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Abstract In this paper, one investigates the transportation-information Tc I
inequalities: α(Tc(ν, µ)) ≤ I (ν|µ) for all probability measures ν on a metric space
(X , d), where µ is a given probability measure, Tc(ν, µ) is the transportation cost
from ν to µ with respect to the cost function c(x, y) on X 2, I (ν|µ) is the
Fisher–Donsker–Varadhan information of ν with respect to µ and α : [0,∞) →
[0,∞] is a left continuous increasing function. Using large deviation techniques, it
is shown that Tc I is equivalent to some concentration inequality for the occupation
measure of aµ-reversible ergodic Markov process related to I (·|µ). The tensorization
property of Tc I and comparisons of Tc I with Poincaré and log-Sobolev inequalities
are investigated. Several easy-to-check sufficient conditions are provided for special
important cases of Tc I and several examples are worked out.
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670 A. Guillin et al.

1 Introduction

Let M1(X ) be the space of all probability measures on a complete separable metric
space (X , d) and consider the cost function c(x, y) : X 2 → [0,+∞] with c(x, x) = 0
(for all x ∈ X ), which is lower semicontinuous on X 2. Given µ, ν ∈ M1(X ), the
transportation cost Tc(ν, µ) from ν to µ with respect to the cost function c is defined
by

Tc(ν, µ) = inf
π∈M1(X 2):π0=ν,π1=µ

∫∫

X 2

c(x, y) π(dx, dy) (1.1)

where π0(dx) = π(dx × X ), π1(dy) = π(X × dy) are the marginal distributions
of π . When c(x, y) = d p(x, y) where p ≥ 1, (Tc(ν, µ))

1/p = Wp(ν, µ) is the
L p- Wasserstein distance between ν and µ.

The relative entropy (or Kullback information) of ν with respect to µ is given by

H(ν|µ) :=

⎧⎪⎨
⎪⎩

∫

X
f log f dµ, if ν � µ and f := dν

dµ

+∞, otherwise.

(1.2)

The usual transportation inequalities for a given µ ∈ M1(X ), introduced by Marton
[32] and Talagrand [38], compare the Wasserstein metric Wp(ν, µ) with the relative
entropy H(ν|µ). The following extension of these inequalities:

α(Tc(ν, µ)) ≤ H(ν|µ), ∀ν ∈ M1(X ), (Tc H )

has recently been proposed and developed by Gozlan and Léonard [22]. Here
α : [0,∞) → [0,+∞] is some left continuous and increasing function withα(0) = 0.

Let us denote
α�(λ) := sup

r≥0
(λr − α(r)) (1.3)

the monotone conjugate of α. With α as above, one sees that α� is the restriction to
[0,∞) of the usual convex conjugate α̃∗(λ) = supr∈R(λr−α̃(r)) of α̃(r) = 1r≥0α(r),
r ∈ R. We also denote µ(v) := ∫

X vdµ.
As an extension of the Bobkov and Götze criterion [4], we have

Theorem 1.1 (Gozlan and Léonard [22]) Let (Xn)n∈N be a sequence of X valued i.i.d.
random variables with common law µ and α be moreover convex. Then the following
properties are equivalent:
(a) The transportation inequality Tc H holds;
(b) For any couple of bounded and measurable functions u, v : X → R such that

u(x)− v(y) ≤ c(x, y) over X 2, log
∫
X eλudµ ≤ λµ(v)+ α�(λ), ∀λ ≥ 0;

(c) For all n ≥ 1 and r > 0 and for any couple of bounded and measurable func-
tions u, v : X → R such that u(x) − v(y) ≤ c(x, y) over X 2, the following
concentration inequality holds P

( 1
n

∑n
k=1 u(Xk) ≥ µ(v)+ r

) ≤ e−nα(r).
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Transportation-information inequalities 671

The main purpose of this paper. In this paper, instead of the transportation-entropy
inequality Tc H, one investigates the following transportation-information inequality

α(Tc(ν, µ)) ≤ I (ν|µ), ∀ν ∈ M1(X ) (Tc I )

for some given probability measure µ. Here I (ν|µ) is the Fisher–Donsker–Varadhan
information of ν with respect to µ

I (ν|µ) =
{

E(√ f ,
√

f ) if ν = f µ,
√

f ∈ D(E)
+∞ otherwise

(1.4)

associated with the Dirichlet form E on L2(µ) with domain D(E).

Notation. In the special case where c(x, y) = d p(x, y), we use the notation Wp I
instead of Td p I. In particular, W1 I stands for Td I.

Organization of the paper. This paper is organized as follows. In the next section
we characterize Tc I by means of concentration inequalities for the empirical means
Lt (u) = 1

t

∫ t
0 u(Xs) ds of observables u, extending Theorem 1.1 from i.i.d.sequences

to time-continuous Markov processes. The method of proof is borrowed from [22]
who proved Theorem 1.1 by means of large deviations of the empirical measure of
an i.i.d. sequence. Here, it relies on the large deviations of the occupation measure of
(Xt ). The tensorization of Tc I is proved, and the relations between W2 I , Poincaré and
log-Sobolev are exhibited with the help of [34].

In Sect. 3, W1 I is proved for the trivial metric d(x, y) = 1x 
=y with the sharp con-
stant in terms of the spectral gap as well as a sharp Hoeffding concentration inequality
for Markov processes.

For a general metric, using Lyons–Meyer–Zheng forward–backward martingale
decomposition, we obtain in Sect. 4 a sharp W1 I inequality under the spectral gap
existence of the Markov diffusion process in the space of Lipschitz functions.

Finally in Sect. 5 we propose a practical Lyapunov condition for W1 I (or a more
general T� I ) which, although not providing the sharp constant, yields a good order.

About the literature. Let us give some historical notes on the usual transporta-
tion inequality Wp H . Marton [31] first noticed that W1 H implies the concentration
inequality forµ by a very elementary and neat argument, and she established W1 H for
the law of a Dobrushin-contractive Markov chain in [32]. Talagrand [38] established
W2 H for the Gaussian measure µ with α(r) = r/2C and provided the sharp constant
C (this particular case of Tc H is often called Talagrand’s transportation inequality).
Bobkov and Götze [4] obtained the characterization of Wp H in Theorem 1.1 with
[p = 1, α quadratic] and [p = 2, α linear]. Otto and Villani [34] proved that the
log-Sobolev inequality is stronger than Talagrand’s transportation inequality and pre-
sented a differential geometrical point of view on M1(X ) equipped with the W2-metric.
Bobkov et al. [3] shed light on a profound relation between Talagrand’s transporta-
tion inequality, log-Sobolev inequality, inf-convolution and some Hamilton–Jacobi
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672 A. Guillin et al.

equation. Djellout et al. [13] obtained a necessary and sufficient condition for W1 H
with a quadratic α by means of the Gaussian integrability of d(x, x0) under µ, and
gave a direct proof of Talagrand’s transportation inequality for the law of a diffusion
process by means of Girsanov’s formula, without appealing to log-Sobolev inequal-
ity. See Fernique [17], Feyel and Ustunel [18], Bogachev and Kolesnikov [5] for the
approach of Girsanov’s transform to optimal mass transportation and Tc H .

Bolley and Villani [6] and later Gozlan and Léonard [22] refined the result of
[13] under a Gaussian integrability condition. Cattiaux and Guillin [9] constructed
the first example for which Talagrand’s transportation inequality holds but not log-
Sobolev inequality, and Gozlan [21] found a necessary and sufficient condition for
Talagrand’s transportation inequality with µ(dx) = e−V (x)dx on R when the
Bakry–Emery curvature V ′′ is lower bounded. Otto–Villani’s differential geometrical
point of view on M1(X ) equipped with the W2-metric is very fruitful, as developed
by the recent works of [30,36,37]. The reader is referred to the textbooks by Ledoux
[27] and Villani [39,40] for further references pertaining to this very active field.

The transportation-information inequalities Tc I are new objects.

Convention and notation. Throughout this paper (X , d) is a complete separable
metric space with the associated Borel σ -field B.
– The space of all real bounded and B-measurable functions is denoted by bB.
– The functions to be considered later are assumed to be measurable without warning.
– For µ, ν ∈ M1(X ), ‖ν − µ‖TV := supu:|u|≤1

∫
u d(ν − µ) is the total variation

norm.
– A cost function c is a non-negative lower semicontinuous function on X 2 such that

c(x, x) = 0 for all x ∈ X .

