
Probab. Theory Relat. Fields (2013) 156:535–580
DOI 10.1007/s00440-012-0435-2

Invariance principle for the random conductance model

S. Andres · M. T. Barlow · J.-D. Deuschel ·
B. M. Hambly

Received: 19 May 2011 / Revised: 13 May 2012 / Published online: 12 June 2012
© Springer-Verlag 2012

Abstract We study a continuous time random walk X in an environment of i.i.d.
random conductancesμe ∈ [0,∞) in Z

d . We assume that P(μe > 0) > pc, so that the
bonds with strictly positive conductances percolate, but make no other assumptions on
the law of theμe. We prove a quenched invariance principle for X , and obtain Green’s
functions bounds and an elliptic Harnack inequality.
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536 S. Andres et al.

1 Introduction

We consider the Euclidean lattice Z
d with d ≥ 2. Let Ed be the set of non oriented

nearest neighbour bonds: Ed = {e = {x, y} : x, y ∈ Z
d , |x − y| = 1}. The random

environment is given by i.i.d. random variables (μe, e ∈ Ed) on [0,∞), defined on a
probability space (�,P). We write μxy = μ{x,y} = μyx , and μxy = 0 if {x, y} �∈ Ed ,
and set

μx =
∑

y

μxy, P(x, y) = μxy

μx
. (1.1)

We will study continuous time random walks on Z
d which jump according to the

transitions P(x, y). There are two natural choices of this. The first X = (Xt , t ≥
0, Px

ω , x ∈ Z
d) (the constant speed random walk or CSRW) waits at x for an expo-

nential time with mean 1, while the second, Y = (Yt , t ≥ 0, Px
ω , x ∈ Z

d) (the variable
speed random walk or VSRW) waits at x for an exponential time with mean 1/μx .
Write LC and LV for their generators, given by:

LC f (x) = μ−1
x

∑

y

μxy( f (y)− f (x)),

LV f (x) =
∑

y

μxy( f (y)− f (x)).
(1.2)

If μx = 0 we write LC f (x) = LV f (x) = 0.
If μe = 0 then X never jumps across e. So if p+ = P(μe > 0) is less than

pc = pc(Ed), the critical probability for bond percolation on Z
d , then X and Y are

P-a.s. confined to a finite set. Thus it is very natural to assume that

P(μe > 0) > pc. (1.3)

We define O1 = {e : μe > 0}, and write C1 = C∞(O1) for the P almost surely unique
infinite connected supercritical cluster with open edges O1. Let

P1(·) = P(· |0 ∈ C1). (1.4)

This model, of a reversible (or symmetric) random walk in a random environment,
is known in the literature as the random conductance model or RCM. We are interested
in the P1 almost sure or quenched long range behavior, and in particular in obtaining
a quenched functional central limit theorem (QFCLT) or invariance principle for the
processes X and Y starting at 0. Our first main result is the following QFCLT. Let

X (ε)t = εXt/ε2 , Y (ε)t = εYt/ε2 , t ≥ 0; (1.5)

more generally, given any process (Vt , t ≥ 0)we define V (ε) in an analogous fashion.
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Invariance principle for the random conductance model 537

Theorem 1.1 Let d ≥ 2 and suppose that (μe, e ∈ Ed) are i.i.d., μe ≥ 0 P-a.s. and
P(μe > 0) > pc.

(a) Let Y be the VSRW with Y0 = 0. Then, P1-a.s. Y (ε) converges (under P0
ω) in

law to a Brownian motion on R
d with covariance matrix σ 2

V I , where σV > 0 is
non-random.

(b) Let X be the CSRW with X0 = 0. Then, P1-a.s. X (ε) converges (under P0
ω) in

law to a Brownian motion on R
d with covariance matrix σ 2

C I , where

σ 2
C =

{
σ 2

V /(E1μ0), if Eμe < ∞,

0, if Eμe = ∞.

If d ≥ 3 we also have the following bounds on the Green’s function of Y , defined
by:

gY (x, y) = E x
ω

∞∫

0

1(Ys=y)ds. (1.6)

(We remark that gY is also the Green’s function for X .)

Theorem 1.2 Let d ≥ 3.

(a) There exist constants δ, c1, . . . c4, depending only on d and the law of μe, and
r.v. Rx , x ∈ Z

d satisfying

P(Rx ≥ n|x ∈ C1) ≤ c1e−c2nδ , (1.7)

such that

c3

|x − y|d−2 ≤ gY (x, y) ≤ c4

|x − y|d−2 if |x − y| ≥ Rx ∧ Ry, x, y ∈ C1.

(1.8)

(b) There exists a constant C = �(d/2 − 1)(2πd/2σ 2
V P(0 ∈ C1))

−1 such that for
any ε > 0 and x ∈ Z

d there exists a P1-a.s. finite r.v. Nε,x such that on {x ∈ C1},
(1 − ε)C

|x − y|d−2 ≤ gY (x, y) ≤ (1 + ε)C

|x − y|d−2 for |x − y| > Nε,x (ω), y ∈ C1.

(1.9)

(c) For each x ∈ Z
d we have P–a.s. on {x ∈ C1},

lim
|y−x |→∞,y∈C1

|y − x |2−d gY (x, y) = C. (1.10)
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538 S. Andres et al.

(d) For each x ∈ Z
d we have

lim|y−x |→∞ |y − x |2−d
E(gY (x, y)|x, y ∈ C1) = C. (1.11)

The random conductance model has been studied by a number of different authors
under various restrictions on the law of μe. When Eμe < ∞ a weak FCLT was
obtained by [21] for general ergodic environments. To explain the difference between
this and the QFCLT, let T > 0 and F be a bounded continuous function on the Sko-
rohod space DT = D([0, T ],Rd). For ω ∈ {0 ∈ C∞(O1)} set 	ε = E0

ωF(Y (ε)), and
let 	0 = EB M F(σV W ), where (W, PB M ) is a Brownian motion started at 0. Then
the weak FCLT states that 	ε → 	0 in P1-probability, while the QFCLT states that
this convergence occurs P1-a.s.

Quenched results have already been derived for the RCM in the following settings:

1. Ifμe ∈ {0, 1} then this problem reduces to that of a random walk on (supercritical)
percolation clusters—see [2,31] for heat kernel bounds, [11,32,39] for a QFCLT,
and [5] for a local limit theorem.

2. In the uniformly elliptic case where

P(c−1 ≤ μe ≤ c) = 1

for some c ≥ 1, heat kernel bounds follow from the results in [20], and a QFCLT
is proved in [39] for i.i.d. (μe, e ∈ Ed). (See also [4] for an extension to ergodic
environments).

3. The case with conductances bounded from above

P(0 < μe ≤ 1) = 1 − P(μe = 0) > pc,

is treated in [12,14,33]. (The papers [12,14] consider a discrete time random
walk.) A QFCLT for the CSRW is proved in [14,33], with a strictly positive dif-
fusion constant σ 2

C . Further [12] shows that Gaussian upper heat kernel bounds
do not hold in general in this case for d ≥ 5 (see also [13] for d = 4).

4. The case when μe is bounded from below:

P(1 ≤ μe < ∞) = 1,

is studied in [4], and quenched heat kernels estimates for the VSRW, and a QFCLT
for both VSRW and CSRW are derived in the i.i.d. setting.

Diffusions in random environment with a generator Lω in divergence form:

Lω f (x) =
d∑

i, j=1

∂xi

(
ai, j (ω, x)∂x j f (x)), f ∈ C2(Rd),
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Invariance principle for the random conductance model 539

Fig. 1 a Trap of the first kind. b Trap of the second kind

where the matrix ai, j (ω, x) = ai, j (τxω, 0) and τx , x ∈ R
d , is an ergodic shift, have

similar behavior to the random conductance model. In particular, assuming uniform
ellipticity:

d∑

i, j=1

ξi ai, j (ω, x)ξ j ≥ ε
∑

i

ξ2
i ,

and bounded coefficients

|ai, j (ω, x)| ≤ C,

Gaussian estimates for the heat kernel are well known and QFCLT holds—see [35].
For unbounded coefficients under suitable higher moments: E|ai, j (x)|p < ∞, for
some p > d, a QFCLT has been shown using analytical tools in [24]. Note that this
result is quite different from ours since it holds for every ergodic environment, and
it is an interesting question whether we could also show QFCLT for the unbounded
general ergodic random conductance model under moment conditions.

The main difficulty in studying the general RCM is the possibility of ‘traps’, which
may be due to either edges with small positive conductance, or very large conductance.

For the first kind of trap, consider points x, y, z, with 0 < ε = μxy 	 1, and
μyz = O(1), and such that the only connection from {y, z} to the rest of C1 is through
x . Starting at y, both CSRW and VSRW will be trapped for a time O(ε−1) before they
hit x and move on into the rest of C1. However, if the processes start outside the trap
{y, z} then they are unlikely to enter it. (Except when d = 2 and very long time scales
are considered.)

The second kind of trap is associated with points x, y ∈ C1 with μxy = K 
 1,
and with μe = O(1) for all other bonds e with an endpoint in {x, y}. In this case
the CSRW will be trapped in the set {x, y} for time O(K ), but the VSRW will not
be trapped. (This explains why the VSRW has in general better properties than the
CSRW.)
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540 S. Andres et al.

It should be noted that, one cannot expect a FCLT for unbounded conductances
for a general ergodic environment: see Remark 6.6 of [4] for an example of a VSRW
which explodes in finite time.

While there is not a great difference between the CSRW and VSRW in case of
bounded conductances, in the situation when Eμe = ∞, the VSRW and CRSW do
have quite different long time behaviour. In particular due to the traps of the second
kind the limiting variance of the CSRW vanishes and it is therefore natural to ask
further about the behaviour of the CSRW. If the tail distribution P(μe > t) ∼ t−α
then [3] show that εαXt/ε2 converges to the ‘fractional kinetic’ motion with parameter
α (see [8–10,16] for a connection with aging phenomena).

Our proof of the QFCLT is in essence similar to the one given in [14] or [33],
however the presence of unbounded conductances introduces some new technical dif-
ficulties. Instead of the original VSRW Y on the cluster C∞(O1), we consider for
fixed K > 1 its trace Z K on the smaller cluster C∞(O2) resulting from the deletion
of “bad” conductances: ones which are either too small (e ∈ Ed with μe < 1/K ), too
large (e ∈ Ed with μe > K ), or adjacent to the previous ones. The process Z K is then
the time change of Y onto the set C∞(O2). Since we need the jump rate of Z K to be
bounded, it is necessary to delete not just the bonds e = {x, y} with μe > K , but also
all bonds with endpoints x or y.

The process Z K is again a symmetric process but with conductances which are
bounded from above, and also from below on any bond which is in O2. However it
can jump across holes of deleted connections. Using percolation estimates, the size of
these “holes” can be well controlled. This allows us to show that both process Y and
Z K are close to each other for large enough K . Moreover using a method of Grigoryan
(see [17,25,26]) we can derive Gaussian heat kernel estimates for Z K .

We obtain the QFCLT for the process Z K using the well known Kipnis-Varadhan
technique based on the environment viewed from the particle, and the method of the
‘corrector’ due to Kozlov [29]. We write

Z K
t (ω) = Mt (ω)+ χ

(
ω, Z K

t (ω)
)

where Mt is a martingale and χ : �× C∞(O2) −→ R
d is the corrector. The QFCLT

for the martingale part M (ε) is standard, while we use our heat kernel estimate to
control the corrector: for P1 almost all ω

lim
ε→0

εχ
(
ω, Z K

t/ε2

)
= 0 in P0

ω-probability.

The (quenched) heat kernel estimates also yield the tightness of both Z K ,(ε) and Y (ε).
When Eμe = ∞ the existence of the corrector for the process Y does not follow

from a simple projection argument. In [4], this problem was solved by first construct-
ing the corrector for the time discretized process. This agrees with the corrector of the
time continuous process—see [4, Remark 5.15]. In this paper we follow [14,33], and
construct the corrector via the projection argument for the trace process Z K , which
has bounded conductances. Once we have the corrector for Z K , we can obtain the
corrector for the original process Y using harmonic extension—see Remark 7.4.
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Invariance principle for the random conductance model 541

Our paper is organized as follows: in Sect. 2, we construct the different percolation
clusters, which are not necessarily of i.i.d. type, but with finite range dependence and
control their shape and size using the Liggett–Schonmann–Stacey coupling to i.i.d.
percolation, cf. [30]. The upper bound estimates play a crucial role in Sect. 4, for
the time changed process introduced in Sect. 3. The proof of the heat kernel upper
bound first follows the argument of [2] in its derivation of on-diagonal bounds, though
some care is needed in order to control the long range jumps of Z K . The off-diag-
onal estimate is based on an argument introduced by Grigoryan [26] for diffusions
on manifolds, and adapted to graphs in [17,25]. Although not explicitly needed for
our QFCLT, we also derive the corresponding lower bounds for the heat kernel of Z K

using a weighted Poincaré inequality, and the method of Fabes and Stroock [23]. Of
course due to irregularity of the environment one cannot expect uniform estimates, but
Theorem 4.10 below summarizes our heat kernels bounds, and shows that whenever
either time or distance is large enough, the standard Gaussian estimates are available.

