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Abstract We prove Edgeworth type expansions for distribution functions of sums
of free random variables under minimal moment conditions. The proofs are based on
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1 Introduction

In recent years a number of papers are devoted to limit theorems for the free convolu-
tions of probability measures. Free convolutions were introduced by Voiculescu [42,
43]. The key concept is the notion of freeness, which can be interpreted as a kind
of independence for noncommutative random variables. As in the classical probabi-
lity where the concept of independence gives rise to the classical convolution, the con-
cept of freeness leads to a binary operation on the probability measures, the free
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convolution. Many classical results in the theory of addition of independent random
variables have their counterparts in Free Probability, such as the Law of Large Num-
bers, the Central Limit Theorem, the Lévy–Khintchine formula and others. We refer
to Voiculescu et al. [44] and Hiai and Petz [27] for an introduction to these top-
ics. Bercovici and Pata [11] established the distributional behavior of sums of free
identically distributed random variables and described explicitly the correspondence
between limit laws for free and classical additive convolution. Using subordination
functions for the definition of the additive free convolution, Chistyakov and Götze
[22] generalized the results of Bercovici and Pata to the case of free non-identically
distributed random variables. It was shown that the parallelism found by Bercovici and
Pata holds in the general case of free non-identically distributed random variables (see
[13] as well). This approach allowed us to obtain estimates of the rate of convergence
of distribution functions of free sums. An analog of the Berry–Esseen inequality was
proved for the semicircle approximation in [22]. For related results see [28].

In this paper we obtain an analogue of Edgeworth expansion in the Central Limit
Theorem (CLT for short) for free identically distributed random variables, based on
the method of subordination functions. In addition we shall give a bound for the
remainder term in this expansion. In order to deduce this expansion we establish an
approximation of distribution of normalized sums of free random variables by the free
Meixner distributions. In classical probability asymptotic expansions have a different
form for lattice and non-lattice distributions. An interesting feature of our expansions
is that they have the same form for all distributions.

The paper is organized as follows. In Sect. 2 we formulate and discuss the main
results of the paper. In Sect. 3 and 4 we formulate auxiliary results. In Sect. 5 we
describe a formal expansion in the Free CLT and in Sects. 6 and 7 we prove Edgeworth’s
expansion in the CLT for free identically distributed random variables. Since the
proofs of Theorem 2.1 and Theorem 2.3 (see Sect. 2) are similar, we give a proof
of Theorem 2.3 in details in Sect. 5 and an outline of the proof of Theorem 2.1 in
Appendix.

2 Results

Denote by M the family of all Borel probability measures defined on the real line R.
Define onM the compositions laws denoted∗ and� as follows. Forμ, ν ∈ M, letμ∗ν
denote the classical convolution of μ and ν. In probabilistic terms,μ∗ν = L(X +Y ),
where X and Y are independent random variables with μ = L(X) and ν = L(Y ),
respectively. Let μ � ν be the free (additive) convolution of μ and ν introduced by
Voiculescu [42] for compactly supported measures. Free convolution was extended by
Maassen [32] to measures with finite variance and by Bercovici and Voiculescu [9] to
the class M. Thus,μ�ν = L(X +Y ), where X and Y are free random variables such
thatμ = L(X) and ν = L(Y ). There are free analogues of multiplicative convolutions
as well; these were first studied in Voiculescu [43].

Henceforth X, X1, X2, . . . stands for a sequence of identically distributed random
variables with distribution μ = L(X). Define
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Edgeworth expansions in free probability theory 109

mk :=
∫

R

uk μ(du) and βq :=
∫

R

|u|q μ(du),

where k = 0, 1, . . . and q > 0.
The classical CLT says that if X1, X2, . . . are independent and identically distrib-

uted random variables with a probability distribution μ such that m1 = 0 and m2 = 1,
then the distribution function Fn(x) of

Yn := X1 + X2 + · · · + Xn√
n

(2.1)

tends to the standard Gaussian law �(x) as n → ∞ uniformly in x .
A free analogue of this classical result was proved by Voiculescu [41] for bounded

free random variables and later generalized by Maassen [32] to unbounded ran-
dom variables. Other generalizations can be found in [10,11,22,28–30,37,47,48].
When the assumption of independence is replaced by the freeness of the non-
commutative random variables X1, X2, . . . , Xn , the limit distribution function of
(2.1) is the semicircle law w(x), i.e., the distribution function with the density
pw(x) := 1

2π

√
(4 − x2)+, x ∈ R, where a+ := max{a, 0} for a ∈ R. Denote by

μw the probability measure with the distribution function w(x).
Write ϕ(x) := 1√

2π
e−x2/2 and denote by Hm(x) := (−1)mex2/2 dm

dxm e−x2/2 the
Hermite polynomial of degree m.

Assume that the random variables X j are independent and have moments of all
orders. For the distribution function Fn(x) of Yn there exists a formal expansion in a
power series in 1/

√
n (see [26,38]):

Fn(x) = �(x)+ ϕ(x)
∞∑

p=1

Q p(x)

n p/2 , (2.2)

where

Q p(x) = −
∑

Hp+2s−1(x)
p∏

m=1

1

km !
( γm+2

(m + 2)!
)km

and γm is the cumulant of order m of random variable X . In the last equality the
summation on the right-hand side is carried out over all nonnegative integer solutions
(k1, . . . , km) of the equations

k1 + 2k2 + · · · + pkp = p and s = k1 + · · · + kp. (2.3)

Note that Q1(x) = −m3 H2(x)/6.
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In terms of characteristic functions (2.2) has the form

∞∫

−∞
eitx d Fn(x) = e−t2/2 +

∞∑
m=1

Pm(t)

nm/2 e−t2/2, (2.4)

where

∞∫

−∞
eitx d Qm(x) = Pm(t)e

−t2/2.

Esseen [25] proved that if the random variables X j are independent, non-lattice
distributed and β3 < ∞, then Fn(x) admits the following asymptotic expansion

Fn(x) = �(x)− m3

6
√

n
H2(x)ϕ(x)+ o(1/

√
n) (2.5)

which holds uniformly in x .
If the random variables X j are independent and are lattice distributed, that is they

take values in an arithmetic progression {a + kh; k = 0,±1, . . . } (h being maximal),
and β3 < ∞, then

Fn(x) = �(x)+ 1√
n
ϕ(x)

(
− m3

6
H2(x)+ hT

( x
√

n

h
− an

h

))
+ o(1/

√
n), (2.6)

uniformly in x , where T (x) := [x] − x + 1/2.
If absolute moments βk of order k > 3 exist, then generalizations of the asymp-

totic expansions (2.5) and (2.6) hold under additional conditions on the characteristic
function of X [38].

An analytical approach using subordination functions allowed us to give explicit
estimates for the rate of convergence of distribution functions of Yn in the case of free
random variables. We demonstrated this (see [22]) by proving a semicircle approxima-
tion theorem (an analogue of the Berry–Esseen inequality [38, p. 111]). In this paper
we shall establish Edgeworth expansion in the semicircle approximation theorem and
a complete analogue of the Berry–Esseen inequality for identically distributed free
random variables.

We now formulate the main results of the paper. As before we denote by Fn(x)
the distribution function of Yn where X j are free random variables with the same
distribution μ. Assume as well that X j have moments of arbitrary order and m1 =
0, m2 = 1. We denote by μn the distribution of Yn . Denote by Um(x) the Chebyshev
polynomial of the second kind of degree m, i. e.,

Um(x) = Um(cos θ) := sin(m + 1)θ

sin θ
, m = 1, 2, . . . .

It is easy to see U1(x) = 2x, U2(x) = 4x2 − 1, U3(x) = 4x(2x2 − 1).
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Edgeworth expansions in free probability theory 111

It turns out that there exists an analogue of the formal expansion (2.4) for Fn(x). To
formulate it we need the following notation. Define the Cauchy transform of μ ∈ M
by

Gμ(z) =
∫

R

μ(dx)

z − x
, z ∈ C

+, (2.7)

where C
+ denotes the open upper half of the complex plane. The formal expansion

has the form

Gμn (z) = Gμw(z)+
∞∑

k=1

Bk(Gμw(z))

nk/2 , (2.8)

where

Bk(z) =
∑

cp,m
z p

(1/z − z)m
(2.9)

with real coefficients cp,m which depend on the free cumulants α3, . . . , αk+2 and do
not depend on n. The free cumulants will be defined in Sect. 3, (3.8). Here we note
that α3 = m3 and α4 = m4 − 2. The summation on the right-hand side of (2.9) is
taken over a finite set of non-negative integer pairs (p,m). The coefficients cp,m can
be calculated explicitly. For the cases k = 1, 2 we have

B1(z) = α3
z3

1/z − z

and

B2(z) = (
α4 − α2

3

) z4

1/z − z
+ α2

3

( z5

(1/z − z)2
+ z2

(1/z − z)3

)
. (2.10)

Note that

B1(Gμw(z)) = α3√
z2 − 4

G3
μw
(z) = −α3

2∫

−2

1

z − x
d
(1

3
U2(x/2)pw(x)

)
, z ∈ C

+.

(2.11)

If α3 = 0, then

B2(Gμw(z)) = α4√
z2 − 4

G4
μw
(z) = −α4

2∫

−2

1

z − x
d
(1

4
U3(x/2)pw(x)

)
, z ∈ C

+.

(2.12)
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Now we can formulate a counterpart of Edgeworth expansion in the Free CLT. We
obtain this counterpart from the following results in which we establish an approxima-
tion of the measures μn by the free Meixner measures. Consider the three-parameter
family of probability measures {μa,b,d : a ∈ R, b < 1, d < 1} with the reciprocal
Cauchy transform

1

Gμa,b,d (z)
= a + 1

2

(
(1 + b)(z − a)+

√
(1 − b)2(z − a)2 − 4(1 − d)

)
, z ∈ C,

(2.13)

which we will call the free centered Meixner measures (i.e. with mean zero). In this
formula we choose the branch of the square root determined by the condition �z >
0 implies �(1/Gμa,b,d (z)) ≥ 0. These measures are counterparts of the classical
measures discovered by Meixner [36]. The free Meixner type measures occurred in
many places in the literature, see [3,17–19,31,35,39].

Assume that m4 < ∞,m1 = 0,m2 = 1 and denote

an := m3√
n
, bn := m4 − m2

3 − 1

n
, dn := m4 − m2

3

n
, n ∈ N. (2.14)

In the sequel we will use the free Meixner measures of the form μ0,0,0 = w,μan ,0,0
if β3 < ∞,m1 = 0,m2 = 1 and μan ,bn ,dn if m4 < ∞,m1 = 0,m2 = 1 and n > m4.

Recall that a probability measureμ is �-infinitely divisible if for every n ∈ N there
exists νn ∈ M such that μ = νn � νn � · · · � νn (n times).

Using the results of Saitoh and Yoshida [39], we will show in Sect. 4 that under
the assumptions β3 < ∞ and n ≥ m2

3 the free Meixner measure μan ,0,0 is absolute
continuous with a density of the form (4.1), where a = an, b = 0, d = 0, and μan ,0,0
is �-infinitely divisible. Under the assumptions m4 < ∞ and n ≥ 3m4 the free
Meixner measure μan ,bn ,dn is absolute continuous with a density of the form (4.1),
where a = an, b = bn, d = dn , and μan ,bn ,dn is �-infinitely divisible.

We now introduce some further notations. Assume that βq < ∞ for some q ≥ 2.
Introduce the Lyapunov fractions

Lqn := βq

n(q−2)/2
and let ρq(μ, t) :=

∫

|u|>t

|u|q μ(du), t > 0. (2.15)

Write

q1 := min{q, 3}, q2 := min{q, 4}, q3 := min{q, 5}.

Then denote, for n ∈ N,

ηqs(n) := inf
0<ε≤10−1/2

gqns(ε), where gqns(ε) := εs+2−qs + ρqs (μ, ε
√

n)

βqs

ε−qs

(2.16)
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Edgeworth expansions in free probability theory 113

provided that βq < ∞, q ≥ s + 1, for s = 1, 2, 3, respectively. It is easy to see that
0 < ηqs(n) ≤ 101+s/2 + 1 for s + 1 ≤ qs ≤ s + 2 and ηqs(n) → 0 monotonically as
n → ∞ if s + 1 ≤ qs < s + 2, and ηqs(n) ≥ 1, n ∈ N, if qs = s + 2.

By agreement the symbols c, c1, c2, . . . and c(μ), c1(μ), c2(μ), . . . shall denote
absolute positive constants and positive constants depending on μ only, respectively.
By c and c(μ)we denote generic constants in different (or even in the same) formulae.
The symbols c1, c2, . . . and c1(μ), c2(μ), . . . are applied for explicit constants.

Theorem 2.1 Assume that X j , j = 1, . . . , are free, βq < ∞ with some q ≥ 2 and
m1 = 0, m2 = 1. Then, for n ∈ N,

sup
x∈R

|Fn(x)− w(x)| ≤ c

{
ηq1(n)Lqn + n−1, if βq < ∞, 2 ≤ q < 3

L3n, if βq < ∞, q ≥ 3.
(2.17)

In the case m2 < ∞, Theorem 2.1 yields a type of Free CLT with the error bound

sup
x∈R

|Fn(x)− w(x)| ≤ c
(
ηq1(n)+ n−1

)
, n ∈ N.

Since ηq1(n) ≤ 103/2 + 1, n ∈ N, in the case βq < ∞, 2 ≤ q ≤ 3, we obtain from
(2.17) the complete analogue of the Berry–Esseen inequality as well.

Corollary 2.2 Assume that X j , j = 1, . . . , are free, βq < ∞ with 2 < q ≤ 3 and
m1 = 0, m2 = 1. Then, for n ∈ N,

sup
x∈R

|Fn(x)− w(x)| ≤ c Lqn . (2.18)

In the case β3 < ∞ the inequality (2.18) has the form

sup
x∈R

|Fn(x)− w(x)| ≤ c L3n, n ∈ N. (2.19)

The upper bound (2.19) sharpens previous results obtained by the authors [22] and
Kargin [28].

