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Abstract We introduce two new concepts designed for the study of empirical
processes. First, we introduce a new Orlicz norm which we call the Bernstein–Orlicz
norm. This new norm interpolates sub-Gaussian and sub-exponential tail behavior. In
particular, we show how this norm can be used to simplify the derivation of deviation
inequalities for suprema of collections of random variables. Secondly, we introduce
chaining and generic chaining along a tree. These simplify the well-known concepts of
chaining and generic chaining. The supremum of the empirical process is then studied
as a special case. We show that chaining along a tree can be done using entropy with
bracketing. Finally, we establish a deviation inequality for the empirical process for
the unbounded case.
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Empirical process · Orlicz norm
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1 Introduction

We introduce a new Orlicz norm which we name the Bernstein–Orlicz norm. It interpo-
lates sub-Gaussian and sub-exponential tail behavior. With this new norm, we apply the
usual techniques based on Orlicz norms. In particular, we derive deviation inequalities
for suprema in a fairly simple and straightforward way. The Bernstein–Orlicz norm
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226 S. van de Geer, J. Lederer

captures Bernstein’s probability inequalities, and its use puts further derivations in a
unifying framework, shared for example by techniques for the sub-Gaussian case, such
as those for empirical processes based on symmetrization and Hoeffding’s inequality.

We furthermore introduce chaining and generic chaining along a tree, which is we
believe conceptually simpler than the usual chaining and generic chaining. We invoke
it for the presentation of maximal inequalities for general random variables with finite
Bernstein–Orlicz norm. The supremum of the empirical process is then studied as a
special case, and we show that chaining along a tree can be done using entropy with
bracketing. We establish a deviation inequality for the empirical process indexed by
a class of functions G in terms of the new Bernstein–Orlicz norm. The class G is
assumed to satisfy a uniform Bernstein condition, but need not be uniformly bounded
in supremum norm.

The paper is organized as follows. In Sect. 2, we introduce the Bernstein–Orlicz
norm and discuss the relation with Bernstein’s inequality. We then present some bounds
for maxima of finitely many random variables (Sect. 3) and suprema over a countable
set of random variables (Sect. 4). Section 4 also contains the concept of (generic)
chaining along a tree. The proofs of the results in Sects. 2, 3 and 4 are elementary and
given immediately following their statement. Section 5 contains the application to the
empirical process. The proofs here are more technical and given separately in Sects. 6
and 7.

2 The Bernstein–Orlicz norm

Consider a random variable Z ∈ R with distribution P. We first recall the general
Orlicz norm (see e.g. [7]).

Definition 1 Let Ψ : [0,∞) → [0,∞) be an increasing and convex function with
Ψ (0) = 0. The Ψ -Orlicz norm of Z is

‖Z‖Ψ := inf

{
c > 0 : EΨ

( |Z |
c

)
≤ 1

}
.

A special case is the Lm(P)-norm (m ≥ 1) which corresponds to Ψ (z) = zm . Other
important special cases are Ψ (z) = exp[z2] − 1 for sub-Gaussian random variables
and Ψ (z) = exp(z) − 1 for sub-exponential random variables. We propose functions
Ψ that combine sub-Gaussian intermediate tails and sub-exponential far tails.

For each L > 0 we define

ΨL(z) := exp

[√
1 + 2Lz − 1

L

]2

− 1, z ≥ 0. (1)

It is easy to see that ΨL is increasing and convex, and that ΨL(0) = 0.

Definition 2 Let L > 0 be given. The (L-)Bernstein–Orlicz norm is the Ψ -Orlicz
norm with Ψ = ΨL given in (1).
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The Bernstein–Orlicz norm and deviation inequalities 227

Indeed, the Bernstein–Orlicz norm combines sub-Gaussian and sub-exponential
behavior:

�L(z) ≈
{

exp[z2] − 1 for Lz small
exp[2z/L] − 1 for Lz large

Note that the constant L governs the range of the sub-Gaussian behavior. It is a dimen-
sionless constant, i.e., it does not depend on the scale of measurement.

The inverse of ΨL is

Ψ −1
L (t) = √

log(1 + t) + L

2
log(1 + t), t ≥ 0.

With this and with Chebyshev’s inequality, one now directly derives a probability
inequality for Z .

Lemma 1 Let τ := ‖Z‖ΨL . We have for all t > 0,

P

(
|Z | > τ

[√
t + Lt

2

])
≤ 2 exp[−t].

Proof of Lemma 1 By Chebyshev’s inequality, for all c > ‖Z‖ΨL ,

P

(
|Z |/c ≥ √

t + Lt

2

)
= P

(
|Z |/c ≥ Ψ −1

L (et − 1)

)

= P

(
ΨL(|Z |/c) ≥ et − 1

)
≤

(
EΨL(|Z |/c) + 1

)
e−t .

Thus,

P

(
|Z |/τ >

√
t + Lt

2

)
= lim

c↓τ
P

(
|Z |/c >

√
t + Lt

2

)

≤ lim
c↓τ

(
EΨL(|Z |/c) + 1

)
e−t ≤ 2e−t .

��
The next lemma says that a converse result holds as well, that is, from the probability

inequality of Lemma 1 one can derive a bound for the Bernstein–Orlicz norm, with
constants L and τ multiplied by

√
3.1

Lemma 2 Suppose that for for some constants τ and L, and for all t > 0,

P

(
|Z | ≥ τ

[√
t + Lt

2

])
≤ 2 exp[−t].

Then ‖Z‖Ψ√
3L

≤ √
3τ .

