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Abstract For sample covariance matrices with i.i.d. entries with sub-Gaussian tails,
when both the number of samples and the number of variables become large and
the ratio approaches one, it is a well-known result of Soshnikov that the limiting
distribution of the largest eigenvalue is same that of Gaussian samples. In this paper,
we extend this result to two cases. The first case is when the ratio approaches an
arbitrary finite value. The second case is when the ratio becomes infinite or arbitrarily
small.

1 Introduction

The scope of this paper is to study the limiting behavior of the largest eigenvalues of
real and complex sample covariance matrices with independent identically distributed
(i.i.d.), but non necessarily Gaussian, entries. Consider a sample of size p of i.i.d.
N × 1 random vectors �y1, . . . , �yp . We further assume that the sample vectors �yk

have mean zero and covariance � = I d. We use X = [�y1, . . . , �yp] to denote the
N × p data matrix and MN = 1

N X X∗ to denote the sample covariance matrix.
Random sample covariance matrices have been first studied in mathematical statistics
([5,11,13]). A huge literature deals with the case where p → ∞, N being fixed,
which is now quite well understood. Contrary to the traditional assumptions, it is
currently of strong interest to study the case where N is of the same order as p,
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482 S. Péché

due to the large amount of data available. In particular, the limiting behavior of the
largest eigenvalues is important for testing hypotheses on the covariance matrix �.

Here we focus on the simple case, Ho : � = I d versus Ha : � �= I d, and study the
asymptotic distribution of extreme eigenvalues under the Ho. The study of extreme
eigenvalues is also of interest in principal component analysis. We refer the reader to
[15] and [8] for a review of statistical applications. Other examples of applications
include genetics [21], mathematical finance [24,18,19], wireless communication [35],
physics of mixture [26], and statistical learning [12]. We point out that the spectral
properties of MN readily translate to the companion matrix WN = 1

N X∗ X. Indeed,
WN is a p × p matrix, of rank N , with the same non-zero eigenvalues as MN . Thus,
it is enough to study the spectral properties of MN to give a complete picture of the
spectrum of such sample covariance matrices.

1.1 Model and results

We consider both real and complex random sample covariance matrices

MN = 1

N
X X∗,

where X is a N × p, p = p(N ) ≥ N , random matrix satisfying certain “moment
conditions”. In the whole paper, we set γN = p

N . We assume that the entries Xi j , 1 ≤
i ≤ N , 1 ≤ j ≤ p, of the sequence of random matrices X = X N are non-necessarily
Gaussian random variables satisfying the following conditions. First, in the complex
case,

(i) {�eXi, j , 	m Xi, j : 1 ≤ i ≤ N , 1 ≤ j ≤ p} are real independent random
variables,

(ii) all these real variables have symmetric laws (thus, E[X2k+1
i, j ] = 0 for all k ∈ N

∗),

(iii) ∀ i, j, E[(�eXi, j )
2] = E[(	m Xi, j )

2] = 1
2 ,

(iv) all their other moments are assumed to be sub-Gaussian, i.e. there exists a con-
stant τ > 0 such that uniformly in i, j and k,

E[|Xi, j |2k] ≤ (τ k)k .

In the real setting, X = (Xi, j )1≤i, j≤N is a random matrix such that

(i′) the {Xi, j , 1 ≤ i ≤ N , 1 ≤ j ≤ p} are independent random variables,
(ii′) the laws of the Xi, j are symmetric (in particular, E[X2k+1

i, j ] = 0),

(iii′) for all i, j , E[X2
i, j ] = 1,

(iv′) all the other moments of the Xi j are sub-Gaussian, i.e. there exists a constant
τ > 0 such that, uniformly in i, j and k, E[X2k

i, j ] ≤ (τ k)k .

