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Abstract We introduce graphical time series models for the analysis of dynamic
relationships among variables in multivariate time series. The modelling approach is
based on the notion of strong Granger causality and can be applied to time series
with non-linear dependences. The models are derived from ordinary time series mod-
els by imposing constraints that are encoded by mixed graphs. In these graphs each
component series is represented by a single vertex and directed edges indicate possi-
ble Granger-causal relationships between variables while undirected edges are used
to map the contemporaneous dependence structure. We introduce various notions of
Granger-causal Markov properties and discuss the relationships among them and to
other Markov properties that can be applied in this context. Examples for graphical
time series models include nonlinear autoregressive models and multivariate ARCH
models.

Keywords Graphical models ·Multivariate time series · Granger causality ·
Global Markov property
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1 Introduction

Graphical models have become an important tool for the statistical analysis of com-
plex multivariate data sets, which are now increasingly available in many scientific
fields. The key feature of these models is to merge the probabilistic concept of condi-
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tional independence with graph theory by representing possible dependences among
the variables of a multivariate distribution in a graph. This has led to simple graphical
criteria for identifying the conditional independence relations that are implied by a
model associated with a given graph. Further important advantages of the graphical
modelling approach are statistical efficiency due to parsimonious parameterisations
of the joint distribution of the variables and the visualization of complex dependence
structures, which allows an intuitive understanding of the interrelations among the
variables and, thus, facilitates the communication of statistical results. For an intro-
duction to graphical models we refer to the monographs by Whittaker [53], Edwards
[21], and Cox and Wermuth [13]; a mathematically more rigorous treatment can be
found in Lauritzen [39].

While graphical models originally have been developed for variables that are sam-
pled with independent replications, they have been applied more recently also to the
analysis of time dependent data. Some first general remarks concerning the potential
use of graphical models in time series analysis can be found in Brillinger [10]; since
then there has been an increasing interest in the use of graphical modelling techniques
for analyzing multivariate time series (e.g., [14,15,23,24,44,45,48,50]). However, all
these works have been restricted to the analysis of linear interdependences among
the variables whereas the recent trend in time series analysis has shifted towards
non-linear parametric and non-parametric models (e.g., [28,49,52]). Moreover, in
most of these approaches, the variables at different time points are represented by
separate nodes, which leads to graphs with theoretically infinitely many vertices for
which no rigorous theory exists so far.

In this paper, we present a general approach for graphical modelling of multi-
variate stationary time series, which is based on simple graphical representations of
the dynamic dependences of a process. To this end, we utilize the concept of strong
Granger causality (e.g., [29]), which is formulated in terms of conditional indepen-
dences and, thus, can be applied to model arbitrary non-linear relationships among the
variables. The concept of Granger causality originally has been introduced by Granger
[34] and is commonly used for studying dynamic relationships among the variables
in multivariate time series.

For the graphical representations, we consider mixed graphs in which each variable
as a complete time series is represented by a single vertex and directed edges indicate
possible Granger-causal relationships among the variables while undirected edges are
used to map the contemporaneous dependence structure. We note that similar graphs
have been used in Eichler [24] as path diagrams for the autoregressive structure of
weakly stationary processes or—without undirected edges—in Didelez [18] for graph-
ical modelling of time-continuous composable finite Markov processes based on the
concept of local independence [1]. Formally, the graphical encoding of the dynamic
structure of a time series is achieved by a new type of Markov properties, which we call
Granger-causal Markov properties. We introduce various levels, namely the pairwise,
the local, the block-recursive, and the global Granger-causal Markov property, and dis-
cuss the relationships among them. In particular, we give sufficient conditions under
which the various Granger-causal Markov properties are equivalent; such conditions
allow formulating models based on a simple Markov property while interpreting the
associated graph by use of the global Granger-causal Markov property.
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Graphical modelling of multivariate time series 235

The paper is organized as follows. In Sect. 2, we introduce the concepts of
Granger-causal Markov properties and graphical time series models; some examples
of graphical time series models are presented in Sect. 3. In Sect. 4, we discuss global
Markov properties, which relate certain separation properties of the graph to con-
ditional independence or Granger noncausality relations among the variables of the
process. Finally in Sect. 5, we compare the presented graphical modelling approach
with other approaches in the literature and discuss possible extensions. The proofs are
technical and put into the appendix.

2 Graphical time series models

In graphical modelling, the focus is on multivariate statistical models for which the
possible dependences between the studied variables can be represented by a graph. In
multivariate time series analysis, statistical models for a time series XV = (XV (t))t∈Z
are usually specified in terms of the conditional distribution of XV (t+1) given its past
XV (t) = (XV (s))s≤t in order to study the dynamic relationships over time among the
series. Thus, a time series model may be described formally as a family of probability
kernels P from R

V×N to R
V , and we write XV ∼ P if P is a version of the conditional

probability of XV (t + 1) given XV (t).
For modelling specific dependence structures, we utilize the concept of Granger

(non-)causality, which has been introduced by Granger [34] and has proved to be par-
ticularly useful for studying dynamic relationships in multivariate time series. This
probabilistic concept of noncausality from a process Xa to another process Xb is based
on studying whether at time t the next value of Xb can be better predicted by using
the entire information up to time t than by using the same information apart from the
former series Xa . In practice, not all relevant variables may be available and, thus,
the notion of Granger causality clearly depends on the used information set. In the
sequel, we use the concept of strong Granger noncausality (e.g., [29]), which is defined
in terms of conditional independence and σ -algebras and, thus, can be used also for
non-linear time series models.

Let XV = (XV (t))t∈Z with XV (t) = (Xv(t))v∈V ∈ R
V be a multivariate sta-

tionary stochastic process on a probability space (Ω,F ,P). For A ⊆ V , we denote
by X A = (X A(t))t∈Z the multivariate subprocess with components Xa, a ∈ A. The
information provided by the past and present values of X A at time t ∈ Z can be rep-
resented by the sub-σ -algebra XA(t) of F that is generated by XA(t) = (X A(s))s≤t .
We write XA = (XA(t), t ∈ Z) for the filtration induced by X A. This leads to the
following definition of strong Granger noncausality in multivariate time series; for
ease of notation, we subsequently usually drop the attribute “strong”.

Definition 2.1 Let A and B be disjoint subsets of V .

(i) X A is strongly Granger-noncausal for X B with respect to the filtration XV if

XB(t + 1)⊥⊥XA(t) |XV \A(t)

for all t ∈ Z. This will be denoted by X A � X B [XV ].
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(ii) X A and X B are contemporaneously conditionally independent with respect to
the filtration XV if

XA(t + 1)⊥⊥XB(t + 1) |XV (t) ∨XV \(A∪B)(t + 1)

for all t ∈ Z. This will be denoted by X A � X B [XV ].
Intuitively, the dynamic relationships of a stationary multivariate time series XV

can be visualized by a mixed graph G = (V, E) in which each vertex v ∈ V rep-
resents one component Xv and two vertices a and b are joined by a directed edge
a −→ b whenever Xa is Granger-causal for Xb or by an undirected edge a −−− b
whenever Xa and Xb are contemporaneously conditionally dependent. Conversely,
for formulating models with specific dynamic dependences, a mixed graph G can
be associated with a set of Granger noncausality and contemporaneous conditional
independence constraints that are imposed on a time series model for XV . Such a set
of conditional independence relations encoded by a graph G is generally known as
Markov property with respect to G. In the context of multivariate time series, graphs
may encode different types of conditional independence relations, and we therefore
speak of Granger-causal Markov properties when dealing with Granger noncausality
and contemporaneous conditional independence relations. In the following definition,
pa(a) = {v ∈ V |v −→ a ∈ E} denotes the set of parents of a vertex a, while
ne(a) = {v ∈ V |v −−− a ∈ E} is the set of neighbours of a; furthermore, for A ⊆ V ,
we define pa(A) = ∪a∈Apa(a)\A and ne(A) = ∪a∈Ane(a)\A.

Definition 2.2 (Granger-causal Markov properties) Let G = (V, E) be a mixed
graph. Then the stochastic process XV satisfies

(PC) the pairwise Granger-causal Markov property with respect to G if for all a, b ∈
V with a 
= b

(i) a −→ b /∈ E ⇒ Xa � Xb [XV ],
(ii) a −−− b /∈ E ⇒ Xa � Xb [XV ];

(LC) the local Granger-causal Markov property with respect to G if for all a ∈ V
(i) XV \(pa(a)∪{a}) � Xa [XV ],

(ii) XV \(ne(a)∪{a}) � Xa [XV ];
(BC) the block-recursive Granger-causal Markov property with respect to G if for all

subsets A of V
(i) XV \(pa(A)∪A) � X A [XV ],

(ii) XV \(ne(A)∪A) � X A [XV ].
Similarly, if P is a probability kernel from R

V×N to R
V , we say that P satisfies

the pairwise, the local, or the block-recursive Granger-causal Markov property with
respect to a graph G whenever the same is true for every stationary process XV with
XV ∼ P .

Example 2.1 To illustrate the various Granger-causal Markov properties, we consider
the graph G in Fig. 1. Suppose that a stationary process XV satisfies the pairwise
Granger-causal Markov property with respect to this graph G. Then the absence of
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Graphical modelling of multivariate time series 237

Fig. 1 Encoding of relations X A � X B [XX ] by the a pairwise, b local, and c block-recursive Granger-
causal Markov property (A and B are indicated by grey and black nodes, respectively)

the edge 1 −→ 4 in G implies that X1 is Granger-noncausal for X4 with respect to
XV . Next, in the case of the local Granger-causal Markov property, we find that the
bivariate subprocess X{1,2} is Granger-noncausal for X4 with respect to XV since ver-
tex 4 has parents 3 and 5. Similarly, if XV obeys the block-recursive Granger-causal
Markov property, the graph encodes that X{1,2} is Granger-noncausal for X{4,5} with
respect to XV since pa(4, 5) = {3}.

The block-recursive Granger-causal Markov property obviously implies the other
two Granger-causal Markov properties and, thus, is the strongest of the three Mar-
kov properties; similarly, the pairwise Granger-causal Markov property clearly is the
weakest of the three properties. The question arises whether and under which condi-
tions the three Granger-causal Markov properties are equivalent. In the case of random
vectors YV = (Yv)v∈V with values in R

V , the various levels of Markov properties for
graphical interaction models are equivalent if the distribution of YV satisfies

YA⊥⊥ YB | YC∪D ∧ YA⊥⊥ YC | YB∪D ⇒ YA⊥⊥ YB∪C | YD (2.1)

for all disjoints subsets A, B,C , and D of V [47]. A necessary and sufficient condi-
tion for this intersection property is that the information common to YB∪D and YC∪D

equals the information provided by YD . More precisely, let (Ω,F ,P) be the under-
lying probability space and let YS be the sub-σ -algebra generated by YS, S ⊆ V .
Furthermore, we denote the σ -algebra generated by YS and the P-null sets in F by
YS . Then the above intersection property holds if and only if YC∪D ∩ YB∪D = YD

[17,30]; we say that YC∪D and YB∪D are measurable separable conditionally on YD .
For more details on measurable separability we refer to Appendix A and the references
therein.

