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Abstract Suppose X = (X1, . . . , Xn) is a random vector, distributed uniformly in
a convex body K ⊂ R

n . We assume the normalization EX2
i = 1 for i = 1, . . . , n.

The body K is further required to be invariant under coordinate reflections, that is,
we assume that (±X1, . . . ,±Xn) has the same distribution as (X1, . . . , Xn) for any
choice of signs. Then, we show that

E
( |X | − √

n
)2 ≤ C2,

where C ≤ 4 is a positive universal constant, and | · | is the standard Euclidean norm
in R

n . The estimate is tight, up to the value of the constant. It leads to a Berry-Esseen
type bound in the central limit theorem for unconditional convex bodies.

Mathematics Subject Classification (2000) 60F05 · 52A20 · 52A38 · 60D05

1 Introduction

Let X1, . . . , Xn be random variables. We assume that the random vector X = (X1, . . . ,

Xn) is distributed according to a density f : R
n → [0,∞), and that the following

hold:

(A) The joint density f is log-concave. That is, the function f has the form f = e−H

with H : R
n → (−∞,∞] being a convex function.
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2 B. Klartag

(B) The joint density f is “unconditional”. That is, for any point (x1, . . . , xn) ∈ R
n

and a sign vector (δ1, . . . , δn) ∈ {±1}n ,

f (x1, . . . , xn) = f (δ1x1, . . . , δn xn).

Equivalently, the random vector (X1, . . . , Xn) has the same distribution as
(±X1, . . . ,±Xn) for any choice of signs.

(C) The isotropic normalization EX2
i = 1 holds for i = 1, . . . , n.

A particular case is when X is distributed uniformly in a convex set K ⊂ R
n , which

is normalized so that EX2
i = 1 for all i , and is also “unconditional”, i.e., for any

x = (x1, . . . , xn) ∈ R
n and for any choice of signs,

(x1, . . . , xn) ∈ K ⇒ (±x1, . . . ,±xn) ∈ K .

We prove the following Berry-Esseen type theorem:

Theorem 1 Under assumptions (A), (B) and (C),

sup
α≤β

∣
∣∣∣∣∣
P

(

α ≤ 1√
n

n∑

i=1

Xi ≤ β

)

− 1√
2π

β∫

α

e−t2/2dt

∣
∣∣∣∣∣
≤ C

n
, (1)

where C > 0 is a universal constant. Moreover, for any θ1, . . . , θn ∈ R with∑
i θ

2
i = 1,

sup
α≤β

∣
∣∣∣∣∣
P

(

α ≤
n∑

i=1

θi Xi ≤ β

)

− 1√
2π

β∫

α

e−t2/2dt

∣
∣∣∣∣∣
≤ C

n∑

i=1

θ4
i . (2)

The log-concavity requirement (A) is crucial. A simple example may be descri-
bed as follows: Denote by e1, . . . , en the standard orthonormal basis in R

n . Let T
be a random variable, distributed uniformly in the set {1, . . . , n}. Let U be a ran-
dom variable, independent of T , distributed uniformly in the interval [−√

3n,
√

3n].
Consider the random vector X = UeT . Then (±X1, . . . ,±Xn) has the same distri-
bution as (X1, . . . , Xn) for any choice of signs, and also EX2

i = 1 for all i . However,∑
i Xi = U is distributed uniformly in an interval, and hence its distribution is far

from normal. This demonstrates that assumptions (B) and (C) alone cannot guarantee
gaussian approximation.

The bound in (1) is optimal, up to the precise value of the constant, as shown by the
example of X1, . . . , Xn being independent random variables, with each Xi distributed,
say, uniformly in a symmetric interval (see, e.g., [14, Vol. II, Sect. XVI.4]). A central
element in the proof of Theorem 1 is the sharp estimate

V ar

( |X |2
n

)
= E

( |X |2
n

− 1

)2

≤ C

n
, (3)
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A Berry-Esseen type inequality for convex bodies with an unconditional basis 3

for a positive universal constant C ≤ 16. Inequality (3) implies that most of the
mass of the random vector X is concentrated in a thin spherical shell of radius

√
n,

centered at the origin in R
n , whose width has the order of magnitude of a universal

constant. The bound (3) was established by Wojtaszczyk [41] in the case of Orlicz
balls following a result of Anttila, Ball and Perissinaki [1] regarding �p-balls. We say
that a random vector X = (X1, . . . , Xn) in R

n is isotropically-normalized if EXi = 0
and EXi X j = δi, j for all i, j , where δi, j is Kronecker’s delta. A conjecture going back
to Anttila, Ball and Perissinaki (see [1,5]) is that the thin spherical shell inequality
(3) actually holds whenever X is an isotropically-normalized random vector in R

n

with a log-concave density. We were able to verify this conjecture under the additional
assumption that the density of X is unconditional.

Theorem 1 ought to be understood in the context of the central limit theorem for
convex bodies. The central limit theorem for convex bodies is the following high-
dimensional effect, suggested in the works of Brehm and Voigt [8] and Anttila,
Ball and Perissinaki [1], and proven in [22,23]: Whenever X = (X1, . . . , Xn) is an
isotropically-normalized random vector in R

n , for large n, with a log-concave density,
then for “most” choices of coefficients θ1, . . . , θn ∈ R, the random variable

∑
i θi Xi

is approximately gaussian. (In the context of Theorem 1, note that if the vector of
coefficients (θ1, . . . , θn) is distributed uniformly on the unit sphere in R

n , then the
right-hand side of (2) is at most C/n with probability greater than 1 − C exp(−c

√
n).

Here C, c > 0 are universal constants.) There is an intimate relation between the cen-
tral limit theorem for convex bodies and thin spherical shell estimates like (3). This
connection is well-known, beginning with the work of Sudakov [39]. The reader is
referred to, e.g., [22] for more background on the central limit theorem for convex
bodies and to, e.g., [1,4,5] for the relation to thin shell estimates.

Previous techniques for obtaining thin spherical shell estimates under convexity
assumptions relied almost entirely on concentration of measure ideas, either on the
sphere (see [15,22]), or on the orthogonal group (see [23]). The quantitative estimates
that these techniques have yielded so far are sub-optimal. Inequality (3) was previously
known to hold with the bound C/nκ in place of C/n, where the exponent κ is slightly
smaller than 1/5, see [22,23]. The latter result is applicable for all isotropically-
normalized random vectors with a log-concave density.

In this article we suggest a different approach. Rather than employing concentration
of measure inequalities, our proof of the optimal inequality (3) is based on analysis
of the Neumann Laplacian on convex domains, the so-called L2-method in convexity,
going back to Hörmander [18] and to Helffer and Sjöstrand [17]. The argument is
further simplified by using the theory of optimal transportation of measures. We expect
this technique to be useful also in the study of other problems in convex geometry,
such as central limit theorems for convex bodies with various types of symmetries.
The argument leading to the thin shell estimate occupies Sects. 2, 3 and 5. In Sect. 6
we apply this estimate and complete the proof of Theorem 1.

Readers who are interested only in the proof of inequality (3) and Theorem 1
may skip Sect. 4. This section is devoted to several results, that were obtained as
by-products, regarding the first non-zero eigenvalue and the corresponding eigenfunc-
tions of the Neumann Laplacian on n-dimensional convex bodies. In particular, we
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4 B. Klartag

show that the eigenfunctions are all “biased” towards some direction in space. This
rules out, for instance, the possibility of an even eigenfunction.

As the reader has probably figured out by now, we denote expectation by E and
probability by P. We write V ar for variance, and V oln(A) for the Lebesgue measure
of a measurable set A ⊂ R

n . The scalar product of u, v ∈ R
n is denoted by u · v. The

letters c,C,C ′, c̃ etc. stand for various positive universal constants, whose value may
change from one line to the next.

2 Convexity and the Neumann Laplacian

In this section we analyze some convexity related properties of the Neumann Laplacian,
most of which are standard. A convex body in R

n is a compact, convex set with a non-
empty interior. Let K ⊂ R

n be a convex body with a C∞-smooth boundary, to be
fixed throughout this section. We say that a function ϕ : K → R belongs to C∞(K )
if all of its derivatives of all orders exist and are bounded in the interior of K . When
ϕ is a C∞(K )-smooth function, the boundary values of ϕ and its derivatives are well
defined, and are C∞-smooth on the boundary ∂K. For u ∈ C∞(K ) define

‖u‖H−1(K ) = sup

⎧
⎨

⎩

∫

K

ϕu ; ϕ ∈ C∞(K ),
∫

K

|∇ϕ|2 ≤ 1

⎫
⎬

⎭
.