When the entries of X are further assumed to be Gaussian random variables, we denote
by XG the corresponding model. If the entries of X are complex Gaussian random
variables, MG

N is the so-called Laguerre unitary ensemble (LUE), which is also called

123



Universality results for the largest eigenvalues of some sample covariance matrix ensembles 483

the complex Wishart ensemble. In the real setting, MG
N is the Laguerre orthogonal

ensemble (LOE) or real Wishart ensemble.
The goal of this paper is to describe the large-N -limiting distribution of the K largest

eigenvalues induced by any such ensemble, for any fixed integer K independent of
N . Two regimes are investigated in this paper. In the first part, we assume that there
exists a constant γ ≥ 1 such that limN→∞ γN = γ. In the second part, we consider
the case where limN→∞ γN = ∞.
Before stating our results, we recall some known results about sample covariance
matrices. Let λ1 ≥ λ2 ≥ · · · ≥ λN be the ordered eigenvalues induced by any
ensemble of the above type. We first focus on the case where limN→∞ γN = γ < ∞.

The first fundamental result for the limiting spectral behavior of such random matrix
ensembles has been obtained by Marchenko and Pastur in [20] (in a much more
general context than here). It is in particular proved therein that the spectral measure
µN = 1

N

∑N
i=1 δλi a.s. converges as N goes to infinity. Set uc± = (1 ± √

γ )2. Then
one has that

lim
N→∞ µN = ρM P a.s., where

dρM P (x)

dx
=
√

(uc+ − x)(x − uc−)

2πx
1[uc−,uc+](x). (1)

The limiting probability distribution ρM P is the so-called Marchenko–Pastur distrib-
ution.
The above result gives no insight about the behavior of the largest eigenvalues. The first
study of the asymptotic behavior of the largest eigenvalue goes back to Geman [10]. It
was later refined in [2] and [27]. In particular, it is well known that limN→∞ λ1 = uc+
a.s. if the entries of the random matrix X admit moments up to order 4. Significant
results about fluctuations of the largest eigenvalues around uc+ are much more recent
and are essentially established for Wishart ensembles only. In particular, the limiting
distribution of the largest eigenvalue has been obtained by Johansson [14] for complex
Wishart matrices and Johnstone [15] for real Wishart matrices. Soshnikov [31] has
derived for both ensembles the limiting distribution of the K largest eigenvalues, for
any fixed integer K . Their results, proved in the case where γ < ∞, was later extended
by El Karoui [7] to the case where p, N go to infinity and p/N → ∞. Before recalling
all these results, we need a few definitions. We here define the limiting Tracy–Widom
distribution for the largest eigenvalue. Let Ai denote the standard Airy function and
q denote the solution of the Painlevé II differential equation ∂2

∂x2 q = xq(x)+ 2q3(x),

with boundary condition q(x) ∼ Ai(x) as x → +∞.

Definition 1.1 The GUE (resp. GOE) Tracy–Widom distribution for the largest eigen-
value is defined by the cumulative distribution function F2(x) = exp{∫∞

x (x − t)q2

(t)dt} (resp. F1(x) =exp {∫∞
x

−q(t)
2 + (x−t)

2 q2(t)dt}).
The GUE (resp. GOE) Tracy–Widom distribution for the joint distribution of the K
largest eigenvalues (for any fixed integer K ) has been also defined. We refer the reader
to [36] and [37] for a precise definition.
We then rescale the eigenvalues as follows. For any ensemble satisfying (i) to (iν)
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(resp. (i’) to (iν’)), we set for i = 1, . . . , N ,

µi = γ
1/6
N

(1 + √
γN )4/3 N 2/3

(
λi − (1 + √

γN )2
)

. (2)

When the entries of X are futher assumed to be Gaussian random variables, we denote
by µ

G,β
i the above rescaled eigenvalues where β = 2 (resp. β = 1) in the complex

(resp. real) case.

