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Abstract In an investigation of percolation on isoradial graphs, we prove the criticality
of canonical bond percolation on isoradial embeddings of planar graphs, thus extend-
ing celebrated earlier results for homogeneous and inhomogeneous square, triangular,
and other lattices. This is achieved via the star–triangle transformation, by transport-
ing the box-crossing property across the family of isoradial graphs. As a consequence,
we obtain the universality of these models at the critical point, in the sense that the
one-arm and 2 j-alternating-arm critical exponents (and therefore also the connectivity
and volume exponents) are constant across the family of such percolation processes.
The isoradial graphs in question are those that satisfy certain weak conditions on their
embedding and on their track system. This class of graphs includes, for example, isora-
dial embeddings of periodic graphs, and graphs derived from rhombic Penrose tilings.
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274 G. R. Grimmett, I. Manolescu

1 Introduction

Two-dimensional disordered systems, when critical, are presumed to have properties
of conformality and universality. Rigorous evidence for this classic paradigm from
conformal field theory includes the recent analysis of the critical Ising model by
Chelkak and Smirnov [12,42] on a family of graphs known as ‘isoradial’. On the one
hand, such isoradial graphs are especially harmonious in a theory of discrete holomor-
phic functions (introduced by Duffin, see [11,14,32]), and on the other they are well
adapted to transformations of star–triangle type (explained by Kenyon [24]). These
two properties resonate with the intertwined concepts of conformality and universality.

It is shown here that, for a broad class G of isoradial graphs, the associated bond
percolation model is critical, and furthermore certain of its critical exponents are con-
stant across G . The class G includes many specific models studied earlier, but is much
more extensive than this restricted class. In earlier related work of Kesten [26,27],
Wierman [46] and others, it has been assumed that the graph under study has certain
invariances under, for example, translation, rotation and/or reflection. Such assump-
tions of regularity play no role in the current work, where the key assumptions are that
the graph under study is isoradial, and satisfies two weak conditions on its embedding
and on its so-called track system, namely the so-called bounded-angles property and
the square-grid property. The first of these is a condition of non-degeneracy, and the
second requires the graph to contain a square grid within its track system. (Formal
definitions are deferred to Sects. 2.1 and 4.2.)

In advance of the formalities of Sect. 2, we explain the term ‘isoradial’. Let G be
a planar graph embedded in the plane R

2. It is called isoradial if there exists r > 0
such that, for every face F of G, the vertices of F lie on a circle of radius r with centre
in the interior of F . Note that isoradiality is a property of the planar embedding of G
rather than of G itself. By rescaling the embedding of G, we may assume r = 1.

It was noted by Duffin [14] that isoradial graphs are in two–one correspondence
with rhombic tilings of the plane (the name ‘isoradial’ was coined later by Kenyon).
While details of this correspondence are deferred to Sect. 2, we highlight one fact
here. Let G = (V, E) be isoradial. An edge e ∈ E lies in two faces, and therefore two
circumcircles. As illustrated in Fig. 1, e subtends the same angle θe ∈ (0, π) at the
centres of these circumcircles, and we define pe ∈ (0, 1) by

pe

1 − pe
= sin( 1

3 [π − θe])
sin( 1

3θe)
. (1.1)

We consider bond percolation on G with edge-probabilities p = (pe : e ∈ E).
Formula (1.1) appeared for the first time in this explicit form in the work of Kenyon
[24].

Our main results are that (subject to two assumptions on G) these percolation models
are critical, and their critical exponents (at the critical point) are universal across the
class of such models. More precisely, the exponents ρ, η, δ and the 2 j-alternating
arm exponents ρ2 j are constant across the class (assuming they exist). See [15] for an
account of the general theory of percolation.
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Bond percolation on isoradial graphs 275

Fig. 1 Part of an isoradial
graph. Each face is inscribed in a
circle of radius 1. With the edge
e, we associate the angle θe .
This and later figures are best
viewed in colour

Our methods work only at the critical point, and we are unable to extend such
universality to exponents near the critical point, such as γ and β. Neither have we any
progress to report on the existence of critical exponents for these models. Essentially
the only model for which existence has been proved is site percolation on the triangular
lattice (see [43]), and our numerical knowledge of the exponents is based in this case
on the proof by Smirnov [41] of the convergence in the scaling limit to SLE6 (see also
the more recent works [10,45]).

The principal tool in the current work is the star–triangle transformation, otherwise
known amongst physicists as the Yang–Baxter equation. This was discovered by Ken-
nelly [23] in the context of electrical networks, and was adapted in 1944 by Onsager
[34] to the Ising model in conjunction with Kramers–Wannier duality. It is a key ele-
ment in the work of Baxter [3] on exactly solvable models in statistical mechanics
(see [31,37] for scientific and historical accounts). Sykes and Essam [44] used the
star–triangle transformation to predict the critical surfaces of inhomogeneous bond
percolation on triangular and hexagonal lattices, and it is also a tool in the study of
the random-cluster model [16], and of the dimer model [24].

The star–triangle transformation is especially well matched to isoradiality. The
exchange of a star with a triangle is equivalent to a local move in the associated rhombic
tiling. In the case of percolation, this move replaces one triple of edge-parameters by
another triple given according to (1.1), and these are precisely the triples that satisfy
the star–triangle transformation. This general observation is valid for several models
of statistical physics, including the Ising and Potts models and the random-cluster
model (see [24]). Note, however, that the star–triangle transformation contributes also
to the analysis of models on non-isoradial graphs (see [3]).

The overall approach of this paper is to use the star–triangle transformation to
move between models, in a manner closely related to that developed earlier by Baxter,
Kenyon, and others. Using a coupling of probability measures on different isoradial
graphs, one may show as in [19,20] that the star–triangle transformation preserves
open connections in the percolation model, and may therefore be used to transport
the so-called ‘box-crossing property’ from one model to another. The box-crossing
property is the statement that any rectangle in R

2 of given aspect-ratio is crossed by
an open path, with probability bounded away from 0 uniformly in the size, position,
and rotation of the box. This property has played an important role in the theory of
criticality and scaling in two-dimensional percolation, as described in Kesten’s book
[27], and more recently in [45].
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276 G. R. Grimmett, I. Manolescu

This is a continuation and extension of the work begun in [19,20]. The main idea is
to use the star–triangle transformation to transport the box-crossing property between
graphs. By the Russo–Seymour–Welsh (RSW) lemma of [38,40], homogeneous per-
colation on the square lattice (with p = 1

2 ) has the box-crossing property, and this
property may be transported, by repeated applications of star–triangle transformations,
to the isoradial graphs considered here. Once we know that an isoradial graph and its
(isoradial) dual graph have the box-crossing property, criticality follows as in [19,
Props 4.1–4.2]. The above universality follows by related arguments.

We return briefly to the star–triangle transformation and the Ising model. The Ising
model differs from percolation and the random-cluster model in the following sig-
nificant regard. Whereas the Ising model may be transformed thus for any triple of
edge-interactions, the percolation and random-cluster models may be transformed
only when the interaction-triple satisfies a certain equation connected to the criti-
cal surface in the translation-invariant lattice model (see [19, Thm 1.1]). For this
reason, the star–triangle transformation enables a deeper understanding of the Ising
model than of its cousins. Its application to the Ising model has been developed in
a series of papers by Baxter and others under the title ‘Z -invariant Ising model’
beginning with [4] and continued in later works. We do not attempt a full bibliog-
raphy here, but mention the paper [2] by Au-Yang and Perk, the recent papers of
Chelkak and Smirnov [12,42], as well as the dimer analysis [6] of Boutillier and de
Tilière.

This paper is organized as follows. Isoradial graphs and the box-crossing property
are summarised in Sect. 2, and our main results concerning criticality and universality
are stated in Sect. 3. Section 4 contains a fuller description of isoradiality and its
connections to rhombic tilings. The star–triangle transformation is described in Sect. 5.
The box-crossing property, Theorem 3.1, is then proved in two steps: first in Sect. 6 for
the special case of isoradial square lattices, and then in Sect. 7 where it is explained how
this case may be extended to general isoradial graphs satisfying the given conditions.
Theorem 3.4, concerning universality, is proved in Sect. 8.

The set of integers is denoted by Z, of natural numbers by N, and of non-negative
integers by N0.

2 Isoradiality and the box-crossing property

2.1 Isoradial graphs

Let G = (V, E) be a planar graph embedded in the plane R
2 (it is assumed that the

edges are embedded as straight-line segments, with intersections only at vertices).
It is called isoradial if, for every bounded face F of G, the vertices of F lie on a
circle of (circum)radius 1 with centre in the interior of F . In the absence of a contrary
assumption, we shall assume that isoradial graphs are infinite with bounded faces.
While isoradiality is a property of the planar embedding of G rather than of G itself,
we shall sometimes speak of an isoradial graph.

Let G = (V, E) be isoradial. Each edge e = 〈A, B〉 of G lies in two faces, with
circumcentres O1 and O2. Since the two circles have equal radii, the quadrilateral
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Bond percolation on isoradial graphs 277

AO1 B O2 is a rhombus. Therefore, the angles AO1 B and B O2 A are equal, and we
write θe ∈ (0, π) for their common value. See Fig. 1.

Definition 2.1 Let ε > 0. The isoradial graph G is said to have the bounded-angles
property BAP(ε) if

θe ∈ [ε, π − ε], e ∈ E . (2.1)

It is said to have, simply, the bounded-angles property if it satisfies BAP(ε) for some
ε > 0.

All isoradial graphs of this paper will be assumed to have the bounded-angles
property. The area of the rhombus AO1 B O2 equals sin θe and, under BAP(ε),

sin ε ≤ Area(AO1 B O2) ≤ 1. (2.2)

We shall study isoradial graphs satisfying a further property called the ‘square-
grid property’. We defer a discussion of the square-grid property until Sect. 4.2, since
it necessitates a fuller account of isoradial graphs and their relationship to rhombic
tilings of the plane and the associated ‘track systems’ introduced by de Bruijn [7,8].
Although one may construct isoradial graphs that do not have the square-grid property,
the property is satisfied by many graphs arising from the rhombic tilings that we have
encountered in the literature on plane tilings.

From the many examples of isoradial graphs with the square-grid property, we select
for illustration the set of isoradial embeddings of the square lattice, and more generally
isoradial embeddings of any connected periodic graph. It is not the automorphism
group of the graph that is relevant here, but rather the geometry of its track system.
For example, isoradial graphs arising from rhombic Penrose tilings have the square-
grid property. For definitions and further discussion, see Sect. 4.

2.2 Percolation on isoradial graphs

Bond percolation on a graph G = (V, E) has sample space 
 := {0, 1}E , to which is
assigned a product measure Pp with p = (pe : e ∈ E) ∈ [0, 1]E . When G is isoradial,
there is a canonical product measure, denoted PG , associated with its embedding,
namely that with pe = pθe where θe is given in the last section and illustrated in
Fig. 1, and

pθ

1 − pθ

= sin( 1
3 [π − θ ])

sin( 1
3θ)

. (2.3)

Note that pθ + pπ−θ = 1, and that G has the bounded-angles property BAP(ε) if and
only if

pπ−ε ≤ pe ≤ pε, e ∈ E . (2.4)
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278 G. R. Grimmett, I. Manolescu

The graph G has a dual graph G∗ = (V ∗, E∗). Since G is isoradial, so is G∗. This
fact is discussed in greater depth in Sect. 4, but it is clear from Fig. 1 that G∗ may
be embedded in R

2 with vertices at the centres of circumcircles, and edges between
circumcentres of abutting faces. Let e∗ ∈ E∗ be the dual edge (in this embedding)
crossing the primal edge e ∈ E . Then θe∗ = π − θe, so that pe + pe∗ = 1 by
(2.3). In conclusion, the canonical measure PG∗ is dual to the primal measure PG . By
(2.4),

G∗ satisfies BAP(ε) if and only if G satisfies BAP(ε). (2.5)

See, for example, [15, Sect. 11.2] for an account of graphical duality.
Here is some basic notation. Let G = (V, E) be a graph, not necessarily iso-

radial or even planar, and let ω ∈ 
 := {0, 1}E . An edge e is called open (or
ω-open) if ω(e) = 1, and closed otherwise. A path of G is called open if all its
edges are open. For u, v ∈ V , we say u is connected to v (in ω), written u ↔ v (or

u
G,ω←→ v), if G contains an open path from u and v; if they are not connected, we write

u /
G,ω←−→ v. An open cluster of ω is a maximal set of pairwise-connected vertices. Let

Cv = {u ∈ V : u ↔ v} denote the open cluster containing the vertex v, and write
v ↔ ∞ if |Cv| = ∞.

For ω ∈ 
 and e ∈ E , let ω∗(e∗) = 1 − ω(e), so that e∗ is open in the dual graph
G∗ (written open∗) if e is closed in the primal graph G.

2.3 The box-crossing property

Let G = (V, E) be a countably infinite, connected graph embedded in the plane,
and let P be a probability measure on 
 := {0, 1}E . The ‘box-crossing property’ is
concerned with the probabilities of open crossings of domains in R

2. This has proved
to be a very useful property indeed for the study of infinite open clusters in G; see,
for example, [17,20,27].

A (planar) domain D is an open, simply connected subset of R
2 which, for sim-

plicity, we assume to be bounded by a Jordan curve ∂D . Most domains of this
paper are the interiors of polygons. Let D be a domain, and let A, B, C, D be
distinct points on its boundary in anticlockwise order. Let ω ∈ 
. We say that
D has an open crossing from D A to BC if G contains an open path using only
edges intersecting D which, when viewed as an arc in R

2, intersects ∂D exactly
twice, once between D and A (including the endpoints) and once between B and
C .

A rectangular domain is a set B = f ((0, x) × (0, y)) ⊆ R
2, where x, y > 0 and

f : R
2 → R

2 comprises a rotation and a translation. The aspect-ratio of this rectangle
is max{x/y, y/x}. We say B has open crossings in a configuration ω ∈ 
 if it has
open crossings both from f ({0} × [0, y]) to f ({x} × [0, y]) and from f ([0, x] × {0})
to f ([0, x] × {y}).
Definition 2.2 A probability measure P on 
 is said to have the box-crossing property
if, for ρ > 0, there exist l0 = l0(ρ) > 0 and δ = δ(ρ) > 0 such that, for all l > l0
and all rectangular domains B with side-lengths l and ρl,
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Bond percolation on isoradial graphs 279

P(B has open crossings) ≥ δ. (2.6)

An isoradial graph G is said to possess the box-crossing property if PG possesses it.

In a standard application of the Harris-FKG inequality (see [15, Sect. 2.2]), it suf-
fices for the box-crossing property to consider boxes with aspect-ratio 2, and moreover
only such boxes with horizontal/vertical orientation (see, for example, [18, Prop. 3.2]
and [19, Prop. 3.1]). If (2.6) holds for this restricted class of boxes with ρ = 2 and
δ = δ(2), we say that G satisfies BXP(l0, δ). All graphs considered here are isoradial
with circumradius 1, and for such graphs one may take l0 = 3. We thus abbreviate
BXP(3, δ) to BXP(δ).

It was proved by Russo [38] and Seymour and Welsh [40] that the isotropic embed-
ding of the square lattice (with p = 1

2 ) has the box-crossing property, and more
generally in [19] that certain inhomogeneous embeddings of the square, triangular,
and hexagonal lattices have the property.

3 Main results

Let G be the class of isoradial graphs with the bounded-angles property and the square-
grid property (we recall that the square-grid property is formulated in Sect. 4.2). The
main technical result of this paper is the following. Criticality and universality will
follow.

Theorem 3.1 For G ∈ G , PG possesses the box-crossing property.

