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Abstract We study the thermal properties of a pinned disordered harmonic chain
weakly perturbed by a noise and an anharmonic potential. The noise is controlled
by a parameter λ → 0, and the anharmonicity by a parameter λ′ ≤ λ. Let κ be the
conductivity of the chain, defined through the Green–Kubo formula. Under suitable
hypotheses, we show that κ = O(λ) and, in the absence of anharmonic potential, that
κ ∼ λ. This is in sharp contrast with the ordered chain for which κ ∼ 1/λ, and so
shows the persistence of localization effects for a non-integrable dynamics.

Mathematics Subject Classification 82C70 Transport processes ·
82C44 Dynamics of disordered systems (random Ising systems, etc.) ·
60H25 Random operators and equations

1 Introduction

The mathematically rigorous derivation of macroscopic thermal properties of solids,
starting from their microscopic description, is a serious challenge [8,17]. On the one
hand, numerous experiments and numerical simulations show that, for a wide variety
of materials, the heat flux is related to the gradient of temperature through a simple
relation known as Fourier’s law:

J = −κ(T )∇T,
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where κ(T ) is the thermal conductivity of the solid. On the other hand, the mathemat-
ical understanding of this phenomenological law from the point of view of statistical
mechanics is still lacking.

A one-dimensional solid can be modelled by a chain of oscillators, each of them
being possibly pinned by an external potential, and interacting through a nearest
neighbour coupling. The case of homogeneous harmonic interactions can be read-
ily analysed, but it has been realized that this very idealized solid behaves like a
perfect conductor, and so violates Fourier’s law [21]. To take into account the physi-
cal observations, it is thus needed to consider more elaborate models, where ballistic
transport of energy is broken. Here are two possible directions.

On the one hand, adding some anharmonic interactions can drastically affect the
conductivity of the chain [2,19]. Unfortunately, the rigorous study of anharmonic
chains is in general out of reach, and even numerical simulations do not lead to com-
pletely unambiguous conclusions. In order to draw some clear picture, anharmonic
interactions are mimicked in [3,6] by a stochastic noise that preserves total energy
and possibly total momentum. The thermal behaviour of anharmonic solids is, at a
qualitative level, correctly reproduced by this partially stochastic model. By instance,
the conductivity of the one-dimensional chain is shown to be positive and finite if the
chain is pinned, and to diverge if momentum is conserved.

On the other hand, another element that can affect the conductivity of an harmonic
chain is impurities. In [22] and [10], an impure solid is modelled by a disordered
harmonic chain, where the masses of the atoms are random. In these models, localiza-
tion of eigenmodes induces a dramatic fall off of the conductivity. In the presence of
everywhere onsite pinning, it is known that the chain behaves like a perfect insulator
(see Remark 1 after Theorem 1). The case of unpinned chain is more delicate, and
turns out to depend on the boundary conditions [14]. The principal cases have been
rigorously analysed in [24] and [1].

The thermal conductivity of an harmonic chain perturbed by both disorder and
anharmonic interactions is a topic of both practical and mathematical interest. We
will in the sequel only consider a one-dimensional disordered chain with every-
where on-site pinning. Doing so we avoid the pathological behaviour of unpinned
one-dimensional chains, and we focus on a case where the distinction between
ordered and disordered harmonic chain is the sharpest. We will consider the joint
action of a noise and an anharmonic potential ; we call λ the parameter control-
ling the noise, and λ′ the parameter controlling the anharmonicity (see Sect. 2.1
below).

The disordered harmonic chain is an integrable system where localization of the
eigenmodes can be studied rigorously [16]. However, if some anharmonic potential
is added, very few is known about the persistence of localization effects. In [13], it
is shown through numerical simulations that an even small amount of anharmonicity
leads to a normal conductivity, destroying thus the localization of energy. In [20], an
analogous situation is studied and similar conclusions are reached. This is confirmed
rigorously in [5], if the anharmonic interactions are replaced by a stochastic noise
preserving energy. Nothing however is said there about the conductivity as λ →
0. Later, this partially stochastic system has been studied in [12], where numerical
simulations indicate that κ ∼ λ as λ → 0.

123



Small perturbation of a disordered harmonic chain 303

Let us mention that, although the literature on the destruction of localized states
seems relatively sparse in the context of thermal transport, much more is to find in that
of Anderson’s localization and disordered quantum systems (see [4] and references in
[4,12]). There as well however, few analytical results seem to be available. Moreover,
the interpretation of results from these fields to the thermal conductivity of solids is
delicate, in part because many studies deal with systems at zero temperature: the time
evolution of an initially localized wave packet.

The main goal of this article is to establish that disorder strongly influences the ther-
mal conductivity of a harmonic chain, when both a small noise and small anharmonic
interactions are added. We will always assume that λ′ ≤ λ, meaning that the noise is
the dominant perturbative effect. Our main results, stated in Theorems 1 and 2 below,
are that κ = O(λ) as λ → 0, and that κ ∼ λ if λ′ = 0. Strictly speaking, our results
do not imply anything about the case where λ′ > 0 and λ = 0. However, in the regime
we are dealing with, the noise is expected to produce interactions between localized
modes, and so to increase the conductivity. We thus conjecture that κ = O(λ′) in this
later case. This is in agreement with numerical results in [20], where it is suggested
that κ could even decay as e−c/λ′

for some c > 0.
In the next section, we define the model studied in this paper, we state our results and

we give some heuristic indications. The rest of the paper is then devoted to the proof of
Theorems 1 and 2. Let us already indicate its main steps. The principal computation of
this article consists in showing that the current due to harmonic interactions between
particles k and k + 1, called jk,har , can be written as jk,har = −Ahar uk , where uk

is localized near k, and where Ahar is the generator of the harmonic dynamics. This
is stated precisely and shown in Sect. 4; the proof ultimately rests on localization
results first established by Kunz and Souillard (see [16] or [11]). Once this is seen,
general inequalities on Markov processes allow us to obtain, in Sect. 3, the desired
upper bound κ = O(λ) in presence of both a noise and non-linear forces. The lower
bound κ ≥ cλ, valid when λ′ = 0, is established by means of a variational formula
(see [23]), using a method developed by the first author in [5]. This is carried out in
Sect. 6.

2 Model and results

2.1 Model

We consider a one-dimensional chain of N oscillators, so that a state of the system is
characterized by a point

x = (q, p) = (q1, . . . , qN , p1, . . . , pN ) ∈ R
2N ,

where qk represents the position of particle k, and pk its momentum. The dynamics
is made of a hamiltonian part perturbed by a stochastic noise.
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The Hamiltonian. The Hamiltonian writes

H(q, p) = Hhar (q, p) + λ′Hanh(q, p)

= 1

2

N∑

k=1

(
p2

k + νk q2
k + (qk+1 − qk)

2
)

+ λ′
N∑

k=1

(
U (qk) + V (qk+1 − qk)

)
,

with the following definitions.

• The pinning parameters νk are i.i.d. random variables whose law is independent of
N . It is assumed that this law has a bounded density and that there exist constants
0 < ν− < ν+ < ∞ such that

P(ν− ≤ νk ≤ ν+) = 1.

• The value of qN+1 depends on the boundary conditions (BC). For fixed BC, we
put qN+1 = 0, while for periodic BC, we put qN+1 = q1. For further use, we also
define q0 = q1 for fixed BC, and q0 = qN for periodic BC.

• We assume λ′ ≥ 0. The potentials U and V are symmetric, meaning that U (−x) =
U (x) and V (−x) = V (x) for every x ∈ R. They belong to C∞

temp(R), the space of
infinitely differentiable functions with polynomial growth. It is moreover assumed
that

∫

R

e−U (x) dx < +∞ and ∂2
x U (x) ≥ 0,

and that there exists c > 0 such that

c ≤ 1 + λ′∂2
x V (x) ≤ c−1.