In order to ensure validity of the intersection property in the time series case, we
impose the following condition:

(S) for all subsets A, B,C of V,XA(t) and XB(t) are measurably separable condi-
tionally on XA∩B(t) ∨XC (t − k) for all k ∈ N and t ∈ Z.

Here, XA∩B(t)∨XC (t − k) denotes the smallest σ -algebra generated by XA∩B(t)∪
XC (t − k). The condition implies that for every F -measurable random variable Z
and all t ∈ Z,

Z ⊥⊥XA(t) |XB∪C (t) ∧ Z ⊥⊥XB(t) |XA∪C (t) ⇔ Z ⊥⊥XA∪B(t) |XC (t). (2.2)

In the case of random vectors YV , a commonly used sufficient condition for the
intersection property and thus for conditional measurable separability is that the joint
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distribution of YV is absolutely continuous with respect to some product measure
and has a positive and continuous density (e.g., [39, Prop. 3.1]). The following result
establishes a similar condition in terms of conditional distributions for the time series
case; it requires an additional regularity condition on partial tail-σ -algebras [29,30].

Proposition 2.1 Let XV = (XV (t))t∈Z be a strictly stationary stochastic process on
some probability space (Ω,F ,P) taking values in R

V and suppose the following two
conditions hold:

(P) the conditional distribution P
XV (t+1)|XV (t), t ∈ Z, has a regular version that is

almost surely absolutely continuous with respect to some product measure ν on
R
|V | with ν-a.e. positive and continuous density;

(M) for all A ⊆ V and t ∈ Z

⋂

k∈N

(
XA(t) ∨XV \A(t − k)

)
=XA(t).

Then the process XV satisfies condition (S).

For an interpretation of condition (M), we note that it is equivalent to

lim
k→∞E (Z |XA(t) ∨XB(t − k)) = E (Z |XA(t))

for all random variables Z and subsets A, B ⊆ V [12]. Thus condition (M) implies
that the process XV is conditionally weakly mixing. For many types of non-linear time
series stronger forms of mixing—but not conditional mixing—have been established
(e.g., [19,28]). We believe that the above condition of conditional mixing is satisfied
by most stationary time series models but a discussion of this is beyond the scope of
this paper.

The intersection property now allows us to derive the following relations among
the three Granger-causal Markov properties.

Theorem 2.1 Suppose that XV satisfies condition (S). Then the three Granger-causal
Markov properties (BC), (LC), and (PC) are related by the following implications:

(BC) ⇒ (LC) ⇔ (PC).

Furthermore, if XV additionally satisfies the composition property

X A � X B [XV ] ⇔ X A � Xb [XV ] ∀ b ∈ B, (2.3)

then the three Granger-causal Markov properties (BC), (LC), and (PC) are equivalent.

The theorem shows that, similarly as in the case of chain graph models with the
Andersson–Madigan–Perlman (AMP) Markov property [2], the pairwise and the local
Granger-causal Markov property are in general not sufficiently strong to encode all
Granger-causal relationships that hold among the components of a multivariate time
series with respect to full information XV . This suggests to specify graphical time
series models in terms of the block-recursive Granger-causal Markov property.
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Graphical modelling of multivariate time series 239

Definition 2.3 (Graphical time series model) Let G be a mixed graph and let PG

be a statistical time series model given by a family of probability kernels P ∈ PG

from R
V×N to R

V . Then PG is said to be a graphical time series model associated
with the graph G if, for all P ∈ PG , the distribution P satisfies the block-recursive
Granger-causal Markov property with respect to G.

The three Granger-causal Markov properties considered so far encode only Granger
noncausality relations with respect to the complete information XV . The discussion of
phenomena such as spurious causality (e.g., [22,35]), however, requires also the con-
sideration of Granger-causal relationships with respect to partial information sets, that
is, with respect to filtrations XS for subsets S of V . To this end, we introduce in Sect. 4
a global Granger-causal Markov property that more generally relates pathways in a
graph to Granger-causal relations among the variables, and we establish, under condi-
tion (S), its equivalence to the block-recursive Granger-causal Markov property; this
shows that the block-recursive Granger-causal Markov property is indeed sufficiently
rich to describe the dynamic dependence structure in multivariate time series.

Before we continue our discussion of Markov properties in Sect. 4, we illustrate
the introduced concept of graphical time series models by a few examples.

3 Examples

In the previous section, graphical time series models have been defined in terms of
the block-recursive Granger-causal Markov property. For many time series models,
however, condition (2.3) in Theorem 2.1 holds, and, hence, the pairwise, the local, and
the block-recursive Granger-causal Markov property are equivalent. This enables us to
derive the constraints on the parameters from the pairwise or the local Granger-causal
Markov property.

There are no simple conditions known that are both necessary and sufficient for
(2.3). The following proposition lists some sufficient conditions that cover many exam-
ples, as will be shown subsequently.

Proposition 3.1 Suppose that XV satisfies condition (S) and one of the following
conditions:

(i) XV is a Gaussian process;
(ii) Xv(t + 1), v ∈ V , are mutually contemporaneously independent, that is, the

joint conditional distribution factorizes as

P
XV (t+1) |XV (t) = ⊗v∈V P

Xv(t+1) |XV (t) ∀t ∈ Z;

(iii) XV (t + 1) depends on its past only in its conditional mean, that is,

XV (t + 1)− E [XV (t + 1) |XV (t)]⊥⊥XV (t) ∀t ∈ Z.

Then the three Granger-causal Markov properties (BC), (LC), and (PC) are equiva-
lent.
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240 M. Eichler

We note that processes satisfying condition (ii) can be described by directed graphs,
that is, graphs without undirected edges. Thus the proposition implies that for directed
graphs the pairwise and the block-recursive Granger-causal Markov property are al-
ways equivalent.

3.1 Nonlinear autoregressive models

As a first example, we consider the general class of multivariate nonlinear autoregres-
sive models given by

XV (t) = fV (XV (t − 1), . . . , XV (t − p))+ εV (t),

where fV is an R
V -valued Borel measurable function on R

p×V and εV = (εV (t))t∈Z
is a sequence of independent and identically distributed zero mean random vectors
with density qV and such that εV (t) is independent of XV (t − 1). Such models have
been considered by many authors; in particular, conditions on fV and qV that guar-
antee geometric ergodicity and thus strong mixing of XV have been established (e.g.,
[19,41,42]). We note, however, that currently there are no conditions known that ensure
the conditional mixing condition (M). An exception are Gaussian autoregressive pro-
cesses that will be briefly discussed below.

For the general class of multivariate nonlinear autoregressive models, the con-
straints imposed by a graph G are best formulated in terms of the local Granger-causal
Markov property. More precisely, XV satisfies the local Granger-causal Markov prop-
erty with respect to G if for all a ∈ V

(L1) fa (XV (t − 1), . . . , XV (t − p))= fa
(
Xpa(a)∪{a}(t−1), . . . , Xpa(a)∪{a}(t−p)

)
;

(L2) qV factorizes as qV (zV ) = ga
(
zne(v)∪{a}

)
ha(zV \{a}).

The second condition implies εa(t)⊥⊥ εV \(ne(a)∪{a})(t) | εne(a)(t),which is equivalent
to Xa and XV \(ne(a)∪{a}) being contemporaneously conditionally independent with
respect to XV as required by the local Granger-causal Markov property. Since XV (t)
depends on its past XV (t−1) only in its conditional mean, it follows from Theorem 2.1
and Proposition 3.1(iii) that the local and the block-recursive Granger-causal Markov
properties are equivalent, that is, the above conditions on fV and qV define indeed a
graphical nonlinear autoregresssive model of order p associated with the graph G.

The general class of multivariate nonlinear autoregressive models covers many
interesting and important models, of which we discuss only the following three.

(a) Vector autoregressive (VAR) model Suppose that XV is a stationary Gaussian
process given by

XV (t) =
p∑

u=1

Φ(u) XV (t − u)+ εV (t), εV (t)
iid∼ N (0,Σ), (3.1)

where Φ(u) are V × V matrices and the variance matrix Σ is non-singular
with inverse K = Σ−1. Then XV satisfies the pairwise Granger-causal Markov
property with respect to a graph G = (V, E) if for all a 
= b
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Graphical modelling of multivariate time series 241

(i) a −→ b /∈ E ⇒ Φba(u) = 0 ∀u = 1, . . . , p;
(ii) a −−− b /∈ E ⇒ Kab = Kba = 0.

Thus, the graphical VAR model of order p associated with the graph G, denoted
by VAR(p,G), is given by all stationary VAR(p) processes whose parameters are
constrained to zero according to the conditions (i) and (ii).
Furthermore, let f (λ) = (2π)−1Φ(e−iλ)−1Σ Φ(e−iλ)′−1, λ ∈ [−π, π ], be the
spectral density matrix of XV , where Φ(z) = IV −Φ(1) z − · · · −Φ(p) z p and
IV is the V ×V identity matrix. Then, if the eigenvalues of f (λ) are bounded and
bounded away from zero uniformly for all λ ∈ [−π, π ], the process XV satisfies
the separability condition (S) [24, Lemma A.2].

(b) Self-exciting threshold autoregressive (SETAR) model: A stochastic process XV

is said to follow a multivariate SETAR model (e.g., [3,52]) if for each a ∈ V

Xa(t) =
p∑

u=1

∑

b∈V

φ
(n)
ab (u) Xb(t − u)+ εa(t) if Xa(t − d) ∈ Ia,n,

where {Ia,1, . . . , Ia,N } is a partition of R, and εV (t)
iid∼ QV , say. Then XV obeys

the local Granger-causal Markov property with respect to a graph G = (V, E)
if, for a 
= b, φ(n)ab (u) = 0 for all n = 1, . . . , N and u = 1, . . . , p whenever
b −→ a /∈ E and QV has density qV satisfying condition (L2).

(c) Nonparametric additive autoregressive model: A very useful class of nonpara-
metric autoregressive models, which avoid the “curse of dimensionality”, are the
additive models given by

Xa(t) =
p∑

u=1

∑

b∈V

f (u)ab (Xb(t − u))+ εa(t), a ∈ V, t ∈ Z,

where f (u)ab are real-valued functions on R. Here, condition (L1) obviously is

equivalent to that the functions f (u)ab , u = 1, . . . , p, are constant whenever a 
= b
and the edge b −→ a is missing in the graph G.

3.2 Multivariate ARCH processes

Another important class of nonlinear time series models are the autoregressive condi-
tional heteroscedasticity (ARCH) model and its various subsidiaries, which have been
developed for modelling the time-varying volatility exhibited by many financial time
series. A stationary stochastic process XV is said to follow a multivariate ARCH(q)
process if its conditional mean E(XV (t) |XV (t − 1)) is zero and the conditional
covariance matrix is of the form

E
(
XV (t)XV (t)

′ |XV (t − 1)
) = Σ(t) = gV V (XV (t − 1), . . . , XV (t − p)) .