A more precise statement holds. In discussing the square-grid property in Sect. 4.2,
we will introduce a more specific property denoted SGP(I ) for I ∈ N. We shall show
that, for ε > 0 and I ∈ N, there exists δ = δ(ε, I ) > 0 such that:

if G satisfies BAP(ε) and SGP(I ), PG satisfies BXP(δ). (3.1)

Let G = (V, E) be a graph, and let P be a product measure on {0, 1}E with
intensities (pe : e ∈ E). For δ ∈ R, we write P

δ for the percolation measure with
intensities pδ

e := (0 ∨ (pe + δ)) ∧ 1. [As usual, x ∨ y = max{x, y} and x ∧ y =
min{x, y}.] If G is embedded in R

2, the radius rad(Cv) of the open cluster at v ∈ V is
the supremum of k ≥ 0 such that Cv contains a vertex outside the box v + (−k, k)2 ⊆
R

2.
The proofs of the following Theorems 3.2 and 3.4 rely heavily on the box-crossing

property of Theorem 3.1.

Theorem 3.2 (Criticality) Let G = (V, E) ∈ G , and let ν > 0.

(a) There exist a, b, c, d > 0 such that, for v ∈ V ,

ak−b ≤ PG
(
rad(Cv) ≥ k

) ≤ ck−d , k ≥ 1.

(b) There exists, PG-a.s., no infinite open cluster.
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280 G. R. Grimmett, I. Manolescu

(c) There exist f, g > 0 such that, for v ∈ V,

P
−ν
G (|Cv| ≥ k) ≤ f e−gk, k ≥ 0.

(d) There exists h > 0 such that, for v ∈ V,

P
ν
G(v ↔ ∞) > h.

(e) There exists, P
ν
G-a.s., exactly one infinite open cluster.

More precisely, if G ∈ G satisfies BXP(ε) and SGP(I ), the claims of the theorem
hold with constants that depend only on ε, I , and not further on G. The proof of
Theorem 3.2 is summarised at the end of this section.

Turning to critical exponents and universality, we write f (t) � g(t) as t → t0 ∈
[0,∞] if there exist strictly positive constants A, B such that

Ag(t) ≤ f (t) ≤ Bg(t) (3.2)

in some neighbourhood of t0 (or for all large t in the case t0 = ∞). For functions
f u(t), gu(t) indexed by u ∈ U , we say that f u � gu uniformly in u if (3.2) holds with
constants A, B not depending on u. We write f (t) ≈ g(t) if log f (t)/ log g(t) → 1,
and f u ≈ gu uniformly in u if the convergence is uniform in u.

The critical exponents of interest here are those denoted conventionally as ρ, η, δ,
and the alternating arm-exponents ρ2 j . We begin by defining the so-called arm-events.
Let Bn denote the box [−n, n]2 of R

2, with boundary ∂ Bn . For N < n, let A (N , n)

be the annulus [−n, n]2 \ (−N , N )2 with inner radius N and outer radius n. The inner
(respectively, outer) boundary of the annulus is ∂ BN (respectively, ∂ Bn). For u ∈ R

2,
write A u(N , n) for the translate A (N , n)+ u. A primal (respectively, dual) crossing
of A (N , n) is an open (respectively, open∗) path whose intersection with A (N , n) is
an arc with an endpoint in each boundary of the annulus. Primal crossings are said to
have colour 1, and dual crossings colour 0.

Let k ∈ N. A sequence σ ∈ {0, 1}k is called a colour sequence of length k.
For such σ , the arm-event Aσ (N , n) is the event that there exist k vertex-disjoint
crossings γ1, . . . , γi , . . . , γk of A (N , n) with colours σi taken in anticlockwise order.
The corresponding event on the translated annulus A u(N , n) is denoted Au

σ (N , n)

and is said to be ‘centred at u’. As in [20], the value of N is largely immaterial to
what follows, but N = N (σ ) is taken sufficiently large that the events Aσ (N , n) are
non-empty for n ≥ N .

A colour sequence σ is called monochromatic if either σ = (1, 1, . . . , 1) or σ =
(0, 0, . . . , 0), and bichromatic otherwise. It is called alternating if it has even length
and either σ = (1, 0, 1, 0, . . . ) or σ = (0, 1, 0, 1, . . . ). When σ = (1), Aσ (N , n) is
called the one-arm event and denoted A1(N , n). When σ is alternating with length
k = 2 j , the corresponding event is denoted A2 j (N , n).

Let G ∈ G be an isoradial graph with vertex-set V , and let Cv be the open cluster
of the vertex v ∈ V , under the canonical measure PG . We concentrate here on the
following exponents given in terms of PG , with limits that are uniform in the choice
of v:
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Bond percolation on isoradial graphs 281

(a) volume exponent: PG(|Cv| = n) ≈ n−1−1/δ as n → ∞,
(b) connectivity exponent: PG(v ↔ w) ≈ |w − v|−η as |w − v| → ∞,
(c) one-arm exponent: PG [Av

1(N , n)] ≈ n−ρ1 as n → ∞,
(d) 2 j-alternating-arms exponents: PG [Av

σ (N , n)] ≈ n−ρ2 j as n → ∞, for each
alternating colour sequence σ of length 2 j , with j ≥ 1.

It is believed that the above uniformly asymptotic relations hold for suitable exponent-
values, and indeed with ≈ replaced by the stronger relation �.

The conventional one-arm exponent ρ is given by ρ = 1/ρ1, as in [15, Sect. 9.1].
Parts (c) and (d) above are parts of the following more extensive conjecture.

Conjecture 3.3 Let G be an isoradial graph with the bounded-angles property, and
let k ∈ N and σ ∈ {0, 1}k .

(a) There exists ρ(σ, G) > 0 such that

PG [Au
σ (N , n)] ≈ n−ρ(σ,G) as n → ∞,

uniformly in u ∈ R
2.

(b) The exponent ρ(σ, G) does not depend on the choice of G ∈ G .

Essentially the only two-dimensional percolation process for which the above arm-
exponents ρσ are proved to exist (and, furthermore, many of their values known explic-
itly) is site percolation on the triangular lattice (see [5,41,43]). In this special case
(not belonging to the class of models considered in this paper), the ρσ are constant
for all bichromatic colour sequences of given length (see [1]), and the monochromatic
arm-exponents have been studied in [5].

A critical exponent π is said to exist for a graph G ∈ G if the appropriate asymptotic
relation holds. It is called G -invariant if it exists for all G ∈ G and its value is
independent of the choice of G.

Our universality theorem is presented next. Part (a) amounts to a verification of
Conjecture 3.3(b) for isoradial graphs G ∈ G , and for colour sequences which are
either of length one or alternating.

Theorem 3.4 (Universality)

(a) Let π ∈ {ρ} ∪ {ρ2 j : j ≥ 1}. If π exists for some G ∈ G , then it is G -invariant.
(b) If either ρ or η exists for some G ∈ G , then ρ, η, δ are G -invariant and satisfy

the scaling relations ηρ = 2 and 2ρ = δ + 1.

Kesten showed in [30] (see also [33]) that certain properties of a critical percolation
process imply properties of the near-critical process, when the underlying graph has
a sufficiently rich automorphism group. In particular, knowledge of certain critical
exponents at criticality implies knowledge of exponents away from criticality. Only
certain special isoradial graphs have sufficient homogeneity for such arguments to
hold without new ideas of substance. Therefore, further discussion is omitted, and the
reader is referred instead to [20, Sect. 1.4].

Finally, we make some comments on the proofs. There are two principal steps in the
proof of Theorem 3.1. Firstly, using a technique involving star–triangle transforma-
tions, the box-crossing property is transported from the homogeneous square lattice to
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282 G. R. Grimmett, I. Manolescu

an arbitrary isoradial embedding of the square lattice (with the bounded-angles prop-
erty). Secondly, the square-grid property is used to transport the box-crossing property
to general isoradial graphs. This method may be used also to show the invariance of
certain arm exponents across the class of such isoradial graphs, as in Theorem 3.4. The
basic approach is that of [19,20], but the geometrical constructions used here differ in
substantial regards from those papers.

Proof of Theorem 3.2 By (2.5), (4.1), and Theorem 3.1, both PG and PG∗ have the
box-crossing property. The claims then follow as in [19, Props 4.1, 4.2] (see also [19,
Remark 4.3]), and the details are omitted. It suffices to check that the conditions of the
Remark hold under the bounded-angles property. The constants in the theorem may
be tracked through the proofs, and are found to depend only on the values of ε and I .

��

4 Isoradial graphs and rhombic tilings

4.1 Rhombic tilings

A rhombic tiling is a planar graph embedded in R
2 such that every face is a rhombus

of side-length 1. Rhombic tilings have featured prominently in the theory of planar
tilings, both periodic and aperiodic. A famous example is the aperiodic rhombic tiling
of Penrose [36], and the generalizations of de Bruijn [7,8] and others. The reader is
referred to [21,39] for general accounts of the theory of tiling.

There is a two–one correspondence between isoradial graphs and rhombic tilings of
the plane, which we review next. Let G = (V, E) be an isoradial graph. The diamond
graph G� is defined as follows. The vertex-set of G� is V � := V ∪ C where C is the
set of circumcentres of faces of G; elements of V shall be called primal vertices, and
elements of C dual vertices. Edges are placed between pairs v ∈ V , c ∈ C if and only
if c is the centre of a circumcircle of a face containing v. Thus G� is bipartite. Since
G is isoradial, the diamond graph G� is a rhombic tiling, and is illustrated in Fig. 2.

From the diamond graph G� may be found both G and its planar dual G∗. Write
V1 and V2 for the two sets of vertices in the bipartite G�. For i = 1, 2, let Gi be the

Fig. 2 The isoradial graph G is
drawn in red, and the associated
diamond graph G� in black. The
primal vertices of G� are those
of G; the dual vertices are
centres of faces of G. A track is
a doubly infinite sequence of
adjacent rhombi sharing a
common vector, and may be
represented by a path, drawn in
blue. Two tracks meet in an edge
of G lying in some face of G�
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graph with vertex-set Vi , two points of which are joined by an edge if and only if they
lie in the same face of G�. One of the graphs G1, G2 is G and the other is its dual G∗.
It follows in particular that G∗ is isoradial. Let e ∈ E and let e∗ denote its dual edge.
The pair e, e∗ are diagonals of the same rhombus of G� and are thus perpendicular.

The above construction may be applied to any rhombic tiling T to obtain a pri-
mal/dual pair of isoradial graphs.

4.2 Track systems

Rhombic tilings have attracted much interest, especially since the discovery by Penrose
[35,36] of his celebrated aperiodic tiling. Penrose’s rhombic tiling was elaborated by
de Bruijn [7,8], who developed the following representation in terms of ‘ribbons’ or
‘(train) tracks’. Let G = (V, E) be isoradial. An edge e0 of G� belongs to two rhombi
r0, r1 of G�. Write e−1 (respectively, e1) for the edge of r0 (respectively, r1) opposite
e0, so that e−1, e0, e1 are parallel unit-line-segments. The edge e−1 (respectively, e1)
belongs to a further rhombus r−1 (respectively, r2) that is distinct from r0 (respectively,
r1). By iteration of this procedure, we obtain a doubly-infinite sequence of rhombi
(ri : i ∈ Z) such that the intersections (ri ∩ ri+1 : i ∈ Z) are distinct, parallel unit-
line-segments. We call such a sequence a (train) track. We write T (G) for the set of
tracks of G, and note that T (G) = T (G∗). The track construction is illustrated in
Fig. 2.

A track (ri : i ∈ Z) is sometimes illustrated as an arc joining the midpoints of
the line-segments ri ∩ ri+1 in sequence. The set T may therefore be represented as
a family of doubly-infinite arcs which, taken together with the intersections of arcs,
defines a graph. We shall denote this graph by T also. A vertex v of G� is said to be
adjacent to a track (ri : i ∈ Z) if it is a vertex of one of the rhombi ri .

It was pointed out by de Bruijn, and is easily checked, that the rhombi in a track
are distinct. Furthermore, two distinct tracks may have no more than one rhombus in
common. Since each rhombus belongs to exactly two tracks, it is the unique intersection
of these two tracks.

Kenyon and Schlenker [25] have showed a converse theorem. Let Q be an infinite
planar graph embedded in the plane with the property that every face has four sides.
One may define the tracks of Q by an adaptation of the above definition: a track exits
a face across the edge opposite to its entry. Then Q may be deformed continuously
into a rhombic tiling if and only if (i) no track intersects itself, and (ii) no two tracks
intersect more than once.

A track t is said to be oriented if it is endowed with a direction. As an oriented
track t is followed in its given direction, it crosses sides of rhombi which are parallel.
Viewed as vectors from right to left, these sides constitute a unit vector τ(t) of R

2

called the transverse vector of t . The transverse vector makes an angle with the x-axis
called the transverse angle of t , with value in the interval [0, 2π).

Let I ∈ N. We say that an isoradial graph G has the square-grid property SGP(I )
if its track-set T may be partitioned into three sets T = S ∪ T1 ∪ T2 satisfying the
following:

(a) For k = 1, 2, Tk is a set (t i
k : i ∈ Z) of distinct non-intersecting tracks indexed

by Z.
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(b) For k = 1, 2 and s ∈ T \Tk , every track of Tk intersects s, and these intersections
occur in their lexicographic order.

(c) For k = 1, 2, i ∈ Z, and s ∈ T3−k , the number of track-intersections on s between
its intersections with t i

k and t i+1
k is strictly less than I .

Two tracks belonging to the same Tk are said to be parallel. We refer to T1 ∪ T2 as a
square grid of G, assumed implicitly to satisfy (c) above. A square grid is a subset of
tracks with the topology of the square lattice [(and satisfying (c)].

Since the square-grid property pertains to the diamond graph G� rather than to G
itself,

G satisfies SGP(I ) if and only if G∗ satisfies SGP(I ). (4.1)

An isoradial graph G is said to have the square-grid property (SGP) if it satisfies
SGP(I ) for some I ∈ N. As before, G denotes the set of all isoradial graphs with
the bounded-angles property and the square-grid property. More specifically, we write
G (ε, I ) for the set of G satisfying BAP(ε) and SGP(I ).

Let G ∈ G have square grid T1 ∪T2. It may be seen by the bounded-angles property
that, for k = 1, 2, every x ∈ R

2 lies either in some track of Tk or in the region of R
2

‘between’ two consecutive elements of Tk .

4.3 Examples

Here are three families of isoradial graphs with the square-grid property, and one
without.

4.3.1 Isoradial square lattices

An isoradial embedding of the square lattice is called an isoradial square lattice The
track-system of such a graph is simply a square grid, and vice versa.

4.3.2 Periodic graphs

A planar graph H , embedded in R
2, is said to be periodic if there exist distinct non-

zero vectors τ1, τ2 ∈ R
2 such that H is invariant under shifts by either τi . Let G be

an isoradial embedding of a periodic connected graph H (the embedding itself need
not be periodic). The track system T of G (viewed as a set of arcs) is determined by
the structure of H . Since H is periodic, so is T (viewed as a graph). Therefore, T
may be embedded homeomorphically into R

2 in a periodic manner. After re-scaling,
we may assume that T is invariant under any unit shift of R

2 in the direction of a
coordinate vector. In fact, T may be thought of as the lifting to the universal cover of
a track-system on a torus.

As observed in [25, Sect. 5.2], any oriented track t has an asymptotic angle α(t) ∈
S1, and in addition the reversed track has direction π + α(t). Let t ∈ T , viewed as a
subset of R

2. There exists (a, b) ∈ Z
2, (a, b) �= (0, 0), such that t is invariant under

the shift τa,b : z �→ z + (a, b). We have that tan α(t) = b/a. By periodicity, the set of
all angles (modulo π ) of T is finite, and we write it as {α1, α2, . . . , αm} with m ≥ 1.
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Let Tk be the set of tracks with asymptotic angle (modulo π ) αk . By periodicity, each
Tk is a set of tracks indexed by Z, and may be ordered according to their crossings of the
line with polar coordinates θ = θ0 with θ0 �= αk for all k. Since tracks tk ∈ Tk, tl ∈ Tl

(with k �= l) have different asymptotic angles, they must intersect.
It remains to show that any t, t ′ ∈ Tk do not intersect (whence, in particular, m ≥ 2).

Suppose the converse, that there exist k ∈ {1, 2, . . . , m} and t, t ′ ∈ Tk such that t and
t ′ intersect at some point J ∈ R

2. Since t and t ′ have the same angle αk , there exists
(a, b) ∈ Z

2 such that t and t ′ are invariant under τa,b. Therefore, they intersect at
J + n(a, b) for all n ∈ Z, in contradiction of the fact that they may have at most one
intersection.

