

2π

2π∫

0

cos(kθ)ex cos(θ)dθ =
∞∑

m=0

1

m!�(m + k + 1)

( x

2

)2m+k
� Cx

(k!)1/2 .

(8.37)

we readily see that

∫

S

cos(2pθ)

q(θ)
dθ = O

(
1√
(2p)!

)
. (8.38)

On the other hand

∫

S

1

q(θ)
dθ = (2π I0(2Kr))2, (8.39)

so ‖u‖−1,1/q is equal to c(K )/p, c(K ) := √
2π I0(2Kr), up to a correction that decays

faster than any power of 1/p.
For the second addendum it suffices to observe that it can be rewritten as a linear

combination of terms of cos(p′θ), with |p − p′| = 1 and 2. But then the computa-
tion is very similar to the one that we have done for the first addendum (or, easier,
one can explicitly compute the H−1 norm, without weight). Therefore this term is
O(1/p2).

For the third addendum we recall that |rp(θ)| ≤ C/p2, so that if we set R(θ) :=∫ θ
0 rp(θ

′)dθ ′, we have ‖R(θ)| ≤ Cθ/p2. Of course R is not necessarily centered, but,
by using Remark 2.1, we see that ‖rp‖−1 ≤ 2C2π2/p2.

By collecting the estimates of the three addends we see that

cp = c(K )p (1 + O(1/p)) , (8.40)

and this completes the proof of Corollary 8.5. ��
By putting Corollary 8.5 and (7.8) together we obtain

Corollary 8.6 With { f j } j=0,1,... defined as in Appendix A, we have sup j ‖ f ′
j‖∞ < ∞

and sup j ‖ f ′′
j ‖∞/j < ∞.

Proof From (7.8), see also the discussion right after that, we see that f ′
j = −E j/q

and f ′′
j = −e j/q + E j q ′/q2. Where e j is the j th (normalized) eigenvector. Taking

into account the normalization, see proof of Corollary 8.5, the claim is readily proven.
��
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Proof of Proposition 8.4 Injecting (8.11) in the integral term of (8.16) leads to

y1(θ) = e
√

2ρiθ − 1√
2ρ

⎡

⎣ie
√

2ρiθ

θ∫

0

e−√
2ρiθ ′

mθ ′(e
√

2ρi ·)dθ ′

−ie−√
2ρiθ

θ∫

0

e
√

2ρiθ ′
mθ ′(e

√
2ρi ·)dθ ′

⎤

⎦+ O

(
1

ρ2

)
. (8.41)

Similarly, we obtain

y′
1(θ) = √

2ρie
√

2ρiθ +
⎡

⎣e
√

2ρiθ

θ∫

0

e−√
2ρiθ ′

mθ ′(e
√

2ρi ·)dθ ′

+e−√
2ρiθ

θ∫

0

e
√

2ρiθ ′
mθ ′(e

√
2ρi ·)dθ ′

⎤

⎦+ O

(
1

ρ

)
, (8.42)

and similar expressions for y2 and y′
2, which actually are just the complex conjugate

of y1 and y′
1. We define

H1 =
2π∫

0

e−√
2ρiθ ′

mθ ′(e
√

2ρi ·)dθ ′, H2 =
2π∫

0

e
√

2ρiθ ′
mθ ′(e

√
2ρi ·)dθ ′ and

� = e2
√

2πρi . (8.43)

With the higher estimates (8.41) and (8.42), we see that (8.28) becomes

∣∣∣∣∣∣∣

�− 1 − 1√
2ρ

[
i�H1 − i�̄H2

]+ O
(

1
ρ2

)
�̄− 1 − 1√

2ρ

[−i�̄H̄1 + i�H̄2
]+ O

(
1
ρ2

)

�− 1 − 1√
2ρ

[
i�H1 + i�̄H2

]+ O
(

1
ρ2

)
−�̄+ 1 − 1√

2ρ

[
i�̄H̄1 + i�H̄2

]+ O
(

1
ρ2

)

∣∣∣∣∣∣∣
= 0,

(8.44)

which implies

|�− 1|2 −
√

2

ρ

((�− 1)H1) = O

(
1

ρ2

)
. (8.45)

We now use the expansion of ρ given by (8.31). In particular, the O(1/ρ2) above
becomes a O(1/k2). The second term of the left hand side above is of order 1/k2. In
fact, we get the first order of H1:
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H1 =
2π∫

0

e−kiθ ′
mθ ′(eki ·)dθ ′ + O

(
1√
k

)
, (8.46)

where the non local terms in the integral are negligible, since we have

J ∗ (√q0eki ·)(θ) = i K

2(2π I0(2Kr))1/2
(eiθ Ik−1(Kr)− e−iθ Ik+1(Kr)) (8.47)

and we can apply (8.37). A similar bound apply for J ′ ∗ (√q0eki ·). So it remains the
(real !!) first order (remark that J ∗ q0(·) = −Kr sin(·)):

H1 =
2π∫

0

1

2
((J ∗ q0)

2 + J ∗ q ′
0)(θ

′)dθ ′ + O

(
1√
k

)
= πK 2r2

2
+ O

(
1√
k

)
.

