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Abstract Consider an n × n Hermitian random matrix with, above the diagonal,
independent entries with α-stable symmetric distribution and 0 < α < 2. We establish
new bounds on the rate of convergence of the empirical spectral distribution of this
random matrix as n goes to infinity. When 1 < α < 2 and p > 2, we give vanishing
bounds on the L p-norm of the eigenvectors normalized to have unit L2-norm. On the
contrary, when 0 < α < 2/3, we prove that these eigenvectors are localized.

Keywords Random matrices · Stable distribution · Eigenvector delocalization ·
Wegner estimate
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1 Introduction

We consider an array (Xi j )1≤i≤ j of i.i.d. real random variables and set, for i >
j, Xi j = X ji . Then, for each integer n ≥ 1, we may define the random symmetric
matrix:

X = (Xi j )1≤i, j≤n .
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886 C. Bordenave, A. Guionnet

The eigenvalues of the matrix X are real and are denoted by λn(X) ≤ · · · ≤ λ1(X).
In the large n limit, the spectral properties of this matrix are now well understood
as soon as Xi j has at least two finite moments see e.g. [3–5,8,15,28] for reviews, or
[20,21,23,27,29] for recent results on universality. The starting point of this analysis is
the Wigner’s semi-circular law, which asserts that if the variance of Xi j is normalized
to 1, then the empirical spectral measure

1

n

n∑

i=1

δλi (X)/
√

n

converges almost surely for the weak convergence topology to the semi-circular lawμ2
with support [−2, 2] and density f2(x) = 1

2π

√
4 − x2. As already advertised, many

more properties of the spectrum are known. For example, if the entries are centered
and have a subexponential tail, then, see [18,19], for any p > 2 and ε > 0,

max
{‖v‖p : v eigenvector of X with ‖v‖2 = 1

}

is O(n1/p−1/2+ε), where ‖v‖p = (∑n
i=1 |vi |p

) 1
p . This implies that the eigenvectors

are strongly delocalized.
When the second moment is no longer finite, much less is known and the picture

is different. Let 0 < α < 2 and assume for simplicity that

P(|X11| ≥ t) ∼t→∞ t−α. (1)

Then, we are not anymore in the basin of attraction of Wigner’s semi-circular law:
now the empirical spectral measure

1

n

n∑

i=1

δλi (X)/n1/α

converges a.s. for the weak convergence topology to a new limit law μα , see [7] and
also [6,10]. It is known that μα is symmetric, has full support, a bounded density
fα which is analytic outside a finite set of points. Moreover, fα(0) has an explicit
expression and as x goes to ±∞, fα(x) ∼ (α/2)|x |−α−1. Finally, as α goes to 2, μα
converges for the weak convergence topology to μ2. One of the difficulty of this type
of random matrices is the lack of an exactly solvable model as in the Gaussian Unitary
Ensemble or the Gaussian Orthogonal Ensemble in the finite variance case.

In the present paper, we give a rate of local convergence to μα and investigate the
behavior of the eigenvectors of X . In a fascinating article [12], Bouchaud and Cizeau
have made some prediction for the eigenvectors of X . They argue that the situation
is different for 0 < α < 1 and 1 < α < 2. They quantify the localized nature of a
vector v with ‖v‖2 = 1 by two scalars: ‖v‖4 and ‖v‖1. If ‖v‖4 = o(1) the vector is
said to be delocalized, if ‖v‖4 	= o(1) but ‖v‖1 
 1 then v is weakly delocalized (we
might also say weakly localized), while if ‖v‖1 = O(1) then the vector is localized.
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Localization and delocalization of eigenvectors for heavy-tailed random matrices 887

Now suppose that v is an eigenvector of n−1/αX associated to an eigenvalue λ. For
1 < α < 2, we have proved that all but o(n) of the eigenvectors are delocalized (this
disproved the prediction of [12]). Our result is in fact stronger as we can show that the
L∞ norm of these vectors goes to zero, which insures that the L p norm goes to zero
for all p > 2 and to infinity for all p < 2 by duality.

For 0 < α < 1, Bouchaud and Cizeau predict that with high probability, if |λ| < Eα
then v is weakly delocalized, while if |λ| > Eα, v is localized. It is reasonable to predict
that Eα goes to 0 as α ↓ 0 and goes to infinity as α ↑ 2. It is not clear whether this
threshold Eα depends on the choices of the norms L1 and L4 to quantify localization
and delocalization. We are far from proving the existence of such a threshold within
the spectrum. Nevertheless, for 0 < α < 2/3, we have proved that there exists Eα > 0
such that if |λ| ≥ Eα then a localization occurs : the mass of v is carried by at most
n1−δα entries, for some δα > 0.

This heavy-tailed matrix model is in some sense similar to the adjacency matrix of
Erdős-Rényi graphs with parameter p/n since its entries are of order one only with
probability of order 1/n. In the regime where p is going to infinity faster than n2/3, this
adjacency matrices were shown to belong to the university class of Wigner random
matrices [16,17]. If pn/(log n)c goes to infinity for some constant c, the delocalization
of eigenvectors was also proved in these articles. In the related model of the adjacency
matrix of uniformly sampled d-regular graphs on n vertices, the delocalization of
eigenvectors has been studied in Dumitriu and Pal [14] and Tran et al. [30]. It was also
conjectured by Sarnak that as soon as d ≥ 3, this model also belongs to the university
class of Wigner random matrices.

1.1 Main results

Let us now be more precise. Throughout the paper, the array (Xi j )1≤i≤ j will be real
i.i.d. symmetric α-stable random variable such that for all t ∈ R,

E exp(i t X11) = exp(−wα|t |α),

for some 0 < α < 2 and wα = π/(sin(πα/2)�(α)). With this choice, the random
variables (Xi j ) are normalized in the sense that (1) holds. The assumption that the
random variables follow an α-stable law should not be crucial for our results, it will
however simplify substantially some proofs. We define the hermitian matrix

An = a−1
n X with an = n1/α.

The eigenvalues of the matrix A are denoted by λn(A) ≤ · · · ≤ λ1(A). The empirical
spectral measure of A is defined as

μA = 1

n

n∑

i=1

δλi (A) = 1

n

n∑

i=1

δλi (X)/n1/α .

123



888 C. Bordenave, A. Guionnet

The resolvent of A will be denoted by

R(z) = (A − z)−1,

where z ∈ C+ = {z ∈ C : Im(z) > 0}. The Cauchy–Stieltjes transform of μA is
easily recovered from the resolvent:

gμA(z) =
∫

1

x − z
μA(dx) = 1

n
tr(R(z)). (2)

From [7,10], for any fixed interval I ⊂ R, a.s. as n → ∞,

μAn (I )

|I | − μα(I )

|I | → 0, (3)

where |I | denotes the length of the interval I . As in [20,21], the opening move for
proving statements about the eigenvectors of A is to reinforce the convergence (3)
for small intervals whose length vanishes with n. We will express our main results in
terms of a scalar ρ depending on α:

ρ =

⎧
⎪⎨

⎪⎩

1
2 if 8

5 ≤ α < 2
α

8−3α if 1 < α < 8
5

α
2+3α if 0 < α ≤ 1.

The scalar ρ depends continuously on α and is non-decreasing. Roughly speaking we
are able to prove that the convergence (3) holds for all intervals of size larger than
n−ρ+o(1). A precise statement is the following.

Theorem 1.1 (Local convergence of the empirical spectral distribution) Let 0 < α <

2. There exists a finite set Eα ⊂ R such that if K ⊂ R\Eα is a compact set and δ > 0,
the following holds. There are constants c0, c1 > 0 such that for all integers n ≥ 1, if
I ⊂ K is an interval of length |I | ≥ c1n−ρ(log n)2, then

|μA(I )− μα(I )| ≤ δ|I |,

with probability at least 1 − 2 exp
(−c0nδ2|I |2).

In the forthcoming Theorem 3.5, we will give a slightly stronger form of Theorem 1.1:
we will allow the parameter δ to depend explicitly on n and |I | and the logarithmic
correction in front of n−ρ will be reinforced. The proof of Theorem 1.1 will be based
on estimates of the diagonal coefficients of the resolvent matrix R(z) as z = E + iη
gets close to the real axis with η = n−ρ+o(1). For technical reasons, we have only been
able to establish (3) for intervals outside the finite set Eα which contains 0. The same
type of result should hold for all sufficiently large intervals. In Proposition 2.1, we
will give an upper bound on μA(I ) (i.e. a Wegner’s estimate) which will be valid for
all intervals of size larger than n−(α+2)/4. The threshold ρ ≤ 1

2 may be optimal, even
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Localization and delocalization of eigenvectors for heavy-tailed random matrices 889

though for Wigner’s matrices it is simply one, since the spectral measure of heavy
tails random matrices fluctuates like O(n−1/2) rather than like O(n−1) for Wigner’s
matrices (see [9,26]).

Theorem 1.1 will have the following corollary on the delocalization of the eigen-
vectors.

Theorem 1.2 (Delocalization of eigenvectors) Let 1 < α < 2. There exist a finite set
Eα ⊂ R and a constant c > 0 such that if K ⊂ R\Eα is a compact set, with probability
tending to 1,

max{‖vk‖∞ : 1 ≤ k ≤ n, λk(A) ∈ K } ≤ n−ρ(1− 1
α
)(log n)c, (4)

where v1, . . . , vn is an orthogonal basis of eigenvectors of A associated to the eigen-
values λ1(A), . . . , λn(A).

Notice that for p > 2, ‖v‖p ≤ ‖v‖2/p
2 ‖v‖1−2/p∞ . Hence, Theorem 1.2 implies that

the L p-norm of any eigenvector associated to an eigenvalue in K goes in probability
to 0 as soon as p > 2. Similarly, from ‖v‖2

2 ≤ ‖v‖1‖v‖∞, we have a lower bound of

order nρ(1− 1
α
)+o(1) on the L1-norm of the eigenvectors. Note that our estimate becomes

trivial as α ↓ 1 and give upper bound of order n−1/4+o(1) as α ↑ 2. For any κ > 0,
in the proof of Theorem 1.2, we will see that by increasing suitably c, the probability
that the event (4) holds is at least 1 − n−κ .

We now present our result on localization of eigenvectors. We are not able to prove
localization for all eigenvectors but only for ”typical” eigenvectors associated to an
eigenvalue in a small interval. More precisely, we consider v1, . . . , vn an orthogonal
basis of eigenvectors of A associated to the eigenvalues λ1(A), . . . , λn(A). If I is an
interval of R, we define �I as the set of eigenvectors whose eigenvalues are in I .
Then, if �I is not empty, for 1 ≤ k ≤ n, set

WI (k) = n

|�I |
∑

v∈�I

〈v, ek〉2,

where, throughout this paper,

|�I | = nμA(I ) = NI (5)

is the cardinal of �I .WI (k)/n is the average amplitude of the k-th coordinate of
eigenvectors in �I . By construction, the average amplitude of WI is 1:

1

n

n∑

k=1

WI (k) = 1.

If the eigenvectors in�I are localized and I contains few eigenvalues, then we might
expect that for some i,WI (k) 
 1, while for most of the others WI (k) = o(1). More
quantitatively, fix 0 < δ < 1 and assume that for some 0 < κ < 1 and 0 < ε < 1
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890 C. Bordenave, A. Guionnet

1

n

n∑

k=1

WI (k)
κ ≤ ε,

then, setting J = {k : WI (k) ≥ (δ−1ε)−
1

1−κ }, we find

1

n

∑

k∈J

WI (k) ≥ 1 − δ.

In particular, all but a proportion δ of the mass of WI is carried by a set J of cardinal at

most |J | ≤ n(δ−1ε)
1

1−κ . If ε goes to 0 with n, this indicates a localization phenomenon.
With this in mind, we can state our result.

Theorem 1.3 (Localization of eigenvectors) Let 0 < α < 2/3, 0 < κ < α/2 and ρ
be as above. There exists Eα,κ such that for any compact K ⊂ [−Eα,κ , Eα,κ ]c, there
are constants c0, c1 > 0 and for all integers n ≥ 1, if I ⊂ K is an interval of length
|I | ≥ n−ρ(log n)2,

1

n

n∑

k=1

WI (k)
α
2 ≤ c1|I |κ ,

with probability at least 1 − 2 exp
(−c0n|I |4).

This result is interesting when I = [E − n−ρ+o(1), E + n−ρ+o(1)] is a small
neighborhood around some large E . Then it shows that for any 0 < κ < α/2, the
mass of the eigenvectors corresponding to eigenvalues around E is concentrated around
order n1−2ρκ/(2−α) entries as long as |E | is large enough. The proof of Theorem 1.3
will be done by showing that

1

n

n∑

k=1

(ImR(E + iη)kk)
α
2 (6)

vanishes if η = n−ρ+o(1) even though that

1

n

n∑

k=1

ImR(E + iη)kk

stays bounded away from 0. This phenomenon will have an interpretation in terms of
a random self-adjoint operator introduced in [10] which is, in some sense, the limit
of the matrices A. We will prove that the imaginary part of its resolvent vanishes at
E + iη, with η = o(1) and |E | large enough, while its expectation does not, see
Theorem 5.1. Note that if 0 < η � n−1, then we necessarily have that for almost all
E, ImR(E + iη)kk converges to 0. The fact that our estimate |I | ≥ n−ρ gets worse
as α goes to 0 is an artifact of the proof : our rate of convergence of R(E + iη)kk to
its limit gets worse as α gets small. It is however intuitively clear that the localization
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Localization and delocalization of eigenvectors for heavy-tailed random matrices 891

should be stronger when α is smaller. However, in the forthcoming Theorem 5.9, we

will prove that, for any 0 < α < 2/3, the expression (6) goes to 0 if η = n− 1
6 . Finally,

it is worth to notice that computing the fractional moments of the resolvent matrix as
a way to prove localization is already present in the literature on random Schrödinger
operators, see e.g. [2].

The remainder of the paper is organized as follows. In Sect. 2 we establish general
upper bounds on NI defined by (5). Section 3 contains the proof of Theorem 1.1.
Section 4 is devoted to the proof of Theorem 1.2. The arguments developed in these
two sections are based on ideas from the seminal work of Erdős, Schlein, Yau (see
e.g. [18–20]) concerning Wigner’s matrices with enough moments, as well as on the
analytic approach of heavy tailed matrices as initiated in [6,7]. However, there was a
technical gap due to the lack of concentration inequalities, as well as of simple loop
equations, that hold for finite second moment Wigner matrices. A few of the required
new estimates due to the specific nature of heavy tailed matrices are contained in the
appendix on concentration inequalities and stable laws. In Sect. 5 we prove Theorem
1.3, which is based on the representation of the asymptotic spectral measure given
in [10] and a new fixed point argument which allows to prove the vanishing of the
imaginary part of the resolvent in the regime α ∈ (0, 2/3).

The whole article is quite technical, but hopefully shall be useful for further local
study of the spectrum of random matrices which do not belong to the universality class
of Wigner’s semi-circle law.

2 Upper bound on the spectral counting measure

For η > 0 and E ∈ R, we set I = [E − η, E + η]. The goal of this section is to
provide a rough upper bound on NI when η is large enough, where NI was defined
by (5). Let

γ =
(

1

2
+ 1

α

)−1

. (7)

Proposition 2.1 (Upper bound on counting measure) Let 0 < α < 2. There exist

c, c′ > 0 depending only on α such that if η ≥ n− α+2
4 , then, for all integers n, for all

t ≥ c,

P
(
NI ≥ tnηγ

) ≤ c exp(−c′t
2

2−α )+ 2n exp(−c′t
4

2+α ).

This bound will later be refined in the forthcoming Proposition 3.6. The upper
bound on the eigenvalues counting measure implies an upper bound for the trace of
the resolvent.

Corollary 2.2 (Trace of resolvent) Let 0 < α < 2 and z = E + iη ∈ C+. There

exists c > 0 depending only on α such that if η ≥ n− α+2
4 , then, for all integers n,
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892 C. Bordenave, A. Guionnet

EtrR(z)R∗(z) ≤ c(log n)
2+α

4 nη− 4
2+α .

Proof By the spectral theorem

trR(z)R∗(z) =
n∑

j=1

|λ j (A)− z|−2.

Let η be the imaginary part of z. Define I0 = [E − η, E + η] and for integer k ≥
0, Ik+1 = [E−2k+1η, E+2k+1η]\[E−2kη, E+2kη]. By construction, if λ j (A) ∈ Ik

then |λ j (A) − z|−2 ≤ 2−2k+1η−2. Therefore, if NIk = nμA(Ik) is the number of
eigenvalues in Ik , then

trR(z)R∗(z) ≤
∑

k≥0

2−2k+1η−2 NIk . (8)

We write Ik = I +
k ∪I −

k , where I ±
k = R±∩Ik . To estimate E[NI ±

k
] we apply Proposition

2.1. Namely it yields that for each interval I of length η ≥ n− α+2
4 , for any τ ≥ c

E[NI ] =
∞∫

0

P (NI ≥ t) dt

≤ τnηγ + nηγ
∞∫

τ

P
(
NI ≥ tnηγ

)
dt

≤ nηγ

⎛

⎝τ +
∞∫

τ

(
exp(−c′t

2
2−α )+ 2n exp(−c′t

4
2+α )

)
⎞

⎠ dt

≤ c0nηγ
(
τ + n exp(−c′τ

4
2+α )

)
,

for some finite constant c0 > 0 and τ ≥ 1. Therefore, taking τ of order (log n)
2+α

4 ,
we deduce that there exists some finite constant c1 > 0 such that

E[NI ] ≤ c1(log n)
2+α

4 nηγ .

Therefore, we deduce from (8) that

EtrR(z)R∗(z)≤2c1(log n)
2+α

4
∑

k≥0

2−2kη−2n(η2k)γ ≤2c1(log n)
2+α

4 nη− 4
2+α
∑

k≥0

2− 4k
2+α.

��
The rest of this section is devoted to the proof of Proposition 2.1.
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2.1 A geometric upper bound

In this paragraph, we recall a general upper bound for NI that is due to Erdős–Schlein–
Yau [20], namely if we let A(k) be the principal minor matrix of A where the k-th row
and column have been removed, W (k) be the vector space generated by the eigenvectors
of A(k) corresponding to eigenvalues at distance greater than η from E , we have

NI ≤ 4η2 a2
n

n∑

k=1

dist(Xk,W (k))−2 . (9)

Let us prove (9). We start with the resolvent formula,

R(z)kk = −
(

z − a−1
n Xkk + a−2

n 〈Xk, R(k)Xk〉
)−1

, (10)

where Xk = (Xk1, . . . , Xkk−1, Xkk+1, . . . , Xkn) ∈ R
n−1 and R(k) = (A(k) − z)−1.

Identifying the real and imaginary part, we get, using the fact that z and the eigen-
values of R(k) are in C+,

ImR(z)kk ≤
(

Im
(

z − a−1
n Xkk + a−2

n 〈Xk, R(k)Xk〉
))−1

≤ a2
n〈Xk, ImR(k)Xk〉−1.

Let (λ(k)i )1≤i≤n−1 and (u(k)i )1≤i≤n−1 be the eigenvalues and eigenvectors of A(k).
Choosing z = E + iη, we have the spectral decomposition

ImR(k) =
n−1∑

i=1

η

(λ
(k)
i − E)2 + η2

u(k)i u(k)i

∗
.

If |λ(k)i − E | ≤ η, then η

(λi −E)2+η2 ≥ 1/(2η). Therefore, we deduce

ImR(z)kk ≤ 2ηa2
n

(
n−1∑

i=1

1|λ(k)i −E |≤η〈Xk, u(k)i 〉2

)−1

.

We rewrite the above expression as

ImR(z)kk ≤ 2ηa2
ndist−2(Xk,W (k)), (11)

where

W (k) = vect
{

u(k)i : 1 ≤ i ≤ n − 1, λ(k)i /∈ [E − η, E + η]
}
.

Since I = [E − η, E + η], the inequalities (11) and
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894 C. Bordenave, A. Guionnet

tr ImR(z) = n
∫

η

(E − λ)2 + η2μA(dλ) ≥ n
∫

I

η

(E − λ)2 + η2μA(dλ) ≥ NI

2η

give (9). We set

N (k)
I = |{1 ≤ i ≤ n − 1 : λ(k)i ∈ I }| = n − 1 − dim(W (k)) = (n − 1)μA(k) (I ).