Theorem 1.1 [7,14,15,31]. The joint distribution of the K rescaled largest eigenval-
ues µ

G,2
i (resp. µG,1

i ), 1 ≤ i ≤ K , of the LUE (resp. LOE) converges, as N → ∞, to
the joint distribution defined by the GUE (resp. GOE) Tracy–Widom law. This holds
true if γ < ∞ as well as if γN → ∞.

The proof of Theorem 1.1 relies on the crucial fact that the joint eigenvalue density
of the Wishart ensembles can be explicitly computed. Starting from numerical simula-
tions, it was then conjectured, in [15], e.g., that Theorem 1.1 actually holds for a class
of random sample covariance matrices much wider than the Wishart ensembles. Such
a universality result was later proved for some quite general ensembles by Soshnikov
[31], yet under some restriction on the sample size, as we now recall.

Theorem 1.2 [31] Assume that p − N = O(N 1/3). The joint distribution of the K
rescaled largest eigenvalues µi , i ≤ K , induced by any ensemble satisfying (i) to (iν)
( resp. (i’) to (iν’)) converges, as N goes to infinity, to the joint distribution defined by
the GUE (resp. GOE) Tracy–Widom law.

In this paper, we prove that such a universality result holds for any value of the
parameter γ. This is the main result of this note.

Theorem 1.3 The joint distribution of the K rescaled largest eigenvalues µi , i ≤ K ,
induced by any ensemble satisfying (i) to (iν) (resp. (i’) to (iν’)) converges, as N goes
to infinity, to the joint distribution defined by the GUE (resp. GOE) Tracy–Widom law.
This holds true in both the cases where γ < ∞ and γN → ∞.

Remark 1.1 Assumptions (iν) and (iν’) can actually be relaxed if γ < ∞. This relax-
ation is discussed in the second paragraph of Sect. 1.2.

Before giving secondary results, we give a few comments on the way we proceed
to prove Theorem 1.3. In Theorem 1.2, the reason for the restriction on p − N follows
from the idea of the proof used therein. When γ = 1, the eigenvalues of a random
sample covariance matrix roughly behave as the squares of those of a typical Wigner
random matrix. This adequacy still works for the largest eigenvalues, but fails if γ

is not close enough to one. Theorem 1.2 has been proved using universality results
established for classical Wigner random matrices. Here, we revisit the problem of
computing the asymptotics of E

[
TrM L

N

]
for some powers L that may go to infinity,

using combinatorial tools specifically well suited for the study of spectral functions
of sample covariance matrices. It is known that Dyck paths and Catalan numbers are
associated to standard Wigner matrices (see [1]). Suitable combinatorial tools in the
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case of sample covariance matrices are the so-called Narayana numbers and some
particular Dyck paths. Using those, we can extend the universality result of [31] to
any value of the ratio γ.

The case where γ ≤ 1 can also be considered thanks to the companion matrix WN .
Let λ′

i , 1 ≤ i ≤ p, be the eigenvalues of 1
p X∗ X , ordered in decreasing order and let

δN = γ −1
N , so that limN→∞ δN = γ −1 ≤ 1. We set:

µ′
i = δN

1/6

(1 + √
δN )4/3

p2/3
(
λ′

1 − (1 +√δN )2
)

, i = 1, . . . , p.

Corollary 1.1 Under the assumptions (i) to (iν) (resp. (i’) to (iν’)), the joint distrib-
ution of

(
µ′

1, . . . , µ
′
K

)
converges as N → ∞ to the GUE (resp. GOE) Tracy–Widom

joint distribution of the K largest eigenvalues.

1.2 Discussion on some implications of the result

Our result has some statistical flavor. Testing homogeneity of a population has long
been of interest in mathematical statistics. It is often a preliminary step in discriminant
analysis and cluster analysis. We consider here the test of the null hypothesis Ho : � =
I d versus the alternative hypothesis Ha : � �= I d, assuming high dimensionality.
The result stated here for the largest eigenvalue can be formulated as

lim
N→∞ P(µ1 ≤ x |Ho) = F2(1)(x). (3)

This theoretical result was established for Gaussian samples only so far (cf. [16] for
a review). Removing the Gaussian assumption is fundamental for various statistical
problems. For instance, samples in genetic data are usually drawn from a distribution
with compact support and the size of matrices encountered therein is typically large
enough so that (3) should be observed for appropriate models (see [21]).