For x = (x1, . . . , xd) ∈ R
d and y = (y1, . . . , yd) ∈ R

d , let 〈x, y〉 = x1 y1 + · · · +
xd yd be the canonical scalar product of x and y. The harmonic hamiltonian Hhar can
also be written as

Hhar (q, p) = 1

2
〈p, p〉 + 1

2
〈q,�q〉,

if we introduce the symmetric matrix � ∈ R
N×N of the form � = −� + W , where

� is the discrete Laplacian, and W a random “potential”. The precise definition of �

depends on the BC:

� j,k = (2 + νk)δ j,k − δ j,k+1 − δ j,k−1 (fixed BC),

� j,k = (2 + νk)δ j,k − δ j,k+1 − δ j,k−1 − δ j,1δk,N − δ j,N δk,1 (periodic BC),

for 1 ≤ j, k ≤ N .
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The dynamics. The generator of the hamiltonian part of the dynamics is written as

A = Ahar + λ′ Aanh

with

Ahar =
N∑

k=1

(
∂pk Hhar · ∂qk − ∂qk Hhar · ∂pk

) = 〈p,∇q〉 − 〈�q,∇p〉

and

Aanh = −
N∑

k=1

∂qk Hanh · ∂pk = −(
∂xU (qk) + ∂x V (qk − qk−1)

−∂x V (qk+1 − qk)
) · ∂pk .

Here, for x = (x1, . . . , xN ) ∈ R
N , ∇x = (∂x1, . . . , ∂xN ). The generator of the noise

is defined to be

λ Su = λ

N∑

k=1

(
u(. . . ,−pk, . . . ) − u(. . . , pk, . . . )

)
,

with λ ≥ λ′. The generator of the full dynamics is given by

L = A + λ S.

We denote by Xt
(λ,λ′)(x), or simply by Xt (x), the value of the Markov process gener-

ated by L at time t ≥ 0, starting from x = (q, p) ∈ R
2N.

Expectations. Three different expectations will be considered. We define

• μT : the expectation with respect to the Gibbs measure at temperature T ,
• E: the expectation with respect to the realizations of the noise,
• Eν : the expectation with respect to the realizations of the pinnings.

In Sect. 5, it will sometimes be useful to specify the dependence of the Gibbs measure
on the system size N ; we then will write it μ

(N )
T .

The Gibbs measure μT is explicitly given by

μT (u) = 1

ZT

∫

R2N

u(x) e−H(x)/T dx, u : R
2N → R,

where ZT is a normalizing factor such that μT is a probability measure on R
2N . We

will need some properties of this measure. Let us write
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Z−1
T e−H(x)/T = ρ′(p1) . . . ρ′(pN ) · ρ′′(q),

with ρ′(pk) = e−p2
k /2T /

√
2πT for 1 ≤ k ≤ N .

When λ′ = 0, the density ρ′′ is Gaussian:

ρ′′(q) = (2πT )−N/2 · (det �)1/2 · e−〈q,�q〉/2T .

Since νk ≥ ν− > 0, it follows from Lemma 1.1 in [9] that |(�−1)i, j | ≤ C e−c| j−i |,
for some constants C < +∞ and c > 0 independent of N . This implies in particular
the decay of correlations

μT (qi q j ) = T (�−1)i, j ≤ C T e−c| j−i |.

When λ′ > 0, the density ρ′′ is not Gaussian anymore. We here impose the extra
assumption that ν− is large enough. In that case, our hypotheses ensure that the con-
clusions of Theorem 3.1 in [7] hold: there exist constants C < +∞ and c > 0 such
that, for every f, g ∈ C∞

temp(R
N ) satisfying μT ( f ) = μT (g) = 0,

∣∣μT ( f · g)
∣∣ ≤ C e−c d(S( f ),S(g))

(
μT

(〈∇q f,∇q f
〉) · μT

(〈∇q g,∇q g
〉))1/2

. (2.1)

Here, S(u) is the support of the function u, defined as the smallest set of integers
such that u can be written as a function of the variables xl for l ∈ S(u), whereas
d(S( f ), S(g)) is the smallest distance between any integer in S( f ) and any integer
in S(g). Using that μT (qk) = 0 for 1 ≤ k ≤ N , it is checked from (2.1) that every
function u ∈ C∞

temp(R
N ) with given support independent of N is such that ‖u‖L1(μT )

is bounded uniformly in N .

The current. The local energy ek of atom k is defined as

ek = ek,har + λ′ek,anh

with

ek,har = p2
k

2
+ νk

q2
k

2
+ 1

4
(qk − qk−1)

2 + 1

4
(qk+1 − qk)

2 for 2 ≤ k ≤ N − 1,

and

ek,anh = U (qk) + V (qk − qk−1)

2
+ V (qk+1 − qk)

2
for 2 ≤ k ≤ N − 1.

For periodic B.C., these expressions are still valid when k = 1 or k = N . For fixed
B.C. instead, all the terms involving the differences (q0 − q1) or (qN+1 − qN ) in the
previous expressions have to be multiplied by 2. These definitions ensure that the total
energy H is the sum of the local energies.
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The definition of the dynamics implies that

dek = (
jk−1 − jk

)
dt

for local currents

jk = jk,har + λ′ jk,anh

defined as follows for 0 ≤ k ≤ N . First, for 1 ≤ k ≤ N − 1,

jk,har = 1

2
(pk + pk+1)(qk − qk+1) and

jk,anh = 1

2
(pk + pk+1) ∂x V (qk − qk+1). (2.2)

Next, j0,1 = jN ,N+1 = 0 for fixed B.C. Finally, j0 and jN are still given by (2.2) for
periodic B.C., with the conventions p0 = pN and pN+1 = p1. The total current and
the rescaled total current are then defined by

JN = JN ,har + λ′ JN ,anh =
N∑

k=1

jk,har + λ′
N∑

k=1

jk,anh (2.3)

JN = JN ,har + λ′JN ,anh = JN ,har√
N

+ λ′ JN ,anh√
N

. (2.4)

2.2 Results

For a given realization of the pinnings, the (Green–Kubo) conductivity κ = κ(λ, λ′)
of the chain is defined as

κ(λ, λ′) = 1

T 2 lim
t→∞ lim

N→∞ κt,N (λ, λ′)

= 1

T 2 lim
t→∞ lim

N→∞ μT E

⎛

⎝ 1√
t

t∫

0

JN ◦ Xs
(λ,λ′) ds

⎞

⎠
2

(2.5)

if this limit exists. The choice of the boundary conditions is expected to play no role
in this formula since the volume size N is sent to infinity for fixed time. The disorder
averaged conductivity is defined by replacing μT E by EνμT E in (2.5). By ergodicity,
the conductivity and the disorder averaged conductivity are expected to coincide for
almost all realization of the pinnings (see [5]). The dependence of κ(λ, λ′) on the
temperature T will not be analysed in this work, so that we can consider T as a fixed
given parameter.

We first obtain an upper bound on the disorder averaged conductivity.
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Theorem 1 Let 0 ≤ λ′ ≤ λ. With the assumptions introduced up to here, if ν− is large
enough, and for fixed boundary conditions,

1

T 2 lim sup
t→∞

lim sup
N→∞

EνμT E

⎛

⎝ 1√
t

t∫

0

JN ◦ Xs
(λ,λ′) ds

⎞

⎠
2

= O(λ) as λ → 0.

(2.6)

Remarks 1. When λ = 0, the proof (see Sect. 3) actually shows that

1

T 2 lim sup
N→∞

EνμT

⎛

⎝ 1√
t

t∫

0

JN ◦ Xs
(0,0) ds

⎞

⎠
2

= O(
t−1) as t → ∞.

This bound had apparently never been published before. It says that the unperturbed
chain behaves like a perfect insulator: the current integrated over arbitrarily long
times remains bounded in L2(EνμT ).

2. The proof (see Sect. 3) shares some common features with a method used in [18]
to obtain a weak coupling limit for noisy hamiltonian systems. In our case, we
may indeed see the eigenmodes of the unperturbed system as weakly coupled by
the noise and the anharmonic potentials.