From Weyl interlacement theorem, we have

NI − 1 ≤ N (k)
I = n − 1 − dim(W (k)) ≤ NI + 1. (12)

2.2 Proof of Proposition 2.1

We note that up to increasing the constant c and 1/c′, it is sufficient to prove the

proposition only for all η ≥ c1n− α+2
4 for some c1 (indeed, NI ′ ≤ NI if I ′ ⊂ I and if

NI ≤ tn|I |γ then NI ′ ≤ tn|I ′|γ (|I |/|I ′|)γ ).
In the sequel we denote in short distk = dist(Xk,W (k)). From (9)–(12), we write

NI ≤ 1NI ≤�tnηγ �tnηγ + 4η2a2
n

n∑

k=1

dist−2
k 1

N (k)
I >�tnηγ �. (13)

We have dist2
k = 〈Xk, Pk Xk〉, where Pk is the orthogonal projection onto W (k). We

note that Xk is independent of W (k). From Lemma 7.1, there exists a positive α/2-
stable random variable Sk and a standard Gaussian vector Gk , independent from Sk ,
such that

dist2
k = ‖Pk Gk‖2

αSk .

Note that η ≥ cn− α+2
4 is equivalent to nη

2γ
α ≥ c

2γ
α . By Corollary 6.2 (applied to

A = Pk), there exists universal constants C, δ so that if N (k)
I ≥ tc−γ nηγ ≥ tn1− α

2

for t ≥ Ccγ , with probability at least

1 − 2 exp(−δn(tη) 2γ
α /2) ≥ 1 − 2 exp(−c0t

4
2+α ) (14)

we have,

‖Pk Gk‖α ≥ δ
(
tnηγ

) 1
α.

Hence, if Fn denotes the event that NI > �tnηγ � and for all k, ‖Pk Gk‖α ≥ δ (tnηγ )
1
α ,

we have from (9) and (13)

NI 1Fn ≤ 4η2δ−2 (tηγ
)− 2

α

n∑

k=1

S−1
k .
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Localization and delocalization of eigenvectors for heavy-tailed random matrices 895

With our choice of γ, 2 − 2γ /α = γ , hence, with c1 = 4δ−2, we deduce

NI 1Fn ≤ c1nηγ t−
2
α

(
1

n

n∑

k=1

S−1
k

)
.

The variables (Sk)1≤k≤n have the same distribution but are correlated. Nevertheless,
note that the function x �→ exp(xδ) is convex on [bδ,+∞) with bδ = 0 if δ ≥ 1, and
bδ = (1/δ − 1)1/δ if 0 ≤ δ ≤ 1. Hence from the Jensen inequality, we deduce

exp

(
1

n

n∑

k=1

S−1
k

)δ
≤ exp

(
1

n

n∑

k=1

S−1
k ∨ bδ

)δ
≤ 1

n

n∑

k=1

exp(S−δ
1 ∨ bδδ).

In particular for every c2 > 0,

E exp

⎧
⎨

⎩c2

(
1

n

n∑

k=1

S−1
k

) α
2−α
⎫
⎬

⎭ ≤ c3E exp

{
c2

(
S

− α
2−α

1

)}
,

where c3 = exp(c2bα/(2−α)
α/(2−α)). By Lemma 7.3, for c2 small enough, the above is finite.

Thus, from the Markov inequality, for some constants c4, c5 > 0,

P
(
NI 1Fn > tnηγ

) ≤ P

(
1

n

n∑

k=1

S−1
k > c−1

1 t
2
α

)
≤ c4 exp(−c5t

2
2−α ).

Therefore, by (14), we deduce

P
(
NI > tnηγ

) ≤ P
({NI > tnηγ } ∩ Fc

n

)+ P
(
NI 1Fn > tnηγ

)

≤ 2n exp(−c0t
4

2+α )+ c4 exp(−c5t
2

2−α )

which completes the proof of the proposition.

3 Local convergence of the spectral measure

To prove the local convergence of the spectral measure, we shall prove that an observ-
able of the resolvent satisfies nearly a fixed point equation, which also entails an
approximate equation for the resolvent. Such an equation was already derived in [6,7]
but the error terms are here carefully estimated. This step will be crucial to obtain,
in the second part of this section, a rate of convergence of the Stieltjes transform of
the spectral measure toward its limit. The range of convergence will be first derived
roughly, and then improved for α > 1 thanks to bootstraps arguments.
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896 C. Bordenave, A. Guionnet

3.1 Approximate fixed point equation

The observables we shall be interested in will be

Y (z) := E[(−i R(z)11)
α
2 ] and X (z) := E[−i R(z)11] . (15)

(For 1 ≤ k, � ≤ n, we will write indifferently Rk�(z) or R(z)k�). For β ∈ [0, 2], we
define Kβ = {z ∈ C : | arg(z)| ≤ πβ

2 }. By construction −i R11(z) ∈ K1 for z ∈ C+,
so that Y (z) ∈ Kα/2 and X (z) ∈ K1. On Kα/2, we may define the entire functions

ϕα,z(x) = 1

�(α2 )

∞∫

0

t
α
2 −1eitze−�(1− α

2 )t
α
2 x dt (16)

and

ψα,z(x) =
∞∫

0

eitze−�(1− α
2 )t

α
2 x dt. (17)

For further use, we define, with the notation of (10),

Mn(z) = 1

n − 1
Etr

{
R(1)(z)(R(1)(z))∗

}
. (18)

Note that, writing explicitly the dependence in n, R(1)n = (A(1)n − z)−1 and an
an−1

A(1)n

has the same distribution than An−1. We may thus apply Corollary 2.2 to R(1) (it can
be checked the difference between an and an−1 is harmless). For some constant c > 0,

we therefore have the upper bound for all z = E + iη and η ≥ n− α+2
4 ,

Mn(z) ≤ c(log n)
2+α

4 η− 4
2+α . (19)

The main result of this paragraph is the following approximate fixed point equations.

Proposition 3.1 (Approximate fixed point equation) Let 0 < α < 2 and z = E+iη ∈
C+, E 	= 0. There exists c = c(E) > 0, c(E) ≤ const.|E |−α ∨ |E |−α/2, such that if

n− α+2
4 ≤ η ≤ 1 and

ε = η−α∧1n− 1
α∨1 + (log n)1α=1

ηn

+
(
η−1

√
Mn(z)

n

)1∧α (
1 + (log n)11<α≤4/3 + (log n)210<α≤1

)
, (20)

then, for any integer n ≥ 1,

|Y (z)− ϕα,z(Y (z))| ≤ cη− α
2 ε + cη− α

2 n− α
4 ,
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and

|X (z)− ψα,z(Y (z))| ≤ cη−1ε + cη− α
2 n− α

4 .

We note that we could use the bound (19) to get an explicit upper bound on ε. In
the forthcoming Proposition 3.6 we will however improve this bound for some range
of η.

In the first step of the proof, we compare Y (z) with an expression which gets rid of
the off-diagonal terms of R(1) in (10). More precisely, with the notation of (10), we
define

I (z) := E

⎡

⎣
(
(−i z)+ a−2

n

n∑

k=2

X2
1k(−i R(1)kk )

)− α
2
⎤

⎦ ∈ Kα/2, (21)

and similarly,

J (z) := E

⎡

⎣
(
(−i z)+ a−2

n

n∑

k=2

X2
1k(−i R(1)kk )

)−1
⎤

⎦ ∈ K1. (22)

We shall prove that

Lemma 3.2 (Diagonal approximation) Let 0 < α < 2 and z = E + iη ∈ C+. There
exists c > 0 such that if ε is given by (20) then

|Y (z)− I (z)| ≤ cη− α
2 ε and |X (z)− J (z)| ≤ cη−1ε.

We start with a technical lemma.

Lemma 3.3 (Off-diagonal terms) Let B be an hermitian matrix with resolvent G =
(B − z)−1. For any 0 < α < 2, there exists a constant c = c(α) > 0 such that for
n ≥ 2,

P

⎛

⎝

∣∣∣∣∣∣
a−2

n

∑

2≤k 	=�≤n

X1k X1�Gk�

∣∣∣∣∣∣
≥
√

tr(GG∗)
n2 t

⎞

⎠ ≤ ct−α log (n (2 ∨ t)) log (2 ∨ t),

and if 1 < α < 2,

E

∣∣∣∣∣∣
a−2

n

∑

2≤k 	=�≤n

X1k X1�Gk�

∣∣∣∣∣∣
≤ c

√
tr(GG∗)

n2

(
1 + 11<α≤4/3 log n

)
.
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898 C. Bordenave, A. Guionnet

Proof Let 0 < α ≤ 1. We use a decoupling technique: from [13, Theorem 3.4.1] there
exists a universal constant c > 0 such that

P

⎛

⎝

∣∣∣∣∣∣
a−2

n

∑

2≤k 	=�≤n

X1k X1�Gk�

∣∣∣∣∣∣
≥ t

⎞

⎠ ≤ c P

⎛

⎝

∣∣∣∣∣∣
a−2

n

∑

2≤k 	=�≤n

X1k X ′
1�Gk�

∣∣∣∣∣∣
≥ t/c

⎞

⎠

≤ c P

⎛

⎝

∣∣∣∣∣∣
a−2

n

∑

2≤k 	=�≤n

X1k X ′
1�Re(Gk�)

∣∣∣∣∣∣
≥ t/2c

⎞

⎠

+c P

⎛

⎝

∣∣∣∣∣∣
a−2

n

∑

2≤k 	=�≤n

X1k X ′
1�Im(Gk�)

∣∣∣∣∣∣
≥ t/2c

⎞

⎠,

(23)

where X ′
1 is an independent copy of X1. From the stable property of X ′

1, we deduce
that

∑

2≤k 	=�≤n

X1k X ′
1�Re(Gk�)

d= X ′
11

⎛

⎝
∑

�

∣∣∣∣∣∣

∑

k 	=�
X1kRe(Gk�)

∣∣∣∣∣∣

α⎞

⎠

1
α

, (24)

and similarly for the imaginary part. From the stable property of X1,

∑

�

∣∣∣∣∣∣

∑

k 	=�
X1kRe(Gk�)

∣∣∣∣∣∣

α

d=
∑

�

|X̂�|α
∑

k 	=�
|Re(Gk�)|α, (25)

where (X̂�)� is a random vector whose marginal distribution is again the law of X11
(note however that the entries of (X̂�)� are correlated). Let ρ� = ∑

k 	=� |Re(Gk�)|α
and ρ = ∑

� ρ�. For s ≥ 2 to be chosen later, we define Y� = X̂�1(|X̂�| ≤ san) and
Y ′

1 = X ′
111(|X ′

11| ≤ s). It is straightforward to check that

E|Y�|α ≤ c log(sαn) and E|Y ′
1|α ≤ c log(s).

Hence, from (24)–(25)

P

⎛

⎝|X ′
11|
(
∑

�

|X̂�|αρ�
) 1
α

≥ t

⎞

⎠ ≤ P

⎛

⎝|Y ′
1|
(
∑

�

|Y�|αρ�
) 1
α

≥ t

⎞

⎠

+ P

(
max
�

|X̂�| ≥ san

)
+ P

(
|X̂ ′

11| ≥ s
)

≤ cs−α + cρ log(sαn) log(s)

tα
,
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where we have used the Markov inequality and the union bound

P(max
�

|X̂�| ≥ san) ≤ nP(|X11| ≥ san) ≤ cs−α.

We choose s = 2 ∨ (t/ρ1/α), we find that

P

⎛

⎝|X ′
11|
(
∑

�

|X̂�|αρ�
) 1
α

≥ tρ1/α

⎞

⎠ ≤ c log((2 ∨ t)n) log(2 ∨ t)

tα
.

The same statement holds for Im(G). To sum up, we deduce from (23) that

P

⎛

⎝

∣∣∣∣∣∣
a−2

n

∑

2≤k 	=�≤n

X1k X1�Gk�

∣∣∣∣∣∣
≥ a−2

n ρ1/αt

⎞

⎠ ≤ ct−α log (n (2 ∨ t)) log (2 ∨ t).

Then, the first statement of the lemma follows Hölder’s inequality which asserts that

a−2
n ρ1/α≤n− 2

α

(
∑

�

∑

k

|Gk�|α
) 1
α

≤n− 2
α

(
∑

�

∑

k

|Gk�|2
) 1

2

n
2
α
−1 =

√
tr(GG∗)

n2 ,

(26)

where we used that Gk� = Ḡ�k .
Now, assume α > 1. By integrating the above bound, we find easily

E

∣∣∣∣∣∣
a−2

n

∑

2≤k 	=�≤n

X1k X1�Gk�

∣∣∣∣∣∣
=

∞∫

0

P

⎛

⎝

∣∣∣∣∣∣
a−2

n

∑

2≤k 	=�≤n

X1k X1�Gk�

∣∣∣∣∣∣
≥ t

⎞

⎠ dt

≤ c

√
tr(GG∗)

n2 log n.

(In fact, with slightly more care, we may replace log n by (log n)
1
α log(log n)). It

remains to check that we can remove the term log n for α > 4/3. It will come easily
from the bound

P

⎛

⎝

∣∣∣∣∣∣
a−2

n

∑

2≤k 	=�≤n

X1k X1�Gk�

∣∣∣∣∣∣
≥ t

⎞

⎠ ≤ c

(
tr(GG∗)

n2t2

) α
4−α

. (27)

Let s ≥ 1 to be chosen later. We now set Yk = X1k1(|X1k | ≤ san)/an . We write

∣∣∣∣∣∣

∑

2≤k 	=�≤n

YkY�Gk�

∣∣∣∣∣∣

2

=
∑

k1 	=�1,k2 	=�2

Yk1 Y�1 Yk2 Y�2 Gk1�1 G∗
k2�2

.

123



900 C. Bordenave, A. Guionnet

The variables Yk are iid and by symmetry EY1 = EY 3
1 = 0. Hence, since Gk� = G�k ,

taking expectation we obtain

E

∣∣∣∣∣∣

∑

2≤k 	=�≤n

YkY�Gk�

∣∣∣∣∣∣

2

= 2
∑

k 	=�
E[Y 2

1 ]2Gk�G
∗
�k ≤ 2E[Y 2

1 ]2trGG∗.

It is routine to check that, for p > α, E[|Y1|p] ≤ c(p)s p−αn−1. Hence, arguing as
above, we find

P

⎛

⎝

∣∣∣∣∣∣
a−2

n

∑

2≤k 	=�≤n

X1k X1�Gk�

∣∣∣∣∣∣
≥ t

⎞

⎠ ≤ c
s2(2−α)trGG∗

n2t2 + cs−α.

We conclude by choosing s = 1 ∨ (n2t2/trGG∗)1/(4−α). ��
We now can turn to the proof of Lemma 3.2

Proof of Lemma 3.2 Define

T (z) = −a−1
n X11 + a−2

n

∑

2≤k 	=�≤n

X1k X1�R(1)k� . (28)

We notice that for any, z, z′ ∈ C+ and α > 0,

|(i z)−α/2 − (i z′)−α/2| ≤ α

2
|z − z′|(Im(z) ∧ Im(z′))−α/2−1.

With the notation of (10), we also note that Im(
∑n

k=1 X2
1k R(1)kk ) ≥ 0 and

Im(−a−1
n X11 + 〈X1, R(1)X1〉) ≥ 0. Hence, from (10), for any event �,

|Y (z)− I (z)| ≤ α

2
η− α

2 −1
E[|T (z)|1�] + η− α

2 P(�c). (29)

Applying the same argument with X (z), J (z), we get

|Y (z)− I (z)| ≤ α

2
η− α

2 D(z), |X (z)− J (z)| ≤ η−1 D(z)

with

D(z) = η−1
E[|T (z)|1�] + P(�c). (30)

We may bound D(z) by using that by Lemma 3.3. Indeed, since R(1) is independent
of X (1), it gives
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P

⎛

⎝

∣∣∣∣∣∣
a−2

n

∑

2≤k 	=�≤n

X1k X1�R(1)k� (z)

∣∣∣∣∣∣
≥
√

Mn(z)

n
t

⎞

⎠ ≤ ct−α log (n (2 ∨ t)) log (2 ∨ t).

(31)

and for 1 < α < 2,

E

∣∣∣∣∣∣
a−2

n

∑

2≤k 	=�≤n

X1k X1�R(1)k� (z)

∣∣∣∣∣∣
≤ c

√
Mn(z)

n

(
1 + 11<α≤4/3 log n

)
. (32)

• Let us first assume that 1 < α < 2, then taking �c = ∅ in (29) and using (32), it
shows that for some constant c > 0,

D(z) ≤ cη−1

(
n− 1

α +
√

Mn(z)

n

(
1 + 11<α≤4/3 log n

)
)
.

• Assume that 0 < α ≤ 1, we take in (30)

� =
⎧
⎨

⎩a−1
n |X11| ≤ t ; a−2

n

∣∣∣∣∣∣

∑

1≤k 	=�≤n

X1k X1�R(1)k� (z)

∣∣∣∣∣∣
≤ t

⎫
⎬

⎭ .

Then, we have

E[|T (z)|1�]≤
t∫

0

P

(
a−1

n |X11|≥ y
)

dy+
t∫

0

P

⎛

⎝

∣∣∣∣∣∣
a−2

n

∑

1≤k 	=�≤n

X1k X1�R(1)k� (z)

∣∣∣∣∣∣
≥ y

⎞

⎠ dy.

Assume that 1/n ≤ t ≤ 1. Then, using (31), we find that E[|T (z)|1�] is bounded
up to multiplicative constant (depending on α) by

t1−α

n
+ log(n)

n
1α=1 +

(
Mn(z)

n

) α
2

(log n)2 t1−α.

(using (20) we may safely bound the terms log(tn/Mn) by log n). With t = η we
find

D(z) ≤ cη−αn−1 + c
1α=1(log n)

ηn
+ c

(
Mn(z)

nη2

) α
2

(log n)2.

This yields the claimed bounds. ��
We next relate I (z) and J (z) with the functions ϕα,z and ψα,z defined in (16)–(17) by
using the well known identities
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x−δ = 1

�(δ)

∞∫

0

tδ−1e−xt dt and xδ = δ

�(1 − δ)

∞∫

0

t−δ−1(1 − e−xt )dt (33)

valid for x in the interior of K1, δ > 0 and 0 < δ < 1 respectively. We get

I (z) = 1

�(α2 )

∞∫

0

t
α
2 −1

E exp

{
i t

(
z + a−2

n

n∑

k=2

X2
1k R(1)kk (z)

)}
dt.

We may apply Corollary 7.2 to take the expectation over X1 and get

I (z) = 1

�(α2 )

∞∫

0

t
α
2 −1eitz

E exp

{
−wαα(2t)

α
2

1

n

n∑

k=2

(
−i R(1)kk (z)

) α
2 |gk |α

}
dt,

= E

[
ϕα,z

(
1

n

n∑

k=2

(
−i R(1)kk (z)

) α
2 |gk |α

E[|gk |α]

)]

where wα > 0 was defined in the introduction and (gi )i≥1 are iid standard gaussian
variables. Similarly, we find that

J (z) =
∞∫

0

eitz
E exp

{
−wαα(2t)

α
2

1

n

n∑

k=2

(
−i R(1)kk (z)

) α
2 |gk |α

}
dt (34)

= E

[
ψα,z

(
1

n

n∑

k=2

(
−i R(1)kk (z)

) α
2 |gk |α

E[|gk |α]

)]
. (35)

The next lemma due to Belinschi et al. [6] will be crucial in the sequel. Recall that
the functions ϕα,z and ψα,z were defined in (16)–(17).

Lemma 3.4 ([6, Lemma 3.6]) For any z ∈ C+, the functions ϕα,z and ψα,z are
Lipschitz with constant c = c(α)|z|−α and c = c(α)|z|−α/2 on Kα/2. Moreover ϕα,z
maps Kα/2 into Kα/2 and ψα,z maps Kα/2 into K1.

Proof The first statement follows from [6, Lemma 3.6] by a change of variable. For
the second, we note that if x ∈ Kα/2 then x = (−iw)α/2 with w ∈ C+ and from
(33) ϕα,z(x) = E(i z + iwS)−α/2 where S is a non-negative α/2 stable law with
Laplace transform, for y > 0,E exp(−yS) = exp(−�(1 − α/2)yα/2). Similarly,
ψα,z(x) = E(i z + iwS)−1. In particular, ϕα,z(x) ∈ Kα/2 and ψα,z(x) ∈ Kα/2. ��

We are now able to prove Proposition 3.1.