Regarding the assumptions made on the distribution of the entries, they may appear
strong. It is indeed believed (and observed numerically) that the universal Tracy–
Widom picture holds as soon as the entries Xi j admit a fourth moment. The moment
assumptions (iν) and (iν’) can actually be relaxed, using truncation techniques and
ideas from [25]. We can show that Theorem 1.3 holds under the assumption that
P(|Xi j | > x) ≤ C(1 + x)mo ,∀i, j, for some mo > 36. We do not consider this case
here, which would increase the technicalities of the paper. Our result differs from that
in [25], since we do not understand Formula 4.7 (which roughly gives universality if
mo > 18). In Remarks 2.3 and 2.5, we indicate the changes to be made to consider
such a case (and also justify a weaker version of the above cited Formula 4.7).

The symmetry assumption is also a technical assumption for the proof. Indeed, it
is expected that the lack of symmetry has no impact on the limiting distribution of
the largest eigenvalues (provided the distribution is centered). Yet, analytical tools to
prove such a result are not established (see e.g. [22] for some recent progress).

The method we develop is also a first step towards considering samples with non-
Identity covariance. Such results are of practical importance for understanding the
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behavior of principal component analysis and dimension reduction in high dimensional
setting. It is therefore important to consider covariance matrices with more complex
structures. In particular (in progress), the moment approach developed here seems
to be well suited in the case where the population covariance is a so-called “spiked”
diagonal matrix. That is, � = I d + D, where the deformation D is a finite rank
diagonal matrix. This is important, since the test based on (3) may not reject Ho if the
largest eigenvalue of D is not large enough, because of a phase transition phenomenon
described, e.g. in [4] and [3].

It also seems possible to refine the combinatorics used in this paper to consider
sample covariance matrices in the form commonly used in statistics, that is 1

N (X −
X)(X − X)∗ where X is the empirical sample mean. It is believed that the above
centering, used in the case of where the entries are i.i.d. with unknown mean value,
does not have any impact on the limiting behavior of the largest eigenvalues. The study
of such sample covariance matrix ensembles (in progress) is deferred to another paper.

1.3 Sketch of the proof

We here give the main ideas of the proof of Theorem 1.3. The proof follows essentially
the strategy introduced in [31] and we refer to this paper for most of the detail. We
focus on the case where γ = limN→∞ p/N < ∞. Basically, we compute the leading
term in the asymptotic expansion of expectations of traces of high powers of MN :

E

[

Tr

(
1

N
X X∗

)sN
]

, (4)

where Tr(A) = ∑N
i=1 aii denotes throughout the paper the un-normalized trace of a

matrix A = (ai j )1≤i, j≤N . Here sN is a sequence such that there exists some constant
c > 0 with limN→∞ sN

N 2/3 = c. It is indeed expected that the largest eigenvalues

exhibit fluctuations in the scale N−2/3 around

u+ := (
√

γN + 1)2. (5)

The core of the proof is to show the following result. Let K be some given integer
and c1, . . . , cK be constants chosen in some compact interval J ⊂ (0,+∞) (inde-

pendent of N ). Let s(i)
N , i = 1, . . . , K , be sequences such that limN→∞

s(i)
N

N 2/3 = ci (or

limN→∞
s(i)

N√
γN N 2/3 = ci if γN → ∞). We show that

∃C̃1 = C̃1(K , J ) > 0 such that

∣
∣
∣
∣
∣
∣
E

⎡

⎣
K∏

i=1

Tr

(
X X∗

Nu+

)s(i)
N

⎤

⎦

∣
∣
∣
∣
∣
∣
≤ C̃1; (6)