For an overview of multivariate ARCH models we refer to Bollerslev et al. [7] and
Gouriéroux [32]; sufficient conditions ensuring existence and strong mixing of such
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processes can be found, for instance, in Lu and Jiang [42], Carrasco and Chen [11],
and Liebscher [41].

One key issue in the specification of multivariate ARCH models is the restriction of
the number of parameters involved, which in a general setting can be very large. Var-
ious parametrisations that allow different levels of complexity have been suggested.
Here the graphical modelling approach can help to achieve a further reduction of the
number of parameters.

In the following, we consider stochastic processes XV with conditional distribu-
tion N (0,Σ(t)) and formulate the constraints defining a graphical ARCH(q) model
associated with a graph G = (V, E) for three different parametrisations of Σ(t).

(i) Constant conditional correlations: The constant conditional correlation model
of Bollerslev [6] provides the most parsimonious parametrisation ofΣ(t). The
conditional variances are given by

σaa(t) = σ 0
aa +

q∑

u=1

∑

k∈pa(a)∪{a}
αa

k (u)Xk(t − u)2,

whereas the conditional covariances are determined by the set of equations

σab(t) = σaa(t)1/2σbb(t)1/2ρab if a −−− b ∈ E,
Kab(t) = 0 if a −−− b /∈ E .

Here K (t) = Σ(t)−1 is the inverse conditional covariance matrix.
(ii) Constant conditional correlations with interaction: In this parametrisation the

conditional variance σaa(t) additionally depends on interaction terms Xk(t −
u)Xl(t − u) if k and l are both parents of a. Thus the conditional variance can
be written as

σaa(t) = σ 0
aa +

q∑

u=1

∑

k,l∈pa(a)∪{a}:k<l

αa
kl(u)Xk(t − u)Xl(t − u).

The entries σab(t) have the same form as in (i).
(iii) Vector ARCH model: In the general vector ARCH model due to Kraft and Engle

[38], also the correlation between the components of XV (t)may depend on the
past values of XV . This leads to conditional covariances σab(t), a ≤ b, of the
form

σab(t) = σ 0
ab +

q∑

u=1

∑

k,l∈Pab:k<l

αab
kl (u)Xk(t − u)Xl(t − u)

if a = b or a −−− b ∈ E , where Pab = (pa(a) ∪ {a}) ∩ (pa(b) ∪ {b}), while
the conditions Kab(t) = 0 for a 
= b and a −−− b /∈ E remain unchanged.

123



Graphical modelling of multivariate time series 243

For the constant conditional correlation models it is easy to derive conditions to
ensure that the conditional covariances are positive definite almost surely for all t .
In contrast, such conditions are difficult to impose and verify for the vector ARCH
model. Therefore Engle and Kroner [27] suggested an alternative representation for
the multivariate ARCH(q) model in which Σ(t) is guaranteed to be positive defi-
nite almost surely for all t . In this so-called BEKK representation,1 the conditional
covariances of a graphical ARCH model are parametrised by

σab(t) = σ 0
ab +

N∑

n=1

q∑

u=1

∑

k,l∈Pab:k<l

α
(n)
ka (u)α

(n)
lb (u)Xk(t − u)Xl(t − u).

In this form it is immediately clear that if σab(t) depends on the past of Xk then
at least one of the conditional variances σaa(t) and σbb(t) must also depend on Xk .
Although less obvious the same can be shown for the vector ARCH model in the
original parametrisation noting that the conditional covariance matrix Σ(t) must be
positive definite. Hence graphical vector ARCH models fulfill condition (2.3). For the
constant conditional correlation model condition (2.3) is trivially fulfilled.

3.3 A binary time series model

As an example with categorical data, we consider a binary time series model that has
been used for the identification of neural interactions from neural spike train data [8,9].
Suppose that the data consist of the recorded spike trains for a set of neurons, that is,
of the sequences of firing times (τv,n)n∈N for neurons v ∈ V , and let Xv be the binary
time series obtained by setting Xv(t) = 1 if neuron v has fired in the interval [t, t+1)
and Xv(t) = 0 otherwise. We assume that the hypothesized neural pathways between
the observed neurons can be depicted by a purely directed graph G; in particular, we
thus exclude the possibility that the dependences among the observed neurons are
affected by unmeasured confounders. Then the interactions between the neurons can
be modelled by the conditional probabilities

P
(
Xb(t) = 1

∣
∣XV (t − 1)

) = Φ
⎛

⎝
∑

a∈pa(b)

Uba(t)− θ
⎞

⎠ , (3.2)

where Φ(x) denotes the normal cumulative function,

Uba(t) =
γb(t)∑

u=1

gba(u) Xa(t − u) (3.3)

1 This is named after Baba, Engle, Kraft and Kroner, the authors of an earlier version of the paper
(cf. Baba [4]).
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(a) (b)

Fig. 2 Illustration of non-equivalence of pairwise and block-recursive Granger-causal Markov properties:
the process with conditional variance (3.4) satisfies the pairwise Granger-causal Markov property with
respect to the graphs in a and b whereas it satisfies the block-recursive Granger-causal Markov property
only with respect to the graph in b

measures the influence of process a on process b, and

γb(t) = min
{
u ∈ N

∣
∣Xb(t − u) = 1

}

is the time elapsed since the last event of process Xb. Furthermore, we assume that
the time unit has been chosen small enough such that there are no interactions among
the neurons within one time interval, and that, consequently, the joint conditional
probability factorizes as

P
(
XV (t) = xV

∣
∣XV (t − 1)

) = ∏

v∈V
P

(
Xv(t) = xv

∣
∣XV (t − 1)

)

for all xV ∈ {0, 1}V . Then the pairwise and the block-recursive Granger-causal Markov
property are equivalent by Proposition 3.1(ii) and, thus, we can use the former for mod-
elling dependences between the processes. From (3.2) and (3.3), it follows that Xa is
Granger-noncausal for Xb if and only if gba(u) = 0 for all u ∈ N.

3.4 Two counter examples

Although condition (2.3) is satisfied by a wide variety of time series models it does
not hold generally. As an example, we consider a simple nonlinear ARCH model XV

with conditional distributions XV (t)|XV (t−1) ∼ N (0,Σ(t)), where the conditional
covariance matrix Σ(t) is given by

Σ(t) =
⎛

⎝
1 ρ(t) 0
ρ(t) 1 0
0 0 1

⎞

⎠ with ρ(t) =
{
ρ if |X3(t − 1)| > c
0 otherwise

(3.4)

for some constants ρ with 0 < |ρ| < 1 and c > 0. Models of this type can be seen as a
multivariate generalisation of the qualitative threshold ARCH(1) model of Gouriéroux
and Monfort [33].

From the conditional covariance matrix, we find that, on the one hand, the marginal
conditional distributions of Xv(t) given XV (t − 1) are standard normal and, thus,
do not depend on XV (t − 1). This implies that the process XV satisfies the pairwise
Granger-causal Markov property with respect to the graph (a) in Fig. 2. On the other
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hand, Xk Granger-causes the subprocess (X1, X2) since the bivariate conditional dis-
tribution of (X1(t), X2(t)) depends on the value of X3(t − 1) through the conditional
correlation ρ(t). Thus XV obeys the block-recursive Granger-causal Markov property
with respect to the graph (b) in Fig. 2, but not with respect to the graph (a).

We note that the example can be easily generalized by considering models where
the conditional variances var(Xa(t)

∣
∣XV (t − 1)), a ∈ V , and the conditional corre-

lation matrix corr(XV (t), XV (t)
∣
∣XV (t − 1)) are modelled separately as functions of

the past values XV (t − 1), . . . , XV (t − p).

Next, consider the trivariate process XV given by

X1(t) = f (X2(t − 1))+ ε(t), X2(t) = g(X3(t − 1)), X3(t) = η(t),

where ε(t) and η(t) are independent sequences of i.i.d. random variables. Since

X1(t) ∨X2(t) =X1(t) ∨X3(t − 1),

condition (S) is violated. Indeed, we find that neither X2 nor X3 Granger-cause X1 with
respect to the full filtration XV whereas the bivariate process (X2, X3)

′ is Granger-
causal for X1. Therefore, the pairwise and the local Granger-causal Markov property
are not equivalent for this process.

4 Global Markov properties

The interpretation of graphs describing the dependence structure of graphical models
in general is enhanced by global Markov properties that merge the notion of condi-
tional independence with a purely graph theoretical concept of separation allowing
one to state whether two subsets of vertices are separated by a third subset of verti-
ces. In this section, we show that the concept of p-separation introduced by Levitz
et al. [40] for chain graph models with the AMP Markov property [2] can be used to
obtain global Markov properties in the present context of graphical time series models.
Throughout this section we assume that condition (S) in Sect. 2 holds.

4.1 The global AMP Markov property

We start with some further graphical terminology. Let G = (V, E) be a mixed graph.
Then a path π between two vertices a and b in G is a sequence π = 〈e1, . . . , en〉
of edges ei ∈ E such that ei is an edge between vi−1 and vi for some sequence of
vertices v0 = a, v1, . . . , vn = b. The vertices a and b are the endpoints of the path,
while v1, . . . , vn−1 are the intermediate points on the path. Like [37] we do not require
that the points v j on a path π are distinct; this means that paths in general may be self-
intersecting. A path π in G is called a directed path if it is of the form a −→ · · · −→ b
or a ←− · · · ←− b. Similarly, if π consists only of undirected edges it is called an
undirected path. Furthermore, a path π̃ is a subpath ofπ if π̃ = 〈ei , ei+1, . . . , e j−1, e j 〉
for some 1 ≤ i ≤ j ≤ n.
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An intermediate point c on a path π is said to be a p-collider on the path if the
edges preceding and suceeding c on the path either have both an arrowhead at c or one
has an arrowhead at c and the other is a line, i.e. −→ c ←−,−→ c −−−,−−− c ←−;
otherwise the point c is said to be a p-noncollider on the path. Notice that this classi-
fication only applies to the intermediate points of a path π ; the endpoints are neither
p-colliders nor p-noncolliders. We also note that a vertex can take different roles in
different positions on a path: for example, on the path 1 −→ 3←− 2 −→ 3 −→ 4 in
Fig. 1, vertex 3 appears both as a p-collider and a p-noncollider.

A path π between vertices a and b is said to be p-connecting given a set S if

(i) every p-noncollider on the path is not in S, and
(ii) every p-collider on the path is in S,

otherwise we say the path is p-blocked given S. In graphs encoding Markov prop-
erties of variables, p-connecting paths are exactly those paths inducing associations
between the variables; conversely, if there are no p-connecting paths the corresponding
variables are independent. This leads to the following definition.

Definition 4.1 (p-separation) Two vertices a and b in a mixed graph G are
p-separated given a set S if all paths between a and b are p-blocked given S. Similarly,
two sets A and B in G are said to be p-separated given S if, for every pair a ∈ A and
b ∈ B, a and b are p-separated given S. This will be denoted by A ��p B | S.