1 The constant can possibly be improved.
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228 S. van de Geer, J. Lederer

Proof of Lemma 2 We have

EΨ√
3L

(
|Z |/(√3τ)

)
=

∞∫
0

P

(
|Z | ≥ √

3τΨ −1√
3L

(t)

)
dt

=
∞∫

0

P

(
|Z | ≥ √

3τ

[√
log(1 + t) +

√
3L

2
log(1 + t)

])
dt

=
∞∫

0

P

(
|Z | ≥ τ

[√
log(1 + t)3 + L

2
log(1 + t)3

])
dt ≤ 2

∞∫
0

1

(1 + t)3 dt = 1.

��
We recall Bernstein’s inequality, see [2].

Theorem 1 Let X1, . . . , Xn be independent random variables with values in R and
with mean zero. Suppose that for some constants σ and K , one has

1

n

n∑
i=1

E|Xi |m ≤ m!
2

K m−2σ 2, m = 2, 3, . . . .

Then for all t > 0,

P

(
1√
n

∣∣∣∣
n∑

i=1

Xi

∣∣∣∣ ≥ σ
√

2t + K t√
n

)
≤ 2 exp[−t].

The following corollary shows that ‖·‖ΨL indeed captures the nature of Bernstein’s
inequality.

Corollary 1 Let X1, . . . , Xn be independent random variables satisfying the condi-
tions of Theorem 1. Then by this theorem and Lemma 2, for L := √

6K/(
√

nσ), we
have

∥∥∥∥ 1√
n

n∑
i=1

Xi

∥∥∥∥
ΨL

≤ √
6σ.

3 The Bernstein–Orlicz norm for the maximum of finitely many variables

Using Orlicz norms, the argument for obtaining a bound for the expectation of maxima
is standard. We refer to [14] for a general approach. We consider the special case of
the Bernstein–Orlicz norm.
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The Bernstein–Orlicz norm and deviation inequalities 229

Lemma 3 Let τ and L be constants, and let Z1, . . . , Z p be random variables satis-
fying

max
1≤ j≤p

‖Z j‖ΨL ≤ τ.

Then

E max
1≤ j≤p

|Z j | ≤ τ

[√
log(1 + p) + L

2
log(1 + p)

]
.

Proof of Lemma 3 Let c > τ . Then by Jensen’s inequality

E max
1≤ j≤p

|Z j | ≤ cΨ −1
L

(
EΨL

(
max

1≤ j≤p
|Z j |/c

))
= cΨ −1

L

(
E max

1≤ j≤p
ΨL

(
|Z j |/c

))

≤ cΨ −1
L

⎛
⎝ p∑

j=1

EΨL

(
|Z j |/c

)⎞
⎠ ≤ cΨ −1

L

(
p max

1≤ j≤p
EΨL

(
|Z j |/c

))
.

Therefore,

E max
1≤ j≤p

|Z j | ≤ lim
c↓τ

cΨ −1
L

(
p max

1≤ j≤p
EΨL

(
|Z j |/c

))
≤ τΨ −1

L (p)

= τ

[√
log(1 + p) + L

2
log(1 + p)

]
.

��
As a special case, one may consider the random variables

Z j := 1√
n

n∑
i=1

g j (Xi ), j = 1, . . . , p,

where X1, . . . , Xn are independent random variables with values in some space X ,
and where g1, . . . , gp are real-valued functions on X . If the g j (Xi ) are centered for
all i and j , and if one assumes the Bernstein condition

1

n

n∑
i=1

E|g j (Xi )|m ≤ m!
2

K m−2σ 2, m = 2, 3, . . . , j = 1, . . . , p,

then one can apply Lemma 3, with τ := √
6σ and L = √

6K/(
√

nσ), giving the
inequality

E max
1≤ j≤p

∣∣∣∣ 1√
n

n∑
i=1

g j (Xi )

∣∣∣∣ ≤ σ
√

6 log(1 + p) + 3K√
n

log(1 + p). (2)
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230 S. van de Geer, J. Lederer

This follows from Corollary 1. The constants can however be improved when using
direct arguments (see e.g. Lemma 14.12 [5]).

We now present a deviation inequality in probability for the maximum of finitely
many variables.

Lemma 4 Let Z1, . . . , Z p be random variables satisfying for some L and τ

max
1≤ j≤p

‖Z j‖ΨL ≤ τ.

Then for all t > 0

P

(
max

1≤ j≤p
|Z j | ≥ τ

[√
log(1 + p) + L

2
log(1 + p) + √

t + Lt

2

])
≤ 2 exp[−t].

Proof of Lemma 4 We first use that for any a > 0 and t > 0 one has
√

a + √
t >√

a + t so that

P

(
max

1≤ j≤p
|Z j | ≥ τ

[√
log(1 + p) + L

2
log(1 + p) + √

t + Lt

2

])

≤ P

(
max

1≤ j≤p
|Z j | > τ

[√
t + log(1 + p) + L

2
(t + log(1 + p))

])
.

Next, we apply the union bound and Lemma 1:

P

(
max

1≤ j≤p
|Z j | > τ

[√
t + log(1 + p) + L

2
(t + log(1 + p))

])

≤
p∑

j=1

P

(
|Z j | > τ

[√
t + log(1 + p) + L

2
(t + log(1 + p))

])

≤ 2p exp

[
−(t + log(1 + p))

]
= 2p

1 + p
exp[−t] ≤ 2 exp[−t].

��
Using Lemma 2, this is easily converted into the following deviation inequality for

the Bernstein–Orlicz norm. We use the notation

x+ := x l{x > 0}.
Lemma 5 Let Z1, . . . , Z p be random variables satisfying for some L and τ

max
1≤ j≤p

‖Z j‖ΨL ≤ τ.

Then
∥∥∥∥
(

max
1≤ j≤p

|Z j | − τ

[√
log(1 + p) + L

2
log(1 + p)

])
+

∥∥∥∥
Ψ√

3L

≤ √
3τ.
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The Bernstein–Orlicz norm and deviation inequalities 231

Proof of Lemma 5 Let

Z :=
(

max
1≤ j≤p

|Z j | − τ

[√
log(1 + p) + L

2
log(1 + p)

])
+
.