Theorem 2.1 and Corollary 2.2 are free analogues of Esseen’s inequality in classical
probability theory (see [38, pp. 112–120]).

Theorem 2.3 Assume that X j , j = 1, . . . , are free, βq < ∞ with some q ≥ 3 and
m1 = 0, m2 = 1. Then, for n ∈ N,

sup
x∈R

|Fn(x)− μan ,0,0((−∞, x))| ≤ c

{
ηq2(n)Lqn + L2

3n if βq < ∞, 3 ≤ q < 4

L4n if βq < ∞, q ≥ 4.

(2.20)
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Corollary 2.4 Under the assumptions of Theorem 2.3 the following expansion holds

Fn(x) = w(x)− 1

3
anU2(x/2)pw(x)+ ρn1(x), x ∈ R, (2.21)

where the remainder term ρn1(x) admits the bound, for x ∈ R, n ∈ N,

|ρn1(x)| ≤ c

{
ηq2(n)Lqn + L2

3n + |an|3/2 if βq < ∞, 3 ≤ q < 4

L4n + |an|3/2 if βq < ∞, q ≥ 4.
(2.22)

Note that in the case β3 < ∞ the estimate (2.22) yields the bound

|ρn1(x)| ≤ c
(
ηq2(n)+ L3n + |an|1/2

)
L3n, (2.23)

where ηq2(n) → 0 as n → ∞, and we obtain an analogue of Edgeworth expansion.
Since ηq2(n) ≤ 101, 3 ≤ q ≤ 4, n ∈ N, the results (2.21) and (2.22) again yield

the free Berry–Esseen inequality (2.19) as well.
In addition we obtain from Theorem 2.3 the following bounds.

Corollary 2.5 Under the assumptions of Theorem 2.3

sup
x∈R

|Fn(x)− μan ,0,0((−∞, x))| ≤ c Lqn for n ∈ N if βq < ∞, 3 ≤ q ≤ 4.

(2.24)

Before formulating the next result, denote by ςn, n > m4, a signed measure with
the density

pςn (x) := (e2
n(x − an)

2 − 1)pw(en(x − an)), x ∈ R, (2.25)

where en := (1 − bn)/
√

1 − dn . Denote by κn, n > m4, the signed measure κn :=
μan ,bn ,dn + 1

nςn . It is easy to see from results of Sect. 4 that κn is a probability measure
for n ≥ m4/c with some sufficiently small c.

Theorem 2.6 Assume that X j , j = 1, . . . , are free random variables, that βq < ∞
with some q ≥ 4 and that m1 = 0, m2 = 1. Then, for n > m4,

sup
x∈R

|Fn(x)− κn((−∞, x))| ≤ c

{
ηq3(n)Lqn + L3/2

4n if βq < ∞, 4 ≤ q < 5

L5n if βq < ∞, q ≥ 5.

(2.26)

Corollary 2.7 Assume that the assumptions of Theorem 2.6 are satisfied. Then

Fn(x+an) = w(x)

+
(
− a2

n

2
U1(x/2)+ an

3
(3−U2(x/2))− bn − a2

n − 1/n

4
U3(x/2)

)
pw(x)+ ρn2(x),

(2.27)
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for all real x, where

|ρn2(x)| ≤ c

{
ηq3(n)Lqn + L3/2

4n if βq < ∞, 4 ≤ q < 5

L5n if βq < ∞, q ≥ 5
for x ∈ R, n ∈ N.

(2.28)

If m3 = 0 this formula has the following simple form

Fn(x) = w(x)− m4 − 2

4n
U3(x/2)pw(x)+ ρn3(x), (2.29)

where ρn3(x) admits the bound (2.28).

If m3 
= 0, we obtain from (2.27) the following expansion for Fn(x):

Fn(x) = w(x)− 1

3
anU2(x/2)pw(x)

+
(a2

n

6
U1(x/2)− bn − a2

n − 1/n

4
U3(x/2)

)
pw(x)

+Q1(x, an)+ Q2(x, an, bn, 1/n)+ ρn4(x), x ∈ R,

where

Q1(x, an) = w(x − an)− w(x)+ an pw(x)

+an

3
(3 − U2(x/2))(pw(x − an)− pw(x)),

Q2(x, an, bn, 1/n) =
(a2

n

6
U1(x/2)− bn − a2

n − 1/n

4
U3(x/2)

)

×(pw(x − an)− pw(x))

and the function ρn4(x) admits the bound (2.28). The function Q1(x, an) is a function
of bounded variation and it is not difficult to verify that

1

c
|an|3/2 ≤ sup

x∈R

|Q1(x, an)| ≤ c|an|3/2 and

1

c
|an|3/2 ≤ ||Q1(x, an)||T V ≤ c|an|3/2,

(2.30)

with some c ≥ 1. This means that Q1(x, an) is actually of order n−3/4. We shall
see that Q1(x, an) can not be cast by Taylor expansion around x into an expan-
sion in powers of n−1/2 like (2.27) in terms of pw(x) and the Chebyshev polynomi-
als which is continuous up to the boundary ±2 with finite total variation. Moreover
|Q2(x, an, bn, 1/n)| ≤ cL4n

√|an|, x ∈ R.
Indeed from the formal expansion of μn in (2.8) and (2.11) it follows that the first

two summands on the right-hand side of (2.8) are Cauchy transforms of the finite
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signed measure on the right-hand side of (2.21). Moreover, in the case m3 = 0 the first
three summands on the right-hand side of (2.8) are Cauchy transforms of the finite
signed measure on the right-hand side of (2.29). But in the case m3 
= 0 the third
summand on the right-hand side of (2.8) can not be a Cauchy transform of a signed
measure ζ which is finite on every bounded interval and

∫
R

|ζ(du)|/(1 + |u|) < ∞.
This will be proved in Sect. 4. Therefore, taking into account the formal expansion
(2.8), we can not expect an expansion of type (2.27) for the function Fn(x) without
shift.

Remark 2.8 The methods used in the proof of Theorems 2.3 and 2.6 still do not yield
a free analogue of Edgeworth asymptotic expansions under the assumption βq <

∞, q > 5, with a remainder term of order O
(
n−3/2−γ )

with γ > 0. This problem
remains open.

Remark 2.9 It is known, see for example [10,21], that there is semigroupμt ∈ M, t ≥
1, such that φμt (z) = tφμ1(z), where φμt (z) are Voiculesku transforms of the prob-
ability measures μt . For the definition of Voiculesku’s transform, see in Sect. 3. As
before let m1 = 0 and m2 = 1. Define a probability measure μ̂t in the following way:
μ̂t ((−∞, x)) = μ((−∞, x

√
t)), x ∈ R. Theorems 2.1, 2.3, 2.6 and their Corollaries

remain valid for μ̂t if the integers n are replaced by t ≥ 1. One can prove these results
exactly by the same proof.

Remark 2.10 Recall that, if the random variable X has density f , then the classical
entropy of a distribution of X is defined as h(X) = − ∫

R
f (x) log f (x) dx , provided

the positive part of the integral is finite. Thus we have h(X) ∈ [−∞,∞).
A much stronger statement than the classical CLT—the entropic central limit

theorem—indicates that, if for some n0, or equivalently, for all n ≥ n0, Yn from
(2.1) have absolutely continuous distributions with finite entropies h(Yn), then there
is convergence of the entropies, h(Yn) → h(Y ), as n → ∞, where Y is a standard
Gaussian random variable. This theorem is due to Barron [4]. Recently Bobkov et
al. [16] found the rate of convergence in the classical entropic CLT.

Let ν be a probability measure on R. The quantity

χ(ν) =
∫ ∫

R×R

log |x − y| ν(dx)ν(dy)+ 3

4
+ 1

2
log 2π,

called free entropy of ν, was introduced by Voiculescu in [45]. Free entropy χ behaves
like the classical entropy h. In particular, the free entropy is maximized by the standard
semicircle measure μw with the value χ(μw) = 1

2 log 2πe among all probability
measures with variance one, see [27,46]. Wang [48] has proved the free analogue of
Barron’s result.

It was proved in [5] that if the distributionμ of X1 is not a Dirac measure, then Fn(x)
is Lebesgue absolutely continuous when n ≥ c1(μ) is sufficiently large. Denote by
pn(x) the density of Fn(x). Our method allows to obtain an expansion for the density
pn(x) and yields an expansion in the entropic free CLT, see [23], Theorem 2.10 and
Corollaries 2.11–2.13, and [24], Theorem 2.1 and Corollaries 2.2–2.4. These results
will be published elsewhere.
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3 Auxiliary results

We need results about some classes of analytic functions (see [1], Section 3, and [2],
Section 6, §59).

The class N (Nevanlinna, R.) is the class of analytic functions f (z) : C
+ → {z :

�z ≥ 0}. For such functions there is the integral representation

f (z) = a + bz +
∫

R

1 + uz

u − z
τ(du)

= a + bz +
∫

R

( 1

u − z
− u

1 + u2

)
(1 + u2) τ (du), z ∈ C

+, (3.1)

where b ≥ 0, a ∈ R, and τ is a nonnegative finite measure. Moreover, a = � f (i) and
τ(R) = � f (i)− b. From this formula it follows that

f (z) = (b + o(1))z (3.2)

for z ∈ C
+ such that |�z|/�z stays bounded as |z| tends to infinity (in other words

z → ∞ nontangentially to R). Hence if b 
= 0, then f has a right inverse f (−1)

defined on the region

�α,β := {z ∈ C
+ : |�z| < α�z, �z > β}

for any α > 0 and some positive β = β( f, α).
A function f ∈ N admits the representation

f (z) =
∫

R

σ(du)

u − z
, z ∈ C

+, (3.3)

where σ is a finite nonnegative measure, if and only if supy≥1 |y f (iy)| < ∞.
For μ ∈ M, consider its Cauchy transform Gμ(z) (see (2.7)). The measure μ can

be recovered from Gμ(z) as the weak limit of the measures

μy(dx) = − 1

π
�Gμ(x + iy) dx, x ∈ R, y > 0,

as y ↓ 0. If the function �Gμ(z) is continuous at x ∈ R, then the probability distri-
bution function Dμ(t) = μ((−∞, t)) is differentiable at x and its derivative is given
by

D′
μ(x) = −�Gμ(x)/π. (3.4)

This inversion formula allows to extract the density function of the measure μ from
its Cauchy transform.
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Following Maassen [32] and Bercovici and Voiculescu [9], we shall consider in the
following the reciprocal Cauchy transform

Fμ(z) = 1

Gμ(z)
. (3.5)

The corresponding class of reciprocal Cauchy transforms of allμ ∈ M will be denoted
by F . This class coincides with the subclass of Nevanlinna functions f for which
f (z)/z → 1 as z → ∞ nontangentially to R. Indeed, reciprocal Cauchy transforms
of probability measures have obviously such property. Let f ∈ N and f (z)/z → 1 as
z → ∞ nontangentially to R. Then, by (3.2), f admits the representation (3.1) with
b = 1. By (3.2) and (3.3), −1/ f (z) admits the representation (3.3) with σ ∈ M.

The functions f of the class F satisfy the inequality

� f (z) ≥ �z, z ∈ C
+. (3.6)

The function φμ(z) = F (−1)
μ (z) − z is called the Voiculescu transform of μ and

φμ(z) is an analytic function on �α,β with the property �φμ(z) ≤ 0 for z ∈ �α,β ,
where φμ(z) is defined. On the domain �α,β , where the functions φμ1(z), φμ2(z), and
φμ1�μ2(z) are defined, we have

φμ1�μ2(z) = φμ1(z)+ φμ2(z). (3.7)

This relation for the distribution μ1 � μ2 of X + Y , where X and Y are free random
variables, is due to Voiculescu [42] for the case of compactly supported measures.
The result was extended by Maassen [32] to measures with finite variance; the general
case was proved by Bercovici and Voiculescu [9].

Assume that βk < ∞ for some k ∈ N. Then

Gμ(z) = 1

z
+ m1

z2 + · · · + mk

zk+1 + o
( 1

zk+1

)
, z → ∞, z ∈ �α,1.

It follows from this relation (see for example [29]) that

φμ(z) = α1 + α2

z
+ · · · + αk

zk−1 + o
( 1

zk−1

)
, z → ∞, z ∈ �α,1. (3.8)

We call the coefficients αm, m = 1, . . . , k, the free cumulants of the probability
measureμ. It is easy to see thatα1 = m1, α2 = m2−m2

1, α3(μ) = m3−3m1m2+2m3
1.

In the case m1 = 0 and m2 = 1 we have α1 = 0, α2 = 1, α3 = m3 and α4 = m4 − 2.
If μ ∈ M has moments of any order, that is βk < ∞ for any k ∈ N, then there

exist cumulants αm, m = 1, . . . , and we can consider the formal power series

φμ(z) =
∞∑

m=1

αm

zm−1 . (3.9)
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In addition φμ(z) satisfies (3.8) for any fixed k ∈ N. Ifμ has a bounded support, φμ(z)
is an analytic function on the domain |z| > R with some R > 0 and the series (3.9)
converges absolutely and uniformly for such z.

Voiculescu [45] showed for compactly supported probability measures that there
exist unique functions Z1, Z2 ∈ F such that Gμ1�μ2(z) = Gμ1(Z1(z)) =
Gμ2(Z2(z)) for all z ∈ C

+. Using Speicher’s combinatorial approach [40] to freeness,
Biane [15] proved this result in the general case.

