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Abstract By a classical observation in analysis, lacunary subsequences of the
trigonometric system behave like independent random variables: they satisfy the cen-
tral limit theorem, the law of the iterated logarithm and several related probability
limit theorems. For subsequences of the system ( f (nx))n≥1 with 2π -periodic f ∈ L2

this phenomenon is generally not valid and the asymptotic behavior of ( f (nk x))k≥1
is determined by a complicated interplay between the analytic properties of f (e.g.,
the behavior of its Fourier coefficients) and the number theoretic properties of nk .
By the classical theory, the central limit theorem holds for f (nk x) if nk = 2k , or if
nk+1/nk → α with a transcendental α, but it fails e.g., for nk = 2k − 1. The purpose
of our paper is to give a necessary and sufficient condition for f (nk x) to satisfy the
central limit theorem. We will also study the critical CLT behavior of f (nk x), i.e., the
question what happens when the arithmetic condition of the central limit theorem is
weakened “infinitesimally”.

Keywords Lacunary series · Central limit theorem · Diophantine equations

Mathematics Subject Classification (2000) Primary 42A55 · 60F05 · 11D04

C. Aistleitner was research supported by FWF grant S9603-N13.
I. Berkes was research supported by FWF grant S9603-N13 and OTKA grants K 61052 and K 67961.

C. Aistleitner (B)
Institute of Mathematics A, Graz University of Technology,
Steyrergasse 30, 8010 Graz, Austria
e-mail: aistleitner@finanz.math.tugraz.at

I. Berkes
Institute of Statistics, Graz University of Technology,
Münzgrabenstrasse 11, 8010 Graz, Austria
e-mail: berkes@tugraz.at

123



268 C. Aistleitner, I. Berkes

1 Introduction

By classical results of Salem and Zygmund [21,22] and Erdős and Gál [8], if a sequence
(nk)k≥1 of positive integers satisfies the Hadamard gap condition

nk+1/nk ≥ q > 1 (k = 1, 2, . . .), (1.1)

then (cos 2πnk x)k≥1 satisfies the central limit theorem and the law of the iterated
logarithm, i.e.,

lim
N→∞ P

{
x ∈ (0, 1) :

N∑
k=1

cos 2πnk x ≤ t
√

N/2

}
= �(t) (1.2)

and

lim sup
N→∞

(N log log N )−1/2
N∑

k=1

cos 2πnk x = 1 a.e. (1.3)

where P denotes the Lebesgue measure and � is the standard normal distribution
function. These results show that lacunary subsequences of the trigonometric system
behave like sequences of independent random variables. Actually, much more than
(1.2) and (1.3) is valid: Philipp and Stout [19] showed that the function

S(t) = S(t, x) =
∑
k≤t

cos 2πnk x (t ≥ 0)

considered as a stochastic process over the probability space ([0, 1],B,P), is a small
perturbation of a Wiener process {W (t), t ≥ 0} and thus it satisfies several refined
asymptotic results for W (t). Typical examples are Chung’s law of the iterated logarithm

lim inf
N→∞ (N/ log log N )−1/2 max

k≤N

∣∣∣∣∣
k∑
�=1

cos 2πn�x

∣∣∣∣∣ = π/4 a.e.

and the arcsin law

lim
N→∞ P{x ∈ (0, 1) : AN (x) ≤ t N } = 2

π
arcsin

√
t

where AN (x) denotes the number of positive partial sums
∑k

j=1 cos 2πn j x , 1≤k ≤ N .
In view of this remarkable behavior of lacunary trigonometric series, it is natu-

ral to ask if a similar result holds for the sequence ( f (nk x))k≥1 for general periodic
functions f . As Erdős and Fortet (see [16, p. 646]) showed, the answer is negative: if
f (x) = cos 2πx + cos 4πx , then
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On the central limit theorem for f (nk x) 269

lim
N→∞ P

{
x ∈ (0, 1) :

N∑
k=1

f ((2k − 1)x) ≤ t
√

N

}
= π−1/2

1∫
0

t/2| cosπs|∫
−∞

e−u2
du ds

and

lim sup
N→∞

(N log log N )−1/2
N∑

k=1

f ((2k − 1)x) = 2 cosπx a.e.

On the other hand, Kac [15] proved that if f : R → R is of bounded variation on
[0, 1] or it is Lipschitz continuous satisfying

f (x + 1) = f (x),

1∫
0

f (x) dx = 0, (1.4)

then

lim
N→∞ P

{
x ∈ (0, 1) :

N∑
k=1

f (2k x) ≤ tσ
√

N

}
= �(t) (1.5)

provided

σ 2 =
1∫

0

f 2(x)dx + 2
∞∑

k=1

1∫
0

f (x) f (2k x)dx �= 0. (1.6)

These results show that the probabilistic behavior of ( f (nk x))k≥1 depends not only
on the speed of growth of (nk)k≥1, but also on its number theoretic properties. The
sequence ( f (nk x))k≥1 is generally not orthogonal, and the asymptotic evaluation of
the integral

1∫
0

⎛
⎝∑

k≤N

ck f (nk x)

⎞
⎠

2

dx (1.7)

is a difficult problem, closely connected with the behavior of the Dirichlet series

∞∑
k=1

akk−s,

∞∑
k=1

bkk−s
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270 C. Aistleitner, I. Berkes

where

f ∼ a0

2
+

∞∑
k=1

(ak cos 2πkx + bk sin 2πkx)

is the Fourier series of f (see Wintner [26]). The asymptotics of (1.7) is a delicate
problem even for lacunary (nk)k≥1, as is shown by the case nk = θk where θ > 1 (not
necessarily an integer). Petit [17] and Fukuyama [9] showed that if f satisfies (1.4),∫ 1

0 f 2(x) dx = 1 and mild regularity conditions, then

1∫
0

⎛
⎝∑

k≤N

f (θk x)

⎞
⎠

2

dx ∼ c f,θN (1.8)

where c f,θ is a constant depending sensitively on f , θ . If θr is irrational for r =
1, 2, . . ., then c f,θ = 1, which is exactly the constant we would get if f (θk x) were
independent random variables with mean 0 and variance 1. For other delicate phe-
nomena for

∑
k≤N f (θk x), see Fukuyama [10]. For a series representation of c f,θ ,

see Petit [17].
The growth properties of

∑N
k=1 f (nk x), in particular, estimates for

sup
f ∈C

∣∣∣∣∣
N∑

k=1

f (nk x)

∣∣∣∣∣
for some classes C of functions f satisfying (1.4) play an important role in metric
discrepancy theory, see Baker [2], Philipp [18] for strong bounds for general, resp.
lacunary sequences (nk).