By Lemma 4, we have for all t > 0

P

(
Z ≥ τ

[√
t + Lt

2

])

=P

(
max

1≤ j≤p
|Z j | ≥ τ

[√
log(1+ p)+ L

2
log(1+ p)+√

t+ Lt

2

])
≤ 2 exp[−t].

Application of Lemma 2 finishes the proof. ��

4 Chaining along a tree

A common technique for bounding suprema of stochastic processes is chaining as
developed by Kolmogorov, leading to versions of Dudley’s entropy bound ([6]). See
e.g. [14] or [13] and the references therein. We however propose another method
which we call chaining along a tree. This method is conceptually simpler than the
usual chaining and, as far as we know, does not introduce unnecessary restrictions. An
example will be detailed in Sect. 5 for the case of entropy with bracketing. The generic
chaining technique of [12] is a refinement of the usual chaining which we shall also
consider in Definition 6 and Theorem 3.

Let S ∈ N0 be fixed.

Definition 3 A finite tree2 T is a partition {Gs}S
s=0 of {1, . . . , N } together with a

function

parent : {1, . . . , N } → {1, . . . , N },

such that parent( j) ∈ Gs−1 for j ∈ Gs , s ∈ 1, . . . , S. We call an element of {1, . . . , N }
a node and Gs a generation, s = 0, . . . , S. A branch with end node jS ∈ GS is the
sequence { j0, . . . , jS} with js−1 = parent( js), s = 1, . . . , S.

Definition 4 Let a collection of real-valued random variables W := {W j }N
j=1 be

given. A finite labeled tree (T ,W) is a finite tree with on each node j a label W j .

Let � be some countable set and let Zθ ∈ R be a random variable defined for each
θ ∈ �. We consider supremum of the process {|Zθ | : θ ∈ �}.
Definition 5 Let δ > 0 and τ > 0 be constants and let L := {Ls}S

s=0 be a sequence of
positive numbers. A (δ, τ,L) finite tree chain for {Zθ } is a finite labeled tree (T ,W)

such that for all s = 0, . . . , S,

‖W j‖ΨLs
≤ τ2−s, j ∈ Gs,

2 Actually, T is rather a forest consisting of |G0| trees.
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232 S. van de Geer, J. Lederer

and such that one can apply chaining of {Zθ } along the tree (T ,W), with approxima-
tion error δ. That is, for each θ ∈ � there is an end node jS ∈ GS such that the branch
{ j0, . . . , jS} satisfies

|Zθ | ≤
S∑

s=0

|W js | + δ.

In the above definition, the approximation error δ will generally depend on the
depth S of the tree. We assume that at a fine enough level, the approximation error
is small. The usual chaining technique does not assume a tree structure, but indeed
often needs only a finite number of steps. A tree structure follows if the members at
the finest level are taken as end nodes. With a finite number of steps, the sum given in
(3) is finite. This avoids requiring convergence of an infinite sum.

We have presented the definition of a finite tree chain for the Bernstein–Orlicz
norm ‖ · ‖ΨL . However, the concept is not particularly tied up with this norm, e.g.,
for sub-Gaussian cases one may choose to replace the Bernstein–Orlicz norm by the
L2(P) norm (corresponding to case where the constants in L all vanish): see Lemma
14.35 in [5].

Let us now turn to the results.

Theorem 2 Let (T ,W) be an (δ, τ,L) finite tree chain for {Zθ }. Define

γ := τ

S∑
s=0

2−s
[√

log(1 + |Gs |) + Ls

2
log(1 + |Gs |)

]
. (3)

It holds that

E sup
θ∈�

|Zθ | ≤ γ + δ. (4)

Remark 1 One may minimize the right hand side of (4) over all finite trees.

Proof of Theorem 2 We have

E sup
θ∈�

|Zθ | ≤
S∑

s=0

E max
j∈Gs

|W j | + δ.

Application of Lemma 3 gives that for each s ∈ {0, . . . , S}

E max
j∈Gs

|W j | ≤ τ2−s
[√

log(1 + |Gs |) + Ls

2
log(1 + |Gs |)

]
.

��
With generic chaining, the condition on the Bernstein–Orlicz norm of the labels is

dropped in the definition of the tree. This Bernstein–Orlicz norm then turns up in the
constants (5) and (6) which appear in the generic chaining bound of Theorem 3.
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The Bernstein–Orlicz norm and deviation inequalities 233

Definition 6 Let δ > 0 be a constant. A δ finite generic tree chain for {Zθ } is a finite
labeled tree (T ,W) such that one can apply generic chaining of {Zθ } along the tree
(T ,W) with approximation error δ. That is, for each θ ∈ � there is an end node
jS ∈ GS such that the branch { j0, . . . , jS} satisfies

|Zθ | ≤
S∑

s=0

|W js | + δ.

Let (T ,W) a finite labeled tree. For each end node k ∈ GS , we let

{ j0(k), . . . , jS(k)}

be the corresponding branch (so that jS(k) = k), and we write

Ws(k) := W js (k), k ∈ GS, s = 0, 1, . . . , S.

Fix a sequence of positive constants L := {Ls}S
s=0. We write for k ∈ GS ,

γ1,∗(k) :=
S∑

s=0

‖Ws(k)‖ΨLs

√
log(1 + |Gs |), (5)

γ2,∗(k) :=
S∑

s=0

‖Ws(k)‖ΨLs
Ls log(1 + |Gs |), (6)

γ∗(k) := γ1,∗(k) + γ2,∗(k)

2
.