3. The choice of fixed boundary conditions just turns out to be more convenient for
technical reasons (see Sect. 4).

4. The hypothesis that ν− is large enough is only used to ensure the exponential decay
of correlations of the Gibbs measure when λ′ > 0.

Next, in the absence of anharmonicity (λ′ = 0), results become more refined.

Theorem 2 Let λ > 0, let λ′ = 0, and let us assume that hypotheses introduced up
to here hold. For almost all realizations of the pinnings, the Green–Kubo conductivity
(2.5) of the chain is well defined, and in fact

κ(λ, 0) = 1

T 2 lim
t→∞ lim

N→∞ EνμT E

⎛

⎝ 1√
t

t∫

0

JN ◦ Xs
(λ,0) ds

⎞

⎠
2

, (2.7)

this last limit being independent of the choice of boundary conditions (fixed or peri-
odic). Moreover, there exists a constant c > 0 such that, for every λ ∈]0, 1[,

cλ ≤ κ(λ, 0) ≤ c−1λ. (2.8)

The rest of this article is devoted to the proof of these theorems, which is constructed
as follows.

Proof of Theorems 1 and 2 The upper bound (2.6) is derived in Sect. 3, assuming
that Lemma 1 holds. This lemma is stated and shown in Sect. 4; it encapsulates the
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informations we need about the localization of the eigenmodes of the unperturbed
system (λ = λ′ = 0). The existence of κ(λ, 0) for almost every realization of the
pinnings, together with (2.7), are shown in Sect. 5. Finally, a lower bound on the
conductivity when λ′ = 0 is obtained in Sect. 6. This shows (2.8). ��

2.3 Heuristic comments

We would like to give here some intuition on the conductivity of disordered harmonic
chains perturbed by a weak noise only, so with λ > 0 small and λ′ = 0. We will
develop in a more probabilistic way some ideas from [12]. Our results cover the case
where the pinning parameters νk are bounded from below by a positive constant, but it
could be obviously desirable to understand the unpinned chain as well, in which case
randomness has to be putted on the value of the masses. We handle here both cases.

Let us first assume that νk ≥ c for some c > 0, and let us consider a typical
realization of the pinnings. In the absence of noise (λ = 0), the dynamics of the chain
is actually equivalent to that of N independent one-dimensional harmonic oscillators,
called eigenmodes (see Sect. 4.1 and formulas (4.5–4.6) in particular). Since the chain
is pinned at each site, the eigenfrequencies of these modes are uniformly bounded
away from zero. As a result, all modes are expected to be exponentially localized. We
can thus naively think that, to each particle, is associated a mode localized near the
equilibrium position of this particle.

When the noise is turned on (λ > 0), energy starts being exchanged between near
modes. Let us assume that, initially, energy is distributed uniformly between all the
modes, except around the origin, where some more energy is added. We expect this
extra amount of energy to diffuse with time, with a variance proportional to κ(0, λ) · t
at time t . Since flips of velocity occur at random times and with rate λ, we could
compare the location of this extra energy at time t to the position of a standard random
walk after n = λt steps. Therefore, denoting by δk the increments of this walk, we
find that

κ(λ, 0) ∼
〈(

1√
t

n∑

k=1

δk

)2〉
∼ λ.

This intuitive picture will only be partially justified, as explained in the remark after
the proof of Theorem 1 in Sect. 3.

Let us now consider the unpinned chain. So we put νk = 0 and we change p2
k by

p2
k/mk in the Hamiltonian, where the masses mk are i.i.d. positive random variables.

We consider a typical realization of the masses. In contrast with the pinned chain, the
eigenfrequencies of the modes are now distributed in an interval of the form [0, c], for
some c > 0. This has an important consequence on the localization of the modes. It is
indeed expected that the localization length l of a mode and its eigenfrequency ω are
related through the formula l ∼ 1/ω2.

Here again, the noise induces exchange of energy between modes, and we still
would like to compare κ(λ, 0) · t with the variance of a centered random walk with
increments δk . However, due to the unlocalized low modes, δk can now take larger
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values than in the pinned case. Assuming that the eigenfrequencies are uniformly
distributed in [0, c], we guess that, for large a,

P(|δk | ≥ a) ∼ P(1/ω2 ≥ a) ∼ 1/
√

a.

This however neglects a fact. Since energy does not travel faster than ballistically, and
since successive flips of the velocity are spaced by time intervals of order 1/λ, it is
reasonable to introduce the cut-off P(|δk | > 1/λ) = 0. With this distribution for |δk |,
and with n = λt , we now find

κ(λ, 0) ∼
〈(

1√
t

n∑

k=1

δk

)2〉
∼ λ−1/2.

This scaling is numerically observed in [12]. The arguments leading to this conclu-
sion are very approximative however, and it should be desirable to analyse this case
rigorously as well.

3 Upper bound on the conductivity

We here proceed to the proof of Theorem 1. We assume that Lemma 1 in Sect. 4 holds:
there exists a sequence (uN )N≥1 ⊂ L2(EνμT ) such that −Ahar uN = JN ,har , and
that (uN )N≥1 and (AanhuN )N≥1 are both bounded sequences in L2(EνμT ). Moreover
uN is of the form uN (q, p) = 〈q, αN q〉 + 〈p, γN p〉 + cN , where αN , γN ∈ R

N×N

are symmetric matrices, and where cN ∈ R.

Proof of (2.6) Let 0 ≤ λ′ ≤ λ, and let uN be the sequence obtained by Lemma 1 in
Sect. 4. Before starting, let us observe that, due to the special form of the function uN ,
we may write

AanhuN =
N∑

l=1

φl(q) pl , (3.1)

with

φl(q) = 2
N∑

k=1

γk,l ·
(
∂x V (qk+1 − qk) − ∂x V (qk − qk−1) − ∂xU (qk)

)
, (3.2)

where (γk,l)1≤k,l≤N are the entries of γN . It follows in particular that

AanhuN = 1

2
(−S)AanhuN . (3.3)
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Now, since JN = JN ,har + λ′JN ,anh , we find using Cauchy–Schwarz inequality that

EνμT E

⎛

⎝ 1√
t

t∫

0

JN ◦ Xs ds

⎞

⎠
2

≤ EνμT E

⎛

⎝ 1√
t

t∫

0

JN ,har ◦ Xs ds

⎞

⎠
2

+(λ′)2EνμT E

⎛

⎝ 1√
t

t∫

0

JN ,anh ◦ Xs ds

⎞

⎠
2

+2λ′

⎛

⎜⎝EνμT E

⎛

⎝ 1√
t

t∫

0

JN ,har ◦ Xs ds

⎞

⎠
2

× EνμT E

⎛

⎝ 1√
t

t∫

1

JN ,anh ◦ Xs ds

⎞

⎠
2
⎞

⎟⎠

1/2

.

Since JN ,anh = 1
2 (−S)JN ,anh , a classical bound [15, Appendix 1, Proposition 6.1]

furnishes

EνμT E

⎛

⎝ 1√
t

t∫

0

JN ,anh ◦ Xs ds

⎞

⎠
2

≤ C EνμT
(JN ,anh · (−λS)−1JN ,anh

)

≤ C

2λ
EνμT

(J 2
N ,anh

)

where C < +∞ is a universal constant. By (2.1), EνμT
(J 2

N ,anh

)
is uniformly bounded

in N . Therefore

lim sup
t→∞

lim sup
N→∞

EνμT E

⎛

⎝ 1√
t

t∫

0

JN ,anh ◦ Xs ds

⎞

⎠
2

= O(λ−1).

It suffices thus to establish that

lim sup
t→∞

lim sup
N→∞

EνμT E

⎛

⎝ 1√
t

t∫

0

JN ,har ◦ Xs ds

⎞

⎠
2

= O(λ).