Returning to the CLT, in the lacunary case Gaposhkin [12] showed that

lim
N→∞ P

{
x ∈ (0, 1) :

N∑
k=1

f (nk x) ≤ tσN

}
= �(t) (1.9)

holds provided that

σ 2
N :=

1∫
0

(
N∑

k=1

f (nk x)

)2

dx ≥ C N (1.10)

for a positive constant C > 0 and (nk)k≥1 satisfies one of the following conditions:

(a) nk+1/nk is an integer for any k ≥ 1,

(b) lim
k→∞ nk+1/nk = α where αr is irrational for r = 1, 2, . . . (1.11)
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On the central limit theorem for f (nk x) 271

Takahashi [23] proved that the CLT (1.9) also holds if nk+1/nk → ∞ and f ∈
Lip (α), α > 0. The explanation of these phenomena was given in a profound paper
of Gaposhkin [13], who showed the following remarkable result:

Theorem A Let (nk)k≥1 be an increasing sequence of positive integers satisfying the
Hadamard gap condition (1.1) and assume that (1.10) holds for some constant C > 0.
Assume further that for any fixed positive integers a, b, ν the number of solutions of
the Diophantine equation

ank − bn� = ν (k, � ≥ 1) (1.12)

is bounded by a constant C(a, b), independent of ν. Then the central limit theorem
(1.9) holds.

Let (n(d)k ) denote the set-theoretic union of the sequences (nk)k≥1, (2nk)k≥1, . . . ,

(dnk)k≥1. Clearly each element of (n(d)k ) can be represented at most in d different
ways in the form jnk , 1 ≤ j ≤ d, k ≥ 1 and thus the Diophantine condition in
Theorem A is equivalent to saying that for each d ≥ 1 the number of solutions of the
equation

n(d)k − n(d)� = ν (k, � ≥ 1)

is at most C = C(d), uniformly in ν > 0. The last condition is trivially satisfied if
(n(d)k ) satisfies the Hadamard gap condition for each d ≥ 1, and it is not hard to see
that this is the case if nk+1/nk → ∞ and in examples (a), (b) in (1.11) above.

Theorem A reveals the Diophantine background of the central limit theorem (1.9),
but, as the example at the end of this section will show, its condition is far from nec-
essary for the CLT. The purpose of the present paper is to improve Theorem A and to
find the precise condition for the central limit theorem (1.9). Given a sequence (nk)

of positive integers, define for any d ≥ 1, ν ∈ Z,

L(N , d, ν) = #{1 ≤ a, b ≤ d, 1 ≤ k, � ≤ N : ank − bn� = ν}
L(N , d) = sup

ν>0
L(N , d, ν). (1.13)

Our main result is the following.

Theorem 1.1 Let (nk)k≥1 be a sequence of positive integers satisfying the Hadamard
gap condition (1.1) and let f be a function of bounded variation satisfying (1.4) and
(1.10). Assume that for any fixed d ≥ 1 we have

L(N , d) = o(N ) as N → ∞. (1.14)

Then the central limit theorem (1.9) holds. If f is a trigonometric polynomial of order
r , it suffices to assume (1.14) for d = r .
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272 C. Aistleitner, I. Berkes

As we will see, the Diophantine condition (1.14) in Theorem 1.1 is best possible:
for any d ≥ 1, δ > 0 there exists a sequence (nk)k≥1 of positive integers satisfying
the Hadamard gap condition such that L(N , d) ≤ δN for N ≥ N0(d, δ) and the CLT
(1.9) fails for a trigonometric polynomial of order d. Condition (1.10) is inevitable,
as is shown by the example f (x) = cos 2πx − cos 4πx, nk = 2k , for which the
Diophantine condition of Theorem 1.1 is satisfied, but the CLT is not.

Of special interest is the following case, where we can calculate the variance σ 2
N

explicitly. Slightly modifying the definition of L(N , d) in (1.13), let

L∗(N , d) = sup
ν≥0

L(N , d, ν).

For ν = 0 we exclude the trivial solutions a = b, k = � from L(N , d, ν). Put also
‖ f ‖2 = (

∫ 1
0 f 2(x) dx)1/2.

Theorem 1.2 Let (nk)k≥1 be a sequence of positive integers satisfying the Hadamard
gap condition (1.1) and let f be a function of bounded variation satisfying (1.4) and
‖ f ‖2 > 0. Assume that for any fixed d ≥ 1 we have

L∗(N , d) = o(N ) as N → ∞.

Then the central limit theorem (1.9) holds with σN = ‖ f ‖2
√

N.

The difference between the conditions of Theorems 1.1 and 1.2 is that in Theo-
rem 1.2 we bound the number of solutions of

ank − bn� = ν, 1 ≤ k, � ≤ N (1.15)

also for ν = 0. It is easily seen that Theorem 1.2 applies if nk+1/nk → ∞, and in
example (b) in (1.11) above. In contrast, in case (a) in (1.11), Theorem 1.2 may fail,
as the example nk = 2k shows. In this case Eq. (1.15) has too many (namely cN )
solutions for ν = 0 e.g., if a = 1, b = 2 and in Kac’s theorem (1.5) the norming
factor is σ

√
N with σ 2 defined by (1.6) and not ‖ f ‖2

√
N . Finally, it is easy to see

that Theorem 1.2 applies also if nk = 2k + h(k), k ≥ k0 where h is a nonconstant
polynomial with integer coefficients.

Theorems 1.1 and 1.2 show that the validity of the CLT for f (nk x) is determined
by the Diophantine functions L(N , d) and L∗(N , d). Actually, much more than this
is valid: even if the the CLT fails, the number of solutions of the Diophantine equation
(1.15) is directly connected with the magnitude of the deviation

sup
t∈R

∣∣∣∣∣P
(
σ−1

N

N∑
k=1

f (nk x) ≤ t

)
−�(t)

∣∣∣∣∣
for large N . To make this precise, let

εd = limN→∞
1

N
L(N , d).
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On the central limit theorem for f (nk x) 273

Clearly L(N , d, ν) ≤ d2 N and consequently L(N , d) ≤ d2 N and εd ≤ d2. Note that
the quantity εd depends also on the sequence (nk).