Chistyakov and Götze [21], Bercovici and Belinschi [6], Belinschi [7], proved,
using complex analytic methods, that there exist unique functions Z1(z) and Z2(z) in
the class F such that, for z ∈ C

+,

z = Z1(z)+ Z2(z)− Fμ1(Z1(z)) and Fμ1(Z1(z)) = Fμ2(Z2(z)). (3.10)

The function Fμ1(Z1(z)) belongs again to the class F and there existsμ ∈ M such that
Fμ1(Z1(z)) = Fμ(z), where Fμ(z) = 1/Gμ(z) and Gμ(z) is the Cauchy transform as
in (2.7). We can define the additive free convolution in the following wayμ1�μ2 := μ.
The measure μ depends on μ1 and μ2 only. The relation (3.7) follows immediately
from (3.10) and we see that this definition coincides with the Voiculescu, Bercovici,
Maassen definition. Hence we have the equivalence of a “characteristic function”
approach and a probabilistic approach to the definition of the additive free convolution.

Specializing to μ1 = μ2 = · · · = μn = μ write μ1 � · · · � μn = μn�. The
relation (3.10) admits the following consequence (see for example [21]).

Proposition 3.1 Let μ ∈ M. There exists a unique function Z ∈ F such that

z = nZ(z)− (n − 1)Fμ(Z(z)), z ∈ C
+, (3.11)

and Fμn� (z) = Fμ(Z(z)).

The next lemma was proved in [21].

Lemma 3.2 Let g : C
+ → C

− be analytic with

lim inf
y→+∞

|g(iy)|
y

= 0. (3.12)

Then the function f : C
+ → C defined via z �→ z + g(z) takes every value in C

+
precisely once. The inverse f (−1) : C

+ → C
+ thus defined is in the class F .

This lemma generalizes a result of Maassen [32] (see Lemma 2.3). Maassen proved
Lemma 3.2 under the additional restriction |g(z)| ≤ c(g)/�z for z ∈ C

+, where c(g)
is a constant depending on g.

Using the representation (3.1) for Fμ(z) we obtain

Fμ(z) = z + �Fμ(i)+
∫

R

(1 + uz) τ (du)

u − z
, z ∈ C

+, (3.13)
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where τ is a nonnegative measure such that τ(R) = �Fμ(i)− 1. Denote z = x + iy,
where x, y ∈ R. We see that, for �z > 0,

�
(

nz − (n − 1)Fμ(z)
)

= y
(

1 − (n − 1)Iμ(x, y)
)
,

where Iμ(x, y) :=
∫

R

(1 + u2) τ (du)

(u − x)2 + y2 .

For every real fixed x , consider the equation

y
(

1 − (n − 1)Iμ(x, y)
)

= 0, y > 0. (3.14)

Since y �→ Iμ(x, y), y > 0, is positive and monotone, and decreases to 0 as y → ∞,
it is clear that the Eq. (3.14) has at most one positive solution. If such a solution exists,
denote it by yn(x). Note that (3.14) does not have a solution y > 0 for any given x ∈ R

if and only if Iμ(x, 0) ≤ 1/(n −1). Consider the set S := {x ∈ R : Iμ(x, 0) ≤ 1/(n −
1)}. We put yn(x) = 0 for x ∈ S. By Fatou’s lemma, Iμ(x0, 0) ≤ lim infx→x0 Iμ(x, 0)
for any given x0 ∈ R, hence the set S is closed. Therefore R\ S is the union of finitely
or countably many intervals (xk, xk+1), xk < xk+1. The function yn(x) is continuous
on the interval (xk, xk+1). Since the set {z ∈ C

+ : n�z − (n − 1)�Fμ(z) > 0} is
open, we see that yn(x) → 0 if x ↓ xk and x ↑ xk+1. Hence the curve γn given by the
equation z = x + iyn(x), x ∈ R, is continuous and simple.

Consider the open domain Dn := {z = x + iy, x, y ∈ R : y > yn(x)}.
Lemma 3.3 Let Z ∈ F be the solution of the equation (3.11). The function Z(z)
maps C

+ conformally onto Dn. Moreover the function Z(z), z ∈ C
+, is continuous

up to the real axis and it establishes a homeomorphism between the real axis and the
curve γn.

Proof We obtain from (3.11) the formula

Z (−1)(z) = nz − (n − 1)Fμ(z) (3.15)

for z ∈ �α,β with some α, β > 0. By this formula we may continue the func-
tion Z (−1)(z) as an analytic function to C

+. Using the representation (3.13) for
the function Fμ(z), we note that Z (−1)(z) = z + g(z), z ∈ C

+, where g(z) is
analytic on C

+ and satisfies the assumptions of Lemma 3.2. By Lemma 3.2, we
conclude that the function Z (−1)(z) takes every value in C

+ precisely once. More-
over, as it is easy to see, Z (−1)(Dn) = C

+ and �Z (−1)(x + iyn(x)) → ±∞ as
x → ±∞. The inverse Z(z) gives us the conformal mapping of C

+ onto Dn . By
the well-known results of the theory of analytic functions on boundary behavior of
conformal mapping (see [34], Section 2, no. 8, pp. 66–77), Z(z) is continuous up
to the real axis and it establishes a homeomorphism between the real axis and the
curve γn .
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Lemma 3.4 Let μ be a probability measure such that m1 = 0,m2 = 1. Assume that
ρ2(μ,

√
(n − 1)/8) ≤ 1/10 for some positive integer n ≥ 103. Then the following

inequality holds

|Z(z)| ≥ √
(n − 1)/8, z ∈ C

+, (3.16)

where Z ∈ F is the solution of the Eq. (3.11).

Proof It is enough to prove that if |�Z(z)| < √
(n − 1)/8 then it follows that

|�Z(z)| ≥ √
(n − 1)/8. Since the values of Z(z) lay in the domain Dn , it is enough

to prove the corresponding statement for the solutions of (3.14).
Write

Fμ(z) =
(1

z
+ r(z)

z2

)−1
, z ∈ C

+ where r(z) :=
∫

R

u2 μ(du)

z − u
. (3.17)

It is obvious that |r(z)| ≤ 1/y, z ∈ C
+. Rewrite (3.14) in the form

y
(

1 + (n − 1)
(

1 − 1

y
�Fμ(z)

))
= 0.

Let us show that

yn(x) >
√
(n − 1)/8 for |x | ≤ √

(n − 1)/8. (3.18)

In order to prove this inequality we shall establish that

(n − 1)
(

1 − 1

y
�Fμ(z)

)
< −1 (3.19)

for |z| = 1
2

√
(n − 1) and |x | ≤ √

(n − 1)/8. Indeed, since the function

−Iμ(x, y) = (n − 1)
(

1 − 1

y
�Fμ(z)

)
, y > 0,

is negative and monotone, and increases to 0 as y → ∞, (3.18) follows from (3.19).
We have, for the z considered above, Fμ(z) = z − r(z)+ r1(z), where r1(z) admits

the upper bound |r1(z)| ≤ 2(|z|y2)−1 ≤ 32/(n − 1)3/2.
Using the previous formula, we easily obtain the relation, for the same z,

− Iμ(x, y) = (n − 1)
�r(z)

y
+ r2(z) = −(n − 1)

∫

R

u2 μ(du)

(u − x)2 + y2 + r2(z),

(3.20)
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where r2(z) admits the upper bound |r2(z)| ≤ 32
√

8/(n − 1) < 1/6. Hence we have,
for the same z,

−Iμ(x, y) ≤ −(n − 1)
∫

[−y,y]

u2 μ(du)

(u − x)2 + y2 + r2(z)

≤ −n − 1

3|z|2 (1 − ρ2(μ, y))+ r2(z)

≤ −n − 1

3|z|2 (1 − ρ2(μ,
√
(n − 1)/8))+ r2(z)

< −6

5
+ 1

6
< −1

and (3.19) is proved.
The assertion of the lemma follows immediately from (3.18). ��
Denote by �(κ ′, κ ′′) the Kolmogorov distance between the finite signed measures

κ ′ and κ ′′ such that κ ′((−∞, x)) → 0 and κ ′′((−∞, x)) → 0 as x → −∞, i.e.,

�(κ ′, κ ′′) := sup
x∈R

|κ ′((−∞, x))− κ ′′((−∞, x))|.

We need the following result of Bercovici–Voiculescu [9].

Proposition 3.5 If μ,μ′, ν and ν′ are probability measures, then

�(μ� ν, μ′ � ν′) ≤ �(μ,μ′)+�(ν, ν′).

In addition the following proposition holds (see [38, p. 139]).

Proposition 3.6 If 3 ≤ m ≤ k, then the Lyapunov fractions Lmn and Lkn satisfy the
inequality: L1/(m−2)

mn ≤ L1/(k−2)
kn .

4 Properties of free Meixner measures

Saitoh and Yoshida [39] have proved that the absolutely continuous part of the free
Meixner measure μa,b,d , a ∈ R, b < 1, d < 1, is given by

√
4(1 − d)− (1 − b)2(x − a)2

2π f (x)
, (4.1)

when a − 2
√

1 − d/(1 − b) ≤ x ≤ a + 2
√

1 − d/(1 − b), where

f (x) := bx2 + a(1 − b)x + 1 − d;

the measure may have a discrete part μD in the following cases:
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1. if f (x) has two real roots y1 
= y2, then

μD := λ1δy1 + λ2δy2 , (4.2)

where

λ j := 1√
a2(1 − b)2 − 4b(1 − d)

(1 − d

|y j | − |y j |
)

+, j = 1, 2, (4.3)

2. if b = 0 and a 
= 0, then

μD :=
(

1 − 1 − d

a2

)
+δy, where y := −1 − d

a
. (4.4)

Recall that δy with y ∈ R is a Dirac measure concentrated at the point y.
Saitoh and Yoshida proved as well that for 0 ≤ b < 1 the (centered) free

Meixner measure μa,b,d is �-infinitely divisible. Note (see Bożejko and Bryc [17])
that μa,b,d = μw if a = b = d = 0; μa,b,d is the free Poisson type measure, which is
also known as Marchenko–Pastur measure [33], if b = d = 0 and a 
= 0, and μa,0,d
with a 
= 0, d 
= 0 is the shifted free Poisson type measure ; μa,b,d is the free Pascal
(negative binomial) type measure if b > 0 and a2(1 − b)2 > 4b(1 − d); μa,b,d is the
free gamma type measure if b > 0 and a2(1 − b)2 = 4b(1 − d); μa,b,d is the pure
free Meixner type measure if b > 0 and a2(1 − b)2 < 4b(1 − d).

Now assume that m4 < ∞,m1 = 0,m2 = 1 and n ≥ 3m4. By the well-known
moment inequality

∣∣∣∣∣∣
1 m1 m2

m1 m2 m3
m2 m3 m4

∣∣∣∣∣∣ ≥ 0

(see [1]), we conclude that m4 − 1 − m2
3 ≥ 0. Therefore the lower bounds bn ≥ 0 and

dn > 0 hold. In addition we have |an| ≤ 1/
√

3, bn ≤ 1/3 and dn ≤ 1/3. Consider the
measures μan ,bn ,dn . These measures may be the free Pascal, the free gamma and the
pure free Meixner type measures.

Let bn > 0. Note that the polynomial fn(x) = bn x2 + an(1 − bn)x + 1 − dn has
two real roots y1n and y2n in the case a2

n(1 − bn)
2 − 4bn(1 − dn) > 0 and these roots

have the same sign. By the relation

1

|y1| + 1

|y2| = |an|(1 − bn)

1 − dn
≤

√
3

2
< 1,

one can deduce the inequalities |y jn| ≥ 1, j = 1, 2. Using (4.2) and (4.3) we see that
the discrete part of μan ,bn ,dn is equal to zero. Let bn = 0 and an 
= 0. We see from
(4.4) that in this case the discrete part of μan ,bn ,dn is equal to zero as well.

Thus, in the considered case it follows from Saitoh and Yoshida’s results that the
probability measure μan ,bn ,dn is �-infinitely divisible and it is absolutely continuous
with a density of the form (4.1) where a = an, b = bn, d = dn .
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Assume that β3 < ∞,m1 = 0,m2 = 1 and n ≥ m2
3, i.e., |an| ≤ 1. In this case

the probability measure μan ,0,0 is absolute continuous with a density of the form (4.1)
where a = an, b = 0, d = 0. In addition, by Saitoh and Yoshida’s results, μan ,0,0 is
�-infinitely divisible.

5 Formal asymptotic expansion in the free CLT

In this section we deduce formula (2.8).
By Proposition 3.1, there exists Z(z) ∈ F such that (3.11) holds, and Fμn� (z) =

Fμ(Z(z)). Hence Fμn (z) = Fμ(
√

nSn(z))/
√

n, z ∈ C
+, where Sn(z) := Z(

√
nz)

/
√

n. Using the Voiculescu transform φμ(z) (see (3.7), this relation implies that

Sn(z) = Fμn (z)+ φμ(
√

nFμn (z))/
√

n

for z ∈ �α,β with some α, β > 0. On the other hand we conclude from (3.11) that

Sn(z) = z

n
+ n − 1

n
Fμn (z), z ∈ C

+.

The last two equations give us

Fμn (z)+ √
nφμ(

√
nFμn (z)) = z, z ∈ �α,β . (5.1)

Consider the function f (z) := z + √
nφμ(

√
nz), z ∈ �α,β ′ with some β ′ ≥ β, and

define the function

g(z) := 1

2

(
f (z)+

√
f 2(z)− 4

)
, z ∈ �α,β ′ , (5.2)

where we choose the branch of the square root by the condition �g(z) > 0 for
z ∈ �α,β ′ . It is easy to see that g(z) = z(1 + o(1)) as z → ∞ nontangentially to R.
In addition, by (5.1), g(z) satisfies the relation

g(Fμn (z))+ 1

g(Fμn (z))
= f (Fμn (z)) = z, z ∈ �α,β ′ . (5.3)

We deduce from (5.3) that

g(Fμn (z)) = 1

2

(
z +

√
z2 − 4

)
= Fμw(z), z ∈ �α,β ′ .