Note that necessarily ‖u‖H−1(K ) = ∞ when
∫

K u �= 0. For a function f in n variables
and for i = 1, . . . , n we write ∂ i f for the derivative of f with respect to the i th

coordinate. When f : K → R is a square-integrable function, set

V arK ( f ) =
∫

K

( f (x)− E)2 dx

with E = V oln(K )−1
∫

K f . The main result of this section reads as follows:

Lemma 1 Let K ⊂ R
n be a convex body with a C∞-smooth boundary. Let

f : K → R be a C∞(K )-smooth function. Then,

V arK ( f ) ≤
n∑

i=1

‖∂ i f ‖2
H−1(K ). (4)

One may verify that the right-hand side of (4) does not depend on the choice of
orthogonal coordinates in R

n . See [13] for an analog of Lemma 1 for non-convex
domains. Let ρ : K → R be a convex function which is C∞-smooth with bounded
derivatives of all orders in a neighborhood of ∂K, such that

ρ(x) = 0, |∇ρ(x)| = 1 for x ∈ ∂K
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A Berry-Esseen type inequality for convex bodies with an unconditional basis 5

and ρ(x) ≤ 0 for x ∈ K . For instance, we may select ρ(x) = −d(x, ∂K )= −
inf y∈∂K |x − y|. Note that for any x ∈ ∂K, the vector ∇ρ(x) is the outer unit normal
to ∂K at x .

Denote by D the space of all C∞(K )-smooth functions u : K → R that satisfy the
following Neumann boundary condition:

∇u(x) · ∇ρ(x) = 0 for x ∈ ∂K.

The following lemma is a standard Bochner-Weitzenböck type integration by parts
formula, going back at least to Lichnerowicz [25], to Hörmander [18] and to Kadlec
[21]. We write ∇2u for the hessian matrix of the function u.

Lemma 2 Let u ∈ D and denote f = −�u. Then,

∫

K

f 2 =
∫

K

n∑

i=1

|∇∂ i u|2 +
∫

∂K

∇2ρ(∇u) · ∇u. (5)

Proof The function x → ∇u(x) · ∇ρ(x) vanishes on ∂K . Since ∇u is tangential to
∂K , the derivative of the function x → ∇u(x) ·∇ρ(x) in the direction of ∇u vanishes
on ∂K . That is,

∇u(x) · ∇ (∇u(x) · ∇ρ(x)) = 0 for x ∈ ∂K.

Equivalently,

(∇2u)(∇ρ) · ∇u + (∇2ρ)(∇u) · ∇u = 0 on ∂K . (6)

By Stokes theorem,

∫

K

f 2 =
∫

K

(�u)2 = −
∫

K

∇(�u) · ∇u +
∫

∂K

(�u∇u) · ∇ρ. (7)

The boundary term vanishes, since ∇u · ∇ρ = 0 on ∂K . We conclude from (7) and
from an additional application of Stokes theorem that

∫

K

f 2 = −
n∑

i=1

∫

K

∂ i u�(∂ i u) =
n∑

i=1

∫

K

|∇∂ i u|2 −
∫

∂K

n∑

i=1

(∂ i u∇∂ i u) · ∇ρ.

Note that the integrand in the integral over ∂K is exactly ∇2u(∇ρ) · ∇u. Hence,
from (6),

∫

K

f 2 =
n∑

i=1

∫

K

|∇∂ i u|2 +
∫

∂K

∇2ρ(∇u) · ∇u,

and the lemma is proven. ��
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6 B. Klartag

The convexity of K will be used next. Recall that ρ is a convex function, and hence
its hessian ∇2ρ(x) is a positive semi-definite matrix for any x ∈ ∂K . Therefore,
Lemma 2 implies that for any u ∈ D,

n∑

i=1

∫

K

|∇∂ i u|2 ≤
∫

K

f 2 (8)

where f = �u. Lemma 1 will be proven by dualizing inequality (8), in a way which
is very much related to the approach taken by Hörmander [18] and by Helffer and
Sjöstrand [17].

Proof of Lemma 1 We are given f ∈ C∞(K ) and we would like to prove (4). We may
assume that

∫
K f = 0 (otherwise, subtract 1

V oln(K )

∫
K f from the function f ).

Since f ∈ C∞(K ) and
∫

K f = 0, there exists u ∈ D with

−�u = f.

The existence of such u ∈ D is a consequence of the classical existence and regularity
theory of the Neumann problem for the Laplacian on domains with a C∞-smooth
boundary (see, e.g., Folland’s book [16, Chap. 7]). Stokes theorem yields

∫

K

f 2 = −
∫

K

f �u =
∫

K

∇ f · ∇u −
∫

∂K

f ∇u · ∇ρ =
n∑

i=1

∫

K

∂ i f ∂ i u,

where the boundary term vanishes since u ∈ D. From the definition of the
H−1(K )-norm and the Cauchy-Schwartz inequality,

∫

K

f 2 =
n∑

i=1

∫

K

∂ i f ∂ i u ≤
n∑

i=1

‖∂ i f ‖H−1(K )

√√√√
∫

K

|∇∂ i u|2

≤
√√√
√

n∑

i=1

‖∂ i f ‖2
H−1(K )

·
√√√√

n∑

i=1

∫

K

|∇∂ i u|2. (9)

Combine (9) and (8) to conclude that

∫

K

f 2 ≤
n∑

i=1

‖∂ i f ‖2
H−1(K ).

��
3 Transportation of measure

Suppose µ1 and µ2 are finite Borel measures on R
m and R

n respectively, and T :
R

m → R
n is a measurable map. We say that T pushes forward, or transports,µ1 toµ2 if
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A Berry-Esseen type inequality for convex bodies with an unconditional basis 7

µ1(T
−1(A)) = µ2(A)

for all Borel sets A ⊆ R
n . In this case we write µ2 = T#µ1, and we call T the trans-

portation map. Note that
∫
(ϕ ◦ T )dµ1 = ∫

ϕd(T#µ1) for any bounded, measurable
function ϕ.

For example, let γ be a Borel measure on R
n ×R

n . For (x, y) ∈ R
n ×R

n we write
P1(x, y) = x and P2(x, y) = y. A measure γ on R

n × R
n with P1

# γ = µ1 and
P2

# γ = µ2 is called a “coupling” of µ1 and µ2.
Suppose µ1 and µ2 are two finite Borel measures on R

n . If T pushes forward µ1
to µ2, then the map

x → (x, T x)

transports the measure µ1 to a measure γ on R
n × R

n which is a coupling of µ1 and
µ2. The L2-Wasserstein distance between µ1, µ2 is defined as

W2(µ1, µ2) = inf
γ

⎛

⎜
⎝

∫

Rn×Rn

|x − y|2 dγ (x, y)

⎞

⎟
⎠

1/2

,

where the infimum runs over all couplings γ of µ1 and µ2. If there is no coupling,
then W2(µ1, µ2) = ∞. Let µ be a finite, compactly supported Borel measure on R

n .
For a C∞-smooth function u : R

n → R, set

‖u‖H−1(µ) = sup

⎧
⎨

⎩

∫

Rn

uϕ dµ ; ϕ ∈ C∞(Rn),

∫

Rn

|∇ϕ|2 dµ ≤ 1

⎫
⎬

⎭
.

This definition fits with the one given in Sect. 2; We have ‖u‖H−1(λK )
= ‖u‖H−1(K )

where λK denotes the restriction of the Lebesgue measure to K .

The next theorem is an extension of a remark by Yann Brenier [9] that we learned
from Robert McCann. For the convenience of the reader, we provide in the appendix
a detailed exposition of the elegant proof from Villani [40, Sect. 7.6].

Theorem 2 Let µ be a finite, compactly supported Borel measure on R
n. Let

h : R
n → R be a bounded, measurable function with

∫
hdµ = 0.

For a sufficiently small ε > 0, let µε be the measure whose density with respect to µ
is the non-negative function 1 + εh. Then,
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8 B. Klartag

‖h‖H−1(µ) ≤ lim inf
ε→0+

W2(µ,µε)

ε
.

See [9] and [40] for the intuition behind Theorem 2. We write e1, . . . , en for the
standard orthonormal basis in R

n . Let K ⊂ R
n be a convex body. Fix a point x ∈ K

and i = 1, . . . , n. Consider the line x + Rei , that is, the line in the direction of ei

that passes through x . This line meets K with a closed segment (or a single point).
The two endpoints of this segment in R

n will be denoted by B−
i (x) and B+

i (x), where
B−

i (x) · ei ≤ B+
i (x) · ei . Thus,

K ∩ (x + Rei ) = [B−
i (x),B+

i (x)],

the line segment from B−
i (x) to B+

i (x). See Fig. 1.
For i = 1, . . . , n consider the projection

πi (x1, . . . , xn) = (x1, . . . , xi−1, xi+1, . . . , xn),

defined for (x1, . . . , xn) ∈ R
n . Then πi (K ) is a convex body in R

n−1. For y ∈ πi (K ),
we define q−

i (y) ∈ R to be the minimal i th coordinate among all points x ∈ K with
πi (x) = y. Similarly, we define q+

i (y) to be the maximal i th coordinate.

1

1

+

+−

−

K

y x

q (y)
1 q (y)

B (x)B (x)1

Fig. 1

Lemma 3 Let K ⊂ R
n be a convex body with a C∞-smooth boundary. Fix

i = 1, . . . , n. Let � : K → R be a C∞(K )-smooth function such that for any
x ∈ K ,

�
(B−

i (x)
) = �

(B+
i (x)

)
. (10)

For a sufficiently small ε > 0 denote by µε the measure whose density with respect to
µ is 1 + ε∂ i�. Then,

lim inf
ε→0+

W2(µ,µε)

ε
≤
√√√√
∫

K

[
�(x)−�(B+

i (x))
]2

dx .
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A Berry-Esseen type inequality for convex bodies with an unconditional basis 9

Proof Without loss of generality, assume that i = 1. For a sufficiently small ε > 0,
the function 1 + ε∂1� is positive on K , and hence µε is a non-negative measure. Fix
such a sufficiently small ε > 0.