Theorem 1.3 Let (nk)k≥1 be a sequence of positive integers satisfying the Hadamard
gap condition (1.1) and let f be a trigonometric polynomial of order d with nonneg-
ative coefficients. Let SN = ∑

k≤N f (nk x). Then

limN→∞ sup
t

|P (SN ≤ tσN )−�(t)| ≤ Bε1/5
d , (1.16)

where B is a constant depending on f, d and q. On the other hand, for each d ≥ 1
there exists a trigonometric polynomial of order d with nonnegative coefficients and
a sequence (nk)k≥1 satisfying the Hadamard gap condition (1.1) such that

limN→∞ sup
t

|P (SN ≤ tσN )−�(t)| ≥ C(d)ε3
d (1.17)

where C(d) is a constant depending only on d.

Thus if εd is small, i.e., (nk) “almost” satisfies the conditions of Theorems 1.1 and
1.2, then f (nk x) “almost” satisfies the central limit theorem.

As the proof of Theorem 1.3 will show, ε3
d in the lower bound in (1.17) can be

improved to ε2
d(log 1

εd
)−1. However, closing the gap between the exponents 1/5 and

2 in the upper and lower bounds seems to be a very difficult problem and we did not
pursue it in the present paper.

In case of trigonometric polynomials with nonnegative coefficients, Theorem 1.3
quantifies quite precisely the connection between the number of solutions of the
Diophantine equation (1.15) and the distribution of SN/σN for large N . Without the
nonnegativity condition the situation is much more complicated: in this case the con-
stant B in Theorem 1.3 should be replaced by B/C , where C is the constant in (1.10),
which itself depends on (nk). To decide for which f and (nk) condition (1.10) holds
is a difficult question not investigated in the present paper.

A typical case for an almost CLT of the type (1.16) is when classical number-
theoretic criteria for the CLT are infinitesimally weakened. For example, the CLT
holds for f (nk x) if nk+1/nk → α where αr is irrational for r = 1, 2, . . . For rational
α this criterion fails, but the CLT almost holds if in the reduced form α = p/q both
p and q are large. More precisely, for any f of bounded variation satisfying (1.4) and
any ε > 0 there exists a K = K (ε, f ) such that if nk+1/nk → α where α = p/q
where p and q are coprime integers exceeding K then the left hand side of (1.16) is at
most ε. The same phenomenon holds if αr is irrational for 1 ≤ r < s and αs = p/q
with p, q large. A further example for a near CLT is when nk+1/nk ≥ q, k = 1, 2, . . .
with q large. Such a result was proved earlier in Berkes [3], see Theorem 4.1 on p.
360.

The following example illustrates the difference between our Diophantine condition
(1.14) and Gaposhkin’s condition in Theorem A.

Example Let (mk)k≥1 be a sequence of positive integers with mk+1 − mk → ∞ and
let the sequence (nk)k≥1 consist of the numbers 2mk − 1, k = 1, 2, . . ., plus the num-
bers 2mk+1 − 1 for the indices k of the form k = [nα], α > 2. Let f be a periodic
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274 C. Aistleitner, I. Berkes

Lipschitz function with mean 0 and ‖ f ‖2 = 1. By a result of Takahashi [23], the cen-
tral limit theorem holds for f ((2mk − 1)x) with the norming sequence

√
N . Clearly∑N

k=1 f (nk x) = ∑M
j=1 f ((2m j − 1)x) + O(N 1/α) where N − 2N 1/α ≤ M ≤ N

for N ≥ N0, which implies that f (nk x) also satisfies the CLT. On the other hand,
for infinitely many � we have n� = 2mk − 1, n�+1 = 2mk+1 − 1 for some k and thus
n�+1 − 2n� = 1. The number of such �’s up to N is ∼ N 1/α and thus the equation
2ni −n j = 1 has at least cN 1/α solutions for the indices 1 ≤ i, j ≤ N . Consequently,
Gaposhkin’s number theoretic condition fails for (nk).

In conclusion we note that Gaposhkin’s condition implies the validity of the CLT
for all subsequences of f (nk x) as well, and for this stronger version of the CLT,
Gaposhkin’s condition is necessary. However, since different subsequences of f (nk x)
can have totally different CLT behavior for arithmetic reasons, it is preferable to give
conditions implying the CLT for f (nk x) for a specific sequence (nk)k≥1, without
referring to subsequences of (nk)k≥1.

In the case when (nk)k≥1 grows subexponentially, i.e., when nk+1/nk → 1, the
asymptotic behavior of f (nk x)becomes much more complicated than in the Hadamard
lacunary case and the central limit theorem generally fails even for f (x) = cos 2πx ,
f (x) = sin 2πx . A precise condition for the CLT for (cos nk x)k≥1 was obtained by
Erdős [7], see Takahashi [24,25] for additional information. For the CLT for trigono-
metric series with small gaps see Berkes [4] and Bobkov and Götze [6] introducing
a completely new method in gap theory. For recent asymptotic results for f (nk x) for
subexponential (nk)k≥1 see e.g., Philipp [20], Fukuyama and Petit [11] and Aistleitner
and Berkes [1].

2 Proof of Theorems 1.1 and 1.2

In the proof of our theorems, we will use the following theorem by Heyde and Brown
[14]:

Theorem B Let (Yn,Fn, n ≥ 1)be a martingale difference sequence with finite fourth
moments, let VM = ∑M

i=1 E(Y 2
i |Fi−1) and let (bM )M≥1 be any sequence of positive

numbers. Then

sup
t

∣∣∣P((Y1+· · · + YM )/
√

bM < t)−�(t)
∣∣∣ ≤ A

(∑M
i=1 EY 4

i +E
(
(VM −bM )

2
)

b2
M

)1/5

,

where A is an absolute constant.

In [14] this result is only stated for bM = ∑M
i=1 EY 2

i , but the proof remains valid
for general bM without any change (see [5, Theorem A]).

To simplify the formulas we will prove Theorems 1.1 and 1.2 only in the case when
f is an even function; the general case requires only minimal changes. Let

f (x) ∼
∞∑
j=1

a j cos 2π j x
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On the central limit theorem for f (nk x) 275

be the Fourier expansion of f . Without loss of generality we may assume that‖ f ‖∞ ≤1
and Var f ≤ 1, where Var f denotes the total variation of f on the interval [0, 1]. This
implies

|a j | ≤ j−1, j ≥ 1

(see Zygmund [27, p. 48]). Let ε > 0 be given. We put d = �ε−3� + 1,

p(x) =
d∑

j=1

a j cos 2π j x, r(x) =
∞∑

j=d+1

a j cos 2π j x .