(8.48)

But since [using (8.31)]

�− 1 = 2π i(
√

2ρ − k)+ O

(
1

k

)
, (8.49)

where the first term of the right hand side is of order 1/
√

k, we have improved the
result of Lemma 8.2, since using (8.45), (8.48), (8.49) and (8.31) we obtain

|e2
√

2πρi − 1|2 − 2π2 K 2r2

k
(
√

2ρ − k) = O

(
1

k2

)
(8.50)

which implies

√
2ρ = k + O

(
1

k

)
. (8.51)

Taking (8.51) into account, (8.44) yields

|�− 1|2 − 2

k

((�− 1)H1)+ 1

k2 (|H1|2 − |H2|2) = O

(
1

k3

)
. (8.52)

The non local terms in H2 are negligible as for H1 (see above) and a direct calcu-
lation shows that the local terms are of order 1/k, so from (8.52), (8.48) and (8.49)
we get
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(
√

2ρ − k)2 − K 2r2

2k
(
√

2ρ − k)+ K 4r4

16k2 =
(√

2ρ − k − K 2r2

4k

)2

= O

(
1

k3

)
,

(8.53)

which implies

√
2ρ = k + K 2r2

4

1

k
+ O

(
1

k3/2

)
. (8.54)

We now go further in the expansion to prove that the O(1/k3/2) in (8.54) is in fact
a O(1/k2). Using (8.17), we get the second order expansion of y1 (recall (8.15) and
f0 = e

√
2ρi ·)

y1(2π) = �+
2π∫

0

A0(2π, θ1, f0)dθ1

+
2π∫

0

2π∫

0

A0(2π, θ1, A0(θ1, θ2, f0))dθ1dθ2 + O

(
1

ρ3

)
. (8.55)

From (8.51), we deduce

2π∫

0

A0(θ1, θ2, f0)dθ2 = − 1√
2ρ

⎡

⎣ie
√

2ρiθ1

θ1∫

0

e−√
2ρiθ2 mθ2(e

√
2ρi ·)dθ2

−ie−√
2ρiθ1

θ1∫

0

e
√

2ρiθ2 mθ2(e
√

2ρi ·)dθ2

⎤

⎦

= − i

k

⎡

⎣ekiθ1

θ1∫

0

e−kiθ2 mθ2(e
ki ·)dθ2

−e−kiθ1

θ1∫

0

ekiθ2 mθ2(e
ki ·)dθ2

⎤

⎦+ O

(
1

k2

)
, (8.56)

and since the non local terms are negligible (see (8.47)), we get

2π∫

0

A0(θ1, θ2, f0)dθ2 = i Krekiθ1

2k

(
sin θ1 + Kr

4
sin(2θ1)− Kr

2
θ1

)
+ O

(
1

k2

)
.

(8.57)
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We deduce the following expansion for the third term of the right hand side of (8.55):

2π∫

0

2π∫

0

A0(2π, θ1, A0(θ1, θ2, f0))dθ1dθ2

= Kr

2k2

⎛

⎝�
2π∫

0

e−kiθ1 mθ1

[
eki ·

(
sin · + Kr

4
sin(2·)− Kr

2
·
)]

dθ1

−�̄
2π∫

0

ekiθ1 mθ1

[
eki ·

(
sin · + Kr

4
sin(2·)− Kr

2
·
)]

dθ1

⎞

⎠+ O

(
1

k3

)
.