Recall that we denote by μw the semicircle measure.
Since the function g(z) has a right inverse g(−1)(z) in �α,β ′′ with some β ′′ ≥ β ′,

we have

Fμn (z) = g(−1)(Fμw(z)), z ∈ �α,β ′′′ , where β ′′′ ≥ β ′′. (5.4)
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Let μ ∈ M such that all moments of μ exist. In addition let m1 = 0 and m2 = 1.
Consider the formal power series in z

√
nφμ(

√
nz) :=

∞∑
k=1

αk+1

n(k−1)/2zk
, (5.5)

where αk, k = 1, 2, . . . , are free cumulants of the measure μ and the formal power
series of g:

g(z) = z +
∞∑

k=0

ak

zk
. (5.6)

In our case α1 = 0, α2 = 1, α3 = m3 and α4 = m4 − 2. Using (5.3) and (5.5), (5.6)
we obtain the following relation for the considered formal power series

z +
∞∑

k=0

ak

zk
+ 1

z

⎛
⎝1 −

∞∑
k=0

ak

zk+1 +
( ∞∑

k=0

ak

zk+1

)2

− . . .

⎞
⎠ = z +

∞∑
k=1

αk+1

n(k−1)/2zk
.

It follows from this relation that a0 = 0, a1 = 0 and

ak − ak−2 +
k−3∑
s=0

asak−s−3 − · · · + (−1)k−1ak−1
0 = αk+1

n(k−1)/2
, k = 2, 3, . . . .

(5.7)

We have from (5.7) the relations a2 = α3/
√

n, a3 = α4/n. In addition we obtain
from (5.7) by induction that

a2s = α3√
n

+ O
( 1

n3/2

)
, and a2s+1 = α4

n
− (s − 1)(s − 2)

2

α2
3

n
+ O

( 1

n3/2

)

(5.8)

as n → ∞ for s = 2, . . . .
Now consider the formal power series for the right inverse g(−1)(z)

g(−1)(z) = z +
∞∑

k=0

bk

zk
.

Rewrite the relation g(g(−1)(z)) = z in the form

z +
∞∑

m=0

bm

zm
+

∞∑
k=2

ak

zk
(

1 + ∑∞
m=0

bm
zm+1

)k
= z.
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Using the formula

1

(1 + w)k
=

∞∑
s=0

(−1)s
(

k − 1 + s

k − 1

)
ws,

we finally get

∞∑
m=0

bm

zm
+

∞∑
k=2

ak

zk

∞∑
s=0

(−1)s
(

k − 1 + s

k − 1

) ( ∞∑
m=0

bm

zm+1

)s

= 0.

We obtain from this equality that b0 = b1 = 0, b2 = −a2 and

bm + am +
m−1∑
k=2

ak

m−k∑
s=1

(−1)s
(

k − 1 + s

k − 1

)

×
∑

m1+···+ms=m−k−s

bm1 . . . bms = 0, m = 3, . . . . (5.9)

Moreover it is easy to deduce from (5.8) and (5.9) that

b2m = −a2m + O
( 1

n3/2

)
= − α3√

n
+ O

( 1

n3/2

)
(5.10)

and

b2m−1 = −a2m−1 + 2
m−2∑
s=1

sa2sb2m−2−2s + O
( 1

n3/2

)

= −α4

n
− (m − 2)(m + 1)

2

α2
3

n
+ O

( 1

n3/2

)
, m = 2, . . . . (5.11)

for m = 2, . . . . It remains to note that

1

g(−1)(z)
= 1

z + ∑∞
k=0

bk
zk

= 1

z

⎛
⎝1 −

∞∑
k=0

bk

zk+1 +
( ∞∑

k=0

bk

zk+1

)2

− . . .

⎞
⎠

and we can write the formal power series in 1/
√

n

1

g(−1)(z)
= 1

z
+

∞∑
k=1

Bk(1/z)

nk/2 .

Taking into account the relations (5.10) and (5.11), we easily conclude that
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B1(1/z) = α3

∞∑
m=2

1

z2m
= α3

1

z3 · 1

z − 1/z

and

B2(1/z) = α4

∞∑
m=2

1

z2m+1 + α2
3

⎛
⎝ ∞∑

m=2

(m − 2)(m + 1)

2

1

z2m+1 + 1

z3

( ∞∑
m=1

1

z2m

)2
⎞
⎠ .

Since

∞∑
m=2

m

z2m+1 = −1

2

( ∞∑
m=2

1

z2m

)′
= −1

2

( 1

z2(z2 − 1)

)′ = 1

z3(z2 − 1)
+ 1

z(z2 − 1)2
,

∞∑
m=2

m2

z2m+1 = −1

2

( ∞∑
m=2

m

z2m

)′
= 1

z3(z2 − 1)
+ 1

z(z2 − 1)2
+ 2z

(z2 − 1)3
,

we finally obtain

B2(1/z) =
(
α4 − α2

3

) 1

z4 · 1

z − 1/z
+ α2

3

(
1

z5
· 1

(z − 1/z)2
+ 1

z2 · 1

(z − 1/z)3

)
.

In view of (5.7) and (5.9), we see as well that Bk(z) are functions of the form

Bk(1/z) =
∑

cp,m
1

z p

1

(z − 1/z)m

with real coefficients cp,m which depend on the free cumulants α3, . . . , αk+2 and do
not depend on n. The summation is carried out over a finite set of non-negative integer
pairs (p,m). The coefficients cp,m can be calculated explicitly in the way described
above for the coefficients cp,m of the functions B1(1/z) and B2(1/z).

Hence we deduce from (5.4) the formal expansion

Gμn (z) = Gμw(z)+
∞∑

k=1

Bk(Gμw(z))

nk/2 . (5.12)

Using integration by parts, it is not difficult to verify that

B1(Gμw(z)) = α3√
z2 − 4

G3
μw
(z) = α3

2π

2∫

−2

x(x2 − 3)√
4 − x2

dx

z − x

= −α3

2∫

−2

1

z − x
d
(1

3
U2(x/2)pw(x)

)
, z ∈ C

+.

(5.13)
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On the other hand we see that ifα3 
= 0 then the function B2(Gμw(z)) is not the Cauchy
transform of some signed measure. Indeed, it is easy to see, using direct calculations,
that

B2(Gμw(z)) = α2
3

(z2 − 4)3/2
+ g(z), z ∈ C

+, (5.14)

where the function g(z) is analytic on C
+ and there exists finite limit, for every

−∞ < t1 < t2 < +∞,

lim
y↓0

t2∫

t1

�g(x + iy) dx . (5.15)

In addition we note that

lim
y↓0

2∫

3/2

� 1

((x + iy)2 − 4)3/2
dx = ∞. (5.16)

Assume now that B2(Gμw(z)) is a Cauchy transform of a real-valued functionω(x)
of bounded variation on every bounded interval and such that

∞∫

−∞

|dω(x)|
1 + |x | < ∞.

Then, by Stieltjes–Perron’s inversion formula [1], we have

ω(t2 + 0)− ω(t2 − 0)

2
− ω(t1 + 0)− ω(t1 − 0)

2

= − lim
y↓0

1

π

t2∫

t1

�B2(Gμw(x + iy)) dx . (5.17)

Assuming in (5.17) t1 := 3/2 and t2 := 2, and taking into account (5.14)–(5.16), we
arrive at a contradiction. If α3(μ) = 0, then

B2(Gμw(z)) = α4√
z2 − 4

G4
μw
(z) = α4

2π

2∫

−2

x4 − 4x2 + 2√
4 − x2

dx

z − x

= −α4

2∫

−2

1

z − x
d
(1

4
U3(x/2)pw(x)

)
, z ∈ C

+.

(5.18)
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6 Edgeworth expansion in the free CLT (the case βq < ∞, q ≥ 3)

In this section we prove Theorem 2.3 and Corollary 2.4.

Proof of Theorem 2.3 Recall that we denote by μn the distribution of Yn in (2.1) for
the free random variables X j . Our first step is to reduce the problem to the case of
bounded free random variables.

6.1 Passage to measures with bounded supports

Let n ∈ N . Let εn ∈ (0, 10−1/2] be a point at which infimum of the function gqn2(ε)

from (2.16) is attained. This means that

ηq2(n) := ε
4−q2
n + ρq2(μ, εn

√
n)

βq2

ε
−q2
n .

Without loss of generality we assume that

ηq2(n)Lq2n + L3n < c1, (6.1)

where c1 > 0 is a sufficiently small absolute constant. By Lyapunov’s inequality
β3 ≥ m3/2

2 = 1, we obtain from (6.1) that n in this case has to be sufficiently large,
i.e., n ≥ c−2

1 β2
3 ≥ c−2

1 .
Consider free random variables X̃ , X̃1, X̃2, . . . with distribution μ̃ = L(X̃)

such that μ̃([−εn
√

n, εn
√

n]) = 1 and μ̃(B) = μ(B) for all Borel sets B ⊆
[−εn

√
n, εn

√
n] \ {0}. Denote by μ̃n distribution of the random variable Ỹn :=

(X̃1 + · · · + X̃n)/
√

n. In addition introduce random variables

X∗ := X̃ − An

Cn
, X∗

1 := X̃1 − An

Cn
, X∗

2 := X̃2 − An

Cn
, . . . and Y ∗

n := X∗
1 + · · · + X∗

n√
n

,

where

An := −
∫

|u|>εn
√

n

u μ(du) and Cn :=
⎛
⎜⎝1 −

∫

|u|>εn
√

n

u2 μ(du)

−
⎛
⎜⎝

∫

|u|>εn
√

n

u μ(du)

⎞
⎟⎠

2⎞
⎟⎠

1/2

.

Denote byμ∗ andμ∗
n the distributions of the random variables X∗ and Y ∗

n , respectively.
We denote by m∗

k and m̃k, k = 0, 1, . . . , the moments and byβ∗
k and β̃k, k = 0, 1, . . . ,

the absolute moments of the distributions μ∗ and μ̃, respectively. It is obvious that
m∗

1 = 0 and m∗
2 = 1. Using (6.1) we note that
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|An| ≤ ε
−(q2−1)
n n−(q2−1)/2ρq2(μ, εn

√
n) ≤ 1√

n
ηq2(n)Lq2n (6.2)

and

0 ≤ 1

Cn
− 1 ≤ 2(ρ2(μ, εn

√
n)+ A2

n) ≤ 3ηq2(n)Lq2n . (6.3)

By (6.1)–(6.3), we obtain

C−1
n (εn

√
n + |An|) < 1

3

√
n. (6.4)

It follows from (6.4) that the support of μ∗ is contained in [− 1
3

√
n, 1

3

√
n].

By (6.1)–(6.3), we easily deduce as well that

|m∗
3 − m3| ≤ C−3

n |m̃3 − m3|+(C−3
n − 1)|m3|+C−3

n (3|An|m̃2+3A2
n|m̃1|+|An|3)

≤ C−3
n |m̃3−m3|+4|m3|ηq2(n)Lq2n + 4√

n
ηq2(n)Lq2n

≤ C−3
n ε

−(q2−3)
n n−(q2−3)/2ρq2(μ, εn

√
n)+ 4

(
|m3| + 1√

n

)
ηq2(n)Lq2n

≤ 2
√

nηq2(n)Lq2n, (6.5)

and, using similar arguments,

β∗
3 ≤ C−3

n β̃3 + 4√
n
ηq2(n)Lq2n, m∗

4 ≤ C−4
n m̃4 + 5L3nηq2(n)Lq2n . (6.6)

Let T be a random variable with distribution μan ,0,0. Denote by μ̃an ,0,0 the distri-
bution of CnT + √

n An .
By the triangle inequality, we have

�(μn, μan ,0,0) ≤ �(μn, μ̃n)+�(μ̃n, μ̃an ,0,0)+�(μ̃an ,0,0, μan ,0,0). (6.7)

First we establish with the help of Proposition 3.5

�(μn, μ̃n) ≤ n�(μ, μ̃) ≤ nμ({|u| > εn
√

n}) ≤ ε
−q2
n n−(q2−2)/2ρq2(μ, εn

√
n)

≤ ηq2(n)Lq2n . (6.8)

Recalling the definition of μan ,0,0 (see (2.13) and (4.1), (4.4)), we note that μan ,0,0
is an absolutely continuous measure with the support on [an −2, an +2] and its density
has the form

√
4 − (x − an)2/(2π(1 + an x)), when x ∈ [an − 2, an + 2]. (6.9)
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This density does not exceed 1 on the set [an − 2, an + 2] and is equal to 0 outside of
this set, therefore we easily deduce the following upper bound, using (6.2) and (6.3),

�(μ̃an ,0,0, μan ,0,0) ≤ c
( 1

Cn
− 1 +

√
n An

Cn

)
≤ cηq2(n)Lq2n . (6.10)

Finally we note that �(μ̃n, μ̃an ,0,0) = �(μ∗
n, μan ,0,0). Our next main aim is to

estimate this quantity.
By Proposition 3.1, Gμ∗

n
(z) = 1/Fμ∗

n
(z), z ∈ C

+, where Fμ∗
n
(z) := Fμ∗(Z(

√
nz))

/
√

n. Here Z(z) ∈ F is the solution of the Eq. (3.11) with μ = μ∗.
Consider the functions

S(z) := 1

2

(
z +

√
z2 − 4

)
, Sn(z) := Z(

√
nz)/

√
n,

Sn1(z) := an + 1

2

(
z − an +

√
(z − an)2 − 4

)
, z ∈ C

+.

Note that 1/S(z) = Gμw(z), whereμw denotes the semicircle measure. Since Sn ∈ F ,
we saw in Sect. 3 that there exists μ̂n ∈ M such that 1/Sn(z) = Gμ̂n (z). In addition,
it is easy to see, that 1/Sn1(z) = Gμan ,0,0

(z).
In order to estimate �(μ∗

n, μan ,0,0) we will apply the Stieltjes–Perron inversion
formula to the measures μ∗

n and μan ,0,0. For this we need further estimates for
|Gμ∗

n
(z)− Gμan ,0,0

(z)| on C
+.