∣
∣
∣
∣
∣
∣
E

⎡

⎣
K∏

i=1

Tr

(
X X∗

Nu+

)s(i)
N

⎤

⎦− E

⎡

⎣
K∏

i=1

Tr

(
XG X∗

G

Nu+

)s(i)
N

⎤

⎦

∣
∣
∣
∣
∣
∣
= o(1). (7)

123



Universality results for the largest eigenvalues of some sample covariance matrix ensembles 487

Formula (7) claims universality of moments of traces of powers of MN in the scale
(
√

γN )N 2/3. Using the machinery developed in [30] (Sects. 2 and 5) and [31] (Sect. 2),
we can then deduce that the limiting joint distribution of any fixed number of largest
eigenvalues for sample covariance matrices satisfying (i) to (iν) (resp. (i’) to (iν’)) is
the same as for complex (resp. real) Wishart ensembles. We roughly give the main idea.
On the one hand, the Laplace transform of the joint distribution of a finite number of
the rescaled eigenvalues µi can be conveniently expressed in terms of joint moments
of traces as in (4). On the other hand, the asymptotic distribution of these rescaled
largest eigenvalues (and also the corresponding Laplace transform) is well-known in
the Wishart setting. One can then deduce from universality of moments of traces that
the asymptotic joint distribution of the largest eigenvalues for any ensemble considered
here is the same as for the corresponding Wishart ensemble. The detail of the derivation
of such a result from formula (7), including the required asymptotics of correlation
functions for Wishart ensembles, can be found in [30,31] and [7]. The improvement
we obtain with respect to [31] is that Formula (7) holds for any value γ . Our result is
due to a refinement in the counting procedure of [31].

The paper is organized as follows. In Sect. 2, we introduce the so-called Narayana
numbers. These numbers are the major combinatorial tools needed to adapt the com-
putations of [31] to sample covariance matrices of any sample size to dimension ratio
γN . We also establish a central limit theorem for traces of high powers of MN . Sec-
tion 3 essentially yields formulas (6) and (7) and is is based on the computations made
in [31]. Finally, in Sect. 4, we consider the case where γN → ∞, which requires some
minor modifications.

2 Combinatorics

In this section, we define the combinatorial objects suitable for the computation of
moments of the spectral measure of random sample covariance matrices. These com-
binatorial objects are the Narayana paths, that is Dyck paths with a prescribed number
of up steps at the odd instants, and are directly related to the so-called Marchenko–
Pastur distribution. Then, we give the basic technical estimates needed to compute the
moments of traces of powers of sample covariance matrices. We illustrate our counting
strategy by giving a refinement of the Marchenko–Pastur theorem and also obtain a
Central Limit Theorem.

2.1 Dyck paths and Narayana numbers

Let sN be some integer that may depend on N . Developing (4), we obtain that

E
[
Tr
(
X X∗)sN

]

=
∑

io,...,isN −1

∑

jo,..., jsN −1

E

(
Xio jo Xi1 jo · · · XisN −1 jsN −1 Xio jsN −1

)
, (8)

where il ∈ {1, 2, . . . , N } and jl ∈ {1, . . . , p}, 0 ≤ l ≤ sN − 1. (9)
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In the whole paper, we denote by R the rule (9) for the choice of indices in (8).
We shall later prove that such a rule plays a fundamental role in the asymptotics of (4).
To each term in the expectation (8), we associate three combinatorial objects that will
be needed in the following.

First, to each term Xio jo Xi1 jo · · · XisN −1 jsN −1 Xio jsN −1 occurring in (8), we associate
the following “ edge path” PE , formed with oriented edges (read from bottom to top)

(
jo
io

)(
jo
i1

)(
j1
i1

)

· · ·
(

jsN −1
isN −1

)(
jsN −1

io

)

. (10)

Due to the symmetry assumption on the entries of X , the sole paths giving a non zero
contribution in (8) are such that each oriented edge appears an even number of times.
From now on, we consider only such even edge paths.