Lemma 2.1∥∥∥∥∥
N∑

k=1

f (nk x)

∥∥∥∥∥
2

≤ C
√

N ,

∥∥∥∥∥
N∑

k=1

p(nk x)

∥∥∥∥∥
2

≤ C
√

N ,

∥∥∥∥∥
N∑

k=1

r(nk x)

∥∥∥∥∥
2

≤ C
√
ε3 N

Here, and in the sequel, C denotes positive numbers, not always the same, depend-
ing only on q, while c denotes positive numbers depending on q and d (and therefore
on ε as well).

Proof The second inequality is a special case of the first. The other two inequalities
follow from

1∫
0

⎛
⎝ N∑

k=1

∞∑
j=J+1

a j cos 2πnk j x

⎞
⎠

2

dx ≤
∑

1≤k≤k′≤N

∞∑
j, j ′=J+1

1( jnk= j ′nk′ )
1

j j ′

≤
∑

1≤k≤k′≤N

∞∑
j ′=J+1

nk

j ′2nk′
≤

∑
1≤k≤k′≤N

qk−k′
∞∑

j ′=J+1

1

j ′2
≤
{

C N for J = 0
Cd−1 N for J = d.

��
Lemma 2.2 For any function f satisfying (1.4) we have

∣∣∣∣∣∣
b∫

a

f (λx) dx

∣∣∣∣∣∣ ≤ 1

λ

1∫
0

| f (x)| dx ≤ 1

λ
‖ f ‖∞

for any real numbers a < b and any λ > 0.

Proof The lemma follows from

b∫
a

f (λx) dx = 1

λ

λb∫
λa

f (x) dx = 1

λ

⎡
⎣ λa+k∫
λa

f (x) dx+
λb∫

λa+k

f (x) dx

⎤
⎦= 1

λ

λb∫
λa+k

f (x) dx,

where k ≥ 0 is the integer with λa + k ≤ λb < λa + k + 1. ��
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276 C. Aistleitner, I. Berkes

We begin with the proof of Theorem 1.1. By the assumptions of the theorem, for
any d ≥ 1 there exists a function g(N ) = gd(N ) → ∞ such that

L(N , d, ν) ≤ N/g(N ) for any ν > 0. (2.1)

We divide the set of positive integers into consecutive blocks�′
1,�1,�′

2,�2, . . . , �
′
i ,

�i , . . . of lenghts �4 logq i� and �i1/2�, respectively. Let i− and i+ denote the smallest,
respectively largest integer in �i . Clearly

n(i−1)+

ni−
≤ q−4 logq i ≤ i−4. (2.2)

For every k ∈ ∪i≥1�i let i = i(k) be defined by k ∈ �i , put m(k) = �log2 nk +
2 log2 i� and approximate p(nk x) by a discrete function ϕk(x) such that the following
properties are satisfied:

(P1) ϕk(x) is constant for v

2m(k) ≤ x < v+1
2m(k) , v = 0, 1, . . . , 2m(k) − 1

(P2) ‖ϕk(x)− p(nk x)‖∞ ≤ ci−2

(P3) E(ϕk(x)|Fi−1) = 0

where Fi denotes the σ -field generated by the intervals

[
v

2m(i+) ,
v + 1

2m(i+)

)
, v = 0, 1, . . . , 2m(i+) − 1.

Since p(x) is a trigonometric polynomial, it is Lipschitz-continuous, and thus

∣∣p(nk x)− p(nk x ′)
∣∣ ≤ cnk2−m(k) ≤ ci−2 for

v

2m(k)
≤ x, x ′ < v + 1

2m(k)
and 0 ≤ v < 2m(k).

Thus it is possible to approximate p(nk x) by discrete functions ϕ̂k(x) that satisfy
(P1) and (P2). For k ∈ �i and any atom I of the σ -field Fi−1 (an interval of length
2−m((i−1)+)) we get, letting |I | denote the length of I ,

1

|I |

∣∣∣∣∣∣
∫
I

ϕ̂k(x) dx

∣∣∣∣∣∣ ≤ 1

|I |

∣∣∣∣∣∣
∫
I

p(nk x) dx

∣∣∣∣∣∣+
1

|I |
∫
I

c

i2 dx

≤ ‖p‖∞2m((i−1)+)

ni−
+ c

i2

≤ 2 · 21+2 log2 i+log2 n(i−1)+

ni−
+ c

i2

= 4i2n(i−1)+

ni−
+ c

i2

≤ c

i2
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On the central limit theorem for f (nk x) 277

by Lemma 2.2, (2.2) and since ‖p‖∞ ≤ ‖ f ‖∞ + Var f ≤ 2 by (4.12) of Chapter II
and (1.25) and (3.5) of Chapter III of Zygmund [27]. Every x ∈ [0, 1) is contained
in an interval of type I for some v, so we put ϕk(x) = ϕ̂k(x) − |I |−1

∫
I ϕ̂k(t) dt for

x ∈ I and have functions that satisfy (P1), (P2) and (P3).
We put

Yi =
∑
k∈�i

ϕk(x), Ti =
∑
k∈�i

p(nk x), T ′
i =

∑
k∈�′

i

p(nk x), VM =
M∑

i=1

E(Y 2
i |Fi−1).

Clearly ϕk(x), k ∈ �i are Fi measurable and thus Yi is also Fi measurable. Let also

wi =
1∫

0

⎛
⎝∑

k∈�i

p(nk x)

⎞
⎠

2

dx and sM =
(

M∑
i=1

wi

)1/2

.

We observe that

wi =
1∫

0

⎛
⎝∑

k∈�i

d∑
j=1

a j cos 2π jnk x

⎞
⎠

2

dx

=
∑

k,k′∈�i

∑
1≤ j, j ′≤d

a j a j ′

2

1∫
0

(cos 2π( jnk − j ′nk′)x)+ (cos 2π( jnk + j ′nk′)x) dx

= |�i |‖p‖2
2 +

∑
k,k′∈�i ,k′>k

∑
1≤ j ′< j≤d

1( jnk= j ′nk′ ) · a j a j ′

and get

T 2
i − wi =

⎛
⎝∑

k∈�i

p(nk x)

⎞
⎠

2

− wi

=
⎛
⎝∑

k∈�i

d∑
j=1

a j cos 2π jnk x

⎞
⎠

2

− wi

=
∑

1 ≤ j, j ′ ≤ d, k, k′ ∈ �i
0 < | jnk − j ′nk′ | < i−2 · n

(i−1)+

1

2
a j a j ′ cos 2π( jnk − j ′nk′)x

+
∑

1 ≤ j, j ′ ≤ d, k, k′ ∈ �i
i−2 · n

(i−1)+ ≤ | jnk − j ′nk′ | < ni−

1

2
a j a j ′ cos 2π( jnk − j ′nk′)x + Ri (x)