Equipped with these heat kernel estimates, the QFCLT follows in Sect. 5 using the
corrector technique as in [11,14,32,33], while in Sect. 6 the invariance principle for
the original processes Y and X are derived via coupling to Z K and time change.

Finally in Sect. 7 we use the heat kernel bounds to obtain a parabolic Harnack
inequality, local limit theorem and Green’s function bounds for Z K . Using the fact
that harmonic functions for Y can be obtained from harmonic functions for Z by ‘filling
in the holes’, we obtain an elliptic Harnack inequality for Y , and prove Theorem 1.2.

We write c, c′, ci ,Ci to denote constants which will depend on the dimension d,
the law of (μe), and the large constant K chosen in Sect. 2—which can be chosen so
that it just depends on d and the law of μe.

2 Percolation estimates

Let Ed be the set of edges of Z
d . We write x ∼ y if {x, y} ∈ Ed . Given O ⊂ Ed ,

let C∞(O) denote the infinite connected component of the graph (Zd ,O), provided it
exists and is unique. (Otherwise we take C∞(O) = ∅.)

Now let μe = μxy, e = {x, y} ∈ Ed , be i.i.d. with μe ∈ [0,∞). We assume

P(μe > 0) = p1 > pc, (2.1)

where pc = pc(Z
d) is the critical probability for bond percolation in Z

d . Let

O1 = {e : μe > 0}, C1 = C∞(O1). (2.2)

We write O[p] for the edges of bond percolation with probability p in Z
d . Then O1

is equal in law to O[p1]. Also, given a subset I ⊂ [0,∞) let

OI = {e : μe ∈ I }. (2.3)

Now choose K < ∞ (large) and set

q = q(K ) = P(0 < μe < K −1)+ P(μe > K ). (2.4)
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542 S. Andres et al.

We will assume that q(K ) is small; initially we can suppose just that q(K ) < p1 − pc,
but we will need more than this later. We have that O[K −1,K ] ⊂ O1, C∞(O[K −1,K ]) ⊂
C∞(O1) = C1 and O[K −1,K ] is equal in law to O[p1 − q(K )]. Now let OR =
O(0,K −1)∪(K ,∞), and

OS = {e ∈ O1 : e ∩ e′ �= ∅ for some e′ ∈ OR}, (2.5)

O2 = O1 − OS . (2.6)

(We write e ∩ e′ for the set of vertices in both e and e′.) We write C2 = C∞(O2). We
will use the results of [30] to prove that if K is large enough then O2 stochastically
dominates a supercritical bond percolation process.

Remark 2.1 For our use of the set O2, it will be necessary that μe ∈ [K −1, K ] for
all e ∈ O2, and that no vertex in C2 should be adjacent to a bond e with μe > K .
Thus, while we had to exclude the edges e such that μe ∈ (0, K −1), we did not have
to exclude their neighbours. However, it is simpler to treat all the exceptional edges
(that is, with large and small conductivities) in the same fashion.

Proposition 2.2 Let p1 > pc. There exist positive constants c1, c2, δ1, depending
only on d, such that if q = q(K ) < c2 and p3 = p1(1−c1qδ1) then O2 stochastically
dominates O[p3].
Proof We will build on the same probability space (�,P) i.i.d. r.v. (μe), and sets of
edges

O3 ⊂ O2 ⊂ O1, (2.7)

such that O3
(d)=O[p3], and O1 and O2 are given by (2.2) and (2.6). Let q > 0. We

proceed in a number of steps. We write μ̂ for a generic random variable with the same
law as μe.

1. First, we define a set of edges O1
(d)=O[p1]. Let G = (Zd ,O1).

2. Next, we perform independent bond percolation with probability q/p1 on G, and
write OR for the set of edges we obtain: we have P(e ∈ OR) = q.

3. Conditional on the sets O1 and OR we define μe with the right conditional law.
Thus (μe) are independent, μe = 0 if e �∈ O1, and

P(μe ∈ ·|e ∈ O1 − OR) = P(μ̂ ∈ ·|μ̂ ∈ [K −1, K ]),

with an analogous definition for μe when e ∈ OR .
4. Define OS,O2 from OR via (2.5) and (2.6). Then

P(e ∈ O1 − OS|e ∈ O1) = (1 − q/p1)
4d−1.

5. We now work conditionally on the graph G. The bond percolation process O2 =
O1 − OS is finite range, so using [30, Theorem 1.3], provided q is small enough
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Invariance principle for the random conductance model 543

O1 − OS stochastically dominates an independent i.i.d. bond percolation process
with probability p′ = p′(q, d) ≥ 1 − c1qδ1 . So by coupling we can define a
percolation process O3 on the graph G, such that O3 ⊂ O2 and

P(e ∈ O3|e ∈ O1) = 1 − c1qδ1 , (2.8)

and for edges e1 . . . en ∈ Ed the events {ei ∈ O3} are independent conditional on
{ei ∈ O1, i = 1, . . . , n}.

It remains to verify that this construction has the required properties. It is clear that
(2.7) holds and that (μe) are independent. Also, by (2.8) we have P(e ∈ O3) = p3,

while the conditional independence of {ei ∈ O3} given O1 implies that O3
(d)=O[p3].

��

For the remainder of this section we fix a probability space (�,P) as constructed in
the Proposition above. We take p3 = p3(p1, q) to be as given in Proposition 2.2. We
choose q small enough so that p3 > pc. Therefore the infinite cluster C3 = C∞(O3)

exists P—a.s., and by (2.7) we have

C3 ⊂ C2 ⊂ C1. (2.9)

Note that while C1 and C3 have exactly the law of a supercritical percolation cluster,
in general C2 will not have this law. Write di = di (ω) for the graph metric in (Ci ,Oi ),
for i = 1, 2, 3, and Bi (x, r) = {y ∈ Ci : di (x, y) ≤ r} for balls in the di metric. We
use BE (x, r) to denote balls in the Euclidean metric.

As explained in the introduction, we will ultimately study a time change of the
VSRW Y on C2, and we now prove the properties of the cluster C2 that will be needed.
These properties hold for supercritical percolation clusters, and we will use the fact
that C2 is sandwiched between two supercritical clusters (with probabilities p1 and p3
and p1 − p3 	 1) to establish them for C2.

Let H = C1 − C2, and H3 = C1 − C3. For x ∈ C1 let H(x) be the connected
component of C1 − C2 containing x . (Note that H(x) = ∅ if x ∈ C2.) We call the sets
H,H3 the ‘holes’.

Lemma 2.3 There exists δ2 = δ2(d) > 0 such that if q(K ) < δ2 then the following
holds.

(i) All the connected components H are finite. Further there exist constants ci such
that for each x ∈ Z

d ,

P(x ∈ C1, diam H(x) ≥ n) ≤ c1e−c2n . (2.10)

(Here diam is the diameter in the �∞ distance in Z
d .)

(ii) There exists a constant αH such that, P-a.s., for large enough n, the volume of
any hole intersecting the box [−n, n]d is bounded from above by (log n)αH .
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Proof This result is proved for the set H3 in [14, Proposition 2.3] and in [33, Lemma
3.1], provided p1 − p3 is small enough. The lemma is then immediate since H ⊂ H3.

��
Let P2 be the conditioned measure

P2(·) = P(· |0 ∈ C2). (2.11)

and E2 be the associated expectation operator. Let b ∈ Z
d with |b| = 1, let N2 =

min{k > 0 : kb ∈ C2(ω)}, and

ζ = bN2. (2.12)

Lemma 2.4 (See [11, Lemma 4.3]). Let q(K ) < δ2. Then there exists a constant c1
such that

P2(|ζ | > n) ≤ e−c1n . (2.13)

Proof Since P(0 ∈ C2) ≥ P(0 ∈ C3) = c > 0, it is enough to prove that

P(N2 > n) ≤ e−c1n .

Let N3 be the r.v. defined in the same way for the cluster C3. Then N2 ≤ N3, and the
proof of [11, Lemma 4.3] gives P(N3 > n) ≤ e−c1n . ��

The remaining results on C2 will require the use of static renormalization argu-
ments. These can be quite intricate, but fortunately all the hard work has already been
done in [2,14,33]. We will follow [14] for Lemma 2.5, and [2] for Lemma 2.6.

Now assume that p3 and K satisfy the hypotheses of Lemma 2.3. We define a set
of edges E ′

Z as follows. Let x, y ∈ C2. Then {x, y} ∈ E ′
Z if {x, y} �∈ O2 and there

exists a path x = z0, z1, . . . zk = y with z1, . . . , zk−1 ∈ H, and {zi−1, zi } ∈ O1 for
i = 1, . . . k. If Z is the time change of Y with time in H cut out then the jumps of Z will
be either on edges in O2 or E ′

Z . Set EZ = O2 ∪ E ′
Z . Let dZ be graph distance on the

graph (C2, EZ ): clearly we have dZ (x, y) ≤ d2(x, y) and also |x − y| ≤ d2(x, y) for
x, y ∈ C2. The next Lemma gives that, with high probability, d2, dZ and the Euclidean
metric are comparable.

Lemma 2.5 There exists δ3 = δ3(d) > 0, and constants ci such that if K is chosen
so that q(K ) < δ3 then for each x, y ∈ Z

d

P(x, y ∈ C2, and dZ (x, y) ≤ c1|x − y|) ≤ c2e−c3|x−y|, (2.14)

P(x, y ∈ C2, and d2(x, y) ≥ c−1
1 |x − y|) ≤ c2e−c3|x−y|. (2.15)

Proof As in [14] we define the lattice cubes

QL(x) = x + [0, L]d ∩ Z
d , Q̃3L(x) = x + [−L , 2L]d ∩ Z

d .
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For each of the percolation processes (Zd ,Oi ) we define a ‘good event’ G(i)
L (x),

related to the cube QL(Lx). The event G(i)
L (x) holds if:

(i) For each neighbour y of x , the side of the block QL(Ly) adjacent to QL(Lx) is
connected to the opposite side of QL(Ly) by a path (inside QL(Ly)) of bonds
in Oi .

(ii) Any two paths in Q̃3L(Lx) ∩ Oi which connect QL(Lx) to the boundary of
Q̃3L(Lx) are connected by an Oi -occupied path inside Q̃3L(Lx).

By [38, Theorem 3.1] (for d ≥ 3) and [37, Theorem 5] (for d = 2) we have

P(G(i)
L (x)

c) ≤ ce−cL , for i = 1, 3.

(Easier arguments, as in [14], give that P(G(i)
L (x)

c) → 0 as L → ∞, which is in fact
all we need.)

The key property of the good events G(i)
L (Lx) is that if two adjacent boxes QL(Lx)

and QL(Ly) are ‘good’ (that is the event G(i)
L (x) ∩ G(i)

L (y) occurs), then the clusters
inside the two boxes have to connect. Let G∗

L(x) be the event that no bond in O1 −O3
is in Q̃3L(Lx).

Now let δ′ > 0. We first choose L large enough so that P(G(1)
L (x)c) < 1

2δ
′. Next

we choose δ3 ∈ (0, δ2) (where δ2 is as in Lemma 2.3) such that if q < δ3 then

P(G∗
L(x)

c) ≤ 1
2δ

′. (2.16)

Set

GL(x) = G(1)
L (x) ∩ G∗

L(x);

note that if GL(x) occurs then each of G(i)
L (x) occurs, and there are no holes in

Q̃3L(Lx).
Let η(x) = 1GL (x), x ∈ Z

d . Then η(x) are not independent, but the process does
have finite range. Therefore by [30, Theorem 0.0] the process η stochastically dom-
inates i.i.d. Bernoulli random variables (ξ(x), x ∈ Z

d) with P(ξ(x) = 0) → 0 as
P(η(x) = 0) → 0. Thus we can choose δ′ small enough so that the site percola-
tion process ξ has a unique infinite cluster Cη∞, and all the connected components of
Z

d − Cη∞ are finite.
As in [14, Lemma 3.1] we define a metric d ′(x ′, y′) on Z

d from the site process η
by wiring the holes in Cη∞ – that is we place an edge between any x ′, y′ which lie on
the external boundary of the same connected component of Z

d − Cη∞.
It is enough to prove (2.14) when x = 0. Given y ∈ Z

d , let y′ be such that y ∈
QL(Ly′). Then (see [14, (3.10)]) we have dZ (0, x) ≥ d ′(0, x ′), and |x ′| ≥ L−1|x |−1.
We can now proceed as in [14], and choose δ′ small enough so that

P(d ′(0, x ′) ≤ 1
2 |x ′|) ≤ ce−|x ′|;

(2.14) then follows.
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The proof of (2.15) is similar, except that instead of wiring the holes in Cη∞ we find
a path which avoids them, as in [1, Proposition 3.1]. ��

The next Lemma summarizes volume bounds and an isoperimetric inequality for
C2 in a finite box. We remark that [36] has given a proof of the isoperimetric inequality
which is much quicker than that in [2,31]. Let

β = 1 − 2

1 + d
<

d − 1

d
. (2.17)

Lemma 2.6 There exists δ4 ∈ (0, δ3) so that if q(K ) < δ4 then there exist constants
ci such that the following holds. Let Q be a cube side n in Z

d , and let C+(Q) be
the largest connected component of the graph (Q,O2). Let G1(Q) be the event that
|C+(Q)| ≥ 1

2θ(p3)|Q|, where θ(p3) = P(0 ∈ C∞(O[p3]). Let G2(Q) be the event
that if A is any subset of C+(Q) such that A and C+(Q) − A are connected (in the
graph (C+(Q),O2)), and |A| ≤ 1

2C+(Q) then

∣∣{{x, y} : x ∈ A, y ∈ C+(Q)− A)
}∣∣ ≥ c1|A|

n
. (2.18)

Then

P(G1(Q)
c ∪ G2(Q)

c) ≤ c2 exp(−c3nβ). (2.19)

Proof As in the previous Lemma we consider a block renormalization of the processes
Oi . Let L be large, and j ∈ {1, 2, 3}. We consider a tiling of Z

d by cubes T (x), x ∈ Z
d

with Ld points. Then [2] identifies a ‘good event’ R j (T (x)), related to O j in a region
around T (x), which is similar to (but a bit more complicated than) the events GL(x)
defined in Lemma 2.5—see [2, p. 3040].

