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Abstract The hard-core model has received much attention in the past couple of
decades as a lattice gas model with hard constraints in statistical physics, a multicast
model of calls in communication networks, and as a weighted independent set problem
in combinatorics, probability and theoretical computer science. In this model, each
independent set I in a graph G is weighted proportionally to λ|I |, for a positive real
parameter λ. For large λ, computing the partition function (namely, the normalizing
constant which makes the weighting a probability distribution on a finite graph) on
graphs of maximum degree � ≥ 3, is a well known computationally challenging prob-
lem. More concretely, let λc(T�) denote the critical value for the so-called uniqueness
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threshold of the hard-core model on the infinite �-regular tree; recent breakthrough
results of Weitz (Proceedings of the 38th Annual ACM Symposium on Theory of
Computing (STOC), pp. 140–149, 2006) and Sly (Proceedings of the 51st Annual
IEEE Symposium on Foundations of Computer Science (FOCS), pp. 287–296, 2010)
have identified λc(T�) as a threshold where the hardness of estimating the above
partition function undergoes a computational transition. We focus on the well-studied
particular case of the square lattice Z

2, and provide a new lower bound for the unique-
ness threshold, in particular taking it well above λc(T4). Our technique refines and
builds on the tree of self-avoiding walks approach of Weitz, resulting in a new techni-
cal sufficient criterion (of wider applicability) for establishing strong spatial mixing
(and hence uniqueness) for the hard-core model. Our new criterion achieves better
bounds on strong spatial mixing when the graph has extra structure, improving upon
what can be achieved by just using the maximum degree. Applying our technique to
Z

2 we prove that strong spatial mixing holds for all λ < 2.3882, improving upon the
work of Weitz that held for λ < 27/16 = 1.6875. Our results imply a fully-polyno-
mial deterministic approximation algorithm for estimating the partition function, as
well as rapid mixing of the associated Glauber dynamics to sample from the hard-core
distribution.

Keywords Lattice gas · Gibbs measures · Phase transition · Approximation
algorithm · Glauber dynamics

Mathematics Subject Classification 82B20 · 68Q25 · 60J10

1 Introduction

In this paper we study phase transitions for sampling weighted independent sets
(weighted by an activity λ > 0) of the 2-dimensional integer lattice Z

2. In statis-
tical physics terminology, we study the hard-core lattice gas model ([6,13]), which
is a simple model of a gas whose particles have non-negligible size (thus prevent-
ing them from occupying neighboring sites), with activity λ ∈ R+ corresponding to
the so-called fugacity of the gas. More formally, for a finite graph G = (V, E), let
� = �(G) denote the set of independent sets of G. Given an independent set σ ∈ �,
its weight is defined as w(σ) = λ|σ | and v ∈ V is said to be occupied under σ if
v ∈ σ . The associated Gibbs (or Boltzmann) distribution μ = μG,λ is defined on �

as μ(σ) = w(σ)/Z , where Z = Z(G, λ) = ∑
η∈� w(η) is commonly referred to as

the partition function.
Recall that Valiant [33] showed that exactly computing the number of independent

sets is #P-complete, even when restricted to 3-regular graphs (see [16]). Hence, we
focus our attention on approximation algorithms for estimating the number, or more
generally, the partition function. It is well known [17] that the problem of approximat-
ing the partition function Z and that of sampling from a distribution that is close to
the Gibbs distribution μ, are polynomial-time reducible to each other (see also [31]).

The fundamental notion of a phase transition for a statistical mechanics model on an
infinite graph addresses the critical point at which the model starts to exhibit a certain
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Improved mixing condition on the grid 77

long-range dependence, as a system parameter is varied. In particular, the so-called
critical inverse temperature βc for the Ising or the Potts model, and the critical activity
λc for the hard-core lattice gas model, are prime examples where the system undergoes
a transition from uniqueness to multiplicity of the infinite-volume Gibbs measures.

Phase transition in the hard-core model is also intimately related to the compu-
tational complexity of estimating the partition function Z . Recently, a remarkable
connection was established between the computational complexity of approximating
the partition function for graphs of maximum degree � and the phase transition λc(T�)

for the infinite regular tree T� of degree �. On the positive side, Weitz [34] showed a
deterministic fully-polynomial time approximation algorithm (FPAS) for approximat-
ing the partition function for any graph with maximum degree �, when λ < λc(T�)

and � is constant. On the other side, Sly [30] recently showed that for every � ≥ 3, it
is NP-hard (unless NP=RP) to approximate the partition function for graphs of maxi-
mum degree �, when λc(T�) < λ < λc(T�) + ε�, for some function ε� > 0. More
recently, Galanis et al. [12] improved the range of λ in Sly’s inapproximability result,
extending it to all λ > λc(T�) for the cases � = 3 and � ≥ 6.

1.1 Prior history and current work

Our work builds upon Weitz’s work to get improved results for specific graphs of inter-
est. We focus our attention on what is arguably the simplest, not yet well-understood,
case of interest namely the square grid, or the 2-dimensional integer lattice Z

2. Empir-
ical evidence suggests that the critical point λc(Z

2) ≈ 3.796 [3,13,26], but rigorous
results are significantly far from this conjectured point. The possibility of there being
multiple such λc is not ruled out, although no one believes that this is the case.

From below, van den Berg and Steif [6] used a disagreement percolation argument
to prove λc(Z

2) >
pc

1−pc
where pc is the critical probability for site percolation on Z

2.

Applying the best known lower bound on pc > 0.556 for Z
2 by van den Berg and

Ermakov [5] implies λc(Z
2) > 1.252 . . .. Prior to that work, an alternative approach

aimed at establishing the Dobrushin–Shlosman criterion [10], yielded, via computer-
assisted proofs, λc(Z

2) > 1.185 by Radulescu and Styer [28], and λc(Z
2) > 1.508

by Radulescu [27].
These results were improved upon by Weitz [34] who showed that λc(Z

2) ≥
λc(T4) = 27/16 = 1.6875, where T� is the infinite, complete, regular tree of degree
�. For the upper bound, a classical Peierls’ type argument implies λc(Z

2) = O(1)

[9] (A related result of Randall [29] showing slow mixing of the Glauber dynamics
for λ > 8.066 gives hope for a better upper bound on λc(Z

2).) The regular tree T� is
one of the only examples (that we know of) where the critical point is known exactly,
and in this case, Kelly [18] showed that λc(T�) = (� − 1)�−1/(� − 2)�.

In this work we present a new general approach which, for the case of
the hard-core model on Z

2, improves the lower bound to λc(Z
2) > 2.3882.

There are various algorithmic implications for finite subgraphs of the Z
2 when

λ < 2.3882. Our results imply that Weitz’s deterministic FPAS is also valid
on subgraphs of Z

2 for the same range of λ. Thanks to the existing liter-
ature on general spin systems ([8,11,22,23]), our results also imply that the
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Glauber dynamics has O(n log n) mixing time for any finite subregion G = (V, E)

of Z
2 when λ < 2.3882, where n = |V |. Recall that the Glauber dynamics is a simple

Markov chain that updates the configuration at a randomly chosen vertex in each step,
see [19] for an introduction to the Glauber dynamics. The stationary distribution of
this chain is the Gibbs distribution. Hence, it is of interest as an algorithmic technique
to randomly sample from the Gibbs distribution, and also as a model of how physical
systems reach equilibrium. The mixing time is the number of steps (from the worst
initial configuration) until the distribution is guaranteed to be within variation distance
≤ 1/4 of the stationary distribution.