= Ui (x)+ Wi (x)+ Ri (x). (2.3)
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Here Ri is a sum of at most 2d2|�i |2 trigonometric functions with coefficients at most
1 and frequencies at least ni− . Therefore by Lemma 2.2 with f (x) = cos 2πx ,

|E(Ri |Fi−1)| ≤ 4d2|�i |2 2m((i−1)+)

ni−
≤ 8d2i

(i − 1)2n(i−1)+

ni−
≤ ci−1. (2.4)

The number of summands in Ui and the number of summands in Wi (all of them trigo-
nometric functions with coefficients at most 1) are bounded by ci1/2, because the num-
ber of quadruples ( j, j ′, k, k′) with 1 ≤ j, j ′ ≤ d, k, k′ ∈ �i , for which 0 < | jnk −
j ′nk′ | < ni− , is at most 2d2|�i |

(
1 + logq(d + 1)

)
. In fact, for fixed j, j ′ and k in the

case nk′ > (d+1)nk we have jnk− j ′nk′ < jnk− j ′(d+1)nk = (
j − j ′(d + 1)

)
nk =

(d − (d + 1)) nk < −nk ≤ −ni− and there are at most 1+ logq(d +1) indices k′ ≥ k
for which nk′ ≤ (d + 1)nk (and similarly in case nk′ < nk/(d + 1)). In particular

‖Ui‖∞ ≤ ci1/2 and ‖Wi‖∞ ≤ ci1/2. (2.5)

Clearly

|Y 2
i − T 2

i | ≤
⎛
⎝∑

k∈�i

|p(nk x)− ϕk(x)|
⎞
⎠
⎛
⎝∑

k∈�i

|p(nk x)+ ϕk(x)|
⎞
⎠

≤
⎛
⎝∑

k∈�i

ci−2

⎞
⎠
⎛
⎝∑

k∈�i

c

⎞
⎠ ≤ ci−2|�i |2 ≤ ci−1. (2.6)

Therefore by (2.3) and (2.6) we have

‖VM − s2
M‖2 = ‖

M∑
i=1

E(Y 2
i |Fi−1)− s2

M‖2 (2.7)

≤ ‖
M∑

i=1

E(T 2
i |Fi−1)− s2

M‖2 + c log M

= ‖
M∑

i=1

E((T 2
i − wi )|Fi−1)‖2 + c log M

≤ ‖
M∑

i=1

E(Ui |Fi−1)‖2 + ‖
M∑

i=1

E(Wi |Fi−1)‖2 + ‖
M∑

i=1

E(Ri |Fi−1)‖2.

By (2.4) we have

‖
M∑

i=1

E(Ri |Fi−1)‖2 ≤ c log M. (2.8)
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To estimate ‖∑M
i=1 E(Wi |Fi−1)‖2, we observe

E

(
M∑

i=1

E(Wi |Fi−1)

)2

≤ 2E

⎛
⎝ ∑

1≤i≤i ′≤M

E(Wi |Fi−1)E(Wi ′ |Fi ′−1)

⎞
⎠ . (2.9)

By (2.5),

M∑
i=1

E
2(Wi |Fi−1) ≤

M∑
i=1

ci ≤ cM2. (2.10)

For i < i ′, since E(Wi |Fi−1) is Fi−1-measurable,

∣∣∣E (E(Wi |Fi−1)E(Wi ′ |Fi ′−1)

∣∣∣Fi−1

)∣∣∣ = |E(Wi |Fi−1)E(Wi ′ |Fi−1)|
≤ ‖Wi‖∞ |E(Wi ′ |Fi−1)|
≤ ci1/2 |E(Wi ′ |Fi−1)| ,

whence by integration

|E (E(Wi |Fi−1)E(Wi ′ |Fi ′−1)
) | ≤ ci1/2

E |E(Wi ′ |Fi−1)| . (2.11)

Wi ′ can be written as a trigonometric polynomial of the form

n
i ′−∑

u=(i ′)−2n(i ′−1)+

cu cos 2πux,

where
∑

u |cu | ≤ ci ′1/2. Thus using Lemma 2.2 with f (x) = cos 2πx we get

|E(Wi ′ |Fi−1)| ≤
n

i ′−∑
u=(i ′)−2n(i ′−1)+

|cu |u−12m((i−1)+)

≤ 2m((i−1)+)(i ′)2 1

n(i ′−1)+

n
i ′−∑

u=(i ′)−2n(i ′−1)+

|cu |

≤ ci2(i ′)5/2
n(i−1)+

n(i ′−1)+

≤ c i2(i ′)5/2 q(i−1)+−(i ′−1)+ ≤ c i2(i ′)5/2 q−(i ′−1)1/2 . (2.12)
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Combining the estimates (2.9)–(2.12), we get

∥∥∥∥∥
M∑

i=1

E(Wi |Fi−1)

∥∥∥∥∥
2

≤
⎛
⎝cM2+2

∑
1≤i<i ′≤M

ci5/2i ′5/2q−(i ′−1)1/2

⎞
⎠

1/2

≤ cM. (2.13)

Finally, we estimate ‖∑M
i=1 E(Ui |Fi−1)‖2. Note that Ui is a sum of trigonometric

functions with frequencies at most i−2n(i−1)+ , i.e.,

Ui (x) =
i−2n(i−1)+∑

u=1

cu cos 2πux,

where
∑

u |cu | ≤ ci1/2. Hence the fluctuation of Ui on any atom of Fi−1 is at most

i−2n(i−1)+∑
u=1

|cu |2πu2−m((i−1)+) ≤ 2π i−2n(i−1)+ 2−m((i−1)+)
i−2·n(i−1)+∑

u=1

|cu |

≤ c i1/2 n(i−1)+

i2

1

i2n(i−1)+
= c i−7/2

and consequently,

|E(Ui |Fi−1)− Ui | ≤ ci−7/2,

which gives

∥∥∥∥∥
M∑

i=1

E(Ui |Fi−1)

∥∥∥∥∥
2

≤
∥∥∥∥∥

M∑
i=1

Ui

∥∥∥∥∥
2

+ c. (2.14)

The largest frequency of the trigonometric functions in
∑M

i=1 Ui is at most
M−2n(M−1)+ , so we can write, grouping the terms with equal frequency,