6.2 The functional equation for the function Sn(z)

Using (2.7) with μ = μ∗, we write, for z ∈ C
+,

Z(z)Gμ∗(Z(z)) = 1 + 1

Z2(z)
+ 1

Z2(z)

∫

R

u3 μ∗(du)

Z(z)− u

= 1 + 1

Z2(z)
+ m∗

3

Z3(z)
+ 1

Z3(z)

∫

R

u4 μ∗(du)

Z(z)− u
. (6.11)

The Eq. (3.11) with μ = μ∗ may be rewritten as

Gμ∗(Z(z))
(

Z(z)− z
)

= (n − 1)(1 − Z(z)Gμ∗(Z(z))), z ∈ C
+. (6.12)

By (6.11) and the definition of Sn(z), we represent (6.12) in the form

(
1 + 1

nS2
n (z)

+ rn1(z)

nS2
n (z)

)
(Sn(z)− z) = −n − 1

n

1

Sn(z)

(
1 + m3 + rn2(z)√

nSn(z)

)
,

(6.13)
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for z ∈ C
+, where

rn1(z) :=
∫

R

u3 μ∗(du)

Z(
√

nz)− u
, rn2(z) :=

∫

R

u4 μ∗(du)

Z(
√

nz)− u
+ m∗

3 − m3. (6.14)

By (6.1) and (6.4), we obtain from Lemma 3.4 for μ = μ∗ the bound

|Z(√nz)| ≥ √
(n − 1)/8, z ∈ C

+. (6.15)

The functions rnj (z), j = 1, 2, are analytic on C
+ and with the help of the inequalities

(6.3)–(6.6) and (6.15) admit the estimates, for z ∈ C
+,

|rn1(z)| ≤
∫

|u|≤1
3
√

n

|u|3 μ∗(du)

||Z(√nz)| − |u|| ≤ 52β∗
3√

n
≤ 53√

n

(
β̃3+ 4√

n
ηq2(n)Lq2n

)
≤ 54L3n,

|rn2(z)| ≤
∫

|u|≤ 1
3
√

n

u4 μ∗(du)

||Z(√nz)| − |u|| + |m∗
3 − m3| ≤ 52m∗

4√
n

+ 2
√

nηq2(n)Lq2n

≤ 53m̃4√
n

+ 3
√

nηq2(n)Lq2n . (6.16)

We deduce from (6.13) the following relation

S3
n(z)− zS2

n (z)+ (1 + εn1(z))Sn(z)+ εn2(z) = 0, z ∈ C
+, (6.17)

where

εn1(z) := 1

n
rn1(z) and εn2(z) := m3√

n
+ rn3(z) := an + rn3(z) (6.18)

with

rn3(z) :=
(

1 − 1

n

)rn2(z)√
n

− z

n

(
1 + rn1(z)

)
− m3

n
√

n
.

6.3 Estimates of εn1(z) and εn2(z)

By (6.16), we obtain

|rn3(z)| ≤ 53m̃4

n
+ 3ηq2(n)Lq2n + |z|

n

(
1 + 54L3n

)
+ L3n

n
, z ∈ C

+. (6.19)
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Note that m̃4 ≤ βq2(ε
2
nn)(4−q2)/2. By (6.16), (6.19) and the last inequality, we have,

for z ∈ D1 := {z ∈ C
+ : 0 < �z ≤ 3, |�z| ≤ 4},

|εn1(z)| ≤ 54
L3n

n
<

1

10
, (6.20)

|rn3(z)| ≤ 53
βq2ηq2(n)

n(q2−2)/2
+ 3ηq2(n)Lq2n + 2|z| + L3n

n
≤ 56ηq2(n)Lq2n + 11

n
(6.21)

and

|εn2(z)| ≤ 56ηq2(n)Lq2n + 2L3n <
1

104 . (6.22)

6.4 Roots of the functional equation for Sn(z)

For every fixed z ∈ C
+, consider the cubic equation

P(z, w) := w3 − zw2 + (1 + εn1(z))w + εn2(z) = 0.

Denote roots of this equation by w j = w j (z), j = 1, 2, 3.
We shall show that for z ∈ D1 the equation P(z, w) = 0 has a root, sayw1 = w1(z),

such that

w1 = −an + rn4(z), (6.23)

where the quantity rn4(z) admits the following bound

|rn4(z)| < 102r, where r := ηq2(n)Lq2n + L2
3n . (6.24)

In addition |w j + an| ≥ 102r, j = 2, 3.
Indeed, introduce the polynomials

P1(w) := w3 − zw2 and P2(w) := (1 + εn1(z))w + εn2(z)

= (1 + εn1(z))(w + εn3(z)),

where εn3(z) := εn2(z)/(1+εn1(z)). They admit the following estimates on the circle
|w + an| = 102r

|P1(w)| ≤ |w|2(|w − z|) ≤ 2(|w + an|2 + a2
n)(|w + an| + |z + an|)

≤ 2(104r2 + a2
n)(r + 11/2) ≤ 12(104r2 + a2

n) ≤ 24 r (6.25)
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and

|P2(w)| = |1 + εn1(z)||w + εn3(z)| ≥ (1 − |εn1(z)|)|102r − |εn3(z)− an||.
(6.26)

Since, by (6.20), 1 − |εn1(z)| ≥ 9/10 and, by (6.20)–(6.22),

|εn3(z)− an| ≤ |rn3(z)| + 2|εn1(z)||εn2(z)| ≤ 57 r,

we see from (6.26) that |P2(w)| ≥ 36 r . This estimate and (6.25) gives us the inequality
|P1(w)| < |P2(w)| on the circle |w+ an| = 102r and the desired result follows from
Rouché’s theorem.

6.5 The remaining roots w2 and w3 of the Eq. (6.17)

Now we shall investigate the behavior of the roots w = w2(z) and w = w3(z). As
seen in Sect. 6.4 w2(z) 
= w1(z) and w3(z) 
= w1(z) for z ∈ D1. We shall construct
a set D2 ⊂ D1 where w2(z) 
= w3(z), z ∈ D2. Since P(z, w) = P3(z, w)(w − w1),
where

P3(z, w) := w2 − (z − w1)w + 1 + εn1(z)− w1(z − w1),

we see that w2 = w3 for z ∈ D1 such that

(z − w1)
2 − 4(1 + εn1(z)− w1(z − w1)) = 0. (6.27)

We conclude from this relation that z = ±2
√

1 + εn1(z)+ w2
1 − w1. Therefore, as

it is easy to see from (6.20) and (6.23), (6.24), the relation (6.27) does not hold for
z ∈ D2, where D2 := {z ∈ C : 0 < �z ≤ 3, |�z − an| ≤ 2 − h1} and h1 := c−1/6

1 r .
Hence the roots w1(z), w2(z) and w3(z) are distinct for z ∈ D2.
Now we see that the roots w2 and w3 have the form

w j := 1

2

(
z − w1 + (−1) j−1

√
g(z)

)
, j = 2, 3, (6.28)

where g(z) := (z −w1)
2 −4−4εn1(z)+4w1(z −w1) 
= 0 for z ∈ D2. In this formula

we choose the branch of the square satisfying
√

g(i) ∈ C
+.

Using (6.23), we rewrite (6.28) in the following way

w j := 1

2

(
z + an + (−1) j−1

√
(z + an)2 − 4 − 4an(z + an)+ rn5(z)

)
− 1

2
rn4(z)

= an + 1

2

(
z − an + (−1) j−1

√
(z − an)2 − 4 − 4a2

n + rn5(z)
)

− 1

2
rn4(z),

(6.29)

123



Edgeworth expansions in free probability theory 135

j = 1, 2, where

rn5(z) := −4εn1(z)+ (2z + 6an − 3rn4(z))rn4(z).

From (6.20) and (6.24) it follows that the following estimate holds, for z ∈ D2,

|rn5(z)| ≤ 4|εn1(z)| + (2|z| + 6|an| + 3|rn4(z)|)|rn4(z)|
≤ 216

L3n

n
+ (10 + 6L3n + 300r)102r ≤ 1100 r. (6.30)

Using (6.30) we obtain

∣∣∣ 4a2
n − rn5(z)

(z − an)2 − 4

∣∣∣ ≤ 1104 r

h1
≤ 1104 c1/6

1 ≤ 1

10
, z ∈ D2. (6.31)

By power series expansion of (1 + z)1/2, |z| < 1, we obtain, for z ∈ D2,

√
(z − an)2 − 4 − 4a2

n + rn5(z) =
√
(z − an)2 − 4 + rn6(z)√

(z − an)2 − 4
,

where |rn6(z)| ≤ 1004r . By this relation, we see that, for z ∈ D2,

w j = an + 1

2

(
(z − an)+ (−1) j−1

√
(z − an)2 − 4

)

−1

2
rn4(z)+ (−1) j−1

2

rn6(z)√
(z − an)2 − 4

, j = 2, 3. (6.32)

Let us show that Sn(z) = w3(z) for z ∈ D2. By (6.1), (6.23) and (6.24), we see
that |w1(z)| ≤ 1/6 for z ∈ D2. Since Sn(z) satisfies the Eq. (6.17) and, by (6.15),
|Sn(z)| ≥ 1/3 for all z ∈ C

+, we have Sn(z) = w2(z) or Sn(z) = w3(z) for z ∈ D2.
First assume that, for every z0 ∈ D2, there exists r0 = r0(z0) > 0 such that

Sn(z) = w j (z) for all z ∈ D2 ∩ {|z − z0| < r0}, where j = 2 or j = 3. From
this assumption it follows that Sn(z) = w j (z) for all z ∈ D2, where j = 2 or j = 3.
Furthermore, it is not difficult to see that the rootsw2(z) andw3(z) admit the estimates:
|w2(z)| ≤ 4/3 for z ∈ D2, and |w3(z)| ≥ 3/2 for z ∈ D2 and �z ≥ 2. The analytic
function Sn(z) ∈ F , by (3.6), satisfies the inequality �Sn(z) ≥ �z. Hence, under the
above assumption Sn(z) = w3(z) for all z ∈ D2.

Now assume that the above assumption does not hold. Then there exists a point
z0 ∈ D2 such that, for any r0 > 0, there exist points z′ ∈ D2 and z′′ ∈ D2 in
the disc |z − z0| < r0 such that Sn(z′) = w2(z′) and Sn(z′′) = w3(z′′). Let for
definiteness Sn(z0) = w2(z0). By this assumption, there exists a sequence {zk}∞k=1 such
that zk → z0 and Sn(zk) = w3(zk). Therefore we have w2(z0) = limzk→z0 w3(zk).
Using (6.32), rewrite this relation in the form
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an + 1

2

(
z0 − an −

√
(z0 − an)2 − 4

)
− 1

2

(
rn4(z0)+ rn6(z0)√

(z0 − an)2 − 4

)

=an + 1

2

(
z0 − an +

√
(z0 − an)2 − 4

)
+ 1

2
lim

zk→z0

(
rn4(zk)− rn6(zk)√

(zk − an)2 − 4

)
.

(6.33)

From (6.33) we easily conclude with r as in (6.24)

c−1/12
1

√
r ≤ |

√
(z0 − an)2 − 4| ≤ 1004

(
c1/12

1

√
r + r

)
,

a contradiction for sufficiently small c1 > 0. Hence, the first assumption holds only
and Sn(z) = w3(z), z ∈ D2.

Denote by B1 the set [−2 + h1 + an, 2 − h1 + an]. Recall that h1 = c−1/6
1 r (see

the definition of the set D2).

6.6 Estimate of the integral
∫

B1
|Gμan ,0,0

(x + iε)− Gμ∗
n
(x + iε)| dx for 0 < ε ≤ 1

We obtain an estimate of this integral, using the inequality

∫

B1

|Gμan ,0,0
(x + iε)− Gμ∗

n
(x + iε)| dx ≤

∫

B1

|Gμan ,0,0
(x + iε)− Gμ̂n (x + iε)| dx

+
∫

B1

|Gμ̂n (x + iε)− Gμ∗
n
(x + iε)| dx .

(6.34)

Therefore we need to evaluate the functions

Gμan ,0,0
(z)− Gμ̂n (z) and Gμ̂n (z)− Gμ∗

n
(z) (6.35)

for z ∈ D2.
For z ∈ D2, using the formula (6.29) with j = 3 for Sn(z), we write

Gμ̂n (z)− Gμan ,0,0
(z) = 1

Sn(z)
− 1

Sn1(z)
= Sn1(z)− Sn(z)

Sn1(z)Sn(z)

= 1

2Sn1(z)Sn(z)

(
rn4(z)

+ 4a2
n − rn5(z)√

(z − an)2 − 4 + √
(z − an)2 − 4 − 4a2

n + rn5(z)

)
.