Let η j (x) = 1R j (T (x)), let Q̃ be a cube in Z
d , and Q = ∪x ′∈Q̃ T (x); let n be the

side length of Q. [2] defines events K̃ = K̃ (Q̃, 7/8) and F̃ = F̃(Q̃, ε0) such that if
K̃ (Q̃, 7/8)∩ F̃(Q̃, ε0) occurs for η2 then G1(Q)∩G2(Q) occurs—see the definitions
on p. 3036, and Lemma 2.9 and Proposition 2.11.

As in the previous proof we define a new event R∗(T (x)) that no edge in O1 − O3
lies in T (x) or any of its neighbours. Let R(T (x)) = R1(T (x)) ∩ R∗(T (x)), and
η(x) = 1R(T (x)). By first choosing L large, so that P(R1(T (x))c) is small, and then
choosing δ3 small enough so that P(R∗(T (x))c) ≤ P(R1(T (x))c), we can ensure that
P(η(x) = 1) is close to 1.

Again using [30, Theorem 0.0] we have that η dominates an independent i.i.d. site
percolation process ξ , with P(ξ(x) = 1) close to 1. The events F̃ and K̃ are monotone
(see p. 3036 of [2]), and so we can use Lemmas 2.2 and 2.5 of [2] to obtain

P((K̃ ∩ F̃)c) ≤ c exp(−cnβ). (2.20)

Since K̃ ∩ F̃ then implies G1(Q) ∩ G2(Q) we are done. ��
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Now fix K large enough so that q(K ) < δ4. Define

μ0
xy =

{
1 if {x, y} ∈ O2,

0 otherwise.
(2.21)

Let μ0
x = ∑

y μ
0
xy , and extend μ0 to a measure on Z

d .

Definition 2.7 Let CV ,CP ,CR and CW ≥ 1 be fixed strictly positive constants. We
say a ball B2(x, r) in the graph (C2,O2) is good if:

|x ′ − y| ≥ C−1
R r, if x ′ ∈ B2(x, r/2), y ∈ C2 − B2(x, 8r/9), (2.22)

dZ (x
′, y) ≥ C−1

R r, if x ′ ∈ B2(x, r/2), y ∈ C2 − B2(x, 8r/9), (2.23)

CV rd ≤ μ0(B2(x, r)), (2.24)

diam H(y) ≤ rβ, y ∈ BE (x, r), (2.25)

and the weak Poincaré inequality

∑

y∈B2(x,r)

(
f (y)− f B2(x,r)

)2
μ0

y ≤ CPr2
∑

y,z∈B2(x,CW r),z∼y

| f (y)− f (z)|2μ0
yz

(2.26)

holds for every f : B2(x,CW r) → R. (Here f B2(x,r) is the value which minimizes
the left hand side of (2.26)). Strictly speaking, because of condition (2.25) ‘good’ is
a property of (x, r) in the environment (μe) rather than the ball B2(x, r) in the graph
(C2,O2). Note that since (C2,O2) is a subgraph of Z

d , and μe is bounded on C2, we
always have the upper bound μ0(B2(x, r)) ≤ C0rd for r ≥ 1.

We say B2(x, R) is M-very good if B2(y, r) is good whenever y ∈ B2(x, R) and
M ≤ r ≤ R. We can always assume that M ≥ 2.

Let α ∈ (0, 1]. For x ∈ Z
d define R(α)x as follows. If x ∈ C2 let R(α)x be the smallest

integer M such that B2(x, R) is Rα—very good for all R ≥ M . If x ∈ C1 − C2 then
let

R(α)x = max
y∈∂H(x)

R(α)y ∨ (diam H(x))1/αβ .

Finally, let R(α)x = 0 if x �∈ C1.

Proposition 2.8 Let β be defined as in (2.17). There exist CV ,CP ,CW ,CR (depend-
ing on K , the law μe and the dimension d) such that the following holds. For x ∈
Z

d , R ≥ 1, α ∈ (0, 1],

P(x ∈ C2, B2(x, R) is not good ) ≤ c1 exp(−c2 Rβ), (2.27)

P(x ∈ C2, B2(x, R) is not Rα–very good ) ≤ c1 exp(−c2 Rαβ). (2.28)
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Hence

P(R(α)x ≥ n, x ∈ C1) ≤ exp(−c2nαβ). (2.29)

Proof Given Lemmas 2.3, 2.5 and 2.6, (2.27) and (2.28) follow by the same argu-
ment as Theorem 2.18 and Lemma 2.19 of [2]. Note that using (2.14) to compare the
Euclidean metric with d2, we have that if x ∈ C2 then B2(x, R) is contained in a cube
Q of side cR with high probability. It is well known that the isoperimetric inequality
(2.18) implies a Poincaré inequality for the graph (C+(Q),O2)—see for example [2,
Proposition 1.4].

Summing (2.28) over R ≥ n gives

P(R(α)x ≥ n, x ∈ C2) ≤ c1 exp(−c2nαβ). (2.30)

So, writing D = diam (H(x)),

P(R(α)x ≥ n, x ∈ C1) ≤ P
(

max
y∈∂H(x)

R(α)y ≥ n, D1/αβ < n
)

+ P
(
D1/αβ ≥ n)

≤ P( max
y∈BE (0,nαβ)∩C2

R(α)y ≥ n)+ P
(
D > nαβ

)

≤ cnαβd exp(−c2nαβ) ≤ c exp(−c3nαβ);

here we used (2.30) and (2.10) in the last line. ��
Corollary 2.9 Let α ∈ (0, 1] and θ > 0. Then P-a.s.

lim
n→∞ n−θ max

y∈BE (0,n)
R(α)y = 0.

Proof By (2.29) we have

P

(
max

y∈BE (0,n)
R(α)y ≥ nθ/2

)
≤ cnd exp

(
−c2nθαβ/2

)
,

so by Borel–Cantelli maxn n−θ/2 maxy∈BE (0,n) R(α)y < ∞. ��

3 The time changed process

We continue with the notation of the previous section, and now fix for the rest of this
paper a K large enough so that the results of Sect. 2 hold. We define Z = Z K to be the
trace of Y on C2, that is the time change of Y by the inverse of the additive functional

At =
t∫

0

1(Ys∈C2)ds. (3.1)
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So, writing at = inf{s : As > t} for the right-continuous inverse of A,

Zt = Yat , t ≥ 0. (3.2)

Thus Z is obtained by suppressing in the trajectory of Y all the visits to the holes.
Consequently, unlike Y , the process Z may perform long jumps in Z

d by jumping
over the holes of C2. We abuse notation slightly by writing Px

ω for the law of Z when
Y0 = x , and x ∈ C1(ω). If x ∈ C2(ω) then we have Z0 = Y0 = x, Px

ω -a.s., but
otherwise Z0 = Ya0 will be the first point in C2 hit by Y .

Proposition 3.1 For P–a.e. ω, and x ∈ C2(ω), the random process Z under Px
ω is a

symmetric Markov process on C2(ω). Moreover, the reversible measure is given by the
counting measure on C2.

Proof See Proposition 2.1 in [33]. ��
Write ν(i), i = 1, 2 for counting measure on Ci , i = 1, 2. We recall that the Dirichlet

form for the process Y is

E( f, g) = 1

2

∑

x,y∈C1

( f (x)− f (y))(g(x)− g(y))μxy,

on the space L2(C1, ν
(1)). Using the definition of the generators in (1.2) we have

E( f, g) = −〈LV f, g〉ν(1) = −〈LC f, g〉μ.

The Dirichlet form for the time changed process Z is

EZ ( f, g) = 1

2

∑

x,y∈C2

( f (x)− f (y))(g(x)− g(y))μ′
xy, (3.3)

on the space (C2, ν
(2)). Writing LZ = LωZ for the the generator of Z , since EZ ( f, g) =

−〈LZ f, g〉ν(2) for f, g with finite support, we have

LZ f (x) =
∑

y∈C2

μ′
xy( f (y)− f (x)). (3.4)

Hereμ′
xy = μxy +μ′′

xy is the new weight which gives the rate of jumps by Z from x to
y, and is composed of μxy , the original weight from the direct edge between the two
vertices, and μ′′

xy , the weight induced by paths across the holes H which may connect
x and y. We let μ′

xy = 0 if either x or y is not in C2, and set μ′
x = ∑

y∈C2
μ′

xy . For
x, y ∈ C2

μ′
xy

μ′
x

= Pωx (y is the next point in C2 visited by the random walk Y ).
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It is clear from this, and the definition of the metric dZ in the previous section, that

μ′
xy > 0 if and only if dZ (x, y) = 1.

Further,μ′
xy = μ′

yx as follows from the reversibility of Z . In what follows we will find
it most convenient to regard the process Z as a random walk on the graph (C2,O2),
but one which may make ‘long range’ jumps. We will use the notation x ∼ y to mean
that x and y are neighbours in (C2,O2) (and hence in Z

d ).

Lemma 3.2 (a) μ′
x ≤ μx for all x ∈ C2. In particular, supx∈C2

μ′
x ≤ 2d K .

(b) μ′
xy ≤ 2d K for all x, y ∈ C2.

(c) μ′
xy ≥ K −1 for all x, y ∈ C2 such that x ∼ y.

Proof (a) Write τY and τZ for the first jumps of Y and Z . Then if Y0 = x ∈ C2, the
construction of Z gives that Zs = Ys for s ∈ [0, τY ), so that τZ ≥ τY . We there-
fore have μ−1

x = E x
ωτY ≤ E x

ωτZ = (μ′
x )

−1. The second assertion is immediate,
since the construction of O2 gives that μe ≤ K for every e ∈ O2.

(b) Since μ′
xy ≤ μ′

x , this follows from (a).

(c) This is also clear from the construction of O2. ��

Note that we have no lower bound for μ′
xy for x, y which are neighbours with respect

to the dZ metric but not the d2 metric.

4 Heat kernel estimates for the process Z

We now establish heat kernel estimates for the time changed process Z . Many of the
arguments follow the same lines as in [2], and we will only give details where they
differ in significant ways.

Define the Dirichlet form

E0( f, f ) = 1
2

∑

x,y∈C2

( f (y)− f (x))2μ0
xy, (4.1)

where μ0 is as in (2.21). Since μ′
xy ≥ K −1 if x ∼ y, we have

EZ ( f, f ) ≥ K −1E0( f, f ) for all f . (4.2)

Write

q Z
t (x, y) = Px

ω(Zt = y) (4.3)

123



Invariance principle for the random conductance model 551

for the transition density of Z , or the heat kernel on the graph (C2, EZ ). Standard
long range estimates due to Carne, Varopolous and Davies (see [15,19,40]) give that
if dZ (x, y) = D then

q Z
t (x, y) ≤

{
c1 exp(−c2 D(1 + log(D/t))) if D ≥ t ≥ 1,

c1 exp(−c2 D2/t) if D ≤ t, t ≥ 1.
(4.4)

Note that if c−1t ≤ D ≤ ct then both terms in (4.4) are of the form c1 exp(−cD).
Note also that if ε > 0 and t < c3 D2(1−ε) then

exp
(
−c2 D2/t

)
≤ exp

(
− 1

2 c2 D2/t
)

exp
(
− 1

2 c2c−1
3 D2ε

)

≤ exp
(
− 1

2 c2 D2/t
)

exp
(
−ctε/(1−ε))≤c′t−d/2 exp

(
−1

2 c2 D2/t
)
.

(4.5)

4.1 Upper bounds

Our first step is to establish an on-diagonal bound. As we have truncated the edge
weights above and below on C2 we are close to the random walk on a supercritical
bond percolation cluster, and so can follow the proof of [2] Proposition 3.1 quite
closely. Note though that we need to control the long range jumps of Z , and that by
better ‘initialization’ we can weaken the condition of the size of NB .

Proposition 4.1 There exists a constant C0 > 1 such that the following holds. Let
x0 ∈ C2, and let B = B2(x0, R) be NB– very good with NB = C−1

0 R/ log R. Then
writing t0 = C0 N 2

B log NB, t1 = C−1
0 R2/ log R, for x1 ∈ B2(x0, R/2),

q Z
t (x1, x1) ≤

{
c1 exp(−c2t/N 2

B) if 0 ≤ t ≤ t0,

c1(t − t0 + N 2
B)

−d/2 if t0 ≤ t ≤ t1.
(4.6)

Remark 4.2 The bound on NB is enough to ensure that t0 ≤ t1 when R ≥ 1. Note that
(4.6) gives q Z

t (x1, x1) ≤ ct−d/2 if 2t0 ≤ t ≤ t1.