We write

JN ,har = −Ahar uN = −LuN + λ′ AanhuN + λSuN

= −LuN + λ S
(

I d − λ′

2λ
Aanh

)
uN ,
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where the second equality is obtained by means of (3.3). Therefore

1√
t

t∫

0

JN ,har ◦ Xs ds = −1√
t

t∫

0

LuN ◦ Xs ds

+ λ√
t

t∫

0

S

(
I d − λ′

2λ
Aanh

)
uN ◦ Xs ds

= 1√
t
Mt − u ◦ Xt − u√

t

+ λ√
t

t∫

0

S

(
I d − λ′

2λ
Aanh

)
uN ◦ Xs ds, (3.4)

where Mt is a martingale given by

Mt =
t∫

0

N∑

j=1

S j uN ◦ Xs (dN j
s − λds),

with N j
s the Poisson process that flips the momentum of particle j .

It now suffices to establish that the three terms in the right hand side of (3.4) are
O(λ) in L2(EνET ). Let us first show that μT (uN · (−S)uN ) ≤ 4‖uN ‖2

L2(μT )
. Writing

uN = u p,p,0
N + u p,p,1

N + uq,q
N + cN

with

u p,p,0
N =

∑

i �= j

γi, j pi p j , u p,p,1
N =

∑

i

γi,i p2
i , uq,q

N = 〈q, αN q〉,

we get indeed

μT (uN · (−S)uN ) = μT

(
uN · (−S)u p,p,0

N

)
= 4 μT

(
u p,p,0

N · u p,p,0
N

)

and

μT (uN · uN ) = μT
(
u p,p,0

N · u p,p,0
N

) + μT
(
(u p,p,1

N + uq,q
N + cN )2)

+2 μT
(
(u p,p,1

N + uq,q
N + cN ) · u p,p,0

N

)
.

The claim follows since μT
(
(u p,p,1

N + uq,q
N + cN ) · u p,p,0

N

) = 0.
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So first,

μT E
(

1√
t
Mt

)2

= 2λμT
(
uN · (−S)uN

) ≤ 8λ ‖uN ‖2
L2(μT )

.

Next,

μT E
(

u ◦ Xt − u√
t

)2

≤ 2

t
‖uN ‖2

L2(μT )
.

Finally, by a classical bound ([15], Appendix 1, Proposition 6.1),

μT E

⎛

⎝ λ√
t

t∫

0

S

(
I d − λ′

2λ
Aanh

)
uN ◦ Xs ds

⎞

⎠
2

≤ C λ2μT

(
S

(
I d − λ′

2λ
Aanh

)
uN · (−λS)−1S

(
I d − λ′

2λ
Aanh

)
uN

)

= C λμT

((
I d − λ′

2λ
Aanh

)
uN · (−S)

(
I d − λ′

2λ
Aanh

)
uN

)

= C λ

(
μT

(
uN · (−S)uN

) + 1

2

(
λ′

λ

)2

‖AanhuN ‖2
L2(μT )

)

≤ C λ
(
‖uN ‖2

L2(μT )
+ ‖AanhuN ‖2

L2(μT )

)

where (3.3) and

μT (uN , AanhuN ) = μT

(
(〈q, αN q〉 + 〈p, γN p〉 + cN ) ·

N∑

l=1

φl(q) pl

)
= 0

have been used to get the second equality. Taking the expectation over the pinnings, the
proof is completed since (uN )N and (AanhuN )N are bounded sequences in L2(EνμT ).

��
Remark When λ′ = 0, formula (3.4) becomes

1√
t

t∫

0

JN ◦ Xs ds = 1√
t
Mt − uN ◦ Xt − uN√

t
+ λ√

t

t∫

0

SuN ◦ Xs ds. (3.5)

Now, since SuN = −4
∑

1≤k �=l≤N γk,l pk pl , it is computed that

t∫

0

JN ◦ Xt−s ds = −
t∫

0

JN ◦ Xs ds and

t∫

0

SuN ◦ Xt−s ds =
t∫

0

SuN ◦ Xs ds.
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The measure on the paths being invariant under time reversal, it thus holds that

μT E
( t∫

0

JN ◦ Xs ds ·
t∫

0

SuN ◦ Xs ds

)
= 0.

We therefore deduce from (3.5) that

μT E
(

1√
t

t∫

0

JN (s) ds

)2

= μT E
( 1√

t
Mt

)2 − μT E
(

λ√
t

t∫

0

SuN ◦ Xs ds

)2

+ r(t)

where r(t) is quantity that vanishes in the limit t → ∞. We see thus that our proof
does not completely justify the heuristic developed in Sect. 2.3, due to the second
term in the right hand side of this last equation. As explained after the statement of
Lemma 1 below, the sequence uN should not be unique. It could be that a good choice
of sequence uN makes this second term of order O(λ2).

4 Poisson equation for the unperturbed dynamics

In this section, we state and prove the following lemma. Fixed BC are assumed for
the whole section.

Lemma 1 Let λ′ ≥ 0, and assume fixed boundary conditions. For every N ≥ 1, and
for almost every realization of the pinnings, there exist a function uN of the form

uN (q, p) = 〈q, αN q〉 + 〈p, γN p〉 + cN ,

where αN , γN ∈ R
N×N are symmetric matrices and where cN ∈ R, such that

− Ahar uN = JN ,har . (4.1)

Moreover, the functions uN can be taken so that

(uN )N≥1 and (AanhuN )N≥1 are bounded sequences in L2(EνμT ).

Remarks 1. The parameter λ′ only plays a role through the definition of the measure
μT .

2. For a given value of N and for almost every realization of the pinnings, the unper-
turbed dynamics is integrable, meaning here that it can be decomposed into N
ergodic components, each of them corresponding to the motion of a single one-
dimensional harmonic oscillator (see Sects. 4.1 and (4.5–4.6) in particular). This
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has two implications. First, since (4.1) admits a solution, we conclude that the
current JN is of mean zero with respect to the microcanonical measures of each
ergodic component of the dynamics. Next, the solution uN is not unique since
every function f constant on the ergodic components of the dynamics satisfies
−Ahar f = 0.

Proof of Lemma 1 To simplify notations, we will generally not write the dependence
on N explicitly. The proof is made of several steps. ��

4.1 Identifying (uN )N≥1: eigenmode expansion

Let z > 0 and let 1 ≤ l, m ≤ N . Let us consider the equation

(z − Ahar )vl,m,z = ql pm .

The solution vl,m,z exists and is unique. It is given by

vl,m,z(x) =
∞∫

0

e−zs
[
ql ◦ Xs

(0,0)(x) · pm ◦ Xs
(0,0)(x)

]
ds. (4.2)

We will analyse vl,m,z to obtain the sequence uN . Although we assumed fixed BC, all
the results of this subsection apply for periodic BC as well.

Solutions to Hamilton’s equations. The matrix � is a real symmetric positive definite
matrix in R

N×N , and there exist thus an orthonormal basis (ξ k)1≤k≤N of R
N , and a

sequence of positive real numbers (ω2
k )1≤k≤N , such that

�ξ k = ω2
k ξ k .