For x = (t, x2, . . . , xn) ∈ R
n we will use the coordinates x = (t, y) where y =

(x2, . . . , xn) ∈ R
n−1. Fix y ∈ π1(K ) and denote p = q−

1 (y) and q = q+
1 (y).

According to our assumption (10),

q∫

p

(1 + ε∂1�(t, y))dt = (q − p)+ ε�(t, y)|qt=p = q − p.

Consequently, the densities t → 1 and t → 1 + ε∂1�(t, y) have an equal amount of
mass on the interval [p, q]. We consider the monotone transportation between these
two densities. That is, we define a map T = T y : [p, q] → [p, q] by requiring that
for any x1 ∈ [p, q],

x1∫

p

(
1 + ε∂1�(t, y)

)
dt =

T (x1)∫

p

dt. (11)

The unique map T : [p, q] → [p, q] that satisfies (11) transports the measure whose
density is 1 + ε∂1�(t, y) on [p, q] to the Lebesgue measure on [p, q]. We deduce
from (11) that for x1 ∈ [p, q],

T (x1) = x1 + ε [�(x1, y)−�(p, y)] .

Therefore,

q∫

p

|T (t)− t |2 ·
(

1 + ε∂1�(t, y)
)

dt = ε2

q∫

p

[�(t, y)−�(p, y)]2 dt + ε3 R,

(12)

with |R| bounded by a constant depending only on � and K (and in particular, inde-
pendent of ε or y). We now let y ∈ π1(K ) vary, and we write

S(x1, y) = (
T y(x1), y

)
for (x1, y) ∈ K .

Note that S is well-defined (since x1 belongs to the domain of definition of T y when
(x1, y) ∈ K ), one-to-one, continuous, and maps K onto K . Moreover, by Fubini, for
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10 B. Klartag

any continuous function ϕ : K → R,

∫

K

ϕ(S(x))dµε(x) =
∫

π(K )

⎡

⎢⎢
⎣

q+
1 (y)∫

q−
1 (y)

ϕ(T y(x1), y) · (1 + ε∂1�)dx1

⎤

⎥⎥
⎦ dy

=
∫

π(K )

⎡

⎢⎢
⎣

q+
1 (y)∫

q−
1 (y)

ϕ(x1, y)dx1

⎤

⎥⎥
⎦ dy =

∫

K

ϕ(x)dµ(x).

Therefore the map S transports µε to µ. According to (12),

W2(µ,µε)
2 ≤

∫

K

|S(x)− x |2dµε(x) = ε2
∫

K

[
�(x)−�

(B−
1 (x)

)]2
dx + ε3 R′,

with |R′| smaller than a constant depending only on K and �, and in particular
independent of ε. To complete the proof, let ε tend to zero. ��

4 A digression: Neumann eigenvalues and eigenfunctions

This section presents some additional relations between convexity and the Neumann
Laplacian. We retain the setup and notation of Sect. 2. We write L2(K ) for the Hilbert
space that is the completion of C∞(K ) with respect to the norm

‖u‖L2(K ) =
√√√√
∫

K

u2.

The operator −�, acting on the subspace D ⊂ L2(K ), is a symmetric, positive
semi-definite operator. The classical theory implies that −� has a complete system
of orthonormal Neumann eigenfunctions ϕ0, ϕ1, . . . ∈ D and Neumann eigenvalues
0 ≤ λ0 ≤ λ1 ≤ . . . (see, e.g., [16, Chap. 7]). The first eigenvalue is λ0 = 0, with the
eigenfunction ϕ0 being constant. It is well-known that λ1 > 0 when K is convex (see,
e.g., [34]. It is actually enough to assume that K is connected, see e.g., [11, Theorem
1]). We refer to λ1 as the first non-zero Neumann eigenvalue of K . It is well-known
that for any C∞(K )-smooth function u with

∫
K u = 0,

λ1

∫

K

u2 ≤
∫

K

|∇u|2. (13)

Equality in (13) holds if and only if u is an eigenfunction corresponding to the eigen-
value λ1.
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A Berry-Esseen type inequality for convex bodies with an unconditional basis 11

We say that the boundary of K is uniformly strictly convex if ∇2ρ(x) is a positive
definite matrix for any x ∈ ∂K . Equivalently, ∂K is uniformly strictly convex if the
principal curvatures are all positive—and not merely non-negative—everywhere on the
boundary. Our next corollary claims, loosely speaking, that any non-trivial eigenfunc-
tion corresponding to λ1 cannot be “spatially isotropic”, but must have “preference”
for a certain direction in space.

Corollary 1 Suppose K ⊂ R
n is a convex body whose boundary is C∞-smooth and

uniformly strictly convex. Let 0 �≡ ϕ ∈ D be an eigenfunction corresponding to the
first non-zero Neumann eigenvalue. Then,

∫

K

∇ϕ �= 0. (14)

Consequently, the multiplicity of the first non-zero Neumann eigenvalue is at most n.

Proof: Assume the opposite. Then,

∫

K

∂ iϕ = 0 for i = 1, . . . , n. (15)

We write λ1 for the first non-zero eigenvalue, i.e., �ϕ = −λ1ϕ. Since ϕ ∈ D,
inequality (8) gives

λ2
1

∫

K

ϕ2 =
∫

K

|�ϕ|2 ≥
n∑

i=1

∫

K

|∇∂ iϕ|2. (16)

From (15) we know that
∫

K ∂
iϕ = 0 for all i . Thus (16) and (13) yield

λ2
1

∫

K

ϕ2 ≥
n∑

i=1

∫

K

|∇∂ iϕ|2 ≥ λ1

n∑

i=1

∫

K

(∂ iϕ)2 = λ1

∫

K

|∇ϕ|2 = λ2
1

∫

K

ϕ2.

Therefore, there must be equality in all steps and hence ∂1ϕ, . . . , ∂nϕ are all
Neumann eigenfunctions with eigenvalue λ1. We necessarily have equality also in
(16). According to Lemma 2 this means that

∫

∂K

∇2ρ(∇ϕ) · ∇ϕ = 0.

Since the integrand is non-negative and continuous, necessarily

∇2ρ(∇ϕ) · ∇ϕ = 0 on ∂K . (17)
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12 B. Klartag

So far we have only used the convexity of K . The uniform strict convexity of ∂K
means that ∇2ρ > 0 on ∂K . Equation (17) has the consequence that ∇ϕ = 0 on ∂K ,
and therefore

ϕ ≡ Const on ∂K . (18)

This is well-known to be impossible for a Neumann eigenfunction corresponding to
the first non-zero eigenvalue. We sketch the standard argument, see, e.g., [11] for more
information. Denote

N = {x ∈ K ;ϕ(x) > 0}.

The set N is non-empty since
∫

K ϕ = 0. Moreover, ϕ vanishes on ∂N because of (18).
Since�ϕ = −λ1ϕ in N , thenϕ is a Dirichlet eigenfunction of the domain N correspon-
ding to the Dirichlet eigenvalue λ1. For a domain� ⊂ R

n , denote by λD
0 (�) the mini-

mal eigenvalue of −� with Dirichlet boundary conditions on �. Then λD
0 (N ) ≤ λ1,

as is witnessed by ϕ. Furthermore, λD
0 (N ) ≥ λD

0 (K ) by domain monotonicity (see,
e.g., [11]), hence λD

0 (K ) ≤ λ1. However, a standard comparison result between the
Neumann and the Dirichlet eigenvalues is the strict inequality λD

0 (K ) > λ1 (see, e.g.,
[24] for a much more accurate result). We thus arrive at a contradiction. Consequently
our assumption that

∫
K ∇ϕ = 0 was absurd. The proof of (14) is complete.

The linear map ϕ → ∫
K ∇ϕ from the eigenspace of λ1 to R

n is therefore injective,
so the multiplicity of the eigenvalue cannot exceed n. ��
Remark Leonid Friedlandler explained to us how to eliminate the uniform strict
convexity requirement from Corollary 1. His idea is to observe that since ∂1ϕ, . . . , ∂nϕ

are all eigenfunctions, then the restriction of ϕ to the boundary ∂K is actually an eigen-
function of the Laplacian associated with the Riemannian manifold ∂K . However, (17)
entails that ϕ is constant in some open set in ∂K , which is known to be impossible for
an eigenfunction. We omit the details.

For i = 1, . . . , n and x = (x1, . . . , xn) ∈ R
n write

σi (x) = (x1, . . . , xi−1,−xi , xi+1, . . . , xn),

i.e., we flip the sign of the i th coordinate. For a function f , we write σi ( f )(x) =
f (σi (x)). Our next corollary exploits the well-known relationship between the eigen-
functions and symmetry. Similar arguments appear, e.g., in [2].

Corollary 2 Suppose K ⊂ R
n is a convex body with a C∞-smooth boundary. Denote

by Eλ1 ⊂ D the eigenspace corresponding to the first non-zero Neumann eigenvalue
of K .