2 General results on Tc I

2.1 Markov processes, Fisher–Donsker–Varadhan information and Feynman–Kac
semigroup

The main probabilistic object to be considered in this paper is an X valued time-
continuous Markov process (�,F , (Xt )t≥0, (Px )x∈X ) with an invariant probability
measure µ. The transition semigroup is denoted (Pt )t≥0.

Assumption: Ergodicity. It is assumed that the invariant probability measure µ is
ergodic: if f ∈ bB satisfies Pt f = f, µ-a.e. for all t ≥ 0, then f is constant µ-a.e.
Denoting Pβ(·) := ∫

X Px (·) β(dx) for any initial probability measure β, the previous
condition on µ amounts to stating that ((Xt )t≥0,Pµ) is a stationary ergodic process.

Assumption: Closability of the symmetrized Dirichlet form. It is assumed that (Pt )

is strongly continuous on L2(µ) := L2(X ,B, µ). Let L be its generator with domain
D2(L) on L2(µ). It is also assumed that

E(g, g) := 〈−Lg, g〉µ, g ∈ D2(L)
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Transportation-information inequalities 673

is closable in L2(µ). Its closure which is denoted by (E,D(E)) is a Dirichlet form: the
symmetrized Dirichlet form associated with the Markov process (Xt ) (or (Pt )). Notice
that (E,D(E)) corresponds to a self-adjoint generator Lσ (formally Lσ = (L+L∗)/2),
and Pσt = etLσ is the symmetrized Markov semigroup of (Pt ). When Pt is symmetric
on L2(µ), the above closability assumption is always satisfied and the domain D(E)
of the Dirichlet form coincides with the domain D2(

√−L) in L2(µ).
These above assumptions of ergodicity and closability of the Dirichlet form prevail

for the whole paper.

Fisher–Donsker–Varadhan information. The following definition is motivated by
standard large deviation results.

Definition 2.1 Given the Dirichlet form E with domain D(E) on L2(µ), the
Fisher–Donsker–Varadhan information of ν with respect to µ is defined by

I (ν|µ) :=
{

E(√ f ,
√

f ), if ν = f µ,
√

f ∈ D(E)
+∞, otherwise.

(2.1)

Remarks 2.2 (I as rate function) When (Pt ) is µ-symmetric, ν �→ I (ν|µ) is exactly
the Donsker–Varadhan entropy i.e. the rate function governing the large deviation
principle of the empirical measure Lt := 1

t

∫ t
0 δXs ds for large time t . This was proved

by Donsker and Varadhan [15] under some conditions of absolute continuity and
regularity of Pt (x, dy), and established in full generality by Wu [43, Corollary B.11].

Remarks 2.3 (Framework of Riemannian manifold) Whenµ = e−V (x)dx/Z (Z is the
normalization constant) with V ∈ C1 on a complete connected Riemannian manifold
X = M , the diffusion (Xt ) generated by L = 
 − ∇V · ∇ (
,∇ are, respectively,
the Laplacian and the gradient on M) is µ-reversible and the corresponding Dirichlet
form is given by

Eµ(g, g) =
∫

M

|∇g|2 dµ, g ∈ D(Eµ) = H1(X , µ)

where H1(X , µ) is the closure of C∞
b (M) (the space of infinitely differentiable func-

tions f on M with |∇n f |bounded for all n) with respect to the norm
√
µ(|g|2 + |∇g|2).

It also matches with the space of these g ∈ L2(M) such that ∇g ∈ L2(M → T M;µ)
in distribution. In this case, if ν = f µ with 0 < f ∈ C1(M), then

I (ν|µ) =
∫

X
|∇√ f |2 dµ = 1

4

∫

X

|∇ f |2
f

dµ = 1

4
IF( f |µ) (2.2)

where IF( f |µ) is the classical Fisher information of the probability density f .

Feynman–Kac semigroup. The derivation of the large deviation results for Lt as t
tends to infinity is intimately related to the Feynman–Kac semigroup
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674 A. Guillin et al.

Pu
t g(x) := E

x g(Xt ) exp

⎛
⎝

t∫

0

u(Xs) ds

⎞
⎠ . (2.3)

When u is bounded, (Pu
t ) is a strongly continuous semigroup of bounded operators

on L2(µ) whose generator is given by Lu g = Lg + ug, for all g ∈ D2(Lu) = D2(L).
It is no surprise that this semigroup also plays a role in the present investigation.

2.2 Characterizations of Tc I

Recall that Kantorovich’s duality theorem (see [40]) states that for any ν, µ ∈ M1(X )
so that Tc(ν, µ) < +∞,

Tc(ν, µ) = sup
(u,v)∈�c

∫
u dν −

∫
v dµ (2.4)

where�c := {(u, v) ∈ (bB)2 : u(x)−v(y) ≤ c(x, y), ∀(x, y) ∈ X 2}.This motivates
us to introduce as in [22]

T�(ν, µ) = sup
(u,v)∈�

∫
u dν −

∫
v dµ (2.5)

where � ⊂ (bB)2 (non-empty) satisfies

(A1) u ≤ v for all (u, v) ∈ � ;
(A2) For all ν1, ν2 ∈ M1(X ), there exists (u, v) ∈ � such that

∫
u dν1−∫ v dν2 ≥ 0.

Note that for (A1) and (A2) to be satisfied when � = �c, it is enough that
c(x, x)= 0 for all x . The main result of this section is the following generalization
of Theorem 1.1.

Theorem 2.4 Let ((Xt )t≥0,Pµ) be a stationary ergodic Markov process with the
symmetrized Dirichlet form (E,D(E)), � be as above and α : [0,∞) → [0,∞]
be a left continuous increasing function such that α(0) = 0. Consider the following
properties:
(a) The following transportation inequality holds

α(T�(ν, µ)) ≤ I (ν|µ), ∀ν ∈ M1(X ) (T� I )

(b) For all (u, v) ∈ � and all λ, t ≥ 0

‖Pλu
t ‖L2(µ) ≤ et[λµ(v)+α� (λ)] (2.6)

where Pλu
t is the Feynman–Kac semigroup (2.3) and α� is defined at (1.3).
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Transportation-information inequalities 675

(b′) For all (u, v) ∈ � and all λ ≥ 0

lim sup
t→∞

1

t
log Eµ exp

⎛
⎝λ

t∫

0

u(Xs) ds

⎞
⎠ ≤ λµ(v)+ α�(λ)

(c) For any initial measure β � µ with dβ/dµ ∈ L2(µ) and for all (u, v) ∈ � and
r, t > 0,

Pβ

⎛
⎝1

t

t∫

0

u(Xs) ds ≥ µ(v)+ r

⎞
⎠ ≤

∥∥∥∥ dβ

dµ

∥∥∥∥
2

e−tα(r) (2.7)

(c′) For all (u, v) ∈ � and for any r ≥ 0, there exists β ∈ M1(X ) such that β�µ,

dβ/dµ ∈ L2(µ) and lim supt→∞ 1
t log Pβ

(
1
t

∫ t
0 u(Xs) ds ≥µ(v)+ r

)
≤ −α(r)

We have

1. (a) ⇒ (b) ⇒ (b′) and (a) ⇒ (c) ⇒ (c′).
2. If α is convex, then (a) ⇔ (b).
3. If (Pt ) is symmetric on L2(µ), then (a) ⇔ (c) ⇔ (c′).

If furthermore α is convex, (a), (b), (b′), (c) and (c′) are equivalent.

Its proof is postponed to the end of the paper. From Theorem 2.4 we derive easily

Corollary 2.5 (The inequalities W1 I (c) and W2 I (c)) Let c > 0 and let (Xt ) be a
µ-reversible and ergodic Markov process such that

∫
d2(x, x0) dµ(x) < +∞.

1. The statements below are equivalent:
(a) The following W1 I (c) inequality holds true:

W 2
1 (ν, µ) ≤ 4c2 I (ν|µ), ∀ν ∈ M1(X ); (W1 I (c))

(b) For all Lipschitz function u on X with ‖u‖Lip ≤ 1 and all λ, t ≥ 0,

‖Pλu
t ‖L2(µ) ≤ exp

(
t[λµ(u)+ c2λ2]

)
;

(c) For all Lipschitz function u on X with ‖u‖Lip ≤ 1, µ(u) = 0 and all λ ≥ 0,

lim sup
t→+∞

1

t
log Eµ exp

⎛
⎝λ

t∫

0

u(Xs) ds

⎞
⎠ ≤ c2λ2;

(d) For all Lipschitz function u on X , r > 0 and β ∈ M1(X )such that
dβ/dµ ∈ L2(µ),

Pβ

⎛
⎝1

t

t∫

0

u(Xs) ds ≥ µ(u)+ r

⎞
⎠ ≤

∥∥∥∥ dβ

dµ

∥∥∥∥
2

exp

(
− tr2

4c2‖u‖2
Lip

)
.
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676 A. Guillin et al.