Proof of Proposition 3.1 We recall that I (z) and J (z)were defined by (21)–(22). The
point is that the Lipschitz constant in Lemma 3.4 depends on |z| and not only Im(z).

Hence since ρk :=
(
−i R(1)kk (z)

) α
2 ∈ Kα/2, using exchangeability, we deduce that with

c = c(α)|z|−α/2 as in Lemma 3.4,
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∣∣I (z)− ϕα,z(Eρ2)
∣∣ =

∣∣∣∣∣E
[
ϕα,z

(
1

n

n∑

k=2

(
−i R(1)kk (z)

) α
2 |gk |α

E[|gk |α]

)]

−ϕα,z
(

1

n − 1

n∑

k=2

E[
(
−i R(1)kk (z)

) α
2 ]
)]

≤ cE

∣∣∣∣∣
1

n − 1

n∑

k=2

ρk |gk |α − E
1

n − 1

n∑

k=2

ρk |gk |α
∣∣∣∣∣+

cE[|ρ2|]
n

≤ c

(
E

∣∣∣∣∣
1

n − 1

n∑

k=2

ρk |gk |α − 1

n − 1

n∑

k=2

ρkE|gk |α
∣∣∣∣∣

+ E

∣∣∣∣∣
1

n − 1

n∑

k=2

ρk − E
1

n − 1

n∑

k=2

ρk

∣∣∣∣∣+
E[|ρ2|]

n

)
.

By the Cauchy–Schwarz inequality and Lemma 8.4, we obtain

∣∣I (z)−ϕα,z(Eρ2)
∣∣≤cn−1

√√√√E

[
n∑

k=2

|ρk |2
]

+c

⎛

⎝n−1

√√√√E

[
n∑

k=2

|ρk |2
]⎞

⎠
2

+cη− α
2 n− α

4 .

By applying the Jensen inequality, we also notice that since 0 < α ≤ 2,

E

[
1

n − 1

n∑

k=2

|ρk |2
]

=E

[
1

n − 1

n∑

k=2

|R(1)kk (z)|α
]

≤
(

E[ 1

n − 1

n∑

k=2

|R(1)kk (z)|2]
) α

2

≤
(

E

[
1

n − 1
tr
{

R(1)(z)R(1)
∗
(z)
}]) α

2 = Mn(z)
α
2 .

Hence we obtain an error of

∣∣I (z)− ϕα,z(Eρ2)
∣∣ ≤ cn− 1

2 Mn(z)
α
4 + cn−1 Mn(z)

α
2 + cη− α

2 n− α
4 . (36)

In the forthcoming computations, we shall always consider η so that ε of (20) is smaller

than one so that n−1 Mn(z)
α
2 vanishes and is neglectable compared to n− 1

2 Mn(z)
α
4 .

However Eρ2 and Y (z) are close. More precisely, by equation (97) (in Appendix)
applied with f (x) = (−i x)

α
2 we find that

∣∣∣∣∣

n∑

i=1

(−i Rkk(z))
α
2 −

n∑

i=2

(
−i R(1)kk (z)

) α
2 + (−i z)

α
2

∣∣∣∣∣ ≤ 2n(nη)−
α
2 .

Taking the expectation, we get

|Eρ2 − Y (z)| ≤ c(nη)−
α
2 .
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By Lemma 3.4, the function ϕα,z is Lipschitz for some constant c = c(α, |z|) on Kα/2.
We deduce from (36) that

∣∣I (z)− ϕα,z(Y (z))
∣∣ ≤ cn− 1

2 Mn(z)
α
4 + cη− α

2 n− α
4 + c(nη)−

α
2

≤ c′η− α
2+α n− 1

2 (log n)
α(2+α)

16 + 2cη− α
2 n− α

4 ,

where we used the upper bound on Mn(z) given by (19). We note finally that the first
term is always smaller for n large enough and η ≤ 1 than the second term. We have

thus proved that there exists c > 0, such that for all n− α+2
4 ≤ η ≤ 1 and all integers,

∣∣I (z)− ϕα,z(Y (z))
∣∣ ≤ cη− α

2 n− α
4 .

The statement of Proposition 3.1 on Y (z) follows by applying Lemma 3.2: we find

∣∣Y (z)− ϕα,z(Y (z))
∣∣ ≤ cη− α

2 n− α
4 + |Y (z)− I (z)|

Finally, we observe that the bound on X (z) follows similarly from (35):

∣∣X (z)− ψα,z(Y (z))
∣∣ ≤ cη− α

2 n− α
4 + |X (z)− J (z)|.

We now use Lemma 3.2 and Proposition 3.1 is proved.n ��

3.2 Rate of convergence of the resolvent

We will now use Proposition 3.1 as the stepping stone to obtain a quantitative rate of
convergence of the spectral measure μA toward its limit.

By Lemma 3.4, if z = E + iη and |z| is large enough, say E0, then ϕα,z and ψα,z
are Lipschitz with constant L < 1 and in particular, it has a unique fixed point

y(z) = ϕα,z(y(z)), y(z) ∈ K α
2
. (37)

Existence and uniqueness of such a fixed point extends to all z except on a finite set
by the implicit function theorem (see [6]).

From [7, Theorem 1.4], the empirical measure μA converges a.s. to a probability
measure μα (for the topology of weak convergence). The Cauchy–Stieltjes transform
of the limit measure μα is equal to

gμα (z) =
∫
μα(dx)

x − z
= iψα,z(y(z)).

The above identity characterizes the probability measure μα .

Theorem 3.5 (Convergence of Stieltjes transform) For all 0 < α < 2, there exists a
finite set Eα ⊂ R such that if K is a compact set with K ∩ Eα = ∅ the following holds
for some constant c = c(α, K ).
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(i) If 1 < α < 2 : for any integer n ≥ 1, z = E + iη with E ∈ I, c
√

log n
n ∨(

n− α
8−3α (1 + 11<α<4/3(log n)

2α
8−3α )

)
≤ η ≤ 1,

∣∣EgμA(z)− gμα (z)
∣∣ ≤ cδ, (38)

where δ = η− α
2 n− α

4 + η− 8−3α
2α n− 1

2 (1 + 11<α<4/3 log n)+ η−1 exp(−δnη2).

(ii) If 0 < α ≤ 1, the same statement holds with cn− α
2+3α (log n)

4
2+3α ≤ η ≤ 1 and

δ = η− α
2 n− α

4 + η− 2+3α
2 n− α

2 (log n)2.

Moreover for any interval I ⊂ K of length |I | ≥ η (1 ∨ δ| log(δ)|−1),

|EμA(I )− μα(I )| ≤ cδ|I |.

This result implies Theorem 1.1. Indeed the presence of the expectation of μA(I )
instead of μA(I ) does not pose a problem due to Lemma 8.1 in Appendix. We start
the proof of Theorem 3.5 with a weaker statement.

Proposition 3.6 (Convergence of Stieltjes transform : weak form) Statement (ii) of
Theorem 3.5 holds and

(i’) If 1 < α < 2 and cn−1/5
(

1 + 11<α≤ 4
3
(log n)

2
5

)
≤ η ≤ 1 then (38) holds with

δ = η− α
2 n− α

4 + η−5/2n−1/2
(

1 + 11<α≤ 4
3

log n
)

.

Proof Assume first that z = E + iη with |E | ≥ E0 and η ≤ 1. If we apply Lemma
3.4 to ϕα,z we find

|Y (z)− y(z)| ≤ 1

1 − L
|Y (z)− ϕα,z(Y (z))|.

Also, by exchangeability EgμA(z) = EG11(z) = i X (z). Hence applying Lemma 3.4
to ψα,z , we deduce

|EgμA(z)− gμα (z)| ≤ |X (z)− ψα,z(Y (z))| + L

1 − L
|Y (z)− ϕα,z(Y (z))|. (39)

Also, the Cauchy–Weyl interlacing theorem implies that the same type of bounds holds
for the minor A(1) instead of A. Indeed applying Lemma 8.2 to f (x) = (x − z)−1, we
have

|gμA(z)− gμA(1)
(z)| ≤ 2(nη)−1.

We recall thatμα has a bounded density (see [7,6,10]). Hence Im(gμα (z)) is uniformly

bounded. We get for any z = E + iη, |E | ≥ E0, η ≥ n− α+2
4 ,

EIm(gμA(1)
(z))≤ Im(gμα (z))+

∣∣∣EgμA(1)
(z)−gμα (z)

∣∣∣ ≤ c+
∣∣∣EgμA(1)

(z)−gμα (z)
∣∣∣ .
(40)
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On the other hand, the spectral theorem implies the important identity

Mn(z) = 1

n − 1
Etr

{
R(1)(z)(R(1))∗(z)

}
= η−1

EIm(gμA(1)
(z)).

Then, by (39) and (40),

ηMn(z) ≤ 2(nη)−1 + c + |X (z)− ψα,z(Y (z))| + L

1 − L
|Y (z)− ϕα,z(Y (z))|.

We first consider the case 1 < α < 2. Then, by Proposition 3.1, we obtain for
η ≥ n−1/2α ≥ n−1/2,

ηMn(z) ≤ c + cη−2

√
Mn(z)

n

(
1 + 11<α≤ 4

3
log n

)
.

By monotonicity, we find that ηMn(z) is upper bounded by x∗ where x∗ is the unique
fixed point of

x = c + cη− 5
2 n− 1

2

(
1 + 11<α≤ 4

3
log n

)√
x .

It is easy to check that the unique fixed point of x = a + bxβ , with a, b > 0 and

0 < β < 1 is upper bounded by κ(β)a if a ≥ b
1

1−β . We deduce that, for some constant

c1 > 0 and all n−1/5
(

1 + 11<α≤ 4
3
(log n)

2
5

)
≤ η ≤ 1,

ηMn(z) ≤ c1.

So finally, from Proposition 3.1, we find that for all n−1/5
(

1 + 11<α≤ 4
3
(log n)

2
5

)

≤ η ≤ 1,

|EgμA(z)− gμα (z)| ≤ c2η
− α

2 n− α
4 + c2η

−2n− 1
α + c2η

− 5
2 n− 1

2

(
1 + 11<α≤ 4

3
log n

)
.

We notice that the middle term is negligible compared to the last for our range of η.
Assume finally that 0 < α ≤ 1, then arguing as above for η ≥ n−1/2 ≥ n−1/2α ,

ηMn(z) ≤ c + cη−1
(

Mn(z)

nη2

) α
2

(log n)2. (41)

We deduce that, for some c1 > 0 and all n− α
2+3α (log n)

4
2+3α ≤ η ≤ 1, ηMn ≤ c1. We

find that for all n− α
2+3α (log n)

4
2+3α ≤ η ≤ 1,

|EgμA(z)− gμα (z)| ≤ c2η
− α

2 n− α
4 + c2η

−1−αn−1(1 + (log n)1α=1)

+ c2n− α
2 η− 2+3α

2 (log n)2.

Again the middle term is negligible compared to the first for our range of η.
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We have proven the proposition if z = E + iη and |E | ≥ E0 is large enough. It
remains to prove the statement for all E outside of a finite set. It is proven in [6] that
ϕα,z(y) = z−αg(y) where g is an analytic function on Kα/2\{0} (which depends on
α). Let y(z) be the fixed point defined in (37). It follows that the set of z ∈ C such
that ϕ′

α,z(y(z)) = 1 is finite (for details see [6, §5.3]). We define E ′
α as the set of real

E such that there exists 0 ≤ η ≤ E0 + 1 with ϕ′
α,E+iη(y(E + iη)) = 1. We set finally

Eα = {0} ∪ E ′
α . This set is finite. Let K be a compact interval which does not intersect

Eα . From the inverse function theorem, ϕα,z is invertible in a neighborhood of y with
inverse with locally bounded derivative. Hence, there exist τ, c0 > 0 such that for
t ≥ 0, 0 ≤ η ≤ E0 + 1, E ∈ K ,

if |y − y(E + iη)| ≤ τ and |y − ϕα,E+iη(y)| ≤ t then |y − y(E + iη)| ≤ c0t . (42)

Therefore, we may use Lemma 3.4 and an alternative version of (39) : for any z =
E + iη with E ∈ K and 0 ≤ η ≤ E0 + 1, if |Y (z)− y(z)| ≤ τ then

|EgμA(z)− gμα (z)| ≤ |X (z)− ψα,z(Y (z))| + c0c(α)

|z| α2 |Y (z)− ϕα,z(Y (z))|. (43)

To apply Proposition 3.1, we shall use an inductive argument to insure that the
hypothesis |Y (z) − y(z)| ≤ τ is satisfied. We set for integer �, η0 = η, η�+1 =
η� + τ

3 (1 ∧ η�)2 and z� = E + iη�. As ηk goes to infinity as k goes to infinity when
η0 	= 0, there exists k such that E0 ≤ ηk ≤ E0 + τ . Then ϕα,zk is a contraction and
the above argument proves that

|EgμA(zk)− gμα (zk)| ≤ cδ and |Y (zk)− y(zk)| ≤ cδ,

(note that δ is a pessimistic bound since Im(zk) is bounded away from 0). We notice
that it is sufficient to prove the statement of the proposition in the range, for 1 < α <

2, κn−1/5
(

1 + 11<α≤ 4
3
(log n)

2
5α

)
≤ η ≤ 1 and for 0 < α ≤ 1, κn− α

2+3α (log n)
4

2+3α ,

where κ > 0 is any fixed constant. Hence, up to increasing κ , we may assume that
scδ ≤ τ/3, where s ≥ 1 is large number that will be chosen later on.

To obtain a priori bounds for Y (z)− y(z) and |EgμA(z)− gμα (z)| at z = zk−1 from
those at z = zk observe that for any probability measure μ on R and 0 ≤ β ≤ 1,

|gμ(E + iη�)
β − gμ(E + iη�+1)

β | ≤ |η� − η�+1|
η

1+β
�

≤ τ

3
. (44)

Using the above control with μ = ∑n
k=1〈vk, e1〉2δλk so that gμ(z) = R11(z) we

deduce by applying (44) with β = α/2 that

|(−i R11(E + iη�))
α
2 − (−i R11(E + iη�+1))

α
2 | ≤ τ

3

and thus |Y (zk−1)−y(zk−1)| ≤ τ . We get a similar control for EgμA (zk−1) by applying
(44) with β = 1 so that
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Mn(zk−1) ≤ η−1
(
τ

3
+ cδ + sup

�

Imgμα (z�)

)
≤ η−1(τ + sup

�

Imgμα (z�)) = c1η
−1.

Therefore, using Proposition 3.1, we find for some constant c′ > 0.

|Y (zk−1)− ϕα,zk−1(Y (zk−1))| ∨ |X (zk−1)− ψα,zk−1(Y (zk−1))| ≤ c′δ.

From what precedes, it implies that |Y (zk−1)− y(zk−1)| ≤ c0c′δ. We choose s large
enough so that c′c0 ≤ sc, so that we have c′c0δ ≤ τ/3. Also, we may use (43). We
find for some new constant c′′,

|EgμA(zk)− gμα (zk)| ≤ c′′δ.

Finally, if s was also chosen large enough so that c′′ ≤ sc, then c′′δ ≤ τ/3, and we
may repeat the above argument down to � = 0. ��

When α ∈ (1, 2), a bootstrap argument allows to improve significantly Proposition
3.6. The idea is, in the spirit of [20], that if the imaginary part of

〈
X, R(1)X

〉
is a priori

bounded below by something going to zero more slowly than η, then we can improve
the result of the key Lemma 3.2. Before moving to the proof, we state a classical
deconvolution lemma.

Lemma 3.7 (From Stieltjes transform to counting measure) Let L > 0, 0 < ε < 1, K
be an interval of R and μ be a probability measure on R. We assume that for some
η > 0 and all E ∈ K , either

Imgμ(E + iη) ≤ L or μ
(
[E − η

2
, E+]

)
≤ Lη.

Then, there exists a universal constant c such that for any interval I ⊂ K of size at
least η and such that dist(I, K c) ≥ ε, we have

∣∣∣∣∣∣
μ(I )− 1

π

∫

I

Imgμ(E + iη)d E

∣∣∣∣∣∣
≤ c(L ∨ ε−1)η log

(
1 + |I |

η

)
.

Proof Let us prove the first statement. We observe that

1

π
Im(gμ(y + iη)) = 1

π

∫

R

η

(y − x)2 + η2μ(dx) = Pη ∗ μ(y),

where Pη is the Cauchy law with parameter η. We thus need to perform a classical
deconvolution. We may for example adapt Tao and Vu [29, Lemma 64] (see also e.g.
[22, p. 15]). Define

F(y) = 1

π

∫

I

η

(y − x)2 + η2 dx = Pη(I − y).
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In particular
∣∣∣∣∣∣
μ(I )− 1

π

∫

I

Imgμ(E + iη)d E

∣∣∣∣∣∣
=
∣∣∣∣μ(I )−

∫
F(y)μ(dy)

∣∣∣∣ .

Now, the Cauchy law has density, Pη(t) = 1
π

η

η2+t2 . It follows that for {y ∈ I }, {y ∈
I c, dist(y, I ) ≤ |I |} and {y ∈ I c, dist(y, I ) ≥ |I |} we may use respectively the
bounds

|F(y)− 1| ≤ c

1 + dist(y, I c)η−1 , |F(y)| ≤ c

1 + dist(y, I )η−1 and

|F(y)| ≤ c|I |η
dist(y, I )2

.

We write if I = [a, b], I1 = I c ∩ [a − |I |, b + |I |] ∩ K and I2 = I c ∩ [a − |I |, b +
|I |]c ∩ K ,

∣∣∣∣∣∣
μ(I )− 1

π

∫

I

Imgμ(E + iη)d E

∣∣∣∣∣∣
≤
∫

I

c

1 + dist(y, I c)η−1μ(dy)

+
∫

I1

c

1 + dist(y, I )η−1μ(dy)

+
∫

I2

c|I |η
dist(y, I )2

μ(dy)

+
∫

K c

c

1 + dist(y, I )η−1μ(dy).

However, by assumption if J = [E − η/2, E + η/2] is an interval of size η with
E ∈ K ,

L ≥ Imgμ(E + iη) =
∫

R

η

(E − x)2 + η2μ(dx) ≥ 3

4η
μ(J ).

We deduce that μ(J ) ≤ 4L
3 η. Now, consider a partition P of R into intervals of size

η. We get from this last upper bound

∫

I

c

1 + dist(y, I c)η−1μ(dy) ≤
∑

J∈P∩I

cμ(J )

1 + dist(J, I c)η−1

≤
|I |η−1∑

k=0

c′Lη
1 + k

≤ c′′Lη log(1 + |I |η−1).

The other terms are bounded similarly. ��
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Proof of Theorem 3.5 In view of Proposition 3.6 and Lemma 3.7 applied to EμA and
μα , it remains to prove statement (i) of Theorem 3.5. We thus assume in the sequel that
1 < α < 2. The proof is divided into five steps. Throughout the proof, we assume that
n ≥ 3 (without loss of generality) and we denote by E1[·] and P1(·) the conditional
expectation and probability given F1, the σ -algebra generated by the random variables
(Xi j )i≥ j≥2.

Step one: Lower bound on the Stieltjes transform Let K = [a, b] be an interval
which does not intersect the finite set Eα , defined in Proposition 3.6. The limit spectral
measure μα has a positive density on R. In particular, there exists a constant c0 =
c0(K0, α) > 0 such that for all 0 ≤ η ≤ 1 and x ∈ K ,

Imgμα (x + iη) ≥ c0.

Consequently, if there exists 0 ≤ η ≤ 1 such that for all x ∈ K ,

|EgμA(x + iη)− gμα (x + iη)| ≤ c0

2
(45)

then

EImgμA(x + iη) ≥ c0

2
. (46)

Note that Proposition 3.6 already proves that (45) holds if n ≥ n0 is large enough
and

η0 = n−ε,

for some ε > 0. By an inductive argument, we aim at proving that (45) holds for the
same constants n0 but for some η � η0.

For some constant δ > 0 to be defined later on, we set for 1 < α < 2,

η∞ =
√

log n

2δn
∨
(

n− α
8−3α (1 + 11<α<4/3(log n)

2α
8−3α )

)
.

Note that η∞ ≥ n− α+2
4 for all n large enough (say again n0).