We note that the above conditions for p-separation are simpler than those in Le-
vitz et al. [40] due to the fact that we consider the larger class of all possibly self-
intersecting paths. The equivalence of the two notions of p-separation is shown in
Appendix D. The following results show that the concept of p-separation can be
applied to graphs encoding dynamic relationships in multivariate time series and allows
reading off conditional independences among the stochastic processes that are repre-
sented by the vertices in the graph.

Lemma 4.1 Suppose that XV satisfies the block-recursive Granger-causal Markov
property with respect to the graph G. Then, for any disjoint subsets A, B, and S of V ,
we have

A ��p B | S ⇒ XA(t)⊥⊥XB(t) |XS(t) ∀t ∈ Z.

Letting t tend to infinity, we can translate p-separation in the graph into conditional
independence statements for complete subprocesses. For this, we define XS(∞) =
∨t∈ZXS(t) as the σ -algebra generated by the subprocess X S .

Theorem 4.1 Suppose XV satisfies the block-recursive Granger-causal Markov prop-
erty with respect to the graph G. Then, for any disjoint subsets A, B, and S of V , we
have

A ��p B | S ⇒ XA(∞)⊥⊥XB(∞) |XS(∞).

We say that XV satisfies the global AMP Markov property (GA) with respect to G.
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(a) (b) (c)

Fig. 3 Illustration of global AMP Markov property (paths are marked by bold lines): a path between 1 and
4 that is p-connecting given S ⊆ {2, 5}; b path between 1 and 4 that is p-connecting given S = {2, 3} (or
{2, 3, 5}); c path between 1 and 4 that is p-connecting given S = {3, 5} (or {3})

Example 4.1 For an illustration of the global AMP Markov property, we consider
again the graph G in Fig. 1. In this graph, vertices 1 and 4 are not adjacent. Nev-
ertheless, it can be shown that the two vertices cannot be p-separated by any set
S ⊆ {2, 3, 5}: firstly, the path 1 ←− 3 −→ 4 is p-connecting given a set S unless
the set S contains the vertex 3 (Fig. 3a). Secondly, the path 1 −→ 3 −−− 2 ←− 4 is
p-connecting given S whenever both intermediate points 2 and 3 belong to S (Fig. 3b).
Finally, the path 1 −→ 3←− 2←− 4 is p-connecting given S if S contains vertex 3
but not 2 (Fig. 3c). Thus, if XV is a stationary process that obeys the block-recursive
Granger-causal Markov property with respect to G, then the graph G does not encode
that X1 and X4 are conditionally independent given X S regardless of the choice of
S ⊆ {2, 3, 5}.

Similarly, it can be shown that vertices 1 and 5 are p-separated given S = {3, 4}:
every path between 1 and 5 that contains the edge 3 −→ 5 or the subpath 3 −→
4←− 5 is p-blocked by vertex 3. All other paths between 1 and 5 contain the subpath
2 ←− 4 ←− 5 and, thus, are blocked by vertex 4. It follows that for every process
XV that satisfies the block-recursive Granger-causal Markov property with respect to
G the components X1 and X5 are conditionally independent given X{3,4}.

4.2 The global Granger-causal Markov property

In this section, we apply the concept of pathwise separation to the problem of deriving
general Granger noncausality relations from mixed graphs. To motivate the approach,
we firstly consider the graphical VAR(1) model of all trivariate stationary processes
XV = (X1, X2, X3) given by

X1(t) = φ11 X1(t − 1)+ φ12 X2(t − 1)+ ε1(t),

X2(t) = φ22 X2(t − 1)+ φ23 X3(t − 1)+ ε2(t), (4.1)

X3(t) = φ33 X3(t − 1)+ ε3(t)

for t ∈ Z with independent and standard normally distributed errors εV (t), t ∈ Z.
The associated graph G that encodes the restrictions imposed on the model consists
simply of the path 3 −→ 2 −→ 1, which is p-connecting given the empty set. This
indicates that the components X1 and X3 are, in general, not independent in a bivariate
analysis. However, an intuitive interpretation of the directed path 3 −→ 2 −→ 1 sug-
gests that X3 Granger-causes X1 but not vice versa if only the bivariate process X{1,3}
is considered. Indeed, the block-recursive Granger-causal Markov property implies
that X3(t + 1)⊥⊥X{1,2}(t) |X{3}(t), from which it follows by decomposition (see
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Appendix A) that X1 is Granger-noncausal for X3 with respect to X{1,3}. Obviously,
the p-separation criterion is too strong for establishing this Granger-noncausality rela-
tionship between X3 and X1 since it requires that all paths between the two vertices
are p-blocked whereas it seems sufficient that only certain paths, namely those ending
with an arrowhead at vertex 3, are p-blocked.

This suggests the following definitions. A path π between two vertices a and b in
G is said to be b-pointing2 if it has an arrowhead at the endpoint b. More generally, a
path π between two disjoint subsets A and B is said to be B-pointing if it is b-pointing
for some b ∈ B.

For the derivation of contemporaneous conditional independences, we also need
to consider paths with arrowheads at both endpoints; such paths π will be called bi-
pointing. Furthermore, let π = 〈π1, . . . , πn〉 be a composition of paths πi that are
undirected or bi-pointing. Then π is said to be an extended bi-pointing path. In partic-
ular, this implies that any undirected or bi-pointing path is also an extended bi-pointing
path; similarly, the composition π = 〈π1, π2〉 of two extended bi-pointing paths πi

is again extended bi-pointing. Moreover, every extended bi-pointing path π is of the
form π = 〈u1, β, u2〉 for some paths u1, u2, and β of possibly length zero, where
u1 and u2 are undirected paths and β is a bi-pointing path (hence the term ‘extended
bi-pointing’). With these definitions, we define the following global Granger-causal
Markov property, which gives a path-oriented criterion for deriving general Granger
noncausality relations from a mixed graph.

Definition 4.2 (Global Granger-causal Markov property) Let XV be a stationary pro-
cess and let G = (V, E) be a mixed graph. Then XV satisfies the global Granger-
causal Markov property (GC) with respect to G if, for all disjoint subsets A, B, and
S of V , the following conditions hold:

(i) if every B-pointing path in G between A and B is p-blocked given S ∪ B then

X A � X B [XA∪B∪S];

(ii) if every extended bi-pointing path in G between A and B is p-blocked given
A ∪ B ∪ S then

X A � X B [XA∪B∪S].

From the definition, it is immediately clear by setting S = V \(A ∪ B) that the
global Granger-causal Markov property entails the block-recursive Granger-causal
Markov property. The following theorem shows that in fact, under condition (S), the
two Granger-causal Markov properties are equivalent; thus, the global Granger-causal
Markov property may be employed to discuss the dynamic relationships implied by
a graphical time series model defined in terms of the block-recursive Granger-causal
Markov property.

2 In the literature, a path with this property is also termed a path into b.
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Fig. 4 Illustration of global Granger-causal Markov property: Three 4-pointing paths (solid lines) between
1 and 4 that are p-blocked by the set {3, 4}

Theorem 4.2 Let XV be a stationary process and let G = (V, E) be a mixed graph.
Then XV satisfies the block-recursive Granger-causal Markov property with respect to
G if and only if XV satisfies the global Granger-causal Markov property with respect
to G.

As a consequence of the global Granger-causal Markov property, we find that
p-separation in the graph implies Granger noncausality in both directions and con-
temporaneous conditional independence of the variables.

Corollary 4.1 Suppose that the process XV satisfies the block-recursive Granger-
causal Markov property with respect to a mixed graph G. For disjoint subsets A, B,
and S of V , if A and B are p-separated given S, then

X A � X B [XA∪B∪S], X B � X A [XA∪B∪S], and X A � X B [XA∪B∪S].

The following corollary summarizes the relationships between the various Markov
properties for graphical time series models.

Corollary 4.2 The various Granger-causal Markov properties are related as follows:

(GC) ⇔ (BC) ⇒ (LC) ⇔ (PC).

Furthermore, we have (BC) ⇒ (GA). If additionally condition (2.3) holds, then the
four Granger-causal Markov properties (PC), (LC), (BC), and (GC) are equivalent.

Proof The corollary summarizes Theorems 2.1, 4.1, and 4.2.

Example 4.2 For an illustration, we again consider a stationary time series XV satis-
fying the block-recursive Granger-causal Markov property with respect to the graph G
in Fig. 1. In Example 4.1, we have seen that vertices 1 and 4 are not p-separated given
S = {3}, that is, X1 and X4 are in general not conditionally independent given X3.
We now employ the global Granger-causal Markov property to examine the dynamic
relationships between the components X1 and X4 further.

We start by examining the 4-pointing paths between 1 and 4. Straightforward con-
siderations show that all 4-pointing paths end with either 3 −→ 4, 3 −→ 5 −→ 4,
or 2 ←− 4 ←− 5 −→ 4; three instances of such paths are depicted in Fig. 4. The
paths ending with either 3 −→ 4 or 3 −→ 5 −→ 4 are clearly p-blocked by vertex
3 whereas the paths ending with 2←− 4←− 5 −→ 4 are p-blocked by vertex 4. It
follows that every 4-pointing paths between 1 and 4 is p-blocked by {3, 4} and thus
X1 does not Granger-cause X4 with respect to X{1,3,4}.
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Fig. 5 Illustration of global Granger-causal Markov property: Three extended bi-pointing paths (solid
lines) between 1 and 4 that are p-blocked by the set {3, 4}

Similarly, we can examine all extended bi-pointing paths between vertices 1 and 4
to show that X1 and X4 are contemporaneously conditionally independent with respect
to X{1,3,4}. Figure 5 shows three examples of such paths: the first two are p-blocked
by vertex 3 (notice that on the second path, the vertex 3 is once a p-collider and once
a p-noncollider) whereas the last path is p-blocked by vertices 3 and 4. For similar
reasons as above, these three paths are exemplary for all extended bi-pointing paths
between 1 and 4, and we conclude that X1 and X4 are indeed contemporaneously
conditionally independent with respect to X{1,3,4}.

Finally, we note that every 1-pointing path between 4 and 1 must end with the
directed edge 3 −→ 1. Since this edge has a tail at vertex 3, every such path must be
p-blocked given S = {1, 3}, which implies that X4 does not Granger-cause X1 with
respect to X{1,3,4}.

5 Discussion

In this paper, we discussed a graphical modelling approach for multivariate time series
that is based on mixed graphs in which each vertex represents one complete compo-
nent series while the edges in the graph reflect possible dynamic interdependencies
among the variables of the process. The constraints imposed by the graphs are for-
mulated in terms of strong Granger noncausality and, thus, allow modelling arbitrary
non-linear dependencies. The graphical modelling approach can help to reduce the
number of parameters involved in modelling high-dimensional non-linear time series
while encoding the constraints on the parameters in a simple graph, which is easy to
visualize and allows an intuitive understanding of the dependencies in the model.

We have shown that the interpretation of these graphs, which for many models
are built only from pairwise Granger noncausality relations, is enhanced by so-called
global Markov properties, which relate separation properties of the graph to condi-
tional independence or Granger noncausality statements about the process. In this
paper, we have used the path-oriented concept of p-separation, which allows us to
attribute Granger-causal relationships among the variables to certain pathways in the
graphs.