As in Weitz’s work, our approach can be used for other 2-spin systems, such as
the Ising model. This is discussed in Sect. 6. As will be evident from the following
high-level idea of our approach, it can be applied to other graphs of interest. Our work
also provides an arguably simpler way to derive the main technical result of Weitz
showing that any graph with maximum degree � has strong spatial mixing (SSM)
when λ < λc(T�).

To underline the difficulty in estimating bounds on λc, we remark that the existence
of a (unique) critical activity λc remains conjectural and an open problem for Z

d , for
d ≥ 2. In contrast, for the Ising model, the critical inverse temperature βc(Z

2) has
been known since 1944 [24]; interestingly, the corresponding critical point for the
q-state Potts model (for q ≥ 2) has only recently been established (by Beffara and
Duminil-Copin [4]) to be βc(q) = log(1 + √

q), settling a long-standing open prob-
lem. The lack of monotonicity in λ in the hard-core model poses a serious challenge
in establishing such a sharp result for this model. In fact, Brightwell et al. [7] showed
that in general such a monotonicity need not hold, by providing an example with a
non-regular tree.

2 Technical preliminaries and proof approach

Before presenting our approach, it is useful to review briefly the uniqueness/non-
uniqueness phase transition, and introduce associated notions of decay of spatial cor-
relation, known as weak and strong spatial mixing properties. Much of the below
discussion is simplified for the case of the hard-core model on Z

2, wherein one uti-
lizes certain induced monotonicity (given by the bipartite property) in the model and
the amenability of the graph.

2.1 Uniqueness, weak and strong spatial mixing

Let BL denote the finite graph corresponding to a box of side-length 2L + 1 centered
around the origin in Z

2. Thus, BL = (V, E), where V = (i, j) ∈ Z
2 : −2L − 1 ≤ i,

j ≤ 2L + 1 with edges between pairs of vertices at L1 distance (or Manhattan dis-
tance) equal to one. Since this is a bipartite graph, we may fix one such partition
V = even ∪ odd – for example, it is standard to consider the set of vertices at an
even distance from the origin as the even set. The boundary of BL are those verti-
ces v = (v1, v2) ∈ V where |vi | = 2L + 1 for i = 1 or i = 2. The hard-core
model on bipartite graphs is a monotone system (e.g., see [11]), which for the current
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Improved mixing condition on the grid 79

discussion implies that we only have to consider two assignments to the boundary:
all even vertices or all odd vertices on the boundary are occupied. Let αeven

L ,r (αodd
L ,r )

denote the marginal probability that the origin r is unoccupied given the even (odd,
respectively) boundary. Then to establish uniqueness of the Gibbs measures, we need
that:

lim
L→∞ |αeven

L ,r − αodd
L ,r | = 0.

We are interested in the critical point λc for the transition between uniqueness and non-
uniqueness. A standard way to establish uniqueness is by proving one of the spatial
mixing properties introduced next.

Let G = (V, E) be a (finite) graph. For S ⊂ V , a configuration ρ on S specifies
a subset of S as occupied and the remainder as unoccupied. Let μρ = μ

ρ
G denote

the Gibbs distribution conditional on configuration ρ to S. For v ∈ V , let α
ρ
v = α

ρ
G,v

denote the marginal probability that v is unoccupied in μρ .
The first spatial mixing property is Weak Spatial Mixing (WSM). Here we consider

a pair of boundary configurations on a subset S and consider the “influence” on the
marginal probability that a vertex v is unoccupied. WSM says that the influence on v

decays exponentially in the distance of S from v.

Definition 1 (Weak Spatial Mixing) For the hard-core model at activity λ, for finite
graph G = (V, E), WSM holds with rate γ ∈ (0, 1) if for every v ∈ V , every S ⊂ V ,
and every two configurations ρ, η on S,

∣
∣α

ρ
v − α

η
v

∣
∣ ≤ γ dist(v,S) where dist(v, S) is

the graph distance (i.e., length of the shortest path) between v and (the nearest point
in) the subset S.

The second property of interest is Strong Spatial Mixing (SSM). The intuition is
that if a pair of boundary configurations on a subset S agree at some vertices in S then
those vertices “encourage” v to agree. Therefore, SSM says that the influence on v

decays exponentially in the distance of v from the subset of vertices where the pair of
configurations differ.

Definition 2 (Strong Spatial Mixing) For the hard-core model at activity λ, for finite
graph G = (V, E), SSM holds with rate γ ∈ (0, 1) if for every v ∈ V , every S ⊂ V ,
every S′ ⊂ S, and every two configurations ρ, η on S where ρ(S \ S′) = η(S \ S′),

∣
∣αρ

v − αη
v

∣
∣ ≤ γ dist(v,S′).

Note that since dist(v, T ) ≤ dist(v, T \ S), SSM implies WSM for the same rate.
Moreover, it is a standard fact that such an exponential decay in finite boxes (say), in
Z

d , implies uniqueness of the corresponding infinite volume Gibbs measure on Z
d ,

see Georgii [14] for an introduction to the theory of infinite-volume Gibbs measures.
We can specialize the above notions of WSM and SSM to a particular vertex v, in
which case we say that WSM or SSM holds at v. If the graph is a rooted tree, we will
always assume that the notions of WSM and SSM are considered at the root.

For the hard-core model on a graph G = (V, E), for a subset of vertices S and
a fixed configuration ρ on S, it is equivalent to consider the subgraph G ′ which we
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obtain for each v ∈ S that is fixed to be unoccupied we remove v from G, and for each
v ∈ S that is fixed to be occupied we remove v and its neighbors N (v) from G. In this
way we obtain the following observation which will be useful for proving SSM holds.

Observation 1 For a graph G = (V, E) and v ∈ V , SSM holds in G at vertex v iff
WSM holds for all subgraphs G ′ (of G) at vertex v. To be precise, by subgraphs we
mean graphs obtained by considering all subgraphs of G and taking the component
containing v.

2.2 Self-avoiding walk tree representation

Since our work builds on that of Weitz’s, we first describe the self-avoiding walk
(SAW) tree representation introduced in [34]. Given G = (V, E), we first fix an arbi-
trary ordering >w on the neighbors of each vertex w in G. For each v ∈ V , the tree
Tsaw(G, v) is constructed as follows. Consider the tree T of self-avoiding walks origi-
nating from v, additionally including the vertices closing a cycle as leaves of the tree.
We then fix such leaves of T to be occupied or unoccupied in the following manner.
If a leaf vertex closes a cycle in G, say w → v1 → · · · v� → w, then if v1 >w v� we
fix this leaf to be unoccupied, otherwise if v1 <w v� we fix the leaf to be occupied.
Note, if the leaf is fixed to be unoccupied we simply remove that vertex from the
tree. If the leaf is fixed to be occupied, we remove that leaf and all of its neighbors,
i.e. we remove the parent of that leaf from the tree. The resulting tree is denoted as
Tsaw = Tsaw(G, v). See Fig. 1 for an illustration of Tsaw for a particular example.