2. The statements below are equivalent:
(a) The following W2 I (c) inequality holds true:

W 2
2 (ν, µ) ≤ 4c2 I (ν|µ), ∀ν ∈ M1(X ); (W2 I (c))

(b) For any v ∈ bB, ‖P
1

4c2 Qv

t ‖L2(µ) ≤ e
t

4c2 µ(v), ∀t ≥ 0 where

Qv(x) = inf
y∈X

{v(y)+ d2(x, y)} is the so-called “inf-convolution” of v;

(c) For any u ∈ bB, ‖P
1

4c2 u

t ‖L2(µ) ≤ e
t

4c2 µ(Su)
, ∀t ≥ 0 where

Su(y) = sup
x∈X

{u(y)− d2(x, y)} is the so-called “sup-convolution” of u.

Notation. The best constants c > 0 in W1 I (c) and W2 I (c) will be denoted, respec-
tively, by cW1 I (µ) and cW2I(µ).

Remarks 2.6 (i) The best constants cW1 I (µ) and cW2I(µ) depend on the metric d
and the Dirichlet form E . Of course cW1 I (µ) ≤ cW2I(µ).

(ii) The above corollary may be seen as the counterpart of Bobkov–Götze’s
characterizations of Wp H (p = 1, 2) for Markov processes.

The following simple example illustrates difference between W1 I and W2 I .

Example 2.7 (Bernoulli distribution). Let µ be the Bernoulli distribution on
X = {0, 1} with µ({1}) = p ∈ (0, 1). Consider the Dirichlet form E(g, g) =
(g(1)− g(0))2. By Theorem 3.1-(a) in Sect. 3, we see that

W1(ν, µ)
2 ≤ pq I (ν|µ)

where W1 is built with the trivial metric. The constant pq is sharp. However µ does
not satisfy any W2 I (c) as is easily seen with ν = µε = (1 + εg)µ.

Remarks 2.8
In all concentration inequalities of Lt (u) in this paper, ‖dβ/dµ‖2 is used (which
may become very big if β = δx and X is discrete); however in the study of the
relaxation time Tr = inf{t; ‖βPt − µ‖TV ≤ e−1}, one can control it in terms of
H(β|µ) by assuming the log-Sobolev inequality (see the course of [35] and references
therein). We believe that the main reason for this difference resides in the nature of
our problem: the empirical measure Lt (u) = 1

t

∫ t
0 u(Xs)ds contains the whole sample

path Xs, 0 ≤ s ≤ t (unlike the relaxation problem). To avoid the term ‖dβ/dµ‖2 in
our estimates, one can combine the relaxation time idea with ours in the following
ways. Consider instead of Lt (u), Lt (u) ◦ θT = 1

t

∫ T +t
T u(Xs)ds (where θT is the shift

such that Xt ◦ θT = XT +t ). We have

Pβ(Lt (u) ◦ θT ∈ ·) = PβPT (Lt (u) ∈ ·) ≤ 1

2
‖νPT − µ‖TV + Pµ(Lt (u) ∈ ·)

123



Transportation-information inequalities 677

where the first term at the r.h.s. can be controlled as in [35] and the last term by
those in this work. A slightly different way is to use the following relaxation time
T := inf{t ≥ 0; ‖d(βPt )/dµ‖2 ≤ e}, which can be estimated by the hypercon-
tractity and the entropy H(β|µ), and then apply our result to Pβ(Lt (u) ◦ θT ∈ ·) =
PβPT

(
1
t

∫ t
0 u(Xs)ds ∈ ·

)
. Considering Lt (u)◦θT is very natural: before T , the process

is too far from the equilibrium measure µ.

2.3 Relations between W2 I, Poincaré and log-Sobolev inequalities

In the rest of the paper we are interested in two particular cases of Tc I : W1 I (c) and
W2 I (c) introduced at Corollary 2.5.

Notation (Spectral gap). As usual, one says that µ satisfies a Poincaré inequality if

Varµ(g) ≤ c E(g, g), ∀g ∈ D2(L) (2.8)

for some finite c ≥ 0. We denote cP(µ) the best constant c in the above Poincaré
inequality. It is the inverse of the spectral gap of L.

The following result is just a reformulation of the work of [34].

Proposition 2.9 In the framework of Riemannian manifold in Remarks 2.3, the fol-
lowings hold.

(a) If the log-Sobolev inequality below

H(ν|µ) ≤ 2c I (ν|µ), ∀ν

is satisfied, then µ satisfies W2 I (c).
(b) W2 I (c) implies the Poincaré inequality with constant c, i.e., cW2I(µ) ≥ cP(µ).

(c) Assume that the Bakry–Emery curvature Ric + HessV is bounded from below
by K ∈ R, where Ric is the Ricci curvature and HessV is the Hessian of V .
If W2 I (c) holds with cK ≤ 1 (this is possible by Part (a) and Bakry–Emery’s
criterion in the case K > 0), then we have the following log-Sobolev inequality

H(ν|µ) ≤ 2(2c − c2 K ) I (ν|µ), ∀ν

Proof Before the proof, let us remind the reader that I = IF/4 where IF is I in
Otto–Villani’s paper [34].

• (a). The proof is direct, as by Otto and Villani [34] or Bobkov et al. [3] a logarith-
mic Sobolev inequality implies the W2 H (sometimes called T2) inequality so that
W2(ν, µ) ≤ √

2cH(ν|µ) ≤ 2c
√

I (ν|µ) which is the announced conclusion.
• (b). The proof follows from the usual linearization procedure. Set µε = (1+ εg)µ

for some smooth and compactly supported g with
∫

g dµ = 0, we easily get
limε→0 I (µε|µ)/ε2 = 1

4E∇(g, g) and by Otto and Villani [34, p. 394], there exists

r such that
∫

g2 dµ ≤ √E∇(g, g)W2(µε,µ)
ε

+ r
ε

W 2
2 (µε, µ). Using now W2 I (c) we
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678 A. Guillin et al.

get

∫
g2 dµ ≤ 2c

√
E∇(g, g)

√
I (µε|µ)
ε2 + 4rc2

ε
I (µε|µ).

Letting ε → 0 gives the result.
• (c) is a direct application of the HWI inequality [34, Theorem 3] in the Euclidean

case and [3] for a general Riemannian manifold: H(ν|µ) ≤ 2W2(ν, µ)
√

I (ν|µ)−
K
2 W 2

2 (ν, µ). ��

2.4 Tensorization of Tc I

Assume that µi ∈ M1(Xi ) satisfies

αi (Tci (ν, µi )) ≤ Ii (ν|µi ), ∀ν ∈ M1(Xi ) (2.9)

where Ii (ν|µi ) is the Fisher–Donsker–Varadhan information related to the Dirichlet
form (Ei ,D(Ei )), and αi is moreover convex. On the product space X (n) := ∏n

i=1 Xi

equipped with the product measure µ := ⊗n
i=1µi , consider the sum-cost function

⊕i ci (x, y) :=
n∑

i=1

c(xi , yi ), ∀x, y ∈ X (n) (2.10)

and the inf-convolution of (αi )

α1� · · · �αn(r) := inf

{
n∑

i=1

α(ri ); ri ≥ 0,
n∑

i=1

ri = r

}
. (2.11)

It also shares the following properties of every αi : it is increasing, left continuous and
convex on R

+ with α(0) = 0 (see [22]). Define the sum-Dirichlet form of ⊕iEi by

D(⊕iEi ) :=

⎧⎪⎨
⎪⎩g ∈ L2(µ) : gi ∈ D(Ei ), for µ-a.e. x̂i and

∫

X (n)

n∑
i=1

Ei (gi , gi ) dµ<+∞

⎫⎪⎬
⎪⎭

⊕iEi (g, g) :=
∫

X (n)

n∑
i=1

Ei (gi , gi ) dµ, g ∈ D(E) (2.12)

where gi (xi ) := g(x1, . . . , xi , . . . , xn) with x̂i := (x1, . . . , xi−1, xi+1, . . . , xn) fixed.