M∑
i=1

Ui (x) =
M−2·n(M−1)+∑

u=1

du cos 2πux,

where by (2.1)

|du | ≤ 2

∑M
i=1 (|�i | + |�i ′ |)

g
(∑M

i=1(|�i | + |�i ′ |)
) ≤ c

M3/2 + M log M

g(M)
≤ c

M3/2

g(M)
(2.15)
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(without loss of generality we assume that g is nondecreasing) and consequenty∑
u |du | ≤ ∑M

i=1 c i1/2 ≤ c M3/2. Thus

∥∥∥∥∥
M∑

i=1

Ui

∥∥∥∥∥
2

2

≤
M−2·n(M−1)+∑

u=1

d2
u ≤ c

M3/2

g(M)

M−2·n(M−1)+∑
u=1

|du |

≤ c
M3

g(M)

and hence by (2.14) it follows that

∥∥∥∥∥
M∑

i=1

E(Ui |Fi−1)

∥∥∥∥∥
2

≤
(

c
M3

g(M)

)1/2

+ c. (2.16)

Substituting the estimates (2.8), (2.13) and (2.16) into (2.7), we get

∥∥∥VM − s2
M

∥∥∥
2

≤ c log M + cM +
(

c
M3

g(M)

)1/2

+ c

and therefore

E

(
(VM − s2

M )
2
)

≤ c
M3

g(M)
+ c M5/2 ≤ c

M3

g(M)
,

since we can assume g(x) ≤ x1/2.

Now we estimate
∑M

i=1 EY 4
i . By Lemma 2.1 and property (P2) we have EY 2

i ≤
Ci1/2, and so

EY 4
i ≤ (‖Yi‖∞)2EY 2

i ≤ Ci3/2

and

M∑
i=1

EY 4
i ≤ C M5/2.

Hence by Theorem B we get, using again g(x) ≤ x1/2,
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sup
t

|P ((Y1 + · · · + YM )/sM < t)−�(t)|

≤ A

(∑M
i=1 EY 4

i + E
(
(VM − s2

M )
2
)

s4
M

)1/5

≤ cA

(
M5/2 + M3/g(M)

s4
M

)1/5

≤ cA

(
2M3/g(M)

s4
M

)1/5

. (2.17)

Now let a positive integer N be given. There exists an M = M(N ) with
√

N ≤ M ≤
C N 2/3 such that N ∈ (�M+1 ∪ �′

M+1) and therefore N − ∑M
i=1

(|�i | + |�′
i |
) ≤

|�M+1| + |�′
M+1| ≤ C N 1/3. We put N̂ = ∑M

i=1

(|�i | + |�′
i |
)
. Then

N∑
k=1

f (nk x)=
M∑

i=1

Yi +
M∑

i=1

(Ti −Yi )+
M∑

i=1

T ′
i +

N∑
k=N̂+1

p(nk x)+
N∑

k=1

r(nk x). (2.18)

We put

σN =
∥∥∥∥∥

N∑
k=1

f (nk x)

∥∥∥∥∥
2

.

We observe that

∣∣∣∣∣∣∣s
2
M −

1∫
0

⎛
⎜⎝ ∑

k∈⋃M
i=1 �i

p(nk x)

⎞
⎟⎠

2

dx

∣∣∣∣∣∣∣=
∣∣∣∣∣∣∣

1∫
0

⎡
⎢⎣ M∑

i=1

⎛
⎝∑

k∈�i

p(nk x)

⎞
⎠

2

−
⎛
⎜⎝ ∑

k∈⋃M
i=1 �i

p(nk x)

⎞
⎟⎠

2⎤
⎥⎦ dx

∣∣∣∣∣∣∣
≤

∑
k, k′ ∈ ⋃M

i=1 �i
(k, k′) �∈ ⋃M

i=1(�i ×�i )

∑
1≤ j, j ′≤d

1( jnk= j ′nk′ )
2

j j ′

≤ 4
M∑

i=1

∑
k∈�i

∑
k′∈⋃i−1

i ′=1
�i ′

∑
1≤ j≤d

nk′

j2nk

≤ 4
∞∑
j=1

1

j2

M∑
i=1

∑
k∈�i

∑
k′∈⋃i−1

i ′=1
�i ′

qk′−k

≤ C
M∑

i=1

∑
k∈�i

∑
k′∈⋃i−1

i ′=1
�i ′

q−4 logq i

≤ C
M∑

i=1

i1/2 i3/2 i−4 ≤ C.
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Thus by Minkowski’s inequality and Lemma 2.1

σN ≤
∥∥∥∥∥∥

N∑
k=N̂+1

f (nk x)

∥∥∥∥∥∥
2

+

∥∥∥∥∥∥∥
∑

k∈⋃M
i=1 �

′
i

f (nk x)

∥∥∥∥∥∥∥
2

+

∥∥∥∥∥∥∥
∑

k∈⋃M
i=1 �i

r(nk x)

∥∥∥∥∥∥∥
2

+

∥∥∥∥∥∥∥
∑

k∈⋃M
i=1 �i

p(nk x)

∥∥∥∥∥∥∥
2

≤ (C N 1/3)1/2+(C N 2/3�4 logq C N 2/3�)1/2+
(

Cε3
M∑

i=1

|�i |
)1/2

+(s2
M +C)1/2

≤ sM + C N 1/3 log N + C
√
ε3 N .

A similar calculation yields

σN ≥ sM − C N 1/3 log N − C
√
ε3 N .

Since by assumption σ 2
N ≥ K N , choosing ε so small that

√
K − C

√
ε3 > 0, we get

s2
M ≥

(
σN − C N 1/3 log N − C

√
ε3 N

)2 ≥ C N (2.19)

and thus

1 − C
√
ε3 ≤ σN/sM ≤ 1 + C

√
ε3. (2.20)

By (2.18) we have for any fixed t and 0 < ε < 1

P

(
N∑

k=1

f (nk x) ≤ tσN

)
≤ P

(
M∑

i=1

Yi ≤ (t + ε)σN

)
+ P

(∣∣∣∣∣
N∑

k=1

r(nk x)

∣∣∣∣∣ > εσN/4

)

+ P

(∣∣∣∣∣
M∑

i=1

T ′
i

∣∣∣∣∣ > εσN/4

)
+P

(∣∣∣∣∣
M∑

i=1

(Yi − Ti )

∣∣∣∣∣ > εσN/4

)

+ P

⎛
⎝
∣∣∣∣∣∣

N∑
k=N̂+1

p(nk x)