Moreover, we let

γ1,∗ := max
k∈GS

γ1,∗(k), γ2,∗ := max
k∈GS

γ2,∗(k), γ∗ := max
k∈GS

γ∗(k),

and

τ∗ := max
k∈GS

S∑
s=0

‖Ws(k)‖ΨLs

√
1 + s,

and

L∗τ∗ := max
k∈GS

S∑
s=0

‖Ws(k)‖ΨLs
(1 + s)Ls .
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234 S. van de Geer, J. Lederer

Theorem 3 Let (T ,W) be a δ finite generic tree chain for {Zθ }. Then for all t > 0

P

(
sup
θ∈�

|Zθ | ≥ γ∗ + δ + τ∗
[

1 + L∗
2

]
+ τ∗

[√
t + L∗t

2

])
≤ 2 exp[−t].

Remark 2 The result of Theorem 3 may again be optimized over all finite generic
trees.

Proof of Theorem 3 Define for s = 0, . . . , S,

αs :=
[√

log(1 + |Gs |) + Ls

2
log(1 + |Gs |)

]

+
[√

(1 + s)(1 + t) + (1 + s)(1 + t)Ls

2

]
.

Using Lemma 4, we see that

P

(
max
j∈Gs

|W j |
‖W j‖ΨLs

≥ αs

)
≤ 2 exp[−(1 + t)(1 + s)], s = 0, . . . , S. (7)

We have

P

(
max

k

S∑
s=0

|Ws(k)| ≥ max
k

S∑
s=0

‖Ws(k)‖ΨLs
αs

)

≤ P

(
∃k :

S∑
s=0

|Ws(k)| ≥
S∑

s=0

‖Ws(k)‖ΨLs
αs

)

≤
S∑

s=0

P

(
∃k : |Ws(k)| ≥ ‖Ws(k)‖ΨLs

αs

)

=
S∑

s=0

P

(
max

k

|Ws(k)|
‖Ws(k)‖ΨLs

≥ αs

)
≤

S∑
s=0

P

(
max
j∈Gs

|W j |
‖W j‖ΨLs

≥ αs

)
.

Now insert (7) to find

P

(
max

k

S∑
s=0

|Ws(k)| ≥ max
k

S∑
s=0

‖Ws(k)‖ΨLs
αs

)

≤ 2
S∑

s=0

exp[−(1 + t)(1 + s)] ≤ 2e−(1+t)

1 − e−(1+t)
≤ 2e−1

1 − e−1 exp[−t] ≤ 2 exp[−t].
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The Bernstein–Orlicz norm and deviation inequalities 235

We have by definition

max
k

S∑
s=0

‖Ws(k)‖ΨLs

[√
log(1 + |Gs |) + Ls

2
log(1 + |Gs |)

]
= γ∗,

max
k

S∑
s=0

‖Ws(k)‖ΨLs

√
(1 + s) = τ∗,

and

max
k

S∑
s=0

‖Ws(k)‖ΨLs
(1 + s)Ls = τ∗L∗.

Therefore,

max
k

S∑
s=0

‖Ws(k)‖ΨLs
αs ≤ γ∗ + τ∗

√
1 + t + τ∗(1 + t)L∗

2

≤ γ∗ + τ∗ + τ∗L∗
2

+ τ∗
[√

t + L∗t

2

]
.

Note that the constants L∗ and τ∗ possibly depend on the complexity of � through
the quantities {‖Ws(k)‖ΨLs

: k ∈ Gs, s = 0, . . . , S}. Moreover, the choice of the
constants L = {Ls}S

s=0 may also depend on the complexity of �. In the application
to the empirical process (see Sect. 5), the latter will be indeed the case. We will
nevertheless derive there a deviation inequality where we put the dependency on the
complexity of � in the shift.

As a simple corollary of Theorem 3, one obtains a deviation inequality in the
Bernstein–Orlicz norm. We state this for completeness. In Sect. 5 we will not apply
Corollary 2 directly, because as such, it does not allow us to put all dependency on the
complexity of � in the shift.

Corollary 2 Let the conditions of Theorem 3 be met. Then the combination of this
theorem with Lemma 2 gives

∥∥∥∥
(

sup
θ∈�

|Zθ | − (γ∗ + δ + τ∗[1 + L∗/2])
)

+

∥∥∥∥
�√

3L∗
≤ √

3τ∗.

By Jensen’s inequality, we then get

E sup
θ∈�

|Zθ | ≤ γ∗ + δ + τ∗
[

1 + L∗
2

]
+ √

3τ∗
[√

log 2 +
√

3L∗
2

log 2

]
.
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236 S. van de Geer, J. Lederer

Example 1 In [12], the sizes |Gs | of generation s is fixed to be

|Gs | = 222s
, s = 0, . . . , S.

In that case,

log(1 + |Gs |) ≤ (22s + 1) log 2 ≤ 22s+1 ≤ 22(s+1).

Hence

γ∗ ≤ 2γ0,

where

γ0 := max
k∈GS

γ0(k),

and for k ∈ GS ,

γ0(k) := γ1,0(k) + γ2,0(k)

2
,

and

γ1,0(k) :=
S∑

s=0

‖Ws(k)‖ΨLs
2s, γ2,0(k) :=

S∑
s=0

‖Ws(k)‖ΨLs
Ls22s .

Furthermore, since 1 + s ≤ 22s for all s ≥ 0,

τ∗ ≤ γ1,0 := max
k∈GS

γ1,0(k),

and

τ∗L∗ ≤ γ2,0 := max
k∈GS

γ2,0(k).

Hence,

γ∗ + τ∗
[

1 + L∗
2

]
≤ 3

[
γ1,0 + γ2,0

2

]
,

and

√
3τ∗

[√
log 2 +

√
3L∗
2

log 2

]
≤ √

3 log 2 γ1,0 + 3 log 2

2
γ2,0.
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The Bernstein–Orlicz norm and deviation inequalities 237

It follows from Corollary 2 that

E sup
θ∈�

|Zθ | ≤ (3 + √
3 log 2)γ1,0 + 3 + 3 log 2

2
γ2,0 + δ.