To such an even edge path, we also associate a so-called Dyck path, which is a
trajectory x(t), 0 ≤ t ≤ 2sN , of a simple random walk on the positive half-lattice
such that

x(0) = 0, x(2sN ) = 0; ∀t ∈ [0, 2sN ], x(t) ≥ 0 and x(t) − x(t − 1) = ±1.

We start the path at the origin and draw up steps (1,+1) and down steps (1,−1) as
follows. We read successively the 2sN edges of (10), reading each edge from bottom
to top. Then if the (oriented) edge is read for an odd number of times, we draw an up
step. Otherwise we draw a down step. We obtain in this way a trajectory with sN up
and sN down steps, which is clearly a Dyck path. We shall now estimate the number
of possible trajectories associated to the edge path. Due to the constraint (9) on the
choices for vertices, we shall distinguish trajectories with respect to the number of up
steps performed at the odd instants. Indeed, they are the moments of time where the
vertices can be chosen in the set {1, . . . , p}.

In the whole paper, we denote by k = k(x) the number of up steps performed at an
odd instant in a Dyck path x . We also call XsN ,k the set of Dyck paths of length 2sN

with k odd up steps.

Proposition 2.1 [6] Let N(sN , k) be the so-called kth Narayana number defined by

N(sN , k) = 1

sN
Ck

sN
Ck−1

sN
. (11)

Then N(sN , k) = �XsN ,k .

Remark 2.1 For more details about Narayana numbers and their occurrences in various
combinatorial problems, we refer the reader to the work of Sulanke [33,34] as well as
Stanley [32].

Narayana numbers are intimately linked with Dyck paths. Let D(2sN ) = 1
sN

CsN +1
2sN

be the Catalan number counting the number of Dyck paths of length 2sN . It is obvious
that

∑sN
k=1 N(sN , k) = D(2sN ). Narayana numbers are also linked to the moments of

the Marchenko–Pastur distribution defined in (1), since the following was proved by
Jonsson [17] (see also [23] and [1]).

123



Universality results for the largest eigenvalues of some sample covariance matrix ensembles 489

1
1

3

2

4

1

3

4

4

2
3

4

4

1

1

99

Fig. 1 The path Pk with k = 4, sN = 8

Proposition 2.2 For any integer L, one has that

lim
N→∞

1

N
E

[
TrM L

N

]
=

L∑

k=1

γ kN(L , k) =
∫

x L dρM P (x). (12)

Remark 2.2 Proposition 2.2 was actually proved for a broader class of sample covari-
ance matrices than that considered in this paper.

Last, we associate to the edge path PE a “usual” path, which we denote by Pk, as
follows. We mark on the underlying Dyck path x the successive vertices met in the
edge path. The path Pk associated to (10) is then io jo i1 j1 . . . jsN −1 io. For instance,
the path associated to the path

PE =
(

1
9

)(
1
1

)(
3
1

)(
3
2

)(
4
2

)(
4
1

)(
3
1

)(
3
4

)(
4
4

)(
4
2

)(
3
2

)(
3
4

)(
4
4

)(
4
1

)(
1
1

)(
1
9

)

is

given on Fig. 1.
The three structures PE , x and Pk introduced here will now be used to compute the

moments of traces of (high) powers of MN . Our counting strategy is as follows. Given
a Dyck path x , we shall estimate the number of edge paths that can be associated to
this Dyck path. We shall also estimate their contribution to the expectation (8). This
is the object of the next two sections.