For any distinct pair Tk, Tl , part (c) of the square-grid property holds by periodicity.
We have proved not only that G has the square-grid property, but the stronger fact

that its track-set may be partitioned into m classes of parallel tracks.

4.3.3 Rhombic tilings via multigrids

The following ‘multigrid’ construction was introduced and studied by de Bruijn [7–9].
A grid is a set of parallel lines in R

2 with some common perpendicular unit-vector v.
A multigrid is a family of grids with pairwise non-parallel perpendiculars. Suppose
there are m ≥ 2 grids, with perpendiculars v1, v2, . . . , vm . The kth grid is given in
terms of a set Ck = {ci

k : i ∈ Z} of reals, specifically as the set of all z ∈ R
2 with

z · vk = ci
k as i ranges over Z. It is assumed that the ci

k are strictly increasing in i , with
ci

k/ i → 1 as i → ±∞.
With the lines of the kth grid, duly oriented, we associate a unit vector wk . It is

explained in [9] how, under certain conditions on the Ck, vk, wk , one may ‘dualize’
the multigrid to obtain a rhombic tiling of R

2. The track-set of the ensuing tiling is
a homeomorphism of the multigrid with transverse vectors wk . Under the additional
assumption that the differences |ci+1

k −ci
k | are uniformly bounded away from 0 and ∞,

all such tilings have both the bounded-angles property and the square-grid property.
The results of this paper apply to the associated isoradial graphs.

Penrose’s rhombic tiling may be obtained thus with m = 5, the vk being vectors
forming a regular pentagon, with wk = vk , and Ck = {i + γk : i ∈ Z} with an
appropriate vector (γk). Other choices of the parameters yield a broader class of
aperiodic rhombic tilings of the plane (see [7,8]). Percolation on Penrose tilings has
been considered in [22].

4.3.4 A track-system with no square grid

Figure 3 is an illustration of a track-system without the square-grid property.

4.4 Equivalence of metrics

Let G be an isoradial graph. It will be convenient to use both the Euclidean metric | · |
and the graph-metric d� on G�. For n ∈ N and u ∈ G� we write ��

u(n) for the ball
of d�-radius n centred at u:
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Fig. 3 Part of a rhombic tiling without the square-grid property, and one of the two corresponding isoradial
graphs

��
u(n) = {v ∈ G� : d�(u, v) ≤ n}.

Proposition 4.1 Let ε > 0. There exists cd = cd(ε) > 0 such that, for any isoradial
graph G = (V, E) satisfying BAP(ε),

c−1
d |v − v′| ≤ d�(v, v′) ≤ cd |v − v′|, v, v′ ∈ G�. (4.2)

Proof Let u, v be distinct vertices of G�. Since each edge of G� has length
1, d�(u, v) ≥ |u − v|. Conversely, let Suv be the set of all faces of G� (viewed
as closed sets of R

2) that intersect the straight-line segment uv of R
2 joining u to v.

Since the diameter of any such face is less than 2, every point of the union of Suv is
within Euclidean distance 2 of uv. By BAP(ε) and (2.2), every face has area at least
sin ε, and therefore |Suv| ≤ 4(|u − v| + 4)/ sin ε. Similarly, there exists δ = δ(ε) > 0
such that |u − v| ≥ δ. The edge-set of elements of Suv contains a path of edges of G�
from u to v, whence

d�(u, v) ≤ 8

sin ε
(|u − v| + 4) ≤ 8(δ + 4)

δ sin ε
|u − v|,

as required. ��

4.5 The box-crossing property for graphs in G

This section begins with a definition of the rectangular domains of an isoradial graph
G ∈ G , using the topology of its square grid.

Let (t, t ′) be an ordered pair of non-intersecting tracks of G. A point x ∈ R
2 is said

to be ‘strictly between’ t and t ′ if, with these tracks viewed as arcs of R
2, there exists

an unbounded path of R
2 from x that intersects t but not t ′, and vice versa. A face F

of G� is said to be between t and t ′ if: either F is a rhombus of t , or every point of F is
strictly between t and t ′. Note that this usage of ‘between’ is not symmetric: there are
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Fig. 4 The shaded domain
D = D(ti1 , ti2 ; s j1 , s j2 ) is
crossed horizontally

faces between t and t ′ that are not between t ′ and t . A vertex or edge of G� is said to
be ‘between’ t and t ′ if it belongs to some face between t and t ′. The domain between
t and t ′ is the union of the (closed) faces between t and t ′. It is useful to think of a
domain as either a subgraph of G�, or (unlike the domains of Sect. 2.3) as a closed
region of R

2.
Suppose G ∈ G has a square grid S ∪ T , with S = (s j : j ∈ Z) and T =

(ti : i ∈ Z). We call tracks in S (respectively, T ) horizontal (respectively, vertical).
For i1, i2, j1, j2 ∈ Z we define D = D(ti1 , ti2; s j1, s j2) to be the intersection of the
domains between ti1 and ti2 and between s j1 and s j2 .

We say that D is crossed horizontally if G contains an open path π such that: (i)
every edge of π lies in D , and (ii) the first edge crosses ti1 and the last vertex is
adjacent to ti2 . Write Ch(D) = Ch(ti1 , ti2; s j1 , s j2) for the event that D is crossed
horizontally, with a similar definition of the vertical-crossing event Cv(D). See Fig. 4
for an illustration of the above notions.

The purpose of the following proposition is to restate the box-crossing property in
terms of the geometry of the square grid.

Proposition 4.2 Let ε > 0, I ∈ N, and let G ∈ G (ε, I ). The graph G has the box-
crossing property if and only if there exists δ > 0 such that, for N ∈ N and i, j ∈ Z,

PG
[
Ch(ti , ti+2N ; s j , s j+N )

]
, PG

[
Cv(ti , ti+N ; s j , s j+2N )

] ≥ δ. (4.3)

Moreover, if (4.3) holds, then G satisfies BXP(δ′) with δ′ depending on δ, ε, I and
not further on G.

Proof We prove only the final sentence of the proposition. The converse (that the
box-crossing property implies (4.3) for some δ > 0) holds by similar arguments, and
will not be used this paper. Let G ∈ G (ε, I ), and assume (4.3) with δ > 0.

Let N ∈ N. For i, j ∈ Z, the cell Ci, j is defined to be the domain
D(ti N , t(i+1)N ; s j N , s( j+1)N ). The cells have disjoint interiors and cover the plane.
Two distinct cells C = Ci, j , C ′ = Ck,l are said to be adjacent if (i, j) and (k, l)
are adjacent vertices of the square lattice, in which case we write C ∼ C ′. More
specifically, we write C ∼h C ′ (respectively, C ∼v C ′) if |i − k| = 1 (respectively,
| j − l| = 1). With the adjacency relation ∼, the graph having the set of cells as
vertex-set is isomorphic to the square lattice.
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Fig. 5 The region U N
uv is outlined in bold, and contains a chain of cells joining u to v. The events Hk are

drawn explicitly for the first two contiguous pairs of cells

Each cell has perimeter at most 4I N , and therefore diameter not exceeding 2I N .
A cell contains at least N 2 faces of G�, and thus [(by (2.2)] has total area at least
N 2 sin ε.

For μ ∈ N with μ ≥ 2I , let u = (−μN , 0) and v = (μN , 0) viewed as points
in the plane. Let SN

uv be the set of cells that intersect the straight-line segment uv

with endpoints u, v, and let U N
uv be the union of such cells. Let R be the tube uv +

[−2I N , 2I N ]2. Thus R has area 8I N (μN + 2I N ), and U N
uv ⊆ R. Since each cell

has area at least N 2 sin ε, the cardinality of SN
uv satisfies

|SN
uv| ≤ 8I N (μN + 2I N )

N 2 sin ε
= 8I (μ + 2I )

sin ε
. (4.4)

There exists a chain of cells C1, . . . , CK ∈ SN
uv such that u ∈ C1, v ∈ CK and

Ck ∼ Ck+1 for k = 1, 2, . . . , K − 1; see Fig. 5. Let k ∈ {1, 2, . . . , K − 1}, and
assume Ck ∼h Ck+1. Let Hk be the event that Ck and Ck+1 are crossed vertically,
and Ck ∪ Ck+1 is crossed horizontally. A similar definition holds when Ck ∼v Ck+1,
with vertical and horizontal interchanged. By (4.3) and the Harris–FKG inequality,
PG(Hk) ≥ δ3.

By the Harris–FKG inequality, the fact that K ≤ |SN
u,v|, and (4.4),

PG

(
K−1⋂

k=1

Hk

)

≥ δ3K ≥ δ24I (μ+2I )/ sin ε. (4.5)

If the event on the left side occurs, the rectangle

Sμ,N := [−(μ − 2I )N , (μ − 2I )N
] × [−2I N , 2I N ]

of R
2 is crossed horizontally.

123



Bond percolation on isoradial graphs 289

Let Rk = [−k, k] × [− 1
2 k, 1

2 k] where k ≥ 8I . Pick N such that 4I N ≤ k ≤ 8I N ,
so that Rk is ‘higher’ and ‘shorter’ than S10I,N . By (4.5) with μ = 10I ,

PG (Rk is crossed horizontally) ≥ δ′′, (4.6)

where δ′′ = δ288I 2/ sin ε. Smaller values of k are handled by adjusting δ′′ accordingly.
The same argument is valid for translates and rotations of the line-segment uv, and

the proof is complete. ��

4.6 Isoradial square lattices

An isoradial square lattice is an isoradial embedding of the square lattice Z
2. Isoradial

square lattices, and only these graphs, have a square grid as track-system.
Let G be an isoradial square lattice. The diamond graph G� possesses two families

of parallel tracks, namely the horizontal tracks (s j : j ∈ Z) and the vertical tracks
(ti : i ∈ Z). The graph G�, and hence the pair (G, G∗) also, may be characterized in
terms of two vectors of angles linked to the transverse vectors. First, we orient s0 in
an arbitrary way (interpreted as ‘rightwards’). As we proceed in the given direction
along s0, the crossing tracks ti are numbered in increasing sequence, and are oriented
from right to left (interpreted as ‘upwards’). Similarly, as we proceed along t0, the
crossing tracks s j are numbered in increasing sequence and oriented from left to right.
Using the notation of Sect. 4.2, the transverse vector τ(s j ) has some transverse angle
β j , and similarly τ(ti ) has some transverse angle γi . Rather than working with the γi ,
we work instead with αi := γi −π as illustrated in Fig. 6. Write α = (αi : i ∈ Z) and
β = (β j : j ∈ Z), and note thatαi ∈ [−π, π), β j ∈ [0, 2π). We will generally assume
that G is rotated in such a way that α0 = 0, so that β j ∈ [0, π ] and β j −π ≤ αi ≤ β j

for i, j ∈ Z.
The vertex of G� adjacent to the four tracks ti−1, ti , s j−1, s j is denoted vi, j . If not

otherwise stated, we shall assume that the tracks are labelled in such a way that the
vertex v0,0 is a primal vertex of G�.

Fig. 6 An isoradial square
lattice (in red) with the
associated diamond graph. The
diamond graph is isomorphic to
Z

2, and its embedding is
characterized by two sequences
α,β of angles
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Tracks ti , s j intersect in a rhombus of G� with sides τ(ti ), τ (s j ),−τ(ti ),−τ(s j )

in clockwise order, and thus its internal angles are β j − αi and π − (β j − αi ). Thus,
G satisfies the bounded-angles property BAP(ε) if and only if

β j − αi ∈ [ε, π − ε], i, j ∈ Z. (4.7)

Conversely, for two vectors α,β satisfying (4.7), we may construct the diamond graph
denoted G�

α,β as in Fig. 6. This gives rise to an isoradial square lattice denoted Gα,β

(and its dual) satisfying BAP(ε). We write Pα,β for the canonical measure of Gα,β .
We introduce now some notation to be used later. For a set W of vertices of G�, we

define the height of W by

h(W ) = sup
{

j : ∃i with vi, j ∈ W
}
.

This definition extends in an obvious way to sets of edges.
In Sect. 5.2 is described an operation of so-called ‘track-exchange’ on isoradial

square lattices. This introduces a potential for confusion between the label and the
level of a track. In the Gα,β above, we say that s j is (initially) at level j . The level of
s j may change under track-exchange, but vi, j shall always refer to the vertex between
levels j − 1 and j in the new graph.

Due to this potential confusion, we may use a different notation for domains
in square lattices than for general graphs. For M1, M2, N1, N2 ∈ Z with M1 ≤
M2, N1 ≤ N2, let B(M1, M2; N1, N2) be the subgraph of G induced by the sub-
set of vertices lying in {vi, j : M1 ≤ i ≤ M2, N1 ≤ j ≤ N2}. For M, N ∈ N,
we use the abbreviated notation B(M, N ) = B(−M, M; 0, N ). A horizontal cross-
ing of B = B(M1, M2; N1, N2) is an open path of B linking some vertex vM1,n1 to
some vertex vM2,n2 ; a vertical crossing links some vm1,N1 to some vm2,N2 . We write
Ch[B] (respectively, Cv[B]) for the event that a box B contains a horizontal (respec-
tively, vertical) crossing. For a vertex v = vi, j of G, we write Bv for the translate
{vr,s : vr−i,s− j ∈ B}.

When applied to G, we have that

B(M1, M2; N1, N2) = D(tM1 , tM2; sN1 , sN2),

since sN1 and sN2 are the tracks at levels N1 and N2 respectively. As mentioned before,
the latter will not always be the case. Use of the notation B emphasizes that domains
are defined in terms of tracks at specific levels, rather than of tracks with specific
labels.

The following lemma will be used in Sect. 6.

Lemma 4.3 Let G = (V, E) be an isoradial square lattice satisfying the bounded-
angles property BAP(ε) and the following.

(a) For ρ ≥ 1, there exists η(ρ) > 0 such that

PG
(
Ch[Bv(�ρN�, N )]) ≥ η(ρ), N ∈ N, v ∈ V .
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(b) There exist ρ0, η0 > 0 such that

PG
(
Cv[Bv(N , �ρ0 N�)]) ≥ η0, N ≥ ρ−1

0 , v ∈ V .

Then there exists δ = δ(ρ0, η0, η(1), η(2ρ−1
0 ), ε) > 0 such that G has the box-

crossing property BXP(δ).

Outline proof Assume (a) and (b) hold. Just as in the proof of [19, Prop. 3.1] (see also
[19, Remark 3.2]), the crossing probabilities of boxes of G with aspect-ratio 2 and
horizontal/vertical orientations are bounded away from 0 by a constant that depends
only on the aspect-ratios of the boxes illustrated in [19, Fig. 3.1]. (Here, the boxes in
question are those of G viewed as an isoradial square lattice, that is, boxes of the form
B(·; ·) defined before the lemma.) Therefore, the hypothesis of Proposition 4.2 holds
with suitable constants, and the claim follows from its conclusion. ��

5 The star–triangle transformation

We review the basic action of the star–triangle transformation, and show its harmony
with isoradial embeddings. It is shown in Sect. 5.3 how a sequence of star–triangle
transformations may be used to exchange two tracks of an isoradial square lattice.

5.1 Star–triangle transformation

The following material is standard but is included for completeness. For proofs and
details see, for example, [19].

Consider the triangle � = (V, E) and the star �′ = (V ′, E ′) of Fig. 7. Let p =
(p0, p1, p2) ∈ [0, 1)3 be a triplet of parameters. Write 
 = {0, 1}E with associated
product probability measure P

�
p with intensities pi (as in the left diagram of Fig. 7),

and 
′ = {0, 1}E ′
with associated measure P

�
1−p, with intensities 1 − pi (as in the

right diagram of Fig. 7). Let ω ∈ 
 and ω′ ∈ 
′. For each graph we may consider
open connections between its vertices, and we abuse notation by writing, for example,

x
�,ω←−→ y for the indicator function of the event that x and y are connected in � by an

open path of ω. Thus connections in � are described by the family (x
�,ω←−→ y : x, y ∈

V ) of random variables, and similarly for �′.