Our objective has been to provide a general framework for modelling the dynamic
interdependencies in multivariate time series; in particular, we focused on a simple
graphical representation, which has been achieved by representing each component
of a multivariate time series by a single vertex in the associated graph. The approach
presented here, however, is not the only possible, and since the first papers on the
application of graphical models in time series analysis [10,43], there has been an
increasing interest in the topic [14,15,23,24,44,45,48,50]. All these approaches are
basically restricted to the analysis of linear interdependencies, and most of them repre-
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sent each variable at each time point by a separate vertex in the associated graph. In the
following, we briefly compare our approach with alternative graphical representations
and point out possible extensions.

Modelling processes of variables at separate time points

A more detailed modelling of dependencies among the components of a vector time
series can be achieved by representing each random variable Xv(t) by a different
vertex vt , say, in a graph G. This alternative approach has been discussed, for exam-
ple, by Reale and Tunnicliffe Wilson [48], Dahlhaus and Eichler [15], and Moneta and
Spirtes [44]. On the one hand, it leads to a more flexible class of graphical models and
has the advantage that many of the concepts and methods that have been developed for
the multivariate case carry over to the time series case. On the other hand, the increased
flexibility leads to (sometimes much) larger graphs, which easily can become unwieldy
and difficult to interpret, and it clearly also aggrevates the model selection problem.
Moreover, the underlying graph for such graphical time series models theoretically has
infinitely many vertices, and it is not immediately clear how to prune this graph to a
finite representation while preserving the Markov properties. In contrast, Lemma D.1
provides a simple local criterion that restricts the search for p-connecting paths in the
type of graphs considered in this paper.

Apart from these theoretical and practical issues, we think that a high level of
detail as provided by these models is not always wanted nor always appropriate. We
give two examples. Firstly, Baccalá and Sameshima [5] proposed a frequency-domain
approach for the discussion of Granger-causal relationships based on the concept of
partial directed coherence. Although this approach still requires the fitting of VAR
models, the identification of interactions is performed in the frequency-domain and
hence only relations on the level of Granger noncausality can be identified. The results
in Baccalá and Sameshima [5] were summarized by path diagrams associated with
the identified VAR model as discussed in Eichler [24]. Our approach of representing
each time series by one single vertex in the graph provides a theoretical framework
for such frequency-domain based analyses.

Secondly, multivariate time series are often obtained by high-frequency sampling
of continuous-time processes such as EEG-recordings or neural spike trains. Here,
our approach yields a graphical representation of the interrelationships that does not
depend (to some extent) on the sampling frequency (e.g., [22]). Moreover, many
sophisticated models that have been proposed, for example, for analysing neural activ-
ity do not show a dependence on the past values only at specific lags. For instance, in
the binary time series model discussed in Example 3.3, the conditional distribution of
Xb(t) given the past history XV (t − 1) depends on another process Xa through the
past values Xa(t − 1), . . . , Xa(t − γb(t)), where γb(t) is the time elapsed since the
last event of process Xb. In other words, the number of lagged variables Xa(t − u)
on which Xb(t) depends varies over time depending on the past of Xb itself. Con-
sequently, it seems inappropriate to break down the dependence of Xa(t) on Xb(t)
further into dependencies of Xa(t) on Xb(t−u) as required by the detailed modelling
approach.
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m-Separation versus p-separation

The contemporaneous dependence structure of a process XV can also be described by
conditional independencies of the form

XA(t + 1)⊥⊥XB(t + 1) |XV (t),

in which case X A and X B are said to be contemporaneously independent with respect
to XV . This alternative approach, which is related to the concept of instantaneous
causality by Granger [34], has been studied by Eichler [24] in the context of weakly
stationary processes and linear dependencies.

The most important difference between these two approaches for defining graphical
time series models is that the corresponding composition and decomposition property

XA(t + 1)⊥⊥XB(t + 1) |XV (t)

⇔ Xa(t + 1)⊥⊥Xb(t + 1) |XV (t) ∀ a ∈ A, ∀ b ∈ B (5.1)

does not follow from condition (S) but requires additional assumptions similar to condi-
tion (2.3). Furthermore, we note that only the first two conditions in Proposition 3.1 are
sufficient for the above property (5.1). Consequently, the class of graphical time series
models for which the pairwise and the block-recursive Granger-causal Markov proper-
ties are equivalent would be smaller under the alternative approach based on contem-
poraneous independence. Alternatively, if modelling is to be based on m-separation,
one might consider use of an adapted variant of the connected set Markov property as
in Drton and Richardson [20] instead of the pairwise Markov property.

Self-loops

In this paper, we have focused on modelling and analysing the interrelationships in
multivariate time series. Therefore, we have not considered the possibility of directed
self-loops v −→ v, which could be used to impose additional constraints of the
form X B(t + 1)⊥⊥XB(t) |XV \B(t) on a model. We note that, for a discussion of the
dynamic interrelationships among variables, these self-loops are irrelevant. In fact, it
can be shown that two disjoint sets A and B are p-separated given S in a graph with
self-loops if and only if they are also p-separated given S in the same graph with all
self-loops removed. Similar statements can be formulated for pointing and extended
bi-pointing paths.

Non-stationary time series

One of our main assumptions has been that the considered multivariate time series
are stationary. This assumption, however, has been made mainly for the sake of sim-
plicity, and the graphical modelling approach presented can be extended easily also
to the case of non-stationary time series by requiring that the Granger noncausality
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and contemporaneous conditional independence constraints encoded by a graph hold
at all time points in an interval T ⊆ Z, say; in that case, we say that the time se-
ries obeys a Granger-causal Markov property with respect to the graph over the time
interval T . This allow us to consider non-stationary time series models in which
the pattern of dependencies remains fixed whereas the strength of the dependen-
cies may change over time. An interesting extension would be models where also
the graphical structure changes at certain times. For instance, Talih and Hengartner
[51] consider covariance selection models for multivariate time series where changes
in the dependence structure occur at random times; this approach, however, does
not model dynamic dependencies among the variables. Finally, we note that, despite
their practical relevance, non-stationary models have attracted much less—particularly
theoretical—interest than stationary models due to the involved inferential problems.

Two important issues have not been addressed in this paper. Firstly, in many appli-
cations there is little prior knowledge about the causal relationships between the vari-
ables, and empirical methods have to be used to find an appropriate graphical model.
This step of model selection is hampered by the large number of possible models
by which an exhaustive search becomes infeasible even for moderate dimensions.
Therefore, model search strategies are required to lessen the computational burden.

A second issue, which is related to the problem of model selection, is the identifica-
tion of causal effects. It is clear from the definition of Granger causality that we may
conclude from Granger causality to the existence of a causal effect only if all relevant
variables are included in a study, whereas the omission of important variables can lead
to spurious causalities. However, Hsiao [35] noted that such spurious causalities may
vanish if the information set is reduced. In other words, two processes that both satisfy
the pairwise causal Markov property with respect to a graph G may exhibit differ-
ent Granger noncausality relations with respect to partial information sets due to the
presence or absence of spurious causalities. Some concepts as to how this observation
could be exploited for causal inference have been discussed in Eichler [22,25,26].
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Appendix A: Conditional independence and stochastic processes

Throughout the paper we consider a fixed probability space (Ω,F ,P). For any sub-
σ -algebra H of F ,H denotes the completed σ -algebra generated by H and the
P-null sets in F . Thus the sets in the completed σ -algebra H are still measurable
sets in F . Next, let F1,F2, and F3 be sub-σ -algebras of F . The smallest σ -algebra
generated by Fi ∪F j is denoted as Fi ∨F j . Then F1 and F2 are said to be inde-
pendent conditionally on F3 if E(X |F2 ∨F3) = E(X |F3) a.s. for all real-valued,
bounded, F1-measurable random variables X . Using the notation of Dawid [16] we
write F1⊥⊥F2 |F3 [P] or F1⊥⊥F2 |F3 if the reference to P is clear.
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Let Fi , i = 1, . . . , 4 be sub-σ -algebras of F . Then the basic properties of the
conditional independence relation are:

(CI1) F1⊥⊥F2 |F3 ⇒ F2⊥⊥F1 |F3 (symmetry)
(CI2) F1⊥⊥F2 ∨F3 |F4 ⇒ F1⊥⊥F2 |F4 (decomposition)
(CI3) F1⊥⊥F2 ∨F3 |F4 ⇒ F1⊥⊥F2 ∨F3 |F3 ∨F4 (weak union)
(CI4) F1⊥⊥F2 |F4 and F1⊥⊥F3 |F2 ∨ F4 ⇒ F1⊥⊥F2 ∨ F3 |F4

(contraction)

In some of the proofs in this paper, we make use of an additional property,

(CI5) F1⊥⊥F2 |F3 ∨F4 and F1⊥⊥F3 |F2 ∨F4 ⇔ F1⊥⊥F2 ∨F3 |F4,

which has been called intersection property by Pearl [46]. Unlike the other basic prop-
erties of conditional indepence, this property does not hold in general. A sufficient
and necessary condition for (CI5) is given by

F2 ∨F4 ∩F3 ∨F4 = F4. (A.1)

In that case, F2 and F3 are said to be measurably separated conditionally on F4,
denoted by F2 ‖ F3 |F4 [P] [30]. We note that the dependence on P is only through
the null sets of P. For details on conditional measurable separability and its properties,
we refer to Chapter 5.2 of Florens et al. [30].

If the σ -algebras Fi are generated by random vectors Xi for i = 1, . . . , 4, in
which case we write Fi = σ {Xi }, a sufficient condition for conditional measurable
separability of the Xi ’s and, thus, of the Fi ’s is that the probability measure P

X1,...,X4

is absolutely continuous with respect to a product measure μ and has a positive and
continuous density. However, if each of the σ -algebras Fi is generated by infinitely
many random variables, the condition is obviously no longer valid. In the following we
show that for strictly stationary processes XV it is sufficient to assume the existence of
a positive and continuous density for the conditional distribution of XV (t + 1) given
its past XV (t) at the cost of the additional regularity condition (M).

Lemma A.1 Suppose that XV is a stochastic process such that condition (P) holds,
and let Y1,Y2 be finite disjoint subsets of S(t) = {Xv(s), s ≤ t, v ∈ V }. Then

Y1 ‖ Y2 | σ {S(t)\(Y1 ∪ Y2)} [P], (A.2)

where σ {S(t)\(Y1 ∪ Y2)} denotes the σ -algebra generated by S(t)\(Y1 ∪ Y2).

Proof A sufficient condition for (A.2) [30, Corollary 5.2.11] is the existence of a
probability measure P

′ on (Ω,XV (t)) such that P
′ and P|XV (t), the restriction of P

on (Ω,XV (t)), are equivalent (i.e. have the same null sets) and

Y1⊥⊥ Y2 | σ {S(t)\(Y1 ∪ Y2)} [P′]. (A.3)

Take k ∈ N such that Y1 ∪ Y2 and S(t − k) are disjoint, and let Z j = XV (t − j) for
j = 0, . . . , k − 1 and Zk = S(t − k). Noting that by condition (P) the conditional
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densities fZ jv |Zk exist and can be derived from the product of the conditional densities

fZ j |Z j+1,...,Zk−1,Zk , we define the probability kernel Q(zk, A) from R
V×N to R

V×k by

Q(zk, A0 × · · · × Ak−1) =
∫

Ak−1

· · ·
∫

A0

k−1∏

j=0

∏

v∈V
fZ jv |Zk (z jv|zk) dν(z0) · · · dν(zk−1).