(8.58)

Using similar arguments as before, we get to

2π∫

0

e−kiθ1 mθ1

(
eki ·

(
sin(·)+ Kr

4
sin(2·)

))
dθ1 = O

(
1

k3

)
, (8.59)

2π∫

0

ekiθ1 mθ1

(
eki ·

(
sin(·)+ Kr

4
sin(2·)

))
dθ1 = O

(
1

k3

)
. (8.60)

Moreover, the non local terms of mθ1(e
ki ··) are of order 1/k. In fact, these non local

terms are finite sums of the form

2π∫

0

emiθ√q0(θ)θdθ, (8.61)

where |m| is included in [k − 1, k + 1], and it is easy to see that since the Fourier
coefficients of

√
q0 decay very quickly (see (8.37)), (8.61) is of order 1/k. So (8.58)

becomes

2π∫

0

2π∫

0

A0(2π, θ1, A0(θ1, θ2, f0))dθ1dθ2 = − K 4r4π2

8k2 �+
(

1

k3

)
, (8.62)

and we deduce from (8.55)

y1(2π)− y1(0) = �− 1 − i

k
(�H1 − �̄H2)− K 4r4π2

8k2 �+ O

(
1

k3

)
. (8.63)
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Similarly, we obtain

y′
1(2π)− y′

1(0)√
2ρi

= �− 1 − i

k
(�H1 + i�̄H2)− K 2r2π2

8k2 �+ O

(
1

k3

)
. (8.64)

Using these new estimates, (8.44) becomes

∣∣∣∣∣∣∣∣∣∣∣∣∣

�− 1 − 1√
2ρ

[
i�H1 − i�̄H2

]
�̄− 1 − 1√

2ρ

[−i�̄H̄1 + i�H̄2
]

− K 4r4π2

8k2 �+ O
(

1
k3

)
− K 4r4π2

8k2 �̄+ O
(

1
k3

)

�− 1 − 1√
2ρ

[
i�H1 + i�̄H2

] −�̄+ 1 − 1√
2ρ

[
i�̄H̄1 + i�H̄2

]

− K 4r4π2

8k2 �+ O
(

1
k3

)
+ K 4r4π2

8k2 �̄+ O
(

1
k3

)

∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0, (8.65)

which leads to

|�− 1|2 −
√

2

ρ

((�− 1)H1)+ 1

k2 (|H1|2 − |H2|2)+ K 4r4π2

8k2

(
4 − 2�− 2�̄

)

+ K 4r4π2

2k3 
(H1) = O

(
1

k4

)
. (8.66)

The last term of (8.66) is of order 1/k4 since using (8.51) we get

� = 1 + i2π(
√

2ρ − k)+ O

(
1

k2

)
. (8.67)

Moreover using (8.51) we have

H1 =
2π∫

0

e−kiθmθ (e
ki ·)dθ + i(

√
2ρ − k)

×
⎛

⎝−
2π∫

0

ekiθ θmθ (e
ki ·)dθ +

2π∫

0

ekiθmθ (e
ki ··)dθ

⎞

⎠+ O

(
1

k2

)
. (8.68)

As before, the non local terms of mθ (eki ··) are of order 1/k, so the last two integrals
in (8.68) are equal up to a correction of order 1/k, and thus (recall (8.48) for the first
order term), using (8.51),

H1 = πK 2r2

2
+ O

(
1

k2

)
. (8.69)
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We deduce that the first term of the second row of (8.66) is of order 1/k4, and that,
using (8.67),

√
2

ρ

((�− 1)H1) = 2π2 K 2r2

k
(
√

2ρ − k)+ O

(
1

k4

)
, (8.70)

and

1

k2 |H1|2 = π2 K 4r4

4k2 + O

(
1

k4

)
. (8.71)

Since |H2| is of order 1/k and that (8.67) implies

|�− 1|2 = 4π2(
√

2 − ρ)2 + O

(
1

k4

)
, (8.72)

(8.66) becomes

(
√

2ρ − k)2 − K 2r2

2k
(
√

2ρ − k)+ K 4r4

16k2 = O

(
1

k4

)
, (8.73)

and we deduce

√
2ρ = k + K 2r2

4

1

k
+ O

(
1

k2

)
. (8.74)

Now we are able to get a second expansion of the eigenvectors: using (8.41), (8.57)
and (8.74), we get the following expansion for y1

y1(θ) = ekiθ
(

1 + Kri

2k
sin(θ)+ K 2r2i

8k
sin(2θ)

)
+ O

(
1

k2

)
(8.75)

and y2 is the complex conjugate. So if we define w1 and w2 the real and imaginary
parts, we get

w1(θ) = cos(kθ)− sin(kθ)

k

(
Kr

2
sin θ + K 2r2

8
sin(2θ)

)
+ O

(
1

k2

)
, (8.76)

w2(θ) = sin(kθ)+ cos(kθ)

k

(
Kr

2
sin θ + K 2r2

8
sin(2θ)

)
+ O

(
1

k2

)
. (8.77)

Therefore the proof of Proposition 8.4 is complete. ��
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