Theorem 2.10 Assume (2.9) for each i = 1, . . . , n with αi moreover convex. Define
c, α, E , respectively, by (2.10)–(2.12). Let I⊕i Ei(ν|µ)be the Fisher–Donsker–Varadhan
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information associated with (⊕iEi ,D(⊕iEi )). Then

α1� · · · �αn(T⊕ci (ν, µ)) ≤ I⊕i Ei (ν|µ), ∀ν ∈ M1

(
X (n)

)
. (2.13)

This result is similar to [22, Corollary 5], but the proof will be different. It is based
on the following sub-additivity result for the transportation cost of a product measure,
which is different from Marton’s original result [31] where an ordering of sites is
required.

Lemma 2.11 Let µ = ⊗n
i=1µi . Given a probability measure ν on

∏n
i=1 Xi , let νi be

the regular conditional distribution of xi knowing x̂i . Then with the cost function c
given at (2.10), T⊕ci (µ, ν) ≤ ∫ ∑n

i=1 Tci (µi , νi )dν.

Proof Let (Zi = (Xi ,Yi ))i=1,...,n be a sequence of random variables valued in∏n
i=1 X 2

i defined on some probability space (�,F ,P), realizing T⊕ci (µ, ν), i.e.,
the law of X = (Xi )i=1,...,n is µ = ⊗n

i=1µi , the law of Y = (Yi )i=1,...,n is ν and
E
∑

i ci (Xi ,Yi ) = T⊕ci (µ, ν).

For each i fixed, construct a couple of r.v. (X̃i , Ỹi ) so that its conditional law given
(Z j ) j 
=i is a coupling of (µi (dxi ), νi (dxi |Y j , j 
= i) and P-a.s.,

E[ci (X̃i , Ỹi )|Z j , j 
= i] = Tci (µi , νi (·|Y j , j 
= i)).

Obviously (X j , j 
= i; X̃i ) and (Y j , j 
= i; Ỹi ) (more precisely their joint law) consti-
tute a coupling of (µ, ν). Thus E

∑
j c j (X j ,Y j ) ≤ E[∑ j 
=i c j (X j ,Y j )+ ci (X̃i , Ỹi )]

or Eci (Xi ,Yi ) ≤ Eci (X̃i , Ỹi ) = ETci (µi , νi (·|Y j , j 
= i)). Consequently

T⊕ci (µ, ν) = E

n∑
i=1

Tci (Xi ,Yi ) ≤ E

n∑
i=1

Tci (µi , νi (·|Y j , j 
= i))

=
∫ n∑

i=1

Tci (µi , νi ) dν.

��
The following additivity property of the Fisher information will be needed. It holds

even in the dependent case.

Lemma 2.12 Let ν, µ be probability measures on
∏n

i=1 Xi such that I (ν|µ) < +∞,
let µi , νi be the regular conditional distributions of xi knowing x̂i under µ, ν. Then

I⊕i Ei (ν|µ) = E
ν
∑

i

Ii (νi |µi ). (2.14)

Proof Let f = dν/dµ. Then dνi/dµi = f/µi ( f ) = fi/µi ( fi ), ν-a.s. (recalling that fi

is the function f of xi with x̂i fixed). For ν-a.e. x̂i fixed,
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Ii (νi |µi ) = Ei

(√
fi

µi ( fi )
,

√
fi

µi ( fi )

)
= 1

µi ( fi )
Ei (
√

fi ,
√

fi )

(for µi ( fi ) is constant with x̂i fixed). We obtain

E
ν

n∑
i=1

Ii (νi |µi ) = E
µ f

n∑
i=1

1

µi ( fi )
Ei (
√

fi ,
√

fi ) = E
µ

n∑
i=1

Ei (
√

fi ,
√

fi )

= ⊕iEi (
√

f ,
√

f ) = I⊕i Ei (ν|µ),
which completes the proof. ��

The above additivity is different from the super-additivity of the Fisher information
for product measure obtained by Carlen [7].

Proof of Theorem 2.10 Without loss of generality we may assume that I (ν|µ) < +∞.
For simplicity write α = α1� · · · �αn . By Lemma 2.11, Jensen’s inequality and the
definition of α,

α(T⊕ci (ν, µ)) ≤ α

(
E
ν

n∑
i=1

Tci (νi , µi )

)
≤ E

να

(
n∑

i=1

Tci (νi , µi )

)

≤ E
ν

n∑
i=1

αi (Tci (νi , µi )) ≤ E
ν

n∑
i=1

Ii (νi |µi ).

The last quantity is equal to I⊕Ei (ν|µ), by Lemma 2.12. ��
As an example of application, let (Xi

t )t≥0, i = 1, . . . , n be n Markov processes
with the same transition semigroup (Pt ) and the same symmetrized Dirichlet
form E on L2(µ), and conditionally independent once (Xi

0)i=1,...,n is fixed. Then
Xt := (X1

t , . . . , Xn
t ) is a Markov process with the symmetrized Dirichlet form given

by

⊕nE(g, g) =
∫ n∑

i=1

E(gi , gi ) µ(dx1) · · ·µ(dxn)

which is the n-fold sum-Dirichlet form of E .

Corollary 2.13 Assume that µ satisfies Tc I on X with α convex. Then µ⊗n satisfies

nα

(
T⊕nc(ν, µ

⊗n)

n

)
≤ I⊕nE (ν|µ⊗n), ∀ν ∈ M1(X n). (2.15)

In particular for all (u, v) ∈ �c, for all initial measure β on X n with dβ/dµ⊗n ∈
L2(µ⊗n) and for any t, r > 0,

Pβ

⎛
⎝1

n

n∑
i=1

1

t

t∫

0

u(Xi
s) ds ≥ µ(v)+ r

⎞
⎠ ≤

∥∥∥∥ dβ

dµ⊗n

∥∥∥∥
2

e−ntα(r). (2.16)
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Proof As α�n(r) = nα(r/n), (2.15) follows from Theorem 2.10. Noting that for
u, v ∈ �c, (

∑n
i=1 u(xi ),

∑n
i=1 v(xi )) as a couple of functions on X n belongs to

�⊕nc, we obtain (2.16) by Theorem 2.4. ��
The tensorization of Wp I in the dependent Gibbs measure case is carried out in

[19].

3 Poincaré inequality implies Hoeffding’s deviation inequality

The purpose of this section is to establish

Theorem 3.1 Let ((Xt ),Pµ) be a stationary ergodic Markov process.

(a) The Poincaré inequality

Varµ(g) ≤ cP E(g, g), ∀g ∈ D2(L) (3.1)

implies
‖ν − µ‖2

TV ≤ 4cP I (ν|µ), ∀ν ∈ M1(X ) (3.2)

and for u ∈ bB so that ‖u‖∞ ≤ 1, µ(u) = 0,

∫
ud(ν − µ) ≤

√
4cP I (ν|µ)

(
Varµ(u)+√

cP I (ν|µ)/2
)
. (3.3)

In particular for every initial probability measure β � µ with dβ/dµ ∈ L2(µ)

and for all u ∈ bB with µ(u) = 0 and Varµ(u) = σ 2, t, r, ε > 0,

Pβ

⎛
⎝1

t

t∫

0

u(Xs) ds ≥ r

⎞
⎠ (3.4)

≤
∥∥∥∥ dβ

dµ

∥∥∥∥
2

exp

(
− t

cP
max

[
r2

δ(u)2
, 4ε(ε+σ 2)

(√
1 + r2

2ε(ε+σ 2)2‖u‖2∞
−1

)])

(3.5)

where δ(u) := supx,y∈X |u(x)− u(y)| is the oscillation of u.
(b) Conversely, assume that (Pt ) is symmetric on L2(µ). If there is some

left-continuous and increasing α : R
+ → R

+ with α(1) > 0 such that

α (‖ν − µ‖TV) ≤ I (ν|µ), ∀ν ∈ M1(X ), (3.6)

then the Poincaré inequality (3.1) holds with cP ≤ 1/α(1).
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Remarks 3.2 (i) Let d(x, y)= 1x 
=y (the trivial metric) and�= {(u, u); δ(u)≤ 1}.
Then 1

2‖ν−µ‖TV = W1(ν, µ) = T�(ν, µ).Hence (3.2) is exactly the inequal-
ity T� I or W1 I (c) with 4c2 = cP. In the symmetric case,

√
cP/4 ≤ cW1 I (µ) ≤√

cP/2 by (b).
(ii) Lezaud [28] proved a better deviation inequality using the asymptotic variance

V (u) = limt→∞ 1
t VarPµ

(∫ t
0 u(Xs)ds

)
in the central limit theorem instead

of Varµ(u), which is sharp in the moderate deviation scale (r very small),
nevertheless his proof involves Kato’s theory of perturbation of operators and
difficult combinatorial techniques. Our result (3.3) is similar to [8].