(6.36)
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By (6.31), we have, for z ∈ D2,

∣∣∣∣
√
(z − an)2 − 4 +

√
(z − an)2 − 4 − 4a2

n + rn5(z)

∣∣∣∣
=

∣∣∣∣
√
(z − an)2 − 4||1 +

√
1 − (4a2

n − rn5(z))/((z − an)2 − 4)

∣∣∣∣
≥

∣∣∣√(z − an)2 − 4
∣∣∣ . (6.37)

In addition, we see from (6.15) that |Sn(z)| ≥ 1/3 for z ∈ C
+. The same estimate

obviously holds for |Sn1(z)|.
Therefore we can conclude from (6.36) and (6.37) that

∫

B1

∣∣∣Gμ̂n (x + iε)− Gμan ,0,0
(x + iε)

∣∣∣ dx =
∫

B1

∣∣∣ 1

Sn(x + iε)
− 1

Sn1(x + iε)

∣∣∣ dx

≤ 9

2

∫

B1

(
|rn4(x + iε)| + 4a2

n + |rn5(x + iε)|
|√(x − an + iε)2 − 4|

)
dx (6.38)

for 0 < ε ≤ 1.
From (6.24) it follows at once that

∫

B1

|rn4(x + iε)| dx ≤ 4 · 102r, ε ∈ (0, 1]. (6.39)

From (6.30) we conclude that, for the same ε,

∫

B1

4a2
n + |rn5(x + iε)|

|√(x − an + iε)2 − 4| dx ≤ 1104 r
∫

B1

dx√
4 − (x − an)2

≤ 4416 r. (6.40)

It follows from (6.38)–(6.40) that

∫

B1

∣∣∣Gμ̂n (x + iε)− Gμan ,0,0
(x + iε)

∣∣∣ dx ≤ 3 · 104r, ε ∈ (0, 1]. (6.41)

Now we conclude from (6.11) that

Gμ∗
n
(z)− Gμ̂n (z) = rn7(z)

Sn(z)
, z ∈ C

+, (6.42)

where

rn7(z) := 1

nS2
n (z)

+ rn1(z)

nS2
n (z)

. (6.43)
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Since |Sn(z)| ≥ 1/3 for z ∈ C
+, we see from (6.16) that

|rn7(z)| ≤ 9(1 + 54L3n)

n
, z ∈ D2. (6.44)

Therefore, we deduce from (6.42) and (6.44) the upper bound

∫

B1

|Gμ∗
n
(x + iε)− Gμ̂n (x + iε)| dx ≤

∫

B1

|rn7(x + iε)|
|Sn(x + iε)| dx ≤ 2 · 102

n
, ε ∈ (0, 1].

(6.45)

From (6.34), (6.41) and (6.45) we finally obtain

∫

B1

|Gμan ,0,0
(x + iε)− Gμ∗

n
(x + iε)| dx ≤ 4 · 104 r, ε ∈ (0, 1]. (6.46)

6.7 Application of the Stieltjes–Perron inversion formula

By (6.9), we have the relation

∫

B1

pμan ,0,0
(x) dx = 1 −

⎛
⎜⎝

∫

[2−h1+an ,2+an ]
+

∫

[−2+an ,−2+h1+an ]

⎞
⎟⎠

√
4 − (x − an)2

2π(1 + an x)
dx

≥ 1 − h3/2
1 . (6.47)

From (6.46) and (6.47) we conclude, using the Stieltjes–Perron inversion formula,

μ∗
n(B1) ≥ 1 − (4 · 104 + c−1/4

1 r1/2) r ≥ 1 − (4 · 104 + c1/4
1 ) r

≥ 1 − (4 · 104 + 1) r. (6.48)

Finally we deduce from (6.46)–(6.48) and the Stieltjes–Perron inversion formula that

�(μ∗
n, μan ,0,0) ≤ c r = c

(
ηq2(n)Lq2n + L2

3n

)
. (6.49)

6.8 Completion of the proof of Theorem 2.3

The statement of the theorem follows immediately from (6.7), (6.8), (6.10) and (6.49).
��
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Proof of Corollary 2.4 It is easy to see that the assertion of Corollary 2.4 follows from
Theorem 2.3 and from the following simple formula, for x ∈ R and n ∈ N,

μan ,0,0((−∞, x))− μw((−∞, x)) = − m3

3
√

n
(x2 − 1)pw(x)+ cθ

( |m3|√
n

)3/2
.

Proof of Corollary 2.5 The assertion of Corollary 2.5 follows immediately from
(2.20) and Proposition 3.6. ��

7 Edgeworth expansion in free CLT (the case βq < ∞, q ≥ 4)

In this section we prove Theorem 2.6 and Corollary 2.7. The proof of the theorem
is similar to the proof of Theorem 2.3 but with some essential technical differences.
Therefore we describe in detail those arguments which differ from the proof of The-
orem 2.3 and omit arguments which directly repeat the arguments of Sect. 6. We
preserve all notations of Sect. 6. Denote as well

Sn2(z) :=an + 1

2

((
1 + bn

)
(z − an)+

√(
1 − bn

)2
(z − an)2 − 4

(
1 − dn

))
, z ∈ C

+,

where an, bn and dn are defined in Sect. 2. The function Sn2(z) ∈ F and 1/Sn2(z) =
Gμan ,bn ,dn

(z), where μan ,bn ,dn is the free Meixner measure with the parameters an, bn

and dn , see (2.14).
The proof of Theorem 2.6 will be given in Sections 7.1–7.9. First we proceed to

study the following:

7.1 The passage to measures with bounded supports

Let n ∈ N . Let εn ∈ (0, 10−1/2] be a point at which the infimum of the function
gqn3(ε) in (2.16) is attained. This means that

ηq3(n) := ε
5−q3
n + ρq3(μ, εn

√
n)

βq3

ε
−q3
n . (7.1)

Using this parameter εn , we define free random variables X̃ , X̃1, X̃2, . . . and
X∗, X∗

1, X∗
2, . . . in the same way as in Sect. 6. We define probability measures

μ̃n, μ
∗, μ∗

n in the same way as well.
Without loss of generality we assume that

ηq3(n)Lq3n + L4n < c2, (7.2)

where c2 > 0 is a sufficiently small absolute constant. From (7.2) it follows that n
is sufficiently large n > c−1

2 m4 ≥ c−1
2 . Here and in the sequel we use Lyapunov’s

inequality 1 = m1/2
2 ≤ β

1/3
3 ≤ m1/4

4 .
Now we repeat the arguments of Sect. 6.1.
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Using (7.2) we note that

|An| ≤ ε
−(q3−1)
n n−(q3−1)/2ρq3(μ, εn

√
n) ≤ 1√

n
ηq3(n)Lq3n (7.3)

and

0 ≤ 1

Cn
− 1 ≤ 2(ρ2(μ, εn

√
n)+ A2

n) ≤ 3ηq3(n)Lq3n . (7.4)

By (7.3) and (7.4), we see that (6.4) holds and the support of μ∗ is contained in
[− 1

3

√
n, 1

3

√
n].

Recalling (6.5) and (6.6), we easily deduce, by (7.2)–(7.4), that

|m∗
3 − m3| ≤ 2

√
nηq3(n)Lq3n,

|m∗
4 − m4|

≤ C−4
n |m̃4 − m4| + (C−4

n − 1)m4 + C−4
n (4|An||m̃3|

+6A2
nm̃2 + 4|An|3|m̃1| + A4

n)

≤ C−4
n |m̃4 − m4| + 5m4ηq3(n)Lq3n + 5|m̃3| + 1

n
ηq3(n)Lq3n

≤ C−4
n ε

−(q3−4)
n n−(q3−4)/2ρq3(μ, εn

√
n)+ 5m4

(
1 + 2

n

)
ηq3(n)Lq3n

≤ 2n ηq3(n)Lq3n (7.5)

and

β∗
5 ≤ C−5

n β̃5 + 6L4nηq3(n)Lq3n . (7.6)

By the triangle inequality we have

�(μn, κn) ≤ �(μn, μ̃n)+�(μ̃n, κ̃n)+�(κ̃n, κn), (7.7)

where, for x ∈ R,

κ̃n((−∞, x)) := μ̃an ,bn ,dn ((−∞, x))+ 1

n
ς̃n((−∞, x))

:= μan ,bn ,dn ((−∞, (x − √
n An)/Cn))+ 1

n
ςn((−∞, (x − √

n An)/Cn)).

Note that �(μ̃n, κ̃n) = �(μ∗
n, κn).

First we establish with the help of Proposition 3.5

�(μn, μ̃n) ≤ n�(μ, μ̃) ≤ nμ({|u| > εn
√

n}) ≤ ε
−q3
n n−(q3−2)/2ρq3(μ, εn

√
n)

≤ ηq3(n)Lq3n . (7.8)
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We saw in Sect. 4 that, for n ≥ 3m4, μan ,bn ,dn is an absolutely continuous measure
with support on the set B2 := [an − 2/en, an + 2/en] and density of the form

pμan ,bn ,dn
(x) :=

√
4(1 − dn)− (1 − bn)2(x − an)2

2π(bn x2 + an(1 − bn)x + 1 − dn)
, x ∈ B2. (7.9)

This density does not exceed 1 on the set B2 and is equal 0 outside of this set.
The signed measure ςn has density pςn , see (2.25), which does not exceed 1 by

modulus on the set B2 and is equal to zero outside of B2.
Therefore, in view of (7.2), a simple calculation shows that

�(κ̃n, κn) ≤ �(μ̃an ,bn ,dn , μan ,bn ,dn )+ 1

n
�(ς̃n, ςn) ≤ c

( 1

Cn
− 1 +

√
n An

Cn

)

≤ cε−(q3−1)
n n−(q3−2)/2ρq3(μ, εn

√
n) ≤ cηq3(n)Lq3n . (7.10)

Our next aim is to estimate the quantity�(μ∗
n, κn). In order to estimate�(μ∗

n, κn)

we need to apply the inversion formula toμ∗
n and κn . We shall now derive the necessary

estimates for |Gμ∗
n
(z)− Gκn (z)| on C

+.

7.2 The functional equation for Sn(z)

Using (2.7) with μ = μ∗, we write, for z ∈ C
+,

Z(z)Gμ∗(Z(z)) = 1 + 1

Z2(z)
+ m∗

3

Z3(z)
+ m∗

4

Z4(z)
+ 1

Z4(z)

∫

R

u5 μ∗(du)

Z(z)− u
.

(7.11)

By (7.11) and the definition of Sn(z), the Eq. (3.11) with μ = μ∗ may be rewritten as

(
1 + 1

nS2
n (z)

+ m∗
3

n3/2S3
n(z)

+ m∗
4 + ζn1(z)

n2S4
n(z)

)
(Sn(z)− z)

= −n − 1

n

1

Sn(z)

(
1 + m∗

3√
nSn(z)

+ m∗
4 + ζn1(z)

nS2
n (z)

)
(7.12)

for z ∈ C
+, where ζn1(z) := ∫

R

u5 μ∗(du)
Z(

√
nz)−u

.

We deduce from (7.12) the following relation, for z ∈ C
+,

S5
n(z)− zS4

n(z)+ S3
n(z)+ ζn2(z)√

n
S2

n (z)+ ζn3(z)

n
Sn(z)− ζn4(z)z

n2 = 0, (7.13)

where ζn2(z) := m∗
3 − z/

√
n, ζn3(z)(z) := m∗

4 + ζn1(z)− zm∗
3/

√
n and ζn4(z)(z) :=

m∗
4 + ζn1(z). Note that the functions ζnj (z), j = 1, 2, 3, 4, are analytic on C

+.

123



142 G. P. Chistyakov, F. Götze

7.3 Estimates of the functions ζnj (z), j = 1, 2, 3 on the set D1

From (7.2) and (6.4) we deduce, using Lemma 3.4, that (6.15) holds. Therefore, in
view of (7.4) and (7.6), we arrive at the estimate

|ζn1(z)| ≤
∫

|u|≤ 1
3
√

n

|u|5 μ∗(du)

||Z(√nz)| − |u|| ≤ 52β∗
5√

n
≤ 53

β̃5√
n

+ 312
L4,n√

n
ηq3(n)Lq3n

≤ 53
βq3(ε

2
nn)(5−q3)/2

√
n

+ 312
L4n√

n
ηq3(n)Lq3n

≤ 54 n ηq3(n)Lq3n, z ∈ C
+. (7.14)

For z ∈ D1, by (7.5) and (7.14), we get the bounds

|ζn2(z)|√
n

≤ 2(L3n + ηq3(n)Lq3n),

|ζn3(z)|
n

≤ m∗
4 + |ζn1(z)|

n
+ 5|m∗

3|
n3/2 ≤ 2L4n + 56 ηq3(n)Lq3n

|ζn4(z)|
n

≤ m∗
4 + |ζn1(z)|

n
≤ L4n + 56 ηq3(n)Lq3n .

(7.15)

7.4 The roots of the functional Eq. (7.13) for Sn(z)

For every fixed z ∈ C
+ consider the equation

Q(z, w) := w5 − zw4 + w3 + ζn2(z)√
n
w2 + ζn3(z)

n
w − ζn4(z)z

n2 = 0. (7.16)

Denote the roots of the Eq. (7.16) by w j = w j (z), j = 1, . . . , 5. Let us show
that for every fixed z ∈ D1 the equation Q(z, w) = 0 has three roots, say w j =
w j (z), j = 1, 2, 3, such that

|w j | < r ′ := 15(L4n + ηq3(n)Lq3n)
1/2, j = 1, 2, 3, (7.17)

two roots, say w j , j = 4, 5, such that |w j | ≥ r ′ for j = 4, 5. Recalling (7.2) we see
that the bound r ′ < 1

100 holds.
Consider the polynomials

Q1(z, w) := w5 − zw4 + ζ2(z)√
n
w2 + ζn3(z)

n
w − ζn4(z)z

n2 and Q2(w) := w3.

The following estimates hold on the circle |w| = r ′ for z ∈ D1: |w|5 = (r ′)2|w|3 ≤
10−4|w|3, and |zw4| = |z|r ′|w|3 ≤ 1

20 |w|3. Since n r ′ ≥ 15
√

m4 ≥ 15m2 = 15 and,
by Proposition 3.6, r ′ ≥ 15L3n , we have as well, using (7.15),
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|ζn2(z)|√
n

|w2| = |ζn2(z)|√
n

1

r ′ |w|3 ≤ |w|3
5
,

|ζn3(z)|
n

|w| = |ζn3(z)|
n

1

(r ′)2
|w|3 ≤ 4|w|3

15
,

|ζn4(z)|
n2 |z| = |ζn4(z)|

n2

|z|
(r ′)3

|w|3 ≤ 4|z|
15nr ′ |w|3 ≤ 4|w|3

45
.