(i) If K is unconditional, then there exist i = 1, . . . , n and an eigenfunction
0 �≡ ϕ ∈ Eλ1 , such that

σi (ϕ) = −ϕ.
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A Berry-Esseen type inequality for convex bodies with an unconditional basis 13

(ii) If K is centrally-symmetric (i.e., K = −K ), then there exists an eigenfunction
0 �≡ ϕ ∈ Eλ1 , such that

ϕ(−x) = −ϕ(x) for x ∈ K .

Proof Begin with the proof of (i). We are given the unconditional convex body K .
Since K is unconditional, then f ∈ Eλ1 implies σi ( f ) ∈ Eλ1 for i = 1, . . . , n. Start
with any non-zero eigenfunction f0 ∈ Eλ1 , and recursively define

fi = fi−1 + σi ( fi−1).

Then f0, f1, . . . , fn ∈ Eλ1 . If there exists i = 1, . . . , n such that fi ≡ 0 then
we are done: Suppose i is the minimal such index. Then 0 �≡ fi−1 ∈ Eλ1 with
σi−1( fi−1) = − fi−1, and we found our desired eigenfunction.

It remains to deal with the case where ψ = fn is a non-zero eigenfunction. Note
that σi (ψ) = ψ and hence

σi (∂
iψ) = −∂ iψ (19)

for i = 1, . . . , n. Therefore,

∫

K

∇ψ = 0. (20)

In the proof of Corollary 1 (the first part, which did not use the uniform strict convexity)
we observed that (20) implies that ∂1ψ, . . . , ∂nψ ∈ Eλ1 . Since

∫
K |∇ψ |2 > 0, there

exists i = 1, . . . , n with ∂ iψ �≡ 0. We see from (19) that ∂ iψ ∈ Eλ1 is the eigenfunc-
tion we are looking for. This completes the proof of the first part of the lemma.

The proof of the second part is similar. Begin with any 0 �≡ f ∈ Eλ1 and set
ψ(x) = f (x) + f (−x). If ψ ≡ 0, then f is an odd function and we are done.
Otherwise, ψ is an even function, hence

∫
K ∇ψ = 0. As before, this implies that

∂1ψ, . . . ∂nψ are all odd eigenfunctions corresponding to the same eigenvalue λ1. ��

Corollary 1 and 2 seem very much expected. Notably, Nadirashvili [29] has proved
that in two dimensions, the multiplicity of the first non-zero Neumann eigenvalue is
at most 2 for any simply-connected domain. Our simple proof of Corollary 1 is not
applicable in such generality. Corollary 1 is related to the “hot spots” problem, see,
e.g., Burdzy [10], Jerison and Nadirashvili [19] and references therein. A proof of
Corollary 2 for the two-dimensional case—under much more general assumptions
than convexity—can be found in [2, Theorem 4.3]. However, the proofs of the two-
dimensional results mentioned do not seem to admit easy generalization to higher
dimensions. As observed by Payne and Weinberger [33], Corollary 2 leads to the
following comparison principle:
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14 B. Klartag

Corollary 3 Let K ⊂ R
n be an unconditional convex body with a C∞-smooth boun-

dary. Assume that R > 0 is such that

K ⊆ [−R, R]n = {(x1, . . . , xn) ∈ R
n ; |xi | ≤ R for i = 1, . . . , n}.

Denote by λ1 > 0 the first non-zero Neumann eigenvalue of K . Then,

λ1 ≥ π2

R2 .

Equality holds when K = [−R, R]n, an n-dimensional cube.

Proof A well-known, elementary calculation shows that for any 0 < r ≤ R and a
smooth odd function ψ : [−r, r ] → R,

π2

R2

r∫

−r

ψ2(x)dx ≤ π2

r2

r∫

−r

ψ2(x)dx ≤
r∫

−r

(
dψ

dx

)2

dx . (21)

According to Corollary 2(i), there exists an index 1 ≤ i ≤ n and a non-zero eigen-
function ϕ corresponding to λ1 such that σi (ϕ) = −ϕ. By Fubini’s theorem and (21),

π2

R2

∫

K

ϕ2 ≤
∫

K

|∂ iϕ|2 ≤
∫

K

|∇ϕ|2 = λ1

∫

K

ϕ2,

hence λ1 ≥ π2/R2. ��
Remark 1. Corollary 3 shows that the cube satisfies a certain domain monoto-

nicity principle for the Neumann Laplacian, in the category of unconditional,
convex bodies. The Euclidean ball, for instance, does not satisfy a corresponding
principle.

2. Suppose K ⊂ R
n is an unconditional convex body. Assume that K is isotropically

normalized, i.e., the random vector X which is distributed uniformly in K is
isotropically normalized. Corollary 3 implies the probably non-optimal bound

λ1(K ) ≥ c/ log2(n + 1), (22)

where λ1(K ) > 0 is the first non-zero Neumann eigenvalue of K , and c > 0 is a
universal constant. To establish (22), consider

K ′ = K ∩ [−R, R]n, for R = 50 log(n + 1).

Use Corollary 3 to deduce the bound λ1(K ′) > c/ log2(n + 1). The body K ′ is a
good approximation to the body K : It is easily proven that

V ol(K ′) ≥
(

1 − 1

n

)
V oln(K ).
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A Berry-Esseen type inequality for convex bodies with an unconditional basis 15

We may thus apply E. Milman’s result [27, Theorem 1.7], which builds upon the
Sternberg–Zumbrun concavity principle [38], to conclude that λ1(K ) ≥ cλ1(K ′)
and the bound (22) follows. See [20] for a conjectural better bound, without the
logarithmic factor.

5 Unconditional convex bodies

We begin this section with a corollary to the theorems of Sect. 2 and Sect. 3.

Corollary 4 Let K ⊂ R
n be an unconditional convex body.

(i) Let � : K → R be an unconditional, continuous function. Then,

V arK (�) ≤
n∑

i=1

∫

K

(
�(x)−�(B+

i (x))
)2

dx .

(ii) In particular, suppose f1, . . . , fn : R → R are even, continuous functions.
Denote �(x1, . . . , xn) = ∑n

i=1 fi (xi ). Then,

V arK (�) ≤
n∑

i=1

∫

K

sup
s,t∈Ji (x)

( fi (s)− fi (t))
2 dx,

where Ji (x) = [q−
i (πi (x)), q+

i (πi (x))] ⊂ R. That is, Ji (x) is a symmetric
interval about the origin with the same length as [B−

i (x),B+
i (x)].

Proof Begin with (i). By approximation, we may assume that K has a C∞-smooth
boundary, and that � is a C∞(K )-smooth function. Lemma 1 states that

V arK (�) ≤
n∑

i=1

‖∂ i�‖2
H−1(K ).

Fix i = 1, . . . , n. We may apply Theorem 2 for h = ∂ i� since
∫

K ∂
i� = 0, as

implied by the symmetries of�. We may apply Lemma 3, since clearly�
(B+

i (x)
) =

�
(B−

i (x)
)

for any x ∈ K . Theorem 2 and Lemma 3 entail the inequality

‖∂ i�‖2
H−1(K ) ≤

∫

K

(
�(x)−�(B+

i (x))
)2

dx .

This proves (i). To deduce (ii), denote �i (x1, . . . , xn) = fi (xi ). Observe that
�(x) = ∑n

i=1�i (x) is unconditional and that for any x ∈ K , i = 1, . . . , n,

∣∣�(x)−�(B+
i (x))

∣∣ = ∣∣�i (x)−�i (B+
i (x))

∣∣ ≤ sup
s,t∈Ji (x)

| fi (s)− fi (t)| .

Thus (ii) follows from (i). ��
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16 B. Klartag

We will use the following simple identities:

r∫

−r

(
a|t |p − ar p)2 dt = 2p2

p + 1

r∫

−r

(a|t |p)2dt, (23)

r∫

−r

(
2ar p)2 dt = 8a2r2p+1 = 4(2p + 1)

r∫

−r

(a|t |p)2dt, (24)

valid for all a, p, r ≥ 0.

Lemma 4 Let X = (X1, . . . , Xn) be a random vector in R
n, that is distributed

according to an unconditional, log-concave density. Let p1, . . . , pn > 0 and let
a1, . . . , an ≥ 0. Then,

(i) V ar

(
n∑

i=1

ai |Xi |pi

)

≤
n∑

i=1

2p2
i

pi + 1
a2

i E|Xi |2pi .

(ii) Furthermore, suppose f1, . . . , fn : R → R are even, measurable functions
with | fi (t)| ≤ ai |t |pi for all t ∈ R, i = 1, . . . , n. Then,

V ar

(
n∑

i=1

fi (Xi )

)

≤ 4
n∑

i=1

(2pi + 1)a2
i E|Xi |2pi .

Proof Suppose first that X is distributed uniformly in an unconditional convex body
K ⊂ R

n . For x = (x1, . . . , xn) ∈ R
n , denote

�(x1, . . . , xn) =
n∑

i=1

ai |xi |pi .

The desired bound (i) is equivalent to

V arK (�) ≤
n∑

i=1

2p2
i

pi + 1

∫

K

a2
i |xi |2pi dx1 . . . dxn .