It may be checked that

min{ν j : 1 ≤ j ≤ N } ≤ ω2
k ≤ max{ν j : 1 ≤ j ≤ N } + 4 (4.3)

for 1 ≤ k ≤ N . According to Proposition II.1 in [16], for almost all realization of the
pinnings, none of the eigenvalue is degenerate:

ω j �= ωk if j �= k, 1 ≤ j, k ≤ N . (4.4)

In the sequel, we will assume that (4.4) holds.
When λ = λ′ = 0, Hamilton’s equations write

dq = p dt, d p = −�q dt.
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For initial conditions (q, p), the solutions write

q(t) =
N∑

k=1

(
〈q, ξ k〉 cos ωk t + 1

ωk
〈p, ξ k〉 sin ωk t

)
ξ k, (4.5)

p(t) =
N∑

k=1

(
− ωk〈q, ξ k〉 sin ωk t + 〈p, ξ k〉 cos ωk t

)
ξ k . (4.6)

An expression for vl,m,z . To determine vl,m,z , we just need to insert the solutions
(4.5–4.6) into the definition (4.2), and then compute the integral, which is a sum of
Laplace transforms of sines and cosines:

vl,m,z(q, p) = 1

4

N∑

k=1

〈l, ξ k〉〈m, ξ k〉
(

−〈q, ξ k〉2 + 1

ω2
k

〈p, ξ k〉2

)

+
∑

1≤ j �=k≤N

〈l, ξ j 〉〈m, ξ k〉
(

ω2
k

ω2
j − ω2

k

〈q, ξ j 〉〈q, ξ k〉 + 1

ω2
j − ω2

k

〈p, ξ j 〉〈p, ξ k〉
)

+O(z), (4.7)

where 〈 j, ξ k〉 denotes the j th component of the vector ξ k , and where the rest term
O(z) is a polynomial of the form 〈q, α̃zq〉+〈q, β̃z p〉+〈p, γ̃z p〉, where α̃z and γ̃z can
be taken to be symmetric. We define

vl,m = lim
z→0

vl,m,z .

It is observed that vl,m is of the form 〈q, α̃q〉 + 〈p, γ̃ p〉 where α̃ and γ̃ can be taken
to be symmetric.

Defining the solution uN . For fixed BC, the total current is given by

JN = 1

2
(q1 p1 − qN pN ) + 1

2

N−1∑

k=1

(
qk pk+1 − qk+1 pk

)

Setting

wl = vl,l−1 − vl−1,l − μT (vl,l−1 − vl−1,l) (4.8)

for 2 ≤ l ≤ N and

w1 = vN ,N − v1,1 − μT (vN ,N − v1,1), (4.9)
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we define

uN = −1

2
√

N

N∑

k=1

wl .

The function uN is of the form uN = 〈q, αN q〉 + 〈p, γN p〉 + cN , where αN and γN

are symmetric matrices, and where cN ∈ R.
Let us show that uN solves −AanhuN = JN . We may assume that cN = 0 without

loss of generality. The current JN can be written as JN = 〈q, Bp〉. The function
uN has been obtained as the limit as z → 0 of the function uz of the form uz =
〈q, αzq〉 + 〈q, βz p〉 + 〈p, γz p〉 which solves (z − Ahar )uz = JN , and with αz and γz

symmetric matrices. Since

(z − Ahar )uz =〈q, (zαz + βz�)q〉 + 〈
q,

(
zβz − 2(αz − �γz)

)
p
〉 + 〈p, (z − βz)p〉,

it holds that1

zαz + 1

2
(βz� + �β†

z ) = 0, zβz − 2(αz − �γz) = B, z − 1

2
(βz + β†

z ) = 0.

We know that (αz, βz, γz) → (α, 0, γ ) as z → 0, with α and γ symmetric, so that
−2(α − �γ ) = B. Taking into account that α and γ are symmetric, we deduce that

�γ − γ� = 1

2
(B − B†), 2α = 2�γ − B. (4.10)

It is checked that, if two symmetric matrices α and γ satisfy these relations, then
uN = 〈q, αq〉 + 〈p, γ p〉 solves the equation −Ahar uN = JN .

4.2 A new expression for wl

For 1 ≤ l ≤ N , the function wl defined by (4.8) or (4.9) can be written as

wl = 〈q, α(l)q〉 + 〈p, γ (l)p〉 + c(l),

where α(l) and γ (l) are symmetric matrices, and where c(l) ∈ R. A relation similar
to (4.10) is satisfied: with the definitions

(
B(l)

)
m,n = δl,l−1(m, n) − δl−1,l(m, n) (2 ≤ l ≤ N ) and

(
B(1)

)
m,n = δN ,N (m, n) − δ1,1(m, n),

for 1 ≤ m, n ≤ N , we write

2α(l) = 2�γ (l) − B(l), (4.11)

1 Here and in the following M† denotes the transpose matrix of the matrix M .
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for 1 ≤ l ≤ N . Therefore the knowledge of the matrices γ implies that of the
matrices α.

An expression for the matrices γ (l) can be recovered from (4.7) with z = 0. We
will now work this out in order to obtain a more tractable formula. We show here that,
for 2 ≤ l ≤ N ,

γs,s(l) = −
N∑

j=l

N∑

k=1

〈s, ξ k〉2〈 j, ξ k〉2, 1 ≤ s ≤ l − 1,

γs,s(l) =
l−1∑

j=1

N∑

k=1

〈 j, ξ k〉2〈s, ξ k〉2, l ≤ s ≤ N ,

γs,t (l) =
l−1∑

j=1

N∑

k=1

〈 j, ξ k〉2〈s, ξ k〉〈t, ξ k〉, 1 ≤ s �= t ≤ N ,

= −
N∑

j=l

N∑

k=1

〈 j, ξ k〉2〈s, ξ k〉〈t, ξ k〉, 1 ≤ s �= t ≤ N (4.12)

and

γs,t (1) = 1

4

N∑

k=1

〈N , ξ k〉2

ω2
k

〈s, ξ k〉〈t, ξ k〉 − 1

4

N∑

k=1

〈1, ξ k〉2

ω2
k

〈s, ξ k〉〈t, ξ k〉,

1 ≤ s, t ≤ N . (4.13)

Formula (4.13) is directly derived from (4.7), noting that γ (1) is the only symmetric
matrix such that w1(0, p) = ∑

s,t γs,t (1)ps pt . To derive (4.12), we observe that γ (l)
is the only symmetric matrix such that wl(0, p) = ∑

s,t γs,t (l)ps pt . Starting from
(4.7), we deduce

wl(0, p) = (
ul,l−1 − ul−1,l

)
(0, p)

=
∑

1≤ j �=k≤N

(
〈l, ξ j 〉〈l − 1, ξ k〉 − 〈l − 1, ξ j 〉〈l, ξ k〉

) 〈p, ξ j 〉〈p, ξ k〉
ω2

j − ω2
k

.

For fixed BC, the eigenvectors ξ j satisfy the following relations for 1 ≤ j ≤ N :

〈ξ j , 0〉 = 〈ξ j , N + 1〉 = 0 (by definition),

−〈ξ j , m − 1〉 + (2 + νm)〈ξ j , m〉 − 〈ξ j , m + 1〉 = ω2
j 〈ξ j , m〉, 1 ≤ m ≤ N .

So the following recurrence relation is satisfied:

〈ξ j , m + 1〉 = (2 + νm − ω2
j )〈ξ j , m〉 − 〈ξ j , m − 1〉, 1 ≤ m ≤ N . (4.14)
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Let us first compute w2(0, p). Using (4.14), it comes

〈2, ξ j 〉〈1, ξ k〉 − 〈1, ξ j 〉〈2, ξ k〉 = (2 + ν1 − ω2
j )〈1, ξ j 〉〈1, ξ k〉

−(2 + ν1 − ω2
k )〈1, ξ j 〉〈1, ξ k〉

= −(ω2
j − ω2

k )〈1, ξ j 〉〈1, ξ k〉.

Therefore

w2(0, p) = −
∑

1≤ j �=k≤N

〈1, ξ j 〉〈1, ξ k〉〈p, ξ j 〉〈p, ξ k〉

= −
∑

1≤ j,k≤N

〈1, ξ j 〉〈1, ξ k〉〈p, ξ j 〉〈p, ξ k〉 +
N∑

k=1

〈1, ξ k〉2〈p, ξ k〉2

= −〈1, p〉2 +
N∑

k=1

〈1, ξ k〉2〈p, ξ k〉2, (4.15)

where the last equality follows from the fact that (ξ k)k forms an orthonormal basis.
Let us now compute wl(0, p) for 2 < l ≤ N . Again by (4.14),

〈l, ξ j 〉〈l − 1, ξ k〉 − 〈l − 1, ξ j 〉〈l, ξ k〉
=

(
(2 + νl−1 − ω2

j )〈l − 1, ξ j 〉 − 〈l − 2, ξ j 〉
)
〈l − 1, ξ k〉

− 〈l − 1, ξ j 〉
(
(2 + νl−1 − ω2

k )〈l − 1, ξ k〉 − 〈l − 2, ξ k〉
)

= − (ω2
j − ω2

k )〈l − 1, ξ j 〉〈l − 1, ξ k〉
+ 〈l − 1, ξ j 〉〈l − 2, ξ k〉 − 〈l − 2, ξ j 〉〈l − 1, ξ k〉.