We see from the last five inequalities that |Q1(z, w)| ≤ 8
9 |Q2(w)| on the circle |w| =

r ′. Therefore, by Rouché’s theorem, we obtain that the polynomial Q1(z, w)+ Q2(w)

has only three roots which are less than r ′ in modulus, as claimed.
Represent Q(z, w) in the form

Q(z, w) = (w2 + s1w + s2)(w
3 + g1w

2 + g2w + g3),

where w3 + g1w
2 + g2w+ g3 = (w−w1)(w−w2)(w−w3). From this formula we

derive the relations

s1 + g1 = −z, s2 + s1g1 + g2 = 1, s2g1 + s1g2 + g3 = ζn2(z)√
n
,

s2g2 + s1g3 = ζn3(z)

n
, s2g3 = −ζn4(z)z

n2 . (7.18)

By Vieta’s formulae and (7.17), note that

|g1| ≤ 3r ′, |g2| ≤ 3(r ′)2, |g3| ≤ (r ′)3. (7.19)

Now we obtain from (7.18) and (7.19) the following bounds, for z ∈ D1,

|s1| ≤ 5 + 3r ′, |1 − s2| ≤ 3r ′(4r ′ + 5) ≤ 16r ′ ≤ 1

2
. (7.20)

Then we conclude from (7.5), (7.15), (7.18)–(7.20) that, for the same z,

∣∣∣g2 − ζn4(z)

n

∣∣∣ ≤
∣∣∣g2 − ζn3(z)

n

∣∣∣ + |m∗
3||z|

n3/2 ≤ |s1|
|s2| |g3| + |s2 − 1|

|s2|
|ζn3(z)|

n
+ (r ′)3

≤ 11(r ′)3 + 8(r ′)3 + (r ′)3 = 20(r ′)3. (7.21)

Denote a∗
n := m∗

3/
√

n, ρ∗
n := L∗

4n − 1/n := (m∗
4 − 1)/n and ρn := (m4 − 1)/n.

By (7.5), it is easy to see that

|an − a∗
n | = |m3 − m∗

3|√
n

≤ 2ηq3(n)Lq3n and

|ρn − ρ∗
n | = |m4 − m∗

4|
n

≤ 2ηq3(n)Lq3n .

(7.22)

From the first three relations in (7.18) it follows that
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g1 + zg2
1 = an + ρnz + ζn5(z), (7.23)

where

ζn5(z) := ζn1(z)z

n
+

(
g2 − ζn4(z)

n

)
z − g3

1 + 2g1g2 − g3 − (an − a∗
n)− (ρn − ρ∗

n )z.

By (7.14), (7.19), (7.21) and (7.22), we get the following estimate, for z ∈ D1,

|ζn5(z)| ≤ |ζn1(z)z|
n

+
∣∣∣g2 − ζn4(z)

n

∣∣∣|z| + |g3
1 | + 2|g1g2| + |g3|

+|an − a∗
n | + |ρn − ρ∗

n |
≤ 274ηq3(n)Lq3n + 146(r ′)3 ≤ 8 · 105

(
ηq3(n)Lq3n + L3/2

4n

)
. (7.24)

Rewrite (7.23) in the form

g1(1 + anz) = an + ρnz + (an + ρnz)
( 1

1 + g1z
− 1

)
+ ang1z + ζn5(z)

1 + g1z
.

Taking into account (7.19), (7.24) and Proposition 3.6 this relation leads us to the
bound, for z ∈ D1,

|g1 − an − (ρn − a2
n)z|

≤ |a3
n z2|

|1 + anz| + |anρnz2|
|1 + anz| + |ang2

1 z2|
|1 + anz||1 + g1z|

+ |ρng1z2|
|1 + anz||1 + g1z| + |ζn5(z)|

|1 + anz||1 + g1z|
≤ 50L3

3n + 50L3n L4n + 500L3n(r
′)2 + 150L4nr ′ + 16 · 105

(
ηq3(n)Lq3n + L3/2

4n

)

≤ 18 · 105
(
ηq3(n)Lq3n + L3/2

4n

)
. (7.25)

To find the roots w4 and w5, we need to solve the equation w2 + s1w + s2 = 0.
Using (7.18), we have, for j = 4, 5,

w j = 1

2

(
− s1 + (−1) j

√
s2

1 − 4s2

)

= 1

2

(
z + g1 + (−1) j

√
(z + g1)2 − 4(1 + (z + g1)g1 − g2)

)

= 1

2

(
z + g1 + (−1) j

√
(z − g1)2 − 4 − 4(g2

1 − g2)
)

= 1

2
ζn6(z)+ an

+1

2

((
1 + bn

)
(z − an)+ (−1) j

√(
1 − bn

)2
(z − an)2 − 4

(
1 − dn

) + ζn7(z)
)
,

(7.26)
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where

ζn6(z) := g1 − an − bn(z − an),

ζn7(z) := −3ζ 2
n6(z)− 2ζn6(z)(4an + (1 + 3bn)(z − an))

+4(g2 − L4n)− 4bn(z − an)(2an + bn(z − an)). (7.27)

We choose the branch of the analytic square root according to the condition
�w4(i) ≥ 0. Note that the roots w4(z) and w5(z) are continuous functions in D1.

7.5 Estimates of the functions ζn6(z) and ζn7(z) on the set D1

We obtain, by (7.25),

|ζn6(z)| ≤ 18 · 105
(
ηq3(n)Lq3n + L3/2

4n

)
+ |anbn|

≤ (18 · 105 + 1)
(
ηq3(n)Lq3n + L3/2

4n

)
. (7.28)

By (7.14), (7.21) and (7.22), we have

|g2 − L4n| ≤ 56ηq3(n)Lq3n + 20(r ′)3 ≤ 105(ηq3(n)Lq3n + L3/2
4n ). (7.29)

Then, using (7.2), (7.28) and (7.29), we easily deduce from (7.27)

|ζn7(z)| ≤ 3|ζn6(z)|2 + 2|ζn6(z)|(4|an| + (1 + 3bn)(|z| + |an|))+ 4|g2 − L4n|
+4bn(|z| + |an|)(2|an| + bn(|z| + |an|))

≤ 3 · 107
(
ηq3(n)Lq3n + L3/2

4n

)
. (7.30)

7.6 The roots w4 and w5

We saw in Sect. 7.4 thatw4(z) 
= w j (z), z ∈ D1, for j = 1, 2, 3. Returning to (7.26),
it follows from (7.30) that w4(z) 
= w5(z) for z ∈ D3, where

D3 :=
{

z ∈ C : 0 < �z ≤ 3, |�z − an| ≤ 2

en
− h2

}

where en := (1 − bn)/
√

1 − dn and h2 := c−1/6
2

(
ηq3(n)Lq3n + L3/2

4n

)
.

Since the constant c2 > 0 is sufficiently small, we have, by (7.30), for z ∈ D3,

|ζn7(z)|/|((1 − bn)
2(z − an)

2 − 4(1 − dn)| ≤ 4 · 107c1/6
2 < 10−2. (7.31)
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Therefore, using power series expansion of (1 + z)1/2, |z| < 1, we obtain, for the
same z,

√
(1 − bn)2(z − an)2 − 4(1 − dn)+ ζn7(z) =

√
(1 − bn)2(z − an)2 − 4(1 − dn)

+ ζn8(z)√
(1 − bn)2(z − an)2 − 4(1 − dn)

,

where |ζn8(z)| ≤ 4 · 107
(
ηq3(n)Lq3n + L3/2

4n

)
. By this relation, we see that

w j (z) = an + 1

2

((
1 + bn

)
(z − an)+ (−1) j

√(
1 − bn

)2
(z − an)2 − 4

(
1 − dn

))

+1

2
ζn6(z)+ (−1) j

2

ζn8(z)√
(1 − bn)2(z − an)2 − 4(1 − dn)

,

j = 4, 5, (7.32)

for z ∈ D3.
Let us show that Sn(z) = w4(z) for z ∈ D3. By (7.2) and (7.17), we see that

|w j (z)| ≤ 1/6 for z ∈ D3. Since, in view of (6.15), |Sn(z)| ≥ 1/3 for all z ∈ C
+, we

have Sn(z) = w4(z) or Sn(z) = w5(z) for z ∈ D3.
Assume that, for every z0 ∈ D3, there exists r0 = r0(z0) > 0 such that Sn(z) =

w j (z) for all z ∈ D3 ∩ {|z − z0| < r}, where j = 4 or j = 5. From this assumption
it follows that Sn(z) = w j (z) for all z ∈ D3, where j = 4 or j = 5. By (3.6), we
have |Sn(2i)| > 1. In addition it follows from (7.17) and (7.26), (7.28), (7.30) that
|w4(2i)| > 1 and |w j (2i)| < 1, j = 1, 2, 3, 5. Hence in this case Sn(z) = w4(z) for
z ∈ D3.

If the above assumption is not true, there exists a point z0 ∈ D3 such that, for any
r0 > 0, there exist points z′ ∈ D3 and z′′ ∈ D3 from the disc |z − z0| < r0 such
that Sn(z′) = w4(z′) and Sn(z′′) = w5(z′′). Let for definiteness Sn(z0) = w5(z0). By
assumption there exists a sequence {zk}∞k=1 such that zk → z0 and Sn(zk) = w4(zk).
Therefore we have w5(z0) = limzk→z0 w4(zk). Rewrite this relation, using (7.32),

an + 1

2

((
1 + bn

)
(z0 − an)−

√(
1 − bn

)2
(z0 − an)2 − 4

(
1 − dn

))

+1

2

(
ζn6(z0)− ζn8(z0)√

(1 − bn)2(z0 − an)2 − 4(1 − dn)

)

= an + 1

2

((
1 + bn

)
(z0 − an)+

√(
1 − bn

)2
(z0 − an)2 − 4

(
1 − dn

))

+1

2
lim

zk→z0

(
ζn6(zk)+ ζn8(zk)√

(1 − bn)2(zk − an)2 − 4(1 − dn)

)
. (7.33)

From (7.33) we easily conclude
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c−1/12
2

√
ηq3(n)Lq3n + L3/2

4n ≤
∣∣∣∣
√(

1 − bn
)2
(z0 − an)2 − 4

(
1 − dn

)∣∣∣∣
≤ 4 · 107

√
ηq3(n)Lq3n + L3/2

4n

(
c1/12

2

+
√
ηq3(n)Lq3n + L3/2

4n

)
,

which leads to a contradiction for sufficiently small c2 > 0. Hence our assumption
holds and Sn(z) = w4(z), z ∈ D3.

Denote by B3 the set
[

− 2
en

+ h2 + an,
2
en

− h2 + an

]
.

7.7 Estimate of the integral
∫

B3

∣∣Gμ∗
n
(x + iε)− Gμan ,bn ,dn

(x + iε)− 1
n (Gμan ,bn ,dn

(x + iε))3
∣∣ dx for 0 < ε ≤ 1

We obtain an estimate of this integral, using the inequality

∫

B3

∣∣Gμ∗
n
(x + iε)− Gμan ,bn ,dn

(x + iε)− 1

n
(Gμan ,bn ,dn

(x + iε))3
∣∣ dx

≤
∫

B3

|Gμan ,bn ,dn
(x + iε)− Gμ̂n (x + iε)| dx

+
∫

B3

∣∣Gμ̂n (x + iε)− Gμ∗
n
(x + iε)− 1

n
(Gμan ,bn ,dn

(x + iε))3
∣∣ dx .

(7.34)

Therefore we need to evaluate the functions Gμan ,bn ,dn
(z) − Gμ̂n (z) and Gμ̂n (z) −

Gμ∗
n
(z)− 1

n (Gμan ,bn ,dn
(z))3 for z ∈ D3.

For z ∈ D3, using the formula (7.26) with j = 4 for Sn(z), we write

Sn2(z)Sn(z)
( 1

Sn(z)
− 1

Sn2(z)

)
= Sn2(z)− Sn(z) = −1

2
ζn6(z)

−1

2

ζn7(z)√
(1−bn)2(z−an)2−4(1−dn)+

√
(1−bn)2(z−an)2 − 4(1−dn)+ζn7(z)

.

(7.35)

Using (7.31) we get, for z ∈ D3,

∣∣∣√(1 − bn)2(z − an)2 − 4(1 − dn)+
√
(1 − bn)2(z − an)2 − 4(1 − dn)+ ζn7(z)

∣∣∣
=

∣∣∣√(1 − bn)2(z − an)2 − 4(1 − dn)

∣∣∣
∣∣∣1

+
√

1 + ζn7(z)/((1 − bn)2(z − an)2 − 4(1 − dn))

∣∣∣
≥ |

√
(1 − bn)2(z − an)2 − 4(1 − dn)|. (7.36)
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It is easy to see that the bound |Sn(z)| ≥ 1/3, z ∈ C
+, holds for Sn2(z) as well.