Then the probability P
′ on (Ω,XV (t)) defined by

P
′ (Z0 ∈ A0, . . . , Zk−1 ∈ Ak−1, Zk ∈ Ak)

=
∫

Z−1
k (Ak )

∫

Ak−1

· · ·
∫

A0

Q (Zk(ω), (dz0, . . . , dzk−1)) dP(ω)

is equivalent to P|XV (t). Furthermore, the random variables Z jv with j = 0, . . . , k−1
and v ∈ V are mutually independent conditionally on Zk under P

′, which implies (A.3)
and hence (A.2).

The next result shows that this conditional measurable separability can also be
extended to σ -algebras XA(t) generated by the pasts XA(t) provided the process XV

is conditionally mixing [in the sense of condition (M)].

Proposition A.1 Suppose that XV is a stochastic process such that conditions (M)
and (P) hold. Then XA(t) and XB(t) are measurably separated conditionally on
XV \(A∪B)(t) for all disjoint subsets A and B of V and all t ∈ Z.

Proof Let A and B be disjoint subsets of V . We have to show that XA(t),XB(t), and
XV \(A∪B)(t) satisfy (A.1) and hence that

XV \B(t)∩XV \A(t)=XV \(A∪B)(t) (A.4)

for all t ∈ Z. From Lemma A.1, it follows that, for all t ∈ Z and k ∈ N, the σ -algebras
σ {X A(t), . . . , X A(t−k+1)} and σ {X B(t), . . . , X B(t−k+1)} are measurably sepa-
rable conditional on XV \(A∪B)(t)∨XV (t−k). Accordingly, we have by the definition
of conditionally measurable separability

XV \B(t) ∨XV (t − k) ∩XV \A(t) ∨XV (t − k) =XV \(A∪B)(t) ∨XV (t − k)

for all t ∈ Z and k ∈ N. Since the σ -algebras on both sides are monotonically
decreasing as k increases, this yields for k →∞
⋂

k>0

[
XV \B(t) ∨XV (t−k)∩XV \A(t) ∨XV (t−k)

]
=

⋂

k>0

XV \(A∪B)(t) ∨XV (t−k)

for all t ∈ Z. Since by condition (M)

⋂

k>0

[
XS(t) ∨XV (t − k)

]
=XS(t)
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for all subsets S of V , this establishes (A.4).

Proof of Proposition 2.1 The result follows directly from Lemma A.1 and Proposi-
tion A.1.

Appendix B: Graphical terminology

We firstly recall some basic graphical definitions used in this paper. In a graph G =
(V, E), if there is a directed edge a −→ b, we say that a is a parent of b and b
is a child of a; similarly, if there is an undirected line a −−− b, the vertices a and
b are called neighbours. The sets of parents, children and neighbours of a vertex
a are denoted as pa(a), ch(a), and ne(a), respectively. Furthermore, for A ⊆ V , let
pa(A) = ∪a∈Apa(a)\A be the set of all parents of vertices in A that are not themselves
in A, and let ch(A) and ne(A) be defined similarly.

Next, as in Frydenberg [31], a vertex b is said to be an ancestor of a if either b = a
or there exists a directed path b −→ · · · −→ a in G. The set of all ancestors of ele-
ments in A is denoted by an(A). Notice that this definition differs from the one given
in Lauritzen [39]. A subset A is called an ancestral set if it contains all its ancestors,
that is, an(A) = A.

Finally, let G = (V, E) and G ′ = (V ′, E ′) be mixed graphs. Then G ′ is a sub-
graph of G if V ′ ⊆ V and E ′ ⊆ E . If A is a subset of V it induces the subgraph
G A = (A, E A) where E A contains all edges e ∈ E that have both endpoints in A.

In the remainder of this section, we prove some auxiliarly results that allow us
to relate separation statements in the full graph to separation statement in so-called
marginal graphs, which basically reflect the dynamic dependencies in appropriate
subprocesses (see Lemma C.1).

Definition B.1 (Marginal graph) Let G = (V, E) be a mixed graph and let A be an
ancestral subset of V . Then the marginal graph G[A] = (A, E[A]) induced by A is
obtained from the induced subgraph G A by insertion of additional undirected edges
a −−− b whenever there exists an undirected path between a and b in G that does not
intersect an(A)\{a, b}.
Lemma B.1 Let G = (V, E) be a mixed graph and A, B, S disjoint subsets of V .
Then A and B are p-separated given S in G if and only if A and B are p-separated
given S in G[an(A∪B∪S)].

Proof To show necessity, let π = 〈e1, . . . , en〉 be a p-connecting path between A and
B given S in G[an(A∪B∪S)]. If all edges of π are edges in G, π is also p-connecting
given S in G. Thus, we may assume that there exist edges in π, e j1 , . . . , e jm say,
that do not occur in G. These edges e jk are necessarily undirected since all directed
edges in G[an(A∪B∪S)] also occur in G. Let e jk = v jk −−− v jk+1. Then by defini-
tion of the marginal graph there exists an undirected path φ jk between v jk−1 and v jk
which bypasses an(A ∪ B ∪ S)\{v jk−1, v jk } and therefore is p-connecting given S.
Replacing all edges e jk in π by the corresponding paths φ jk we obtain a new path π ′
which connects A and B in G. This path π ′ is also p-connecting given S since the
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replacement of e jk by the undirected and p-connecting path φ jk does not change the
p-collider resp. p-noncollider status of the points v jk−1 and v jk .

Conversely for sufficiency, let π = 〈e1, . . . , en〉 be a p-connecting path between
A and B given S in G. Then all edges in π with both endpoints in an(A ∪ B ∪ S)
also occur in G[an(A∪B∪S)] since Gan(A∪B∪S) is a subgraph of G[an(A∪B∪S)]. We firstly
show that the endpoints of any directed edge e j in π are in an(A ∪ B ∪ S). Let e j =
v j −→ v j+1 (the case e j = v j ←− v j+1 is treated similarly). Then there exists a
directed subpath 〈e j , . . . , e j+r 〉 of maximal length such that either v j+r is an endpoint
ofπ and, thus, in A∪B or e j+r+1 is of the form v j+r −−− v j+r+1 or v j+r ←− v j+r+1.
In the latter case v j+r is a p-collider and, thus, in S since π is p-connecting given S.
It follows that v j and v j+1 are both in an(A ∪ B ∪ S).

Next, if e j is an edge in π that does not occur in G[an(A∪B∪S)], at least one of
its endpoints v j−1 and v j is not in an(A ∪ B ∪ S). Thus, there exists an undirected
subpath ψi,k = 〈ei , . . . , ek〉 with i ≤ j ≤ k such that vi−1, vk ∈ an(A ∪ B ∪ S)
but all intermediate points are not in an(A ∪ B ∪ S). In other words, vi−1 and vk are
not separated by an(A ∪ B ∪ S)\{v j−1, vk} in G which implies the presence of the
undirected edge fi,k = vi−1 − vk in G[an(A∪B∪S)]. Replacing all undirected subpaths
φi,k with intermediate points not in an(A ∪ B ∪ S) by the corresponding edge fi,k ,
we obtain a path between A and B in G[an(A∪B∪S)] which still has all its p-collider in
S and all its p-noncolliders outside S and therefore is p-connecting given S.

The following lemma is an adapted version of Proposition 2 in Koster [36]. The
proof is considerably shorter due to the fact that we allow paths to be self-intersecting.

Lemma B.2 Let A, B, S be disjoint subsets of V . Then A and B are p-separated given
S in G[an(A∪B∪S)] if and only there exist subsets A′ and B ′ such that A ⊆ A′, B ⊆
B ′, A′ ∪ B ′ ∪ S = an(A ∪ B ∪ S) and

A′ ��p B ′ | S [G[an(A∪B∪S)]].

Proof By Lemma B.1 we may assume that V = an(A ∪ B ∪ S). Let A′ be the subset
of vertices v ∈ V \(B ∪ S) such that v ��p B | S [G], and set B ′ = V \(A′ ∪ S).
Then A′ and B are obviously p-separated given S. Thus, we have to show that a and
b′ are p-separated given S whenever a ∈ A′ and b′ ∈ B ′\B. Suppose to the con-
trary that there exists a p-connecting path π between some a ∈ A′ and b′ ∈ B ′\B.
Since A′ contains all vertices in V \(B ∪ S) that are p-separated from B given S,
there exists a p-connecting path π ′ between b′ and some b ∈ B. Furthermore, since
b′ ∈ an(A ∪ B ∪ S)\(A∪B∪S) there exists some vertex u ∈ A∪B∪S and a directed
path ω = b′ −→ · · · −→ u with no intermediate points in A ∪ B ∪ S. Denoting by
ω̄ the reverse path of ω, that is, ω̄ = u ←− · · · ←− b′, we may compose a path φ
between A and B by

(i) φ = 〈ω̄, π ′〉 if u ∈ A,
(ii) φ = 〈π,ω〉 if u ∈ B, and

(iii) φ = 〈π,ω, ω̄, π ′〉 if u ∈ S.

We note that the directed path ω is p-connecting given S since it has no intermediate
points in S. Furthermore, b′ /∈ S is a p-noncollider on φ in each of these cases and
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(a) (b) (c)

Fig. 6 Pure-collider paths between two vertices a and b

v ∈ S is a p-collider on φ in case (iii). Hence φ is a p-connecting path between A and
B given S which contradicts our assumption.

The opposite implication is obvious because of the elementwise definition of
p-separation.

Because of Lemmas B.1 and B.2, it is often sufficient in the proofs to consider
only the case of A ��p B | S with S = V \(A ∪ B). In this case, p-separation can
be characterized in terms of pure-collider paths—paths on which every intermediate
node is a collider—or in terms of local configurations (Fig. 6).

Lemma B.3 Let G be a mixed graph and let A and B be two disjoint subsets of V .
Then the following statements are equivalent:

(i) A ��p B | V \(A ∪ B);
(ii) A and B are not connected by a pure-collider path;

(iii) (A ∪ ch(A)) ∩ (B ∪ ch(B)) = ∅ and ne(A ∪ ch(A)) ∩ (B ∪ ch(B)) = ∅.

Note that the second part of condition (iii) states that no two vertices a ∈ A∪ch(A)
and b ∈ B ∪ ch(B) are adjacent; the condition thus is also symmetric in A and B.

Proof This observation follows directly from the definition of p-separation and pure-
collider paths.

Appendix C: Proofs

Proof of Theorem 2.1 Setting A = {a} in (BC), we obtain (LC). Conversely, since
pa(a) ∪ {a} ⊆ pa(A) ∪ A, we have by (LC) together with (CI2) and (CI3)

XV \pa(A)∪A � Xa ∀a ∈ A,

which, under condition (2.3), implies the first part of (BC). The second part is proved
similarly.