Fig. 7 The star–triangle transformation
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Fig. 8 The random maps T and S. Note that P := (1 − p0)(1 − p1)(1 − p2)

Proposition 5.1 (Star–triangle transformation) Let p ∈ [0, 1)3 be such that

p0 + p1 + p2 − p0 p1 p2 = 1. (5.1)

The families

(
x

�,ω←−→ y : x, y = A, B, C
)
,

(
x

�′,ω′←−→ y : x, y = A, B, C

)
,

have the same law.

Next we explore couplings of the two measures. Let p ∈ [0, 1)3 satisfy (5.1), and let

 (respectively, 
′) have associated measure P

�
p (respectively, P

�
1−p) as above. There

exist random mappings T : 
 → 
′ and S : 
′ → 
 such that T (ω) has law P
�
1−p,

and S(ω′) has law P
�
p . Such mappings are given in Fig. 8, and we shall not specify them

more formally here. Note from the figure that T (ω) is deterministic for seven of the
eight elements of 
; only in the eighth case does T (ω) involve further randomness.
Similarly, S(ω′) is deterministic except for one special ω′. Each probability in the
figure is well defined since P := (1 − p0)(1 − p1)(1 − p2) > 0.

Proposition 5.2 (Star–triangle coupling) Let p ∈ [0, 1)3 satisfy (5.1) and let S and T
be as in Fig. 8. With ω and ω′ sampled as above,

(a) T (ω) has the same law as ω′,
(b) S(ω′) has the same law as ω,
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Fig. 9 The triangle on the left is replaced by the star on the right. The new vertex O is the circumcentre
of the three dual vertices of the surrounding hexagon of G�

(c) for x, y ∈ {A, B, C}, x
�,ω←−→ y if and only if x

�′,T (ω)←−−−→ y,

(d) for x, y ∈ {A, B, C}, x
�′,ω′←−→ y if and only if x

�,S(ω′)←−−−→ y.

5.2 The star–triangle transformation for isoradial graphs

Let G = (V, E) be an isoradial graph, and let � be a triangle of G with vertices
A, B, C . Seen as a transformation between graphs, the star–triangle transformation
changes � into a star �′ with a new central vertex O ∈ R

2. It turns out that O may be
chosen in such a way that the new graph, denoted G ′, is isoradial also. The right way
of seeing this is via the diamond graph G�, as illustrated in Fig. 9. This construction
has its roots in the Z -invariant Ising model of Baxter [3,4], studied in the context of
isoradial graphs by Mercat [32], Kenyon [24], and Costa-Santos [13] (see also [6]).

The triangle � comprises the diagonals of three rhombi of G�. These rhombi form
the interior of a hexagon with primary vertices A, B, C and three further dual vertices.
Let O be the circumcentre of these dual vertices. Three new rhombi are formed from
the hexagon augmented by O (as shown). The star �′ has edges AO, B O, C O , and
the ensuing graph is isoradial (since it stems from a rhombic tiling).

By an examination of the angles in the figure, the canonical measure on �′ is
that obtained from � by the star–triangle transformation of Sect. 5.1. That is, the
star–triangle transformation maps PG to PG ′ . Furthermore, for ε > 0,

G satisfies BAP(ε) if and only if G ′ satisfies BAP(ε). (5.2)

We shall sometimes view the star–triangle transformation as acting on the rhombic
tiling G� rather than on G, and thereby it acts simultaneously on G and its dual G∗.

The star–triangle transformation of Fig. 9 is said to act on the track-triangle formed
by the tracks on the left side, and to slide one of the tracks illustrated there over the
intersection of the other two, thus forming the track-triangle on the right side.

A star–triangle transformation maps an open path of G to an open path of G ′. We
shall not spell this out in detail, but recall the ideas from [19]. Let π be an open path of
G that intersects some hexagon H of G�, and consider the star–triangle transformation
σ acting in H . Since σ preserves open connections within H , it maps π to some σ(π)

containing an open path. A minor complication arises if H contains a star of G and
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π ends at the centre of this star. In this case, the endpoint of σ(π) is a vertex of the
resulting triangle.

5.3 Track-exchange in an isoradial square lattice

Let G be an isoradial square lattice. The tracks of G are to be viewed as doubly-infinite
sequences of rhombi with a common vector. In this section, we describe a procedure
for interchanging two consecutive parallel tracks.

Consider a vertical strip G = Gα,β of the square lattice, where α = (αi : −M ≤
i ≤ N ) and β = (β j : j ∈ Z) are vectors of angles satisfying BAP(ε), (4.7). Thus
every finite face of G has circumradius 1. (There are also infinite faces to the left and
right of the strip.) There are two types of tracks in G, the finite horizontal tracks (s j ),
and the infinite vertical tracks (ti ). We explain next how to exchange two adjacent
horizontal tracks by a sequence of star–triangle transformations, employing a process
that is implicit in [24]. Track s j has transverse angle β j , as illustrated in Fig. 6, and
the ‘exchange’ of two tracks may be interpreted as the interchange of their transverse
angles.

We write � j for the operation that exchanges the tracks at levels j − 1 and j .
When applied to G, � j exchanges s j−1 and s j , and we describe � j by reference to
G�. If β j = β j−1, there is nothing to do, and � j interchanges the labels of the tracks
without changing the transverse angles. Assume β j > β j−1. We insert a new rhombus
on the left side of the strip formed of s j−1 and s j , marked in green in Fig. 10. This
creates a hexagon in G�, containing either a triangle or a star of G. The star–triangle
transformation is applied within this hexagon, thereby moving the new rhombus to the
right. By repeated star–triangle transformations, we ‘slide’ the new rhombus along the
two tracks from left to right. When it reaches the right side, it is removed. In the new
graph, the original tracks s j−1 and s j have been exchanged (or, more precisely, the
transverse angles of the tracks at levels j − 1 and j have been interchanged). Let � j

be the transformation thus described, and say that � j ‘goes from left to right’ when
β j > β j−1. If β j < β j−1, we construct � j ‘from right to left’.

Viewed as an operation on graphs, � j replaces an isoradial graph G by another
isoradial graph � j (G). It operates on configurations also, as follows. Let ω be an
edge-configuration of G, and assign a random state to the new ‘green’ edge with the
distribution appropriate to the isoradial embedding. The star–triangle transformations
used in � j are independent applications of the kernels T and S of Fig. 8. The ensuing
configuration on � j (G) is written � j (ω). Thus � j is a random operator on ω, with
randomness stemming from the extra edge and the star–triangle transformations. Note

Fig. 10 A new rhombus is introduced on the left (marked in green). This is then ‘slid’ along the pair of
tracks by a sequence of star–triangle transformations, until it reaches the right side where it is removed
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that � j is not a local transformation, in that the state of an edge in � j (G) depends on
the states of certain distant edges.

Let σ j denote the transposition of the ( j − 1)th and j th terms of a sequence. We
may write

� j (Gα,β , Pα,β) = (Gα,σ j β , Pα,σ j β).

When applying the � j in sequence, we distinguish between the label s j of a track and
its level. Thus, � j interchanges the tracks currently at levels j − 1 and j .

We consider next the transportation of open paths. Let ω be a configuration on
Gα,β , and let γ be an ω-open path. The action of a star–triangle transformation on γ

is discussed in detail in [19, Sect. 2.3]. The transformation � j comprises three steps:
the addition of an edge to Gα,β , a series of star–triangle transformations, and the
removal of an edge. The first step does not change γ , and the effect of the second step
is discussed in Sect. 5.2 and the following paragraphs. If the removed edge is in the
image of the path γ at the moment of removal, we say that � j breaks γ . Thus, � j (γ )

is an open path of � j (G) whenever � j does not break γ . In applying the � j , we shall
choose the strip-width M + N sufficiently large that open paths of the requisite type
do not reach the boundary, and are therefore not broken.

Finally, we summarise in Figs. 11,12 the action of � j on the path γ , with M and
N chosen sufficiently large. Consider two tracks s′, s at respective levels j − 1 and
j , with transverse angles β ′ and β. Edges of γ lying outside levels j − 1 and j are
unchanged by � j . The intersection of γ with these two tracks forms a set of open
sub-paths of length either 1 or 2; there are four possible types of length 1, and six of
length 2. We do not describe this in detail, but refer the reader to the figures, which
are drawn for the case β > β ′. The path γ may cross the tracks in more than one of
the diagrams on the left of Fig. 11, and the image path contains an appropriate subset
of the edges in the listed outcomes. Note that, if the intersections of γ with s and s′
are at distance at least 2 from the lateral boundaries, then � j does not break γ ,

In the special case when β = β ′, � j interchanges the labels of s′ and s but alters
neither embedding nor configuration. In this degenerate case, we set � j (γ ) = γ , and
note that Fig. 11 remains accurate.

6 Proof of Theorem 3.1: isoradial square lattices

6.1 Outline of proof

The proof for isoradial square lattices is based on Proposition 6.1, following. For
ξ ∈ [0, 2π), we write Gα,ξ for the isoradial square lattice generated by the angle-
sequence α and the constant sequence (ξ).

Proposition 6.1 Let δ, ε > 0. There exists δ′ = δ′(δ, ε) > 0 such that the following
holds. Let Gα,β be an isoradial square lattice satisfying BAP(ε), and let ξ ∈ [0, 2π)

be such that α and the constant sequence (ξ) satisfy BAP(ε), (4.7). If Gα,ξ satisfies
BXP(δ), then Gα,β satisfies BXP(δ′).
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Fig. 11 The six possible ways in which γ may intersect the strip in two edges between height j−1 and j+1,
and the corresponding actions of � j . In five cases, the resulting configuration can be non-deterministic.
If the dotted edge is closed, the resulting configuration is in the second column. If it is open, the resulting
configuration is that of the third column with the given probability (recall from (2.3) that pπ−α = 1 − pα).
The movement of black vertices can cause the height increases marked in blue. The tracks sk are drawn as
horizontal for simplicity, and θ1 = β ′ − αm , θ2 = β − αm , where vm, j denotes the black vertex, and β ′
(respectively, β) is the transverse angle of the lower (respectively, upper) track

Fig. 12 If an endpoint of γ lies between the two tracks, the corresponding edge is sometimes contracted
to a single point

123



Bond percolation on isoradial graphs 297

Corollary 6.2 Let ε > 0. There exists δ = δ(ε) > 0 such that every isoradial square
lattice satisfying BAP(ε) has the box-crossing property BXP(δ).

Since G (ε, 1) is the set of isoradial square lattices satisfying BAP(ε), the corollary
is equivalent to (3.1) with I = 1.

Proof of Corollary 6.2 Let ε > 0 and let Gα,β satisfy BAP(ε).
First, assume that one of the two sequences α,β is constant. Without loss of gen-

erality we may take α to be constant, and by rotation of the graph, we shall assume
α ≡ 0. There exists δ > 0 such that the homogeneous square lattice G0,π/2 satisfies
BXP(δ) (see, for example, [15, Sect. 1.7]). By Proposition 6.1 with ξ = 1

2π, Gα,β

satisfies BXP(δ′) for some δ′ = δ′(δ, ε) > 0.
Consider now the case of general α,β. By the above, Gα,β0 satisfies BXP(δ′). By

Proposition 6.1 with ξ = β0, Gα,β satisfies BXP(δ′′) for some δ′′ = δ′′(δ′, ε) > 0.
��

By Lemma 4.3, Proposition 6.1 follows from the forthcoming Propositions 6.4 and
6.8, dealing respectivelywith horizontal and vertical crossings.

The proofs are outlined in the remainder of this section. The basic idea is that pieces
of Gα,β and Gα,ξ may be glued together along a horizontal track. Track-exchanges
may then be performed repeatedly in order to swap parts of Gα,ξ and Gα,β while
maintaining the existence of certain open paths.

Let α,β, and ξ be as in Proposition 6.1. Fix N , to be chosen separately in the two
proofs, and define

β̃ j =
{

ξ if j < N ,

β j−N if j ≥ N .

We refer to the part of G = Gα,β̃ above height N as the irregular block, and that with
height between 0 and N as the regular block. The regular block may be viewed as
part of Gα,ξ , and the irregular block as part of Gα,β . We will only be interested in the
graph above height 0.

In Sect. 6.2, we explain how to transport horizontal box-crossings from the regular
block to the irregular block. Consider an open horizontal crossing of a wide rectangle
in the regular block of G. A sequence of track-exchanges is made from the top to the
bottom of the regular block in such a way that the regular block moves upwards. See
Fig. 13.

The evolution of the open crossing is observed throughout the transformations.
Its endpoints are pinned to the lowest track, and therefore do not change. The open
path may itself drift upwards, and the core of the proof of Proposition 6.4 lies in a
probabilistic control of its rate of drift.

Vertical box-crossings are studied in Sect. 6.3. This time, the tracks of the regular
block are moved upwards by a process of track-exchange, as illustrated in Fig. 18.
Consider an open vertical crossing of some rectangle of the regular block. During the
exchanges of tracks, the highest point of the path may drift downwards, and as before
one needs some control on its rate of drift. It is key that, after all tracks of the regular
block have been moved upwards, the irregular block contains an open vertical crossing
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Fig. 13 The transformation Uk raises the (shaded) regular block by one unit, and moves the track above
by N units downwards

of some (wider and lower) rectangle. This is achieved by showing that the height of
the upper endpoint of the crossing decreases by at most one at each step, and does not
decrease with some uniformly positive probability.

The arguments and illustrations of Sect. 5.3 will be central to the proofs of Propo-
sitions 6.4 and 6.8.

Separate considerations of horizontal and vertical crossings are required since α

and β do not play equal roles. Consider the proof of Corollary 6.2. When passing from
G0,π/2 to Gα,β with one of the sequences α,β constant, both horizontal and vertical
box-crossings need be transported. On the other hand, Proposition 6.4 suffices in the
second part of the proof, as explained in the following remark.

Remark 6.3 The material in Sect. 6.3, and specifically Proposition 6.8, may be cir-
cumvented by use of [19, Thm 1.5], where the box-crossing property is proved for
so-called ‘highly inhomogeneous’ square lattices. We do not take this route here since
it would reduce the integrity of the current proof, and would require the reader to be
familiar with a different method of applying the star–triangle transformation to square
(and triangular) lattices.

Here is an outline of the alternative approach. In the language of [19], an isoradial
square lattice Gα,ξ satisfying BAP(ε) is a highly inhomogeneous square lattice sat-
isfying [19, eqn (1.5)] (with an adjusted value of ε). By [19, Thm 1.5], such a lattice
has the box-crossing property. By Proposition 6.4, horizontal box-crossings may be
transported from Gα,ξ to the more general isoradial square lattice Gα,β . Similarly, by
interchanging the roles of the horizontal and vertical tracks of Gα,β , we obtain the
existence of vertical box-crossings in that lattice. Such crossing probabilities are now
combined, using Lemma 4.2, to obtain Theorem 3.1.

The following is fixed for the rest of this section. Let ε > 0, and let α,β be
sequences of angles satisfying BAP(ε), (4.7). Let ξ be an angle such that α and (ξ)

satisfy BAP(ε), (4.7). All constants in this section may depend on ε, but not further
on α,β, ξ unless otherwise stated.
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6.2 Horizontal crossings

Proposition 6.4 There exist λ, N0 ∈ N, depending on ε only, such that, for ρ ∈ N

and N ≥ N0,

Pα,β

(
Ch[B((ρ − 1)N , λN )])

≥ (1 − ρe−N )Pα,ξ

(
Ch[B(ρN , N )])

× Pα,ξ

(
Cv[B(−ρN ,−(ρ − 1)N ; 0, N )])

× Pα,ξ

(
Cv[B((ρ − 1)N , ρN ; 0, N )]). (6.1)

Proof Fix ρ ∈ N with ρ > 1, and λ, N0 ∈ N to be chosen later, and let N ≥ N0.
Recall the graph G = Gα,β̃ given in Sect. 6.1. We work on a vertical strip {vi, j :
−M ≤ i ≤ M} of G with width 2M , where

M = (ρ + 2λ + 1)N , (6.2)

and we truncate α to a finite sequence (αi : −M ≤ i ≤ M − 1).
We will work with graphs obtained from G by a sequential application of the

transformations � j of Sect. 5.3, and to this end we let

Uk = �k ◦ �k+1 ◦ · · · ◦ �N+k−1, k ≥ 1. (6.3)

Note that Uk moves the track at level N + k − 1 to level k − 1, while raising the tracks
at levels k − 1, . . . , N + k − 2 by one level each (see Fig. 13). We propose to apply
U1, U2, . . . , UλN to G in turn, thereby moving part of the irregular block beneath the
regular block.