Weitz [34] proves the following theorem for the hard-core model, which shows
that the marginal distribution at the root in Tsaw(G, v) is identical to the marginal
distribution for v in G. For a graph G = (V, E), a subset S ⊂ V and configuration ρ

on S, for Tsaw = Tsaw(G, v), let ρ in Tsaw denote the configuration on S in Tsaw where
for w ∈ S every occurrence of w in Tsaw is assigned according to ρ.

Theorem 1 (SAW Tree Representation, Theorem 3.1 in [34]) For any graph G =
(V, E), v ∈ V, λ > 0, and configuration ρ on S ⊂ V , for T = Tsaw(G, v) the
following holds:

α
ρ
G,v = α

ρ
T,v.

Note, the tree Tsaw(G, v) preserves the distance of vertices from v in G, which implies
the following corollary.

Corollary 1 If SSM holds with rate γ for Tsaw(G, v) for all v, then SSM holds for G
with rate γ .

The reverse implication of Corollary 1 does not hold since there are configurations
on S in Tsaw which are not necessarily realizable in G. Observe that if G has maximum
degree �, any SAW tree of G is a subtree of the regular tree of degree �.
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Improved mixing condition on the grid 81

Fig. 1 Example of self-avoiding walk tree Tsaw. The above tree describes Tsaw(G, a) with occupied and
unoccupied leaves, while the below one is the same tree after removing those assigned leaves. At each
vertex, we consider the ordering N > E > S > W of its neighbors where N , E, S, W represent the
neighbors in the North, East, South, West directions, respectively

2.3 Our proof approach

In summary, Weitz [34] first shows (via Theorem 1) that to prove SSM holds on a graph
G = (V, E), it suffices to prove SSM holds on the trees Tsaw(G, v), for all v ∈ V .
Weitz then proves that the regular tree T� “dominates” every tree of maximum degree
� in the sense that, for all trees of maximum degree �, SSM holds when λ < λc(T�).
We refine this second part of Weitz’s approach. In particular, for graphs with extra
structure, such as G = Z

2, we bound Tsaw(Z2) by a tree T ∗ that is much closer to it
than the regular tree T�. We then establish a criterion that achieves better bounds on
SSM for trees when the trees have extra structure.
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82 R. Restrepo et al.

The tree T ∗ will be constructed in a regular manner so that we can prove properties
about it – the construction of T ∗ is governed by a (progeny) t × t matrix M, whose
rows correspond to t types of vertices, with the entry Mi j specifying the number of
children of type j that a vertex of type i begets. We will then show a sufficient condition
using entries of M which implies that SSM holds for T ∗ and for any subgraph of T ∗,
including Tsaw(Z2). The construction of T ∗ is reminiscent of the strategy employed in
[1,25] to upper bound the connectivity constant of several lattice graphs, including Z

2.
The derivation of our sufficient condition has some inspiration from belief propagation
algorithms.

As a byproduct of our proof that our new criterion implies SSM for T ∗, we get a
new (and simpler) proof of the second part of Weitz’s approach, namely, that for all
trees of maximum degree �, SSM holds when λ < λc(T�).

3 Branching matrices and strong spatial mixing

As alluded to above, we will utilize more structural properties of self-avoiding walk
trees. To this end, we consider families of trees which can be recursively generated by
certain rules; we then show that such a general family is also analytically tractable.

3.1 Definition of branching matrices

We say that the matrix M is a t×t branching matrix if every entry Mi j is a non-negative
integer. We say the maximum degree of M is � = �(M) = max1≤i≤t

∑
1≤ j≤t Mi j ,

the maximum row sum. Given a branching matrix M, we define the following family
of graphs. In essence, it includes a graph G if the self-avoiding walk trees of G can
be generated by M.

Definition 3 (Branching Family) Given a t × t branching matrix M,F≤M includes
trees which can be generated under the following restrictions:

◦ Each vertex in tree T ∈ F≤M has its type i ∈ {1, . . . , t}.
◦ Each vertex of type i has at most Mi j children of type j .

In addition, we use the notation G = (V, E) ∈ F≤M if Tsaw(G, v) ∈ F≤M for all
v ∈ V .

For example, the family F≤M with M = [�] includes the family of trees with

maximum branching �. On the other hand, F≤M with M =
(

0 � + 1
0 �

)

describes the

family of graphs of maximum degree � + 1, by assigning the root of tree T ∈ F≤M
to be of type 1 and the other vertices of the tree to be of type 2. Note that if M has
maximum degree �, then every G ∈ F≤M also has maximum degree �.

In this framework, Weitz’s result establishing SSM for all graphs of maximum
degree � when λ < λc(T�) can be stated as establishing SSM with uniform rate for

all G ∈ F≤M with M =
(

0 �

0 � − 1

)

; and we are interested in establishing its analogy

for general M. To this end, we will use the following notion of SSM for M.
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Remark 1 To establish SSM for M, it suffices to prove that SSM holds with uniform
rate for all trees in F≤M due to Corollary 1. In addition, note that SSM holds for

M =
(

0 � + 1
0 �

)

if and only if it holds for (�) since the root of a tree T ∈ F≤M is

the only possible vertex of type 1 in T .

Finally, we define SSM for a branching matrix M.

Definition 4 Given a branching matrix M, we say SSM holds for M if SSM holds
with uniform rate for all G ∈ F≤M .

Remark 2 To establish SSM for M, it suffices to prove that SSM holds with uniform
rate for all trees in F≤M due to Corollary 1.

3.2 Implications of SSM

We present a new approach for proving SSM for a branching matrix M. There are
multiple consequences of SSM for M as summarized in the following theorem. We
first state some definitions needed for stating the theorem.

Following Goldberg et al. [15] we use the following variant of amenability for
infinite graphs. Here we consider an infinite graph G = (V, E). For v ∈ V and a
non-negative integer d, let Bd(v) denote the set of vertices within distance ≤ d from
v, where distance is the length of the shortest path. For a set of vertices S, the (outer)
boundary and neighborhood amenability are defined, respectively, as:

∂S := {w ∈ V : w /∈ S, and w has a neighbor y ∈ S} and rd = sup
v∈V

|∂Bd(v)|
|Bd(v)| .

The infinite graph is said to be neighborhood-amenable if infd rd = 0.
Now we can state the following theorem detailing the implications of SSM of

interest to us.

Theorem 2 For a t × t branching matrix M, if SSM holds for M then the following
hold:

1. For every G ∈ F≤M , SSM holds on G.
2. For every infinite graph G ∈ F≤M , there is a unique infinite-volume Gibbs mea-

sure on G.
3. If M has maximum degree �, if t = O(1) and � = O(1), then for every (finite)

G ∈ F≤M , Weitz’s algorithm [34] gives an FPAS for approximating the partition
function Z(G).

4. For every infinite H ∈ F≤M which is neighborhood-amenable, for every finite
subgraph G = (V, E) of H, the Glauber dynamics has O(n2) mixing time. More-
over, if H = Z

d for constant d, then for every finite subgraph G = (V, E) of H,
the Glauber dynamics has O(n log n) mixing time.