Step two: Start of the induction We assume that (45) holds for some η1 ∈ [n− α+2
4 , η0]

and that

|Y (x + iη1)− y(x + iη1)| ≤ τ

3
, (47)

where τ was defined in (42). Let 0 < τ ′ < τ to be chosen later on. We are going to
prove that (45)–(47) hold also for

η ∈
[
η1 − τ ′η2

1, η1

]
. (48)
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provided that η1 ≥ tη∞, n ≥ n0 and t large enough. As in the proof of Proposition
3.6, cf. (44), if τ ′ is small enough, we note that (47) implies that

|Y (x + iη)− y(x + iη)| ≤ 2
|η − η1|2
η2

1

+ |Y (x + iη1)− y(x + iη1)| ≤ τ. (49)

First, by Weyl’s interlacing property (45) holds for A(1) with c0/2 replaced by c0/4
(η1 
 n−1). Also it follows by Jensen’s inequality that for z = x + iη, with x ∈ K ,

(
ImR(1)kk (z)

) α
2 =

(
n−1∑

i=1

η

(λ
(1)
i − x)2 + η2

〈v(1)i , ek〉2

) α
2

≥
n−1∑

i=1

(
η

(λ
(1)
i − x)2 + η2

) α
2

〈v(1)i , ek〉2 =
((

ImR(1)(z)
) α

2
)

kk

≥ η1− α
2

n−1∑

i=1

η

(λ
(1)
i − x)2 + η2

〈v(1)i , ek〉2 = η1− α
2 ImR(1)kk (z), (50)

where we have used the fact [η/((λ(1)i − x)2 + η2)]α/2−1 ≥ η1−α/2 for α ∈ [0, 2].
Note also that from (44) and (48)

|ImR(1)kk (z)− ImR(1)kk (E + iη1)| ≤ |η − η1|
η2 ≤ τ ′

1 − τ ′ .

Hence, if τ ′ is chosen small enough so that the above is less than c0/8, we deduce
from (46) and (50) that with c1 = c0/16,

E
1

n − 1

n−1∑

k=1

(
ImR(1)kk (z)

) α
2 ≥ η1− α

2 E
1

n − 1

n−1∑

k=1

ImR(1)(z)kk

≥ 2c1η
1− α

2 . (51)

Now, for bounding from below

1

n − 1

n−1∑

k=1

(
ImR(1)kk (z)

) α
2 ≥ 1

n − 1
tr
{
(ImR(1)(z))α/2

}
, (52)

we observe by Lemma 8.1, since xα/2 has total variation on [0, η−1] equal to η−α/2,
that for r ≥ 0,

P

(
1

n − 1
tr
{
(ImR(1)(z))α/2

}
− E

1

n − 1
tr
{
(ImR(1)(z))α/2

}
≤ −r

)

≤ exp

(
− (n − 1)r2ηα

2

)
.
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Applying the above with r = c1η
1− α

2 shows with (51) that for some δ > 0,

P(�(z)c) ≤ e−δnη2
,

where

�(z) :=
{

1

n − 1
tr

{(
ImR(1)(z)

) α
2
}

≥ c1η
1− α

2

}
.

Note that this probabilistic bound is non trivial only if η1 ≥ n− 1
2 ≥ n− α+2

4 (recall that
1 < α < 2).

Step three: Gaussian concentration for quadratic forms For any z = x + iη ∈ C+,
we may bound from below the imaginary part of

Q(z) = a−2
n

n∑

k=2

R(1)kk (z)X
2
1k

on the event �(z) ∈ F1. Indeed, as the ImR(1)kk , 1 ≤ k ≤ n − 1, are non negative, we
can use Lemma 7.1 to see that conditionally on F1,

ImQ(z)
d=
(

1

n − 1

n∑

k=2

(
ImR(1)kk (z)G

2
k

) α
2

) 2
α

S = L(z)S, (53)

where the equality holds in law and S is a positive α/2-stable law whereas the Gk

are independent standard Gaussian variables, independent from S. Moreover, if �(z)
holds then from (52)

n∑

k=2

(
ImR(1)kk (z)

) α
2 ≥ c1(n − 1)η1− α

2 ≥ c1(n − 1)ηmax
k

(
ImR(1)kk (z)

) α
2
.

Hence, if �(z) holds and if η ≥ cn− α
2 , we may apply Corollary 6.2 to p = α and A

the diagonal matrix with diagonal entries
√

ImR(1)kk (z), 2 ≤ k ≤ n. We deduce that for
some universal constants c > 0, 0 < δ < 1, if �(z) ∈ F1 holds, then

P1

(( n∑

k=2

|
√

ImR(1)kk (z)Gk |α
) 1
α ≤ δ((n − 1)η1− α

2 )1/α

)
≤ e−δnη 2

α
.

Taking the square, this yields to

P1

(
L(z) ≤ δη

2
α
−1
)

≤ P1

(
L(z) ≤ δ2η

2
α
−1
)

≤ e−δnη 2
α
. (54)
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Finally, we observe similarly that by Lemma 7.1,

Im(Q(z)+ T (z)) = 〈X1, ImR(1)X1〉 d= L̃(z)S̃,

where T (z)was defined by (28) and, conditionally onF1, S̃ is a positiveα/2-stable law,

independent of L̃(z). Also, L̃(z) = ‖AG‖2
α , where A = (

ImR(1)
)1/2

and G ∈ R
n−1 is

a standard Gaussian vector. If�(z) holds, we may again apply Corollary 6.2 to p = α

and A, we find that if η ≥ cn− α
2 , the random variable L̃(z) satisfies if�(z) holds, the

probabilistic bound

P1

(
L̃(z) ≤ δη

2
α
−1
)

≤ e−δnη 2
α
.

We may thus summarize the last two steps by stating that if n−1/2 ≤ η1 ≤ 1 holds
then

P
(
�(z)c

) ≤ 3 exp(−δnη2).

where z = x + iη, x ∈ K and

�(z) = �(z) ∩
{

L(z) ≥ δη
2
α
−1
}

∩
{

L̃(z) ≥ δη
2
α
−1
}
.

(recall that 1 < α < 2).

Step four: Improved convergence estimates We next improve the results of Proposition
3.1 for our choice of z = x + iη, x ∈ K . We write instead of (29)

|Y (z)− I (z)| ≤ α

2
(δη

2
α
−1)−

α
2 −1

E

[
(S ∧ S̃)−

α
2 −1|T (z)|

]
+ η− α

2 P(�(z)c), (55)

|X (z)− J (z)| ≤ (δη
2
α
−1)−2

E

[
(S ∧ S̃)−2|T (z)|

]
+ η−1

P(�(z)c). (56)

Then from Lemma 3.3 and (27), there exists p > 1 (depending on α) such that

(E|T (z)|p)
1
p ≤ c

(
n− 1

α +
√

Mn(z)

n
(1 + 11<α≤4/3 log n)

)
.

From Hölder’s inequality and Lemma 7.3, we deduce that for some new constant
c > 0,

E

[
(S ∧ S̃)−2|T (z)|

]
≤ c

(
n− 1

α +
√

Mn(z)

n
(1 + 11<α≤4/3 log n)

)
.
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From (56)–(56), it follows that for n−1/2 ≤ η1 ≤ 1 and some new constant c > 0,

|Y (z)− I (z)| ∨ |X (z)− J (z)|

≤ cη−2( 2
α
−1)

(
n− 1

α +
√

Mn(z)

n
(1 + 11<α<4/3 log n)

)
+ 3η−1 exp(−δnη2).

Note that η−2( 2
α
−1)n− 1

α ≤ 1 if η ≥ n− 1
2(2−α) ≥ n−1/2 while η−1 exp(−δnη2) ≤ 1 if

(2δn/ log n)−1/2 ≤ η . Note also that this last expression improves upon Lemma 3.2
and then Proposition 3.1 can be improved into

∣∣Y (z)− ϕα,z(Y (z))
∣∣ ∨ ∣∣X (z)− ψα,z(Y (z))

∣∣

≤ cη−2( 2
α
−1)

(
n− 1

α +
√

Mn(z)

n
(1 + 11<α≤4/3 log n)

)

+ cη− α
2 n− α

4 + cη−1 exp(−δnη2). (57)

Then, by (49) we may use the bound (43). From (40), we thus obtain, for
(2δn/ log n)−1/2 ≤ η1 ≤ 1,

ηMn(z) ≤ c + cη−2( 2
α
−1)

√
Mn(z)

n
(1 + 11<α≤4/3 log n)

= c + cη− 8−3α
2α n− 1

2
√
ηMn(z)(1 + 11<α<4/3 log n).

We deduce that, for some constant c > 0, if η∞ ≤ η1 ≤ 1,

ηMn(z) ≤ c.

So finally, from (43)–(57), we find that for η∞ ≤ η1 ≤ 1,

|EgμA(z)− gμα (z)|
≤ c3η

− α
2 n− α

4 + c3η
− 8−3α

2α n− 1
2 (1 + 11<α≤4/3 log n)+ c3η

−1 exp(−δnη2). (58)

Step five: End of the induction From (42)–(58), we deduce that if tη∞ ≤ η1 ≤ 1 and
t large enough, then

|EgμA(z)− gμα (z)| ≤ c0

2
and |Y (z)− y(z)| ≤ τ

3
.

We have thus proved that (45)–(47) holds also for our choice of η.
The argument is completed as follow. Let K = [a, b] be a compact interval that

does not intersect Eα . Starting for η0 = n−ε, by applying m times the induction, we
deduce that (45) holds for ηm = ηm−1 − τ ′η2

m−1. Since this sequence vanishes as m
goes to infinity, and, for some m, we have tη∞ ≤ ηm < 2tη∞. We deduce that for all
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Localization and delocalization of eigenvectors for heavy-tailed random matrices 915

n large enough (say n0), (58) holds for z = x + iη, with tη∞ ≤ η ≤ 1 and K = [a, b].
The statement follows. ��

4 Weak delocalization of eigenvectors

Following Erdős–Schlein–Yau [20], from local convergence of the empirical spectral
distribution (Theorem 3.5), it is possible to deduce the delocalization of eigenvectors.
Using the union bound, Theorem 1.2 follows from the next proposition.

Proposition 4.1 (Delocalization of the eigenvectors) For any 1 < α < 2, there exist
δ, c > 0 and a finite set Eα ⊂ R such that if I is a compact interval with I ∩ Eα = ∅,
then for any unit eigenvector v with eigenvalue λ ∈ I and any 1 ≤ i ≤ n,

|〈v, ei 〉| ≤st Zn−ρ(1− 1
α
)(log n)c,

where ρ is as in Theorem 1.1 and Z is a non-negative random variable whose law
depends on (α, I ) and which satisfies

E exp(Z δ) < ∞.

Proof Let Eα be as in Theorem 1.1. The density of μα is uniformly lower bounded on
I by say 4ε > 0. We set

η = c1

(√
log n

n
∨
(

n− α
8−3α (1 + 11<α<4/3(log n)

2α
8−3α )

))
,

where the constant c1 is large enough to guarantee that for any interval J of length
at least η in I we have |EμA(J ) − μα(J )| ≤ 2ε|J |. Then, we partition the interval
I = ∪� I� into c2η

−1 intervals of length η. From what precedes we have for any
1 ≤ � ≤ c2η

−1,EμA(I�) > 2ε|I�|.
Now, by Lemma 8.1, the event Fn that for all 1 ≤ � ≤ c2η

−1,

μA(I�) > EμA(I�)− ε|I�| > ε|I�|, (59)

has probability at least 1 − c2η
−1 exp(−nε2c2

3η
2/2) ≥ 1 − c exp(−cnδ) for some

constants c, δ > 0.
Let v be a unit eigenvector and λ ∈ I such that Av = λv. Set vi = 〈v, ei 〉. We

recall the formula

v2
1 = (1 + a−2

n 〈X1, (A
(1) − λ)−2 X1〉)−1,

with X1 = (X12, . . . , X1n) ∈ R
n−1 and A(1) is the principal minor matrix of A where

the first row and column have been removed. We may now argue as in the proof of
Proposition 2.1 : for some 1 ≤ � ≤ c2η

−1, λ ∈ I�, and it follows
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916 C. Bordenave, A. Guionnet

v2
1 ≤ a2

nc2
3η

2

⎛

⎜⎝
∑

i :λ(1)i ∈I�

〈X1, u(1)i 〉2

⎞

⎟⎠

−1

,

where (λ(1)i , u(1)i ), 1 ≤ i ≤ n − 1 denotes the eigenvalues and an eigenvectors basis
of A(1). We rewrite the above expression as

v2
1 ≤ a2

nc2
3η

2dist−2(X1,W (1)) = a2
nc2

3η
2〈X1, P1 X1〉−1, (60)

where W (1) = vect
{

u(1)i : 1 ≤ i ≤ n − 1, λ(1)i /∈ I�
}
, and P1 is the orthogonal pro-

jection onto the orthogonal of W (1). The rank of P1 is equal to

N (1)
I�

= |{1 ≤ i ≤ n − 1 : λ(1)i ∈ I�}| = n − 1 − dim(W (1)).

From Weyl interlacement theorem, we get

nμA(I�)− 1 ≤ N (1)
I�

≤ nμA(I�)+ 1. (61)

From Lemma 7.1, there exists a positive α/2-stable random variable S and a standard
Gaussian vector G such that

dist2(X1,W (1))
d= ‖P1G‖2

αS.

By Corollary 6.2 and (12), if n is large enough, on the event Fn , see (59), with proba-
bility at least

1 − 2 exp

(
−δ (εc3nη)

2
α

n
2
α
−1

)
≥ 1 − 2 exp(−cnδ)

the lower bound

‖P1G‖α ≥ δ (εc3nη)
1
α

holds. Let us denote this enlarged event by F̄n . Hence, for some c > 0, on F̄n , we have
from (60)

v2
1 ≤ cη2(1−1/α)S−1.

In summary, we have shown that

|v1| ≤ cη1−1/αS−1/2 + 1F̄c
n
,

where F̄c
n has probability at most c exp(−cnδ), for some c > 1. For 0 < δ′ < 1, it

yields,
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E exp

{( |v1|
cη1−1/α

)δ′}
≤ E exp

{
S−δ′/2 + ηδ

′(1/α−1)1F̄c
n

}

≤
√

Ee2S−δ′/2
Ee2ηδ′(1/α−1)1F̄c

n

≤
√

Ee2S−δ′/2
(1 + e2nδ′/2 ce−cnδ ),

where we have used that η ≥ 1/n and α < 2. Using, Lemma 7.3, if δ′ is small enough,
the above is uniformly bounded in n. This gives our statement for any δ′′ < δ′. ��

5 Analysis of the limit recursive equation

We next turn to the analysis of the limiting equation describing the resolvent, in
case α < 1. Let H be the set of analytic functions h : C+ → C+ such that for all
z ∈ C+, |h(z)| ≤ Im(z)−1. We also consider the subset H0 of functions of H such that
for all z ∈ C+, h(−z̄) = −h̄(z). For every n and 1 ≤ k ≤ n, the function z �→ R(z)kk

is in H. It is proved in [10] that Rkk converges weakly for the finite dimensional
convergence to the random variable R0 in H0 which is the unique solution of the
recursive distributional equation for all z ∈ C+,

R0(z)
d= −

⎛

⎝z +
∑

k≥1

ξk Rk(z)

⎞

⎠
−1

, (62)

where {ξk}k≥1 is a Poisson process on R+ of intensity measure α
2 x

α
2 −1dx , independent

of (Rk)k≥1, a sequence of independent copies of R0. In [10], R0(z) is shown to be the
resolvent at a vector of a random self-adjoint operator defined associated to Aldous’
Poisson Weighted Infinite Tree. We define C̄+ = {z ∈ C : Im(z) ≥ 0} = C+ ∪ R. In
the following statement, we establish a new property of this resolvent.

Theorem 5.1 (Unicity for the resolvent recursive equation) Let 0 < α < 2/3. There
exists Eα > 0 such that for any z ∈ C̄+ with |z| ≥ Eα , there is a unique random
variable R0(z) on C̄+ which satisfies the distributional equation (62) and E|R0(z)| α2 <
+∞. Moreover, for any 0 < κ < α/2, there exist Eα,κ ≥ Eα and c > 0, such that for
any z ∈ C+ with |z| ≥ Eα,κ ,

EImR0(z)
α
2 ≤ c Im(z)κ .

In particular, if Im(z) = 0, R0(z) is a real random variable.

The main part of this section is devoted to the proof of Theorem 5.1. We will then
analyze its consequence on our random matrix and prove Theorem 1.3 in Sect. 5.4.
As usual, it is based on a fixed point argument. However, as R0 is complex-valued,
it is not enough to get a fixed point argument for the moments of R0 as was done
previously in [7,6]. Instead, we prove that moments of linear combinations of R0 and
its conjugate satisfy a fixed point equation. We then show that this new fixed point
equation is well defined and for sufficiently large z, has a unique solution.
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918 C. Bordenave, A. Guionnet

5.1 Proof of Theorem 5.1

We shall give the proof of Theorem 5.1 in this section, but postpone the proofs of
technical lemmas to the next subsection. By construction H(z) = −i R0(z) ∈ K1
as well as H̄(z) = i R̄0(z) ∈ K1 (recall that for β ∈ [0, 2] , Kβ = {z ∈ C :
| arg(z)| ≤ πβ

2 }). For ease of notation, we define the bilinear form h.u for h ∈ C and
u ∈ K+

1 = K1 ∩ C̄+ given by

h.u = Re(u)h + Im(u)h̄.

For example, |i.u| = |Re(u) − Im(u)|. Note also that if h ∈ K1 and u ∈ K+
1 , then

h.u ∈ K1. We set

γz(u) = �(1 − α

2
)E(H(z).u)

α
2 ∈ Kα/2.

We let Cα (resp. C′
α) denote the set of continuous functions g from K+

1 to Kα/2 (resp.
C) such that g(λu) = λα/2g(u), for all λ > 0. Then, for α/2 ≤ β ≤ 1, we introduce
the norm

‖g‖β = max
u∈S1+

|g(u)| + max
u 	=v∈S1+

|g(u)− g(v)|
|u − v|β (|i.u| ∧ |i.v|)β− α

2

where S1+ = {u ∈ K+
1 , |u| = 1}. We then define Hβ (resp. H′

β ) as the set of functions
g in Cα (resp. C′

α) such that ‖g‖β is finite. Note that ‖g‖β contains two parts : the
infinite norm and a weighted β-Hölder norm which get worse as the argument of u or
v gets close to π/4. Notice also that H′

β is a real vector space and Hβ is a cone.
The starting point of our analysis is that γz belongs to Hβ .

Lemma 5.2 (Regularity of fractional moments) Let 0 < α < 2 and z ∈ C̄+,

– Let R0(z) be a solution of (62) such that E|R0(z)| α2 < +∞. Then for all 0 < β <

1, all z ∈ C̄+\{0}, E|R0(z)|β ≤ c|Re(z)|−β for some constant c = c(α, β).
– Let H be a random variable in K1 such that E|H | α2 is finite. If we define for u ∈

K+
1 , γ (u) = E(H.u)

α
2 , then γ ∈ Hβ for all α/2 ≤ β ≤ 1 and ‖γ ‖β ≤ cE|H | α2

for some universal constant c > 0.

Let h ∈ K1 and g ∈ Hβ . We define formally the function given for all u ∈ S1+ by

Fh(g)(u) =
π
2∫

0

dθ(sin 2θ)
α
2 −1

∞∫

0

dy y− α
2 −1

∞∫

0

dr r
α
2 −1e−rh.eiθ

(
e−r

α
2 g(eiθ ) − e−yrh.ue−r

α
2 g(eiθ+yu)

)
.

We next see that F−i z is closely related to a fixed point equation satisfied by γz .
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Lemma 5.3 (Fixed point equation for fractional moments) Let z ∈ C̄+, 0 < α < 2
and R0(z) solution of (62) such that E|R0(z)| α2 < +∞. Then for all u ∈ K+

1 ,

γz(u) = cαF−i z(γz)(ǔ),

where

cα = α

2
α
2 �(α/2)2�(1 − α/2)

and ǔ = i ū = Im(u)+ iRe(u).

To prove this lemma, we will properly define and study the function Fh on Hβ , at
least for some values of (h, α, β). We shall prove that

Lemma 5.4 (Domain of definition of Fh) Let h ∈ K1 with |h| ≥ 1, 0 < α < 1 and β
such that

α

2
< β < 1 − α

2
.

Then Fh defines a map from Hβ to H′
β , and there exists a constant c = c(α) such that

‖Fh(g)‖β ≤ c|h|− α
2 (‖g‖β + 1).