Thus, we arrive at a special case of Theorem 1.2.7 in [12].

When using a (δ, τ,L) finite tree chain, one takes ‖Ws(k)‖ΨLs
≤ τ2−s for all s and

k ∈ Gs . In that case, the constants τ∗ and L∗ in the bounds given in Corollary 2 only
depend on the scale parameter τ and on the constants L = {Ls}S

s=0. This is detailed
in the next theorem.

Theorem 4 Let the conditions of Theorem 2 be met, and define

γ := τ

S∑
s=0

2−s
[√

log(1 + |Gs |) + Ls

2
log(1 + |Gs |)

]

and

L :=
S∑

s=0

2−s Ls(1 + s)

4
.

Then for all t > 0

P

(
sup
θ∈�

|Zθ | ≥ γ + δ + 4τ

[
1 + L

2

]
+ 4τ

[√
t + Lt

2

])
≤ 2 exp[−t].

Proof of Theorem 4 This follows from Theorem 3, where one takes

‖Ws(k)‖ΨLs
≤ τ2−s .

We have

τ∗/τ ≤
S∑

s=0

2−s
√

(1 + s) = 2
S+1∑
s=1

2−s√s ≤ 2

∞∫
0

2−x√xdx =
√

π

(log 2)3/2 ≤ 4.

Moreover,

L∗τ∗ ≤
S∑

s=0

2−s Ls(1 + s) = 4L .

��
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5 Application to empirical processes

Let X be some measurable space, and consider independent X -valued random vari-
ables X1, . . . , Xn . Let G be a collection of real-valued functions on X .

Write for a real valued function g

Png := 1

n

n∑
i=1

g(Xi )

and

Pg := 1

n

n∑
i=1

Eg(Xi ), ‖g‖2 := 1

n

n∑
i=1

Eg2(Xi )

whenever the expectations exist. We assume the normalization

sup
g∈G

‖g‖ ≤ 1.

We study the supremum of the empirical process {νn(g) : g ∈ G}, where νn(g) :=√
n(Pn − P)g.
We recall the deviation inequality of [9], which presents explicit and refined con-

stants for results in [11].

Theorem 5 [9] Suppose that for a constant K

sup
g∈G

sup
x∈X

|g(x)| ≤ K . (8)

Then for all ε > 0 and all t > 0, it holds that

P

(
sup
g∈G

|νn(g)| ≥ (1 + ε)E sup
g∈G

|νn(g)| + √
2κt + κ(ε)K t/

√
n

)
≤ exp[−t], (9)

where the values of κ and κ(ε) can be chosen to be κ = 4 and κ(ε) = 2.5 + 32/ε.

For the i.i.d. case, [4] obtained constants remarkably close to those for the case
where G is a singleton. In fact, [9] and others have derived concentration inequalities
which in addition to upper bounds show similar lower bounds for the supremum of the
empirical process. This is complemented in [8] by moment concentration inequalities
assuming only moment conditions on the envelope �(·) := supg∈G |g(·)|, instead of
the boundedness assumption (8).

In this paper, we provide a deviation inequality of the same spirit as in the above
Theorem 5, where we replace condition (8) by a weaker Bernstein condition (see
(11)), which essentially requires that the g(Xi ) have sub-exponential tails, and where
we also present a deviation result in Bernstein–Orlicz norm. These deviation results in
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probability and in Bernstein–Orlicz norm are given in Theorem 8. We have not tried to
optimize the constants. Moreover, we replace the expectation E supg∈G |νn(g)| in (9)
by the upper bound we obtain from chaining arguments.3 Deviation inequalities for the
sub-exponential case can be found in literature (see e.g. [15]), but these do not cover
the more refined interpolation of sub-Gaussian and sub-exponential tail behavior. The
above cited work also contains lower bounds for suprema, thus completing the results
to concentration inequalities.

Now our first aim is to show that entropy with bracketing conditions allow one
to construct a finite tree chain. We recall here the definition of a bracketing set and
entropy with bracketing (see [3], or see [13,14] and their references).

Definition 7 Let s > 0 be arbitrary. A 2−s-bracketing set for {G, ‖ · ‖} is a finite

collection of functions {[g̃L
j , g̃U

j ]}Ñs
j=1 satisfying ‖g̃U

j − g̃L
j ‖ ≤ 2−s for all j and such

that for each g ∈ G there is a j ∈ {1, . . . , Ñs} such that g̃L
j ≤ g ≤ g̃U

j . If no such

finite collection exists, we write Ñs = ∞.

We also introduce a generalized bracketing set, in the spirit of [13].

Definition 8 Let K > 0 be a fixed constant. A generalized bracketing set for G is a

finite collection of functions {[g̃L
j , g̃U

j ]}Ñ0
j=1 satisfying for all j

P|g̃U
j − g̃L

j |m ≤ m!
2

(2K )m−2, m = 2, 3, . . .

and such that for each g ∈ G there is a j ∈ {1, . . . , Ñ0} such that g̃L
j ≤ g ≤ g̃U

j . Write

Ñ0 = ∞ if no such finite collection exists.

A special case is where the envelope function� := supg∈G |g| satisfies the Bernstein
condition

P�m ≤ m!
2

(2K )m−2, m = 2, 3, . . . .

Then one can take [−�,�] as generalized bracketing set, consisting of only one ele-
ment.

In what follows we let, for each s ∈ N, Ñs be the cardinality of a minimal 2−s-
bracketing set for G. The 2−s-entropy with bracketing of G is

H̃s := log(1 + Ñs), s ∈ N.

Moreover, Ñ0 is the cardinality of a minimal generalized bracketing set, and we let

H̃0 := log(1 + Ñ0).