Proof Set ft (y) = qωt (x1, y), and let

ψ(t) = 〈 ft , ft 〉ν(2) =
∑

y∈C2

ft (y)
2 = q Z

2t (x1, x1).

Then we have

−ψ ′(t) =
∑

x,y∈C2

( ft (y)− ft (x))
2μ′

xy .
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Write

εB(t) =
∑

x∈C2−B

ft (x)
2.

Since
∑

ft (x) = 1, we have

εB(t) ≤ sup
x∈C2−B

ft (x)
∑

x∈C2−B

ft (x) ≤ sup
x∈C2−B

ft (x).

As B2(x0, R) is good, we have dZ (x1, x) ≥ cR for all x ∈ Bc. So, by the long range
bounds (4.4)

εB(t) ≤ R−d provided t ≤ cR2/ log R. (4.7)

Let NB ≤ r ≤ R. Then we can choose zi ∈ B so that B2(zi , r/2) are disjoint
and Bi = B2(zi , r) cover B. Write B∗

i = B2(zi ,CW r). Since each Bi is good,
μ0(Bi ) ≥ crd , and hence there exists a constant c′ such that each x ∈ B is in at most
c′ of the B∗

i . (Otherwise μ0(B2(x, 2CW r)) would be too large.)
Since r ∈ [NB, R] is good, the weak Poincaré inequality (2.26) holds for each

Bi . As μ0 and μ′ are comparable on C2, this inequality also holds with respect to μ′.
Therefore, applying the Poincaré inequality to each Bi ⊂ B∗

i , and writing f t,i for the
mean of ft on Bi ,

−ψ ′ (t) ≥ c
∑

i

∑

x,y∈B∗
i

( ft (y)− ft (x))
2 μ′

xy

≥ c
∑

i

r−2
∑

x∈Bi

(
ft (x)− f t,i

)2

= cr−2
∑

i

∑

x∈Bi

ft (x)
2 − cr−2

∑

i

μ′ (Bi )
−1

⎛

⎝
∑

x∈Bi

ft (x)

⎞

⎠
2

≥ cr−2
∑

x∈B

ft (x)
2 − cr−2

(
c′rd

)−1

⎛

⎝
∑

i

∑

x∈Bi

ft (x)

⎞

⎠
2

≥ cr−2
(
ψ (t)− εB (t)− cr−d

)
.

Using (4.7) then gives that for 0 < t ≤ cR2/ log R and NB ≤ r ≤ R,

ψ ′(t) ≤ −2c5r−2(ψ(t)− c6r−d). (4.8)

We now choose

r = r(t) = NB ∨ (2c6/ψ(t))
1/d .
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Let

t0 = inf{t : r(t) > NB} = inf{t : ψ(t) < 2c6 N−d
B }.

On [0, t0] we have

ψ ′(t) ≤ −c5 N−2
B ψ(t).

Since ψ(0) = 1/μ′
x1

≤ c, it follows that

ψ(t) ≤ c exp(−t/(c5 N 2
B)), t ∈ (0, t0]. (4.9)

Consequently,

t0 ≤ c7 N 2
B log NB .

When t0 < t ≤ t1 = cR2/ log R we have

ψ ′(t) ≤ −cψ(t)1+2/d ,

so that if g(t) = ψ(t)−2/d then g′(t) ≥ c, and thus g(t) − g(t0) ≥ c(t − t0). As
g(t0) = cN 2

B , we obtain

ψ(t) ≤ c
(

N 2
B + t − t0

)−d/2
, t ≥ t0. (4.10)

Combining (4.9) and (4.10) and adjusting the constants completes the proof ��
Let ε ∈ (0, 1

2 ), let α = 1
2 − ε, and write Rx for R(α)x , as defined in Definition 2.7.

Corollary 4.3 Let ε ∈ (0, 1
2 ). Then there exist constants c1 and c2 = c2(ε) such that

if x, y ∈ C2 then

q Z
t (y, y) ≤ c1t−d/2 if t ≥ (c2(ε) ∨ 2d2(x, y) ∨ Rx )

1−ε. (4.11)

Proof Let R = t1/(1−ε), so that the condition on t implies that d2(x, y) ≤ 1
2 R and

R ≥ Rx . Hence B2(x, R) is NB—very good with NB ≤ R1/2−ε. By Proposition 4.1
the bound (4.11) holds provided

C0 N 2
B log NB ≤ t ≤ C−1

0 R2/ log R. (4.12)

However,

C0 N 2
B log NB ≤ C0t (1−2ε)/(1−ε) log t (1/2−ε)(1−ε) ≤ t,

provided t is large enough. Similarly the right side of (4.12) holds once t is sufficiently
large. ��
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We now turn to obtaining general Gaussian type upper bounds on q Z
t (x, y). [2] used

the method of Nash and Bass—see [7,34], but we can obtain slightly sharper bounds
with less work if we use an approach introduced by Grigoryan [26] for manifolds.
This method has been adapted to graphs in [17,25].

For T ≥ 1, A ≥ 1, γ > 1 let G(A, γ, T ) be the set of increasing functions g from
[T,∞) to R+ which satisfy supt≥T g(t) exp(−t1/2) ≤ A and are ‘(A, γ ) regular’ on
[T,∞) : that is for T ≤ t1 < t2,

g(γ t1)

g(t1)
≤ A

g(γ t2)

g(t2)
. (4.13)

Proposition 4.4 Let T ≥ 1, A > 0, γ > 1, x1, x2 ∈ C2 and suppose that there exist
functions gi ∈ G(A, γ, T ) such that

q Z
t (xi , xi ) ≤ 1

gi (t)
, t ∈ [T,∞). (4.14)

Then there exists a constant C = C(A, γ ) < ∞ such that if t ≥ C(T 2 ∨ dZ (x1, x2))

then

q Z
t (x1, x2) ≤ C

(g1(t/C)g2(t/C))1/2
exp

(
−dZ (x1, x2)

2

Ct

)
. (4.15)

Proof See Theorem 1.3 of [25]. Note that since μ′
x ≥ K −1 for all x ∈ C2, the condi-

tion there on the lower bound of vertex weights holds automatically, and also that we
can take the dθ there to be dZ (x, y) ��
Theorem 4.5 Let x, y1, y2 ∈ C2, t ≥ 1. If either

d2(y1, y2) ≥ Rx or t ≥ c0 R2−2ε
x , (4.16)

and

d2(x, y1) ≤ (3d2(y1, y2)) ∨ ct1/(2−ε), (4.17)

then

q Z
t (y1, y2) ≤ c1t−d/2 exp(−c2d2(y1, y2)

2/t), if t > d2(y1, y2), (4.18)

q Z
t (y1, y2) ≤ c1 exp(−c2d2(y1, y2)(1 + log(d2(y1, y2)/t))), if t ≤ d2(y1, y2).

(4.19)

Proof Let D = d2(y1, y2) and D′ = d2(x, y1). We have to consider two cases.

Case 1: t < cD2−2ε. Both the conditions in (4.16) imply that D ≥ Rx . Also,
t1/(2−ε) ≤ c′ D(2−2ε)(2−ε) < D, so (4.17) implies that D′ ≤ 3D.
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Thus y1 ∈ B2(x, 3D), and so (as D ≥ Rx ), the ball B2(y1, D) is good.
Hence, using (2.23) we have dZ (y1, y2) ≥ cD. We can now use the long
range bounds (4.4) and (4.5) to obtain (4.19).

Case 2: cD2−2ε < t . Note that d2(x, y2) ≤ D + D′ ≤ 2D ∨ 2D′. Let

T = (C1 ∨ (4D) ∨ (4D′) ∨ Rx )
1−ε.

Then Corollary 4.3 gives that qs(yi , yi ) ≤ cs−d/2 for s ≥ T, i = 1, 2. So by Proposi-
tion 4.4 the bound (4.18) holds if t ≥ cT 2, and it remains to check that the conditions
(4.16) and (4.17) imply that t ≥ cT 2. We need therefore to show that

t ≥ cD2−2ε, t ≥ c(D′)2−2ε, t ≥ cR2−2ε
x . (4.20)

The first of these holds since we are in Case 2. Hence the second holds if D′ ≤ 3D; if
not then (4.17) implies that t ≥ c(D′)2−ε ≥ c(D′)2−2ε. If the first condition in (4.16)
holds then t ≥ cD2−2ε ≥ cR2−2ε

x , so the third condition in (4.20) also holds. ��
Corollary 4.6 Let x, y ∈ C2. Then if either |x − y| ≥ Rx or t ≥ cR2−2ε

x ,

q Z
t (x, y) ≤

{
c1t−d/2 exp(−c2|x − y|2/t), if t > |x − y|,
c1 exp(−c2|x − y|(1 + log(|x − y|/t))), if t ≤ |x − y|. (4.21)

Proof Write D2 = d2(x, y) and DE = |x − y|; we always have D2 ≥ DE , while
D2 ≤ cDE provided D2 ≥ Rx . If DE ≥ Rx then D2 ≥ Rx , so D2 and DE are
comparable and (4.21) follows from (4.18) and (4.19). Now suppose that t ≥ cR2−2ε

x ,
but that D2 < Rx . Then t > D2 and so (4.21) follows from (4.18). ��

Write

	(R, t) =
{

e−R2/t if t > e−1 R,

e−R log(R/t) if t < e−1 R.
(4.22)

Proposition 4.7 (a) Let x ∈ C2, R ≥ Rx and y ∈ B2(x, 3R). Then for t > 0,

P y
ω

(
Zt �∈ B2(y, R)

) ≤ c1	(c2 R, t). (4.23)

(b) Write τA = inf{t : Zt �∈ A}. Let x ∈ C2 and t > 0. If R ≥ 2Rx then

Px
ω(τBE (x,R) < t) ≤ Px

ω(τB2(x,R) < t) ≤ c3	(c4 R, t). (4.24)

(c) Write τY
A = inf{t : Yt �∈ A}. Let x ∈ C1 and t > 0. If R ≥ 3Rx then

Px
ω(τ

Y
BE (x,R) < t) ≤ c3	(c4 R, t), (4.25)

Px
ω(τBE (x,R) < t) ≤ c3	(c4 R, t). (4.26)
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Proof (a) Let y2 ∈ B2(y, R)c. Then d2(y, y2) ≥ R ≥ 1
3 d2(x, y), so (4.17) holds

(with y = y1). Since also d2(y, y2) ≥ R ≥ Rx , we can use (4.18) to bound
q Z

t (y, y2) for y2 ∈ B2(y, R)c. For n ≥ 0 let Dn = B2(x, 2n+1 R)− B2(x, 2n R),
and Qn = maxz∈Dn q Z

t (y, z). Since d2 dominates the Euclidean metric, |Dn| ≤
c(2n R)d . Therefore,

P y
ω

(
Zt �∈ B2(x, R)

) =
∞∑

n=0

∑

z∈Dn

q Z
t (y, z) ≤

∞∑

n=0

|Dn|Qn ≤ cRd
∞∑

n=0

2nd Qn .

(4.27)

If t ≤ R then writing A = log(eR/t),

Qn ≤ c1 exp(−c2(2
n R) log(2n Re/t)) ≤ c1 exp(−2nc2 R A).

Hence (4.27) is bounded by cRd exp(−cR A), so that (4.23) follows.
If t > R then let m be the smallest integer so that 2m R > t . Then

Qn ≤
{

c1 exp(−c22n R log(2n Re/t)) if n ≥ m,

c1 exp(−c2(2n R)2/t) if 0 ≤ n < m.
(4.28)

Substituting these bounds into (4.27) gives (4.23).

(b) Since |x − y| ≤ d2(x, y), the first inequality is immediate. For the second we
have, writing τ = τB2(x,R),

Px
ω(τ < t) ≤ Px

ω

(
Zt �∈ B2(x, R/2)

)+ Px
ω

(
τ < t, Zt ∈ B2(x, R/2)

)
. (4.29)

By (a) the first term in (4.29) is bounded by c	(R/2, t). By the strong Markov
property,

Px
ω(τ < t, Zt ∈ B2(x, R/2))

= E x
ω1(τ<t)P

Zτ
ω

(
Zt−τ ∈ B2(x, R/2)

)

≤ Px
ω(τ < t) max

y∈∂B2(x .R)
sup

0<s<t
P y
ω

(
Zs �∈ B2(y, R/2)

)

≤ Px
ω(τ < t)c1	(c2 R/2, t), (4.30)

where for the final bound we used (a).
If the final term in (4.30) is less than 1/2 then the second term in (4.29) is less
than 1

2 Px
ω(τ < t), and so we obtain (4.24). If this term is greater than 1/2 then

R2/t = O(1), and so by again adjusting the constant c3 we can make the right
hand side of (4.24) greater than 1.