We could not prove unfortunately that Fh is a contraction for ‖.‖β but for a weaker
and less appealing norm on H′

β which is given for ε > 0 by:

‖g‖β,ε = max
u∈S1+

|g(u)||i.u|ε + max
u 	=v∈S1+

|g(u)− g(v)|
|u − v|β (|i.u| ∧ |i.v|)β+ε .

It turns out that the map Fh is Lipschitz for this new norm if α is small enough.

Lemma 5.5 (Contraction property of Fh) Let h ∈ K1 with |h| ≥ 1, 0 < α <

2/3, α/2 < β < 1 − α/2 and 0 < ε < (1 − 3α/2) ∧ (β − α/2). Then there
exists a finite constant c = c(α, β, ε) such that, for all f, g ∈ Hβ ,

‖Fh( f )− Fh(g)‖β,ε ≤ c|h|−α(1 + ‖ f ‖β + ‖g‖β)‖ f − g‖β,ε.

We can now turn to the proof of Theorem 5.1. To this end define the map Gz which
maps g ∈ Hβ to the function

Gz(g)(u) = cαF−i z(g)(ǔ), u ∈ S1+, (63)

where cα and ǔ are given by Lemma 5.3. Then by Lemma 5.4, if |z| is large enough,
any fixed point g of Gz satisfies ‖g‖β ≤ c0/2 for some constant c0 = c0(α, β). By
Lemma 5.5, for any 0 < ε < 1 − 3α/2, if |z| ≥ Eα,ε is large enough, Gz satisfies

‖Gz( f )− Gz(g)‖β,ε ≤ 1 + ‖ f ‖β + ‖g‖β
1 + 2c0

‖ f − g‖β,ε.
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920 C. Bordenave, A. Guionnet

Thus, by Lemma 5.3, γz is the unique solution in Hβ of the fixed point equation
γz = Gz(γz). However, by Lemma 5.7 below, the law of R0(z) which satisfies (62)
is uniquely characterized by its fractional moments γz . Therefore, there is a unique
solution to this recursive distributional equation.

To prove the estimate on E[ImR0(z)α/2], we start by proving that ImR0(E) vanishes
almost surely. Indeed, we first note that when z = E 	= 0 is real, there is a real solution
of the fixed point equation γz = Gz(γz). Let us seek for a probability distribution
PE in R such that (62) holds. We recall that if yk are non-negative i.i.d. random

variables, independent of {ξk}k≥1, then
∑

k ykξk is equal in law to (Ey
α
2

1 )
2
α
∑

k ξk

and S = ∑
k ξk is a non-negative α/2-stable law. Thus, using the Poisson thinning

property, by definition PE has to be the law of

−
(

E + a2/αS − b2/αS′)−1

if S and S′ are independent α/2-stable positive laws and a = ∫
max(x, 0)α/2d PE (x),

b = ∫
max(−x, 0)α/2d PE (x). We find the system of equations

a = E

(
(E + a2/αS − b2/αS′)−1

)α/2
− ,

b = E

(
(E + a2/αS − b2/αS′)−1

)α/2
+ ,

(where we have used the notation (x)+ = max(x, 0), (x)− = max(−x, 0)). Notice
that a2/αS −b2/αS′ is an α/2-stable variable, it has a bounded density. Hence, for any
0 < α < 2, |E + aα/2S − bα/2S′|−α/2 is perfectly integrable. Thus, by construction
γ̃E (u) = �(1 − α

2 )
∫
(−iu.x)

α
2 d PE (x) belongs to Hβ and it is a fixed point of G E .

This insures the existence of a, b ≥ 0 and also the fact that PE is the law of R0(E) as
soon as E is large enough so that G E is a contraction.

To consider γz with small imaginary part, we need the additional following lemma.

Lemma 5.6 (Continuity of the maps Fh) Let 0 < α < 2/3, α/2 < β < 1−α/2, 0 <
ε ≤ β − α

2 and 0 < κ < α/2. There exists a constant c = c(α, β, κ) > 0, such that
for any h, k ∈ K1, |h|, |k| ≥ 1, and g ∈ Hβ

‖Fh(g)− Fk(g)‖β,ε ≤ c(|h| ∧ |k|)− α
2 −κ |h − k|κ(1 + ‖g‖β).

Set z = E + iη with |E | ≥ Eα,ε and let 0 < κ < α/2. Then, by Lemma 5.6, we
have

‖γE −γz‖β,ε = |G E (γE )−Gz(γz)|≤‖G E (γE )−Gz(γE )‖β,ε+‖Gz(γE )−Gz(γz)‖β,ε
≤ cE− α

2 −κ(1 + c0)η
κ+ 1

2
‖γE − γz‖β,ε.

Hence, for some c′ = c′(α, β, κ), we deduce from Lemma 5.3 that if z = E + iη

‖γE − γz‖β,ε ≤ c′ηκ .
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Then, since γE (ei π4 ) = 0 as γE is real, for any u ∈ S1+,

�
(

1 − α

2

)
EImR0(z)

α
2 = |γz(e

i π4 )− γE (e
i π4 )|

≤ |γz(e
i π4 )−γz(u)|+|γE (e

i π4 )−γE (u)| + |γz(u)− γE (u)|
≤ c|u − ei π4 | α2 + ‖γz − γE‖β,ε|i.u|−ε
≤ c′′|u − ei π4 | α2 + c′′ηκ |u − ei π4 |−ε.

Choosing u such that |u − ei π4 | is of order η
2κ
α+2ε , we deduce that for all z = E + iη

with |E | ≥ Eα,ε,EImR0(z)
α
2 is bounded by η

κα
α+2ε up to a multiplicative constant.

Since ε > 0 can be arbitrarily small, this concludes the proof of Theorem 5.1.

5.2 Proofs of technical lemmas

We collect in this part the proofs of a few technical results used in the proof of
Theorem 5.1.

5.2.1 Proof of Lemma 5.2 (Regularity of fractional moments)

If Re(z) = E ,

|R0(z)| ≤ |E −
∑

ξkRe(Rk(z))|−1

where
∑
ξkRe(Rk(z)) is equal in law to aS − bS′ for two non-negative constants

a, b and two independent stable laws S, S′. Assume for example that E > 0. By
conditioning on S′ and integrating over S, we deduce from Lemma 7.4 that there
exists a finite constant C = c(α, β) so that

E|R0(z)|β ≤ E|E − aS + bS′|−β ≤ CE|E + bS′|−β ≤ C2 E−β.

In particular, as η goes to 0, any limit point R0(E) of R0(E + iη), solution of (62),
satisfies the above inequality. The conclusion of the first point follows.

To prove the second point, we notice that it is straightforward that γ belongs to Cα .
Moreover, for any β ∈ [α2 , 1], there exists a constant c = c(α, β) such that for any
x, y in K1,

|x α
2 − y

α
2 | ≤ c|x − y|β (|x | ∧ |y|) α2 −β . (64)

Also, we have, for u ∈ K+
1 and h ∈ K1,

|i.u||h| ≤ |h.u| ≤ √
2|u||h|. (65)
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Indeed, if u = s + i t, s, t ≥ 0, then |h.u|2 = Re(h)2(s + t)2 + Im(h)2(s − t)2. This
last expression is bounded from below by |h|2((s + t)2 ∧ (s − t)2) = |h|2(s − t)2 =
|i.u|2|h|2. While it is bounded from above by |h|2((s + t)2 + (s − t)2) = 2|h|2|u|2.

Now, using Jensen inequality and (65), we find

∣∣∣E(H.u)
α
2

∣∣∣ ≤ E

∣∣∣(H.u)
α
2

∣∣∣ ≤ (
√

2|u|) α2 E|H | α2 ,

whereas (64) and (65) imply for β ∈ [α2 , 1],
∣∣∣E(H.u)

α
2 − E(H.v)

α
2

∣∣∣ ≤ E

∣∣∣(H.u)
α
2 − (H.v)

α
2

∣∣∣

≤ c E|H.(u − v)|β (|H.u| ∧ |H.v|) α2 −β

≤ c 2
β
2 |u − v|β (|i.u| ∧ |i.v|) α2 −β

E|H | α2 .

This completes the proof with ‖γ ‖β ≤
(√

2
α
2 + c2

β
2

)
E|H | α2 .

5.2.2 Proof of Lemma 5.3 (Fixed point equation for fractional moments)

Write u = u1 + iu2 and −i z = h ∈ K1. By definition, we have

γz(u) = �
(

1 − α

2

)
E

(
u1

h +∑
k ξk Hk

+ u2

h̄ +∑
k ξk H̄k

) α
2

= �
(

1 − α

2

)
E

(
h.ǔ +∑

k ξk Ȟk .ǔ∣∣h +∑
k ξk Hk

∣∣2

) α
2

.

We use the formulas (33) : for all w ∈ K1, δ > 0,

|w|−2δ = (w̄)−δ(w)−δ = �(δ)−2
∫

[0,∞)2

dxdy xδ−1 yδ−1e−xw̄−yw

= �(δ)−221−δ
π
2∫

0

dθ sin(2θ)δ−1

∞∫

0

dr r2δ−1e−reiθ .w.

and for 0 < δ < 1,

wδ = δ�(1 − δ)−1

∞∫

0

dx x−δ−1(1 − e−xw).
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Formally, we find that γz(u) is equal to

cα

π
2∫

0

dθ sin(2θ)
α
2 −1

∞∫

0

dx x− α
2 −1

×
∞∫

0

dr rα−1
E

(
e−reiθ .h−∑k ξkreiθ .Hk − e−(reiθ+xǔ).h−∑k ξk (reiθ+xǔ).Hk

)
.

If we perform the change of variable x = r y and apply Levy-Kintchine formula, we
obtain the stated formula. The exchange of expectation and integrals is then justified
by invoking Lemmas 5.2 and 5.4. We next prove Lemma 5.4.

5.3 Properties of the map F

Proof of Lemma 5.4 We start by proving that for all u ∈ S1+, for h ∈ K1, |h| ≥ 1,

|Fh(g)(u)| ≤ c|h|− α
2 (‖g‖β + 1). (66)

By Lemma 9.1, for h ∈ K1, the map on K α
2

given by

x �→
∞∫

0

dr r
α
2 −1e−rhe−r

α
2 x ,

is bounded by c|h|−α/2 and Lipschitz with constant c|h|−α . Let T > 0 to be chosen
later on. From (65) and (100), for θ ∈ [0, π2 ] and h ∈ K1, u ∈ S+

1 , g : K1 → K α
2

, we
have

∞∫

T

dy y− α
2 −1

∣∣∣∣∣∣

∞∫

0

dr r
α
2 −1e−rh.eiθ

(
e−r

α
2 g(eiθ ) − e−yrh.ue−r

α
2 g(eiθ+yu)

)∣∣∣∣∣∣

≤
∞∫

T

dy y− α
2 −1

⎛

⎝

∣∣∣∣∣∣

∞∫

0

dr r
α
2 −1e−rh.eiθ

e−r
α
2 g(eiθ )

∣∣∣∣∣∣

+
∣∣∣∣∣∣

∞∫

0

dr r
α
2 −1e−rh.(eiθ+yu)e−r

α
2 g(eiθ+yu)

∣∣∣∣∣∣

⎞

⎠

≤ c

∞∫

T

dy
y− α

2 −1

|h| α2 |i.eiθ | α2 + c

∞∫

T

dy
y− α

2 −1

|h| α2 |i.(eiθ + yu)| α2

≤ c′|h|− α
2

∣∣∣θ − π

4

∣∣∣
− α

2
T − α

2 , (67)
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where we have used the fact that

|i.eiθ | = | cos θ − sin θ | = √
2| sin(θ − π/4)| ≥ c|θ − π/4|,

and the control, for any real t, δ, T > 0, any γ1 < γ2 < 1, γ1 	= 0, (here γ2 = −γ1 =
α/2),

∞∫

T

yγ1−1

|yt − δ|γ2
dy = |δ|γ1−γ2 |t |−γ1

∞∫

T |t |
|δ|

xγ1−1

|x ± 1|γ2
dx

≤ c(T γ1 |δ|−γ2 1γ1<0 + |δ|γ1−γ2 |t |−γ11γ1>0), (68)

where the sign depends on whether or not t, δ have a different sign.
For the integration over y in the interval [0, T ], we find similarly by (101) that

A :=
T∫

0

y− α
2 −1

∣∣∣∣∣∣

∞∫

0

dr r
α
2 −1e−rh.eiθ

(
e−r

α
2 g(eiθ ) − e−r

α
2 g(eiθ+yu)

)∣∣∣∣∣∣

≤ c

T∫

0

dy
y− α

2 −1

|h|α|i.eiθ |α |g(eiθ )− g(eiθ + yu)| .

Recalling that g(z) = |z| α2 g( z
|z| ) (by definition of Cα and thus Hβ ) and using (64)–(65)

we find that there exist finite constants C,C ′ so that for all z, z′ ∈ K+
1 ,

|g(z)− g(z′)|

≤ ‖g‖β
(∣∣∣|z| α2 − |z′| α2

∣∣∣+ (|z| ∧ |z′|) α2
∣∣∣∣

z

|z| − z′

|z′|
∣∣∣∣
β (

|i. z

|z| | ∧ |i. z′

|z′| |
) α

2 −β)

≤ C‖g‖β
(
(|z| ∧ |z′|) α2 −β + (|i.z| ∧ |i.z′|) α2 −β) |z − z′|β

≤ C ′‖g‖β(|i.z| ∧ |i.z′|) α2 −β |z − z′|β. (69)

Using the fact that |eiθ + yu| ≥ 1 as u, eiθ ∈ S+
1 , y ≥ 0, we find with (65) that

A ≤ c|h|−α|i.eiθ |−α‖g‖β
⎛

⎝
T∫

0

dy
yβ− α

2 −1

|i.(eiθ + yu)|β− α
2

+
T∫

0

dy
yβ− α

2 −1

|i.eiθ |β− α
2

⎞

⎠

≤ c′|h|−α|θ − π

4
|−β− α

2 ‖g‖βT β− α
2 , (70)

where we have used that β ∈ (α/2, 1] to obtain a convergent integral.
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In the integration over y on the interval [0, T ], we have left aside the term
T∫

0

dy y− α
2 −1

∞∫

0

dr r
α
2 −1e−rh.eiθ

e−r
α
2 g(eiθ+yu)

(
1 − e−yrh.u

)
.

We shall use this time the third statement (102) of Lemma 9.1 with κ = 1. We choose
T = |i.eiθ |/2 so that for all y ∈ [0, T ] from (65)

|h.(eiθ + yu)| ≥ |h||i.eiθ | − √
2|h|T ≥ (1 − 1√

2
)|h||i.eiθ |.

For this choice of T , we get

T∫

0

dy y− α
2 −1

∣∣∣∣∣∣

∞∫

0

dr r
α
2 −1e−rh.eiθ

e−r
α
2 g(eiθ+yu)

(
1 − e−yrh.u

)
∣∣∣∣∣∣

≤ c

T∫

0

dy
y− α

2

|h| α2 |i.eiθ | α2 +1
≤ c′|h|− α

2

∣∣∣θ − π

4

∣∣∣
− α

2 −1
T 1− α

2 . (71)

Finally, using our choice of T , we deduce from (67), (70), (71) that

∞∫

0

dy y− α
2 −1

∣∣∣∣∣∣

∞∫

0

dr r
α
2 −1e−rh.eiθ

(
e−r

α
2 g(eiθ ) − e−yrh.ue−r

α
2 g(eiθ+yu)

)∣∣∣∣∣∣

is bounded by c|h|− α
2 |θ − π

4 |−α(1 + ‖g‖β) for |h| ≥ 1. We obtain (66) since

∣∣∣θ − π

4

∣∣∣
−α
(sin 2θ)

α
2 −1

is integrable over [0, π/2].
The proof of the lemma will be complete if we prove that for all u, v ∈ S+

1 ,

|Fh(g)(u)− Fh(g)(v)| ≤ c|u − v|β(|i.u| ∧ |i.v|) α2 −β(1 + ‖g‖β)|h|− α
2 . (72)

To do so, we fix θ ∈ [0, π/2] and assume for example that |i.(eiθ + yu)| ≤ |i.(eiθ +
yv)|. We first use the Lipschitz bound (101), together with (69), and write

∞∫

0

dy y− α
2 −1

∣∣∣∣∣∣

∞∫

0

dr r
α
2 −1e−rh.eiθ

(
e−yrh.ue−r

α
2 g(eiθ+yu) − e−yrh.ue−r

α
2 g(eiθ+yv)

)∣∣∣∣∣∣

≤ c

∞∫

0

dy
y− α

2 −1

|h|α|i.(eiθ + yu)|α |g(eiθ + yu)− g(eiθ + yv)|
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926 C. Bordenave, A. Guionnet

≤ c|h|−α|u − v|β‖g‖β
∞∫

0

dy
yβ− α

2 −1

|i.(eiθ + yu)|β+ α
2

≤ c′|h|−α|u − v|β‖g‖β
∣∣∣θ − π

4

∣∣∣
−α
(|i.u| ∧ |i.v|) α2 −β, (73)

where we have used (68) with γ1 = β − α/2 > 0 and γ2 = κ > γ1.
Now, in our control of

∞∫

0

dy y− α
2 −1

∞∫

0

dr r
α
2 −1e−rh.eiθ

(
e−yrh.ue−r

α
2 g(eiθ+yu) − e−yrh.ve−r

α
2 g(eiθ+yv)

)

we have so far left aside

∞∫

0

dy y− α
2 −1

∞∫

0

dr r
α
2 −1e−rh.(eiθ+yu)e−r

α
2 g(eiθ+yv)

(
1 − e−yrh.(v−u)

)

where |i.(eiθ + yu)| ≤ |i.(eiθ + yv)|. By (102) applied to κ = β,

∣∣∣∣∣∣

∞∫

0

dr r
α
2 −1e−rh.(eiθ+yu)e−r

α
2 g(eiθ+yv)

(
1 − e−yrh.(v−u)

)
∣∣∣∣∣∣

is bounded up to multiplicative constant by

|h|− α
2 −β |i.(eiθ + yu)|− α

2 −β yβ |v − u|β.

Using again (68) with 0 < γ1 = β − α/2 < γ2 = β + α/2 yields

∞∫

0

dy y− α
2 −1

∣∣∣∣∣∣

∞∫

0

dr r
α
2 −1e−rh.(eiθ+yu)e−r

α
2 g(eiθ+yv)

(
1 − e−yrh.(v−u)

)
∣∣∣∣∣∣

≤ c|h|− α
2 −β |u − v|β |δ|−α[|i.u| α2 −β + |i.v| α2 −β ] . (74)

We may conclude the proof of (72) by noticing that the bounds given by (73)–(74)
and multiplied by (sin 2θ)

α
2 −1 are uniformly integrable on [0, π/2]. ��

We can now build upon the proof of Lemma 5.4 to get proofs for Lemmas 5.5 and 5.6.
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Proof of Lemma 5.5 We shall now use the norm‖.‖β,ε for which we have the following
analogue of (69): if 0 ≤ ε ≤ β − α

2 , for all z, z′ ∈ K+
1 ,

| f (z)| ≤ ‖ f ‖β,ε |z|
α
2 +ε

|i.z|ε (75)

| f (z)− f (z′)| ≤ C‖ f ‖β,ε (|z| ∨ |z′|) α2 +ε

(|i.z| ∨ |i.z′|)β+ε |z − z′|β. (76)

We start by showing that for any u ∈ S1+,

|Fh(g)(u)− Fh( f )(u)| ≤ c|h|−α(1 + ‖ f ‖β + ‖g‖β)‖ f − g‖β,ε|i.u|−ε. (77)

The proof is similar to the argument in Lemma 5.4. We notice that Fh(g)(u)−Fh( f )(u)
is equal to

π
2∫

0

dθ(sin 2θ)
α
2 −1

∞∫

0

dy y− α
2 −1

∞∫

0

dr r
α
2 −1 Z(r, y, θ),

where, with gu = g(eiθ + yu), fu = f (eiθ + yu), hu = h.(eiθ + yu),

Z = e−rh0

(
e−r

α
2 g0 − e−r

α
2 f0

)
− e−rhu

(
e−r

α
2 gu − e−r

α
2 fu

)

=
(

e−rh0 − e−rhu
)(

e−r
α
2 gu − e−r

α
2 fu

)

+ e−rh0

(
e−r

α
2 g0 − e−r

α
2 f0 − e−r

α
2 gu + e−r

α
2 fu

)
.