3 This upper bound can be shown to be (up to constants) tight in certain examples. The upper bound
following from generic chaining is modulo constants tight for the general sub-Gaussian case.
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Finally, we write

Ns :=
s∏

k=0

Ñk, Hs := log(1 + Ns), s ∈ N0. (10)

The following theorem uses arguments of [10] and is comparable to Theorem 2.7.11
in [12] (who adapts the technique of [10]). However, unlike [12], we apply the usual
chaining technique and not generic chaining here. On the other hand, our results lead
to the more involved deviation inequalities as given in Theorem 8.

Theorem 6 Suppose that, for some constant K ≥ 1, one has the Bernstein condition

sup
g∈G

P|g|m ≤ m!
2

K m−2, m = 2, 3, . . . . (11)

Let S be some integer, τ := 3
√

6 and δ := 4
√

n
∑S

s=1 2−2s/Ks−1 + √
n2−S, where

{Ks−1}S
s=1 is an arbitrary decreasing sequence of positive constants (called truncation

levels). Suppose that Ñs < ∞ for all s = 0, . . . , S. Then there is a (δ, τ,L) finite tree
chain for {νn(g)} with |Gs | ≤ Ns, s = 0, . . . , S, and with

L0 = 4
√

6K√
n

, Ls = 2
√

6 2s Ks−1

3
√

n
, s = 1, . . . , S.

As a consequence, we can derive a bound for the expectation of the supremum of
the empirical process.

Theorem 7 Assume the Bernstein condition (11). Let

ĒS := 2−S√
n + 14

S∑
s=0

2−s
√

6H̃s + 62 K
H̃0√

n
.

Then one has

E

(
sup
g∈G

|νn(g)|
)

≤ min
S

ĒS .

Remark 3 When � is finite, say |�| = p, one may choose a bound with S = δ = 0,
and H̃0 ≤ log(1 + p). Theorem then 7 yields—up to constants—the same bound as
in (2).

Finally, we present the main result of this section. We give deviation results in
probability and in Bernstein–Orlicz norm, where the dependency on the complexity
of G is only in the shift.
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Theorem 8 Assume the Bernstein condition (11). Define as in Theorem 7,

ĒS := 2−S√
n + 14

S∑
s=0

2−s
√

6H̃s + 62 K
H̃0√

n
.

Let

L̃ :=
√

6K

2
√

n
.

Then for all t > 0,

P

(
sup
g∈G

|νn(g)| ≥ min
S

ĒS + 62 K/
√

n + 24
√

6

[√
t + L̃t

2

]])
≤ 2 exp[−t].

Moreover,

∥∥∥∥
([

sup
g∈G

|νn(g)|
]

−
[

min
S

ĒS + 62 K/
√

n + 24
√

6

])
+

∥∥∥∥
Ψ√

3L̃

≤ 72
√

2.

Theorem 8 can be compared to results in [1]. Taking Ψ (z) = exp(z) − 1, z ≥ 0,
one sees that our bound replaces the sub-exponential Orlicz-norm

∥∥∥∥ max
1≤i≤n

sup
g∈G

|g(Xi )|
∥∥∥∥

Ψ

,

occurring in [1] by a constant proportional to K , which means we generally gain a
log n-term. On the other hand, the shift in [1] is up to a factor (1 + ε) equal to the
expectation

E sup
g∈G

|νn(g)|,

as in [9]) (whose result is cited here in Theorem 5).

Remark 4 Again, when |�| = p is finite, one can choose S = δ = 0, and H̃0 ≤
log(1 + p) as in Remark 3. Theorem 8 then reduces to the usual union bound type
deviation inequalities for the maximum of finitely many random variables (that is, the
results are—up to constants—a special case of Lemmas 4 and 5).
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6 Proofs for Sect. 5

6.1 Proof of Theorem 6

This follows from similar arguments as in [13], who uses in turn ideas of [10]. Let for
s = 1, . . . , S,

{[g̃s,L
j , g̃s,U

j ]}Ñs
j=1

be a minimal 2−s-bracketing set for ‖ · ‖. Let {[g̃0,L
j , g̃0,U

j ]}Ñ0
j=1 be a generalized

bracketing set.
Consider some g ∈ G, and let [g̃0,L , g̃0,U ]be the corresponding generalized bracket,

and for all s ∈ {1, . . . , S}, let the corresponding brackets be [g̃s,L , g̃s,U ]. Thus

g̃s,L ≤ g ≤ g̃s,U , s = 0, . . . , S,

and

P|g̃0,U − g̃0,L |m ≤ m!
2

(2K )m−2, m = 2, 3, . . . ,

P|g̃s,U − g̃s.L |2 ≤ 2−2s, s = 1, . . . , S.

If for some s there are several brackets in {[g̃s,L
j , g̃s,U

j ]}Ñs
j=1 corresponding to g, we

choose a fixed but otherwise arbitrary one. Define

gs,L := max
0≤k≤s

g̃k,L , gs,U := min
0≤k≤s

g̃k,U .

Then

g0,L ≤ g1,L ≤ · · · ≤ gS,L ≤ g ≤ gS,U ≤ · · · ≤ g1,U ≤ g0,U ,

and moreover gs,U − gs,L ≤ g̃s,U − g̃s,L . Denote the difference between upper and
lower bracket by

�s := gs,U − gs,L , s = 0, . . . , S.

The differences �s are decreasing in s. Furthermore, ‖�s‖ ≤ 2−s , for all s ∈
{0, 1, . . . , S}.

Let Ns := |{[gs,L
j , gs,U

j ]}|, s = 0, . . . , S. It is easy to see that

Ns ≤
s∏

k=0

Ñk =: Ns, s = 0, . . . , S.
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We define a tree with end nodes {1, . . . ,NS}. At each end node j sits a pair of
brackets [gS,L

j , gS,U
j ]. For each s = 0, . . . , S − 1, we define the parents at generation

s as follows. Let

Ṽ s
k :=

{
l :

[
gs−1,L

k , gs−1,U
k

]
forms a 2−(s−1)−bracket for

[
gs,L

l , gs,U
l

]}
.