To see that (LC) and (PC) are equivalent, we note that, under condition (S), the
intersection property leads to the following composition and decomposition property
for Granger noncausality relations:

X A � X B [XV ] ⇔ Xa � X B [XV ] ∀a ∈ A. (C.1)
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Similarly, we have for contemporaneous conditional independence relations

X A � X B [XV ] ⇔ Xa � Xb [XV ] ∀ a ∈ A, ∀ b ∈ B. (C.2)

Taking A = V \(B ∪ pa(B)) in (C.1) and A = V \(B ∪ pa(B)) in (C.2), we find that
the pairwise and the local Granger-causal Markov properties are equivalent.

Proof of Proposition 3.1 By Theorem 2.1, it suffices to show that each of the three
conditions (i), (ii), and (iii) implies

X A � Xb [XV ] ∀ b ∈ B ⇒ X A � X B [XV ] (C.3)

for any two disjoint subsets A, B ⊆ V .
For the first case, let H be the Hilbert space of all square integrable random variables

on (Ω,F ,P). Furthermore, for U ⊆ V , let HU (t) be the closed subspace spanned
by {Xu(s), u ∈ U, s ≤ t} and let H⊥U (t) be its orthogonal complement. Then we have
for any Y ∈ H⊥V \A(t)

cov (X B(t + 1), Y ) = 0 ⇔ cov (Xb(t + 1), Y ) = 0 ∀ b ∈ B,

which for a Gaussian process implies (C.3).
Next, suppose that condition (ii) holds and that X A is Granger-noncausal for Xb

with respect to XV for all b ∈ B. Then, the conditional distribution P
X B (t+1)|XV (t)

satisfies

P
X B (t+1)|XV (t) = ⊗b∈BP

Xb(t+1)|XV (t) = ⊗b∈BP
Xb(t+1)|XV \A(t)

and, thus, is XV \A(t)-measurable, which proves (C.3).
Finally, if condition (iii) holds, we have

X B(t + 1)− E [X B(t + 1) |XV (t)]⊥⊥XA(t) |XV \A(t).

Since the left hand side of (C.3) implies that E[X B(t + 1) |XV (t)] is XV \A(t)-
measurable, we obtain X B(t + 1)⊥⊥XA(t) |XV \A(t), which completes the proof.

For the proof of the equivalence of the block-recursive and the global Granger-
causal Markov property, it will be convenient to restrict ourselves to mixed graphs for
ancestral subsets. Due to the additional undirected edges inserted into the marginal
graph G[an(A)], the subprocess Xan(A) satisfies the pairwise Granger-causal Markov
property with respect to G[an(A)] if XV did so with respect to G. The following lemma
shows that the same inheritance property also holds for the block-recursive Granger-
causal Markov property.

Lemma C.1 Suppose that XV satisfies the block-recursive Granger-causal Markov
property with respect to the mixed graph G, and let U ⊆ V . Then the subprocess
Xan(U ) satisfies the block-recursive Granger-causal Markov property with respect to
the marginal ancestral graph G[an(U )].
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Proof Let H = G[an(U )] and let A be a subset of an(U ). We first note that, since
an(U ) is an ancestral set and, thus, contains the parents of all its subsets A, the parents
of A in both graphs are the same, that is, P = paG(A) = paH (A). By the block-
recursive Granger-causal Markov property of XV with respect to G, XV \(P∪A) does
not Granger-cause X A with respect to XV , which by (CI2) implies that Xan(U )\(P∪A)

is Granger-noncausal for X A with respect to the smaller filtration Xan(U ) as required
by the block-recursive Granger-causal Markov property of Xan(U ) with respect to H .

Next, let N = neH (A). Then A and an(U )\(N ∪ A) are separated by N in Hu,
that is, a and b are not adjacent in the undirected subgraph Hu whenever a ∈ A and
b ∈ an(U )\(N ∪ A). By definition of H , this implies that A and an(U )\(N ∪ A)
are separated by N in Gu. By the block-recursive Granger-causal Markov property, it
follows that

XA(t + 1)⊥⊥Xan(U )\(N∪A)(t + 1) |XV (t) ∨XN (t + 1)

and, with (CI2) and (CI3),

XA(t + 1)⊥⊥XV \an(U )(t) |Xan(U )∪N (t).

Combining these two relations by using (CI2) to (CI4), we find that Xan(U )\(N∪A)

and X A are contemporaneously conditionally independent with respect to Xan(U )
as required by the block-recursive Granger-causal Markov property of Xan(U ) with
respect to the graph H .

Proof of Lemma 4.1 For notational convenience, we may assume in view of
Lemma C.1 that an(A ∪ B ∪ S) = V and, thus, G[an(A∪B∪S)] = G. Furthermore,
Lemma B.1 implies that, if A ��p B | S in the graph G, there exists a partition
(A∗, B∗, S) of V such that A ⊆ A∗, B ⊆ B∗, and A∗ ��p B∗ | S. Thus, without
loss of generality, we may assume that S = V \(A ∪ B).

With these simplifications, it suffices to show that A ��p B | V \(A ∪ B) implies

XX A (t)⊥⊥XX B (t) |XV \(A∪B)(t)(t) (C.4)

for all t ∈ Z. To this end, we firstly show that

XA(t)⊥⊥XB(t) |XV \(A∪B)(t) ∨XA∪B(t − k) (C.5)

for all t ∈ Z and k ∈ N.
We proceed by induction on k. For k = 1, we obtain (C.5) immediately from the

block-recursive Granger-causal Markov property noting that B ⊆ V \(A ∪ ne(A)).
For the induction step k → k + 1 assume that

XA(t)⊥⊥XB(t) |XV \(A∪B)(t) ∨XA∪B(t − k) (C.6)
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for all t ∈ Z. Let CA = A∪ch(A). Then, since by the block-recursive Granger-causal
Markov property X A is Granger-noncausal for XV \CA with respect to XV , we have

XA(t)⊥⊥XV \CA (t + 1) |XV \A(t) ∨XA∪B(t − k)

and further with (C.6) and (CI4)

XA(t)⊥⊥XB(t) ∨XV \CA (t + 1) |XV \(A∪B)(t) ∨XV (t − k).

With NA = ne(A ∪ ch(A)) = ne(CA), we obtain by (CI2) and (CI3)

XA(t)⊥⊥XB(t) ∨XV \(CA∪NA)(t + 1) |XNA (t + 1) ∨XV \(A∪B)(t) ∨XV (t − k).

(C.7)

Next, we note that by Lemma B.3 B ∪ ch(B) ⊆ V \(CA ∪ NA) and thus

XCA (t + 1)⊥⊥XB(t) |XNA(t + 1) ∨XV \B(t).

Furthermore, XCA and XV \(CA∪NA) are contemporaneously conditionally independent
and thus

XCA (t + 1)⊥⊥XV \(CA∪NA)(t + 1) |XNA (t + 1) ∨XV (t).

Together with the previous relation, we obtain by (CI4)

XCA (t + 1)⊥⊥XB(t) ∨XV \(CA∪NA)(t + 1) |XNA (t + 1) ∨XV \B(t).

By (C.7) together with properties (CI2), (CI3), and (CI5), this yields

XA(t) ∨ XCA (t + 1)⊥⊥XB(t) ∨XV \(CA∪NA)(t + 1) |XNA (t + 1)

∨ XV \(A∪B)(t) ∨XV (t − k).

Since this relation holds for all t ∈ Z, we have by (CI2) and (CI3)

XA(t)⊥⊥XB(t) |XV \(A∪B)(t) ∨XA∪B(t − k − 1),

which completes the induction step.
To show that (C.5) entails (C.4), we note that for k →∞ (C.5) yields

XA(t)⊥⊥XB(t) |
⋂

k>0

[
XV \(A∪B)(t) ∨XA∪B(t − k)

]

for all t ∈ Z. As in the proof of Proposition A.1, it follows that

⋂

k>0

[
XV \(A∪B)(t) ∨XA∪B(t − k)

]
=XV \(A∪B)(t),
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which concludes the proof of (C.4).

Proof of Theorem 4.1 Suppose that A, B, and S are disjoint subsets of V such that
A ��p B | S. Let ξ be any XA(∞) measurable random variable with E|ξ | < ∞,
where XA(∞) = ∨t∈Z XA(t) denotes the σ -algebra generated by X A. Then ξ(t) =
E(ξ |XA(t)) is a martingale and converges to ξ in L1 as t tends to infinity. Thus, we
obtain on the one hand, as t →∞,

E (ξ(t)|XS∪B(t))→ E (ξ |XS∪B(∞)) in L1. (C.8)

On the other hand, since ξ(t)⊥⊥XB(t) |XS(t) by Lemma 4.1, we have, as t →∞,

E (ξ(t)|XS∪B(t)) = E (ξ(t)|XS(t))→ E (ξ |XS(∞)) in L1. (C.9)

Since the limits in (C.8) and (C.9) must be equal in L1 and, thus, also almost surely,
this proves that XA(∞)⊥⊥XB(∞) |XS(∞). ��
Proof of Theorem 4.2 For the proof of the first part of the global Granger-causal Mar-
kov property, let A and B be subsets such that all B-pointing paths between A and
B are p-blocked given B ∪ S. We note that each B-pointing path π is of the form
π = 〈π̃ , e〉, where e is a directed edge u −→ b for some b ∈ B. Thus, π is p-blocked
given B ∪ S if and only if u ∈ B ∪ S or π̃ is p-blocked given B ∪ S. Therefore,
if all B-pointing paths between A and B are p-blocked given B ∪ S, then A and
pa(B)\(B ∪ S) are p-separated given B ∪ S and we obtain by Lemma 4.1

Xpa(B)\(B∪S)(t)⊥⊥XA(t) |XB∪S(t).

Since, in particular, every edge a −→ b for some a ∈ A and b ∈ B is p-connect-
ing, it follows that A and pa(B) are disjoint. Thus, we get by the block-recursive
Granger-causal Markov property

XB(t + 1)⊥⊥XA(t) |Xpa(B)∪S∪B(t).

Applying the contraction property to this and the previous relation, we find that X A

is Granger-noncausal for X B with respect to XA∪B∪S .
For the proof of the second part, let U = A∪ B∪ S and assume that every extended

bi-pointing path between A and B is p-blocked given U . This includes in particular all
bi-pointing paths π between a ∈ A and b ∈ B, which are of the form π = 〈e1, π̃ , en〉,
where e1 and en are directed edges a ←− pa and pb −→ b, respectively (Fig. 7a).
Then π is p-blocked given U if and only if pa ∈ U, pb ∈ U , or π̃ is p-blocked given
U . This implies that, if all bi-pointing paths between A and B are p-blocked given
U, pa(A)\U and pa(B)\U are p-separated given U .