(c) This follows easily from (b): the only difficulty is that we have to take care of the
possibility that Y might exit BE (x, R) via the set C1 − C2—that is through one
of the holes. Write τY = τY

BE (x,R)
. Let z be the first point on the path of Y which
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is not in BE (x, R). If τY < t , then there exists t0 ∈ [0, t) such that Yt0 = z. Let
s0 = At0 ; note that s0 ≤ t0 < t .

If z ∈ C2 then as0 = t0, so Zs0 = Yt0 = z, and therefore {τBE (x,R) < t} holds. If
z ∈ C1 −C2 then since R ≥ 2Rx we deduce that z is in a hole of size less than R1/2, and
therefore that the boundary of H(z) is outside BE (x, 2R/3). Hence {τBE (x,3R/4) < t}
holds. So we have in all cases that {τY < t} ⊂ {τBE (x,3R/4) < t}. In addition, if
x ∈ C1 − C2 then the definition of Rx implies that H(x) has diameter less than R1/2.
Thus

Px
ω(τ

Y < t) ≤ Px
ω(τBE (x,3R/4) < t)

≤ E x
ω

[
P

Za0
ω (τBE (x,2R/3) < t)

] ≤ max
y∈∂H(x)

P y
ω(τBE (x,2R/3) < t).

Using (4.24) and replacing R by 3R/2 we obtain (4.25).
A similar argument gives (4.26). ��

4.2 Lower bounds

In this section we use the methods of [23], which in turn are based on Nash [34],
to obtain a lower bound on q Z

t (x, y). Since the proofs are quite similar to those in
[2], we do not give full details. The lower bound relies on two basic inputs: a bound
which shows that Z does not escape too quickly from a ball (as in Proposition 4.7),
and a weighted Poincaré inequality. Given these two inputs, the Fabes–Stroock–Nash
argument gives a ‘near diagonal lower bound’—that is a lower bound on q Z

t (x, y)
when x and y are not too far apart. A standard chaining argument, as in [23], then
gives a more general lower bound.

We begin by establishing the weighted Poincare inequality. Let B = B2(x0, R) and

ϕ(y) =
(

R ∧ d2(y, B2(x0, R)c)

R

)2

, y ∈ C2.

Proposition 4.8 Let B = B2(x0, R) be NB—very good with NB ≤ R1/(d+2). Then

inf
λ

∑

x∈B

( f (x)− λ)2ϕ(x) ≤ C R2
∑

x,y∈C2

( f (x)− f (y))2(ϕ(x) ∧ ϕ(y))μ′
xy .

Proof By [2, Theorem 4.8] we have

inf
λ

∑

x∈B

( f (x)− λ)2μ0
xϕ(x) ≤ C R2

∑

x,y∈C2

( f (x)− f (y))2(ϕ(x) ∧ ϕ(y))μ0
xy .

Since μ′
xy ≥ K −1μ0

xy and μ0
x � 1, we have the result. ��

Next we give the near diagonal lower bound. We write

q Z ,B
t (x, y) = Px

ω(Zt = y, τB < t)

for the heat kernel of Z killed on exiting from B.
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Proposition 4.9 Let x0 ∈ C2 and suppose that B2(x0, R1) is R1/(d+2)
1 —very good

ball for all R1 ≥ R. Then there exist constants ci such that, writing B = B2(x0, R),

q Z ,B
t (y1, y2) ≥ c2t−d/2, y1, y2 ∈ B2

(
x, 1

4 R
)
, c1 R2 ≤ t ≤ 2c1 R2. (4.31)

Proof The argument is almost the same as [2, Proposition 5.1]. The point in the proof
where the long range jumps of Z could potentially cause a problem is that (as in [2,
equation (5.9)]) we need, for x ∈ B2(x0,

1
3 R), and t ≤ c3 R2 that

∑

y∈B2(x,2R/3)

q Z ,B
t (x, y)μ′

y ≥ 1
2 .

However, this bound follows from Proposition 4.7a by taking the constant c3 small
enough. Note that the condition on B implies that R ≥ Rx for all x ∈ B2(x0, R/2).

��
Definition 4.10 For x ∈ C2 let Sx be the smallest integer R such that B2(x, n) is
n1/(3(d+2))—very good for all n ≥ R.

Theorem 4.11 There exist constants δ > 0 and c such that the following holds. There
exists a set �1 ⊂ � with P(�1) = 1 and Sx , x ∈ Z

d such that Sx (ω) < ∞ for each
ω ∈ �1 and x ∈ C2(ω), and

P(Sx ≥ n, x ∈ C2) ≤ ce−cnδ . (4.32)

(a) For x, y ∈ C2(ω) the transition density of Z satisfies

q Z
t (x, y) ≤ ct−d/2 exp(−c|x − y|2/t), t ≥ |x − y| ∨ Sx , (4.33)

q Z
t (x, y) ≥ ct−d/2 exp(−c|x − y|2/t), t ≥ |x − y|3/2 ∨ Sx . (4.34)

(b) Further, if x ∈ C2, t ≥ Sx and B = B2(x, 2
√

t) then

q Z ,B
t (x, y) ≥ ct−d/2, for y ∈ B2(x,

√
t).

Proof The upper bound in (a) is given in Corollary 4.6, while (b) follows from Prop-
osition 4.9.

The lower bound in (a) is proved from Proposition 4.9 by a chaining argument—see
Lemma 5.2 and Theorem 5.3 of [2]. ��
Remark 4.12 Note that we only give Gaussian lower bounds in (4.34) when |x − y| ≤
t2/3. The power 2/3 could be improved, but the arguments in Lemma 5.2 and Theorem
5.3 of [2] do not allow us to extend these bounds to |x − y| ≤ ct . The reason is that
the chaining argument works by connecting the points x and y by a chain of balls
B2(zi , r), where r = O(t/|x − y|), and then using the lower bound (4.31) in each
ball. For this we need (at least) that each ball B2(zi , r) should be r1/(d+2) very good,
and we cannot ensure this if r is too small.
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In [2] a stronger result was obtained, by using the fact that the chaining argument
does not require that every chain of balls connecting x and y is very good, but just that
at least one such chain exists. By looking at a block percolation process of cubes side
k (large but fixed) it was shown that there are enough ‘good chains’ so that Gaussian
lower bounds can be obtained for |x − y| ≤ ct ,

It is very likely that a similar argument could be made in this case. We do not do
so because the improvement requires a considerable amount of extra work, and the
lower bound (4.34) is already enough for most applications.

5 Invariance principle for the process Z

In this section we prove:

Theorem 5.1 (Quenched invariance principle for Z ) There exists δ > 0 such that if
K is large enough so that q(K ) < δ the following holds. For P2-almost every envi-
ronment, under P0

ω , the process (Z (ε)t , t ≥ 0) converges in law as ε tends to zero to a
non-degenerate Brownian motion with covariance matrix σ 2

Z I where σ 2
Z = σ 2

Z (K ) is
strictly positive and does not depend on ω.

An invariance principle for a similar process, also jumping over holes with small
conductances, has been proven in [33, Theorem 2.2]. However as we allow unbounded
conductances, in general the process Z K will jump over the holes in a different way
to the process considered in [33]. Thus we cannot deduce Theorem 5.1 directly from
Theorem 2.2 of [33].

5.1 Construction of the corrector

We assume that the conductances μe are defined on the space (�,P), where

� = [0,∞)Ed .

We write μe(ω) = ω(e) for the coordinate maps as well as ω = (ω(e), e ∈ Ed) and
ω(x, y) = ω({x, y}). For x ∈ Z

d define Tx : � → � by

Tx (ω)(z, w) = ω(z + x, w + x).

Recall from Sect. 3 the definition of μ′
xy : we have

μ′
xy ◦ Tz = μ′

x+z,y+z .

The process (TZt (ω), t ∈ [0,∞)) then gives the ‘environment seen from the particle’.
For F ∈ L2(�,P) write Fx = F ◦ Tx . Then (TZt ) has generator

L̂ F(ω) =
∑

x∈Zd

μ′
0x (ω)(Fx (ω)− F(ω)).
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Set

Ê(F,G) = E

∑

x∈Zd

μ′
0x (F − Fx )(G − Gx ).

Lemma 5.2 (i) For F ∈ L1(�,P),

EF = EFx ,

E(μ′
0x Fx ) = E(μ′

0,−x F).

(ii) For F,G ∈ L2(�,P), Ê(F, F) < ∞, Ê(F,G) is defined, L̂ F ∈ L2(�,P) and
E(GL̂ F) = −Ê(F,G).

Proof This follows by the same arguments as in Lemmas 5.2–5.4 in [4]. ��
Now we look at ‘vector fields’. We define for G = G(ω, x) : �× Z

d → R,

EG =
∑

x

E2μ
′
0x G(·, x) = E2

∑

x∈C2

μ′
0x G(·, x).

Note that EG is not affected by G(ω, x) if x �∈ C2(ω).

Definition We say G(ω, x) has the cocycle property if P2-a.s.,

G(Txω, y − x) = G(ω, y)− G(ω, x), for all x, y ∈ C2(ω). (5.1)

Let L
2

be the set of vector fields G with the cocycle property and ||G||2 = EG2 < ∞.

Lemma 5.3 Let G = G(ω, x) ∈ L
2
.

(i) For P2-a.e. ω,G(ω, 0) = 0 and G(Txω,−x) = −G(ω, x) for all x ∈ C2.

(ii) If x0, x1, . . . , xn ∈ C2 then

n∑

i=1

G(Txi−1ω, xi − xi−1) = G(ω, xn)− G(ω, x0). (5.2)

Proof (i) follows immediately from the definition. For (ii), as G has the cocycle prop-
erty

G(Txi−1ω, xi − xi−1) = G(ω, xi )− G(ω, xi−1),

giving (5.2). ��
It is easy to check:

Lemma 5.4 L
2

is a Hilbert space.
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For F ∈ L2 we set

∇F(ω, x) = F(Txω)− F(ω), x ∈ Z
d .

Lemma 5.5 If F ∈ L2(�,P) then ∇F ∈ L
2
.

Proof First,

E|∇F |2 =
∑

x

E2μ
′
0x (Fx − F)2 ≤ Ê(F, F)

P(0 ∈ C2)
< ∞.

Also, for x, y ∈ Z
d ,

∇F(Txω, y − x) = F(Ty−x Txω)− F(Txω)

= F(Tyω)− F(Txω) = ∇F(ω, y)− ∇F(ω, x),

so ∇F has the cocycle property. ��

Lemma 5.6 For every G ∈ L
2

we have for all x, y ∈ Z
d ,

E2

[
μ′

xy |G(·, y)− G(·, x)|2
]

≤ ||G||2.

Proof Recall that μ′
xy �= 0 only if x, y ∈ C2. Using the cocycle property and the

shift-invariance of P we get

E2

[
μ′

xy |G(·, y)− G(·, x)|2
]

=
E

[
μ′

xy |G(Txω, y − x)|21{x∈C2} 1{0∈C2}
]

P[0 ∈ C2]

≤
E

[
μ′

0,y−x (Txω)|G(Txω, y − x)|21{0∈C2(Txω)}
]

P[0 ∈ C2]

=
E

[
μ′

0,y−x |G(·, y − x)|21{0∈C2}
]

P[0 ∈ C2]
≤
∑

z

E2

[
μ′

0,z |G(·, z)|2
]

= ||G||2.

��
Proposition 5.7 (Polynomial growth) Let G ∈ L

2
, and θ > d. Then, P2-a.s.,

lim
n→∞ max

|x |≤n,x∈C2

|G(ω, x)|
nθ

= 0. (5.3)
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Proof We use the same argument as in Theorem 4.1 (4) in [14]. By Proposition 2.8
we have that B2(0, n) is good for all sufficiently large n,P2-a.s. So, using the property
(2.22) of good balls it is sufficient to prove that limn→∞ n−θ Rn(G) = 0, where

Rn(G) = max
x∈B2(0,n)

|G(ω, x)|. (5.4)

If x ∈ B2(0, n) then there exists a path 0 = y0, y1, . . . , yk = x connecting 0 and x in
C2. By Lemma 5.3

G(ω, x) ≤
k∑

i=1

|G(ω, yi )− G(ω, yi−1)| ≤
∑

y∈B2(0,n)

∑

z∼y

|G(ω, y)− G(ω, z)|.

(5.5)

Thus since μ′
yz ≥ K −1 for y, z ∈ C2 with y ∼ z,

Rn (G) ≤
∑

y∈B2(0,n)

∑

z∼y

(
μ′

yz K
)1/2 |G (ω, y)− G (ω, z) |

≤ K 1/2
∑

y∈B2(0,n)

∑

z∼y

(
μ′

yz

)1/2 |G (ω, y)− G (ω, z) |

≤ K 1/2

⎛

⎝
∑

y∈B2(0,n)

∑

z∼y

μ′
yz |G (ω, y)− G (ω, z) |2

⎞

⎠
1/2 (

cnd
)1/2 ; (5.6)

here we used Cauchy–Schwarz in the final line. We take expectations and use Lemma
5.6 and the fact that B2(0, n) ⊂ BE (0, n) to obtain

E2 Rn(G)
2 ≤ c1nd

E2

∑

y∈BE (0,n)

∑

z∼y

μ′
yz |G(ω, y)− G(ω, x)|2 ≤ c2 n2d ||G||2.