According to Corollary 4(i), it suffices to prove that for any i = 1, . . . , n,

∫

K

(
�(x)−�(B+

i (x))
)2

dx = 2p2
i

pi + 1

∫

K

a2
i |xi |2pi dx1 . . . dxn . (25)

Fix i = 1, . . . , n. We will prove (25) by Fubini’s theorem. Fix a point

x ′ = (x1, . . . , xi−1, xi+1, . . . , xn) ∈ πi (K )

123



A Berry-Esseen type inequality for convex bodies with an unconditional basis 17

and denote r = q+
i (x

′) ≥ 0. In order to prove (25), it is enough to show that

r∫

−r

⎡

⎣
n∑

j=1

a j |x j |p j −
⎛

⎝air
pi +

∑

j �=i

a j |x j |p j

⎞

⎠

⎤

⎦

2

dxi = 2p2
i

pi + 1

r∫

−r

a2
i |xi |2pi dxi .

The equality we need is exactly the content of (23). The proof of (i) is thus complete, in
the case where X is distributed uniformly in a convex body. The proof of (ii) is almost
entirely identical. By approximation, we may assume that f1, . . . , fn are continuous.
According to Corollary 4(ii), it is sufficient to prove that

∫

K

sup
t,s∈Ji (x)

( fi (s)− fi (t))
2 dx ≤ 4(2pi + 1)

∫

K

a2
i |xi |2pi dx1 . . . dxn .

This follows by Fubini’s theorem and (24). The lemma is thus proven, in the case
where X is distributed uniformly in an unconditional convex body.

The general case follows via a standard argument. Let f : R
n → [0,∞) stand for

the unconditional, log-concave density of X . Next, we suppose that f is s-concave for
some integer s ≥ 1. That is, assume that

f 1/s(λx + (1 − λ)y) ≥ λ f 1/s(x)+ (1 − λ) f 1/s(y)

for all 0 < λ < 1 and x, y ∈ R
n for which f (x), f (y) > 0. Denote N = n + s. For

z ∈ R
N we use the coordinates z = (x, y) ∈ R

n × R
s . Let K ⊂ R

N = R
n × R

s be
the unconditional convex body defined by

K =
{
(x, y) ; x ∈ R

n, y ∈ R
s, |y| ≤ κ

−1/s
s f 1/s(x)

}
,

where κs = π s/2/�(s/2 + 1) is the volume of the s-dimensional Euclidean unit ball.
Suppose that Z = (Z1, . . . , Z N ) is a random vector that is distributed uniformly in
K . According to the case already considered, conclusions (i) and (ii) hold when the
X1, . . . , Xn are replaced by Z1, . . . , Zn . However, the random vector (Z1, . . . , Zn)

has the same distribution as X = (X1, . . . , Xn). Thus (i) and (ii) hold also in the case
where the density f is s-concave.

Finally, an approximation argument eliminates the requirement that the density of
f be s-concave: Write f = e−ψ for the unconditional, log-concave density of X .
Then, for any s > 0, the function

x →
(

1 − ψ(x)

s

)s

+

is unconditional and s-concave, where x+ = max{x, 0}. This density clearly tends to
e−ψ weakly (and also uniformly in R

n) when s → ∞. We thus deduce the general
case as a limit of the s-concave case. ��
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18 B. Klartag

Lemma 4 may be viewed as a substitute for the sub-independent coordinates idea
of Anttila, Ball and Perissinaki [1]: Note the absence of cross terms from the right-
hand side of Lemma 4(i). Suppose X is a real-valued random variable with an even,
log-concave density. A classical inequality (see, e.g., [28], or [3, Theorem 12] and
references therein) states that for any p ≥ 2,

(
E|X |p

�(p + 1)

)1/p

≤
√

E|X |2
2

≤ E|X |, (26)

where �(p + 1) = ∫∞
0 t pe−t dt . For a vector x = (x1, . . . , xn) ∈ R

n and for p ≥ 1
we write

‖x‖p =
(

n∑

i=1

|xi |p

)1/p

.

The following corollary contains a few obvious consequences of Lemma 4.

Corollary 5 Let X = (X1, . . . , Xn) be a random vector in R
n, with EX2

i = 1 for
i = 1, . . . , n, that is distributed according to an unconditional, log-concave density.
Let a1, . . . , an ≥ 0. Then,

V ar

(
n∑

i=1

ai X2
i

)

≤ C ′
n∑

i=1

a2
i , (i)

where C ′ ≤ 16 is a universal constant. Consequently,

V ar(|X |2) ≤ C2n and E
(|X | − √

n
)2 ≤ C2, (ii)

with C ≤ 4, a positive universal constant. Moreover, for any p ≥ 1,

√
V ar

(‖X‖p
) ≤ C pn

1
p − 1

2 (iii)

where C p > 0 is a constant depending only on p.

Proof According to the Prékopa–Leindler inequality (see, e.g., the first pages of [35]),
the random variable Xi has an even, log-concave density for all i . From Lemma 4(i)
and (26) we see that

V ar

(
n∑

i=1

ai X2
i

)

≤ 8

3

n∑

i=1

a2
i E|Xi |4 ≤ 16

n∑

i=1

a2
i

(
E|Xi |2

)2 = 16
n∑

i=1

a2
i .

This proves (i). By setting ai = 1 (i = 1, . . . , n) in (30), we deduce that

E
(|X | − √

n
)2 ≤ 1

n
E
(|X | − √

n
)2 · (|X | + √

n
)2 = 1

n
E

(
|X |2 − n

)2 ≤ 16,
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A Berry-Esseen type inequality for convex bodies with an unconditional basis 19

and (ii) is proven. Denote E = E‖X‖p
p. From Lemma 4(i) and (26) we conclude that

E
(‖X‖p

p − E
)2 = V ar

(
n∑

i=1

|Xi |p

)

≤ 21−p p�(2p + 1)n.

For any p ≥ 2, we have E|Xi |p ≥ (EX2
i )

p/2 = 1. For 1 ≤ p ≤ 2,

E|Xi |p ≥ (E|Xi |)p ≥ 2−p/2
(
EX2

i

)p/2 = 2−p/2 ≥ 2−1/2,

according to (26). Hence, E = ∑
i E|Xi |p ≥ n/

√
2 for all p ≥ 1 and

V ar
(‖X‖p

) ≤ E

(
‖X‖p − E1/p

)2 ≤ E−2 p−1
p E

(‖X‖p
p − E

)2 ≤ C pn2/p−1,

where C p is a constant depending solely on p ≥ 1. This completes the proof. ��
Schechtman and Zinn [36,37] provided estimates related to Corollary 5 for the

case where X is distributed uniformly in the unit ball {x ∈ R
n; ‖x‖q ≤ 1}, for q ≥ 1.

More information regarding unconditional, log-concave densities in high dimension,
especially in the large deviations scale, is available from Bobkov and Nazarov [6,7].
Under the assumptions of Corollary 5, they showed, for instance, that

P

(
1√
n

n∑

i=1

Xi ≥ t

)

≤ C exp
(
−ct2

)
∀ 0 ≤ t ≤ √

n,

where c,C > 0 are universal constants. Another large-deviations estimate that was
proved by Bobkov and Nazarov [6,7] is that

P (|X | ≥ t) ≤ C exp (−ct) for t ≥ C
√

n. (30)

Paouris [31,32] was remarkably able to generalize inequality (30) to the class of all
isotropically-normalized random vectors with a log-concave density in R

n . Regar-
ding smaller values of t in (30), the currently known bounds, which are valid for all
isotropically-normalized, log-concave random vectors, are of the form

P

(∣∣∣∣
|X |√

n
− 1

∣
∣∣∣ ≥ t

)
≤ C exp

(−cnαtβ
)

for 0 < t < 1, (31)

with, say, α = 0.33 and β = 3.33 (see [23]).
Cordero-Erausquin, Fradelizi and Maurey [12] have recently proved the so-called

(B)-conjecture in the unconditional case. This entails the following improvement over
the Brunn-Minkowski theory:

• The function t → P
(|X | ≤ et

)
is log-concave in t ∈ R.
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20 B. Klartag

(The Prékopa–Leindler inequality leads to the weaker statement in which the et is
replaced by t). Corollary 5(ii) and Markov–Chebychev’s inequality yield

P
(|X | ≤ √

n − 8
) ≤ 1

4
, P

(|X | ≤ √
n + 8

) ≥ 3

4
.

The log-concavity of the map s → P (|X | ≤ es) thus implies that for any t ≥ 0,

P

(

|X | ≤ (
√

n − 8) ·
(√

n − 8√
n + 8

)t
)

≤ 1

4 · 3t
.

After some simple manipulations, we deduce the inequality

P
(|X | ≤ √

n − t
) ≤ C

(
1 − t√

n

)c
√

n

≤ C exp(−ct), (32)

valid for all 0 ≤ t ≤ √
n, for some universal constants c,C > 0. We currently do

not know how to prove a bound as in (32) for the probability P
(|X | ≥ √

n + t
)
. The

weaker estimate

P
(|X | ≥ √

n + t
) ≤ C exp

(
−c

√
t
)

follows by combining Corollary 5(ii) with the distribution inequalities of Nazarov,
Sodin and Volberg [30]. We omit the details.