Proof of Theorem 3.1 • (a). Equation (3.4) follows by (3.2) and (3.3) by Theorem
2.4. We first prove the transportation inequality (3.2). To this end recall the fol-
lowing known inequality in statistics (see [20]) 1

4‖ν − µ‖2
TV ≤ d2

H (ν, µ)[2 −
d2

H (ν, µ)] where d2
H (ν, µ) = 1

2

∫
(1 − √

f )2dµ = 1 − µ(
√

f ) is the square
of the Hellinger distance between ν = f µ and µ. The above right-hand side is
exactly 1−[µ(√ f )]2 = Varµ(

√
f ). In other words we have for everyµ-probability

density f, i.e. f ≥ 0 and µ( f ) = 1,

‖ f µ− µ‖2
TV ≤ 4Varµ(

√
f ). (3.7)

Now for every probability density f so that
√

f ∈ D(E), we have by (3.7) and
the assumed Poincaré inequality, 1

4‖ν − µ‖2
TV ≤ Varµ(

√
f ) ≤ cPE(√ f ,

√
f ) =

cP I (ν|µ) which is (3.2).
For (3.3) it is enough to prove that if ‖u‖∞ ≤ 1, µ(u2) ≤ σ 2(≤ 1), then for every

probability density f

∫
u( f dµ− dµ) ≤

√
4Varµ(

√
f )

(
σ 2 +

√
Varµ(

√
f )/2

)
(3.8)

Indeed by Cauchy–Schwarz inequality

∫
u( f dµ− dµ) ≤

√∫
(
√

f − 1)2dµ
∫

u2(
√

f + 1)2dµ

=
√

4Varµ(
√

f )
∫

u2(
√

f + 1)2dµ/µ[(√ f + 1)2]

which gives us (3.7) (again). By the fact that δ(u2) ≤ 1,
∫

u2d(ν−µ) ≤ ‖ν−µ‖TV/2,
we get by (3.7)

∫
u2(

√
f +1)2dµ/µ[(√ f +1)2] ≤ µ(u2)+

√
Varµ

(√
(
√

f + 1)2/µ[(√ f +1)2]
)

≤ σ 2 +
√

Varµ(
√

f )/2

which yields (3.8).
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• (b). This converse part is based on the following well known fact ([11]): 1/cP ≥
inf D∈B:µ(D)≤1/2 λ0(D), where λ0(D) = inf E(g, g) with the inf taken for all
g ∈ D(E) such that ‖g‖2 = 1 and g = 0 a.e. on Dc, is the Dirichlet eigen-
value restricted in D. For any such domain D and g, letting ν := g2µ, by the
assumed TV I and the fact that ‖ν−µ‖TV ≥ |ν(D)−µ(D)|+|ν(Dc)−µ(Dc)| =
2(µ(Dc)− ν(Dc) ≥ 1 we have

E(g, g) ≥ E(|g|, |g|) = I (ν|µ) ≥ α(‖ν − µ‖TV) ≥ α(1)

where it follows λ0(D) ≥ α(1) and then cP ≤ 1/α(1). ��
Note that W1 I for the trivial metric implies W1 I for any bounded metric. So our next

purpose is to obtain W1 I for unbounded metrics. Our study is naturally separated into
two sections. Next Sect. 4 is concerned with estimating sharply cW1 I under Lyapunov
spectral gap condition. In Sect. 5, Lyapunov function conditions for W1 I or more
general T� I are taken into consideration.

4 Spectral gap in the space of Lipschitz functions implies W1 I for diffusion
processes

Let ((Xt ),Pµ) be a reversible ergodic Markov process with generator L, Dirichlet
form (E,D(E)) and with continuous sample paths valued in some separable complete
metric space (X , d) (called Markov diffusion). We assume that (E,D(E)) is given
by the carré-du-champs  : D(E) × D(E) → L1(µ) (symmetric, bilinear definite
non-negative form):

E(h, h) =
∫

X
(h, h) dµ, ∀h ∈ D(E). (4.1)

The continuity of sample paths of (Xt ) implies that  is a differentiation (cf. Bakry
[1]), that is: for all (hk)1≤k≤n ⊂ D(E), g ∈ D(E) and F ∈ C1

b(R
n),

(F(h1, . . . , hn), g) =
n∑

i=1

∂i F(h1, . . . , hn)(hi , g).

Theorem 4.1 Assume that
∫
X d2(x, x0) dµ(x) < +∞ and for any g ∈ CLip(X , d)

bounded with µ(g) = 0, then g ∈ D(E) and

√
(g, g) ≤ σ‖g‖Lip, µ-a.s. (4.2)

and there is some h ∈ D2(L) such that −Lh = g (µ-a.e.) and a µ-continuous version
h̃ of h satisfying

‖h̃‖Lip ≤ C‖g‖Lip (4.3)
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where σ,C > 0 are fixed constants. Then for any g ∈ CLip(X , d) and any convex
function φ on R,

Eµφ

⎛
⎝

t∫

0

g(Xs) ds

⎞
⎠ ≤ Eµφ(B2σ 2C2‖g‖2

Lipt ) (4.4)

where B is a standard Brownian Motion. In particular

Eβ exp

⎛
⎝λ

t∫

0

g(Xs) ds

⎞
⎠ ≤ ‖ dβ

dµ
‖2eλ

2(σC)2‖g‖2
Lipt
, ∀λ ∈ R, t > 0. (4.5)

and µ satisfies W1 I (σC) on (X , d). Furthermore let V (g) = limt→∞ 1
t VarPµ(∫ t

0 g(Xs)ds
)

and cP = cP(µ) ≤ C, we have for all λ ∈ R, t > 0, p > 1

(and 1/p + 1/q = 1),

Eβ exp

⎛
⎝λ

t∫

0

g(Xs) ds

⎞
⎠ ≤ ‖ dβ

dµ
‖2 exp

(
t

[
λ2

2
pV (g)+ λ4

4
p2qcP(σC)4‖g‖4

Lip

])
.

(4.6)

Remarks 4.2 (i) Let C0
Lip be the Banach space of those g ∈ CLip with µ(g) = 0,

equipped with ‖ · ‖Lip. Hence the best constant C in (4.3) is exactly

‖(−L)−1‖C0
Lip
.

By the spectral decomposition we always have (cf. [45, Lemma 5.4])

C = ‖(−L)−1‖C0
Lip

≥ ‖(−L)−1‖L2(µ)
⋂{g∈L2(µ);µ(g)=0} = cP(µ).

But the converse is false: the symmetric exponential measure µ = 1
2 e−|x |dx on

R satisfies the Poincaré inequality but the associated Dirichlet form
E(g, g) = ∫

R
g′2dµ does not have spectral gap in C0

Lip w.r.t. the Euclidean
metric.

(ii) The concentration inequality (4.5) and its equivalent W1 I (σC) are sharp, as
seen for one-dimensional Ornstein–Uhlenbeck process. The estimate (4.6) for
p close to 1 is sharp in the moderate deviation scale (λ very small) and extends
the result of [28] to unbounded g.

(iii) Klein et al. [26] developed convex concentration inequality (4.4) for semimartin-
gales instead of St (g), by means of a forward–backward martingale calculus,
but their result cannot be applied directly here.

(iv) In [25], Joulin obtained a similar result for Markov processes with jumps.