Therefore

wl(0, p) = −
∑

1≤ j �=k≤N

〈l − 1, ξ j 〉〈l − 1, ξ k〉〈p, ξ j 〉〈p, ξ k〉 + wl−1(0, p)

= −〈l − 1, p〉2 +
N∑

k=1

〈l − 1, ξ k〉2〈p, ξ k〉2 + wl−1(0, p). (4.16)

Combining (4.15) and (4.16), we arrive to an expression valid for 2 ≤ l ≤ N :

wl(0, p) =
l−1∑

j=1

(
N∑

k=1

〈 j, ξ k〉2〈p, ξ k〉2 − 〈 j, p〉2

)
.
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Let us now write 〈 j, p〉2 = p2
j and

〈p, ξ k〉2 =
(

∑

s

ps〈s, ξ k〉
)2

=
∑

s,t

ps pt 〈s, ξ k〉〈t, ξ k〉.

We obtain

wl(0, p) =
∑

s,t

ps pt

l−1∑

j=1

N∑

k=1

〈 j, ξ k〉2〈s, ξ k〉〈t, ξ k〉 −
l−1∑

j=1

p2
j

=
l−1∑

s=1

p2
s

⎛

⎝
l−1∑

j=1

N∑

k=1

〈 j, ξ k〉2〈s, ξ k〉2 − 1

⎞

⎠

+
N∑

s=l

p2
s

l−1∑

j=1

N∑

k=1

〈 j, ξ k〉2〈s, ξ k〉2

+
∑

1≤s �=t≤N

ps pt

l−1∑

j=1

N∑

k=1

〈 j, ξ k〉2〈s, ξ k〉〈t, ξ k〉.

In this formula, the coefficients of p2
s coincide with γs,s(l) given by (4.12) for l ≤ s ≤

N , and the coefficients of ps pt with s �= t coincide with the first expression of γs,t (l)
given by (4.12). To recover the coefficients γs,s(l) for 1 ≤ s ≤ l − 1, just use the fact
that (ξ k)k and (|k〉)k are orthonormal basis:

l−1∑

j=1

N∑

k=1

〈 j, ξ k〉2〈s, ξ k〉2 − 1 =
N∑

k=1

⎛

⎝1 −
N∑

j=l

〈 j, ξ k〉2

⎞

⎠ 〈s, ξ k〉2 − 1

=
N∑

k=1

〈s|ξ k〉2 − 1 −
N∑

j=l

N∑

k=1

〈 j, ξ k〉2〈s, ξ k〉2

= −
N∑

j=l

N∑

k=1

〈 j, ξ k〉2〈s, ξ k〉2.

The second expression for the coefficients γs,t (l) with s �= t in (4.12) is obtained by
a similar trick.

4.3 Exponential bounds

We show here that there exist constants C < +∞ and c > 0 independent of N such
that
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Eν

(
α2

j,k(l)
)

≤ C exp
(

− c
(| j − l| + |k − l|)

)
, Eν

(
γ 2

j,k(l)
)

≤ C exp
(

− c
(| j − l| + |k − l|)

)
, (4.17)

for 2 ≤ l ≤ N and for 1 ≤ j, k ≤ N . This is still valid for l = 1 if |k − l| is replaced
by min{|k −1|, |k − N |} and | j − l| by min{| j −1|, | j − N |}. Due to (4.11), it suffices
to establish these bounds for the matrices γ .

Let us first observe that the almost sure bounds

|γs,t (l)| ≤ 1 (2 ≤ l ≤ N ), |γs,t (1)| ≤ 1

2 min{ω2
k : 1 ≤ k ≤ N }

hold for 1 ≤ s, t ≤ N . This is directly deduced from (4.12) and (4.13) by taking
absolute values inside the sums if needed, using that (ξ k)k and (|k〉)k are orthonormal
basis, and Cauchy-Schwarz inequality if needed. By (4.3), min{ω2

k : 1 ≤ k ≤ N } ≥
c > 0, where c does not depend on N . In particular Eν

(|γs,t |p
) ≤ CpEν |γs,t | for

every p ≥ 1, so that we only need to bound Eν |γs,t |.
We now will apply localization results originally derived by Kunz and Souillard

[16], but we follow the exposition given by [11]. From (4.12) and (4.13), we see that
we are looking for upper bound on the absolute value of sums of the type

∑

k

〈r, ξ k〉2〈t, ξ k〉2, r < t,

and of the type

∑

k

〈r, ξ k〉2〈s, ξ k〉〈t, ξ k〉,
∑

k

〈r, ξ k〉〈s, ξ k〉2〈t, ξ k〉,
∑

k

〈r, ξ k〉〈s,

ξ k〉〈t, ξ k〉2, r < s < t.

Since |〈r, ξ k〉| ≤ 1 for 1 ≤ r, k ≤ N , all of them can be bounded by

∑

k

|〈r, ξ k〉〈t, ξ k〉|.

By the formula before Lemma 4.3 in [11], and the lines after the proof of this lemma,
we may conclude that there exist constants C < +∞ and c > 0 independent of N
such that

Eν

(
∑

k

|〈r, ξ k〉〈t, ξ k〉|
)

≤ C e−c(t−r).

Together with the remarks formulated up to here, this allows to deduce (4.17).
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4.4 Concluding the proof of Lemma 1

We write

EνμT (u2
N ) = 1

4N

∑

m,n

EνμT (wm · wn) and

EνμT
(
(AanhuN )2) = 1

4N

∑

m,n

EνμT (Aanhwm · Aanhwn).

We will establish that there exist constants C < +∞ and c > 0 such that

|EνμT (wm · wn)| ≤ C e−c|m−n| and |EνμT (Aanhwm · Aanhwn)| ≤ C e−c|m−n|

(4.18)

for 1 ≤ m, n ≤ N . This will conclude the proof.
Let us fix 1 ≤ m, n ≤ N . Let us first consider |EνμT (wm · wn)|. Let us observe

that the functions wl are of zero mean by construction, and so the relation

∑

j

γ j, j (l)
∫

p2
j dμT +

∑

j,k

α j,k(l)
∫

q j qk dμT + c(l) = 0 (4.19)

holds for 1 ≤ l ≤ N . Using this relation, it is computed that

μT (wm · wn) = μT

⎛

⎝

⎛

⎝
∑

i, j

αi, j (m)qi q j +
∑

i, j

γi, j (m)pi p j + c(m)

⎞

⎠

⎛

⎝
∑

i, j

αi, j (n)qi q j +
∑

i, j

γi, j (n)pi p j + c(n)

⎞

⎠

⎞

⎠

=
∑

i, j,k,l

αi, j (m)αk,l(n)

∫
qi q j qkql dμT

+
∑

i, j,k,l

αi, j (m)γk,l(n)

∫
qi q j pk pl dμT

+
∑

i, j,k,l

γi, j (m)αk,l(n)

∫
pi p j qkql dμT

+
∑

i, j,k,l

γi, j (m)γk,l(n)

∫
pi p j pk pl dμT − c(m)c(n)

= S1 + S2 + S3 + S4 − c(m)c(n).
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Using (4.19) and the fact that
∫

p2 dμT = T , the sum S1 is rewritten as

S1 =
∑

i, j,k,l

αi, j (m)αk,l(n)

∫ (
qi q j −

∫
qi q j dμT

)(
qkql −

∫
qkql dμT

)
dμT

+
∑

i, j,k,l

αi, j (m)αk,l(n)

∫
qi q j dμT

∫
qkql dμT

=
∑

i, j,k,l

αi, j (m)αk,l(n)

∫ (
qi q j −

∫
qi q j dμT

)(
qkql −

∫
qkql dμT

)
dμT

+T 2
∑

i, j

γi,i (m)γ j, j (n) + T c(m)
∑

i

γi,i (n) + T c(n)
∑

i

γi,i (m) + c(m)c(n).