Applying Chebyshev’s inequality and summing n over powers of 2 a Borel–Cantelli
argument now gives Rn(G)/nθ → 0 a.s. ��

Following [32] we introduce an orthogonal decomposition of the space L
2
. Set

L
2
p = cl {∇F, F ∈ L2} in L

2
,

and let L
2
s be the orthogonal complement of L

2
p in L

2
. (Here p stands for ‘potential’

and s for ‘solenoidal’.)
Fix b ∈ Z

d with |b| = 1 and recall the definition of ζ from (2.12). Let σb(ω) =
Tζ(ω)ω. A key fact is that by Theorem 3.2 in [11] the shift σb is P2-preserving and
ergodic with respect to P2. We define the iterates ζk : � → C2 by ζ1 = ζ ,

ζk+1(ω) := ζ(Tζk(ω)(ω)), k ≥ 2.
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Lemma 5.8 Let G ∈ L
2
p. Then

(i) E2|G(·, ζ(·))| < ∞,
(ii) E2G(·, ζ(·)) = 0.

Proof As G ∈ L
2
p there exists a sequence of functions Fn in L2 such that the sequence

Gn = ∇Fn converges to G in L
2
. Since P2 is preserved by σb = Tζ we have for all n

E2 [Gn(·, ζ(·))] = E2[Fn ◦ Tζ ] − E2[Fn] = 0.

Thus, it suffices to show that Gn(·, ζ(·)) → G(·, ζ ) in L1(�,P2).
We begin with the following estimate. Let R′

0 = R(1)0 be as in Definition 2.7. Then
if R′

0 ≤ n and 0 ∈ C2 and d2(0, ζ ) > n then by (2.22) we have |ζ | ≥ cn. So, with β
as in Proposition 2.8, and using Lemma 2.4 to bound the tail of ζ ,

P(d2(0, ζ ) > n, 0 ∈ C2) ≤ P(R′
0 > n, 0 ∈ C2)+ P(d2(0, ζ ) > n, R′

0 ≤ n, 0 ∈ C2)

≤ c1 exp(−c′nβ)+ P(|ζ | ≥ cn, 0 ∈ C2) ≤ c1 exp(−c2nβ).

By (5.5) and (5.6) we have writing Hn = G − Gn, D = d2(0, ζ ),

|Hn(ω, ζ )| ≤ cDd/2SD(Hn)
1/2,

where for k ≥ 1

Sk(Hn) =
∑

y∈B2(0,k)

∑

z∼y

μ′
yz |Hn(ω, y)− Hn(ω, z)|2.

Then

E2|Hn(ω, ζ )| ≤ c
∞∑

k=1

E2(k
d/2Sk(Hn)

1/2; D = k)

≤ c
∞∑

k=1

kd/2(E2Sk(Hn))
1/2

P2(D = k)1/2

≤ c
∞∑

k=1

kd/2(kd ||Hn||2)1/2 exp(−ckβ) ≤ c1||Hn||.

Since ||Hn|| → 0 we have Hn → 0 in L1(P2), which completes the proof. ��

Lemma 5.9 Let G ∈ L
2
p. Then we have for P2-a.e. ω

lim
k→∞

G(·, ζk)

k
= 0.
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Proof Let F(ω) = G(ω, ζ(ω)) and σb(ω) = Tζ(ω)ω be the induced shift. Then, by
the cocycle property we can write

G(ω, ζk(ω)) =
k−1∑

i=0

F ◦ σ i
b(ω).

By Lemma 5.8 we have F ∈ L1(�,P2) and E2 F = 0. Since σb is ergodic with respect
to P2, the claim follows by the ergodic theorem. ��

Proposition 5.10 (Sublinearity on average) Let G ∈ L
2
p. For each ε > 0,

lim
n→∞ n−d

∑

|x |≤n,x∈C2

1(|G(ω,x)|>εn) = 0 for P2-a.e. ω.

Proof This follows from Lemma 5.9 exactly as Theorem 5.4 in [11]. ��
Remark In [4, Theorem 5.12(d)] it was incorrectly stated that sublinearity followed
from results in [28] – in fact one needs [11, Theorem 5.4].

Proposition 5.11 (Harmonicity) Let G ∈ L
2
s . Then, for P2-a.e. ω we have for all

x ∈ C2

LωZ G(ω, x) =
∑

y∈C2

μ′
xy(ω)(G(ω, y)− G(ω, x)) = 0. (5.7)

Hence Nt = G(ω, Zt ) is a P0
ω-martingale for P2-a.e. ω. Further, writing

‖G(ω, ·)‖2
ω =

∑

x

μ′
0x (ω)G(ω, x)2,

we have

〈N 〉t =
t∫

0

‖G(TZsω, ·)‖2
ω ds. (5.8)

Proof We will first show that for G ∈ L
2
s

LωZ G(0) =
∑

x∈C2

μ′
0x (ω)G(ω, x) = 0, P2-a.s. (5.9)

To that aim we proceed similarly to Lemma 5.11 in [4]. If F ∈ L2(�,P) and G ∈ L
2

then using Lemma 5.3 and the fact that μ′
0x = 0 for all x if 0 �∈ C2 we get
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∑

x∈Zd

E2μ
′
0x G(ω, x)Fx = P(0 ∈ C2)

−1
∑

x∈Zd

Eμ′
0x G(ω, x)Fx 1{0∈C2}

= P(0 ∈ C2)
−1

∑

x∈Zd

Eμ′
0x (T−xω)G(T−xω, x)Fx (T−xω)

= P(0 ∈ C2)
−1

∑

x∈Zd

Eμ′
0,−x (ω)(−G(ω,−x))F(ω)

= −
∑

x∈Zd

E2μ
′
0x (ω)G(ω, x)F(ω).

Thus
∑

x∈Zd

E2μ
′
0x G(., x)(F + Fx ) = 0.

If G ∈ L
2
s then

0 = E(G∇F) =
∑

x

E2μ
′
0x G(·, x)(Fx − F),

and so E2
∑
μ′

0x G F = 0. Since this holds for any F ∈ L2(�,P) we obtain (5.9).
Further, for any x ∈ C2

E2|LZ G(x)| = E2

∣∣∣∣∣
∑

y

μ′
xy(ω)(G(ω, y)− G(ω, x))

∣∣∣∣∣

= P(0 ∈ C2)
−1

E

∣∣∣∣∣
∑

y

μ′
0,y−x (Txω)G(Txω, y − x)

∣∣∣∣∣ 1{0∈C2}

≤ P(0 ∈ C2)
−1

E

∣∣∣∣∣
∑

z

μ′
0z(ω)G(ω, z)

∣∣∣∣∣

= E2|LZ G(0)| = 0,

which implies (5.7). Thus, Nt = G(ω, Zt ) is a P0
ω-martingale for P2-a.e. ω. To com-

pute 〈N 〉, which is the unique predictable process such that N 2
t −〈N 〉t is a martingale,

note that the opérateur carré du champ is given by

[
LZ G2 − 2GLZ G

]
(x) =

∑

y

μ′
xy(ω) (G(ω, y)− G(ω, x))2

=
∑

y

μ′
0,y−x (Txω)G(Txω, y − x)2 = ||G(Txω, ·)||2ω,

for P2-a.e. ω and (5.8) follows. ��
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Let � : R
d → R

d be the identity, and write � j for the j th coordinate of �. Then
� j (y − x) = � j (y)−� j (x), so � j has the cocycle property. Further

E|� j |2 = E2

∑

x

μ′
0x |x j |2 ≤ 2d K E2

∑

x

μ′
0x

μ′
0

|x j |2 = 2d K E2 E0
ω(Z

j
τZ
)2 < ∞,

τZ denoting the first jump time of Z , so � j ∈ L
2
. So we can define χ j ∈ L

2
p and

� j ∈ L
2
s by

� j = χ j +� j ∈ L
2
p ⊕ L

2
s ;

this gives our definition of the corrector χ = (χ1, . . . , χd) : �× Z
d → R

d . We will
sometimes write χ(x) for χ(·, x) and �(x) for �(·, x). Note that conventions about
the sign of the corrector differ – compare [39] and [14]. As the environment process
is invariant under isometries of Z

d , ||� j || = ||�1|| for each j = 1, . . . d. We set

Mt = �(ω, Zt ) = Zt − χ(ω, Zt ). (5.10)

The following Proposition summarizes the properties of χ,� and M .

Proposition 5.12 (i) For P2-a.e. ω and for every v ∈ R
d , M and v · M are

P0
ω—martingales. The covariance process of the latter is given by

〈v · M〉t =
t∫

0

‖v ·�(TZsω, ·)‖2
ω ds.

(ii) For each j = 1, . . . , d

E2

∑

x∈C2

μ′
0x (ω)|� j (ω, x)|2 = ||�1||2 < ∞.

(iii) χ has polynomial growth: for θ > d

lim
n→∞ max

|x |≤n
x∈C2

|χ(ω, x)|
nθ

= 0 P2-a.s.

(iv) χ is sublinear on average: for each ε > 0

lim
n→∞ n−d

∑

|x |≤n
x∈C2

1(|χ(ω,x)|>εn) = 0, P2-a.s. (5.11)
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5.2 Proof of Theorem 5.1

We have

Z (ε)t = εZt/ε2 = M (ε)
t + εχ(ω, ε−1 Z (ε)t ). (5.12)

To prove Theorem 5.1 it is sufficient to prove (1) that the processes Z (ε) are tight, (2)
that the martingales M (ε) converges to a multiple of Brownian motion, and (3) that
for P2-a.e. ω the final term in (5.12) converges in P0

ω-probability to zero. We begin
with tightness.

Proposition 5.13 (Tightness)

(a) Let T > 0, r > 0. Then, for P1-a.e. ω,

lim
R→∞ sup

0<ε≤1
P0
ω

(
sup
s≤T

|Z (ε)s | > R

)
→ 0, (5.13)

lim
δ→0

lim sup
ε→0

P0
ω

(
sup

|s1−s2|≤δ,si ≤T
|Z (ε)s2

− Z (ε)s1
| > r

)
= 0. (5.14)

In particular, for P1-a.e. ω, under P0
ω , the family of processes (Z εt )t≥0 is tight in

the Skorohod topology.

(b) The same statements hold for the processes Y (ε), for P1-a.e. ω.

Proof (a) Recall the definition of R(α)x in Definition 2.7, and as in Proposition 4.7
let α ∈ (0, 1

2 ). Let R/ε > 3R0. Then by Proposition 4.7c,

P0
ω

(
sup
s≤T

|Z (ε)s | > R

)
= P0

ω

(
τBE (0,R/ε) < T/ε2

)
≤ c1	

(
c2 R/ε, T/ε2

)
.

Considering separately the cases ε < T/R and ε ≥ T/R we deduce that

P0
ω

(
sup
s≤T

|Z (ε)s | > R

)
≤ c3e−c4 R2/T ∨ e−R,

which gives (5.13)
The proof of (5.14) is similar to that in [4, Theorem 4.11]. Write

p(T, δ, r) = P0
ω

(
sup

|s1−s2|≤δ,si ≤T
|Zs2 − Zs1 | > r

)
, (5.15)
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so that

P0
ω

(
sup

|s1−s2|≤δ,si ≤T
|Z (ε)s2

− Z (ε)s1
| > r

)
= p(T/ε2, δ/ε2, r/ε).

We begin by bounding p(T, δ, r) for fixed T, δ and r . Let

Vk = sup
0≤s≤δ

|Zkδ+s − Zkδ|. (5.16)

Then if K = �T/δ� and V ∗ = max0≤k≤K Vk , it is enough to control V ∗ since

sup
|s1−s2|≤δ,si ≤T

|Zs2 − Zs1 | ≤ 2V ∗.

Let R = T 3/4 and write τ(y, r) = τBE (y,r). Then

P0
ω(V

∗ ≥ r) ≤ P0
ω(τ(0, R) ≤ T )+ P0

ω(V
∗ ≥ r, τ (0, R) > T ). (5.17)

By Proposition 4.7c we have

P0
ω(τ(0, R) ≤ T ) ≤ c exp(−c′ R2/T ) = ce−c′T 1/2

, provided that T 3/4 ≥ R0.

(5.18)

Also,

P0
ω(V

∗ ≥ r, τ (0, R) > T ) ≤
K∑

k=0

P0
ω(Vk ≥ r, Zkδ ∈ BE (0, R))

≤
K∑

k=0

∑

y∈BE (0,R)

P y
ω(τ(y, r) < δ)P0

ω(Zkδ = y).

Again by Proposition 4.7b, for y ∈ BE (0, R) ∩ C2,

P y
ω(τ(y, r) < δ) ≤ ce−cr2/δ, (5.19)

provided

r ≥ max
y∈BE (0,R)

Ry and δ ≥ r. (5.20)

Combining (5.17), (5.18) (5.19), we obtain

p(T, δ, 2r) ≤ P0
ω(V

∗ ≥ r) ≤ c exp
(
−cT 1/2

)
+ c(T/δ) exp

(
−cr2/δ

)
,

(5.21)
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provided T ≥ R0(ω)
4/3, and (5.20) holds.

Hence

p
(

T/ε2, δ/ε2, 2r/ε
)

≤ c exp
(
−cT 1/2/ε

)
+ c(T/δ) exp

(
−cr2/δ

)
, (5.22)

provided

T 1/2 ≥ εR2/3
0 , δ > εr, r ≥ ε max

y∈BE (0,T 3/4ε−3/2)
Ry .