Proof of Theorem 4.1 Let � = {(g, g); ‖g‖Lip ≤ 1, g bounded}. Then W1(ν, µ) =
T�(ν, µ) by Kantorovich–Rubinstein’s theorem. Let us verify that (b′) of Theorem 2.4
holds.
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For any g ∈ CLip with ‖g‖Lip ≤ 1, let h ∈ CLip
⋂

D2(L) such that −Lh = g.
Hence

Mt (h) := h(Xt )− h(X0)+
t∫

0

g(Xs) ds and

M∗
t (h) := h(X0)− h(Xt )+

t∫

0

g(Xs) ds

have the same law under Pµ by the reversibility of ((Xt ),Pµ). Consequently from
Lyons–Meyer–Zheng’s forward–backward martingale decomposition

St (g) :=
t∫

0

g(Xs) ds = 1

2
(Mt (h)+ M∗

t (h)), (4.7)

it follows that for any convex function φ on R, Eµφ(St (g)) ≤ 1
2 Eµ[φ(Mt (h) +

φ(M∗
t (h))] = Eµφ(Mt (h)). As Mt (h) is a (forward) continuous martingale,

Mt (h) = Bτt where (Bt ) is some Brownian motion with respect to another time-
changed filtration (F̂t ), and τt = 〈M(h)〉t is a (F̂t )-stopping time (a well known result).
Since by our conditions (4.2) and (4.3), 〈M(h)〉t = 2

∫ t
0 (h, h)(Xs) ds ≤ 2(σC)2t,

by Jensen’s inequality we obtain for all convex function φ on R that Eµφ(St (g)) ≤
Eφ(Bτt ) = Eφ(E[B2(σC)2t |F̂τt ) ≤ Eφ(B2(σC)2t ), which is (4.4). Applying this to
φ(x) = eλx , we get (4.5) for β = µ. Hence Theorem 2.4-(b′) holds with � =
{(g, g); ‖g‖Lip ≤ 1, g bounded} and α(r) = r2/(4(σC)2), and Theorem 2.4 also
gives us (4.5) for β.

For (4.6), it is enough to show it for β = µ by Theorem 2.4 and for g with
‖g‖Lip = 1. By Hölder’s inequality,

EµeλSt (g)≤ EµeλMt ≤
(
Eµ exp

(
λpMt − λ2 p2

2
〈M〉t

))1/p(
Eµ exp

(
λ2 pq

2
〈M〉t

))1/q

where Mt = Mt (h). Since exp
(
λpMt − λ2 p2

2 〈M〉t

)
is an exponential martingale,

its expectation is 1. To estimate the last term above we use the analogue of (3.2) at
Theorem 3.1, given by Theorem 2.4(b). Noting δ((h, h)) ≤ ‖(h, h)‖∞ ≤ (σC)2

and 2µ((h, h)) = V (g), this provides us with

Eµ exp

(
λ2 pq

2
〈M〉t

)
= Eµ exp

⎛
⎝λ2 pq

t∫

0

(h, h)(Xs)ds

⎞
⎠

≤ exp

(
t

[
λ2

2
pqV (g)+ λ4 p2q2

4
· cP(σC)4

])

where (4.6) follows. ��
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Remarks Using results from [14], one can be even more precise in the one dimensional
case. Using the metric induced by the carré-du-champ operator of the diffusion, and
conditions on Feller’s scale and speed functions, we get sharp constant on the spectral
gap for Lipschitz functions. It will be developed in [23].

5 Lyapunov function conditions

5.1 Main result

We will use in this section general conditions on the generator of the process, known
as Lyapunov function conditions, for deriving W1 I or more generally T� I where
� = {(u, u); |u| ≤ φ} with φ unbounded. To state properly the Lyapunov function
condition, it is necessary to enlarge the domain of the generator. In this section, the
Markov process ((Xt ),Pµ) is reversible and its sample paths are Pµ-càdlàg (possibly
with jumps).

A continuous function h is said to be in the µ-extended domain De(L) of the
generator of the Markov process ((Xt ),Pµ) if there is some measurable function g
such that

∫ t
0 |g|(Xs) ds < +∞,Pµ-a.s. and

Mt (h) := h(Xt )− h(X0)−
t∫

0

g(Xs)ds

is a local Pµ-martingale. It is obvious that g is uniquely determined up toµ-equivalence.
In such case one writes h ∈ De(L) and Lh = g.

The Lyapunov condition can now be stated:

(H) There exist a continuous function U : X → [1,+∞) in De(L), a non-negative
function φ and a constant b > 0 such that

−LU

U
≥ φ − b, µ-a.s.

When the process is irreducible and the constant b is replaced by b1C for some “small
set” C , then it is well-known that the existence of a positive bounded φ such that
infX \C φ > 0 in (H) is equivalent to Poincaré inequality (see [2], for instance).

Lyapunov conditions are widely used to study the speed of convergence of Markov
chains [33] or Markov processes [16], large or moderate deviations and essential spec-
tral radii [44,45]. More recently, they have been used to study functional inequalities
as weak Poincaré inequality [2] or super-Poincaré inequality [10]. See Wang [41] on
weak and super Poincaré inequalities.

Theorem 5.1 Assume thatµ satisfies a Poincaré inequality with best constant cP < ∞
and that the Lyapunov condition (H) holds. Suppose moreover that φ ∈ L2(µ), that
is ‖φ‖2 := (

∫
φ2 dµ)1/2 < ∞. Then for any p ∈ [1,+∞), we have

αp,R

(
‖φ1/p(ν − µ)‖TV

)
≤ I (ν|µ), ∀ν (5.1)
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where R = 21/q
(

3
cP

+ 6b + 2
√

2‖φ‖2

)1/p
, 1/p + 1/q = 1 and

αp,R(r) =
{

r2/(R2cP), if 0 ≤ r ≤ R;
r p/(R pcP), if r > R.

(5.2)

In particular, if moreover d(x, x0) ≤ Cφ1/p, ∀x ∈ X for some x0 ∈ X , then

αp,R(W1(ν, µ)/C) ≤ I (ν|µ). (5.3)

Remarks 5.2 Since ‖φ(ν − µ)‖TV = supu:|u|≤φ
∫

u d(ν − µ), the inequality (5.1) in
this theorem may be regarded as T� I in Theorem 2.4 with � = {(u, u); u ∈ bB,
|u| ≤ φ1/p}. Since

W1(ν, µ) = sup
f :‖ f ‖Lip≤1

∫
f d[ν − µ] ≤ inf

x0∈X
‖d(·, x0)(ν − µ)‖TV, (5.4)

one sees that the W1 I inequality (5.3) is a direct consequence of (5.1).
An important feature of this result is: (1/t)

∫ t
0 u(Xs)ds has different concentration

behaviors according to different p so that |u| ≤ Cφ1/p, by (5.1).
The explicit constants in the inequalities of this theorem, produced by the Lyapunov

function condition (H), are in general far from being optimal, but are sharp in order,
as will be seen for the Ornstein–Uhlenbeck process at Example 5.5.

Example 5.3 (M/M/∞ queue). In this example X = N,µ is the Poisson measure with
mean λ > 0 and the Dirichlet form is

E(h, h) =
∑
n∈N

(h(n + 1)− h(n))2µ(n)

The associated generator is

Lh(n) = λ(h(n + 1)− h(n))+ n(h(n − 1)− h(n)), ∀n ≥ 0

(with the convention that h(−1) = h(0)). Let U (n) = ecn where c > 0. We have

−LU

U
(n) = n(1 − e−c)− (ec − 1).

Thus condition (H) is satisfied with φ(n) := (n + 1)(1 − e−c) and b = ec + e−c − 2,
and it is well known that cP(µ) = λ. Noting ‖φ‖2 = (1 − e−c)

√
λ2 + 3λ+ 1, we

have by Theorem 5.1 that for the distance d(m, n) := |√m − √
n|,

W1(ν, µ)
2 ≤ K (c)I (ν|µ), ∀ν ∈ M1(N), c > 0
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where K (c) = 2
1−e−c

[
3
(
1 + 2(ec + e−c − 2)λ

)+ 2
√

2(1 − e−c)
√
λ2 + 3λ+ 1λ

]
.

By Theorem 2.4, this gives the Gaussian deviation inequality for any observable u so
that |u(n + 1) − u(n)| ≤ C |√n + 2 − √

n + 1| or |u(n)| ≤ C
√

1 + n. Furthermore
if |u(n)| ≤ C[(1 − e−c)(1 + n)]1/p, we have by (5.2) and Theorem 2.4

Pβ

⎛
⎝1

t

t∫

0

u(Xs)ds > µ(u)+ r

⎞
⎠ ≤

∥∥∥∥ dβ

dµ

∥∥∥∥
2

exp
(−tαp,R(Cr)

)
, ∀t, r > 0.