Then, still using (4.19), we get

S2 + S3 = −T c(m)
∑

i

γi,i (n) − T c(n)
∑

i

γi,i (m) − 2T 2
∑

i, j

γi,i (m)γ j, j (n).

Finally, the terms in the sum S4 are non zero only when

i = j = k = l, i = j, k = l, i �= k, i = k, j = l, i �= j, i = l, j = k, i �= j.

Using that
∫

p4dμT = 3(
∫

p2 dμT )2 and that
∫

p2 dμT = T , S4 is seen to be equal
to

S4 = T 2
∑

i, j

(
γi,i (m)γ j, j (n) + 2γi, j (m)γi, j (n)

)
.

Therefore

μT (wm · wn) =
∑

i, j,k,l

αi, j (m)αk,l(n)

∫ (
qi q j −

∫
qi q j dμT

)

×
(

qkql −
∫

qkql dμT

)
dμT + 2T 2

∑

i, j

γi, j (m)γi, j (n).

Applying the decorrelation bound (2.1) and the exponential estimate (4.17), the result
is obtained.

Let us next consider |EνμT (Aanhwm · Aanhwn)|. We find from (3.1) that

μT (Aanhwm · Aanhwn) =
∑

s,t

μT
(
φt (q, m) φs(q, n) ps pt

)

= T
∑

t

μT
(
φt (q, m) φt (q, n)

)
.
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Now, it follows from (3.2) that φt (q, k) = ∑
s γs,t (k)ρs(q) for 1 ≤ k ≤ N . Here

ρs(q) = ρs(qs−1, qs, qs+1) is a function of mean zero since the potentials U and V
are symmetric. We write

μT (Aanhwm · Aanhwn) =
∑

t

∑

s,s′
γs,t (m) γs′,t (n) μT (ρs · ρs′).

Applying the decorrelation bound (2.1) and the exponential estimate (4.17) yield the
result. ��

5 Convergence results

In this section we show the convergence result (2.7). We assume thus λ > 0 and
λ′ = 0.

We start with some definitions (see [5] for details). The dynamics defined in Sect. 2
can also be defined for a set of particles indexed in Z instead of ZN . Points on the phase
space are written x = (q, p), with q = (qk)k∈Z and p = (pk)k∈Z. Let us denote by
L the generator of this infinite-dimensional dynamics. We remember here that μ

(N )
T

represents the Gibbs measure of a system of size N ; we denote by μ
(∞)
T the Gibbs

measure of the infinite system (the dependence on the size will still be dropped in the
cases where it is irrelevant). We extend the definition (2.2) of local currents jk to all
k ∈ Z ( jk = jk,har since λ′ = 0). If u = u(x, ν), with ν = (νk)k∈Z a sequence of
pinnings, and if k ∈ Z, we write τku(x, ν) = u(τk x, τkν), where

(τkq) j = qk+ j , (τk p) j = pk+ j , (τkν) j = νk+ j .

Finally, we denote by � ·, · � the inner-product defined, for local bounded functions
u and v, by

� u, v � =
∑

k∈Z

Eν

(
μ

(∞)
T (u · τkv

∗) − μ
(∞)
T (u)μ

(∞)
T (v)

)

where v∗ is the complex conjugate of v, and by H the corresponding Hilbert space,
obtained by completion of the bounded local functions.

We start with two lemmas. We have no reason to think that Lemma 2 still holds
if an anharmonic potential is added, and this is the main reason why we here restrict
ourselves to harmonic interactions.

Lemma 2 There exists a constant C < +∞ such that, for any realization of the
pinnings, for the finite dimensional dynamics with free or fixed B.C., or for the infinite
dynamics, for any k ≥ 1 and for any l ∈ ZN (resp. k ∈ Z for the infinite dynamics),

‖Lk jl‖L2(μT ) ≤ Ck (resp. ‖Lk jl‖L2(μT ) ≤ Ck).

123



Small perturbation of a disordered harmonic chain 325

Proof Let us consider the infinite dimensional dynamics ; other cases are similar.
We can take l = 0 without loss of generality. The function j0 is of the form j0 =
〈q, αq〉 + 〈q, βp〉 + 〈p, γ p〉, with α = γ = 0 and β defined by

βi, j = 1

2

(
δ0,0(i, j) − δ(1,1)(i, j) + δ0,1(i, j) − δ1,0(i, j)

)
.

Now, if u is any function of the type u = 〈q, αq〉 + 〈q, βp〉 + 〈p, γ p〉, then Lu =
〈q, α′q〉 + 〈q, β ′ p〉 + 〈p, γ ′ p〉 with

(α′, β ′, γ ′) =
(

−β� + �β†

2
, α − 2�γ − 2λβ,

β + β†

2
− 4λγ̃

)
,

where γ̃ is such that (γ̃ )i,i = 0 and (γ̃ )i, j = γi, j for i �= j . Thus

Lk j0 = 〈q, α(k)q〉 + 〈q, β(k) p〉 + 〈p, γ(k) p〉,

and there exists a constant C < +∞ such that ζi, j = 0 whenever |i | ≥ Ck or | j | ≥ Ck
and such that |ζi, j | ≤ Ck otherwise, with ζ one of the three matrices α(k), β(k) or γ(k).
The claim is obtained by expressing ‖Lk jl‖L2(μT ) in terms of the matrices α(k), β(k)

and γ(k). ��
Explicit representation for the matrix �−1 in Lemma 1.1. in [9] allows to deduce

the following lemma.

Lemma 3 Let f and g be two polynomials of the type 〈q, αq〉 + 〈p, βp〉 + 〈p, γ p〉,
and assume that there exists n ∈ N such that αi, j = βi, j = γi, j = 0 whenever |i | > n
or | j | > n. Then there exists c > 0 such that, for fixed or periodic B.C.,

∣∣μ(N )
T ( f · g∗) − μ

(∞)
T ( f · g∗)

∣∣ = O(e−cN ) as N → ∞.

Let then D = {z ∈ C : �z > 0}. For every z ∈ D, let uz be the unique solution to
the resolvent equation in H

(z − L)uz = j0. (5.1)

We know from Theorem 1 in [5]2, and from its proof, that

lim
z→0

� uz, j0 � exists and is finite (5.2)

and that

lim
z→0

z � uz, uz � = 0. (5.3)

2 The model studied there is not exactly the same. The proof of the properties we mention here can be
however readily adapted.
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For z ∈ D and N ≥ 3, let uk,z,N be the unique solution to the equation

(z − L)uk,z,N = jk . (5.4)

so that

uz,N := 1√
N

∑

k

uk,z,N solves (z − L)uz,N = JN . (5.5)

Lemma 4 For fixed or free boundary conditions and for almost all realizations of the
pinnings,

lim
z→0

lim
N→∞ μT

(
uz,N · JN

) = lim
z→0

lim
N→∞ EνμT

(
uz,N · JN

) = lim
z→0

� uz, j0 �,

lim
z→0

lim
N→∞ z μT

(
uz,N · uz,N

) = lim
z→0

lim
N→∞ z EνμT

(
uz,N · uz,N

) = 0.

Proof By (5.2) and (5.3), it suffices to establish separately that, for every z ∈ D, and
for almost every realization of the pinnings,

lim
N→∞ μT

(
uz,N · JN

) =� uz, j0 �, lim
N→∞ EνμT

(
uz,N · JN

) =� uz, j0 �,

lim
N→∞ z μT

(
uz,N · uz,N

) = z � uz, uz �,

lim
N→∞ z EνμT

(
uz,N · uz,N

) = z � uz, uz � .