Let EN be the event that there exists an open path of G within B(ρN , N ), with
endpoints vx0,0 and vx1,0 for some x0 ∈ [−ρN ,−(ρ−1)N ] and x1 ∈ [(ρ−1)N , ρN ].
By the definition of β̃, B(ρN , N ) is entirely contained in the regular block of G. By
the Harris–FKG inequality,

Pα,β̃(EN ) ≥ Pα,ξ

(
Ch[B(ρN , N )])

× Pα,ξ

(
Cv[B(−ρN ,−(ρ − 1)N ; 0, N )])

× Pα,ξ

(
Cv[B((ρ − 1)N , ρN ; 0, N )]). (6.4)

Let ω0 be a configuration on G, chosen according to PG . For k ∈ N, let G0 = G
and

Gk = Uk ◦ · · · ◦ U1(G), ωk = Uk ◦ · · · ◦ U1(ω
0).

The family (ωk : k ≥ 0) is a sequence of configurations on the Gk with associated law
denoted P. Note that P is given in terms of the law of ω0, and of the randomizations
contributing to the Ui . The marginal law of ωk under P is PGk .
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Let ω0 ∈ EN , and let γ 0 be a path in B(ρN , N ) with endpoints vx0,0 and vx1,0 for
some x0 ∈ [−ρN ,−(ρ−1)N ] and x1 ∈ [(ρ−1)N , ρN ]. Let γ k = Uk ◦· · ·◦U1(γ

0).
The path evolves as we apply the Uk sequentially, and most of this proof is directed
at studying the sequence γ 0, γ 1, . . . , γ λN .

First we show that the path is not broken by the track-exchanges. For 0 ≤ k ≤ λN ,
set

Dk = {
vx,y ∈ (Gk)� : |x | ≤ (ρ + 1)N + 2k − y, 0 ≤ y ≤ N + k

}
.

The proof of the following elementary lemma is summarised at the end of this section.

Lemma 6.5 For 0 ≤ k ≤ λN , γ k is an open path contained in Dk.

The set {vx,0 : x ∈ Z} of vertices of G� is invariant under the Uk , whence the
endpoints of the γ k are constant for all k. It follows that the horizontal span of γ λN is
at least 2(ρ − 1)N .

If γ λN has maximal height not exceeding λN , then it contains a ωλN -open hor-
izontal crossing of B((ρ − 1)N , λN ). The graph GλN agrees with Gα,β within
B((ρ − 1)N , λN ), so that

Pα,β

(
Ch[B((ρ − 1)N , λN )]) ≥ P

(
h(γ λN ) ≤ λN

∣∣ EN
)
P(EN ).

By (6.4), it suffices to show the existence of λ, N0 ∈ N such that,

P
(
h(γ λN ) ≤ λN

∣∣ ω0) ≥ 1 − ρe−N , N ≥ N0, ω0 ∈ EN , (6.5)

and the rest of the proof is devoted to this. The basic idea is similar to the corresponding
step of [19], but the calculation is more elaborate.

Let ω0 ∈ EN and let γ 0 be as above. We observe the evolution of the heights of
the images of γ 0 within each column. For n ∈ Z and 0 ≤ k ≤ λN , set

Cn = {vn,y : y ∈ Z}, hk
n =

{
h(γ k ∩ Cn) if γ k ∩ Cn �= ∅,

−∞ otherwise.

Thus, h(γ λN ) = sup{hλN
n : n ∈ Z}.

The process (hk
n : n ∈ Z), k = 0, 1, . . . , λN , has some lateral drift depending on

the directions of the track-exchanges � j . We will modify it in order to relate it to the
growth process of [19]. The track above the regular block is transported by Uk through
the regular block, and thus all � j contributing to Uk are in the same direction (either
all move from right to left, or from left to right). Let (dk : k ≥ 0) be given by d0 = 0
and

dk+1 =

⎧
⎪⎨

⎪⎩

dk + 1 if βk > ξ,

dk if βk = ξ,

dk − 1 if βk < ξ,
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and set Hk
n = hk

n+dk
. The term dk is included to compensate for the asymmetric lateral

drift induced by the directions of the track-exchanges (see Fig. 11). Thus Hk
n has a

roughly symmetric evolution as n increases. The rest of the proof is devoted to the
process Hk = (Hk

n : n ∈ Z), k = 0, 1, . . . , λN .
We introduce some notation to be used in the proof. A sequence R = (Rn : n ∈

Z) ∈ (Z∪{−∞})Z is termed a range. The height in column n of R is the value Rn , and
the height of the range is sup{Rn : n ∈ Z}. For two ranges R1, R2, we write R1 ≤ R2

if R1
n ≤ R2

n for n ∈ Z. The maximum of a family of ranges is the pointwise supremum
sequence. The range R is called regular if

|Rn+1 − Rn| ≤ 1, n ∈ Z. (6.6)

The mountain at a point (n, r) ∈ Z
2 is defined to be the range M(n, r) = (M(n, r)l :

l ∈ Z) given by

M(n, r)l =
{

r − |n − l| + 1 for l �= n,

r for l = n.

Note that mountains have flat tops of width 3 centred at (n, r), and sides with gradient
±1. The covering of a range R is the range C(R) formed as the union of the mountains
of each of its elements:

C(R) = max{M(n, Rn) : n ∈ Z}.

We note that R ≤ C(R) with sometimes strict inclusion, and also that R and C(R)

have the same height. If R is regular, the heights of R and C(R) in any given column
differ by at most 1. See Fig. 14 for an illustration of these notions and their role in the
evolution of H. We return to the study of (Hk).

Lemma 6.6 There exists η = η(ε) ∈ (0, 1), and a family of independent Bernoulli
random variables (Y k

n : n ∈ Z, 0 ≤ k < λN ) with common parameter η such that

Hk+1
n ≤ max{C(Hk)n, Hk

n + Y k
n }, n ∈ Z, 0 ≤ k < λN . (6.7)

Fig. 14 Left One step in the evolution of H. The initial range H0 has only one occupied column (black).
The blue/black squares form the mountain of the black column. The red square is added at random. Right
One step in the evolution of the Xk (or Hk when regular). The black squares are the configuration at step
k, the blue squares are the additions at time k + 1 due to the covering, and the red squares are the random
additions
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The (Y k
n ) are random variables used in the star–triangle transformations, and the

probability space may be enlarged to accommodate these variables.
The proof of the lemma is deferred until later in the section. Meanwhile, we continue

the proof of (6.5) by following that of [19, Prop. 3.7]. Let (Y k
n ) be as in Lemma 6.6,

and let Xk := (Xk
n : n ∈ Z), k = 0, 1, . . . , λN , be the Markov chain given as follows.

(a) The initial value X0 is the regular range given by

X0
n =

{
N for n ∈ [−ρN , ρN ] ,

N + ρN − |n| for n /∈ [−ρN , ρN ] .

(b) For k ≥ 0, conditional on Xk , the range Xk+1 is given by

Xk+1
n = max{Xk

n−1, Xk
n + Y k

n , Xk
n+1}, n ∈ Z. (6.8)

We show first, by induction, that Xk ≥ Hk for all k. It is immediate that X0 is
regular, and that X0 ≥ H0. Suppose that Xk ≥ Hk . By (6.8), each range Xk is regular
and

Xk+1 ≥ C(Xk) ≥ C(Hk). (6.9)

By (6.7), Hk+1
n > C(Hk)n only if Y k

n = 1. Since Xk
n ≥ Hk

n , we have in this case that

Xk+1
n ≥ Xk

n + 1 ≥ Hk
n + 1 = Hk+1

n . (6.10)

By (6.9)–(6.10), Xk+1 ≥ Hk+1, and the induction step is complete.
The Xk are controlled via the following lemma.

Lemma 6.7 ([19]) There exist λ, N0 ∈ N, depending on η only, such that

P

(
max

n
XλN

n ≤ λN
)

≥ 1 − ρe−N , ρ ∈ N, N ≥ N0.

Sketch proof This follows that of [19, Lemma 3.11]. A small difference arises through
the minor change of the initial value X0, but this is covered by the inclusion of smaller-
order terms in [19, eqn (3.31)]. ��

Let λ and N0 be given thus. For N ≥ N0 and ω0 ∈ EN ,

P
(
h(γ λN ) ≤ λN

∣∣ω0) ≥ P

(
max

n
XλN

n ≤ λN
)

≥ 1 − ρe−N .

This concludes the proof of Proposition 6.4.

Proof of Lemma 6.6 Let k ≥ 0 and let ω be a configuration on Gk . Let γ be an
open path on Gk that visits no vertex within distance 2 of the sides of Gk and with
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h(γ ) ≤ N + k. We abuse notation slightly by defining Hk and Hk+1 as in the proof
of Proposition 6.4 with γ and Uk+1(γ ) instead of γ k and γ k+1, respectively. That is,

Hk
n = h(γ ∩ Cn+dk ), Hk+1

n = h(Uk+1(γ ) ∩ Cn+dk+1), n ∈ Z.

We will prove that there exists a family of independent Bernoulli random variables
(Yn : n ∈ Z), independent of ω, with some common parameter η = η(ε) > 0 to be
specified later, such that

Hk+1
n ≤ max{C(Hk)n, Hk

n + Yn}, n ∈ Z. (6.11)

Once this is proved, the i.i.d. family (Y k
n : n ∈ Z, 0 ≤ k < λN ) may be constructed

step by step, by applying the above to the pair ωk, γ k for 0 ≤ k < λN . By Lemma
6.5, the assumptions on γ are indeed satisfied by each γ k . By the independence of
(Yn : n ∈ Z) and ω above, the family (Y k

n : n, k) satisfies the conditions of the lemma.
It remains to prove (6.11) for fixed k. If βk = ξ , no track-exchange takes place,

hence Hk+1 = Hk and (6.11) holds. Suppose βk �= ξ . Without loss of generality we
may suppose βk > ξ , so that dk+1 = dk +1 and the track-exchanges in the application
of U := Uk+1 are all from left to right. To simplify notation we shall assume dk = 0.

Equation (6.11) is proved in two steps. First, we will show that

Hk+1
n ≤ max{Hk

n−i − |i | + 1 : i ∈ Z}. (6.12)

This equation is a weaker version of (6.11) in which each Yn is replaced by 1.
We prove (6.12) by analysing the individual track-exchanges of which U is com-

posed. For k ≤ j ≤ N + k, let � j = � j+1 ◦ · · · ◦ �N+k . Thus, �N+k is the identity,
�k = U , and � j−1 = � j ◦ � j . Recall that the diamond graph is bipartite, with the
primal and dual vertices as vertex-sets. A vertex vn,r is said to be contained in a range
R if r ≤ Rn . A set of vertices is contained in R if every member is thus contained.

Let the sequence (L j : j = N + k, N + k − 1, . . . , k) of ranges be defined
recursively as follows. First, LN+k = Hk . We obtain L j−1 from L j by increasing its
height in certain columns: for each primal vertex vn, j contained in L j , the heights in
columns n +1 and n +2 increase to j +1 and j , if not already at that height or greater.

We claim that � j (γ ) is contained in L j for N + k ≥ j ≥ k, which is to say that

h(� j (γ ) ∩ Cn) ≤ L j
n, n ∈ Z. (6.13)

The above holds for j = N + k by the definition of LN+k , and we proceed by
(decreasing) induction on j as follows. The path � j−1(γ ) is obtained by applying � j

to � j (γ ), as illustrated in Fig. 11. Possible increases in column heights are marked
in blue. Since the black vertices in Fig. 11 are contained in L j , the blue ones are
contained in L j−1. This concludes the induction.

Therefore, U (γ ) = �k(γ ) is contained in Lk , and hence inequality (6.12) follows
once we have proved that

Lk
n+1 ≤ max{Hk

n−i − |i | + 1 : i ≥ −1}. (6.14)
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Fig. 15 An illustration of the sequence L̃(0, s) j beginning with the initial column L̃(0, s)N+k = �(0, s).
This column is unchanged up to and including j = s, and then it evolves as illustrated

This we shall do by observing that the sequence (L j ) is, in a certain sense, additive
with respect to its initial state. We think of LN+k as a union of columns, each of whose
evolutions may be followed individually.

Let r, s ∈ Z be such that s ≤ N + k and r + s is even, so that vr,s is a primal
vertex. Let �(r, s) be the range comprising a single column of height s at position r .
Consider the sequence (L̃(r, s) j ) with the same dynamics as (L j ) but with initial state
L̃(r, s)N+k = �(r, s). The evolution of L̃(r, s) j is illustrated in Fig. 15. We have that
L̃(r, s) j = �(r, s) for N + k ≥ j ≥ s and, for s > j ≥ k,

L̃(r, s) j
m =

⎧
⎪⎨

⎪⎩

−∞ if m < r or m > r + s − j + 1,

s if m = r,

s − (m − r) + 2 if r < m ≤ r + s − j + 1.

The range L j is obtained by combining the contributions of the columns of Hk , in that

L j = max{L̃(r, Hk
r ) j : r ∈ Z}, N + k ≥ j ≥ k. (6.15)

A rearrangement of the above with j = k implies (6.14); (6.12) follows by extending
the maximum in (6.14) over i ∈ Z.

Let n ∈ Z be such that

Hk
n + 1 ≤ max

{
Hk

n−i − |i | + 1 : i ∈ Z \ {0}}. (6.16)

Then (6.12) implies Hk+1
n ≤ C(Hk)n , whence (6.11) holds for this particular value

of n.
It remains to prove (6.11) when (6.16) fails. Assume n does not satisfy (6.16), so

that (6.12) implies Hk+1
n ≤ Hk

n + 1. We shall prove that

Hk+1
n ≤ Hk

n + Yn, (6.17)

where the Yn are independent Bernoulli random variables with respective parameters

ηk(n) := pπ−ξ+αn pπ−βk+ξ

pξ−αn pβk−ξ

, (6.18)

[with pθ given in (2.3)], and which are independent of ω.
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Fig. 16 The environment
around vn,l . By (6.19), the black

blocks contain Hk . The range
Ll , and hence the path �l (γ ), is
contained in the aggregate range
shown. The height in Cn+1
increases only if the red block
appears when applying �l

Let l = Hk
n . We first analyse the action of �l = �l+1 ◦ · · · ◦ �N+k , and then that

of �l .
The vertex vn,l is necessarily primal. Since (6.16) fails,

Hk
n−i ≤ l + |i | − 1, i ∈ Z \ {0}.

Since each vn−i,l+|i |−1 is a dual vertex, we have the strengthened inequality

Hk
n−i ≤ l + |i | − 2, i ∈ Z \ {0}. (6.19)

See Fig. 16 for an illustration of the environment around vn,l .
By (6.13), and (6.19) substituted into (6.15),

h(�l(γ ) ∩ Cn−i ) ≤ Ll
n−i ≤ l + i, i ≥ −1. (6.20)

Note that �l is the final track-exchange with the potential to add vertices to the path
at height l + 1. Hence, Hk+1

n = l + 1 only if vn+1,l+1 is contained in �l−1(γ ), or,
equivalently, only if the height in Cn+1 increases to l + 1 when applying �l to �l(γ ).