We set δ = −i.eiθ and t = i.u. On the integration interval [T,∞) of y we use the first
form of Z and treat the two terms separately. As in Lemma 5.4, we use (101) and (75)
to find

∞∫

T

dy y− α
2 −1

∞∫

0

dr r
α
2 −1 |Z(r, y, θ)|

≤ c

∞∫

T

dy
y− α

2 −1‖ f − g‖β,ε
|h|α|δ|α+ε + c

∞∫

T

dy
y− α

2 −1 y
α
2 +ε ∨ 1‖ f − g‖β,ε

|h|α|t y − δ|α+ε

≤ c′|h|−α‖ f − g‖β,ε(T − α
2 δ−ε−α + δ−α|t |−ε) .

The above computation requires the hypothesis ε > 0 to insure that the control of the
integrals hold following (68) with γ1 	= 0.

123



928 C. Bordenave, A. Guionnet

For the integration interval [0, T ) of y we use the second form of Z and choose
T = |i.eiθ |/2 = |δ|/2. We use (104), (75) and κ = α/2 + ε, we find

T∫

0

dy y− α
2 −1

∣∣∣∣∣∣

∞∫

0

dr r
α
2 −1

(
e−rh0 − e−rhu

)(
e−r

α
2 gu − e−r

α
2 fu

)∣∣∣∣∣∣

≤ c

T∫

0

dy
yκ− α

2 −1‖ f − g‖β,ε
|h|α+κ |δ|α+κ+ε

≤ c′|h|− 3α
2 −ε|δ|− 3α

2 −ε‖ f − g‖β,ε.

Similarly, by (103) and (75), (76) and (69), our choice of T gives

T∫

0

dy y− α
2 −1

∣∣∣∣∣∣

∞∫

0

dr r
α
2 −1e−rh0

(
e−r

α
2 g0 − e−r

α
2 f0 − e−r

α
2 gu + e−r

α
2 fu

)∣∣∣∣∣∣

≤ c

T∫

0

dy
yβ− α

2 −1‖ f − g‖β,ε|δ|−ε−β
|h|α|δ|α

+c

T∫

0

dy
yβ− α

2 −1(‖ f ‖β + ‖g‖β)|δ| α2 −β‖ f − g‖β,ε|δ|−ε
|h| 3α

2 |δ| 3α
2

≤ c′|h|−α|δ|− 3α
2 −ε‖ f − g‖β,ε + c′|h|− 3α

2 |δ|− 3
2 −ε(‖ f ‖β + ‖g‖β)‖ f − g‖β,ε.

Since 3α/2 + ε < 1, we may integrate our bounds over θ and obtain (77).
The proof of the lemma will be complete if we show that for any u 	= v ∈ S+

1 , with
|i.u| ≤ |i.v|,

|Fh(g)(u)− Fh( f )(u)− Fh(g)(v)+ Fh( f )(v)|
≤ c|h|−α(1 + ‖ f ‖β + ‖g‖β)‖ f − g‖β,ε|i.u|−β−ε|u − v|β. (78)

The proof is simpler than in the previous case as we do not need to consider separately
the cases where y is small or large. We set δ = −i.eiθ , t = i.u, t ′ = i.v, |t | ≤ |t ′|.
Using (104) with κ = β and (75), we find

∞∫

0

dy y− α
2 −1

∣∣∣∣∣∣

∞∫

0

dr r
α
2 −1

(
e−rhv − e−rhu

)(
e−r

α
2 gu − e−r

α
2 fu

)∣∣∣∣∣∣

≤ c′|h|−α−β |u − v|β‖ f − g‖β,ε(|δ|− 3α
2 −ε|t | α2 −β + |δ|−α|t |−β−ε).
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Moreover, using again (103), (75), (76) and (69) we find

∞∫

0

dy y− α
2 −1

∣∣∣∣∣∣

∞∫

0

dr r
α
2 −1e−rhv

(
e−r

α
2 gv−e−r

α
2 fv−e−r

α
2 gu +e−r

α
2 fu

)∣∣∣∣∣∣

+ c

∞∫

0

dy
yβ− α

2 −1|u−v|β |t y−δ| α2 −β(‖ f ‖β+‖g‖β)‖ f −g‖β,ε(1∨y
α
2 +ε)|t y−δ|−ε

|h| 3α
2 |t y−δ| 3α

2

≤ c′|h|−α|u−v|β(1+‖ f ‖β+‖g‖β)‖ f −g‖β,ε(|δ|− 3α
2 −ε|t | α2 −β+|δ|−α|t |−β−ε).

Now, by assumption, 3α/2 + ε < 1 and we may integrate our bounds over θ and
obtain (78). ��
Proof of Lemma 5.6 The proof is very close to the previous one, and we simply outline
it. We assume for example |h| ≤ |k|. By Lemma 5.4, we can also assume that |h−k| ≤
|h| and in particular |k| ≤ 2|h|. We first prove that for any u ∈ S1+,

|Fh(g)(u)− Fk(g)(u)| ≤ c|h|− α
2 −κ |h − k|κ(1 + ‖g‖β). (79)

The expression Fh(g)(u)− Fk(g)(u) is equal to

π
2∫

0

dθ(sin 2θ)
α
2 −1

∞∫

0

dy y− α
2 −1

∞∫

0

dr r
α
2 −1 Z(r, y, θ),

where, with gu = g(eiθ + yu), hu = h.(eiθ + yu), ku = k.(eiθ + yu),

Z = e−r
α
2 g0

(
e−rh0 − e−rk0

)
− e−r

α
2 gu

(
e−rhu − e−rku

)

=
(

e−r
α
2 g0 −e−r

α
2 gu

)(
e−rh0 −e−rk0

)
+e−r

α
2 gu

(
e−rh0 −e−rk0 −e−rhu +e−rku

)
.

Let T > 0. We set δ = −i.eiθ and t = i.u. On the integration interval [T,∞) for y,
we use the first form of Z . Then, from (102) in Lemma 9.1, we find

∞∫

T

dy y− α
2 −1

∣∣∣∣∣∣

∞∫

0

dr r
α
2 −1

(
e−r

α
2 g0

(
e−rh0 − e−rk0

)
− e−r

α
2 gu

(
e−rhu − e−rku

))
∣∣∣∣∣∣

≤ c

∞∫

T

dy
y− α

2 −1|h − k|κ
|h| α2 +κ |δ| α2 +κ + c

∞∫

T

dy
y− α

2 −1(1 ∨ yκ)|h − k|κ
|h| α2 +κ |t y − δ| α2 +κ

≤ c′|h|− α
2 −κ |h − k|κ(|δ|− α

2 −κT − α
2 + |δ|− α

2 −κT κ−
α
2 ),
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where we have used that κ < α/2. On the integration interval [0, T ) for y, we use the
second form of Z . We choose T = |i.eiθ |/2 = |δ|/2. For the first term, by (104) in
Lemma 9.1,

T∫

0

dy y− α
2 −1

∣∣∣∣∣∣

∞∫

0

dr r
α
2 −1

(
e−r

α
2 g0 − e−r

α
2 gu

)(
e−rh0 − e−rk0

)
∣∣∣∣∣∣

≤ c

T∫

0

dy
yβ− α

2 −1|h − k|κ |δ| α2 −β‖g‖β
|h|α+κ |δ|α+κ

≤ c′|h|−α−κ |δ|−α−κ |h − k|κ‖g‖β.

The second term is easily bounded by (105) with κ1 = κ and κ2 = 0. Integrating our
bounds over θ , we obtain (79). The proof that for all u 	= v ∈ S+

1 , with |i.u| ≤ |i.v|.

|Fh(g)(u)− Fk(g)(u)− Fh(g)(v)+ Fk(g)(v)|
≤ c|u − v|β |i.u| α2 −β−κ(1 + ‖g‖β)|h|− α

2 |h − k|κ (80)

is easier as it does not require to consider separately small and large y; we leave it to
the reader. ��

5.3.1 Computation of characteristic function

With the notation of proof of Theorem 5.1, we define for z ∈ C̄+, u ∈ K+
1 ,

χz(u) = E exp(−u.H(z)).

We note that the distribution of R0(z) is characterized by the value of χz on any open
neighborhood in K+

1 . The next lemma asserts that the distribution of R0(z) is also
characterized by the value of γz on K+

1 (that is on S1+ by homogeneity).

Lemma 5.7 (From fractional moment to characteristic function) Let z ∈ C̄+, 0 <
α < 2 and R0(z) solution of (62) such that E|R0(z)| α2 < +∞. For all u = u1 + iu2 ∈
K+

1 ,

χz(u) =
∫

R
2+

J1(s)J1(t)e
− (−i z)s2

4u1
− (i z̄)t2

4u2 e
−γz

(
s2

4u1
+i t2

4u2

)

dsdt

−
∞∫

0

J1(s)e
− (−i z)s2

4u1 e
−�(1− α

2 )γz(
s2

4u1
)
ds−

∞∫

0

J1(t)e
− (i z̄)t2

4u2 e
−�(1− α

2 )γz(i
t2

4u2
)
dt+1.

where J1(x) = x
2

∑
k≥0

(−x2/4)k

k!(k+1)! is a Bessel function of the first kind.
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Proof We use the formulas for w ∈ K1,

1 − e−w−1 =
∞∫

0

J1(s)e
−ws2

4 ds

(see [1]) and for z, z′ ∈ C,

e−z−z′ = (1 − e−z)(1 − e−z′
)− (1 − e−z)− (1 − e−z′

)+ 1.

Then, it follows from (62) that

e−u1 H−u2 H̄ d= exp

(
− u1

−i z +∑
k≥1 ξk Hk

− u2

i z̄ +∑
k≥1 ξk H̄k

)

d=
∫

R
2+

J1(s)J1(t)e
− (−i z)s2

4u1
− (i z̄)t2

4u2 e
−∑k ξk

(
Hk s2

4u1
+ H̄k t2

4u2

)

dsdt

−
∞∫

0

J1(s)e
− (−i z)s2

4u1 e
−∑k ξk

Hk s2

4u1 ds−
∞∫

0

J1(t)e
− (i z̄)t2

4u2 e
−∑k ξk

H̄k t2

4u2 dt+1.

Since J1 is bounded on R+, we may safely take expectation. The conclusion follows
from Levy-Khintchine formula. ��

5.4 Proof of Theorem 1.3

We start with a simple lemma which relates WI (i) to the diagonal of resolvent.

Lemma 5.8 (From eigenvectors to diagonal of resolvent) Let α > 0 and I = [E −
η, E + η] be an interval. Setting z = E + iη ∈ C+, we have

1

n

n∑

k=1

WI (k)
α
2 ≤

(
2nη

|�I |
) α

2 1

n

n∑

k=1

(ImR(z)kk)
α
2 .

Proof From the spectral theorem, we have

ImR(z)kk ≥
∑

vi ∈�I

η〈vi , ek〉2

(λi (A)− E)2 + η2 ≥ 1

2η

∑

v∈�I

〈v, ek〉2 = |�I |
2nη

WI (k).

It remains to sum the above inequality. ��
At this stage, it should be clear that the proof of Theorem 1.3 will rely on Theorem

5.1 and on an extension of the previous fixed point argument to finite n system. The
bottleneck in the proof will be on the lower bound of |�I |/nη which in particular
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requires according to Lemma 3.7 that μA(I ) ≤ L|I |. This last control is difficult
when α < 1 as in this case n−1∑n

k=1(ImR(z)kk)
α/2 goes to zero like ηα/2 so that

arguments such as those used in the proof of Theorem 3.5 do not hold. It will be
responsible for the restrictive condition η ≥ n−ρ+o(1) in the statement of Theorem
1.3. For completeness we will also prove in this subsection a vanishing upper bound on

1

n

n∑

k=1

(ImR(z)kk)
α
2 ,

for η of order n−1/6 for all α > 0. More precisely, we have

Theorem 5.9 (Vanishing fractional moment for the resolvent) Let 0 < α < 2/3, 0 <

ε < α2

2(4−α) , ρ
′ = 2+α

4(3+α) and c0 = (2+α)2
16(3+α) . There exist c1 = c1(α), c = c(α, ε) > 0

such that if n ≥ 1, z = E + iη ∈ C+, |z| ≥ c, n−ρ′
(log n)c0 ≤ η ≤ 1,

E
1

n

n∑

k=1

(ImR(z)kk)
α
2 ≤ cη− α(3+α)

2+α n− α
2 +c1ε + cη

α
2 −ε.

Moreover, if n−ρ(log n)
4

2+3α ≤ η ≤ 1,

E
1

n

n∑

k=1

(ImR(z)kk)
α
2 ≤ cη

α
2 −ε.

Theorem 1.3 is a consequence of the second statement of Theorem 5.9 together
with Theorem 3.5, Lemma 5.8 and Lemma 8.4 which asserts that

P

(
1

n

n∑

k=1

(ImR(z)kk)
α
2 ≥ E

1

n

n∑

k=1

(ImR(z)kk)
α
2 + tη

α
2 −ε

)
≤ exp(−nη4− 4ε

α t
1
α ).

We consider for u ∈ K+
1 ,

γ n
z (u) := �(1 − α

2
)E

[
1

n

n∑

k=1

(−i R(z)kk .u)
α
2

]
= �(1 − α

2
)E
[
(−i R(z)11.u)

α
2

]
.

Lemma 5.10 (Bound on fractional moments of the resolvent) Let 0 < α/2 ≤ β <

2α/(4 − α) and ρ′, c0 as in Theorem 5.9. There exists c > 0 such that if n ≥ 1, z =
E + iη ∈ C+, |z| ≥ 1, η ≥ n−ρ′

(log n)c0 , then

‖γ n
z ‖β ≤ c. (81)

The proof of Theorem 5.9 provides also the local convergence of the fractional
moments γ n

z for the norm ‖.‖ α
2 ,ε

. Indeed it is based again on an approximate fixed
point argument for these quantities.
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Lemma 5.11 (Approximate fixed point for fractional moments of the resolvent) Let
0 < α < 2/3 and ρ′, c0 as in Theorem 5.9 and Gz as in (63). For all 0 < ε <
α2

2(4−α) , there exists c = c(α, ε) > 0 such that if n ≥ 1, z = E + iη ∈ C+, |z| ≥
c, n−ρ′

(log n)c0 ≤ η ≤ 1,

‖γ n
z − Gz(γ

n
z )‖ α

2 +ε,ε ≤ cη− α(3+α)
2+α n− α

4 .

Moreover, if n−ρ(log n)
4

2+3α ≤ η ≤ 1,

‖γ n
z − Gz(γ

n
z )‖ α

2 +ε,ε ≤ η− 5α
4 n− α

4 .

We now check that the above two lemmas imply Theorem 5.9. Note in the proof
below that they also imply the convergence of γ n

z to γz for η ≥ n−ρ′
(log n)c0 .

Proof of Theorem 5.9 We prove the first statement. Let 0 < ε < α2

2(4−α) and δ =
η− α(3+α)

2+α n− α
4 . Now since ‖γ n

z ‖ α
2 +ε and ‖γz‖ α

2 +ε are uniformly bounded, we have by
Lemma 5.5 and Lemma 5.11,

‖γ n
z − γz‖ α

2 +ε,ε ≤ c|z|−α‖γ n
z − γz‖ α

2 +ε,ε + cδ (82)

as long as |z| ≥ c with imaginary part n−ρ′
(log n)c0 ≤ η ≤ 1. Hence, if |z| is large

enough, c|z|−α is less than 2 and it follows that

‖γ n
z − γz‖ α

2 +ε,ε ≤ 2cδ. (83)

Now, we may argue as in the proof of Theorem 5.1. By Theorem 5.1, for |z| large
enough, |γz(ei π4 )| ≤ c′η α2 −ε, for some constant c′ > 0. Then, for any u ∈ S1+, using
Lemma 5.10, Lemma 5.2 and (83),

�(1 − α

2
)EImR(z)

α
2
11 = |γ n

z (e
i π4 )|

≤ |γ n
z (e

i π4 )− γ n
z (u)| + |γ n

z (u)− γz(u)| + |γz(e
i π4 )− γz(u)| + |γz(e

i π4 )|
≤ c′′|u − ei π4 | α2 + ‖γz − γ n

z ‖α/2+ε,ε|i.u|−ε + |γz(e
i π4 )|

≤ c′′|u − ei π4 | α2 + c′′δ|u − ei π4 |−ε + c′η
α
2 −ε.

Choosing u such that |u − ei π4 | is of order δ
2

α+2ε , we deduce that for all z = E + iη
with |E | ≥ Eα,ε,EImR(z)

α
2 is bounded up to a multiplicative constant, by

η− α(3+α)
2+α n− α

4 +O(ε) + η
α
2 −ε.

Since ε > 0 can be arbitrarily small, this concludes the proof for the case

n−ρ′
(log n)c0 ≤ η ≤ 1. The proof for n−ρ(log n)

4
2+3α ≤ η ≤ 1 is identical: we

find, by using the second part of Lemma 5.11 in (82)
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E
1

n

n∑

k=1

(ImR(z)kk)
α
2 ≤ cη− 5α

4 n− α
4 +O(ε) + cη

α
2 −ε.

It remains to notice that for ε small enough, in our range ofη, the second term dominates
the first term. ��
Proof of Lemma 5.10 As in the proof of Lemma 5.2, it is sufficient to check that for
some constant c = c(α, β),

E|R11(E + iη)|β ≤ c|E |−β. (84)

As usual, from (10), we have

|R(z)11| =
∣∣∣
(

z − a−1
n X11 + a−2

n 〈X1, R(1)X1〉
)∣∣∣

−1
.

We first get rid of the non-diagonal term in the scalar product 〈X1, R(1)X1〉. We
perform this as in the proof of Lemma 3.2. Using the definition (28) and (64) with
α/2 = β, we find

∣∣∣∣∣∣
E|R(E + iη)11|β − E

∣∣∣∣∣z + a−2
n

n∑

k=2

R(1)kk X2
1k

∣∣∣∣∣

−β ∣∣∣∣∣∣
≤ cη−2β

E|T (z)|β

In particular, since |z|−β ≤ |Re(z)|−β , we find

E|R(E + iη)11|β ≤ E

∣∣∣∣∣E + a−2
n

n∑

k=2

Re(R(1)kk )X
2
1k

∣∣∣∣∣

−β
+ cη−2β

E|T (z)|β

Now, we decompose the sum into a positive and a negative part

n∑

k=2

Re(R(1)kk )X
2
1k =

n∑

k=2

(
Re(R(1)kk )

)

+ X2
1k −

n∑

k=2

(
Re(R(1)kk )

)

− X2
1k .

Note that, conditioned on R(1), the two sums are independent. We invoke Lemma 7.1

a−2
n

n∑

k=2

Re(R(1)kk )X
2
1k

d= aS − bS′,

where, conditioned on R(1), a, b, S, S′ are independent non-negative random variables,
S, S′ being α/2-stable random variables. Hence from what precedes, we have

E|R(E + iη)11|β ≤ E
∣∣E + aS − bS′∣∣−β + cη−2β

E|T (z)|β.
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Assume for example that E > 0. Let F be the filtration generated by (R(1), a, b, S)
and E

′ = E[·|F]. Using Lemma 7.4 conditionally to F yields that for some constants
c = C2 > 0,

E
∣∣E + aS − bS′∣∣−β = E

[
E

′ ∣∣E + aS − bS′∣∣−β
]

≤ C E |E + aS|−β ≤ cE−β.

If E < 0, we repeat the same argument with the filtration generated by (R(1), a, b, S′).
Now, if 0 < β < 2α/(4 − α), using the tail bound (27), we find

E|T (z)|β ≤ c

(
n− β

α +
(

Mn

n

) β
2
)
. (85)

We now use the bound given by (19) on Mn which is valid for all η ≥ n− α+2
4 ,

η−2β
E|T (z)|β ≤ cη−2β− 2β

2+α n− β
2 (log n)

β(2+α)
8 .

This concludes the proof of the lemma, since for η ≥ n−ρ′
(log n)

(2+α)2
16(3+α) , the above

expression is uniformly bounded. ��
Note that in the proof of Lemma 5.10 we have used the bound (19) instead of the

bound Mn ≤ cη−1 given by the proof of Proposition 3.6 because it is valid for a wider
range of η.