∣∣∣∣∣∣ > εσN/4

⎞
⎠ . (2.21)

Also, a lower bound for P(
∑N

k=1 f (nk x) ≤ tσN ) is obtained if in the second line of
(2.21) we replace t + ε by t − ε and change the sign of the four subsequent terms to
negative. By property (P2) and N − N̂ ≤ C N 1/3 the last two summands in (2.21) are
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zero if N is large enough. By Minkowski’s inequality

∥∥∥∥∥
M∑

i=1

T ′
i

∥∥∥∥∥
2

=
∥∥∥∥∥∥

M∑
i=1

∑
k∈�′

i

d∑
j=1

a j cos 2π jnk x

∥∥∥∥∥∥
2

≤
d∑

j=1

|a j |
∥∥∥∥∥∥

M∑
i=1

∑
k∈�′

i

cos 2π jnk x

∥∥∥∥∥∥
2

≤ c

(
M∑

i=1

|�′
i |
)1/2

≤ cN 1/3 log N

and thus by Chebyshev’s inequality

P

(∣∣∣∣∣
M∑

i=1

T ′
i

∣∣∣∣∣ > εσN/4

)
≤ cN−1/3(log N )2.

The third relation of Lemma 2.1 and another application of Chebyshev’s inequality
yield

P

(∣∣∣∣∣
N∑

k=1

r(nk x)

∣∣∣∣∣ > εσN/4

)
≤ Cε.

Therefore by (2.17)–(2.21) we get for 0 < ε ≤ ε0, N ≥ N0(ε) and any t ∈ R,

P

(
N∑

k=1

f (nk x) ≤ tσN

)
−�(t)

≤
∣∣∣∣∣P
(

M∑
i=1

Yi ≤ sM ((t + ε)σN/sM )

)
−�((t + ε)σN/sM )

∣∣∣∣∣
+ |�((t + ε)σN/sM )−�(t)| + Cε + cN−1/3(log N )2

≤ c A
(

2M3g(M)−1s−4
M

)1/5 +
∣∣∣� ((1 + Cθ

√
ε3)(t + ε)

)
−�(t)

∣∣∣
+ Cε + cN−1/3(log N )2

≤ c(N 2g(
√

N )−1 N−2)1/5 + Cε + cN−1/3(log N )2

≤ c g(
√

N )−1/5 + Cε + ε (2.22)

for some θ with |θ | ≤ 1. Here we used the fact that |�((1+Cθ
√
ε3)(t +ε))−�(t)| =

O(ε) for any t ∈ R with an absolute constant in the O , which can be seen sepa-
rately, using the mean value theorem, for |t | ≤ 2 and |t | > 2, observing that in the
case |t | > 2 and 0 < ε ≤ ε0, any ξ between t and (1 + Cθ

√
ε3)(t + ε) satisfies

|ξ | ≥ |t |/2 and thus 0 ≤ �′(ξ) ≤ e−t2/8. By the remark after (2.21), the difference
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�(t) − P(
∑N

k=1 f (nk x) ≤ tσN ) can be estimated similarly as in (2.22), except that
t +ε in the second, third and fourth line should be replaced by t −ε. Since 0 < ε ≤ ε0
was arbitrary, Theorem 1.1 is proved.

To prove Theorem 1.2, assume that L∗(N , d) = o(N ) for any d ≥ 1. Then the
function g(N ) = gd(N ) → ∞ in (2.1) can be chosen so that (2.1) remains valid also
for ν = 0. Letting ε > 0 and using the same notations as above, we get

σN ≥
∥∥∥∥∥

N∑
k=1

p(nk x)

∥∥∥∥∥
2

−
∥∥∥∥∥

N∑
k=1

r(nk x)

∥∥∥∥∥
2

≥
⎛
⎝ 1∫

0

(
N∑

k=1

p(nk x)

)2

dx

⎞
⎠

1/2

− C
√
ε3 N

≥
⎛
⎝ N∑

k=1

d∑
j=1

a2
j

2
− 2

∑
1≤k<k′≤N

∑
1≤ j, j ′≤d

1( jnk= j ′nk′ )

⎞
⎠

1/2

− C
√
ε3 N

≥
(

‖ f ‖2
2 N − ‖r‖2

2 N − 2N

g(N )

)1/2

− C
√
ε3 N

≥ ‖ f ‖2
√

N − C
√
ε3 N

for sufficiently large N . A similar argument yields

σN ≤ ‖ f ‖2
√

N + C
√
ε3 N

for sufficiently large N and since ε > 0 was arbitrary, it follows that

σN ∼ ‖ f ‖2
√

N .

Thus Theorem 1.2 follows from Theorem 1.1.

3 Proof of Theorem 1.3

The upper bound in Theorem 1.3 is implicit in the proof of Theorem 1.1. We prove the
lower bound in the case d = 2; the modifications in the case d ≥ 3 are straightforward.
Let (m�)�≥1 be a sequence of integers satisfying m�+1 − m� → ∞. Fix r ≥ 1 and let
(nk)k≥1 consist of the blocks H�={2m�+1−1, 2m�+2−1, 2m�+4−1, . . . , 2m�+2r−1−1},
� ≥ �0, where �0 is chosen so large that all the above blocks are disjoint. Clearly
lim infk→∞ nk+1/nk = 2 and thus (nk)k≥1 satisfies the Hadamard gap condition.

Let a, b ∈ N and consider the equation

ani − bn j = ν (3.1)
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where ν > 0, i > j . Since m�+1 − m� → ∞, there exists a constant K = K (a, b)
such that if ni and n j (i > j) belong to different blocks H�, H�′ with � > �′, � ≥ K ,
then ani − bn j ≥ ani/2. Hence in this case Eq. (3.1) implies that ani/2 ≤ ν ≤ ani

and thus ν/a ≤ ni ≤ 2ν/a. Because of the large separation between the blocks caused
by m�+1 − m� → ∞, the last relation determines uniquely the block H� to which ni

belongs and thus the number of choices for ni is at most |H�| = r . Once ni is known, n j

is uniquely determined by (3.1). Thus the number of solutions (i, j) of (3.1) where ni

and n j belong to different blocks is at most r + K1(a, b), where the second term is due
to the number of solutions (i, j) where ni ∈ H�, n j ∈ H�′ with 1 ≤ �, �′ < K (a, b).
If i and j belong to the same block H�, then (3.1) can be written as

a(2m�+2s − 1)− b(2m�+2t − 1) = ν 0 ≤ s, t ≤ r − 1 (3.2)

i.e.,

2m� (a22s − b22t
) = ν + a − b. (3.3)