If r and δ are fixed, by Corollary 2.9 each of these conditions holds when ε is
small enough. So, for P2-a.a. ω,

lim sup
ε→0

p
(

T/ε2, δ/ε2, 2r/ε
)

≤ c(T/δ) exp
(
−cr2/δ

)
,

and (5.14) follows.
(b) The only property of Z that is used in the argument above is the estimate (4.26).

The same arguments therefore give tightness for Y , using (4.25). ��
Next, we show that the term in (5.12) involving the corrector converges to 0.

Proposition 5.14 Let T > 0. For P2-a.e. ω,

sup
s≤T

ε

∣∣∣χ(ω, ε−1 Z (ε)s )

∣∣∣ → 0 in P0
ω-probability. (5.23)

Proof We use [14, Theorem 2.4]. This results states that if the corrector χ has poly-
nomial growth, and is sublinear on average, then Gaussian upper bounds on the heat
kernel imply pointwise sublinearity of χ . Thus, using (4.21), (5.3) and (5.11) we have
that for P2-a.e. ω,

lim
n→∞ max

|x |≤n,x∈C2

|χ(ω, x)|
n

= 0. (5.24)

To prove the claim let η > 0 and R > 0. Then,

P0
ω

(
sup
s≤T

ε|χ
(
ω, ε−1 Z (ε)s

)
| > η

)

≤ P0
ω

(
sup
s≤T

ε

∣∣∣χ
(
ω, ε−1 Z (ε)s

)∣∣∣ > η, sup
s≤T

|Z (ε)s | ≤ R

)
+ P0

ω

(
sup
s≤T

|Z (ε)s | > R

)

≤ P0
ω

(
max

|y|≤R/ε,y∈C2

ε |χ (ω, y)| > η

)
+ P0

ω

(
sup
s≤T

|Z (ε)s | > R

)
. (5.25)
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The tightness of Z (ε) (see (5.13)) implies that the second term in (5.25) converges
to zero uniformly in ε as R → ∞. The first term converges to zero as ε → 0 by
(5.24).

��
For the convergence of M (ε), we proceed as in [32].

Proposition 5.15 For P1-a.e. ω, the sequence of processes (M (ε)) converges in law
in the Skorohod topology to a Brownian motion with covariance matrix σ 2

Z I , where
σ 2

Z := E[�2
1] ∈ (0,∞).

Proof The proof is based on the martingale convergence theorem by Helland [27,
see Theorem 5.1a]. In particular, we will show that for every v ∈ R

d the family of
martingales (v · M (ε)

t )t≥0 with associated covariance processes 〈v · M (ε)〉 satisfy the
following two conditions for P2-a.e. ω:

(i) For any t > 0 we have that 〈v · M (ε)〉t converges in P0
ω-probability to t · E2‖v ·

�(ω, ·)‖2
ω as ε tends to zero.

(ii) For any t > 0 and any η > 0, we have

∑

0≤s≤t

(
v · M (ε)

s − v · M (ε)
s−
)2

1{|v·M(ε)
s −v·M(ε)

s− |≥η} → 0,

in P0
ω-probability as ε tends to zero.

Then, by Helland’s martingale convergence theorem the sequence of processes (v ·
Mε, j

t )t≥0 converges in law in the Skorohod topology to a Brownian motion with
covariance E2‖v ·�(ω, ·)‖2

ω.
In order to prove (i) and (ii) we will use the ergodicity of the processes (TZtω, t ≥ 0)

and (TZt−ω, t ≥ 0), respectively, w.r.t. P2—see Lemma 4.9 in [21]. Note that the func-
tional F(ω) := ‖v ·�(ω, ·)‖2 ∈ L1(�,P2), so we obtain by the ergodic theorem that
for any t > 0 and for P2-a.e. ω

1

t
〈v · M (ε)〉t = ε2

t

t/ε2∫

0

‖v ·�(TZsω, ·)‖2
ω ds → E2‖v ·�(ω, ·)‖2

ω,

as ε tends to zero and (i) is proven. To prove (ii) we recall that for any function
f : Z

d × Z
d → R that vanishes on the diagonal, the process

∑

0≤s≤t

f (Zs−, Zs)−
∫

(0,t]

∑

y

μ′
Zs−,y f (Zs−, y) ds

is a local P0
ω-martingale for P2-a.e. ω. Let L > 0. Then choosing

f (x, y) = (v ·�(y)− v ·�(x))2 1{|v·�(y)−v·�(x)|≥L}
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we obtain by the cocycle property and the ergodic theorem that for P2-a.e. ω

E0
ω

⎡

⎣1

t

∑

0≤s≤t

(v · Ms − v · Ms−)21{|v·Ms−v·Ms−|≥L}

⎤

⎦

= E0
ω

⎡

⎣1

t

∑

0≤s≤t

(v ·�(ω, Zs)− v ·�(ω, Zs−))2 1{|v·�(ω,Zs )−v·�(ω,Zs−)|≥L}

⎤

⎦

= 1

t

t∫

0

ds E0
ω

[
∑

y

μ′
Zs−,y(ω) (v ·�(ω, y)− v ·�(ω, Zs−))2 1{|v·�(ω,y)−v·�(ω,Zs−)|≥L}

]

= 1

t

t∫

0

ds E0
ω

[
∑

y

μ′
0,y−Zs− (TZs−ω)

(
v ·�(TZs−ω, y − Zs−)

)2 1{|v·�(TZs−ω,y−Zs−)|≥L}

]

→ E2

[
∑

y

μ′
0y(ω)(v ·�(ω, y))21{|v·�(ω,y)|≥L}

]
= E

[
(v ·�)21{|v·�|≥L}

]
< ∞,

as t tends to infinity. Let η > 0, L < ∞ and take ε < η/L . Then

E0
ω

∑

0≤s≤t

(
v · M (ε)

s − v · M (ε)
s−
)2

1{|v·M(ε)
s −v·M(ε)

s− |≥η}

= ε2 E0
ω

∑

0≤s≤t/ε2

(v · Ms − v · Ms−)2 1{|v·Ms−v·Ms−|≥η/ε}

≤ ε2 E0
ω

∑

0≤s≤t/ε2

(v · Ms − v · Ms−)2 1{|v·Ms−v·Ms−|≥L}

→ t E(v ·�)21{|v·�|≥L}

as ε tends to zero. We let L tend to infinity and obtain ii). Hence v · M (ε) converges
to a real-valued Brownian motion with non-random covariance E2‖v · �(ω, ·)‖2

ω,
which can be written as v · Dv, where D is the matrix with coefficients given by
Di j = E�i� j . By the Cramer–Wold Theorem (see e.g. Theorem 3.9.5 in [22]) we
get that M (ε) converges in law to an R

d -valued Brownian motion with covariance
matrix D. Since the law of the random variables ω(e) is invariant under symmetries
of Z

d , we deduce that D = σ 2
Z I with σZ = E�2

1.
It remains to show that σZ is strictly positive. However, if σ 2

Z = 0 then� = 0, and
therefore χ(x) = x which contradicts the pointwise sublinearity in (5.24). We remark
that an alternative way to show that σZ > 0 would be to use the heat kernel upper
bound in Proposition 4.1, as on page 271 of [4]. ��
Remark 5.16 We can extend Theorem 5.1 to all initial points x ∈ C2. For each x ∈ Z

d

let Hx be the set of ω such that x ∈ C2(ω) but the invariance principle fails for the pro-
cess Z started at 0 in the environment Tx (ω). Then Theorem 5.1 gives that P(H0) = 0.
However ω ∈ Hx if and only if Tx (ω) ∈ H0, so since Tx is measure preserving, we
have P(Hx ) = 0 for all x , and thus P(∪x∈Zd Hx ) = 0.
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It follows from this that the conclusion of Theorem 5.1 holds P1-a.s. Suppose
ω �∈ ∪x∈Zd Hx , and 0 ∈ C1(ω)− C2(ω). Then Z0 = Ya0 , and so Z0 is on the boundary
of the hole H0. Since the invariance principle holds P y

ω -a.s. for all y ∈ C2(ω), it will
also hold P Z0

ω -a.s.

6 Invariance principles for the VSRW and CSRW

In this section we will deduce the invariance principles for the VSRW Y and CSRW
X stated in our main result Theorem 1.1 from the invariance principle for the process
Z . First recall that the tightness of Y (ε) has already been proven in Proposition 5.13.
In order to identify the limit, we will show that the increments of Y (ε) converge, using
arguments similar to Section 3 in [33]. Finally, we repeat the argument in [4] to obtain
the invariance principle for the CSRW X .

Recall from Sect. 3 the definition of the processes A, a and Z . In particular, we
have

Z (ε)t = Y (ε)
ε2at/ε2

, t ≥ 0. (6.1)

We start with a lemma dealing with the long-time behaviour of the additive functional
A (cf. [33, Lemma 2.4]).

Lemma 6.1

lim
t→∞

At

t
= P1(0 ∈ C2) =: C0 > 0, P1 × P0

ω-a.s. (6.2)

Proof Consider the process (TYtω, t ≥ 0) of the ‘environment seen by the particle’
associated with the VSRW Y . Then, by Lemma 4.9 in [21] the measure P1 is ergodic
w.r.t. TY·ω. Since

At =
t∫

0

1{0∈C2(TYsω)} ds,

(6.2) follows by the ergodic theorem. ��

6.1 VSRW

In order to identify the limit of the sequence Y (ε) we write

Y (ε)t = ε
(

Yt/ε2 − Z At/ε2

)
+ ε

(
Z At/ε2

− ZC0t/ε2

)
+ Z (ε)C0t , t ≥ 0, (6.3)

where C0 is as defined in (6.2). By the invariance principle for the process Z and
Remark 5.16, P1-a.s. the last term converges in law to a Brownian motion with var-
iance σ 2

V = C0σ
2
Z . To prove the invariance principle for Y it is therefore enough to

prove that the first two terms converge to zero in probability. We remark that while
both σZ and C0 depend on the constant K chosen in Sect. 2, since the Y does not
depend on K , σV must be independent of K .
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Lemma 6.2 For any t > 0 and η > 0,P1-a.s.,

(i) lim supε→0 P0
ω

[
ε|Yt/ε2 − Z At/ε2

| > η
]

= 0,

(ii) lim supε→0 P0
ω

[
ε|Z At/ε2

− ZC0t/ε2 | > η
]

= 0.

Proof (i) Note that

aAt = inf{u > t : Yu ∈ C2},

so that aAt = t if Yt ∈ C2.
Now fix t0 > 0, and let δ > 0. By the tightness of of Y in Proposition 5.13b,
there exists R > 0 such that

P0
ω

(
sup
t≤t0

|εYt/ε2 | > R

)
≤ δ.

Let s = t0/ε2. Then Z As = YAas
, so Z As = Ys if Ys ∈ C2. Otherwise we have

that |Z As − Ys | is less than the diameter of the hole containing Ys : call this Ds .
By Lemma 2.3 we have that Ds ≤ (log(R/ε))αH if |Ys | ≤ R/ε, and ε is small
enough. So, for sufficiently small ε, we have

ε|Ys − Z As | ≤ ε(log(R/ε))αH ≤ η, provided that sup
t≤t0

|εYt/ε2 | ≤ R.

So choosing ε small enough,

P0
ω

[
ε|Yt0/ε2 − Z At0/ε

2 | > η
]

≤ δ,

proving i).
(ii) For any δ > 0,

P0
ω

[
ε|Z At/ε2

−ZC0t/ε2 |>η] ≤ P0
ω

[
ε|Z At/ε2

−ZC0t/ε2 |>η, ε2 At/ε2 −C0t |≤δ]

+P0
ω

[∣∣∣ε2 At/ε2 − C0t
∣∣∣ > δ

]
.

The second term converges to zero as ε tends zero by (6.2). For the first term
we get

P0
ω

[
|Z (ε)
ε2 At/ε2

−Z (ε)C0t |>η, |ε2 At/ε2 −C0t |≤δ
]

≤ P0
ω

[
sup

|s1−s2|≤δ,si ≤t

∣∣∣Z (ε)s1
− Z (ε)s2

∣∣∣ > η

]
,

which becomes arbitrary small for ε and δ small enough by (5.14). ��
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To conclude the proof of Theorem 1.1a let 0 = t0 < t1 < · · · < tk be arbitrary.
Since the tightness of the family Y (ε) has been established in Proposition 5.13, it suf-
fices to show that the increments (Y (ε)t1 − Y (ε)t0 , . . . ,Y (ε)tk − Y (ε)tk−1

) converge in law to
the increments of a Brownian motion. The increments are independent, so by (6.3)
and Lemma 6.2 they converge if and only if the increments of Z (ε)C0· converge, and in
that case the limits are identical. But by the invariance principle for Z in Theorem 5.1
the latter converge in law to (σV Bt1 − σV Bt0 , . . . , σV Btk − σV Btk−1), where B is a
Brownian motion and σ 2

V = C0σ
2
Z .