6 Berry-Esseen type bounds

In previous sections we established sharp thin shell estimates for unconditional, log-
concave densities. In the present section we complete the proof of Theorem 1. The
argument we present is quite technical and is very much related to classical treatments
of the central limit theorem for independent random variables. The reader may refer
to, e.g., [14, Vol. II, Chap. XVI] for background on the rate of convergence in the
classical central limit theorem. We are indebted to Sasha Sodin for many discussions,
suggestions and simplifications that have lead to the proofs we present below.

Before proceeding to the actual proof, let us describe the general idea. Introduce
independent, symmetric Bernoulli variables �1, . . . ,�n . That is,

P(�i = 1) = P(�i = −1) = 1/2 (i = 1, . . . , n).

These Bernoulli variables are also assumed to be independent of X . Write

ϕ(t) = 1√
2π

e−t2/2 and �(t) =
∞∫

t

ϕ(s)ds
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for all t ∈ R. We condition on X , and apply the classical Berry–Esseen bound to
obtain

∣
∣∣∣P
(∑

i �i Xi√
n

≥ t

)
−�

(
t
√

n/|X |)
∣
∣∣∣ ≤ C

∑
i |Xi |3

(∑
i |Xi |2

)3/2 ≤ C ′
√

n
(33)

where the last inequality holds only for “typical” values of X . Since |X |/√n is strongly
concentrated around 1, as we learn from (3), we may substitute the�

(
t
√

n/|X |) term
in (33) by �(t). Observe that since X is unconditional, the random variables

∑

i

Xi and
∑

i

Xi�i

have exactly the same distribution. Hence, by considering the expectation over X in
(33), we deduce a weaker version of (1) where the C/n is replaced with C/

√
n. In

order to arrive at the optimal bound, we need to apply a smoothing technique: The
estimate (33) will be replaced with a much better Berry-Esseen inequality which is
available for the random variable � + (∑

i �i Xi
) /√

n , for an appropriate “small”
random variable �. The details will be described next.

Throughout this section, we fix a symmetric random variable � with E�6 <

∞, independent of all other random variables, such that the even function γ (ξ) =
E exp(−iξ�) satisfies

γ (ξ) = 0 for |ξ | ≥ 1 (34)

and

1 − 1000ξ2 ≤ γ (ξ) ≤ 1 for ξ ∈ R. (35)

For instance, � may be the random variable whose density is

x → κ1 sin8(κ2x)/x8,

for appropriate universal constants κ1, κ2. (For this specific choice, γ is the 8-fold
convolution of the characteristic function of an interval.) We shall use the standard
O-notation in this section. The notation O(x), for some expression x , is an abbreviation
for some complicated quantity y with the property that

|y| ≤ Cx

for some universal constant C > 0. All constants hidden in the O-notation in our
proof are in principle explicit. The following lemma seems rather standard (see [14,
Vol. II, Chap. XVI] for similar statements). For lack of a precise reference, we provide
its proof.
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Lemma 5 Suppose �1, . . . ,�n are independent, symmetric Bernoulli random
variables. Let 0 �= θ = (θ1, . . . , θn) ∈ R

n and σ > 0. Assume that

∑

i;|θi |>σ
θ2

i ≤ 1

2
|θ |2. (36)

Then, for any t ∈ R,

∣∣∣∣∣
P

(

σ� +
n∑

i=1

θi�i ≥ t

)

− �

(
t

|θ |
)∣∣∣∣∣

≤ C

(
σ 2

|θ |2 +
n∑

i=1

θ4
i

|θ |4
)

, (37)

where C > 0 is a universal constant.

Remark Note that when θi = 1/
√

n = σ for all i , the error term in Lemma 5 is
O(1/n). The addition of �/

√
n allows us to deduce a better bound than the O(1/

√
n)

guaranteed by the Berry-Esseen inequality.

Proof of Lemma 5 The validity of both the assumptions and the conclusions of the
lemma is not altered if we replace θ, σ with rθ, rσ for any r > 0. Normalizing, we
may assume that |θ | = 1. By symmetry, it is enough to prove (37) for non-negative t .
Fix t ≥ 0. Observe that for any ξ ∈ R,

E exp

(

−iξ

[

σ� +
n∑

i=1

θi�i

])

= γ (σξ)

n∏

i=1

cos(θiξ).

Thus, from the Fourier inversion formula (see, e.g., [14, Vol. II, Chap. XVI]),

P

(

σ� +
n∑

i=1

θi�i ≤ t

)

− 1√
2π

t∫

−∞
exp(−s2/2)ds

= 1

2π

∞∫

−∞

[

γ (σξ)

n∏

i=1

cos(θiξ)− e−ξ2/2

]
eitξ − 1

iξ
dξ. (38)

Denote ε =
√∑

i θ
4
i . To prove the lemma, it suffices to bound the absolute value of

the integral in (38) by C ′(ε2 +σ 2). We express the integral in (38) as I1+ I2 + I3 where
I1 is the integral over ξ ∈ [−ε−1/2, ε−1/2], I2 is the integral over ε−1/2 ≤ |ξ | ≤ σ−1

(when ε−1/2 > σ−1, we set I2 = 0) and I3 is the integral over |ξ | ≥ max{σ−1, ε−1/2}.
Begin with estimating I1. We use the elementary inequality

es2/2 cos s = eO(s4) for |s| ≤ 1.
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Since |θi | ≤ ε1/2 for all i , then for |ξ | ≤ ε−1/2,

∣∣∣∣
∣

n∏

i=1

eξ
2θ2

i /2 cos(θiξ)− 1

∣∣∣∣
∣
=
∣∣∣eO

(
ξ4 ∑n

i=1 θ
4
i

)
− 1

∣∣∣ ≤ C ′ξ4ε2. (39)

Combine (39) with (35) to deduce that for |ξ | ≤ ε−1/2,

γ (σξ)

n∏

i=1

eξ
2θ2

i /2 cos(θiξ) =
(

1 + O(σ 2ξ2)
) (

1 + O(ξ4ε2)
)

= 1 + O(σ 2ξ2 + ξ4ε2).

The latter estimate yields

|I1| =

∣∣∣∣
∣∣∣

ε−1/2∫

−ε−1/2

e−ξ2/2

[

γ (σξ)

n∏

i=1

eξ
2θ2

i /2 cos(θiξ)− 1

]
eitξ − 1

iξ
dξ

∣∣∣∣
∣∣∣

≤ C ′
∞∫

−∞
e−ξ2/2

(
σ 2ξ2 + ξ4ε2

) 2

|ξ |dξ ≤ C̃
(
σ 2 + ε2

)
.

Next we estimate I2, in the case where ε−1/2 ≤ σ−1 (in the complementary case,
I2 = 0). Denote I = {1 ≤ i ≤ n ; |θi | ≤ σ }. Then, by (36),

∑

i∈I
θ2

i ≥ 1/2. (40)

We will use the elementary inequality | cos s| ≤ e−cs2
for |s| ≤ 1. According to (40),

whenever |ξ | ≤ σ−1,

∣∣∣
∣∣

n∏

i=1

cos(θiξ)

∣∣∣
∣∣
≤
∏

i∈I
| cos(θiξ)| ≤ e−cξ2 ∑

i∈I θ2
i ≤ e−cξ2/2.

Apply the well-known bound
∫∞

s e−u2/2 ≤ Ce−cs2
for s ≥ 0, to deduce

|I2| ≤ 2

σ−1∫

ε−1/2

[∣∣∣
∣∣

n∏

i=1

cos(θiξ)

∣∣∣
∣∣
+ e−ξ2/2

]
2

|ξ |dξ

≤ 4

σ−1∫

ε−1/2

[
e−cξ2/2 + e−ξ2/2

]
dξ ≤ C̄e−c̃/ε ≤ C̃ε2. (41)
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The bound for I3 is easy. From (34) we have γ (σξ) = 0 for |ξ | ≥ σ−1. Hence,

|I3| ≤ 2

∣
∣∣∣∣∣
∣

∞∫

max{σ−1,ε−1/2}
e−ξ2/2 2

|ξ |dξ

∣
∣∣∣∣∣
∣
≤ Ce−c/σ 2 ≤ C̄σ 2.

The lemma follows by combining the above bound for |I3| with the bound (41) for
|I2| and the bound (40) for |I1|. ��
Lemma 6 Let X = (X1, . . . , Xn) be a random vector in R

n, with EX2
i = 1 for

i = 1, . . . , n, that is distributed according to an unconditional, log-concave density.

Let (θ1, . . . , θn) ∈ Sn−1 and denote ε = 10
√∑

i θ
4
i . Then,

P

⎛

⎝1

2
≤

n∑

i=1

θ2
i X2

i ≤ 3

2
and

∑

i;|θi Xi |≥ε
θ2

i X2
i ≤ 1

4

⎞

⎠ ≥ 1 − Cε2,

where C > 0 is a universal constant.

Proof Note that E
∑n

i=1 θ
2
i X2

i = 1. According to the Chebyshev’s inequality and
Corollary 5,

P

(∣∣
∣∣∣

n∑

i=1

θ2
i X2

i − 1

∣∣
∣∣∣
≥ 1/2

)

≤ 4V ar

(
n∑

i=1

θ2
i X2

i

)

≤ 64
n∑

i=1

θ4
i ≤ ε2. (42)

Denote Y = ∑
i;|θi Xi |≥ε θ

2
i X2

i . Clearly,

ε2Y = ε2
∑

i;|θi Xi |≥ε
θ2

i X2
i ≤

n∑

i=1

θ4
i X4

i .