Then ∪Ns−1
k=1 Ṽ s

k = {1, . . . ,Ns}, that is, for each bracket [gs,L
l , gs,U

l ] there is a k ∈
{1, . . . ,Ns−1} with l ∈ Ṽk . To see this, we note that for each l, there is a function
g with gs,L

l ≤ g ≤ gs,U
l , and by the above construction, there is a k with gs−1,L

k ≤
gs,L

l ≤ g ≤ gs,U
l ≤ gs−1,U

k . We let {V s
k }Ns−1

k=1 be a disjoint version of {Ṽ s
k }, e.g., the

one given by

V s
1 = Ṽ s

1 , V s
k = Ṽ s

k \ ∪k−1
l=1 Ṽ s

l , k = 1, . . . ,Ns−1.

We let

parent( js) = k if js ∈ V s
k .

We now turn to an adaptive truncation device. For each s = 0, . . . , S − 1, we are
given truncation levels Ks , such that Ks is assumed to be decreasing in s. Let g be
fixed and

g0,L ≤ g1,L ≤ · · · ≤ gS,L ≤ g ≤ gS,U ≤ · · · ≤ g1,U ≤ g0,U .

Define

�s := gs,U − gs,L , ys := l{�s ≥ Ks}.

Then

Ks l{ys = 1} ≤ �s l{ys = 1}, s = 0, . . . , S − 1,

which implies (for s = 0, . . . , S − 1)

P�s l{ys = 1} ≤ P|�s |2
Ks

≤ 2−2s

Ks

We can write any g ∈ G as

g =
S∑

s=1

(g − g0,s)l{ys = 1, ys−1 = · · · = y0 = 0}

+
S∑

s=1

(gs,L −gs−1,L)l{ys−1 =· · · = y0 = 0}+g0,L + (g − g0,L)l{y0 = 1}

(12)
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244 S. van de Geer, J. Lederer

Let

W j0 := |νn(g0,L)| + |νn(�0)|,
W js := |νn(�s l{ys−1 = 0})| + |νn((gs,L − gs−1,L)l{ys−1 = 0})|, s = 1, . . . , S.

Then it follows from (12) that

|νn(g)| ≤
S∑

s=0

|W js | + √
n

S∑
s=0

P�s l{ys = 1} ≤
S∑

s=0

|W js | + δ,

for

δ = √
n

S∑
s=1

4 2−2s

Ks−1
+ √

n2−S .

Note now that

(P|g0,L |m)1/m ≤ (P|g|m)1/m + (P|�0|m)1/m

≤ (
m!
2

K m−2)1/m + (
m!
2

(2K )m−2)1/m ≤ 2(
m!
2

(2K )m−2)1/m,

so

P|g0,L |m ≤ m!
2

(4K )m−222.

By Corollary 1

‖νn(g0,L)‖�L0
≤ 2

√
6,

for

L0 = √
6(8K/2)/

√
n = 4

√
6/

√
n,

where we multiplied by a factor 2 because the Bernstein condition for the centered
functions holds with the above 4K replaced by 8K . Moreover, L0 = √

6(4K )/
√

n,
so again by Corollary 1,

‖νn(�0)‖ΨL0
≤ √

6.

The triangle inequality gives

∥∥∥∥|νn(g0,L)| + |νn(�0)|
∥∥∥∥

ΨL0

≤ 3
√

6 =: τ.
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Moreover, for s = 1, . . . , S,

|(gs,L − gs−1,L)l{ys−1 = 0}| ≤ �s−1 ≤ Ks−1, ‖�s−1‖ ≤ 2−s+1,

and

�s l{ys−1 = 0} ≤ �s−1 ≤ Ks−1, ‖�s‖ ≤ 2−s .

So, again by Corollary 1, we may take

Ls := √
6 2s max

(
2

3
Ks−1/2,

2

3
Ks−1

)
/
√

n = 2
√

6Ks−1

3
√

n
, s = 1, . . . , S.

Then, again by the triangle inequality,

∥∥∥∥|νn((gs,L − gs−1,L)l{ys−1 = 0})| + |νn(�s l{ys−1 = 0})|
∥∥∥∥

ΨLs

≤ 3
√

6 2−s .

��

6.2 Three technical lemmas

To apply the result of Theorem 6, we need three technical lemmas. First we need a
bound for Ns := ∏s

k=0 Ñs , or actually for Hs := log(1 + Ns).

Lemma 6 Let s ∈ {0, . . . , S}, Hs := log(1 + ∏s
k=0 Ñk) and H̃s := log(1 + Ñs). It

holds that

S∑
s=1

2−s
√

Hs ≤
√

H̃0 + 2
S∑

s=1

2−s
√

H̃s .

Proof of Lemma 6 We have

√
Hs ≤

s∑
k=0

√
H̃k,

so

S∑
s=1

2−s
√

Hs ≤
S∑

s=1

2−s
√

H̃0 +
S∑

s=1

2−s
s∑

k=1

√
H̃k

≤
√

H̃0 +
S∑

k=1

S∑
s=k

2−s
√

H̃k ≤
√

H̃0 + 2
S∑

k=1

2−k
√

H̃k .

��
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The next lemma inserts a special choice for the truncation levels {Ks}, and then
establishes a bound for the expectation of the supremum of the empirical process,
derived from the one of Theorem 2.