See Joulin [24] and Liu and Ma [29] for previous studies on deviation inequali-
ties of this model. Note that they only obtain Poisson tail for observable u so that
|u(n + 1)− u(n)| ≤ C |√n + 2 − √

n + 1|.
Corollary 5.4 Let µ = e−V dx/Z be a probability measure where V ∈ C∞(X ) is
bounded from below and |∇V |2 ∈ L2(µ). Let L = 
 − ∇V · ∇ be the generator of
the diffusion (Xt ) on the non-compact connected complete Riemannian manifold X .
Assume that

γ := lim sup
d(x,x0)→∞


V (x)

|∇V |2(x) < 1 (5.5)

and for some p ≥ 1, d(x, x0) ≤ C(1 + |∇V |2(x))1/p, ∀x ∈ X . Then for every
δ ∈ (0, (1 − γ )2/4), the Lyapunov function condition (H) is satisfied with
φ = δ(1 + |∇V |2(x)) and some b = b(δ) > 0, and cP = cP(µ) < +∞. If moreover
φ is in L2(µ), then w.r.t. the Riemannian metric d,

αp,R(W1(ν, µ)/C) ≤ I (ν|µ), ∀ν ∈ M1(X ). (5.6)

where αp,R is given in (5.2). In particular for every Lipschitz function u with
‖u‖Lip ≤ 1 and any initial law β with dβ/dµ ∈ L2(µ),

Pβ

⎛
⎝1

t

t∫

0

u(Xs)ds > µ(u)+ r

⎞
⎠ ≤

∥∥∥∥ dβ

dµ

∥∥∥∥
2

exp
(−tαp,R(Cr)

)
, ∀t, r > 0. (5.7)

Proof For any 0 < δ < (1 − γ )2/4 let ε ∈ (0, 1 − γ ) so that δ = (1 − γ − ε)2/4
(or γ +ε = 1−2

√
δ). Choose λ = √

δ we have λ−λ2 = (γ +ε)λ+δ. For U = eλV ,

we have

−LU

U
= −λLV − λ2|∇V |2 = (λ− λ2)|∇V |2 − λ
V ≥ δ(1 + |∇V |2)− b

where b := δ + √
δ supX

(

V − (1 − 2

√
δ)|∇V |2

)
is finite under our assumption

(5.5). Thus (H) is satisfied withφ = δ(1+|∇V |2)which is in L2(µ). On the other hand
our assumptions imply that φ tends to infinity at infinity. Hence (1 −L)−1 is compact
on L2(µ) and cP(µ) < ∞. The statement now follows directly from Theorem 5.1. ��
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In the example below the constant C may change from one place to other.

Example 5.5 Let X = R
n , V (x) = a|x |β where β > 1, a > 0. Then (5.5) is verified

with γ = 0 and then (H) is satisfied with φ = δ(1 + |∇V |2) ∼ C |x |2(β−1) when |x |
large (though V is not C2 at x = 0, one can choose U = eλṼ where Ṽ ∈ C2(Rn) and
Ṽ (x) = V (x) for |x | > 1 in the proof of Corollary 5.4), where 0 < δ < 1/4.

(i) Ifβ ≥ 3/2, then the condition in Corollary 5.4 is verified with p = 2(β−1) ≥ 1,
so we have (5.7) for Lipschitz observable u with p = 2(β − 1) [we can prove
that (5.7) is false once p > 2(β − 1)]. Then we have Gaussian behavior for
small r , and even a super-Gaussian tail for large r whenever β > 2.

(ii) Let β ∈ (1, 3/2). Then for ψ = (1 + |x |)β−1, we have by Theorem 5.1(5.1),
‖ψ(ν − µ)‖2

TV ≤ C I (ν|µ). Then the Gaussian deviation inequality holds true
for the observable u satisfying |u| ≤ C(1 + |x |)β−1.

(iii) Let β = 2 (Ornstein–Uhlenbeck process). (5.1) holds with φ(x) = δ(1 + |x |2)
and so does (5.3) with p = 2. They are both correct in order. Indeed for any
p ∈ [1,+∞) fixed, if ψ(x) � |x |2/p ∼ Cφ1/p at infinity with µ(ψ) < +∞,
one cannot hope that

αp,R(‖ψ(ν − µ)‖TV) ≤ I (ν|µ), ∀ν

for some R > 0, since by Theorem 2.4, this would imply that

Pµ

⎛
⎝

1∫

0

ψ(Xs)ds > µ(ψ)+ r

⎞
⎠ ≤ e−αp,R(r), ∀r > 0

which is impossible for large r .

For this example and for the empirical mean with unbounded u, only Gaussian
concentration inequality is known and that is only in the case β = 2 (cf. Djellout
et al. [13]).

5.2 Proof of Theorem 5.1

The starting point is the following large deviation result.

Lemma 5.6 For every continuous function U ≥ 1 in De(L) such that −LU/U is
µ-a.e. lower bounded,

∫
−LU

U
g2 dµ ≤ E(g, g), ∀g ∈ D(E). (5.8)

When U is bounded, this is contained in [12, Lemme 4.2.35].
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Proof For any initial law β,

Nt = U (Xt ) exp

⎛
⎝−

t∫

0

LU

U
(Xs)ds

⎞
⎠

is a local Pβ -martingale. Indeed, denoting At := exp
(
− ∫ t

0
LU
U (Xs)ds

)
, Itô’s formula

is d Nt = At [d Mt (U ) + LU (Xt ) dt] − LU
U (Xt )AtU (Xt ) dt = At d Mt (U ) where

M(U ) is a local Pβ -martingale. As (Nt ) is non-negative, it is also a
Pβ -supermartingale. Choosing β := U−1 µ/Z with 0 < Z = µ(U−1) ≤ 1, one
sees that for all t ≥ 0

Eβ exp

⎛
⎝−

t∫

0

LU

U
(Xs)ds

⎞
⎠ ≤ EβNt ≤ β(U ) = 1/Z < +∞.

Let un := min{−LU/U, n}. The previous estimation implies that

F(un) := lim sup
t→∞

1

t
log Eβ exp

⎛
⎝

t∫

0

un(Xs)ds

⎞
⎠ ≤ 0.

On the other hand by the lower bound of large deviation in [43, Theorem B.1, Corollary
B.11] and Laplace–Varadhan principle, as in the proof of (c′) ⇒ (a) in Theorem 2.4,
F(un) ≥ sup{ν(un) − I (ν|µ); ν ∈ M1(E)}. Thus

∫
undν ≤ I (ν|µ), which yields

(by letting n → ∞ and monotone convergence)
∫

−LU

U
dν ≤ I (ν|µ), ∀ν ∈ M1(E). (5.9)

This is equivalent to (5.8) by the fact that E(|h|, |h|) ≤ E(h, h) for all h ∈ D(E).
Note that one was allowed to apply the large deviation lower bound [43, Theorem

B.1] under Pβ since β is absolutely continuous with respect to µ. In addition, in the
symmetric case, [43, Corollary B.11] states that the large deviation rate function is
I (·|µ); it does not depend on β under the underlying assumption that Pµ is ergodic.
As this lower bound holds for the topology of probability measures weakened by all
bounded measurable test functions (sometimes called τ -topology), one can apply the
Laplace–Varadhan principle to the continuous bounded function ν �→ ν(un). ��

Lemma 5.7 In the framework of Theorem 5.1, for all a ≥ 2 and ν ∈ M1(X ),

‖φ(ν − µ)‖TV ≤ (1 + 2bcP)
a + 1

a − 1
I (ν|µ)+ a

√
2‖φ‖2

√
cP I (ν|µ). (5.10)
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Proof We may assume that ν = f µ with
√

f ∈ D(E) (trivial otherwise). For any
a ≥ 2, define h : R → R

+ by

h(t) =

⎧⎪⎪⎨
⎪⎪⎩

0 if t ≤ 1;√
a+1
a−1 (t − 1) if t ∈ [1, a];√
t2 − 1 if t ≥ a.

It is easy to see that ‖h‖Lip ≤
√

a+1
a−1 . Decompose

‖φ(ν − µ)‖TV =
∫
φ| f − 1|dµ =

∫
φh2(

√
f )dµ+

∫
φ[| f − 1| − h2(

√
f )]dµ.