Proof Part 1 is by the definition of SSM for M. The uniqueness result follows from
the fact that the infinite-volume extremal Gibbs measures on the infinite graph G can
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be obtained by taking limits of finite measures, see Georgii [14] for an introduction to
infinite-volume Gibbs measures, and see Martinelli [21] for Part 2. Part 3 immediately
follows from the work of Weitz [34]. Finally, for Part 4, there is a long line of work
showing that for the integer lattice Z

d in fixed dimensions, for the Ising model SSM
on Z

d implies O(n log n) mixing time of the Glauber dynamics on finite subregions
of Z

d , e.g., see Cesi [8] and Martinelli [21] (and the references therein) for recent
results on this problem. These results for the Ising model are typically stated for a
general class of models, but that class does not include models with hard constraints,
such as the hard-core model studied here. Dyer et al. [11] showed a simpler proof for
the hard-core model that utilizes the monotonicity of the model. We use this result
of [11] in Theorem 5 to get O(n log n) mixing time for subregions of Z

2. Goldberg
et al. [15, Theorem 8] showed that for k-colorings, if SSM holds for an infinite graph
G that is neighborhood-amenable, the Glauber dynamics has O(n2) mixing time for
all finite subgraphs of G. Their proof holds for the hard-core model which implies
Part 4.

4 Establishing SSM for branching matrices

In this section we present a sufficient condition implying SSM for the family of trees
generated by a branching matrix. As a consequence of the approach presented in this
section we get a simpler proof of Weitz’s result [34] implying SSM for all graphs with
maximum degree � when λ < λc(T�). We then apply the condition presented in this
section to Z

2 in Sect. 5.
To show the decay of influence of a boundary condition ρ, a common strategy is to

prove some form of contraction for the ‘one-step’ iteration given in (1) below. More
generally, we will prove such a contraction for an appropriate set of ‘statistics’ of the
unoccupied marginal probability.

A statistic of the univariate parameter x ∈ [a, b] is a monotone (i.e., strictly increas-
ing or decreasing) function ϕ : [a, b] → R. For a t×t branching matrix M we consider
a set of t statistics ϕ1, . . . , ϕt , one for each type. For the simpler case when M = [�]
and hence t = 1, we have a single statistic ϕ. Our aim is proving contraction for an
appropriate set of statistics of the probability that the root of a tree is unoccupied.

We first focus on the case of a single type, hence, M = [�], t = 1 and there is
a single statistic ϕ. Consider a tree T = (V, E) ∈ F≤M with root r . For v ∈ V , let
N (v) denote the children of v, and let d(v) := |N (v)| the number of children. Let Tv

denote the subtree rooted at v. We will analyze the unoccupied probability for a vertex
v, but v will always be the root of its subtree. Hence, to simplify the notation, for a
boundary condition ρ on S ⊂ V , let α

ρ
v = α

ρ
Tv,v

.
A straightforward recursive calculation with the partition function leads to the fol-

lowing relation:

αρ
v =

⎧
⎨

⎩

1
1+λ

if N (v) = ∅
1

1+λ
∏

w∈N (v) α
ρ
w

otherwise.
(1)
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Note, the unoccupied probability always lies in the interval I :=
[

1
1+λ

, 1
]
, i.e., for all

v, all ρ, α
ρ
v ∈ I .

For v ∈ V , let mρ
v := ϕ(α

ρ
v ) be the ‘message’ at vertex v. The messages satisfy the

following recurrence:

mρ
v = ϕ

(
1

1 + λ
∏

w∈N (v) α
ρ
w

)

= ϕ

(
1

1 + λ
∏

w∈N (v) ϕ−1(mρ
w)

)

.

Our aim is to prove uniform contraction of the messages on all trees T ∈ F≤M . To
this end, we will consider a more general set of messages. Namely, we consider mes-

sages m1, . . . , m� where for every 1 ≤ i ≤ �, mi = ϕ(αi ) and αi ∈ I :=
[

1
1+λ

, 1
]
.

This set of tuples α1, . . . , α� ∈ I contains all of the tuples obtainable on a tree.
For α1, . . . , α� ∈ I , let mi = ϕ(αi ), 1 ≤ i ≤ �, and let

F(m1, . . . , m�) := ϕ

(
1

1 + λ
∏�

i=1 ϕ−1(mi )

)

.

Ideally, we would like to establish the following contraction: there exists a 0 <

γ < 1 such that for all α1, . . . , α�, α′
1, . . . , α

′
� ∈ I ,

|F(m1, . . . , m�) − F(m′
1, . . . , m′

�)| ≤ γ max
1≤i≤�

|mi − m′
i |,

where mi = ϕ(αi ) and m′
i = ϕ(α′

i ). We will instead show that the following weaker
condition suffices. Namely, that the desired contraction holds for all |αi − α′

i | ≤ ε for
some ε > 0. This is equivalent to the following condition.

Definition 5 Let I =
[

1
1+λ

, 1
]
. For the branching matrix M = [�], we say that Con-

dition (�) is satisfied if for all α1, . . . , α� ∈ I , by setting mi = ϕ(αi ) for 1 ≤ i ≤ �,
the following holds:

‖∇F (m1, . . . , m�)‖1 =
�∑

i=1

∣
∣
∣
∣
∂ F (m1, . . . , m�)

∂mi

∣
∣
∣
∣ < 1. (�)

Let us now consider a natural generalization of the above notion for a branching
matrix with multiple types. Let M be a t × t branching matrix. For 1 ≤ � ≤ t , let
�� = ∑t

k=1 M�k denote the maximum number of children of a vertex of type �. Once
again, consider a tree T = (V, E) ∈ F≤M with root r . For v ∈ V , let t (v) denote its
type. As before, N (v) are the children of v, d(v) is the number of children of v, and
for a boundary condition ρ on S ⊂ V, α

ρ
v is the unoccupied probability for v in the

tree Tv under ρ.
The recursive calculation in (1) for αv in terms of αw,w ∈ N (v), still holds. For

the case of multiple types, for v ∈ V , let mρ
v := ϕt (v)(α

ρ
v ) be the message at vertex v.

The messages satisfy the following recurrence:
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mρ
v = ϕt (v)

(
1

1 + λ
∏

w∈N (v) ϕ−1
t (w)(m

ρ
w)

)

.

For each type 1 ≤ � ≤ t , we consider contraction of messages derived from all
α1, . . . , α��

∈ I . We need to identify the type of each these quantities αi in order
to determine the appropriate statistic to apply. The assignment of types needs to be
consistent with the branching matrix M. Hence, let s� : {1, . . . ,��} → {1, . . . , t} be
the following assignment. Let M�,≤0 = 0 and for 1 ≤ i ≤ t , let M�,≤i = ∑i

k=1 M�,k .
For 1 ≤ i ≤ t , for M�,≤i−1 < j ≤ M�,≤i , let s�( j) = i .

For type 1 ≤ � ≤ t , for α1, . . . , α��
∈ I , set m j = ϕs�( j)(α j ), 1 ≤ j ≤ ��, and

let

F�(m1, . . . , m��
) := ϕ�

(
1

1 + λ
∏��

j=1 ϕ−1
s�( j)(m j )

)

.

Note,

mρ
v = Ft (v)

(
mρ

w1
, . . . , mρ

wd(v)

)
where N (v) = {w1, . . . , wd(v)}.1 (2)

We generalize Condition (�) to branching matrices with multiple types by allowing
a weighting of the types by parameters c1, . . . , ct .