Therefore

EY ≤ ε−2
n∑

i=1

θ4
i EX4

i ≤ 6ε−2
n∑

i=1

θ4
i ≤ 1

10
,

where we used the inequality EX4
i ≤ 6(EX2

i )
2 = 6, quoted above as (26). Next,

apply Lemma 4(ii) with fi (t) = θ2
i t2 for |t | ≥ ε/θi and fi (t) = 0 otherwise. Then

Y = ∑
i fi (Xi ) and according to the conclusion of that lemma,

V ar(Y ) ≤ 4
n∑

i=1

5θ4
i EX4

i ≤ 120
n∑

i=1

θ4
i ≤ Cε2.
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Denote µ = EY ≤ 1/10. Another application of the Chebyshev inequality yields

P

(
Y ≥ 1

4

)
≤ P

(
|Y − µ| ≥ 1

10

)
≤ 100V ar(Y ) ≤ Cε2. (43)

The lemma follows from (42) and (43). ��

Lemma 7 Let X = (X1, . . . , Xn) be a random vector in R
n, with EX2

i = 1 for
i = 1, . . . , n, that is distributed according to an unconditional, log-concave density.

Let (θ1, . . . , θn) ∈ Sn−1 and denote ε = 10
√∑

i θ
4
i . Then, for any t ∈ R,

∣
∣∣∣∣
P

(

ε� +
n∑

i=1

θi Xi ≥ t

)

− �(t)

∣
∣∣∣∣
≤ Cε2,

where C > 0 is a universal constant.

Proof We may assume that ε is smaller than some given positive universal constant,
as otherwise the conclusion is trivial. Let�1, . . . , �n be independent, symmetric, Ber-
noulli random variables, that are independent also of X . For t ∈ R and
x = (x1, . . . , xn) ∈ R

n define

P(t, x) = P

(

ε� +
n∑

i=1

θi xi�i ≥ t

)

.

Since the density of X is unconditional, the random variable
∑

i θi Xi has the same
distribution as

∑
i θi Xi�i . Fix t ∈ R. Then,

P

(

ε� +
n∑

i=1

θi Xi ≥ t

)

= P

(

ε� +
n∑

i=1

θi Xi�i ≥ t

)

= EP(t, X). (44)

Write A ⊂ R
n for the collection of all x = (x1, . . . , xn) ∈ R

n for which

1

2
≤

n∑

i=1

θ2
i x2

i ≤ 3

2
and

∑

i;|θi xi |≥ε
θ2

i x2
i ≤ 1

4
≤ 1

2

n∑

i=1

θ2
i x2

i .

We may apply Lemma 5 for (θ1x1, . . . , θn xn) and for σ = ε, and conclude that,

∣∣∣∣∣
∣

P(t, x) − �

⎛

⎝ t
√∑n

i=1 θ
2
i x2

i

⎞

⎠

∣∣∣∣∣
∣
≤ C

(

ε2 +
n∑

i=1

θ4
i x4

i

)

for all x ∈ A.
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From Lemma 6 we have P(X �∈ A) ≤ Cε2. Consequently,

∣
∣∣∣∣∣
EP(t, X)− E�

⎛

⎝ t
√∑n

i=1 θ
2
i X2

i

⎞

⎠

∣
∣∣∣∣∣

≤ 2P(X �∈ A)+ CE

(

ε2 +
n∑

i=1

θ4
i X4

i

)

≤ C ′ε2, (45)

where we used once more the bound EX4
i ≤ 6(EX2

i )
2 = 6. According to (44) and

(45), in order to prove the lemma, all we need is to show that

∣∣∣∣∣
∣
E�

⎛

⎝ t
√∑n

i=1 θ
2
i X2

i

⎞

⎠ − �(t)

∣∣∣∣∣
∣
≤ Cε2. (46)

Write Y = ∑n
i=1 θ

2
i X2

i . Then P(Y ≥ 1/2) ≥ 1 − Cε2, by Lemma 6. Therefore, to
prove (46) and complete the proof of the lemma, it suffices to show that

E

[
�

(
t√
Y

)
−�(t)

∣∣
∣∣Y ≥ 1/2

]
= O(ε2). (47)

We may assume that ε does not exceed a small positive universal constant, hence
P(Y ≥ 1/2)−1 ≤ (1 − Cε2)−1 ≤ 1 + C ′ε2. Therefore,

1 = EY ≤ E

(
Y

∣∣
∣∣Y ≥ 1

2

)
≤ P(Y ≥ 1/2)−1 ≤ 1 + C ′ε2. (48)

Corollary 5(i) implies that E(Y − 1)2 ≤ Cε2. Hence,

E

(
(Y − 1)2

∣∣∣ Y ≥ 1

2

)
≤ E (Y − 1)2 /P(Y ≥ 1/2) ≤ C̃ε2. (49)

Denote F(u) = �(t/
√

u). Clearly, ϕ(s)s = O(1) and ϕ′(s)s2 = O(1) for any s ∈ R.
Consequently, for any u ≥ 1/2,

F ′(u) = 1

2u
ϕ

(
t√
u

)
t√
u

= O(1)

and

F ′′(u) = − 3

4u2 ϕ

(
t√
u

)
t√
u

− 1

4u2 ϕ
′
(

t√
u

)
t2

u
= O(1).
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By Taylor’s theorem,

E

[
�
(

t/
√

Y
)

−�(t)
∣
∣∣Y ≥ 1/2

]
= E [F(Y )− F(1) |Y ≥ 1/2 ]

= E

[
F ′(1)(Y − 1)+ O

(
(Y − 1)2

)∣∣∣ Y ≥ 1/2
]

= F ′(1)
(

E(Y − 1)

∣∣∣
∣Y ≥ 1

2

)
+ O(ε2) = O(ε2),

where we used the estimates for F ′, F ′′ and the bounds (48) and (49). This completes
the proof of (47). The lemma is proven. ��

Our next goal is to eliminate the “ε�” term from the conclusion of Lemma 7. The
following short computational lemma serves this purpose. We shall use the standard
estimate

c
ϕ(t0)

t0 + 1
≤ �(t0) ≤ C

ϕ(t0)

t0 + 1
≤ C̄ϕ(t0) (50)

for any t0 ≥ 0 (see, e.g., [14, Vol. I, Sect. VII.1]).

Lemma 8 Let t0 ≥ 0 and denote δ = �(t0). Then,

(i) �
(

t0 + 2δ1/4
)

≥ C−1
1 δ.

(ii) 1 −�
(

t0 − 2δ1/4
)

≥ 1 −�(−2) ≥ C−1
1 ≥ C−1

1 δ.

(iii) Suppose x > 0 satisfies

∣∣∣∣
1

x
− 1

ϕ(t0)

∣∣∣∣ ≤ c2δ
−3/4. Then x2 ≤ C1δ.

Here, C1 > 1 and 0 < c2 < 1 are universal constants.

Proof We have t0δ1/4 ≤ Ct0(ϕ(t0))1/4 ≤ C ′ according to (50). Hence,

�
(
t0 + 2δ1/4

)

�(t0)
≥ c′ exp

[
t2
0

2
−
(
t0 + 2δ1/4

)2

2

]

≥ ĉ exp
(
−2t0δ

1/4
)

≥ c′,

and (i) is proven. The statement (ii) is self-explanatory. Regarding (iii), it is readily
verified that c̃(t0 + 1)3/4 ≤ ϕ(t0)−1/4 for any t0 ≥ 0. Therefore, by (50), for a
sufficiently small c2 > 0,

1

ϕ(t0)
− c2

δ3/4 ≥ 1

ϕ(t0)
− c̃(t0 + 1)3/4

2ϕ(t0)3/4
≥ 1

ϕ(t0)
− ϕ(t0)−1/4

2ϕ(t0)3/4
= 1

2ϕ(t0)
.

Note also that ϕ(t0) ≤ C/(t0 + 1). Consequently, for any x > 0,

∣∣∣
∣
1

x
− 1

ϕ(t0)

∣∣∣
∣ ≤ c2

δ3/4 ⇒ x ≤ 2ϕ(t0) ≤ C

√
ϕ(t0)

t0 + 1
≤ C̃

√
δ,

where we used (50) again. ��
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Lemma 9 Let X be a real-valued random variable with an even, log-concave density.
Let 0 < ε < 1, A ≥ 1. Suppose that for any t ∈ R,

|P (ε� + X ≥ t) − �(t)| ≤ Aε2. (51)

Then, for any t ∈ R,

|P (X ≥ t) − �(t)| ≤ C Aε2, (52)

where C > 0 is a universal constant.