By (6.20) with i = 0, 1, the only cases in which this may happen are those of the
third and sixth lines of Fig. 11 (with vn,l the black vertex) (see Fig. 17 for a more
detailed illustration of the third case). Moreover, the height in Cn+1 increases only
if the secondary outcome occurs. In both cases, the secondary outcome occurs with
probability ηk(n) if the edge e = 〈vn,l , vn+1,l+1〉 is open, and does not occur if e
is closed. We therefore provide ourselves with a Bernoulli random variable Yn , with
parameter ηk(n), for use in the former situation. We have that Hk+1

n = Hk
n + 1 only

if Yn = 1, and (6.17) follows.
Let A = ξ − αn and B = βk − ξ . By (6.18),

ηk(n) = pπ−A pπ−B

pA pB
= sin( 1

3 A) sin( 1
3 B)

sin( 1
3 [π − A]) sin( 1

3 [π − B])

= cos( 1
3 [A − B]) − cos( 1

3 [A + B])
cos( 1

3 [A − B]) − cos( 1
3 [2π − A − B]) =: g(A, B).
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Fig. 17 The third case of Fig. 11. If the dashed edge in the initial configuration (left) is open then, with
probability ηk (n), the resulting configuration is that on the right side

By assumption, B > 0, and so by (4.7),

ε ≤ A ≤ A + B ≤ π − ε. (6.21)

There exists c(ε) > 0 such that, subject to (6.21),

cos( 1
3 [A − B]) ≥ cos( 1

3 [A + B]) ≥ cos( 1
3 [2π − A − B]) + c(ε).

Therefore,

η := sup
{
g(A, B) : ε ≤ A ≤ A + B ≤ π − ε

}

satisfies η < 1, and this concludes the proof of the lemma. ��

Proof of Lemma 6.5 We sketch this. Since B(ρN , N ) ⊆ D0, we have that γ 0 ⊆ D0.
It suffices to show that, for 0 ≤ k < λN and γ an open path in Dk, Uk does not break
γ and Uk(γ ) ⊆ Dk+1.

By considering the individual track-exchanges of which Uk is composed, it may be
seen that � j (γ ) is an open path contained in Dk+1 for all j (with � j = � j+1 ◦ � j+1
as in the last proof). In considering how � j (γ ) is obtained from � j+1(γ ), it is useful
to inspect the different cases of Fig. 11, and in particular those involving blue points.
The path may be displaced laterally and, during the sequential application of track-
exchanges, the drift may be extended laterally as it is propagated downwards. The
shapes of the Di have been chosen in such a way that � j (γ ) is contained in Dk+1 for
all j . The argument is valid regardless of the direction of � j . ��

6.3 Vertical crossings

Proposition 6.8 Let δ = 1
2 p4

π−ε ∈ (0, 1
2 ). There exists cN = cN (δ) > 0 satisfying

cN → 1 as N → ∞ such that

Pα,β

(
Cv[B(4N , δN )]) ≥ cN Pα,ξ

(
Cv[B(N , N )]), N ∈ N.
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Fig. 18 The transformation Vk moves sN−k upwards by N units

Proof The notation of Sect. 6.1 will be used. Let N ∈ N, and, as in Sect. 6.2, we will
work with a vertical strip of width 2M of the graph G = Gα,β̃ . For this proof we take
M = 5N . For k ∈ {0, 1, . . . , N − 1}, set

Vk = �2N−k ◦ · · · ◦ �N−k+1. (6.22)

The map Vk exchanges the track at level N − k with the N tracks immediately above
it. The sequential action of V0, V1, . . . , VN−1 moves the regular block upwards track
by track, see Fig. 18.

Let ω0 be a configuration on G0 := Gα,β̃ chosen according to its canonical measure
Pα,β̃ , and let

Gk = Vk−1 ◦ · · · ◦ V0(Gα,β̃),

ωk = Vk−1 ◦ · · · ◦ V0(ω
0),

Dk = {
vx,y ∈ (Gk)� : |x | ≤ N + 2k + y, 0 ≤ y ≤ 2N

}
,

hk = sup
{
h ≤ N : ∃x1, x2 ∈ Z with vx1,0

Dk ,ωk←−−→ vx2,h
}
.

That is, hk is the greatest height of an open path of Gk starting in {vx,0 : x ∈ Z} and
lying in the trapezium Dk . The law P of the sequence (ωk : k ∈ N0) is a combination
of the law of ω0 with those of the star–triangle transformations comprising the Vk .

The box B(N , N ) is contained in D0, and lies entirely in the regular block of G0.
The box B(4N , δN ) contains the part of DN between heights 0 and δN , and lies in
the irregular section of G N (δ < 1

2 is given in the proposition). Therefore, it suffices
to prove the existence of cN = cN (δ) > 0 such that cN → 1 and

P(hN ≥ δN ) ≥ cN P(h0 ≥ N ). (6.23)

The remainder of this section is devoted to the proof of (6.23).
Let (�i : i ∈ N) be independent random variables with common distribution

P(� = 0) = 2δ, P(� = −1) = 1 − 2δ. (6.24)
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The �i are independent of all random variables used in the construction of the perco-
lation processes of this paper. We set

Hk = H0 +
k∑

i=1

�i , (6.25)

where H0 is an independent copy of h0, independent of the �i . The inequalities
≤st,≥st refer to stochastic ordering.

Lemma 6.9 Let 0 ≤ k < N. If hk ≥st Hk then hk+1 ≥st Hk+1.

Inequality (6.23) is deduced as follows. Evidently, h0 ≥st H0 and, by Lemma 6.9,
hN ≥st H N . In particular,

P(hN ≥ δN ) ≥ P(H N ≥ δN ).

Since h0 and H0 have the same distribution,

P(hN ≥ δN )

P(h0 ≥ N )
≥ P(H N ≥ δN )

P(H0 ≥ N )

≥ P(H N ≥ δN | H0 ≥ N ) =: cN (δ).

Now, (Hk) is a random walk with mean step-size 2δ −1. By the law of large numbers,
cN → 1 as N → ∞. In addition, cN > 0, and (6.23) follows. ��
Proof of Lemma 6.9 Let 0 ≤ k < N . We apply Vk to Gk , and study the effects of the
track-exchanges in Vk . For N − k ≤ j ≤ 2N − k, let � j = � j ◦ · · · ◦ �N−k+1, and
let Dk

j be the subgraph of � j (Gk)� induced by vertices vx,y with 0 ≤ y ≤ 2N and

|x | ≤

⎧
⎪⎨

⎪⎩

N + 2k + y + 2 if y ≤ j,

N + 2k + y + 1 if y = j + 1,

N + 2k + y if y > j + 1.

(6.26)

The Dk
j increase with j , and Dk ⊆ Dk

N−k, Dk
2N−k ⊆ Dk+1.

Let ωk
j = � j (ω

k) and

hk
j = sup

{
h ≤ N : ∃x1, x2 ∈ Z with vx1,0

Dk
j ,ω

k
j←−−→ vx2,h

}
,

noting that

hk ≤ hk
N−k, hk+1 ≥ hk

2N−k . (6.27)

First, we prove that, for N − k ≤ j < 2N − k,

hk
j+1 ≥ hk

j − 1, (6.28)
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hk
j+1 ≥ hk

j if hk
j �= j + 1, (6.29)

P(hk
j+1 ≥ h | hk

j = h) ≥ 2δ if h = j + 1. (6.30)

Fix j such that N − k ≤ j < 2N − k. Let γ be an ωk
j -open path of � j (Gk), lying

in Dk
j , with one endpoint at height 0 and the other at height hk

j .

By consideration of Fig. 11, � j+1(γ ) is a ωk
j+1-open path contained in Dk

j+1. The
lower endpoint of γ is not affected by � j+1. The upper endpoint is affected only if it
is at height j + 1, in which case its height decreases by at most 1 (see Fig. 12). This
proves (6.28) and (6.29), and we turn to (6.30).

Let P j be the set of paths γ of � j (Gk), contained in Dk
j , with one endpoint at

height 0, the other endpoint at height h(γ ) and all other vertices with heights between
1 and h(γ ) − 1.

We perform a preliminary computation. Let γ, γ ′ ∈ P j . We write γ ′ < γ if
γ ′ �= γ, h(γ ′) = h(γ ), and γ ′ contains no edge strictly to the right of γ within
{vx,y : |x | ≤ M, 0 ≤ y ≤ h(γ )}. Note that

hk
j = sup

{
h(γ ) : γ ∈ P j , γ is ωk

j -open
}
,

and denote by � = �(ωk
j ) the ωk

j -open path of P j that is the minimal element of

{γ ∈ P j : h(γ ) = hk
j , γ is ωk

j -open} with respect to the order <. Thus, � is the

leftmost path of P j reaching height hk
j .

We have that

{�(ωk
j ) = γ } = {γ is ωk

j -open} ∩ Nγ , γ ∈ P j , (6.31)

where Nγ is the decreasing event that:

(a) there is no γ ′ ∈ P j with h(γ ′) > h(γ ), all of whose edges not belonging to γ

are ωk
j -open,

(b) there is no γ ′ < γ with h(γ ′) = h(γ ), all of whose edges not belonging to γ are
ωk

j -open.

Note that Nγ is independent of the event {γ is ωk
j -open}.

Let F be a set of edges of � j (Gk), disjoint from γ , and let CF be the event that
every edge in F is ωk

j -closed. Let P
k
j denote the marginal law of ωk

j , and pe the

edge-probability of the edge e of � j (Gk). By (6.31) and the Harris–FKG inequality,

P(CF | � = γ ) = P
k
j (� = γ | CF )

P
k
j (� = γ )

P
k
j (CF )

= P
k
j (Nγ | CF )

P
k
j (Nγ )

P
k
j (CF )

≥ P
k
j (CF ) =

∏

f ∈F

(1 − p f ), (6.32)
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Fig. 19 Three star–triangle transformations contributing to � j+1, from left to right. The dashed edges
are closed, the bold edges are open. The first and last passages occur with probability 1, and the second
with probability pe1 pe4/(1 − pe1 )(1 − pe4 )

where we have extended the domain of P to include the intermediate subsequence of
ωk = ωk

N−k, ω
k
N−k+1, . . . , ω

k
2N−k = ωk+1.

Let γ ∈ P j with h(γ ) = j +1 and suppose �(ωk
j ) = γ . Without loss of generality,

we may suppose that � j+1, applied to � j (Gk), goes from left to right; a similar
argument holds otherwise.

Let z = vx, j+1 denote the upper endpoint of γ and let z′ denote the other endpoint
of the unique edge of γ leading to z. Either z′ = vx+1, j or z′ = vx−1, j . In the second
case, it is automatic as in Fig. 12 that h(� j+1(γ )) ≥ j + 1.

Assume that z′ = vx+1, j , as illustrated in Fig. 19. Let F = {e1, e2, e3, e4} where

e1 = 〈vx, j+1, vx−1, j+2〉, e2 = 〈vx−1, j+2, vx−2, j+1〉,
e3 = 〈vx−2, j+1, vx−1, j 〉, e4 = 〈vx−1, j , vx, j+1〉,

are the edges of the face of � j (Gk) to the left of z. By definition of P j , F is disjoint
from γ . By studying the three relevant star–triangle transformations contributing to
� j+1 as illustrated in Fig. 19, we find as in Fig. 8 that

P
(
h(� j+1(γ )) ≥ j + 1

∣
∣ � = γ

) ≥ pe1 pe4

(1 − pe1)(1 − pe4)
P(CF | � = γ )

≥ pe1 pe4

(1 − pe1)(1 − pe4)
P(CF ),

by (6.32).
In summary, we have that

P(hk
j+1 ≥ hk

j | � = γ ) ≥ pe1 pe4

(1 − pe1)(1 − pe4)

∏

f ∈F

(1 − p f )

= pe1 pe4(1 − pe2)(1 − pe3)

≥ p4
π−ε = 2δ, (6.33)

by (2.4). The proof of (6.30) is complete.
It remains to show that (6.28)–(6.30) imply the lemma. This may seem obvious,

but, since the sequence (hk
j ) j is not Markovian, some technical details are needed.

Suppose hk ≥st Hk . We shall bound (stochastically) the sequence (hk
j ) j by a

Markov chain, as follows. Let (X j : j = N − k, . . . , 2N − k) be an inhomogeneous
Markov chain taking values in N0, with transition probabilities given by
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X j+1 = X j if X j �= j + 1,

P(X j+1 = x | X j = j + 1) =
{

2δ if x = j + 1,

1 − 2δ if x = j.

By (6.28)–(6.30), for all j,

P(hk
j+1 ≥ x | hk

j = y) ≥ P(X j+1 ≥ x | X j = z), x, y, z ∈ N0, z ≤ y.

Let X N−k = Hk . By the induction hypothesis, Hk ≤st hk ≤ hk
N−k , whence

X2N−k ≤st hk
2N−k as in [19, Sect. 3.3] (by [19, Lemma 3.7], iterated). Moreover

X2N−k − X N−k =st �k+1. Therefore,

hk+1 ≥ hk
2N−k ≥st X2N−k =st Hk + �k+1 = Hk+1,

as claimed. ��

7 Proof of Theorem 3.1: the general case

Let G ∈ G (ε, I ). By SGP(I ), there exist two families (s j : j ∈ Z) and (ti : i ∈ Z)

of tracks forming a square grid of G. A star–triangle transformation is said to act
‘between sk and s0’ if the three faces of G� on which it acts are between sk and s0.
(Recall from Sect. 4.5 that such faces may belong to sk but not to s0). A path is said
to be between s0 and sk if it comprises only edges between s0 and sk (that is, edges
belonging to faces between s0 and sk). A vertex of G� is said to be ‘just below’ s0 if
it is adjacent to s0 and between s−1 and s0.

Let EN = EN (G) be the event that there exists an open path γ on G such that:

(a) γ is between s0 and sN ,
(b) the endpoints of γ are just below s0,
(c) one endpoint is between t−2N and t−N and the other between tN and t2N .

There is no further condition on the horizontal extent of γ . We claim that there exists
δ = δ(ε, I ) > 0, independent of G and N , such that

PG(EN ) ≥ δ, N ≥ 1. (7.1)

Since γ contains a horizontal crossing of the domain D = D(t−N , tN ; s0, sN ), (7.1)
implies

PG
[
Ch(t−N , tN ; s0, sN )

] ≥ δ.

Since δ depends only on ε and I , the corresponding inequality holds for crossings of
translations of D , and also with the roles of the (s j ) and (ti ) reversed. By Proposition
4.2, the claim of the theorem (together with the stronger statement (3.1)) follows from
(7.1), and we turn to its proof.
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The method is as follows. Consider the graph G between s0 and sN . By making a
finite sequence of star–triangle transformations between sN and s0, we shall move the
s j downwards in such a way that the section of the resulting graph, lying both between
t−2N and t2N and between the images of s0 and sN , forms a box of an isoradial square
lattice. By Corollary 6.2, this box is crossed horizontally with probability bounded
away from 0. The above star–triangle transformations are then reversed to obtain a
horizontal crossing of D in the original graph G.

Since a finite sequence of star–triangle transformations changes G at only finitely
many places, we may retain the track-notation s j , ti throughout their application.
We say s j , s j+1, . . . , s j+k are adjacent between tN1 and tN2 if there exists no track-
intersection in the domain D(tN1 , tN2; s j , s j+k) except those on s j , s j+1, . . . , s j+k .
The proof of the next lemma is deferred until later in this section.

Lemma 7.1 There exists a finite sequence (Tk : 1 ≤ k ≤ K ) of star–triangle trans-
formations, each acting between sN and s0, such that, in TK ◦ · · · ◦ T1(G), the tracks
s0, . . . , sN are adjacent between t−2N and t2N .

Let (Tk : 1 ≤ k ≤ K ) be given thus, and write G0 = G and Gk = Tk ◦· · ·◦T1(G0).
Let Sk be the inverse transformation of Tk , as in Sect. 5.1, so that Sk(Gk) = Gk−1.
Since the track notation is retained for each Gk , the event EN is defined on each
such graph. By a careful analysis of its action, we may see that Sk preserves EN for
k = K , K − 1, . . . , 1. The details of the argument (which requires no estimate of the
value of K ) are provided in the next paragraph.

Let 1 ≤ k ≤ K and let γ be an open path of Gk satisfying (a)–(c) above. Since
Tk acts between sN and s0, it does not move s0, and Sk(γ ) has the same endpoints as
γ . Moreover the three faces of (Gk)� on which Sk acts are either all strictly below
sN , or two of them are part of sN and the third is above. In the first case Sk(γ ) may
differ from γ but is still contained between s0 and sN ; in the second case Sk does not
influence γ . In conclusion, Sk(γ ) is an open path on Gk−1 that satisfies (a)–(c).