Therefore in the same way as in the proof of (6.39) and (6.40) we conclude from
(7.28), (7.30) and (7.35) that

∫

B3

∣∣∣Gμ̂n (x + iε)− Gμan ,bn ,dn
(x + iε)

∣∣∣ dx =
∫

B3

∣∣∣ 1

Sn(x + iε)
− 1

Sn2(x + iε)

∣∣∣ dx

≤ 9

2

∫

B2

(
|ζn6(x + iε)| + |ζn7(x + iε)|

|√(1 − bn)2(x − an + iε)2 − 4(1 − dn)|
)

dx

≤ c
(
ηq3(n)Lq3n + L3/2

4n

)
. (7.37)

Now we deduce from (6.11) with the probability measure μ∗, involving εn intro-
duced in (7.1), the relation

Gμ∗
n
(z)− Gμ̂n (z)− 1

nS3
n(z)

= rn1(z)

nS3
n(z)

, z ∈ C
+, (7.38)

where the function rn1(z) is defined in (6.14). Since (6.20) holds for rn1(z), we see
that

|rn1(z)|
n|S3

n(z)|
≤ 1458

L3n

n
, z ∈ D3. (7.39)

Since, for the same z,

∣∣∣ 1

S3
n(z)

− 1

S3
n2(z)

∣∣∣ ≤ 2
∣∣∣ 1

Sn(z)
− 1

Sn2(z)

∣∣∣
( 1

|Sn(z)|2 + 1

|Sn2(z)|2
)

≤ 36
∣∣∣ 1

Sn(z)
− 1

Sn2(z)

∣∣∣, (7.40)

we obtain, using (7.37)–(7.40) and Proposition 3.6, that, for 0 < ε ≤ 1,

∫

B3

∣∣∣Gμ∗
n
(x + iε)− Gμ̂n (x + iε)− 1

n
(Gμan ,bn ,dn

(x + iε))3
∣∣∣ dx

≤
∫

B3

∣∣∣Gμ∗
n
(x + iε)− Gμ̂n (x + iε)− 1

n
(Gμ̂n (x + iε))3

∣∣∣ dx

+1

n

∫

B3

∣∣∣(Gμan ,bn ,dn
(x + iε))3 − (Gμ̂n (x + iε))3

∣∣∣ dx

≤ c
(
ηq3(n)Lq3n + L3/2

4n

)
. (7.41)
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From (7.34), (7.37) and (7.41) we finally get, for 0 < ε ≤ 1,

∫

B3

∣∣Gμ∗
n
(x + iε)− Gμan ,bn ,dn

(x + iε)− 1

n
(Gμan ,bn ,dn

(x + iε))3
∣∣ dx

≤ c
(
ηq3(n)Lq3n + L3/2

4n

)
. (7.42)

7.8 Application of the Stieltjes–Perron inversion formula

Using (7.9), we have the relation

∫

B3

pμan ,bn ,dn
(x) dx ≥ 1 − h3/2

2 . (7.43)

where pμan ,bn ,dn
(x) denotes the density pμan ,bn ,dn

(x) of the measure μan ,bn ,dn It is not
difficult to verify that

(Gμan ,bn ,dn
(z))3 =

∫

R

ςn1(dx)

z − x
=

∫

R

pςn1(x) dx

z − x
, z ∈ C

+,

where

pςn1(x) := 1

8π

√
(4(1 − dn)− (1 − bn)2(x − an)2)+

×3((1 + bn)x + (1 − bn)an)
2 + (1 − bn)

2(x − an)
2 − 4(1 − dn)

(bn x2 + (1 − bn)an x + 1 − dn)3

for x ∈ B2 and pςn1(x) = 0 for x /∈ B2. Therefore we easily deduce the obvious upper
bounds

∣∣∣∣∣∣∣
∫

B3

pςn1(x) dx

∣∣∣∣∣∣∣
≤ ch3/2

2 ,

∫

R\B3

|pςn1(x)| dx ≤ ch3/2
2 and �(ςn1, ςn)

≤ c
(
|an| + L4n

)
. (7.44)

From (7.42)–(7.44) and the Stieltjes–Perron inversion formula we conclude that

μ∗
n(B3) ≥ 1 − c

(
ηq3(n)Lq3n + L3/2

4n

)
. (7.45)

We finally conclude from (7.42), (7.44), (7.45) and the Stieltjes–Perron inversion
formula that

�(μ∗
n, κn) ≤ c

(
ηq3(n)Lq3n + L3/2

4n

)
. (7.46)
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7.9 Completion of the proof of Theorem 2.6

The statement of the theorem follows immediately from (7.7), (7.8), (7.10), (7.46) and
Proposition 3.6. ��

Proof of Corollary 2.7 Recalling the definition of the density pμan ,bn ,dn
(x) of the mea-

sure μan ,bn ,dn for n ≥ c−1
2 m4, we see that

pμan ,bn ,dn
(x + an)

= 1

2π

√
(4(1 − dn)− (1 − bn)2x2)+(1 + dn − bn − an x − (bn − a2

n)(x
2 − 1))

+cθ(L4n + a2
n)

3/2, x ∈ R.

In addition we have, for x ∈ R,

1

2π

x∫

−∞

√
(4(1 − dn)− (1 − bn)2u2)+ du

= (1 − dn + bn)μw((−∞, x))+ (1

2
dn − bn

)
x

1

2π

√
(4 − x2)+ + c θL3/2

4n

and, for x ∈ (−ln, ln), where ln := max{2, 2/en},
∣∣∣∣
√
(4(1 − dn)− (1 − bn)2x2)+ −

√
(4 − x2)+

∣∣∣∣
≤ cL4n√

(4(1 − dn)− (1 − bn)2x2)+ + √
(4 − x2)+

.

Using these formulae and the following obvious relations

∫
x
√

4−x2 dx =−1

3
(4−x2)3/2 and

∫
(x2−1)

√
4−x2 dx = −1

4
x(4 − x2)3/2,

we obtain from (2.26), using some simple calculations, the representation (2.27). ��

Appendix 1: Proof of Theorem 2.1

In this Appendix we keep the notations of Sect. 6.

Passage to measures with bounded supports

Let n ∈ N . Let εn ∈ (0, 10−1/2] be a point at which the infimum of the function
gqn1(ε) from (2.16) is attained. This means that
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ηq1(n) := ε
3−q1
n + ρq1(μ, εn

√
n)

βq1

ε
−q1
n .

Using this parameter εn , we define free random variables X̃ , X̃1, X̃2, . . . and
X∗, X∗

1, X∗
2, . . . in the same way as in Sect. 5. We define probability measures

μ̃n, μ̃w = μ̃0,0,0, μ
∗, μ∗

n in the same way as well.
Without loss of generality we assume that

ηq1(n)Lq1n + 1/n < c3, (8.1)

where c3 > 0 is a sufficiently small absolute constant.
Using (8.1) we note that

|An| ≤ ε
−(q1−1)
n n−(q1−1)/2ρq1(μ, εn

√
n) ≤ 1√

n
ηq1(n)Lq1n (8.2)

and

0 ≤ 1

Cn
− 1 ≤ 2

(
ρ2(μ, εn

√
n)+ A2

n

)
≤ 3ηq1(n)Lq1n . (8.3)

By (8.1)–(8.3), we obtain that (6.4) holds and the support of μ∗ is contained in
[− 1

3

√
n, 1

3

√
n]. By (8.1)–(8.3), we easily deduce as well that

β∗
3 ≤ C−3

n β̃3 + 4√
n
ηq1(n)Lq1n . (8.4)

By the triangle inequality, we have

�(μn, μw) ≤ �(μn, μ̃n)+�(μ̃n, μ̃w)+�(μ̃w,μw). (8.5)

Furthermore, we have the following inequalities

�(μn, μ̃n) ≤ ε
−q1
n n−(q1−2)/2ρq1(μ, εn

√
n) ≤ ηq1(n)Lq1n,

�(μ̃w, μw) ≤ cε−(q1−1)
n n−(q1−2)/2ρq1(μ, εn

√
n) ≤ cηq1(n)Lq1n .

(8.6)

Our next aim is to estimate �(μ̃n, μ̃w) = �(μ∗
n, μw).

As in Sect. 6, let Z(z) ∈ F be the solution of the equation (3.11) with μ = μ∗.
Denote Sn(z) := Z(

√
nz)/

√
n.
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The functional equation for Sn(z)

Using the formula

Z(z)Gμ∗(Z(z)) = 1 + 1

Z2(z)
+ 1

Z2(z)

∫

R

u3 μ∗(du)

Z(z)− u
, (8.7)

and the Eq. (3.11) with μ = μ∗ we arrive at the following functional equation for
Sn(z)

S3
n(z)− zS2

n (z)+ (1 + rn(z))Sn(z)− (1 + rn(z))
z

n
= 0, z ∈ C

+, (8.8)

where rn(z) := ∫
R

u3 μ∗(du)
Z(

√
nz)−u

. From (8.1) and (6.4) we deduce, using Lemma 3.4, that

(6.15) holds. Therefore, in view of (8.4), we obtain

|rn(z)| ≤ 52β∗
3√

n
≤ 53

β̃3√
n

+ 208

n
ηq1(n)Lq1n ≤ 54 ηq1(n)Lq1n <

1

10
(8.9)

for z ∈ C
+. Note that we obtain the functional equation (8.8) from (6.17) replacing

εn1(z) by rn(z) and εn2(z) by −(1 + rn(z))z/n.

The roots of the functional equation for Sn(z)

For every fixed z ∈ C
+ consider the cubic equation

P(z, w) := w3 − zw2 + (1 + rn(z))w − (1 + rn(z))
z

n
= 0.

As in Sect. 6 denote the roots of this equation byw j = w j (z), j = 1, 2, 3. Repeating
the arguments of Sect. 6.4 we prove that

w1 = z

n
+ r̂n(z), where |r̂n(z)| < 103

n2 , (8.10)

and |w j − z/n| ≥ 103/n2, j = 2, 3, for z ∈ D1. Hence w1 
= w j for j = 2, 3 and
z ∈ D1.

As in Sect. 6.5 we obtain thatw2 
= w3 for z ∈ D4 := {z ∈ C : 0 < �z ≤ 3, |�z| ≤
2 − h3}, where h3 := c−1/6

3 (ηq1(n)Lq1n + 1/n). Hence the roots w1(z), w2(z) and
w3(z) are distinct for z ∈ D4. Moreover w1(z) satisfies, by (8.1) and (8.10), the
inequality

|w1(z)| ≤ 6/n, z ∈ D4. (8.11)
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Using the arguments of Sect. 6.5 we deduce the formula (6.28) for z ∈ D4 where
g(z) := (z − w1)

2 − 4 − 4rn(z) + 4w1(z − w1) 
= 0, z ∈ D4. Then we rewrite the
formula (6.28) as follows

w j := 1

2

(
z + (−1) j−1

√
z2 − 4 + r̃n(z)

)
− 1

2
w1(z), j = 1, 2, (8.12)

where r̃n(z) := 2zw1(z)− 3w2
1(z)− 4rn(z). By (8.9) and (8.11), this function admits

the bound, for z ∈ D4,

|r̃n(z)| ≤ 10|w1(z)| + 3|w1(z)|2 + 4|rn(z)| ≤ 280
(
ηq1(n)Lq1n + 1/n

)
. (8.13)

In the same way as in Sect. 6.5 we obtain that Sn(z) = w3(z), z ∈ D4. Denote
B4 := [−2 + h3, 2 − h3].

Estimate of the integral
∫

B4
|Gμw(x + iε)− Gμ∗

n
(x + iε)| dx for 0 < ε ≤ 1

We obtain an estimate of this integral, using the inequality

∫

B4

|Gμw(x + iε)− Gμ∗
n
(x + iε)| dx ≤

∫

B4

|Gμw(x + iε)− Gμ̂n (x + iε)| dx

+
∫

B4

|Gμ̂n (x + iε)− Gμ∗
n
(x + iε)| dx .

(8.14)

Evaluating the function Gμw(z)− Gμ̂n (z) for z ∈ D4 in the same way as in Sect. 6.6,
we arrive at the bound

∫

B4

|Gμw(x + iε)− Gμ̂n (x + iε)| dx ≤ c
(
ηq1(n)Lq1n + 1/n

)
. (8.15)

Now we conclude from (8.7) that

Gμ∗
n
(z)− Gμ̂n (z) = 1 + rn(z)

nS3
n(z)

, z ∈ C
+. (8.16)

Since |Sn(z)| ≥ 1/3 for z ∈ C
+, we see from (8.9) and (8.16) that

∫

B4

|Gμ∗
n
(x + iε)− Gμ̂n (x + iε)| dx ≤

∫

B4

1 + |rn(x + iε)|
n|Sn(x + iε)|3 dx

≤ 120

n
, ε ∈ (0, 1]. (8.17)
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From (8.14), (8.15) and (8.17) we finally obtain

∫

B4

|Gμw(x + iε)− Gμ∗
n
(x + iε)| dx ≤ c

(
ηq1(n)Lq1n + 1/n

)
, ε ∈ (0, 1].

(8.18)

Completion of the proof of Theorem 2.1

Note that
∫

B4

pμw(x) dx ≥ 1 − h3/2
3 . (8.19)

From (8.18) and (8.19) we deduce, using the Stieltjes–Perron inversion formula,

μ∗
n(B4) ≥ 1 − c

(
ηq1(n)Lq1n + 1/n

)
. (8.20)

Finally we deduce from (8.18)– (8.20) and the Stieltjes–Perron inversion formula that

�(μ∗
n, μw) ≤ c

(
ηq1(n)Lq1n + 1/n

)
. (8.21)

The statement of the theorem follows immediately from (8.5), (8.6) and (8.21). ��
Proof of Corollary 2.2 The inequality (2.18) follows immediately from (2.17) and the
Lyapunov inequality 1 = m1/2

2 ≤ β
1/q
q for q ≥ 2. ��

References

1. Akhiezer, N.I.: The Classical Moment Problem and Some Related Questions in Analysis. Hafner, New
York (1965)

2. Akhiezer, N.I., Glazman, I.M.: Theory of Linear Operators in Hilbert Space. Ungar, New York (1963)
3. Anshelevich, M.: Free martingale polynomials. J. Funct. Anal. 201, 228–261 (2003)
4. Barron, A.R.: Entropy and the central limit theorem. Ann. Probab. 14, 336–342 (1986)
5. Belinschi, S.T., Bercovici, H.: Atoms and regularity for measures in a partially defined free convolution

semigroup. Math. Z. 248, 665–674 (2004)
6. Belinschi, S.T., Bercovici, H.: A new approach to subordination results in free probability. J. Anal.

Math. 101, 357–365 (2007)
7. Belinschi, S.T.: The Lebesgue decomposition of the free additive convolution of two probability dis-

tributions. Probab. Theory Relat. Fields 142, 125–150 (2008)
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