Definition 6 Let I =
[

1
1+λ

, 1
]
. For a t × t branching matrix M, we say that Con-

dition (��) is satisfied if there exist c1, . . . , ct , such that for all 1 ≤ � ≤ t , for all
α1, . . . , α��

∈ I , by setting mi = ϕs�(i)(αi ) for 1 ≤ i ≤ ��, the following holds:

��∑

i=1

cs�(i)

∣
∣
∣
∣
∣

∂ F�

(
m1, . . . , m��

)

∂mi

∣
∣
∣
∣
∣
< c�. (��)

The following lemma establishes a sufficient condition so that SSM holds for M.

Lemma 1 For a t × t branching matrix M, if for every 1 ≤ � ≤ t, ϕ� is continuously

differentiable on the interval I =
[

1
1+λ

, 1
]

and inf
x∈I

|ϕ′
�(x)| > 0, and if Condition (�)

is satisfied for t = 1 or Condition (��) is satisfied for t ≥ 2 then SSM holds for M,
and hence the conclusions of Theorem 2 follow.

Proof For a tree T = (V, E) with root r , let α+
L ,r and α−

L ,r denote the marginal prob-
abilities that the root of T is unoccupied conditional on the vertices at level L (i.e.,
distance L from the root) being occupied and unoccupied, respectively.

1 Strictly speaking, F� requires �� arguments, so for (2) to hold in the case when d(v) < �� we can simply
add additional arguments corresponding to α = 1, which fixes these additional vertices to be unoccupied
(and therefore absent).
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The main result for proving Lemma 1 is that there exist γ < 1 and L0 < ∞ such
that for every tree T ∈ F≤M and every integer L ≥ L0,

∣
∣
∣α+

L ,r − α−
L ,r

∣
∣
∣ ≤ γ L . (3)

We first explain why (3) implies Lemma 1 and then we prove (3). Consider a tree
T = (V, E) with root r , and a boundary condition ρ on S ⊂ V . Set L = dist(r, S)

as the distance of S to the root of T . The hard-core model on bipartite graphs has a
monotonicity of boundary conditions (cf., [11]) which implies that for odd L , α+

L ,r ≥
α

ρ
r ≥ α−

L .r , and for even L , α+
L ,r ≥ α

ρ
r ≥ α−

L ,r . Hence, for any pair of boundary
conditions ρ and η on S,

∣
∣α

ρ
r − αη

r

∣
∣ ≤

∣
∣
∣α+

L ,r − α−
L ,r

∣
∣
∣ .

Therefore, by the definition of WSM in Definition 1, proving (3) implies WSM for T .
Since this holds for all T ′ ∈ F≤M , by Observation 1, it implies SSM for all T ′ ∈ F≤M ,
which, by Remark 2, implies SSM for M.

We now turn our attention to proving (3). Fix a t × t branching matrix M and
consider a tree T = (V, E) ∈ F≤M with root r . Given y ∈ [0, 1], let βL ,v(y) denote
the marginal probability that the root of Tv is unoccupied given all of the vertices at
level L (in Tv) are assigned marginal probability y of being unoccupied (conditional
on its parent being unoccupied). Intuitively, βL ,v(y) can be thought as the marginal
probability conditioned on a ‘fractional’ boundary configuration at level L . As in (1),
βL ,r (y) satisfies the following recurrence for y ∈ [0, 1]:

βL ,r (y) =

⎧
⎪⎪⎨

⎪⎪⎩

y if L = 0,

1
1+λ

if L > 0 and N (r) = ∅,

1
1+λ

∏
w∈N (r) βL−1,w(y)

otherwise.

(4)

From (4) and (1), it follows that α+
L ,r = βL ,r (1) and α−

L ,r = βL ,r (0). Hence, in

order to analyze the messages for α+
L ,r and α−

L ,r , we will analyze the messages for
βL ,r (y). Therefore, for v ∈ V , let mL ,v (y) = ϕt (v)

(
βL ,v (y)

)
. Analogous to (2), we

now have that:

mL ,r (y)= Ft (r)

(
mL−1,w1 (y) , . . . , mL−1,wd(r)

(y)
)

where N (r)={w1, . . . , wd(r)}.

Observe that for all y ∈ [0, 1], all L > 0, all v ∈ V, βL ,v (y) ∈ I =
[

1
1+λ

, 1
]
, and

hence we can use Condition (��) to analyze mL ,r .
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Using the fact that βL ,v (y) and mL ,v (y) are continuously differentiable for y ∈
[0, 1], we have that for L > 0,

∣
∣
∣α+

L ,r − α−
L ,r

∣
∣
∣ = ∣

∣βL ,r (1) − βL ,r (0)
∣
∣ ≤

1∫

0

∣
∣
∣
∣
∂βL ,r (y)

∂y

∣
∣
∣
∣ dy ≤

∫ 1
0

∣
∣
∣
∂mL ,r (y)

∂y

∣
∣
∣ dy

infx∈I

∣
∣
∣ϕ′

t (r) (x)

∣
∣
∣
.

By the hypothesis of Lemma 1, we know that
∣
∣
∣ϕ′

t (r) (x)

∣
∣
∣ > 0. Therefore, to prove

the desired conclusion (3), it suffices to prove that there exist constants K < ∞ and
η < 1 such that for every tree T ∈ F≤M with root r , all L > 0,

∣
∣
∣
∣
∂mL ,r (y)

∂y

∣
∣
∣
∣ ≤ ct (r)KηL−1. (5)

Note that K and η should be independent of T and L , but may depend on λ, ϕ1, . . . , ϕt

and c1, . . . , ct . The constant K will be the following:

K := λ� max1≤�≤t supx∈I

∣
∣ϕ′

� (x)
∣
∣

min1≤�≤t c�

,

and the constant η will be the constant implicit in Condition (��).
We will show (5) by induction on L . First we verify the base case L = 1. In this

case,

mL ,r (y) = ϕt (r)

(
βL ,r (y)

) = ϕt (r)

(
1

1 + λyd(r)

)

.

Thus,

∣
∣
∣
∣
∂mL ,r (y)

∂y

∣
∣
∣
∣ =

∣
∣
∣
∣
∣
∣

∂ϕt (r)

(
1

1+λyd(r)

)

∂y

∣
∣
∣
∣
∣
∣

since L = 1

≤sup
x∈I

∣
∣
∣ϕ′

t (r) (x)

∣
∣
∣ sup

y∈[0,1]

λd(r)yd(r)−1

(
1 + λyd(r)

)2 by the chain rule

≤sup
x∈I

∣
∣
∣ϕ′

t (r) (x)

∣
∣
∣ λd(r)

≤sup
x∈I

∣
∣
∣ϕ′

t (r) (x)

∣
∣
∣ λ�

≤ct (r)K by the definition of K .