Proof of Lemma 5.11 Set h = −i z ∈ K1, Hk(h) = −i R(1)(ih)kk and define

I n
h (u) = �

(
1 − α

2

)
E

⎛

⎝
(

h + a−2
n

n∑

k=2

X2
1k Hk

)−1

.u

⎞

⎠

α
2

= �
(

1 − α

2

)
E

⎛

⎜⎝
h.ǔ + a−2

n
∑n

k=2 X2
1k Hk(h).ǔ

∣∣∣h + a−2
n
∑n

k=2 X2
1k Hk

∣∣∣
2

⎞

⎟⎠

α
2

,

where we recall that ǔ = Im(u)+ iRe(u).

Step one: Diagonal approximation. In this first step, we generalize Lemma 3.2. We
will upper bound the expression ‖γ n

ih − I n
h ‖β,ε. Using the definition (28), we find that

for any u ∈ S+
1 , with η = Re(h) > 0,

|γ n
ih(u)− I n

h (u)| ≤ cη−α
E[|T (z)| α2 ],

where we have used (64) with β = α
2 . Using (85) for β = α/2, we deduce that

|γ n
ih(u)− I n

h (u)| ≤ cη−α
(

n−1/2 +
(

Mn

n

) α
4
)
.
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Whereas using (19) to bound Mn , we find for n− α+2
4 ≤ η ≤ 1 that

|γ n
ih(u)− I n

h (u)| ≤ cn− α
4 η− α(3+α)

2+α (log n)
α(2+α)

8 . (86)

To bound

�n
h(u, v) := |γ n

ih(u)− γ n
ih(v)− I n

h (u)+ I n
h (v)|

we first observe that for x1, x2, y1, y2 ∈ K1, by using the standard interpolation trick,
for κ1, κ2, β ∈ [0, 1], we have if N = |x1| ∧ |x2| ∧ |y1| ∧ |y2|, and κ1 + κ2 ≥ α/2

|x
α
2

1 − x
α
2

2 − y
α
2

1 + y
α
2

2 | ≤ N
α
2 −κ1−κ2 |x1 − y1|κ1(|x1 − x2|κ2 + |y1 − y2|κ2)

+N
α
2 −β |x1 − x2 − y1 + y2|β.

We use this inequality with

x j = h.ǔ + a−2
n
∑n

k=2 X2
1k Hk(h).ǔ − i( j − 1)T (z).ǔ

∣∣∣h + a−2
n
∑n

k=2 X2
1k Hk − i( j − 1)T (h)

∣∣∣
2 ,

and in y j , v replaces u. For j ∈ {1, 2}, one can check that, with D j = (h + a−2
n∑n

k=2 X2
1k Hk − i( j − 1)T (z))−1,

|xi − yi | ≤ |Di ||u − v| , |x1 − x2| ∨ |y1 − y2| ≤ |D1||D2||T (z)|,

and

|x1 − x2 − y1 + y2| ≤ |D1||D2||u − v||T (z)| .

Moreover, using (65), we find N ≥ (|i.u|∧|i.v|)(|D1|∧|D2|). Recall finally that |D1|
and |D2| are bounded by η−1. Hence, choosing κ1 = β, κ2 = α

2 + ε (with ε small
enough so that α2 + ε < 2α

4−α ) we deduce that,

�n
h(u, v)≤η−β− α

2 (|i.u| ∧ |i.v|)−β−ε|u−v|βE[|T (z)| α2 +ε]+η−β− α
2 |u−v|βE[|T (z)|β ].

We naturally choose β = α
2 + ε < 2α

4−α . From (27), T (z) ∈ Lβ and

E[|T (z)|β ] ≤ cn− β
α + c

(
Mn

n

) β
2 ≤ c

(
η

4
2+α n(log n)−

2+α
4

)− β
2
,

where we have finally assumed that n− 2+α
4 ≤ η ≤ 1 and used (19). This gives for

n− 2+α
4 ≤ η ≤ 1

‖γ n
ih − I n

h ‖ α
2 +ε,ε ≤ cη−β− α

2 − 2β
2+α n− β

2 (log n)
β(2+α)

8
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Now it easy to check that for η ≥ n− 2+α
2(4+α) , we have η−β− α

2 − 2β
2+α n− β

2 < η− α(3+α)
2+α n− α

4 .
It follows for n−ρ′ ≤ η ≤ 1 and a new constant c > 0, depending on ε, that

‖γ n
ih − I n

h ‖ α
2 +ε,ε ≤ cη− α(3+α)

2+α n− α
4 . (87)

If instead we assume that n−ρ(log n)
4

2+3α ≤ η ≤ 1, then, from the proof of Propo-
sition 3.6, we may use the stronger bound Mn ≤ cη−1 if |z| large enough. We then
find

‖γ n
ih − I n

h ‖ α
2 +ε,ε ≤ cη− 3β

2 − α
2 n− β

2 ≤ cη− 5α
4 n− α

4 . (88)

(where, for the last inequality, we have used the fact that η ≥ n−1/3 for n−ρ

(log n)
4

2+3α ≤ η ≤ 1 and n large enough).

Step two: approximate fixed point equation Next, we extend the proof of Proposition
3.1. We denote by E1[·] and P1(·) the conditional expectation and probability given
F1, the σ -algebra generated by the random variables (Xi j )i≥ j≥2. We assume that
α/2 < β < 1−α/2 and 0 < ε < 1−3α/2. We first remark that by arguments similar
to the proof of Lemma 5.3 and by Corollary 7.2, we have

I n
h (u) = E[Gz(Zn)(u)],

where, conditioned on F1, Zn(u) = κ
n

∑n
k=2(Hk .u)

α
2 |gk |α, gk are i.i.d standard nor-

mal variables and κ = �(1 − α/2)/E|g1|α . Note that, from Lemma 5.2, ‖Zn‖β ≤
c
n

∑n
k=2 |Hk | α2 |gk |α which belongs to L p for any p > 0. Therefore, we can use Lemma

5.5 and the Hölder inequality to insure that,

‖I n
h − Gz(γ

n
z )‖β,ε ≤ c|h|−α

⎛

⎝1 + ‖γ n
z ‖β + E

[(
κ

n

n∑

k=2

|Hk | α2 |gk |α
)p]1/p

⎞

⎠

E

[
‖γ n

z − Zn‖q
β,ε

]1/q
, (89)

where 1/p + 1/q = 1 and

E[‖γ n
z − Zn‖q

β,ε]1/q ≤ E[‖E[Zn] − Zn‖q
β,ε]1/q + ‖γ n

z − E[Zn]‖β,ε .

From the triangle inequality,

E[‖E[Zn] − Zn‖q
β,ε]1/q ≤ E[‖E[Zn] − E1[Zn]‖q

β,ε]1/q + E[‖E1[Zn] − Zn‖q
β,ε]1/q .
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But, using Lemma 8.5 from the Appendix,

E[‖E1[Zn] − Zn‖q
β,ε] ≤ E

∥∥∥∥∥
c

n

n∑

k=2

(Hk .u)
α
2 (|gk |α − E|gk |α)

∥∥∥∥∥

q

β,ε

≤ c(q)(log n)
q
2 (ηαn)−

q
2 .

Similarly, by Lemma 8.5,

E[‖E[Zn] − E1[Zn]‖q
β,ε] ≤ cq

E

∥∥∥∥∥E
1

n

n∑

k=2

(Hk .u)
α
2 − 1

n

n∑

k=2

(Hk .u)
α
2

∥∥∥∥∥

q

β,ε

≤ c′(q)(log n)
qα
4 (η2n)−

qα
4 .

Whereas using (97) as we did in the proof of Proposition 3.1, we have, with c0 =
2�(1 − α

2 ),

‖γ n
z − EZn‖β,ε ≤ c0(nη)

− α
2 .

Hence, there exists a new constant c(q) such that

E

[
‖γ n

z − Zn‖q
β,ε

]1/q ≤ c(q)(log n)
α
4 (η2n)−

α
4 .

Similarly, using the triangle inequality at the first line, (97) at the second line and the
Jensen inequality at the third,

E

[(
1

n

n∑

k=2

|Hk | α2 |gk |α
)p]1/p

≤ E

[(
1

n

n∑

k=2

|Hk | α2 E|gk |α
)p]1/p

+ E

[∣∣∣∣∣
1

n

n∑

k=2

|Hk | α2 (|gk |α − E|gk |α)
∣∣∣∣∣

p]1/p

≤ E|g1|αE

[(
1

n

n∑

k=2

|Rk | α2
)p]1/p

+ c0(nη)
− α

2 + c(p)1/p(ηαn)−
1
2

≤ E|g1|α
(

1

n

n∑

k=2

E|Rk | pα
2

)1/p

+ c0(nη)
− α

2 + c(p)1/p(ηαn)−
1
2 .

We choose p > 1 such that pα/2 < 2α/(4 − α) and we finally use (84) and Lemma
5.10. Then, for our range of η, the right hand side of the above inequality is of order
1. Putting these estimates in (89), we find finally that for any α/2 < β < 2α/(4 − α),
any 0 < ε < 1 − 3α/2 and n−ρ′

(log n)c0 ≤ η ≤ 1, there exists a constant c(α, β, ε)
such that
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‖I n
h − Gz(γ

n
z )‖β,ε ≤ c|z|−α(log n)

α
4 (η2n)−

α
4 .

Putting this together with (87), this conclude our proof (the above term is negligible
compared to the right hand side of (87) or (88)). ��
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Appendix A: Concentration of Gaussian measure

In this paragraph, we recall a well-known concentration phenomenon of the Gaussian
measure. The following classical result is contained in Ledoux [24]. It is a consequence
of the Logarithmic Sobolev inequality for the Gaussian measure and the Herbst argu-
ment.

Theorem 6.1 (Concentration of Gaussian measure) Let F be a 1-Lipschitz function
on the Euclidean space R

n and G be a standard Gaussian vector in R
n, then for every

r ≥ 0,

P (F(G)− E[F(G)] ≥ r) ≤ e− r2
2 .

For p, q > 0, we define for x ∈ R
n

‖x‖p =
(

n∑

i=1

|xi |p

) 1
p

,

and for a matrix A

‖A‖p→q = sup
‖x‖p=1

‖Ax‖q .

(this is a norm for p, q ≥ 1) The usual operator norm is denoted by

‖A‖ = ‖A‖2→2 = sup
i

|si |

where the si ’s are the singular values of A. Recall that if 0 < p ≤ 2,

‖In‖2→p = n
1
p − 1

2 .

Corollary 6.2 Let A be a n ×n non-negative matrix, 0 ≤ p ≤ 2 and G be a standard
Gaussian vector in R

n N (0, I ). There exist positive constants c, δ > 0 depending only

on p, such that if (tr Ap)
1
p ≥ c‖A‖n

1
p − 1

2 then

‖AG‖p ≥ δ
(
tr Ap) 1

p ,
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with probability at least

1 − exp

⎧
⎨

⎩−δ
(
(tr Ap)

1
p

‖A‖n
1
p − 1

2

)2
⎫
⎬

⎭ .

Proof We first consider the case 1 ≤ p ≤ 2. We define F(x) = ‖Ax‖p . From the
triangle inequality (valid for all p ≥ 1)

|F(x)− F(y)| ≤ F(x − y) = ‖A(x − y)‖p ≤ ‖x − y‖2‖A‖2→p.

Since ‖A‖2→p ≤ ‖A‖2→2‖In‖2→p, we deduce that F is Lipschitz with constant

σ = ‖A‖n
1
p − 1

2 .

It follows by Theorem 6.1 that for every r ≥ 0,

P
(‖AG‖p − E‖AG‖p ≤ r

) ≤ e
− r2

2‖A‖2
2→p ≤ e

− r2

2‖A‖2n2/p−1 . (90)

The corollary will follow by applying the above inequality to r = E‖AG‖p/2 and by
showing that, for some constant c0 > 0,

E‖AG‖p ≥ c0
(
tr Ap) 1

p . (91)

From (90), for some c1 > 0,

E
∣∣‖AG‖p − E‖AG‖p

∣∣p ≤ (c1σ)
p.

Hence

E‖AG‖p ≥ (
E‖AG‖p

p
) 1

p − c1σ. (92)

Now, let (λk, uk)1≤k≤n be the eigenvalues and normalized eigenvectors of A. We note
that

(AG)i
d=

n∑

k=1

λk〈uk, ei 〉Gk .

In particular, (AG)i has distribution N (0,
∑

k λ
2
k〈uk, ei 〉2) and for some c2 > 0,

E‖AG‖p
p =

n∑

i=1

E

∣∣∣∣∣

n∑

k=1

λk〈uk, ei 〉Gk

∣∣∣∣∣

p

= c2

n∑

i=1

(
n∑

k=1

λ2
k〈uk, ei 〉2

) p
2

.

For 0 < p ≤ 2 and
∑n

k=1〈uk, ei 〉2 = 1 for all i ∈ {1, . . . , n}, we may use the Jensen
inequality to deduce from the above inequality that
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E‖AG‖p
p ≥ c2

n∑

i=1

n∑

k=1

λ
p
k 〈uk, ei 〉2 = c2tr Ap. (93)

Then, from (92) and the value of σ , we deduce that (91) holds with c0 = c1/p
2 /2 if c

is chosen large enough so that c1/p
2 c ≥ 2c1.

We next consider the case 0 ≤ p < 1. We denote, for R = ( κn tr Ap)1/p with some
positive constant κ to be chosen later, φ(x) = |x |p ∧ (R p−1|x |). Then φ has Lipschitz
constant equal to R p−1. In particular, the R

n → R+ function x �→ ∑
i φ(xi ) is

Lipschitz with constant bounded by
√

n R p−1. It follows that the R
n → R+ function

F(x) = ∑
i φ((Ax)i ) is Lipschitz with constant bounded by ‖A‖√n R p−1. Hence,

by Theorem 6.1, for any r > 0,

P

(
n∑

i=1

φ(〈AG, ei 〉)− E

n∑

i=1

φ(〈AG, ei 〉) ≤ −r

)
≤ e

− r2

2‖A‖2n R2p−2 .

Now, we observe that as φ is upper bounded by |x |p,

‖AG‖p
p ≥

n∑

i=1

φ(〈AG, ei 〉),

whereas, since φ(x) ≥ |x |p − R p, by the choice of R,

E

n∑

i=1

φ(〈AG, ei 〉) ≥ E‖AG‖p
p − κtr(Ap).

Therefore from (93), if we choose κ < c2/4,

E

n∑

i=1

φ(〈AG, ei 〉) ≥ 3c2

4
tr(Ap).

Finally, we set r = c2tr(Ap)/4 and conclude that

P

(
‖AG‖p

p ≤ c2

2
tr(Ap)

)
≤ P

(
n∑

i=1

φ(〈AG, ei 〉) ≤ c2

2
tr(Ap)

)
≤ e

−cn
(

tr(A p )
n‖A‖p

) 2
p

.

��
Remark 6.3 Consider the special case where A is the projector on a vector space W
of dimension d. Then Ap = A for all p > 0. Corollary 6.2 gives a lower bound for

‖AG‖p of order d
1
p when d ≥ cpn1−p/2. However, if (u1, . . . , ud) is an orthonormal

basis of W such that 〈uk, ei 〉2 ≥ ε2/n then for p ≤ 1 we have a lower bound for ‖AG‖p

of order εn
1
p − 1

2 d
1
2 which can be significantly larger. Hence, we expect that Corollary

6.2 is sharp if W has a localized basis and not sharp if W has a delocalized basis.
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942 C. Bordenave, A. Guionnet

Appendix B: Stable distributions

In this paragraph, we give some properties of stable distributions.
Let σ > 0, 0 < α < 2 and β ∈ [−1, 1]. A real random variable X has α-stable

distribution Stabα(β, σ ) if its Fourier transform is given for all t ∈ R, by

E exp(i t X) = exp
[−σα|t |α (1−iβ sgn(t)uα)

]
(94)

where sgn(t) is the sign of t and uα = tan(πα/2) for all α except α = 1 in which
case u1 = −(2/π) log |t |.

If 0 < α < 1 and β = 1, the distribution Stabα(1, σ ) has support R+ and its
Laplace transform is conveniently given for all t ∈ R+, by

E exp(−t X) = exp
[−σαtαvα

]
, (95)

with vα = 2
π

sin
(
πα
2

)
�(1 − α)�(α).

Lemma 7.1 (Decomposition of quadratic form) Let X = (Xi )1≤i≤n be iid symmetric
α-stable random variables with distribution Stabα(0, σ ). Let A be a n × n positive
definite matrix, then

〈X, AX〉 d= ‖A1/2G‖2
αS,

where G is a standard gaussian vector N (0, I ) independent of S, a positive α/2-stable

Stab α
2
(1, 2σ 2v

− 2
α

α
2
).

Proof We use the identity, for y ∈ R
n ,

exp(− t2

2
〈y, y〉) = E exp(i t〈y, g〉).

Applied to y = A1/2 X , we get, for t ≥ 0,

E exp(−t〈X, AX〉) = E exp(i
√

2t〈A1/2 X,G〉) = E exp(i
√

2t〈X, A1/2G〉).

Then, since X is stable vector, 〈X, A1/2G〉 has distribution Stabα(0, σ‖A1/2G‖α).
From (94), it follows

E exp(−t〈X, AX〉) = E exp(−(2t)
α
2 σα‖A1/2G‖αα).

Then, we conclude by applying (95). ��
Corollary 7.2 (Sum of weighted squares) Let X = (Xk)1≤k≤n be iid symmetric
α-stable random variables with distribution Stabα(0, σ ) and let (wk)1≤k≤n ∈ C

n+.
Then
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E exp

(
i

n∑

k=1

wk X2
k

)
= E exp

(
−(−2i)

α
2 σα

n∑

k=1

w
α
2
k |gk |α

)
,

where G = (g1, . . . , gn) is a standard gaussian vector N (0, I ).

Proof We set ρk = −iwk , we shall prove that

E exp

(
−

n∑

k=1

ρk X2
k

)
= E exp

(
−2

α
2 σα

n∑

k=1

ρ
α
2

k |gk |α
)
. (96)

We write ρk = i(ak − bk) + ck , where ak, bk are the negative and positive parts
of Re(wk) and ck = Im(wk) > 0. We set ρk(t, s) = tak + sbk + ck, D = {z ∈
C : Re(z) > 0} = −iC+ and Dε = {z ∈ C : Re(z) > −ε, |Im(z)| < 2}, where
2ε = min(ck/(ak + bk)). Then, the D2

ε → D function (t, s) �→ ∑n
k=1 ρk(t, s)X2

k is
analytic in each of its coordinates. Since the function z �→ exp(−z) is analytic and
bounded on D, from Montel’s Theorem, we deduce that the D2

ε → C function

ϕ : (t, s) �→ E exp

(
−

n∑

k=1

ρk(t, s)X2
k

)

is analytic in each of its coordinates in Dε. However, for s, t ∈ R+, we notice that
ρk(s, t) ∈ R+. Hence by Lemma 7.1 applied to a diagonal matrix, we have

ϕ(t, s) = E exp

(
−2

α
2 σα

n∑

k=1

ρk(s, t)
α
2 |gk |α

)
.

The D → D function z �→ zα/2 is analytic. We may thus again apply Montel theorem
and deduce that the right hand side of the above identity is analytic in (s, t) on D2

ε . So
finally, the above equality holds true for all (s, t) ∈ D2

ε . Applied to (s, t) = (i,−i),
we obtain precisely (96). ��

The next lemma looks at the behavior of a positive stable random variable near 0.

Lemma 7.3 (Tail of inverse positive stable variable) Let σ > 0, 0 < α < 1 and S
be a positive α-stable Stabα(1, σ ) random variable. There exists a positive constant
c0(α) such that for all 0 < c < σ

α
1−α c0(α),

E exp(cS− α
1−α ) < ∞,

while the above is infinite for c > σ
α

1−α c0(α).

Proof From the identity, for m > 0, x > 0,

x−m = 1

�(m)

∞∫

0

tm−1e−xt dt,
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944 C. Bordenave, A. Guionnet

we deduce that, for p ≥ 0,

exp(cx−p) =
∑

k≥0

ck

�(kp)�(k + 1)

∞∫

0

tkp−1e−xt dt .

In particular, from (95), with σ̂ = σv
1/α
α , and Fubini’s theorem,

E exp(cS−p) =
∑

k≥0

ck

�(kp)�(k + 1)

∞∫

0

tkp−1e−tασ̂ αdt

= α−1
∑

k≥0

ck σ̂−kp �(
kp
α
)

�(kp)�(k + 1)
.