Proof By approximation, we may assume that the density of X is C1-smooth and
positive everywhere (e.g., convolve X with a very small gaussian). We may also
assume that ε ≤ c for a small universal constant c > 0. The function

E(t) = |P (X ≥ t) − �(t)| (t ∈ R)

is continuous and vanishes at ±∞. Consequently, there exists t0 ∈ R where E(t)
attains its maximum. Since E is an even function, we may assume that t0 ≥ 0. Write
f : R → [0,∞) for the density of X . As E ′(t0) = 0,

f (t0) = ϕ(t0) = 1√
2π

e−t2
0 /2. (53)

To prove the lemma, it suffices to show that maxt E(t) = E(t0) ≤ C Aε2.
Step 1: Suppose first that �(t0) ≤ 2C1 Aε2, for C1 being the universal constant

from Lemma 8. Then by (51),

P (ε� + X ≥ t0) ≤ �(t0)+ Aε2 ≤ (2C1 + 1)Aε2,

hence,

P(X ≥ t0) = 2P(X ≥ t0, � ≥ 0) ≤ 2P (ε� + X ≥ t0) ≤ (4C1 + 2)Aε2.

Consequently, since �(t0) ≤ 2C1 Aε2,

max
t∈R

E(t) = E(t0) = |P (X ≥ t0)−�(t0)| ≤ (6C1 + 2)Aε2 ≤ C̄ Aε2.

The desired estimate (52) is therefore proven, in the case where �(t0) ≤ 2C1 Aε2.
Step 2: It remains to deal with the case where t0 ≥ 0 satisfies �(t0) > 2C1 Aε2.

Denote δ = �(t0) ≥ 2C1 Aε2 ≥ Aε2. Note that

P

(
|ε�| ≥ δ1/4

)
≤ ε6

E�6

(
δ1/4

)6 ≤ C
ε3

A3/2 ≤ Cεδ ≤ δ

4C1
(54)
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under the legitimate assumption that ε is smaller than a given universal constant. From
Lemma 8(i) we have �

(
t0 + 2δ1/4

) ≥ δ/C1, hence by (51),

P

(
ε� + X ≥ t0 + 2δ1/4

)
≥ �

(
t0 + 2δ1/4

)
− Aε2 ≥ δ

C1
− Aε2 ≥ δ

2C1
.

Consequently, from (54),

P

(
X ≥ t0 + δ1/4

)
≥ P

(
ε� + X ≥ t0 + 2δ1/4

)
− P

(
ε� ≥ δ1/4

)
≥ δ/(4C1).

A similar argument, using Lemma 8(ii) in place of Lemma 8(i), shows that

P

(
X ≤ t0 − δ1/4

)
≥ P

(
ε� + X ≤ t0 − 2δ1/4

)
− P

(
|ε�| ≥ δ1/4

)
≥ δ/(4C1).

We conclude that for any t ∈ [t0 − δ1/4, t0 + δ1/4],

min {P (X ≥ t) ,P (X ≤ t)} ≥ δ

4C1
. (55)

Step 3: The density f is differentiable and positive everywhere. Fix x0 ∈ R. Since
log f is concave, then

f (x) ≤ f (x0) exp

(
f ′(x0)

f (x0)
(x − x0)

)
∀x ∈ R.

Consequently, when f ′(x0) �= 0,

min

⎧
⎨

⎩

∞∫

x0

f (x)dx,

x0∫

−∞
f (x)dx

⎫
⎬

⎭

≤
∞∫

x0

f (x0) exp

(
−| f ′(x0)(x − x0)|

f (x0)

)
dx = f (x0)

2

| f ′(x0)| .

We conclude from (55) that for any t ∈ [t0 − δ1/4, t0 + δ1/4],

| f ′(t)| ≤ f 2(t) [min {P (X ≥ t) ,P (X ≤ t)}]−1 ≤ 4C1δ
−1 f 2(t). (56)

Equivalently, |(1/ f )′| ≤ 4C1δ
−1 in the interval [t0 − δ1/4, t0 + δ1/4]. Hence,

∣∣∣∣
1

f (t)
− 1

f (t0)

∣∣∣∣ ≤ 4C1δ
−1 · c2

4C1
δ1/4 = c2δ

−3/4 when |t − t0| ≤ c2

4C1
δ1/4,
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for c2 > 0 being the universal constant from Lemma 8. Recall from (53) that
f (t0) = ϕ(t0). Lemma 8(iii) thus implies that

f 2(t) ≤ C1δ for t ∈ [t0 − cδ1/4, t0 + cδ1/4],

with c = c2/4C1. Returning to (56), we finally deduce the bound

| f ′(t)| ≤ C̃ for t ∈ [t0 − ĉδ1/4, t0 + ĉδ1/4].

Through Taylor’s theorem, the latter bound entails that

P(X ≥ t0 + s) = P(X ≥ t0)− f (t0)s + O
(

s2
)

for any |s| ≤ ĉδ1/4. (57)

Step 4: Let η : R → [0,∞) stand for the probability density of ε�. The function
η is even. Recall that δ ≥ ε2. Hence,

∫

|s|≥ĉδ1/4

η(s)ds = P

(
|ε�| ≥ ĉδ1/4

)
≤ ε4

E�4

ĉ4δ
≤ Cε2, (58)

where ĉ > 0 is the constant from (57). The crucial observation is that s → f (t0)sη(s)
is an odd function, hence its integral on a symmetric interval about the origin vanishes.
By (57) and (58),

|P(ε� + X ≥ t0)− P(X ≥ t0)|

=
∣∣
∣∣∣∣

∞∫

−∞
[ P (X ≥ t0 + s)− P (X ≥ t0) ] η(s)ds

∣∣
∣∣∣∣

≤

∣∣∣∣∣∣
∣

ĉδ1/4∫

−ĉδ1/4

[
− f (t0)s + O

(
s2
) ]
η(s)ds

∣∣∣∣∣∣
∣

+ 2
∫

|s|≥ĉδ1/4

η(s)ds

≤ C̄

ĉδ1/4∫

−ĉδ1/4

s2η(s)ds + Cε2 ≤ C̄E(ε�)2 + Cε2 ≤ Čε2,

where ĉ > 0 is the constant from (57). We apply (51) and conclude that

E(t0) = |P(X ≥ t0)−�(t0)| ≤ Čε2 + |P(ε� + X ≥ t0)−�(t0)| ≤ Čε2 + Aε2.

Since E(t0) = maxt E(t), the proof of the lemma is complete. ��
Proof of Theorem 1 Let θ1, . . . , θn ∈ R be such that

∑
i θ

2
i = 1. Denote

ε = 10
√∑n

i=1 θ
4
i . According to Lemma 7, the random variable Y = ∑n

i=1 θi Xi

satisfies
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sup
t∈R

|P (ε� + Y ≥ t)−�(t)| ≤ Cε2, (59)

with some universal constant C ≥ 1. The random variable Y has an even, log-concave
density by Prékopa–Leindler. We may thus apply Lemma 9, and conclude from (59)
that

sup
α≤β

|P (α ≤ Y ≤ β)− [�(α)−�(β)]| ≤ 2 sup
t∈R

|P (Y ≥ t)−�(t)| ≤ C ′ε2.

The theorem is thus proven. ��

Appendix: Proof of Theorem 2

With Cédric Villani’s permission, we reproduce below the proof of Theorem 2 from
his book [40, Sect. 7.6] with a few minor changes.

Proof of Theorem 2 We need to prove that for any C∞-smooth function ϕ : R
n → R,

∫

Rn

hϕdµ ≤
√√√√
∫

Rn

|∇ϕ|2dµ · lim inf
ε→0+

W2(µ,µε)

ε
. (60)

Since µ is compactly supported, it is enough to restrict attention to compactly sup-
ported functions ϕ. Fix such a test function ϕ. Then the second derivatives of ϕ are
bounded on R

n . By Taylor’s theorem, there exists a constant R = R(ϕ) with

ϕ(y)− ϕ(x) ≤ |∇ϕ(x)| · |x − y| + R|x − y|2 ∀x, y ∈ R
n . (61)

We may assume that sup |h| > 0 (otherwise, the theorem holds trivially), and let ε > 0
be smaller than 1/ sup |h|. Then µε is a non-negative measure on R

n . Let γ be any
coupling of µ and µε. We see that

∫

Rn

hϕdµ = 1

ε

∫

Rn

ϕd [µε − µ] = 1

ε

∫

Rn×Rn

[ϕ(y)− ϕ(x)] dγ (x, y).

Write W γ
2 (µ,µε) =

√∫
Rn×Rn |x − y|2dγ (x, y). According to (61) and to the

Cauchy-Schwartz inequality,

∫

Rn

hϕdµ ≤ 1

ε

∫

Rn×Rn

|∇ϕ(x)| · |x − y|dγ (x, y)+ R

ε

∫

Rn×Rn

|x − y|2dγ (x, y)

≤ 1

ε

√√√√
∫

Rn

|∇ϕ(x)|2dµ(x) · W γ
2 (µ,µε)+ R

ε
W γ

2 (µ,µε)
2.
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By taking the infimum over all couplings γ of µ and µε, we obtain

∫

Rn

hϕdµ ≤
√√√√
∫

Rn

|∇ϕ|2dµ · W2(µ,µε)

ε
+ R

W2(µ,µε)
2

ε
, (62)

with R depending only on ϕ. We may assume that lim infε→0+ W2(µ,µε)/ε < ∞;
otherwise, there is nothing to prove. Consequently,

lim inf
ε→0+

W2(µ,µε)
2

ε
= lim inf

ε→0+ ε

(
W2(µ,µε)

ε

)2

= 0.

Hence by letting ε tend to zero in (62), we deduce (60). The proof is complete. ��
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