The proof of these four relations is in fact very similar, and we will focus on the first
one. We proceed in two steps: we first show the result for |z| large enough, and then
extend it to all z ∈ D.

First step. Here we fix z ∈ D with |z| large enough. We first assume periodic
boundary conditions. The function uz solving (5.1) may be given by

uz =
∑

k≥0

z−(k+1)Lk j0,

this series converging in virtu of Lemma 2 for |z| large enough. Let now n ≥ 1. We
compute

� j0, uz � =
n∑

k=0

z−(k+1)
∑

l∈Z

Eνμ
(∞)
T ( jl · Lk j0)

+
∞∑

k=n+1

z−(k+1)
∑

l∈Z

Eνμ
(∞)
T ( jl · Lk j0). (5.6)

For every given k, the sum over l is actually a sum over C k non-zero terms only, for
some C < +∞. From this fact and from Lemma 2, it is concluded that the second
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sum in the right hand side of (5.6) converges to 0 as n → ∞. Similarly we write

μ
(N )
T (JN · uz,N ) = 1

N

∑

s,t

n∑

k=0

z−(k+1)μ
(N )
T ( js · Lk jt )

+ 1

N

∑

s,t

n∑

k=0

z−(k+1)μ
(N )
T ( js · Lk jt ). (5.7)

Here as well, the second term in (5.7) is such that

lim
n→∞ lim sup

N→∞
1

N

∑

s,t

n∑

k=0

z−(k+1)μ
(N )
T ( js · Lk jt ) = 0.

To handle the first term in (5.7), let us write

Fn(ν) =
∑

t∈ZN

n∑

k=0

z−(k+1)μ
(N )
T ( j0 · Lk jt ).

Then in fact

1

N

∑

s,t

n∑

k=0

z−(k+1)μ
(N )
T ( js · Lk jt ) = 1

N

∑

s

Fn(τsν).

The result is obtained by letting N → ∞, invoking Lemma 3 and the ergodic theorem,
and then letting n → ∞. If we had started with fixed boundary conditions, then, for
every fixed n, all the previous formulas remain valid up to some border terms that
vanish in the limit N → ∞ due to the factor 1/N .

Second step. Denote by LN ,ν(z) and L(z) the complex functions defined on D by

LN ,ν(z) = μ
(N )
T (uz,N · JN ) and L(z) = � uz, j0 � .

The first observation is that these functions are well defined and analytic on D. More-
over, similarly to what is proved in [5], they are uniformly bounded on D by a constant
independent of N and the realization of the pinning ν.

Let us fix a realization of the pinnings. The family {LN ,ν ; N ≥ 1} is a normal
family and by Montel’s Theorem we can extract a subsequence {LNk ,ν}k≥1 such that
it converges (uniformly on every compact set of D) to an analytic function f �

ν .
By the first step we know that f �

ν (z) = L(z) for any real z > z0. Thus, since the
functions involved are analytic, f �

ν coincides with L on D. It follows that the sequence
{LN ,ν(z)}N≥1 converges for any z ∈ D to L(z). ��
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Following a classical argument, we can now proceed to the

Proof of (2.7) For any z > 0, it holds that

1√
t

t∫

0

JN ◦ Xs ds = − 1√
t

t∫

0

Luz,N ◦ Xs ds + z√
t

t∫

0

uz,N ◦ Xs ds

= 1√
t
Mz,N ,t − uz,N ◦ Xt − uz,N√

t
+ z√

t

t∫

0

uz,N ◦ Xs ds

Here Mz,N ,t is a stationary martingale with variance given by

μT E
(M2

z,N ,t

) = μT
(
uz,N · (z − L)uz,N

) − z μT (uz,N · uz,N ). (5.8)

Here the equality μT
(
uz,N · Ahar uz,N

) = 0 has been used. Next

μT E
(

uz,N ◦ Xt − uz,N√
t

)2

≤ 2

t
μT (uz,N · uz,N )

and

μT E

⎛

⎝ z√
t

t∫

0

uz,N ◦ Xs ds

⎞

⎠
2

≤ z2t μT (uz,N · uz,N ).

Reminding that μT
(
uz,N · (z − L)uz,N

) = μT
(
uz,N · JN

)
, the proof is completed by

taking z = 1/t and invoking Lemma 4. ��

6 Lower bound in the absence of anharmonicity

We here establish the lower bound in (2.8), and so we assume λ > 0 and λ′ = 0. We
also assume periodic boundary conditions. We use the same method as in [5] (see also
[12]). According to Sect. 5, it is enough to establish that there exists a constant c > 0
such that, for almost every realization of the pinnings, for every z > 0 and for every
N ≥ 3,

μT
(JN · (z − L)−1JN

) ≥ c. (6.1)

Indeed, by (5.5), μT
(JN · (z − L)−1JN

) = μT
(
uz,N · (z − L)uz,N

)
, and, by (5.8),

this quantity converges to the right hand side of (2.7).

Proof of (6.1) For periodic B.C., the total current JN is given by

JN = 1

2

∑

k∈ZN

(qk pk+1 − qk+1 pk).
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To get a lower bound on the conductivity, we use the following variational formula

μT

(
JN (z − L)−1 JN

)
= sup

f
{2μT (JN · f ) − μT ( f · (z − λS) f )

−μT

(
Ahar f · (z − λS)−1 Ahar f

)}
(6.2)

where the supremum is carried over the test functions f ∈ C∞
temp(R

2N ). See [23] for
a proof. We take f in the form

f = a〈q, βp〉 with a ∈ R and β = �M,

where M is the antisymmetric matrix such that Mi, j = δi, j−1 − δi, j+1, with the
convention of periodic B.C.: δ1,N+1 = δ1,1 and δN ,0 = δN ,N .

First, we have

Ahar f = a〈p, βp〉 − a〈q, β�q〉 = a
∑

i �= j

βi, j pi p j

since β� = �M� is antisymmetric, and since βi,i = 0 for 1 ≤ i ≤ N . Since
S(pi p j ) = −4pi p j for i �= j , we obtain

μT

(
A f · (z − λS)−1 A f

)
= 1

z + 4λ
μT (Ahar f · Ahar f )

= a2T 2

z + 4λ

∑

i �= j

(
β2

i, j + βi, jβ j,i
)

≤ C
a2T 2 N

z + 4λ
(6.3)

for some constant C < +∞. Next, since Spk = −2pk for ≤ k ≤ N , there exists some
constant C < +∞ such that

μT ( f · (z − λS) f ) = a2T 2(z + 2λ)
∑

i, j

βi, j (�
−1β)i, j

= a2T 2(z + 2λ)Tr
[
β†�−1β

]

≤ Ca2T 2(z + 2λ)N . (6.4)

Let us finally estimate the term μT (JN f ):

μT (JN f ) = a

2
μT

⎛

⎝
∑

i, j

βi, j qi p j ·
∑

k∈ZN

(qk pk+1 − qk+1 pk)

⎞

⎠

= aT 2

2

∑

i,k

(
βi,k+1μT (qi qk) − βi,kμT (qi qk+1)

)
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= aT 2

2

∑

k∈ZN

(
(β†�−1)k+1,k − (β†�−1)k+1,k

)

= aT 2

2

∑

k∈ZN

(
Mk,k+1 − Mk+1,k

) = aT 2 N . (6.5)

By (6.3), (6.4), (6.5) and the variational formula (6.2), we find that there exists a
constant C < +∞, independent of the realization of the disorder, of λ and of N , such
that for any positive a,

1

N T 2 μT (JN (z − L)−1 JN ) ≥ a − Ca2

(
(z + 2λ) + 1

z + 4λ

)
.

By optimizing over a, this implies

1

N T 2 μT (JN (z − L)−1 JN ) ≥ 1

4C

(
(z + 2λ) + 1

z + 4λ

)−1

.

Since JN = JN /
√

N , this shows (6.1). ��
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