The conclusion follows easily from Stirling’s formula, �(x) ∼x→∞
√

2π
x

( x
e

)x . ��
Lemma 7.4 (Negative fractional moments of smooth random variable) Let α > 0 and
S be a real-valued random variable with law which has a uniformly bounded density
on [−1, 1] and is bounded by c|x |−α−1 on [−1, 1]c for some finite positive constant
c. Then, for any 0 < β < 1, there exists a finite constant C so that for any x ∈ R, any
σ ≥ 0, we have

E[|x − σ S|−β ] ≤ C |x |−β .

Proof Let us first assume that σ ≥ 2|x |. If C is a bound on the density of the law of
S on [−1, 1], for T ≥ (2/σ)β ,

E[|x − σ S|−β ] ≤ T +
∞∫

T

P

(
|x − σ S| ≤ t−1/β

)
dt ≤ T + C(1 − β)−1T 1− 1

β σ−1 .

Choosing T = (2/σ)β ≤ |x |−β provides the desired estimate. In the case σ ≤ 2|x |
and t−1/β ≤ |x |/2, we have

P

(
|x − σ S| ≤ t−1/β

)
≤ C

( x

σ

)−α−1
t−

1
β σ−1

Therefore if σ ≤ 2|x | and T = (2/|x |)β ,

E[|x − σ S|−β ] ≤ T + Cσαx−α−1(1 − β)−1T 1− 1
β ≤ C ′|x |−β + C ′σα|x |−α−β

≤ C ′(1 + 2α)|x |−β,

which completes the proof of the lemma. ��

123



Localization and delocalization of eigenvectors for heavy-tailed random matrices 945

Appendix C: Concentration of random matrices with independent rows

The total variation norm of f : R → R is

‖ f ‖TV := sup
∑

k∈Z

| f (xk+1)− f (xk)|,

where the supremum runs over all sequences (xk)k∈Z such that xk+1 ≥ xk for any
k ∈ Z. If f = 1(−∞,s] for some real s then ‖ f ‖TV = 1, while if f has a derivative in
L1(R), we get

‖ f ‖TV =
∫

| f ′(t)| dt.

Lemma 8.1 (Concentration for spectral measures [11]) Let A be an n × n random
Hermitian matrix. Let us assume that the vectors (Ai )1≤i≤n, where Ai := (Ai j )1≤ j≤i ∈
C

i , are independent. Then for any f : R → C such that‖ f ‖TV ≤ 1 and E| ∫ f dμA| <
∞, and every t ≥ 0,

P

(∫
f dμA − E

∫
f dμA ≥ t

)
≤ exp

(
−nt2

2

)
.

The next lemma is an easy consequence of Cauchy–Weyl interlacing Theorem. It
is an ingredient of the proof of Lemma 8.1.

Lemma 8.2 (Interlacing of eigenvalues) Let A be an n × n hermitian matrix and
B a principal minor of A. Then for any f : R → C such that ‖ f ‖T V ≤ 1 and
lim|x |→∞ f (x) = 0,

∣∣∣∣∣

n∑

i=1

f (λi (A))−
n−1∑

i=1

f (λi (B))

∣∣∣∣∣ ≤ 1.

The Lipschitz norm of f : C → C is

‖ f ‖L = sup
x 	=y

| f (x)− f (y)|
|x − y| .

Lemma 8.3 (Concentration for the diagonal of the resolvent) Let A be an n×n random
Hermitian matrix and consider its resolvent matrix R(z) = (A − z)−1, z ∈ C+. Let us
assume that the vectors (Ai )1≤i≤n, where Ai := (Ai j )1≤ j≤i ∈ C

i , are independent.
Then for any f : C → R such that ‖ f ‖L ≤ 1, and every t ≥ 0,

P

(∣∣∣∣∣
1

n

n∑

k=1

f (R(z)kk)− E
1

n

n∑

k=1

f (R(z)kk)

∣∣∣∣∣ ≥ t

)
≤ 2 exp

(
−nIm(z)2t2

8

)
.
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946 C. Bordenave, A. Guionnet

Proof The proof is close to the proof of Lemma 8.1 as done in [11] and relies on
the method of bounded martingale difference. We start by showing that for every
n × n deterministic Hermitian matrices B and C and any measurable function f with
‖ f ‖L ≤ 1,

∣∣∣∣∣
1

n

n∑

k=1

f (RB(z)kk)− 1

n

n∑

k=1

f (RC (z)kk)

∣∣∣∣∣ ≤ 2 (nIm(z))−1 rank(B − C), (97)

where RB = (B − z)−1 and RC = (C − z)−1 are their resolvent matrices. Indeed, by
assumption

∣∣∣∣∣

n∑

k=1

f (RB(z)kk)−
n∑

k=1

f (RC (z)kk)

∣∣∣∣∣ ≤
n∑

k=1

|RB(z)kk − RC (z)kk | .

The resolvent identity asserts that

M := RB − RC = RB(C − B)RC .

It follows that r = rank(M) ≤ rank(B − C). We notice also that ‖M‖ ≤ 2Im(z)−1.
Hence, in the singular value decomposition of M = U DV , at most r entries of
D = diag(s1, . . . , sn) are non zero and they are bounded by ‖M‖. We denote by
u1, . . . , ur and v1, . . . , vr the associated orthonormal vectors so that

M =
r∑

i=1

si uiv
∗
i ,

and

|RB(z)kk −RC (z)kk | = |Mkk |=
∣∣∣∣∣

r∑

i=1

si 〈ui , ek〉〈vi , ek〉
∣∣∣∣∣≤‖M‖

r∑

i=1

|〈ui , ek〉||〈vi , ek〉|.

We obtain from Cauchy–Schwarz,

1

n

n∑

k=1

|RB(z)kk − RC (z)kk | ≤ ‖M‖
r∑

i=1

√√√√1

n

n∑

k=1

|〈ui , ek〉|2
√√√√1

n

n∑

k=1

|〈vi , ek〉|2

= r‖M‖n−1.

Equation (97) is thus proved.
Next, for any x = (x1, . . . , xn) ∈ X := {(xi )1≤i≤n : xi ∈ C

i−1 × R}, let B(x)
be the n × n Hermitian matrix given by B(x)i j = xi, j for 1 ≤ j ≤ i ≤ n and
Rx (z) = (B(x) − z)−1. We thus have R(z) = R(A1,...,An)(z). For all x ∈ X and
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x ′
i ∈ C

i−1 × R, the matrix

B(x1, . . . , xi−1, xi , xi+1, . . . , xn)− B(x1, . . . , xi−1, x ′
i , xi+1, . . . , xn)

has only the i th row and column possibly different from 0, and thus

rank
(
B(x1, . . . , xi−1, xi , xi+1, . . . , xn)− B(x1, . . . , xi−1, x ′

i , xi+1, . . . , xn)
) ≤ 2.

Therefore from (97), we obtain, for every f : R → R with ‖ f ‖L ≤ 1,

∣∣∣∣∣
1

n

n∑

k=1

f (R(x1,...,xi−1,xi ,xi+1,...,xn)(z)kk)− 1

n

n∑

k=1

f (R(x1,...,xi−1,x ′
i ,xi+1,...,xn)

(z)kk)

∣∣∣∣∣

≤ 4 (nIm(z))−1 .

The desired result follows now from the Azuma–Hoeffding inequality, see e.g. [25,
Lemma 1.2]. ��
Lemma 8.4 (Concentration for the diagonal of the resolvent) Let A be an n×n random
Hermitian matrix and consider its resolvent matrix R(z) = (A − z)−1, z ∈ C+. Let us
assume that the vectors (Ai )1≤i≤n, where Ai := (Ai j )1≤ j≤i ∈ C

i , are independent.
Then for any γ ∈ [0, 1], there exists a positive constant c so that for every t ≥ 0,

P

(∣∣∣∣∣
1

n

n∑

k=1

(R(z)kk)
γ − E

1

n

n∑

k=1

(R(z)kk)
γ

∣∣∣∣∣ ≥ t

)
≤ 2 exp

(
−cnIm(z)2t

2
γ

)
. (98)

Proof Let ε be a positive real number and φε : C → C be equal to one on |z| ≥ 2ε,
vanishing on |z| ≤ ε and growing linearly with the modulus in between. Thus, φε is
Lipschitz with constant bounded by 1/ε. We decompose xγ as

xγ = xγ φε(x)+ xγ (1 − φε(x)).

By definition, xγ (1 − φε(x)) has modulus uniformly bounded above by (2ε)γ so that
if we choose ε > 0 so that (2ε)γ = t/4 then with f (x) = xγ φε(x) we have

P

(∣∣∣∣∣
1

n

n∑

k=1

(R(z)kk)
γ − E

1

n

n∑

k=1

(R(z)kk)
γ

∣∣∣∣∣ ≥ t

)

≤ P

(∣∣∣∣∣
1

n

n∑

k=1

f (R(z)kk)− E
1

n

n∑

k=1

f (R(z)kk)

∣∣∣∣∣ ≥ t/2

)
.
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948 C. Bordenave, A. Guionnet

On the other hand, f is Lipschitz with constant bounded by 2εγ−1 = 2
2
γ

−γ t1− 1
γ .

Hence, Lemma 8.3 yields

P

(∣∣∣∣∣
1

n

n∑

k=1

(R(z)kk)
γ − E

1

n

n∑

k=1

(R(z)kk)
γ

∣∣∣∣∣ ≥ t

)
≤ 2 exp

(
− nIm(z)2t2

84
2
γ

−γ t2(1− 1
γ
)

)

≤ 2 exp

(
−nIm(z)2t

2
γ

84
2
γ

−γ

)
.

This concludes the proof. ��
We conclude this Appendix by deviations inequalities for the norm ‖ · ‖β,ε intro-

duced in Sect. 5.

Lemma 8.5 Let 0 < α ≤ 1, ε ≥ 0, α/2 < β < 1 and assume that α/2 + β + ε ≤ 1.
Let (gk), 1 ≤ k ≤ n, be iid standard Gaussian variables and (hk), 1 ≤ k ≤ n ∈ K1
with |hk | ≤ η−1. Define, γ (u) = 1

n

∑n
k=1(hk .u)

α
2 (|gk |α − E|gk |α). Then there exists

constant c0, c1, such that for all t ≥ 1, all n ≥ 2,

P

(
‖γ ‖β,ε ≥ t

(ηαn)
1
2

)
≤ c1n

2
α exp(−c0t2).

Similarly, let A be an n × n random Hermitian matrix and consider its resolvent
matrix R(z) = (A − z)−1, z = E + iη ∈ C+. Let Hk = −i Rkk(z) be as above and
γ ′(u) = 1

n

∑n
k=1(Hk .u)

α
2 − E

1
n

∑n
k=1(Hk .u)

α
2 , for all t ≥ 1, all n ≥ 2,

P

(∥∥γ ′∥∥
β,ε

≥ t

(η2n)
α
4

)
≤ c1n exp(−c0t4/α).

Proof Set L = 1
n

∑n
k=1 ||gk |α − E|gk |α|. We first use a net argument. For any u, v ∈

S1+, from (64), for some constant c = c(α).

|γ (u)− γ (v)|
|u − v|β (|i.u| ∧ |i.v|)β− α

2 ≤ cLη− α
2 .

In particular, choosing β = α/2 and setting, for integer m and 1 ≤ k ≤ m, uk =
ei2πk/m , we find

|γ (u)| ≤ cL(mη)−
α
2 + max

k
|γ (uk)|.

Notice also that if |u − v| ≤ 4/m, then, with β ′ = α/2 + β + ε ≤ 1,

|γ (u)−γ (v)|
|u − v|β (|i.u| ∧ |i.v|)β+ε ≤ cLη− α

2 |u−v|β ′
(|i.u| ∧ |i.v|) α2 −β ′

|u − v|β (|i.u| ∧ |i.v|)β+ε

≤ 4cL(mη)−
α
2 .
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While if |u − v| ≥ 4/m, we denote by u∗ and v∗, the element of {uk : 1 ≤ k ≤ m}
at distance at most 1/m of u and v and with |i.u∗| ≥ |i.u|, |i.v∗| ≥ |i.v|. We get
|u − v| ≥ 2|u∗ − v∗| and

|γ (u)− γ (u∗)|
|u − v|β (|i.u| ∧ |i.v|)β+ε ≤ cLη− α

2 |u−u∗|β ′
(|i.u| ∧ |i.v|) α2 −β ′

|u−v|β (|i.u| ∧ |i.v|)β+ε

≤ c′L(mη)−
α
2 .

We deduce that, for some constant c0 ≥ 1,

‖γ ‖β,ε≤c0 L(mη)−
α
2 +c0 max

k
|γ (uk)|+c0 max

k 	=�
|γ (uk)− γ (u�)|

|uk − u�|β (|i.uk |∧|i.u�|)β− α
2 .

(99)

On the other hand, since 0 < α ≤ 1, the random variable |gk |α is sub-gaussian. It
follows from Hoeffding’s inequality, that for any s ≥ 0,

P(L ≥ EL + s) ≤ exp(−cns2),

and for any u, v ∈ S1+,

P (|γ (u)| ≥ s) ≤ 2 exp(−cns2ηα) and

P

( |γ (u)− γ (v)|
|u − v|β (|i.u| ∧ |i.v|)β− α

2 ≥ s

)
≤ 2 exp(−cns2ηα).

From the union bound, we get from (99),

P

(
‖γ ‖β,ε ≥ c0

(
t

(ηαn)
1
2

+ (EL + s)(mη)−
α
2

))
≤ exp(−cns2)+ m2 exp(−ct2).

We take m = [n1/α((EL + s))2/αt−2/α] and s = t , we find for all t ≥ 2/c0,

P

(
‖γ ‖β,ε ≥ 2c0t

(ηαn)
1
2

)
≤ c′n2/α exp(−ct2).

This prove the first statement. For the second statement, the proof is similar. First, the
above net argument gives that (99) holds for γ ′ with L = 1. Also the proof of Lemma
8.4 implies that for any u, v ∈ S1+,

P
(|γ ′(u)| ≥ s

) ≤ 2 exp(−cnη2s
4
α ) and

P

( |γ ′(u)− γ ′(v)|
|u − v|β (|i.u| ∧ |i.v|)β− α

2 ≥ s

)
≤ 2 exp(−cnη2s

4
α ).
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From the union bound, we deduce that for all s ≥ 0,

P

(∥∥γ ′∥∥
β,ε

≥ c0

(
s − (mη)−

α
2

))
≤ m2 exp(−cnη2s

4
α ).

Taking s = t/(η2n)
α
4 and m = √

nt−2/α(2c0)
2/c0 , this concludes the proof. ��

Appendix D: Key bounds on relevant integrals

The next lemma is used repeatedly in the proofs of Sect. 5.

Lemma 9.1 (Consequences of [6, Lemma 3.6]) Let 0 < α < 2, γ > 0 and 0 < κ ≤
1, there exists a constant c = c(α, γ ) > 0 such that for all h ∈ K1 and x ∈ K α

2
,

∣∣∣∣∣∣

∞∫

0

rγ−1e−rhe−r
α
2 x dr

∣∣∣∣∣∣
≤ c|h|−γ . (100)

For all h, k ∈ K1 and x, y ∈ K α
2

,

∣∣∣∣∣∣

∞∫

0

rγ−1e−rh
(

e−r
α
2 x − e−r

α
2 y
)

dr

∣∣∣∣∣∣
≤ c|h|−γ− α

2 |x − y|, (101)

and
∣∣∣∣∣∣

∞∫

0

rγ−1e−r
α
2 x
(

e−rh − e−rk
)

dr

∣∣∣∣∣∣
≤ c(|h| ∧ |k|)−γ−κ |h − k|κ . (102)

For all x1, x2, y1, y2 ∈ K α
2

,

∣∣∣∣∣∣

∞∫

0

rγ−1e−rh
((

e−r
α
2 x1 − e−r

α
2 y1

)
−
(

e−r
α
2 x2 − e−r

α
2 y2

))
dr

∣∣∣∣∣∣

≤ c
(
|h|−γ− α

2 |x1 − x2 − y1 + y2| + |h|−γ−α(|x1 − x2|
+|y1 − y2|)(|x1 − y1| + |x2 − y2|)

)
. (103)

Moreover, for all h, k ∈ K1, x, y ∈ K α
2

, for 0 < κ ≤ 1, we have

∣∣∣∣∣∣

∞∫

0

rγ−1
(

e−rh − e−rk
)(

e−r
α
2 x − e−r

α
2 y
)

dr

∣∣∣∣∣∣

≤ c(|h| ∧ |k|)−γ− α
2 −κ |h − k|κ |x − y|, (104)
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and finally, for all 0 ≤ κ1, κ2 ≤ 1, h1, k1, h2, k2 ∈ K1, with N = |h1| ∧ |k1| ∧ |h2| ∧
|k2|,

∣∣∣∣∣∣

∞∫

0

rγ−1
(

e−rh1 − e−rh2 − e−rk1 + e−rk2
)

e−r
α
2 x dr

∣∣∣∣∣∣

≤ cN−γ−κ1 |h1 − h2 − k1 + k2|κ1 + cN−γ−κ2−κ1(|h1 − h2| + |k1 − k2|)κ2

(|h1 − k1| + |h2 − k2|)κ1 . (105)

Proof The bound (100) is [6, Lemma 3.6]. The bound (101) follows from (100) by
taking derivative and using the convexity of K α

2
. For (102), assume for example that

|h| ≤ |k|. We may assume that |h − k| ≤ |h|/2 since otherwise we get the estimate
by bounding independently both terms of the difference and using (100). Then taking
derivative, we find

∣∣∣∣∣∣

∞∫

0

rγ−1e−r
α
2 x
(

e−rh − e−rk
)

dr

∣∣∣∣∣∣
≤ cN−γ−1|h − k|,

where N = min{|th + (1 − t)k| : 0 ≤ t ≤ 1}. Since |h − k| ≤ |h|/2 then N ≥ |h|/2
and

∣∣∣∣∣∣

∞∫

0

rγ−1e−r
α
2 x
(

e−rh − e−rk
)

dr

∣∣∣∣∣∣
≤ c|h|−γ−1|h − k| ≤ c|h|−γ−κ |h − k|κ .

To prove (103), (104) and (105), we need to take derivatives and use the first inequal-
ities. Namely, for (103), we define the function on [0, 1],

ϕ(t) =
∞∫

0

rγ−1e−rh
(

e−r
α
2 x(t) − e−r

α
2 y(t)

)
dr,

with x(t) = t x1 + (1 − t)x2 and y(t) = t y1 + (1 − t)y2. We are looking for an upper
bound on |ϕ(1)− ϕ(0)|. A straightforward computation yields

ϕ′(t) =
∞∫

0

rγ+ α
2 −1e−rh

(
(x1 − x2)e

−r
α
2 x(t) − (y1 − y2)e

−r
α
2 y(t)

)
dr

= (x1 − x2)

∞∫

0

rγ+ α
2 −1e−rh

(
e−r

α
2 x(t) − e−r

α
2 y(t)

)
dr

+(x1 − x2 − y1 + y2)

∞∫

0

rγ+ α
2 −1e−rhe−r

α
2 y(t)dr.
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By convexity, we note that x(t), y(t) are in K α
2

. Hence using (100) and (101), we may
upper bound |ϕ′(t)|, up to a multiplicative constant, by

|h|−γ−α|x1 − x2||x(t)− y(t)| + |h|−γ− α
2 |x1 − x2 − y1 + y2|

≤ |h|−γ−α|x1 − x2||x1 − y1| ∨ |x2 − y2| + |h|−γ− α
2 |x1 − x2 − y1 + y2|.

This completes the proof of (103). For (104), we first first notice that splitting h and
k and arguing as for the proof of (102), it is sufficient to prove the statement for
|h − k| ≤ (|h| ∧ |k|)/2 and κ = 1. Then, with h(t) = th + (1 − t)k, we consider this
time the function

ψ(t) =
∞∫

0

rγ−1e−rh(t)
(

e−r
α
2 x − e−r

α
2 y
)

dr,

and take the derivative. We find that it is proportional to (h − k)(ϕ(1) − ϕ(0)) with
the previous function ϕ with γ replaced by γ +1 and x1 = x2 = x, y = y1 = y2. The
bound is therefore clear. The proof is identical for the third statement for κ1 = κ2 = 1.
As above, we then generalize it to any 0 ≤ κ1, κ2 ≤ 1 by using the rough bound given
by (102). ��
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