This completes the analysis of the base case.
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Now we proceed toward establishing the necessary induction step using the induc-
tive hypothesis. We have that

∣
∣
∣
∣
∂mL ,r (y)

∂y

∣
∣
∣
∣ =

∣
∣
∣
∣
∣

∂ Ft (r)

(
mL−1,w1 (y) , . . . , mL−1,wd(r)

(y)
)

∂y

∣
∣
∣
∣
∣

=
∣
∣
∣
∣
∣
∣

d(r)∑

i=1

∂ Ft (r)

(
m1, . . . , md(r)

)

∂mi
· ∂mL−1,wi (y)

∂y

∣
∣
∣
∣
∣
∣

where mi :=mL−1,wi (y)

=
∣
∣
∣
∣
∣
∣

d(r)∑

i=1

ct (wi )

∂ Ft (r)

(
m1, . . . , md(r)

)

∂mi
· 1

ct (wi )

∂mL−1,wi (y)

∂y

∣
∣
∣
∣
∣
∣

=
∣
∣
∣
∣
∣
∣

d(r)∑

i=1

ct (wi )

∂ Ft (r)

(
m1, . . . , md(r)

)

∂mi

∣
∣
∣
∣
∣
∣

× max
1≤i≤d(r)

1

ct (wi )

∣
∣
∣
∣
∂mL−1,wi (y)

∂y

∣
∣
∣
∣ by Hölder’s inequality. (6)

From (��), there exists a universal constant η < 1 such that

∣
∣
∣
∣
∣
∣

d(r)∑

i=1

ct (wi )

∂ Ft (r)

(
m1, . . . , md(r)

)

∂mi

∣
∣
∣
∣
∣
∣
< η ct (r).

Therefore, it follows that

∣
∣
∣
∣
∂mL ,r (y)

∂y

∣
∣
∣
∣ ≤ η ct (r) · max

1≤i≤d(r)

1

ct (wi )

∣
∣
∣
∣
∂mL−1,wi (y)

∂y

∣
∣
∣
∣ by (6) and the definition of η

≤ ct (r)KηL−1by the inductive hypothesis.

This completes the proof of (5), and hence that of Lemma 1.

4.1 Reproving Weitz’s result of SSM for trees

In this section, we aim at finding a good choice of statistics. First we find such a sta-
tistic for the case M = [�], i.e., the case of a single type, which enables us to reprove
Weitz’s result [34] that when λ < λc(T�) SSM holds for every tree of maximum
degree �.

Using Lemma 1 (and the simpler condition (�) for the case of a single type) we
obtain a simpler proof of Weitz’s result [34] that for every tree T with maximum
degree � + 1 (hence, for every graph G of maximum degree � + 1) and for all
λ < λc(T�+1) = ��/(� − 1)�+1, SSM holds on T (and on G).
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Theorem 3 Let ϕ(x) = 1
s log

(
x

s−x

)
where s = �+1

�
. Then, Condition (�) holds for

M = [�] and λ < λc(T�+1). Consequently, SSM and the conclusions of Theorem 2

hold for M =
(

0 � + 1
0 �

)

and λ < λc(T�+1).

Proof First, a straightforward calculation implies that

∣
∣
∣
∣
∂ F

∂mi

∣
∣
∣
∣ = 1 − α

s − α
(s − αi ),

where αi = ϕ−1(mi ) and α =
(

1 + λ
∏�

i=1 αi

)−1
.

Hence, we have

‖∇F‖1 =
�∑

i=1

∣
∣
∣
∣
∂ F

∂mi

∣
∣
∣
∣

=
�∑

i=1

1 − α

s − α
(s − αi )

≤ 1−α

s−α
�

⎛

⎝s−
(

�∏

i=1

αi

)1/�
⎞

⎠ by the arithmetic–geometric mean inequality

= 1 − α

s − α
�

(

s −
(

1 − α

λα

)1/�
)

. (7)

We now use the following technical lemma.

Lemma 2

max
x∈[0,1]

(1 − x)
(

1 + 1
�

− ( 1−x
λx )

1
�

)

1 + 1
�

− x
≤ ω

1 + ω
,

where � is a positive integer and ω is the unique solution to ω(1 + ω)� = λ.

Using the above inequality (7) with Lemma 2, we have that:

‖∇F‖1 < 1 if
ω

1 + ω
· � < 1,

where ω is the unique solution of ω(1 + ω)� = λ. This leads to the desired condition
λ < λc(T�+1) = ��/(� − 1)�+1 so that SSM holds for M = [�]. As we noted in

Remark 1, this is equivalent to SSM for M =
(

0 � + 1
0 �

)

. This completes the proof

of Theorem 3.
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Proof of Lemma 2 Let ��(x) = ( 1−x
λx )

1
� and f (x) = (1−x)(1+ 1

�
−��(x))

1+ 1
�

−x
. Since

�′
�(x) = − ��(x)

�x(1−x)
, �� is a decreasing function in [0, 1] such that ��(0) = +∞

and ��(1) = 0. Therefore it has a unique fixed point that can be shown to be x̄ = 1
1+ω

.
Moreover, it is the case that ��(x) > x if and only if x < x̄ . To prove Lemma 2, we

notice that f ′(x) = (1+ 1
�

)(�(x)−x)

�x(1+ 1
�

−x)2 , hence f ′(x) > 0 for x < x̄ and f ′(x) < 0 for

x > x̄ . This implies that f has a maximum at x̄ , namely f (x̄) = ω
1+ω

.

4.2 DMS condition: a sufficient criterion

Theorem 3 suggests choosing ϕ j (x) = 1
s j

log
(

x
s j −x

)
with appropriate parameters s j

for a general branching matrix M . Under this choice, we obtain the following condition
for SSM.

Definition 7 (DMS Condition) Given a t × t branching matrix M and λ∗ > 0, for
s1, . . . , st > 1 and c = (c1, . . . , ct ) > 0, let D and S be the diagonal matrices defined
as

D j j = sup
α∈

[
1

1+λ∗ ,1
]

(1 − α)
(

1 − θ j
( 1−α

λ∗α
)1/� j

)

s j − α
and S j j = s j ,

where

θ j :=
(∏

� c
M j�
�

)1/� j

∑
� c�s�M j�/� j

and � j =
∑

�

M j�.

We say the DMS Condition holds for M and λ∗ if there exist s1, . . . , st > 1 and c > 0
such that:

(DM S) c < c.

Theorem 4 If the DMS Condition holds for M and λ∗ > 0, then Condition (��) holds

with the choice of ϕ j (x) = 1
s j

log
(

x
s j −x

)
for all λ ≤ λ∗. Consequently, SSM and the

conclusions of Theorem 2 hold for M and all λ ≤ λ∗.

Proof First, one can check that

∣
∣
∣
∣
∂ Fj

∂mi

∣
∣
∣
∣ = 1 − α

s j − α
(s ji − αi ),

where αi = ϕ−1
ji

(mi ) and α = 1

1+λ
∏� j

i=1 αi

.
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Hence, it follows that

� j∑

i=1

c ji

∣
∣
∣
∣
∂ Fj

∂m j

∣
∣
∣
∣ = 1 − α

s j − α

� j∑

i=1

c ji (s ji − αi )

≤ 1−α

s j −α

⎛

⎜
⎝

� j∑

i=1

c ji s ji −� j

⎛

⎝
� j∏

i=1

c ji αi

⎞

⎠

1/� j
⎞

⎟
⎠ by the arithmetic–geometric mean ineq.

= 1 − α

s j − α

⎛

⎜
⎝

� j∑

i=1

c ji s ji − � j

⎛

⎝
� j∏

i=1

c ji

⎞

⎠

1/� j (
1 − α

λα

)1/� j

⎞

⎟
⎠

= 1 − α

s j − α

(

1 − θ j

(
1 − α

λα

)1/� j
) � j∑

i=1

c ji s ji by the definition of θ j

≤ 1 − α

s j − α

(

1 − θ j

(
1 − α

λ∗α

)1/� j
) � j∑

i=1

c ji s ji

≤ D j j

∑

�

M j�c�s� by the definition of D j j

< c j by the DMS condition.

which satisfies the desired condition (��) of Lemma 1. This completes the proof of
Theorem 4.