Lemma 7 Let S be some integer and ε ≥ 0 be an arbitrary constant. Take

Ks−1 := 2−s√n

( √
6

3
√

log(1 + Ns)
∧ 1

ε

)
, s = 1, . . . , S,

where u ∧ v denotes the minimum of u and v. Define as in Theorem 6,

L0 := 4
√

6K√
n

, Ls := 2
√

6 2s Ks−1

3
√

n
, s = 1, . . . , S,

δ := 4
√

n
S∑

s=1

2−2s/Ks−1 + √
n2−S,

and τ := 3
√

6. Let

ES := τ

S∑
s=0

2−s
[√

log(1 + Ns) + Ls

2
log(1 + Ns)

]
+ δ.

Then

ES ≤ ĒS + 4ε,

where

ĒS := 2−S√
n + 14

S∑
s=0

2−s
√

6H̃s + 62 K
H0√

n
.

Proof of Lemma 7 We have

ES =
S∑

s=1

4 2−2s√n

Ks−1
+ 2−S√

n + τ
√

log(1 + N0) + 2
√

6 τ K
log(1 + N0)√

n

+τ

S∑
s=1

2−s
[√

log(1 + Ns) + 1

3

√
6 2s Ks−1

log(1 + Ns)√
n

]

=
S∑

s=1

4 2−2s√n

Ks−1
+ 2−S√

n + 3
√

6 log(1 + N0) + 62 K
log(1 + N0)√

n

+3
S∑

s=1

2−s
√

6 log(1 + Ns) +
S∑

s=1

6Ks−1
log(1 + Ns)√

n
= I + I I + I I I,
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where

I := 2−S√
n + 3

√
6 log(1 + N0) + 62 K

log(1 + N0)√
n

,

I I := 3
S∑

s=1

2−s
√

6 log(1 + Ns),

and

I I I :=
S∑

s=1

4 2−2s√n

Ks−1
+

S∑
s=1

6Ks−1
log(1 + Ns)√

n
.

Insert

Ks−1 = 1

3

√
6 2−s

√
n

log(1 + Ns)
∧ 2−s

√
n

ε
, s = 1, . . . , S.

Note that Ks is decreasing in s. Moreover

4 2−2s√n

Ks−1
+ 6Ks−1

log(1 + Ns)√
n

≤ 4
√

6 2−s
√

log(1 + Ns) + 4 2−sε.

We find

I I I ≤ 4
√

6
S∑

s=1

2−s
√

log(1 + Ns) + 4ε,

so that

I I + I I I ≤ 7
√

6
S∑

s=1

2−s
√

log(1 + Ns) + 4ε.

Now apply Lemma 6. This gives

I I + I I I ≤ 7
√

6
√

log(1 + Ñ0) + 14
√

6
S∑

s=1

2−s
√

log(1 + Ñs) + 4ε.
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Hence,

I + I I + I I I ≤ 2−S√
n + 62 K

log(1 + Ñ0)√
n

+ 10
√

6
√

log(1 + Ñ0)

+14
√

6
S∑

s=1

2−s
√

log(1 + Ñs) + 4ε

≤ 2−S√
n + 14

√
6

S∑
s=0

2−s
√

log(1 + Ñs) + 62 K
log(1 + Ñ0)√

n
+ 4ε.

��
We now derive some bounds which will be used for obtaining the deviation inequal-

ities in probability and in Bernstein–Orlicz norm of Theorem 8.

Lemma 8 Let the constants {Ks−1}S
s=1, {Ls}S

s=0, and τ be as in Lemma 7. Let

L :=
S∑

s=0

2−s Ls(1 + s)

4
.

Then

L ≤ √
6K/

√
n + 2 ∧

√
6

ε
,

and

4τ(1 + L/2) ≤ 62 K/
√

n + 24
√

6.

Proof of Lemma 8 We have

L = L0

4
+

S∑
s=1

2−s Ls(1 + s)

4

=
√

6K√
n

+
S∑

s=1

(1 + s)Ks−1√
6n

.

But

S∑
s=1

2−s(1 + s) ≤ 2

∞∫
0

2−x xdx = 2

(log 2)2 ,
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and since Hs = log(1 + Ns) ≥ log(2),

Ks−1 ≤ 2−s√n

( √
6

3(log(2))1/2 ∧ 1

ε

)
.

Hence,

L ≤
√

6K√
n

+ 2√
6(log 2)2

( √
6

3(log(2))1/2 ∧ 1

ε

)

=
√

6K√
n

+ 2

3(log 2)(5/2)
∧ 2

6(log 2)2

√
6

ε

≤
√

6K√
n

+ 2 ∧
√

6

ε
.

As τ = 3
√

6, we get

4τ(1 + L/2) ≤ 62 K/
√

n + 24
√

6.

��

7 Proof of Theorems 7 and 8

Proof of Theorem 7 This follows from Theorem 2, Theorem 6, and Lemma 7 with
ε = 0. ��
Proof of Theorem 8 Let t > 0 be arbitrary. Note that ĒS is as in Lemma 7. Apply the
bounds of Lemma 8 with ε = 3

√
t for the constant L defined there. Then

τ(4 + 2L) + 4ε + 4τ

[√
t + Lt

2

]

≤ 62 K/
√

n + 24
√

6 + 4ε + 12
√

6t + 2τ

√
6K t√

n
+ 2τ

√
6t

ε

= 62 K/
√

n + 62 K t/
√

n + 24
√

6 + 12
√

6t + 24
√

t

≤ 62 K/
√

n + 24
√

6 + 24
√

6

[√
t + L̃t

2

]
,

where

L̃ :=
√

6K

2
√

n
.
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Then by Theorem 4,

P

(
sup
g∈G

|νn(g)| ≥ min
S

ĒS + 62 K/
√

n + 24
√

6 + 24
√

6

[√
t + L̃t

2

]])
≤ 2 exp[−t]

and by Lemma 2

∥∥∥∥
([

sup
g∈G

|νn(g)|
]

−
[

min
S

ĒS + 62 K/
√

n + 24
√

6

])
+

∥∥∥∥
Ψ√

3L̃

≤ 72
√

2.

��
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