6.2 CSRW

We now consider the CSRW. Recall that μx (ω)=∑
y μxy(ω), set F(ω)=μ0(ω) and

Ãt =
t∫

0

μYs ds =
t∫

0

F(TYsω)ds. (6.4)

Then if ãt = inf{s ≥ 0 : Ãs ≥ t} is the inverse of Ã, the time changed process

Xt = Yãt (6.5)

is the CSRW. By the ergodic theorem for the process (TYtω, t ≥ 0)

lim
t→∞ t−1 Ãt = E1 F = 2dE1μe, P1 × P0

ω − a.s.,

where e is any edge adjacent to 0. So if E1μe < ∞ then ãt/t → a a.s., where
a = 1/2dE1μe > 0. Then

X (ε)t = Y (ε)at + (
X (ε)t − Y (ε)at

)
. (6.6)

As in Lemma 6.2, and using the tightness of Y (ε), we have that for any fixed t0 ≥ 0,

sup
0≤t≤t0

|X (ε)t − Y (ε)at | (6.7)

converges in P0
ω-probability to 0. Thus X (ε) converges to σC W ′

t , where W ′ is a Brown-
ian motion and σ 2

C = aσ 2
V > 0.

In the case when E1μe = ∞ we have that at/t → 0, and hence X (ε) converges to
a degenerate limit. ��

We note that by conditioning on the σ -field σ(1{μe>0}, e ∈ Ed) it is easy to see that
for any edge e

E1μe = Eμe
P(μe > 0, 0 ∈ C1)

P(μe > 0)P(0 ∈ C1)
. (6.8)

In particular we have E1μe < ∞ if and only if Eμe < ∞.
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7 Harnack inequalities and Green’s function bounds

The heat kernel bounds Theorem 4.11 and the invariance principle allow us to obtain
Harnack inequalities, local limit theorems and bounds on Green’s functions, by the
same methods as in [3,5,6].

We have a parabolic Harnack inequality (PHI) for the process Z , and begin with
the definitions necessary to state this. Given D ⊂ C2 let ∂Z D = {y ∈ C2 − D :
dZ (x, y) = 1 for some x ∈ D2} be the external boundary of D in the graph (C2, EZ ).
Let cl Z (D) = D ∪ ∂Z D. For x ∈ C2 let

Q(x, R, T ) = (0, T ] × B2(x, R),

and

Q−(x, R, T ) = [ 1
4 T, 1

2 T
]× B2(x,

1
2 R), Q+(x, R, T ) = [ 3

4 T, T
]× B2

(
x, 1

2 R
)
.

We say that a function u(t, x) is caloric on Q if u is defined on Q = [0, T ] ×
cl Z (B2(x, R)), and

∂u

∂t
(t, x) = LZ u(t, x), (t, x) ∈ Q(x, R, T ). (7.1)

We say the parabolic Harnack inequality (PHI) holds with constant CH for Q =
Q(x, R, T ) if whenever u = u(t, x) is non-negative on Q and caloric on Q, then

sup
(t,x)∈Q−

u(t, x) ≤ CH inf
(t,x)∈Q+

u(t, x). (7.2)

Theorem 7.1 Let (Sx , x ∈ Z
d) be as in Theorem 4.11. Then there exists a constant

CH such that if R ≥ S2
x then the PHI holds with constant CH for Q(x, R, R2).

Proof This is proved as in [5, Section 3]. ��
Since caloric functions are harmonic, we immediately obtain an elliptic Harnack

inequality for Z -harmonic functions.
Combining the PHI and invariance principle for Z as in [5,18], we have a local

limit theorem for q Z ; this will be used to obtain Green’s function bounds for Y . Let
bω : R

d → C2 be defined so that bω(x) is a closest point in C2 to x , write

q̃ Z
t (x, y) = q Z

t (bω(x), bω(y)), a = 1/P(0 ∈ C2),

and let

kt (x) = (2π tσ 2
Z )

−d/2e−|x |2/2σ 2
Z t

be the Gaussian heat kernel with diffusion constant σ 2
Z .
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Proposition 7.2 Let T > 0. Then P-a.s. on the event {0 ∈ C2},

lim
n→∞ sup

x∈Rd
sup
t≥T

∣∣nd/2q̃ Z
nt

(
0,

√
nx
)− akt (x)

∣∣ = 0. (7.3)

Further, if 0 < δ < T and M > 0, then P-a.s.,

lim
n→∞ inf

δ≤t≤T
inf|x |,|y|≤M

nd/2q̃ Z
nt (

√
nx,

√
ny)

akt (x − y)

= lim
n→∞ sup

δ≤t≤T
sup

|x |,|y|≤M

nd/2q̃ Z
nt (

√
nx,

√
ny)

akt (x − y)
= 1.

Proof This is proved from the PHI and invariance principle as in [5], and [6, Theorem
3]. ��

Counterexamples in [12,13] show that if d ≥ 4 then the usual heat kernel upper
bound may fail for the transition density qt (x, y) of X or Y . Thus, given the general
equivalence between Gaussian heat kernel bounds and the PHI (see [20]) we cannot
expect a PHI to hold in general for either X or Y . We do however, have an elliptic
Harnack inequality, and bounds on the Green’s functions of X and Y .

For D ⊂ C1 we define ∂1(D) to be the (exterior) boundary of D in the graph
(C1,O1), and set cl 1(D) = D ∪ ∂1(D). We say that a function h is Y –harmonic in
A ⊂ C1 if h is defined on cl 1(A) and LV h(x) = 0 for x ∈ A. We now give a elliptic
Harnack inequality for the process Y .

Theorem 7.3 There exist r.v. (R′
x , x ∈ Z

d) with

P(R′
x ≥ n|x ∈ C1) ≤ ce−c′nδ , (7.4)

and a constant CE such that if x0 ∈ C1, R ≥ R′
x0

and h : cl 1(B1(x0, R)) → R+ is
Y –harmonic on B1 = B1(x0, R), then writing B ′

1 = B1(x0, R/2),

sup
B′

1

h ≤ CE inf
B′

1

h. (7.5)

Proof Our basic strategy is to use the fact that an elliptic Harnack inequality holds
for Z -harmonic functions on C2, and the fact that all the holes (that is, connected
components of C1 − C2) are small.

For x ∈ Z
d and n ≥ 1 let Fn(x) be the event that one of the ‘holes’ H(y), with

|y − x | ≤ n2, has diameter greater than n1/3d . Then by Lemma 2.3,

P(Fn(x)) ≤ cn2d exp(−2c′n1/3d) ≤ c exp(−c′n1/3d).

Let Ux be the smallest m such that Fn(x) holds for all n ≥ m; we have

P(Ux ≥ n) ≤ c exp(−cn1/3d).
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For x ∈ C1 let g(x) be a closest point in C2 to x , and

R′
x = c1(Ux ∨ Sg(x) ∨ Rg(x)),

where Sy is as in Theorem 7.1 and Ry as in Definition 2.7. Here c1 ≥ 4 is a constant
chosen large enough to avoid ‘small R’ effects. Since

P(R′
x ≥ n) ≤ P(Ux ≥ n/c1)+ P

(
max|y−x |≤n

Sy ≥ n/c1

)
,

the bound (7.4) is satisfied.
Now let R ≥ R′

x0
. Write y0 = g(x0), and note that since R ≥ Ux0 we have

|x0 − y0| ≤ R1/3d . So if y0 �= x0 then y0 is in hole of diameter less than R1/3d , and
since this hole contains less than c(R1/3d)d points, d1(x0, y0) ≤ cR1/3.

Let A be the set of y in B1 ∩ C2 such that BZ (y, 1) ⊂ B1. (So if y ∈ A then there
is no hole adjacent to y with a boundary point outside B1.) Since the d1–diameter of
any holes intersecting B1 is less than cR1/3, we deduce that B1(y0, R − cR1/3) ⊂ A.
So, as d2 ≥ d1, we have B2(y0, 8R/9) ⊂ A.

Now let h be Y –harmonic on B1. Then h(Yt ) is a local martingale up to the first
exit of Y from B, and it follows that if y ∈ A then LZ h(y) = 0. Thus h is Z -harmonic
on B2(y0, 8R/9), and so applying the elliptic Harnack inequality for Z -harmonic
functions in the balls B ′′

2 = B2(y0, 4R/9) ⊂ B2(y0, 8R/9), we have

max
B′′

2

h ≤ C min
B′′

2

h. (7.6)

Since R ≥ c1 Ry0 the ball B2(y0, R1/2) is good, and so using (2.22) it follows that
there exists c2 (depending only on the constants in Definition 2.7) such that

B1(x0, c2 R) ⊂
⋃

y∈B2(y0,R/3)

BZ (y, 1).

Let D = B1(x0, c2 R). Now we show that h(y) ≤ maxB′′
2

h for y ∈ D. If y ∈ C2

then since y ∈ B ′′
2 this is immediate, so suppose y ∈ C1 − C2. Then y is in some hole

H(y). Since H(y) has diameter smaller than R1/3d , the boundary of the hole is still
contained in B ′′

2 , and therefore by the maximum principle h(y) ≤ max{h(z) : z ∈
∂H(y)} ≤ maxB′′

2
h. Similarly we have h(y) ≥ minB′′

2
h for y ∈ B ′

1, so (7.5) follows
from (7.6). ��
Remark 7.4 In Sect. 5 we defined function � and the corrector χ for Z so that Mt =
�(Zt ) = Zt − χ(Zt ) was a martingale. Given ω such that 0 ∈ C2(ω), we can use
the same argument as above to extend the function �(ω, x) on C2 to a Y -harmonic
function �Y (ω, x) on C1. We can then define the corrector for Y (with law P0

ω) by
χY (ω, x) = x − �Y (ω, x). Since the holes are all finite (and small), the pointwise
sublinearity of χ in (5.24) then gives a similar pointwise sublinearity for χY . If ω is
such that 0 ∈ C1(ω)−C2(ω) then we can define χY (ω, ·) by first choosing x ∈ C2(ω),
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so that 0 ∈ C2(Txω), constructing χY (Txω, ·), and finally using the cocycle property
to obtain χY (ω, ·).

Let d ≥ 3. Recall from Sect. 1 the definition of gY (x, y), and define the Green’s
function for Z by

gZ (x, y) =
∞∫

0
q Z

t (x, y)dt = E x
ω

∞∫

0
1(Zs=y)ds. (7.7)

The function gY (x, ·) is harmonic on C1 − {x}, and gZ (x, ·) is harmonic on C2 − {x}.
Since the processes Y and Z agree on C2, it follows that

gY (x, y) = gZ (x, y) if x, y ∈ C2.

Lemma 7.5 Let d ≥ 3.

(a) There exist constants δ, c1, . . . c4, depending only on d and the law of μe, and
r.v. R′′

x , x ∈ Z
d satisfying

P(R′′
x ≥ n|x ∈ C2) ≤ c1e−c2nδ , (7.8)

such that

c3

|x − y|d−2 ≤ gZ (x, y) ≤ c4

|x − y|d−2 if |x − y| ≥ R′′
x ∧ R′′

y , x, y ∈ C2.

(7.9)

(b) Let CZ = �(d/2 − 1)
(
2πd/2σ 2

V P(0 ∈ C2)
)−1

. Then for any ε > 0 there exists a
r.v. Nε such that on {0 ∈ C2},

(1 − ε)CZ

|x |d−2 ≤ gZ (0, x) ≤ (1 + ε)CZ

|x |d−2 for |x | > Nε(ω), x ∈ C2. (7.10)

(c) We have P–a.s. on {ω ∈ C2},

lim
|x |→∞,x∈C2

|x |2−d gZ (0, x) = lim|x |→∞ |x |2−d
E(gZ (0, x)|0 ∈ C2) = CZ . (7.11)

Proof The bounds for gZ (x, y) (for x, y ∈ C2) follow from the bounds for q Z and the
local limit theorem as in [5, Section 6]. ��
Proof of Theorem 1.2. If now x ∈ C2 but y ∈ C1 − C2 then provided x �∈ H(y) the
maximum principle, and the fact that gY and gZ agree on C2 × C2 implies that

min
z∈∂1H(y)

gZ (x, z) ≤ gY (x, y) max
z∈∂1H(y)

gZ (x, z).

If Rx is chosen large enough then the diameter of H(y) is small compared with |x − y|,
so (7.9) follows if x ∈ C1. Repeating the argument by considering H(x) then gives (a).
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A similar approximation argument proves (b), (c) and (d); using translation invariance
it is enough to prove these in the case x = 0. Note that the proof of (c) and (d) gives
the same constant in (1.10) whichever choice of Z = Z(K ) is used. Using continuity,
this constant must therefore be the same as that given by taking K = ∞. ��
Remark 7.6 In addition as in [5, Proposition 6.2] we also have

E(gZ (x, x)k |x ∈ C2) ≤ c(k), k ≥ 1. (7.12)

We cannot expect such bounds for Y , since if x is in a ‘hole’ then x may be separated
from the rest of C1 by a single bond with very low conductivity ε. The mean time Y
then spends in x before leaving will be of order ε−1.

Remark 7.7 While (7.8) gives good control of the tail of the random variables Rx in
(7.9), we do not have any bounds on the tail of the r.v. Nε in (7.10). This is because
the proof of (7.10) relies on the invariance principle, where we do not have a rate of
convergence.

Acknowledgments We are grateful to Takashi Kumagai for several useful discussions.
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