5 Application to Z
2 in the hard-core model

In this section, we show how to apply Theorem 4 and Theorem 2 to the two-dimen-
sional integer lattice Z

2 and improve the lower bound on λc(Z
2), resulting in the

following theorem.

Theorem 5 There exists a t × t matrix M such that Tsaw(Z2) ∈ F≤M and the DMS
Condition holds for λ∗ = 2.3882.

Therefore, the following hold for Z
2 for all λ ≤ λ∗:

1. SSM holds on Z
2.

2. There is a unique infinite-volume Gibbs measure on Z
2.

3. If M has maximum degree �, if t = O(1) and � = O(1), then for every finite
subgraph G of Z

2, Weitz’s algorithm [34] gives an FPAS for approximating the
partition function Z(G).

4. For every finite subgraph G of Z
2, the Glauber dynamics has O(n log n) mixing

time.

We first illustrate our approach by showing that Theorem 5 holds with λ∗ = 1.8801
for a simple choice of M. We then explain how to extend the approach to higher λ.

The graph Z
2 is translation-invariant, hence the tree Tsaw(Z2, v) is identical for

every vertex v ∈ Z
2. Fix a vertex, call it the origin o, and let us consider Tsaw(Z2) =

Tsaw(Z2, ø). Each path from the root of Tsaw(Z2) corresponds to a self-avoiding walk
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in Z
2 starting at the origin. Any walk on Z

2 starting at the origin o can be encoded as a
string over the alphabet {N , E, S, W } corresponding to North, East, South and West.
The tree Tsaw(Z2) contains such strings, truncated the first time the corresponding
walk completes a cycle. A relaxed notion of such a tree would be to truncate a walk
only when a 4-cycle is completed. Denote such a tree by T4, and clearly we have that
Tsaw(Z2) is a subtree of T4. Our first idea is to define a branching matrix N so that
T4 ∈ F≤N , and hence Tsaw(Z2) ∈ F≤N .

To avoid cycles of length four, it is enough to track the last three steps of the walks.
Labeling the paths using {N , E, S, W } as mentioned above, their branching rule is
easily determined. For example, a path labeled N W W is followed by paths labeled
W W S, W W N and W W W which corresponds to adding the directions S, N and W
respectively. As another example, a path labeled N W S is followed by paths labeled
W SW and W SS corresponding to adding the directions W and S to the path, while
adding the direction E would have resulted in a cycle of length 4. The number of types
in the corresponding branching matrix is ≤ 4 + 42 + 43 ≤ 53. Indeed, we can reduce
the representation of such paths by using isomorphisms between the generating rules
among them. This results in 4 types in the following branching matrix N:

N =

⎛

⎜
⎜
⎝

0 4 0 0
0 1 2 0
0 1 1 1
0 1 1 0

⎞

⎟
⎟
⎠ , (8)

where the type i = 0, . . . , 3 of a vertex (walk) in the tree represents the fact that a
continuation with a minimum of 4− i additional edges are needed to complete a cycle
of length 4.

See Fig. 2 for an illustration of this branching matrix N . One can verify that this
branching matrix captures, inter alia, the self-avoiding walk trees from Z

2:

Observation 2 For any finite subgraph G = (V, E) of Z
2 and v ∈ V, Tsaw(G, v) ∈

F≤N .

For this branching matrix, one can check that the (DMS) condition of Theo-
rem 4 holds with λ∗ = 1.8801, S = Diag(1.040, 1.388, 1.353, 1.255) and c =
(0.266037, 0.100891, 0.100115, 0.0973861). Checking the DMS Condition for a
given choice of parameters would have been a straightforward task, were it not for the
irrationality of the coefficients D j j . However, one can establish rigorous upper bounds
for D j j , based on concavity of the function (of α) used in the definition of D j j , in a
suitable range of the parameters. These details will be discussed further below. As a
consequence, we can conclude that Theorem 5 holds for N and λ∗ = 1.8801.

The primary reason why the branching matrix N improves beyond the tree-thresh-
old of λ < λc(T4) = 27/16 = 1.6875 is that the average branching factor of any
T ∈ F≤N is significantly smaller than that of the regular tree of degree 4.

To obtain a further reduction in the average branching, we observe that N did
not consider the effect of occupying (or unoccupying) certain leaves as prescribed in
Weitz’s construction. Starting with T4, prune the leaves as is done in the construction of
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Fig. 2 Assignment of the four types from matrix N defined in (8) to the self-avoiding walk tree Tsaw from
Fig. 1. In the circled area, we also draw redundant leaves at vertex j which may appear in the branching
rule, but not in Tsaw

Tsaw(Z2) from Sect. 2.2. Denote the new tree as T ′
4. Clearly we still have that Tsaw(Z2)

is a subtree of T ′
4.

Let us illustrate the difference between T4 and the pruned tree T ′
4. We first fix an

underlying order for the neighbors of each vertex. To this end, say N > E > S > W
and this prescribes an ordering of the neighbors of each vertex. Consider a leaf vertex
v′ in the tree T4 corresponding to the vertex v in Z

2 and to the path ρ in Z
2. Since v′

is a leaf vertex in T4, ρ must end with a cycle at v, say W N E S. Since v was exited in
the West direction at the beginning of the 4-cycle, and since W < N , the leaf vertex v′
would be labeled occupied in Weitz’s construction, thus resulting in the removal of v′
and its parent in the construction of T ′

4. Note, every vertex w′ in T4 of type W N E has a
child v′ of type N E S, and consequently w′ (and its subtree) will be removed from the
tree in the pruning process to construct T ′

4. Thus, after removing vertices of type W N E
(and similarly, W SE, SE N and E N W ) from T4, it is still the case that Tsaw(Z2) is a
subtree of the resulting tree (T ′

4). This highlights why T ′
4 has a significantly smaller

average branching factor than T4.
We can define a branching matrix M2, with 17 types (as illustrated in Fig. 3), such

that T ′
4 ∈ F≤M2 , and hence Tsaw(Z2) ∈ F≤M2 . We can prove the DMS Condition

is satisfied for M2 at λ∗ = 2.1625, as we will describe shortly, which significantly
improves upon our initial bound resulting from considering T4.

A natural direction for improved results is to consider branching matrices cor-
responding to avoidance of larger cycles, while also accounting for the removal of
vertices prescribed by the construction of Weitz. We briefly outline such an approach
for walks avoiding cycles of length at most 4, 6, and 8, respectively. Avoiding cycles
of length 2i results in

∑
j≤2i−1 4 j ≤ 52i−1 types, hence the computations become

increasingly difficult for larger i . For 8-cycles the task of finding appropriate param-
eters to satisfy the conditions of Theorem 4 is still feasible.

More precisely, we can define branching matrices M i for i ≥ 2, that (i) represent
the structure of trees of walks avoiding cycles of length ≤ 2i , as well as (ii) account
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Fig. 3 Shapes that the seventeen types (or labels) represent for M2 where T ′
4 ∈ F≤M2

for the removal of vertices based on children being labeled ‘occupied.’ One can extend
the above construction of M2 for general i > 2 by using types encoded by longer
paths with length at most 2i and ruling out the types that either contain a cycle of
length at most 2i or whose children end up being labeled occupied. We can make the
following general observation from our construction.