Since the canonical measure is conserved under a star–triangle transformation, the
remark above implies

PG(EN ) ≥ PG K (EN ). (7.2)

It remains to prove a lower bound for PG K (EN ).
Write (ri : i ∈ Z) for the sequence of all tracks other than the s j , indexed and

oriented according to their intersections with s0, with r0 = t0, and including the ti in
increasing order. Let β j be the transverse angle of s j , and π +αi that of ri . Since each
ri intersects each s j , the vectors α = (αi : i ∈ Z),β = (β j : j ∈ Z) satisfy (4.7), and
hence Gα,β is an isoradial square lattice satisfying BAP(ε). By Corollary 6.2, there
exists δ′ = δ′(ε) > 0 such that Gα,β satisfies the box-crossing property BXP(δ′).

The track-system of G K inside D(t−2N , t2N ; s0, sN ) is isomorphic to a rectangle
of Z

2, and comprises the horizontal tracks s0, s1, . . . , sN , crossed in order by those ri

between (and including) t−2N and t2N . Thus, G K agrees with Gα,β inside this domain.
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Consider the following boxes of (G K )�:

V1 = D(t−2N , t−N ; s0, sN ),

V2 = D(tN , t2N ; s0, sN ),

H = D(t−2N , t2N ; s0, sN ).

By the Harris–FKG inequality,

PG K (EN ) ≥ PG K

[
Cv(V1) ∩ Cv(V2) ∩ Ch(H)

]

≥ PG K [Cv(V1)]PG K [Cv(V2)]PG K [Ch(H)]. (7.3)

The boxes V1, V2 in (G K )� may be regarded as boxes in G�
α,β , and have height N

and width at least N . Similarly, the box H has height N and width at most 4I N . By
BXP(δ′) and (7.3), there exists δ = δ(ε, I ) > 0 such that PG K (EN ) ≥ δ, and (7.2) is
proved.

Proof of Lemma 7.1 We shall prove the existence of a finite sequence (Tk : 1 ≤
k ≤ K ) of star–triangle transformations, each acting between s1 and s0, such that, in
TK ◦ · · · ◦ T1(G), the tracks s0, s1 are adjacent between t−2N and t2N . The general
claim follows by iteration.

In this proof we work with the graph G only through its track-set T . Tracks will
be viewed as arcs in R

2. A point of T is the intersection of two tracks, and we write
P for the set of points.

Let N be the set of tracks that are not parallel to s0. Any r ∈ N intersects both s0
and s1 exactly once, and we orient such r in the direction from its intersection with s0
to that with s1.

An oriented path γ on the track-set T is called increasing if it uses only tracks in
N and it conforms to their orientations. For points y1, y2 ∈ P , we write y1 ≥ y2 if
there exists an increasing path γ from y2 to y1. By the properties of T given in Sect.
4.2, the relation ≥ is reflexive, antisymmetric, and transitive, and is thus a partial order
on P .

Let Rk be the closed region of R
2 delimited by t−k, tk, s0, s1, illustrated in Fig. 20.

A point y ∈ P is coloured black if it is strictly between s0 and s1, and in addition
y ≥ y′ for some y′ in R := R2N or on its boundary. In particular, any point in the
interior of R or of its left/right boundaries is black. We shall see that the black points
are precisely those to be ‘moved’ above s1 by the star–triangle transformations Tk .

We prove first that the number B of black points is finite. By BAP(ε), the number of
tracks intersecting R is finite. Let y+ (respectively, y−) be the rightmost (respectively,
leftmost) point on s1 that is the intersection of s1 with a track r that intersects R. We
claim that

if r ∈ T has a black point, it intersects s1 between y− and y+. (7.4)

Assume (7.4) for the moment. Since a black point is the unique intersection of two
tracks, and since (7.4) implies that there are only finitely many tracks with black points,
we have that B < ∞.
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Fig. 20 The black points are indicated. The path γ from y2 to y1 is drawn in red. The points y and y1 are
maximal, and are not comparable. The region R is shaded

Fig. 21 Left The oriented track rl+1 crosses rl from right to left, in contradiction of the choice of γ as
highest. Right The track rl+1 crosses rl from left to right

We prove (7.4) next. Let y be a black point. If y ∈ R, (7.4) follows immediately.
Thus we may suppose, without loss of generality, that y is strictly to the left of R.
There exists an increasing path γ , starting at a point on the left boundary of R and
ending at y. Take γ to be the ‘highest’ such path. Let (rl : 1 ≤ l ≤ L) be the tracks
used by γ in order, where L < ∞. We will prove by induction that, for l ≥ 1,

rl intersects s1 between y− and y+. (7.5)

Clearly (7.5) holds with l = 1 since r1 intersects R.
Suppose 1 ≤ l < L and (7.5) holds for rl , and let z = rl ∩ rl+1. If rl+1 intersects

R (before or after z), (7.5) follows trivially. Suppose rl+1 does not intersect R. There
are two possibilities: either rl+1 crosses rl from right to left, or from left to right. The
first case is easily seen to be impossible, since it contradicts the choice of γ as highest.
Hence, rl+1 crosses rl from left to right (see Fig. 21). The part of the oriented track
rl+1 after z is therefore above the corresponding part of rl . Since rl+1 intersects s1
after z, and does not intersect R, the intersection of rl+1 and s1 lies between y− and
y+, and the induction step is complete.
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In conclusion rL intersects s1 between y+ and y−. Let r denote the other track
containing y. By the same reasoning, r intersects rL from left to right, whence it also
intersects s1 between y+ and y−. This concludes the proof of (7.4), and we deduce
that B < ∞.

If B = 0, there is no point in the interior of either R or its left/right sides, whence
s0, s1 are adjacent between t−2N and t2N .

Suppose B ≥ 1. We will show that B may be reduced by one by a star–triangle
transformation acting between s0 and s1, and the claim of the lemma will follow by
iteration.

Since B < ∞, there exists a black point that is maximal in the partial order ≥, and
we pick such a point y = r1 ∩ r2. By the maximality of y, the tracks r1, r2, s1 form
a track-triangle. By applying the star–triangle transformation to this track-triangle as
in Fig. 9, the point y is moved above s1, and the number of black points is decreased.
This concludes the proof of Lemma 7.1. ��

8 Arm exponents

8.1 Outline of proof

We recall the isoradial embedding G0,π/2 of the homogeneous square lattice, with
associated measure denoted P0,π/2.

Proposition 8.1 Let k ∈ {1, 2, 4, . . . }, ε > 0, and I ∈ N. There exist constants
ci = ci (k, ε, I ) > 0 and N0 = N0(k, ε, I ) ∈ N such that, for N ≥ N0, n ≥
c0 N0, G ∈ G (ε, I ), and any vertex u of G�,

c1P0,π/2[Ak(N , n)] ≤ PG [Au
k (N , n)] ≤ c2P0,π/2[Ak(N , n)].

Part (a) of Theorem 3.4 is an immediate consequence; part (b) is discussed in Sect.
8.6.

Sections 8.2–8.5 are devoted to the proof of Proposition 8.1. In Sect. 8.2 is presented
a modified definition of the arm-events, adapted to the context of an isoradial graph.
This is followed by Proposition 8.2, which asserts in particular the equivalence of the
two types of arm-events. The proof of Proposition 8.1 follows, using the techniques
of the proof of Theorem 3.1; the proof for isoradial square lattices is in Sect. 8.3, and
for general graphs in Sect. 8.4. Section 8.5 contains the so-called separation theorem,
together with the proof of Proposition 8.2.

For the remainder of this section, ε > 0 and I ∈ N shall remain fixed. Unless
otherwise stated, constants ci > 0, N0 ∈ N depend only on ε, I , and on the number k
of arms in the event under study. We use the expression ‘for n > N sufficiently large’
to mean: for n ≥ c0 N and N > N0.

8.2 Arm-events

Let G ∈ G (ε, I ), k ∈ {1, 2, 4, . . . }, and let s be a track and u be a vertex of G�,
adjacent to s. For n ≥ N , we define the ‘modified arm-event’ Ãu,s

k (N , n) as follows.
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For simplicity of notation, we omit explicit reference to u and s when no ambiguity
results, but in such a case we say that Ãk(N , n) is ‘centred at u’.

A certain technical assumption will be useful in Sect. 8.3, when applying star–
triangle transformations to isoradial square lattices. Recall the notation ��

u(n) from
Sect. 4.4, and the constant cd of (4.2). We shall frequently require a primal vertex u
and dual vertex u∗ of G� to satisfy the appropriate inclusion of the following:

Cu ⊆ ��
u(3c2

dn), C∗
u∗ ⊆ ��

u∗(3c2
dn). (8.1)

The modified arm-events Ãk(N , n) = Ãu,s
k (N , n) are defined thus:

(i) For k = 1, Ã1(N , n) is the event that there exist vertices x1 ∈ ��
u(N ) and

y1 /∈ ��
u(n), both adjacent to s, on the same side of s as u and satisfying (8.1),

such that x1 ←→ y1.
(ii) For k = 2, Ã2(N , n) is the event that there exist vertices x1, x∗

1 ∈ ��
u(N ) and

y1, y∗
1 /∈ ��

u(n), all adjacent to s and on the same side of s as u, such that:
(a) x1, x∗

1 and y1, y∗
1 satisfy (8.1),

(b) x1 ←→ y1 and x∗
1 ←→∗ y∗

1 .
(iii) For k = 2 j ≥ 4, Ãk(N , n) is the event that there exist vertices x1, . . . , x j ∈

��
u(N ) and y1, . . . , y j /∈ ��

u(n), all adjacent to s and on the same side of s as u,
such that:
(a) each xi and yi satisfies (8.1),
(b) xi ←→ yi and xi /←→ xi ′ for i �= i ′.

The following proposition contains three statements, the third of which relates the
modified arm-events to those of Sect. 3. All arm-events Ak and Ãk considered here are
centred at the same vertex u ∈ G�. The event Ãk(N , n) is to be interpreted in terms
of any of the tracks to which u is adjacent.

Proposition 8.2 There exist constants ci > 0 such that, for n > N sufficiently large,

PG [Ak(N , 2n)] ≤ PG [Ak(N , n)] ≤ c1PG [Ak(N , 2n)], (8.2)

PG [Ak(N , n)] ≤ PG [Ak(2N , n)] ≤ c2PG[Ak(N , n)], (8.3)

c3PG [Ak(N , n)] ≤ PG [ Ãk(N , n)] ≤ c4PG [Ak(N , n)]. (8.4)

By (8.4), for n > N sufficiently large, there exist constants c5, c6 > 0 such that, if
u is adjacent to the tracks s and t ,

c5PG [ Ãu,s
k (N , n)] ≤ PG [ Ãu,t

k (N , n)] ≤ c6PG [ Ãu,s
k (N , n)].

The proof of Proposition 8.2 is deferred to Sect. 8.5. It relies on the so-called separation
theorem, an account of which may be found in that section.
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8.3 Proof of Proposition 8.1: Isoradial square lattices

Let G be an isoradial square lattice satisfying the bounded-angles property BAP(ε),
and let u be a vertex of G�. As usual, the horizontal tracks are labelled (s j : j ∈ Z)

and the vertical tracks (ti : i ∈ Z).
As explained in Sect. 4.6, G = Gα,β for angle-sequences α = (αi : i ∈ Z),β =

(β j : j ∈ Z) satisfying (4.7). We label α and β in such a way that u = v0,0, whence
u is adjacent to t0 and s0 (here we do not require v0,0 to be primal). The horizontal
track at level 0, initially s0, may change its label through track-exchanges. Let ξ be
such that α and the constant sequence (ξ) satisfy BAP(ε), (4.7). All arm-events in the
following are centred at u = v0,0.

Lemma 8.3 There exist constants ci > 0 such that, for n > N sufficiently large,

c1Pα,ξ [Ak(N , n)] ≤ PG[Ak(N , n)] ≤ c2Pα,ξ [Ak(N , n)].

Proof Let N , n ∈ N be picked (later) such that N and n/N are large, and write
M = !3c2

dn". For 0 ≤ m ≤ M , let Gm be the isoradial square lattice with angle-
sequences α̃ = (αi : −4M ≤ i ≤ 4M) and β̃

m
, with

β̃m
j =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ξ if − m ≤ j < m,

β j+m if − (m + M) ≤ j < −m,

β j−m if m ≤ j < m + M,

ξ if j < −(m + M) or j ≥ m + M.

(8.5)

Thus Gm is obtained from G by taking the horizontal tracks s j ,−M ≤ j < M ,
splitting them with a band of height 2m, and filling the rest of space with horizontal
tracks having transverse angle ξ . By the choice of ξ , each Gm satisfies BAP(ε).
Moreover, inside ��

u(M), G0 is identical to G and G M is identical to Gα,ξ .
For 0 ≤ m < M , let

Um = (�m+1 ◦ · · · ◦ �m+M ) ◦ (�−(m+1) ◦ · · · ◦ �−(m+M)),

where the � j are given in Sect. 5.3. Under Um , the track at level m + M is moved
to the position directly above that at level m − 1, and the level −(m + M + 1) track
below the level −m track. We have that

Um(Gm) = Gm+1.

Let ω0 be a configuration on G0 such that Ãu,s0
k (N , n) occurs. Set j = 1 when

k = 1, and j = k/2 when k ≥ 2. There exist vertices x1, . . . , x j , y1, . . . , y j and,
when k = 2, x∗

1 , y∗
1 , all lying in the set {vm,0 : m ∈ Z} of vertices of G�, such that:

(a) xi
G0,ω0←−−→ yi and xi /

G0,ω0←−−−→ xi ′ for i �= i ′,
(b) x∗

1
G0,ω0←−−→∗ y∗

1 , when k = 2,
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(c) d�(v0,0, xi ) ≤ N , d�(v0,0, yi ) > n,
(d) d�(v0,0, x∗

1 ) ≤ N , d�(v0,0, y∗
1 ) > n, when k = 2,

(e) Cxi ⊆ ��
u(M) and, when k = 2, C∗

x∗
1

⊆ ��
u(M).

As we apply UM−1 ◦ · · · ◦ U0 to (G0, ω0), the images of paths from each of xi , yi ,
and x∗

1 , y∗
1 retain their starting points.

Each ��
u(r) has a diamond shape. By an argument similar to that of Lemma 6.5,

for 0 ≤ m ≤ M ,

Cxi (ω
m) ⊆ ��

u(M + 2m), C∗
x∗

1
(ωm) ⊆ ��

u(M + 2m).

Moreover, since Cxi (ω
m) and C∗

x∗
1
(ωm) do not extend to the left/right boundaries of

Gm , these clusters neither break nor merge with one another. Therefore,

(a) xi
G M ,ωM←−−−→ yi and xi /

G M ,ωM←−−−−→ xi ′ for i �= i ′,
(b) x∗

1
G M ,ωM←−−−→∗ y∗

1 , when k = 2,

so that ωM ∈ Ak(cd N , c−1
d n). (A related discussion may be found in [20, Sect. 3.2].)

In conclusion, there exists c3 > 0 such that

PG [Ak(N , n)] ≤ c3PG0 [ Ãk(N , n)] by (8.4)

≤ c3PG M [Ak(cd N , c−1
d n)].

Since the intersection of any Gm with A (cd N , c−1
d n) is contained in ��

u(M), we
have by the discussion after (8.5) that there exists c4 > 0 with

PG [Ak(N , n)] ≤ c3Pα,ξ [Ak(cd N , c−1
d n)]

≤ c3c4Pα,ξ [Ak(N , n)],

by (8.2) and (8.3), iterated. The second inequality of Lemma 8.3 is proved.
Turning to the first inequality, let ωM be a configuration on G M such that Ãk(N , n)

occurs (the arm event is defined in terms of v0,0 and the horizontal track at level 0).
It may be seen as above that ω0 = UM−1 ◦ · · · ◦ U0(ω

M ) is a configuration on G0

contained in Ak(cd N , c−1
d n). Furthermore,

Pα,ξ [Ak(N , n)] ≤ c3PG M [ Ãk(N , n)] ≤ c3c4PG [Ak(N , n)].