Next, we seek to find subsets SA and SB of S such that all extended bi-pointing paths
between the enlarged sets A∪ SA and B∪ SB are still p-blocked given U . Then, by the
same argument as above, pa(A ∪ SA)\U and pa(B ∪ SB)\U are p-separated given
U . As an example, consider the extended bi-pointing path in Fig. 7b and suppose that
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(a) (b)

Fig. 7 a Bi-pointing path; b extended bi-pointing path

s1 and s2 are linked to a and b, respectively, by undirected paths that are p-connecting
given S. Then the depicted extended bi-pointing path is p-blocked given U if and only
if p1 and p2 are p-separated given U .

For a formal definition of the sets SA and SB , we first set S0 = {s ∈ S|pa(s) ⊆ U },
which in particular includes all s ∈ S that have no parents. Then adding any vertex in
S0 to either SA or SB to either A∪SA or B∪SB will not increase the sets pa(A ∪ SA)\U
or pa(B ∪ SB)\U .Therefore, we set For a formal argument, we need to define the sets
SA and SB slightly differently. More precisely, let S0 = {s ∈ S|pa(s) ⊆ U }, which
in particular includes all s ∈ S that have no parents. Furthermore, let SA be the set of
all s ∈ S\S0 such that every extended bi-pointing path between s and B is p-blocked
given U and set SB = S\(S0∪ SA). Notice that for all s ∈ SB there exists an extended
bi-pointing path between s and B that is p-connecting given U . We show that every
extended bi-pointing path between A∪ SA and B∪ SB is p-blocked given U . Since all
extended bi-pointing paths between A ∪ SA and B must be p-blocked by assumption
on A and B or by definition of SA, we only have to show that all extended bi-pointing
paths between A ∪ SA and SB are p-blocked given U . Suppose to the contrary that π
is an extended bi-pointing path between A∪ SA and s ∈ SB that is p-connecting given
U . Then, as mentioned above, there exists a p-connecting extended bi-pointing path
πs between s and B. If s is a p-collider on the composed extended bi-pointing path
π̃ = 〈π, πs〉 then π̃ is p-connecting given U contradicting the assumption about A
and B. Otherwise, if s is a p-noncollider, the two adjacent edges must be undirected
(i.e.−−− s −−−) because extended bi-pointing paths never have a tail at either endpoint.
Since s /∈ S0 there exists a path π̌ = 〈π, s ←− v −→ s, πs〉 with v ∈ pa(s)\U . The
two instances of s on π̌ that are adjacent to v are p-colliders and π̌ thus is p-connecting
given U . Since π̌ is composed of extended bi-pointing paths, it is itself an extended
bi-pointing path. Thus, by definition of SA, π̌ must have endpoints in A and B, which
contradicts again the assumption about A and B.

Since in particular all bi-pointing paths between A∪ SA and B ∪ SB are p-blocked
given U , we have

pa(A ∪ SA)\U ��p pa(B ∪ SB)\U |U. (C.10)

Thus, we obtain by Lemma 4.1

Xpa(A∪SA)\U (t)⊥⊥Xpa(B∪SB )\U (t) |XU (t). (C.11)

It also follows from (C.10) that the sets pa(A ∪ SA)\U and pa(B ∪ SB) are disjoint
and thus pa(A ∪ SA)\U ⊆ V \pa(B ∪ SB), Noting furthermore that pa(S0) ⊆ U by
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definition of S0, we obtain from the block-recursive Granger-causal Markov property

XB∪SB∪S0(t + 1)⊥⊥Xpa(A∪SA)\U (t) |XU∪pa(B∪SB )(t). (C.12)

Together with (C.11) this yields

XB∪SB∪S0(t + 1)⊥⊥Xpa(A∪SA)\U (t) |XU (t). (C.13)

Moreover, since undirected paths are special cases of extended bi-pointing paths,
we find that every undirected path between A∪ SA and B ∪ SB intersects S0. Then, by
a standard argument of graph theory (e.g., [53, Lemma 3.3.3]), there exists a partition
(A∗, B∗, S0) of V such that A ∪ SA ⊆ A∗, B ∪ SB ⊆ B∗, and every undirected path
between A∗ and B∗ intersects S0; in particular, this implies ne(A ∪ SA) ⊆ S0. Thus,
we obtain by the block-recursive Granger-causal Markov property

XA∪SA (t + 1)⊥⊥XB∪SB (t + 1) |XV (t) ∨XS0(t + 1).

Together with

XA∪SA∪S0(t + 1)⊥⊥XV \(U∪pa(A∪SA))(t) |XU∪pa(A∪SA)(t),

which, by pa(S0)∪(A∪SA∪S0) ⊆ U , also follows from the block-recursive Granger-
causal Markov property, this implies

XA∪SA (t + 1)⊥⊥XB∪SB (t + 1) |XU∪pa(A∪SA)(t), X S0(t + 1). (C.14)

Applying (CI4) to (C.13) and (C.14), we finally obtain

XA∪SA (t + 1)⊥⊥XB∪SB (t + 1) |XU (t) ∨XS0(t + 1),

from which the desired relation follows by (CI2).
Finally, to see that (GC) entails (BC), let S = pa(B) and A = V \S for an arbi-

trary subset B of V . Then the first relation in (BC) follows directly from the global
Granger-causal Markov property. The second relation in (BC) can be derived similarly.

Proof of Corollary 4.1 Suppose that all paths between A and B are p-blocked given
S. We show that then all B-pointing paths between A and B are p-blocked given S∪B,
which implies by the global Granger-causal Markov property that X A is Granger-non-
causal for X B with respect to XA∪B∪S .

We firstly note that, in particular, every B-pointing path π between A and B are
p-blocked given S and, if π does not contain any intermediate points in B, also p-
blocked given S ∪ B. Now, suppose that π is a B-pointing path between A and B
with some intermediate points in B. Then π can be partitioned as π = 〈π1, π2〉where
π1 is a path between A and some b ∈ B with no intermediate points in B. Because
of the assumption, the path π1 is p-blocked given S and, since it has no intermediate
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points in B, also given S ∪ B. It follows that all B-pointing paths between A and B
are p-blocked given S ∪ B.

The other two cases X B � X A [XA∪B∪S] and X A � X B [XA∪B∪S] can be
derived similarly.

Appendix D: p-Separation in mixed graphs

The definition of p-separation presented in this paper is based on paths that may be
self-intersecting. This leads to simpler conditions than in the original definition by
Levitz et al. [40]. The latter is formulated in terms of paths on which all intermediate
points are distinct, that is, these paths are not self-intersecting; such paths are called
trails. According to Levitz et al. [40], a trail between vertices a and b is said to be
p-active relative to S if

(i) every p-collider (head-no-tail node) on π is in an(S), and
(ii) every p-noncollider v is either not in S or it has two adjacent undirected edges

(−−− v −−−) and pa(v)\S 
= ∅.

Otherwise the trail is p-blocked relative to S. Let A, B, and S be disjoint subsets of
V . Then S p-separates A and B if all trails between A and B are p-blocked relative
to S.

The following proposition shows that the two notions of p-separation are equiva-
lent.

Proposition D.1 Let G = (V, E) be a mixed graph and A, B, S disjoint subsets of
V . Then there exists a p-active trail between A and B relative to S if and only there
exists a p-connecting path between A and B given S.

Proof Suppose that π is a trail between two vertices a and b that is p-active relative
to S. If all p-colliders on π are in S and all p-noncolliders are outside S, then π is
also p-connecting given S. Otherwise, π is p-blocked by vertices u j1 , . . . , u jr on the
path. If u ji is a p-collider then u ji ∈ an(S) since π is p-active. Hence there exists
a directed path τi = 〈u ji −→ · · · −→ si 〉 for some si ∈ S such that all intermediate
points on τi are not in S and we set σi = 〈τi , τ̄i 〉, where τ̄i denotes the reverse path of
τi , that is, τ̄i = 〈si ←− · · · ←− u ji 〉. On the other hand, if u ji is a p-noncollider on π ,
then the two edges adjacent to u ji are undirected. Thus, there exists wi ∈ pa(u ji )\S
and we set σi = 〈u ji ←− wi −→ u ji 〉. Now, let πi be the subpath of π between u ji−1

and u ji with u j0 = a and u jr+1 = b and set

π ′ = 〈π0, σ1, π1, σ2, . . . , πr−1, σr , πr 〉.

Then all p-colliders on π ′ are in S and all p-noncolliders are not in S, which yields
that π ′ is p-connecting given S.

Conversely, suppose that π is a p-connecting path between a and b given S. Let u j1
be the first instance of a vertex that occurs more than once on the path. Then π can be
partitioned as π = 〈π ′0, λ1, π1〉 such that u j1 is an endpoint, but not an intermediate
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point of π ′0 and π1. Noting that π ′0 is already a trail, we continue to partition π1 in the
same way. After finitely many steps, we obtain the partition

π = 〈π ′0, λ1, π
′
1, λ2, . . . , π

′
r−1, λr , π

′
r 〉

such that the subpaths π ′j are all trails. Thus, the shortened path π ′ = 〈π ′0, . . . , π ′r 〉
is also a trail. We show that π ′ is a p-active trail relative to S. We firstly note that all
subtrails π ′j are p-connecting and hence p-active. We therefore have to show that the
vertices u ji satisfy the conditions for a p-active trail.

Suppose that u ji is a p-collider that is not in S. Then at least one of the edges
adjacent to u ji has an arrowhead at u ji and we may assume that π ′i−1 is u ji -point-
ing (otherwise consider the reverse path). Since u ji /∈ S, it must be a p-noncollider
on π and hence λi starts with a tail at u ji . On the other hand, since u ji must be a
p-noncollider on all its occurrences on π and π ′i does not start with a tail, the loop
λi cannot be a directed path (otherwise u ji would not be a p-collider on 〈λi , π

′
i 〉).

Consequently there exists an intermediate point wi such that the subpath between u ji
and wi is directed and wi is a p-collider. It follows that wi ∈ S and u ji ∈ an(S).

Next, suppose that u ji is a p-noncollider on π ′ that is in S. Since u ji has been a
p-collider on π , the two edges adjacent to u ji on π ′ must be undirected and λi must
be a bi-pointing path. Hence λi is of the from λi = 〈u ji ←− wi , λ

′
i 〉 with wi /∈ S

(since wi is a p-noncollider and π is p-connecting). Therefore, the set pa(u ji )\S is
not empty and u ji satisfies the above condition (ii). Altogether it follows that π ′ is
p-active relative to S.

In a remark on our simplified version of p-separation, Levitz et al. [40] argue
that there are infinitely many possibly self-intersecting paths in a graph as opposed
to finitely many trails. The following lemma shows that it is possible to restrict the
search for p-connecting paths in G to a finite number of paths, namely all paths in
which no edge occurs twice with the same orientation.

Lemma D.1 Let G = (V, E) be a mixed graph and suppose that π is a p-connecting
path of the form π = 〈π1, e, π2, e, π3〉, where e is an oriented edge between some
vertices u and v. Then the shortened path π ′ = 〈π1, e, π3〉 is also p-connecting.

Proof Since π is p-connecting, the two subpaths 〈π1, e〉 and 〈e, π3〉 are p-connecting.
This implies that also π ′ is p-connecting as every intermediate point has the same
p-collider/noncollider status as in the corresponding subpath.
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