Observation 3 For any finite subgraph G = (V, E) of Z
2 and v ∈ V, Tsaw(G, v) ∈

F≤M i for any i ≥ 2.

As mentioned earlier, the matrix M2 constructed above consists of 17 types. An
explicit description of it is shown in the Online Appendix http://www.cc.gatech.edu/
~vigoda/hardcore.html, along with the associated parameters S and c for which one
can check the DMS Condition for λ∗ = 2.1625; this establishes Theorem 5 for M2
and λ∗ = 2.1625.

The following table summarizes the threshold λ∗ we obtain for each M i :

Max length of Avoiding-cycles Effect of Occupations Number of Types λ∗
4 No 4 1.8801
4 Yes 17 (< 53) 2.1625
6 Yes 132 (< 55) 2.3335
8 Yes 922 (< 57) 2.3882

Note that, one can further improve the bound on λ by using more types for higher
i and hence Theorem 5 on Z

2 will hold with the corresponding activity λ∗. For any
such matrix, the verification of the DMS Condition relies on (i) ‘guessing’ appropriate
values for the parameters S and c and (ii) formally verifying that DMS Condition
holds for the chosen S and c. In choosing desirable S and c, we employed a heuristic
random walk algorithm.

To verify that the DMS Condition holds for a given rational matrix S and vector c
is straightforward, provided we can obtain a rational upper bound for each type j for
the function:

f j (α) =
(1 − α)

(
1 − θ j

( 1−α
λα

)1/� j
)

s j − α
.
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Indeed, due to the concavity of this function for 0 < θ j ≤ 1, s j > 51/50 and
λ > 27/16,2 it is always possible to find a provable upper bound for f j in such a
regime. This can be done, for example, by describing a suitable ‘envelope’ for f j

consisting of a piecewise linear function of the form:

g j (α) =
⎧
⎨

⎩

B� if α < α�

min{b� (α − α�) + B�, bu (α − αu) + Bu} if α� < α < αu

Bu if α > αu

where α�, αu are points such that b� > f ′
j (α�) > 0, bu < f ′

j (αu) < 0, B� > f j (α�)

and Bu > f j (αu). It is clear for any such function that g j (α) > f j (α), thus we obtain
a provable upper bound for f j using g j .

For every M i in the above table, we provide S and c, along with appropriate
envelopes that lead to upper bounds D̂ j j for the corresponding D j j . Then we verify
that the DMS Condition holds for the given values of λ by replacing D j j with D̂ j j .
For i = 2, 3, 4 these values (M, S, c, α� and αu) are given in the Online Appendix
http://www.cc.gatech.edu/~vigoda/hardcore.html.

6 Ising model

The approach taken here for the hard-core model can also be employed to address cor-
responding questions in the well-studied Ising model. The Ising model, with inverse
temperature parameter β ≥ 0, on a finite graph G = (V, E) is the model associated
with the Gibbs distribution μ on � = {−1,+1}|V | such that for σ = [σi ] ∈ �,

μ(σ) = 1

Z
exp

⎛

⎝β
∑

(i, j)∈E

σiσ j

⎞

⎠ ,

where the normalizing constant is the partition function: Z = Z(G, β) := ∑
σ∈� exp(

β
∑

(i, j)∈E σiσ j

)
. The notions of SSM, the self-avoiding walk tree representation,

and branching trees defined for the hard-core model extend identically to the Ising
model (or, for that matter, any other 2-spin model). Moreover, an analog of Lemma
1 also follows easily for Ising. Then, by the use of an appropriate statistic ϕ, the
following simpler analog of the DMS Condition can be proved for the Ising model.

Theorem 6 Given a t × t branching matrix M and β∗ > 0, suppose there exists
c = (c1, . . . , ct ) > 0 such that

2 This is a nontrivial algebraic fact. It can be proved by transforming the second derivatives condition
to a set of integer polynomial constraints and using the “resolve” function in MATHEMATICA for the
satisfiability of the constraints, which is rigorous by the Tarski–Seidenberg Theorem [32] for the real poly-
nomial systems http://reference.wolfram.com/mathematica/tutorial/RealPolynomialSystems.html and the
so-called cylindrical algebraic decomposition [2].
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tanh(β∗)Mc < c, (9)

then SSM and the conclusions of Theorem 2 hold for M and all β ∈ [0, β∗].
Proof First we note that Theorem 1 holds in general for all two spin models including
the Ising model. Hence, Corollary 1 and Remark 1 are applicable to the Ising model
as well. Further, observe that the proof of Theorem 2 (i.e., the implications of SSM)
still hold for the Ising model. Consequently, we can prove Theorem 6 using similar
notation and proof approach as was used for Theorem 4.

Given a tree T ∈ F≤M and configuration ρ, let us define again α = α
ρ
r (T, β) as

the probability that the root r of T is minus-spinned. (Recall that in the hard-core
model this was the probability that r was unoccupied.) If w1, . . . , wk are the chil-
dren of r and T1, . . . , Tk are the corresponding subtrees subtended at them, we let
αi := α

ρ
wi (Ti , β) for i ≤ k. For i > k, we define αi := 1/2. Further let ϑi = 1−αi

αi
,

and ϑ = 1−α
α

. Using these notations, a straightforward recursion calculation with the
partition function leads to the following:

ϑ =
� j∏

i=1

exp(2β)ϑi + 1

ϑi + exp(2β)
, (10)

where j is the type of r , and � j = ∑
� M j�.

Motivated by (10), the function Fj (defined in Sect. 4 for the hard-core model) can
be redefined for the Ising model as follows.

Fj (m1, . . . , m� j ) := ϕ j

⎛

⎝
� j∏

i=1

exp(2β)ϕ−1
ji

(mi ) + 1

ϕ−1
ji

(mi ) + exp(2β)

⎞

⎠ ,

where ji is the type of child wi and ϕ j is the statistic for a vertex of type j . Fur-
ther, we define m := ϕ j (ϑ) and mi := ϕ ji (ϑi ). It follows from (10) that m =
Fj (m1, . . . , m� j ). Then, one can prove the ‘Ising version’ of Lemma 1 with the inter-
val I = [exp(−2β�), exp(2β�)] using the same arguments as those in the proof of
Lemma 1. Further, using the same arguments as in the proof of Theorem 4, with the
choice of ϕ j (x) := log(x), we have that

∂ Fj

∂mi
= ϑi

(
e4β − 1

)

(
e2βϑi + 1

) (
e2β + ϑi

) ≤ tanh (β) ,

from which the desired condition (9) follows easily. This completes the proof of The-
orem 6.

Using Theorem 6 with branching matrices M analogous to those we employed in
Section 5 for the hard-core model, we can prove that SSM holds for the Ising model
on Z

d for all β < β∗ as detailed in the following table:
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Dimension β∗

2 0.392190
3 0.214247
4 0.148045
5 0.113347

In comparison, applying Weitz’s general technique to Z
2 implies SSM for β <

0.34657.
We do not investigate the Ising model further because there are much stronger

results known for this model. Onsager [24] established that βc(Z
2) = log(1 + √

2) ≈
0.440686. And for general trees, Lyons [20, Theorem 2.1] established the critical point
for uniqueness.

Acknowledgments We are grateful to Karsten Schwan and the CERCS group at Georgia Tech for lending
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