For c �= 0, the equation a22s − b22t = c has at most one solution (s, t) with s = t .
If e.g., s > t and t > log2 log2(2b/a), then a22s

/b22t = (a/b) 22t (2s−t −1) ≥
(a/b) 22t

> 2 and thus the equation a22s − b22t = c implies c ≤ a22s
< 2c

which is satisfied for at most one s. Since s determines t uniquely, and the number
of solutions (s, t) with t ≤ log2 log2(2b/a) is clearly ≤ log2 log2(2b/a), it follows
that the number of solutions (s, t) of the equation a22s − b22t = c with c �= 0,
s > t is at most 1 + log2 log2(2b/a). If c = 0, then we have a22s = b22t

, whence
log2(b/a) = 2s − 2t = 2t (2s−t − 1) ≥ 2t provided e.g., s > t , i.e., the number of
such solutions is at most log2 log2(b/a).

Summarizing, we have proved that the number of solutions (s, t) of (3.1) such that i
and j belong to the same fixed block H� is at most C(a, b), and the number of solutions
(s, t) such that i and j belong to different blocks is at most r + K1(a, b). Let now
N > r and choose M ≥ 1 so that Mr < N ≤ (M +1)r . Then the number of solutions
of (3.1) for i, j ≤ N (which means that ni and n j are permitted to run in the first M +1
blocks) is at most C(a, b)(M + 1) + r + K1(a, b) ≤ 2C(a, b)M + r + K1(a, b) ≤
2C(a, b)N/r+N/r+K1(a, b) ≤ C1(a, b)N/r if N ≥ r2. Thus L(N , d, ν) ≤ C(d)N/r ,
L(N , d) ≤ C(d)N/r for N ≥ r2 and thus

εd = lim sup
N→∞

N−1L(N , d) ≤ C(d)/r. (3.4)

Let now f (x) = cos 2πx + cos 4πx , then

∑
k∈H�

f (nk x) =
∑
k∈H�

cos 2πnk x +
∑
k∈H�

cos 4πnk x .

The frequencies in the first trigonometric sum on the right side are

2m�+1 − 1, 2m�+2 − 1, 2m�+4 − 1, 2m�+8 − 1, . . . (3.5)
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and in the second sum are

2m�+2 − 2, 2m�+3 − 2, 2m�+5 − 2, 2m�+9 − 2, . . . (3.6)

(The frequency of cos 2πλx is meant as |λ|.) Note that the second frequency in (3.5)
and the first frequency in (3.6) differ by 1 and thus the sum of the corresponding
cosines is

2 cos(πx) cos 2π(2m�+2 − 3/2)x .

The remaining frequencies in (3.5) and (3.6) give a trigonometric sum g�(x) with
2r − 2 terms, with frequencies between 2m�+1 − 1 and 2m�+2r−1+1 − 2. Note that,
given any 1 < q < 2, the frequencies in g� satisfy the Hadamard gap condition
with ratio q provided � > �0(q) and this property remains valid even if we include
2m�+2 − 3/2 in the above set of frequencies. Thus discarding the first �0 blocks H�
and shifting indices, we can assume that the above statements are valid for all � ≥ 1.
Thus letting ψ(x) = 2 cos(πx) we have

∑
k∈H�

f (nk x) = ψ(x) cos 2π(2m�+2 − 3/2)x + g�(x)

and consequently

1√
Nr

∑
k≤Nr

f (nk x) = ψ(x)
1√
Nr

N∑
�=1

cos 2π(2m�+2 − 3/2)x

+ 1√
Nr

N (2r−2)∑
j=1

cos 2πp j x =: Z N (x) (3.7)

where p1 < p2 < . . . is Hadamard lacunary, moreover it remains lacunary together
with the frequencies 2m�+1 − 3/2 in the first sum on the right hand side of (3.7). The
limit distribution of Z N (x) is easy to determine for any continuous function ψ on
[0, 1]. Assume first that ψ = ∑s

j=1 d j I[v j−1,v j ) is a stepfunction where 0 = v0 <

v1 < . . . < vs = 1. Applying the CLT of Salem and Zygmund (see [21], statement
(iii) on p. 333) for the interval [v j−1, v j ), it follows that

lim
N→∞

1

v j − v j−1

v j∫
v j−1

exp(i t Z N (x))dx = exp

(
−1

2

(
1 − 1

r
+ d2

j

2r

)
t2

)

and thus

lim
N→∞

1∫
0

exp(i t Z N (x))dx =
1∫

0

exp(h(x)t2)dx (3.8)
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where

h(x) = −1

2

(
1 − 1

r
+ ψ(x)2

2r

)
= −1

2
− ψ(x)2 − 2

4r
. (3.9)

By a simple approximation argument, (3.8) and (3.9) remain valid for any continu-
ous function ψ and thus (Nr)−1/2∑

k≤Nr f (nk x) has a limit distribution G whose
characteristic function is

ϕ(t) =
1∫

0

exp(h(x)t2)dx with h(x) = −1

2
− 2 cos2 πx − 1

2r
= −1

2
− cos 2πx

2r
.

By Taylor expansion we get for 0 ≤ t ≤ 1

ϕ(t) = e−t2/2

⎛
⎝1 − t2

2r

1∫
0

cos 2πx dx + t4

8r2

1∫
0

cos2 2πx dx + O(r−3)

⎞
⎠

= e−t2/2
(

1 + t4

16r2 + O(r−3)

)

where the constant in the O is absolute. Thus |ϕ(t)−e−t2/2| ≥ B/r2 for 1/2 ≤ t ≤ 1,
r ≥ r0 for some positive absolute constant B. On the other hand, for any two distri-
bution functions F1 and F2 with characteristic functions ϕ1 and ϕ2 we have for any
T ≥ 2

|ϕ1(1)− ϕ2(1)| ≤ 3T sup
x

|F1(x)− F2(x)| +
∫

|x |≥T

d F1(x)+
∫

|x |≥T

d F2(x). (3.10)

Using this for F1 = �, F2 = G, the two integrals on the right side of (3.10) are
O(e−cT 2

) and thus choosing T = log r we get for r ≥ r0 that

sup
x

|�(x)− G(x)| ≥ C/(r2 log r),

which, together with (3.4), completes the proof of Theorem 1.3. Choosing r large, we
also proved the remark after Theorem 1.1, concerning the optimality of Theorem 1.1.
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