The proof is complete. ��
Corollary 8.4 There exist constants ci > 0 such that, for n > N sufficiently large
and any isoradial square lattice Gα,β ∈ G (ε, I ),

c1P0,π/2[Ak(N , n)] ≤ Pα,β [Ak(N , n)] ≤ c2P0,π/2[Ak(N , n)]. (8.6)
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Proof If α is a constant vector (α0), (8.6) follows by Lemma 8.3 with ξ = α0 + π/2.
For α non-constant, we apply Lemma 8.3 with ξ = β0, thus bounding the arm-event

probabilities for Gα,β by those for Gα,β0 . Now, Gα,β0 is of the type analysed above,
and the conclusion follows. ��

8.4 Proof of Proposition 8.1: the general case

Let G ∈ G (ε, I ), and let (s j : j ∈ Z) and (ti : i ∈ Z) be two families of tracks
forming a square grid of G, duly oriented. Write (ri : i ∈ Z) for the sequence of all
tracks other than the s j , indexed and oriented according to their intersections with s0,
with r0 = t0, and including the ti in increasing order. Let β j be the transverse angle
of s j , and π + αi that of ri . Since each ri intersects each s j , the vectors α = (αi :
i ∈ Z),β = (β j : j ∈ Z) satisfy (4.7), and hence Gα,β is an isoradial square lattice
satisfying BAP(ε). As in Lemma 7.1, we may retain the labelling of tracks throughout
the proof. Let u be the vertex adjacent to s0 and t0, below and respectively left of these
tracks. All arm-events in the following are centred at the vertex u and expressed in
terms of the track s0.

Lemma 8.5 There exist constants c1, c2 > 0 such that, for n > N sufficiently large,

c1Pα,β [Ak(N , n)] ≤ PG [Ak(N , n)] ≤ c2Pα,β [Ak(N , n)].

This lemma, together with Corollary 8.4, implies Proposition 8.1 for arm events
centred at u. By the square-grid property, any vertex is within bounded distance of
one of the tracks (s j : j ∈ Z). This allows us to extend the conclusion to arm events
centred at any vertex.

Proof Let n ∈ N and M = !cdn". By Lemma 7.1, applied in two stages above
and below s0, there exists a finite sequence R+ of star–triangle transformations such
that, in G M := R+(G), the tracks s−M , . . . , sM are adjacent between t−M and tM .
Moreover, no star–triangle transformation in R+ involves a rhombus lying in s0. The
sequence R+ has an inverse sequence denoted R−. Note that G M agrees with Gα,β

inside Bn + u ⊆ ��
u(M).

Let ω be a configuration on G belonging to Ãk(N , n), and let vertices xi , yi be given
accordingly. Consider the image configuration ωM = R+(ω0) on G M . By considering
the action of the transformation R+, we may see that

(a) xi
G M ,ωM←−−−→ yi and xi /

G M ,ωM←−−−−→ xi ′ for i �= i ′,
(b) x∗

1
G M ,ωM←−−−→∗ y∗

1 , when k = 2.

Taken together with (4.2), this implies that ωM ∈ Ak(cd N , c−1
d n). Therefore, there

exist ci > 0 such that

PG [Ak(N , n)] ≤ c3PG[ Ãk(N , n)] by (8.4)

≤ c3PG M [Ak(cd N , c−1
d n)]
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= c3Pα,β [Ak(cd N , c−1
d n)]

≤ c3c4Pα,β [Ak(N , n)] by (8.2) and (8.3),

and the second inequality of the lemma is proved.
Conversely, let ωM be a configuration on G M belonging to Ãk(N , n). By applying

the inverse transformation, we obtain the configuration ω = R−(ωM ) on G. As above,

Pα,β [Ak(N , n)] = PG M [Ak(N , n)]
≤ c3PG M [ Ãk(N , n)] by (8.4)

≤ c3PG [Ak(cd N , c−1
d n)]

≤ c3c4PG [Ak(N , n)] by (8.2) and (8.3).

This concludes the proof of the first inequality of the lemma. ��

8.5 Proof of Proposition 8.2

This section is devoted to the proof of Proposition 8.2, and is not otherwise relevant to
the rest of the paper. The two main ingredients of the proof are the separation theorem
(Theorem 8.6) and the equivalence of metrics, (4.2).

8.5.1 Separation theorem

The so-called separation theorem was proved by Kesten in [30] (and elaborated in [33])
in the context of homogeneous site percolation. The theorem is set more generally in
[20, Thm 3.5], and this gives rise to the current version, Theorem 8.6, to be used in the
proof of Proposition 8.2. The formal statement of Theorem 8.6 requires some notation
from [20,30,33] which, for completeness, is presented below.

Let G ∈ G (ε, I ). By Theorem 3.1 (see also (3.1)), PG satisfies the box-crossing
property BXP(δ) with δ = δ(ε, I ). Let σ be a colour sequence of length k. The event
Aσ (N , n) requires the existence of a number of ‘arms’ crossing an annulus. Roughly
speaking, the separation theorem implies that the extremities of these arms may be
taken to be distant from one another.

We shall consider open and (dual) open∗ crossings between the interior and exterior
boundaries of A (N , n). For clarity, we concentrate first on the behaviour of crossings
at their exterior endpoints. Let η ∈ (0, 1). A primal (respectively, dual) η-exterior-
fence is a set � of connected open (respectively, open∗) paths comprising the union
of:

(i) a crossing of A (N , n) from its interior to its exterior boundary, with exterior
endpoint denoted ext(�),

together with certain further paths which we describe thus under the assumption that
ext(�) = (n, y) is on the right side of ∂ Bn :

(ii) a vertical crossing of the box [n, (1 + √
η)n] × [y − ηn, y + ηn],

(iii) a connection between the above two crossings, contained in ext(�) + B√
ηn .
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Fig. 22 A primal η-exterior-fence �1 with exterior endpoint e1, and a dual η-exterior-fence �2

If ext(�) is on a different side of ∂ Bn , the event of condition (ii) is replaced by an
appropriately rotated and translated event. This definition is illustrated in Fig. 22.

One may similarly define an η-interior-fence by considering the behaviour of the
crossing near its interior endpoint. We introduce also the concept of a primal (respec-
tively, dual) η-fence; this is a union of an open (respectively, open∗) crossing of
A (N , n) together with further paths in the vicinities of both interior and exterior
endpoints along the lines of the above definitions.

An η-landing-sequence is a sequence of closed sub-intervals J = (Ji : i =
1, 2, . . . , k) of ∂ B1, taken in anticlockwise order, such that each Ji has length η,
and the minimal distance between any two intervals, and between any interval and a
corner of B1, is greater than 2

√
η. We shall assume that

0 < k(η + 2
√

η) < 8, (8.7)

so that η-landing-sequences exist.
Let η, η′ satisfy (8.7), and let J (respectively, J ′) be an η-landing-sequence

(respectively, η′-landing-sequence). Write AJ,J ′
σ (N , n) for the event that there exists

a sequence of η-fences (�i : i = 1, 2, . . . , k) in the annulus A (N , n), with colours
prescribed by σ , such that, for all i , the interior (respectively, exterior) endpoint of �i

lies in N Ji (respectively, n J ′
i ). These definitions are illustrated in Fig. 23.

We now state the separation theorem. The proof is omitted, and may be constructed
via careful readings of the appropriate sections of [30,33].

Theorem 8.6 (Separation theorem) For η0 > 0 and a colour sequence σ , there exist
constants c > 0 and N1 ∈ N depending only on η0, σ, ε, and I such that: for all
η, η′ ≥ η0 satisfying (8.7), all η-landing-sequences J and η′-landing-sequences J ′,
and all N ≥ N1 and n ≥ 2N, we have

PG [AJ,J ′
σ (N , n)] ≥ cPG [Aσ (N , n)].
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Fig. 23 The event AJ,J
σ (N , n) with σ = (1, 0, 1) and η-landing-sequence J . Each crossing �i is an

η-fence with exterior endpoint ei ∈ n Ji

8.5.2 Proof of Proposition 8.2

Inequalities (8.2) and (8.3) follow from Theorem 8.6 and the box-crossing property.
The proof, omitted here, is essentially that of [33, Prop. 12], and uses the extension of
paths by judiciously positioned box-crossings. We turn therefore to the proof of (8.4).

Consider the first inequality of (8.4) (the second is easier to prove). The idea is as
follows. Suppose that Ak(N , n) occurs (together with some additional assumptions).
One may construct a bounded number of open or open∗ box-crossings in order to obtain
Ãk(N , n). These two arm-events are given in terms of annuli defined via different
metrics—the Euclidean metric and d�, respectively–but the radii of these annuli are
comparable by (4.2).

Assume n/N ≥ 2, and let

M = c−1
d N , m = cdn, (8.8)

with cd as in (4.2). Let k ∈ {1, 2, 4, . . . }, σ = (1, 0, 1, 0, . . .), and consider the
corresponding arm-event Ak(M, m). All constants in the following proof may depend
on k, ε, and I but, unless otherwise specified, on nothing else. All arm-events that
follow are assumed centred at the vertex u adjacent to a track s. By translation, we
may assume that u is the origin of R

2. In order to gain some control over the geometry
of s, we may assume, without loss of generality, that its transverse angle β satisfies
β ∈ [ 1

4π, 3
4π ].

Let η = η(k) > 0 satisfy (8.7), and let J be an η-landing sequence of length k,
entirely contained in {1}×[0, 1], with J1 being the lowest interval. Henceforth assume
M ≥ N1, where N1 is given in Theorem 8.6 with η0 = η. By that theorem, there exists
c0 > 0 such that

PG [AJ,J
k (M, m)] ≥ c0PG [Ak(M, m)] . (8.9)
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Fig. 24 Left The event HM for k = 4. The red paths are open, the blue paths are open∗. The thin coloured

paths are parts of the interior fences of AJ,J
k (M, m). Right The event Km for k = 2, together with parts of

the exterior fences of the arm-event. The track s intersects the open/open∗ crossings just above the points
labelled xi and yi

Let (M, vi ) be the lower endpoint of M Ji , and (M, wi ) the upper. Let HM be the
event that, for i ∈ {1, 2, . . . , k}, the following crossings of colour σi exist:

(a) a horizontal crossing of [−wi , M] × [vi , wi ],
(b) a vertical crossing of [−wi ,−vi ] × [−wi , wi ],
(c) for i odd, a horizontal crossing of [−wi , wi ] × [−wi ,−vi ],
(d) for i even, a horizontal crossing of [−wi , wk] × [−wi ,−vi ].
If k ≥ 4, we require also an open∗ vertical crossing of [vk, wk]× [−wk, 0]. The event
HM depends only on the configuration inside BM , and is illustrated in Fig. 24.

Let (m, vi ) be the lower endpoint of m Ji , and (m, wi ) the upper. Let Km be the
event that, for i ∈ {1, 2, . . . , k}, the following crossings of colour σi exist:

(a) a horizontal crossing of [m, (m + wi )] × [vi , wi ],
(b) a vertical crossing of [(m + vi ), m + wi ] × [−(m + wi ), wi ],
(c) a horizontal crossing of [−(m + wi ), m + wi ] × [−(m + wi ),−(m + vi )],
(d) if i is odd, a vertical crossing of [−(m +wi ),−(m +vi )]×[−(m +wi ), m +wi ],
(e) if i is even, a vertical crossing of [−(m +wi ),−(m +vi )]×[−(m +wi ), m +wk].
We require in addition the following:

(f) when k = 1, an open∗ circuit in A (2m, 3m),
(g) when k = 2, an open circuit in A (2m, 3m),
(h) when k ≥ 2, an open∗ circuit in A (m + vk, m + wk).

The event Km depends only on the configuration inside A (m, 3m), and is illustrated
in Fig. 24.

Set j = 1 when k = 1, and j = k/2 when k ≥ 2. We claim that, on HM ∩ Km ∩
AJ,J

k (M, m), there exist vertices x1, . . . , x j , y1, . . . , y j and, when k = 2, x∗
1 , y∗

1 , all
adjacent to s and on the same side of s as u, such that:

(a) xi ∈ BM , yi /∈ Bm and, when k = 2, x∗
1 ∈ BM , y∗

1 /∈ BM ,
(b) xi ←→ yi and xi /←→ xi ′ for i �= i ′,
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(c) x∗
1 ←→∗ y∗

1 when k = 2,
(d) Cxi ⊆ B3m and, when k = 2, C∗

x∗
1

⊆ B3m .

This claim holds as follows. The crossings in the definition of HM (respectively, Km)
may be regarded as extensions of the arms of AJ,J

k (M, m) inside BM (respectively,
outside Bm). Let λ be the straight line with inclination β ∈ [ 1

4π, 3
4π ], passing through

u. Since s corresponds to a chain of rhombi with common sides parallel toλ, it intersects
λ only in the edge of G� crossing s and containing u. Therefore, the part of s to the
left of λ necessarily intersects all the above extensions. These intersections provide
the xi , yi and, when k = 2, x∗

1 , y∗
1 . The remaining statements above are implied by

the definitions of the relevant events.
By (4.2), (8.1), and (8.8),

HM ∩ Km ∩ AJ,J
k (M, m) ⊆ Ãk(cd M, c−1

d m).

By the extended Harris–FKG inequality of [30, Lemma 3] (see also [33, Lemma 12]),

PG
(
HM ∩ Km ∩ AJ,J

k (M, m)
) ≥ PG(HM )PG(Km)PG [AJ,J

k (M, m)].

The events HM and Km are given in terms of crossings of boxes with aspect-ratios
independent of M and m. Therefore, there exists c1 > 0 such that, for m and M
sufficiently large, PG(HM ) ≥ c1 and PG(Km) ≥ c1. In conclusion, by (8.8), there
exists c5 > 0 such that, for n/N ≥ 2,

PG [ Ãk(N , n)] ≥ PG(HM )PG(Km)PG [AJ,J
k (M, m)]

≥ c2
1c0PG [Ak(M, m)] by (8.9)

≥ c2
1c0c5PG [Ak(cd M, c−1

d m)]
= c2

1c0c5PG [Ak(N , n)] by (8.8)

where the third inequality holds by iteration of (8.2)–(8.3). The first inequality of (8.4)
follows.

The second inequality is simpler. Set M = cd N and m = c−1
d n. By (4.2),

Ãk(c
−1
d M, cdm) ⊆ Ak(M, m). By iteration of (8.2)–(8.3), there exists c6 > 0 such

that, for m > M sufficiently large,

PG [ Ãk(c
−1
d M, cdm)] ≤ PG [Ak(M, m)]

≤ c6PG [Ak(c
−1
d M, cdm)].

This concludes the proof of Proposition 8.2.

8.6 Proof of Theorem 3.4(b)

Theorem 3.4(b) follows from Theorem 3.4(a) and the following proposition.
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Proposition 8.7 Let G ∈ G . If either ρ or η exists for G, then ρ, η, and δ exist for G,
and they satisfy ηρ = 2 and 2ρ = δ + 1.

Kesten [29] proved this statement for the special case of homogeneous bond per-
colation on the square lattice, using arguments that rely heavily on estimates from the
earlier [28]. As noted in these papers, the conclusions may be extended to periodic
models satisfying the box-crossing property. They may in fact be extended still further,
to planar percolation processes (G, P) embedded in R

2 that satisfy the following:

(a) a uniform upper bound on the lengths of both primal and dual edges,
(b) a (strictly positive) lower and upper bound on the density of vertices of G,
(c) P and the measure P

∗ of the dual process have the box-crossing property,
(d) the existence of a constant c > 0 such that, for n sufficiently large and any vertices

u, v,

c−1
P
(
rad(Cu) > n

) ≤ P
(
rad(Cv) > n

) ≤ cP
(
rad(Cu) > n

)
.

Conditions (a) and (b) are satisfied by any isoradial graph with the bounded-angles
property. By Theorem 3.1 and Proposition 8.1, conditions (c) and (d) are satisfied
by isoradial graphs with the bounded-angles property and the square-grid property.
Proposition 8.7 follows for general G ∈ G .

No major changes are required in adapting the proofs of [28,29], and we include
no further details here.
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