First consider the last term. Since t2 − 1 − h2(t) ≤ a(t − 1) for t ∈ [1, a], and = 0
for t ≥ a ≥ 2,

∫
φ[| f − 1| − h2(

√
f )]dµ = ∫

φ[1{ f ≤1}(1 − f )+ 1{1≤ f ≤a2}a(
√

f −
1)]dµ ≤ a

∫
φ|1 − √

f |dµ which is not greater than a‖φ‖2‖1 − √
f ‖2 =

a‖φ‖2
√

2
√

1 − µ(
√

f ) ≤ a‖φ‖2

√
2Varµ(

√
f ) ≤ a

√
2cP‖φ‖2

√
I (ν|µ).

We turn now to bound the crucial first term by means of (5.8):

∫
φh2(

√
f )dµ ≤

∫ (
−LU

U
+ b

)
h2(

√
f )dµ

≤ E(h(
√

f ), h(
√

f ))+ b‖h‖2
Lip

∫
(
√

f − 1)2dµ

≤ ‖h‖2
LipE(

√
f ,
√

f )+ 2b‖h‖2
LipVarµ(

√
f )

≤ (1 + 2bcP)
a + 1

a − 1
I (ν|µ).

Substituting these two estimates into our previous decomposition, we obtain (5.10).
��

Proof of Theorem 5.1 As noticed in Remarks 5.2, (5.3) follows directly from (5.1).
Note that if p = 1, (5.1) is a direct consequence of Lemma 5.7 (5.10) with a = 2. It
remains to show (5.1) in the case p> 1. Noting that

∫ | f −1|dµ≤ 2 min{1,√cP I (ν|µ)}
by Theorem 3.1, we have by Hölder’s inequality and (5.10) with a = 2,

‖φ1/p(ν − µ)‖TV ≤
(∫

| f − 1|dµ
)1/q (∫

φ| f − 1|dµ
)1/p

≤ 21/q min
{

1,
√

cP I (ν|µ)1/q
}

×
(

3 (1 + 2bcP) I (ν|µ)+ 2
√

2‖φ‖2
√

cP I (ν|µ)
)1/p

which entails immediately the desired (5.1). ��
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6 Proof of Theorem 2.4

The proof of this result is similar to [22, Theorems 2 and 15]’s ones. It takes advantage
of large deviation results previously obtained by Wu. Namely,

– the identification of the rate function in the symmetric case and the large deviation
lower bound are taken from [43] and

– the non-asymptotic Cramér’s upper bounds which are used in [22] are replaced by
the following result.

Lemma 6.1 (Wu [42]) For any u ∈ bB and any t > 0, the following statements hold
true.

(1) Denoting

�(u) := sup

{∫
ug2 dµ− E(g, g); g ∈ D(E), µ(g2) = 1, µ(g2|u|) < +∞

}
,

(6.1)

one has
‖Pu

t ‖L2(µ) ≤ et�(u) (6.2)

and the equality holds in the symmetric case;
(2) For all r > 0,

Pβ

⎛
⎝1

t

t∫

0

u(Xs) ds − µ(u) ≥ r

⎞
⎠ ≤

∥∥∥∥ dβ

dµ

∥∥∥∥
2

exp

(
−t lim

δ↓0
Iu(µ(u)+ r − δ)

)

(6.3)
where Iu(r) := inf {I (ν|µ); ν ∈ M1(X ), ν(u) = r} , r ∈ R.

It is proved in [42,43] that in the symmetric case, Iu(r) is exactly the rate function
governing the large deviation principle of 1

t

∫ t
0 u(Xs) ds for bounded u. In these papers

no mixing assumptions are required, this is in contrast with the usual assumptions
for the large deviation principle as discovered by Donsker and Varadhan [15] and
reconsidered by Deuschel and Stroock [12]. This relaxation of the usual assumptions
is allowed by the assumed restriction that the initial law is absolutely continuous with
respect to the ergodic measure µ.

Proof of Theorem 2.4 Part (1). As ν → I (ν|µ) is convex on M1(X ), so is
Iu : R → [0,+∞]. Since Iu(µ(u)) = 0, Iu is increasing on [µ(u),+∞). For all
(u, v) ∈ � and all λ ≥ 0, we have

�(λu) = I ∗
u (λ) (6.4)
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where I ∗
u is the convex conjugate of Iu . Indeed for λ ≥ 0, by (6.1)

�(λu) = sup

{
λ

∫
ug2 dµ− E(g, g); g ∈ D(E), µ(g2) = 1

}

= sup

{
λ

∫
ug2 dµ− E(g, g); 0 ≤ g ∈ D(E), µ(g2) = 1

}

= sup

{
λ

∫
u dν − I (ν|µ); ν ∈ M1(X )

}
= sup

a∈R

{λa − Iu(a)}

where the second equality follows from the fact that E(|g|, |g|) ≤ E(g, g) for all
g ∈ D(E). Note also that T� I implies that for any (u, v) ∈ �,

Iu(µ(v)+ r) ≥ α̃(r), ∀r ∈ R (6.5)

where α̃(r) = α(r) for r ≥ 0 and = 0 for r ≤ 0. Indeed it is trivial for r ≤ 0 and for
any r ≥ 0 and ν ∈ M1(X ) such that ν(u) = µ(v)+ r , T� I implies that

I (ν|µ) ≥ α(T�(ν, µ)) ≥ α(ν(u)− µ(v)) = α(r).

• (a) ⇒ (b): Putting together (6.4) and (6.5) leads us to

�(λu) = sup
a∈R

[λa − Iu(a)] ≤ sup
r∈R

[λ(µ(v)+ r)− α̃(r)]} = λµ(v)+ α�(λ)

for all λ ≥ 0. Statement (b) now follows from inequality (6.2).
• (a) ⇒ (c): This follows from (6.3) and (6.5), noting that by (A1), µ(u) ≤ µ(v)

for all (u, v) ∈ �.
• (b) ⇒ (b′) and (c) ⇒ (c′): These implications are trivial.

Part (2). (b) ⇒ (a) in the case where α is convex. By (2.6), we have for (u, v) ∈ �
fixed and for any g ∈ D2(L), 〈Pλu

t g, Pλu
t g〉µ ≤ e2t (λµ(v)+α� (λ))〈g, g〉µ. Differ-

entiating at time zero we obtain 2〈g,Lg + λug〉µ = 2(λµ(g2u) − E(g, g)) ≤
2(λµ(v) + α�(λ))µ(g2). Then for all g ∈ D2(L), λ[µ(g2u) − µ(v)µ(g2)] −
α�(λ)µ(g2) ≤ E(g, g). It can be extended to g ∈ D(E). Now for any ν ∈ M1(X )
such that I (ν|µ) < +∞, applying the above inequality to g =

√
dν
dµ , we get

λ[ν(u) − µ(v)] − α�(λ) ≤ I (ν|µ). Taking the supremum over all λ ∈ R, as α
assumed to be convex and α� = α̃∗ on [0,∞) (see the remark below (1.3)), we get

α̃(ν(u)− µ(v)) ≤ I (ν|µ)

and taking the supremum over all (u, v) ∈ � leads to the desired result.

Part (3). Let us assume from now on that the semigroup (Pt ) is symmetric in L2(µ).

• (c′) ⇒ (a) : By the large deviation lower bound in [43, Theorem B.1] and the
identification of the rate function in the symmetric case in [43, Corollary B.11],
we have for any initial probability measure β � µ,
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lim inf
t→∞

1

t
log Pβ

⎛
⎝1

t

t∫

0

u(Xs) ds ≥ µ(v)+ r

⎞
⎠≥ − inf{I (ν|µ); ν(u)>µ(v)+ r}.

This together with (c′) implies that for any r ≥ 0, inf{I (ν|µ); ν(u) > µ(v)+r} ≥
α(r). Fix now ν such that r0 = T�(ν, µ) > 0 (otherwise T� I is obviously true.)
Choosing a sequence (un, vn) ∈ � so that ν(un)−µ(vn) > r0 − 1/n, for all large
enough n,

α(r0 − 1/n) ≤ I (ν|µ)

where T� I follows by letting n → ∞ and by the left-continuity of α.
• α is convex and (Pt ) is symmetric. (b′) ⇒ (c′) with β = µ: The proof is standard

and consists in optimizing exponential upper bounds. So doing, one obtains by
means of (b′) the asymptotic upper bound (c′) with the convex envelope of α̃ in-
stead of α̃. As α is assumed to be convex, (c′) is proved. This completes the proof
of the theorem. ��
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