2.2 Marked vertices

In this section, we bring out the connection between Narayana paths and the restriction
for the choices of vertices occurring in the path imposed by the rule R. Given a Dyck
path {x(t), 0 ≤ t ≤ 2sN } ∈ XsN ,k , we shall now count the number of ways to
mark the vertices using the rule R. In this way, we count the number of paths Pk

associated to a given Dyck path. The terminology we use is close to the one used in
[28–30] and [31]. We recall the main definitions that will be needed here and also
assume that the reader is acquainted with most of the techniques used in the above
papers.
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The first task is to choose the pairwise distinct vertices occurring in the path. There
are at most psN +1 such vertices. We shall now define the “marked vertices”, separating
the cases where they are marked at odd or even instants.

Definition 2.1 The instant t ∈ {1, 2, . . . , 2sn} is said to be marked if the t th step of
the Dyck path x is up. A vertex from {1, 2, . . . , N , . . . , p} occurring in Pk at a marked
instant is said to be a marked vertex.

Marked instants correspond to the moments of time (apart from t = 0) where,
considering the top and bottom lines separately, one can possibly “discover” some
vertex not already encountered. Consider first the vertices on the top line of the edge
path PE , that is, vertices occurring at the odd instants in the path Pk . For 0 ≤ i ≤ sN ,
call Ti the class of vertices of {1, . . . , p} occurring i times as a marked vertex at an
odd instant. Then if we set pi = �Ti , one has

p =
sN∑

i=0

pi and
∑

i≥1

i pi = k.

Note that each time we “discover” on the top line some new vertex, the corresponding
instant is necessarily marked. Consider also the vertices on the bottom line. For 0 ≤
i ≤ sN , denote by Ni the class of vertices of {1, . . . , N } occurring i times as a marked
vertex at an even instant. Then one has, if ni = �Ni ,

N =
sN∑

i=0

ni and
∑

i≥1

ini = sN − k.

Note that a vertex from the set {1, 2, . . . , N } can occur as a marked vertex on both
lines. Yet it is the type of the vertex on each line which is here taken into account.
Thanks to the above definitions, we characterize a path Pk by its associated Dyck path
x and its type:

(no, n1, . . . , nsN ) (po, p1, . . . , psN ), with ni = 0,∀ i > sN − k, pi = 0 ∀i > k.

For short, we denote by (ñ, p̃) the type of a path. We also use the following notations.
A vertex v ∈ Ti (resp. v ∈ Ni ) is said to be of type i on the top (resp. bottom) line.
Any vertex v ∈ ∪i≥2Ti (resp. v ∈ ∪i≥2Ni ) is said to be a vertex of self-intersection
on the top (resp. bottom) line. An odd (resp. even) marked instant 0 ≤ t ′ ≤ 2sN is an
instant of self-intersection if there exists an odd (resp. even) marked instant 0 ≤ t < t ′
such that the vertices occurring at t and t ′ are equal.

The choice of marked vertices is enough to determine the distinct vertices of the
path Pk , if the origin of the path also occurs as a marked vertex. We will see that for
typical paths, this is not the case and io ∈ N0. Thus, given the type (ñ, p̃) of the path,
the number of ways to assign vertices at the marked instants and choose the origin is
then at most:

N
N !

∏sN
i=0 ni !

p!
∏sN

i=0 pi !
k!

∏
i≥2(i !)pi

(sN − k)!
∏

i≥2(i !)ni
. (13)
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Indeed, one distributes the vertices of {1, . . . , N } and {1, . . . , p} into the possible
classes Ni , Ti , 1 ≤ i ≤ sN , choose the corresponding marked occurrences of each
vertex and fix the origin. Once the marked vertices and the origin of the path are
chosen, there remains to fill in the blanks of the path, i.e. assign vertices at the
unmarked instants. Due to self-intersections, there are multiple ways to do so. We
investigate this numbering in the sequel and consider at the same time the expectation

E

[∏sN −1
j=0 Mi j i j+1

]
of the whole path Pk .

2.3 Filling in the blanks of the path

Assume that the Dyck path x and the type (ñ, p̃) of a path are given. Call �k,(ñ, p̃)

the number of ways to fill in the blanks of the path once the marked vertices and the
origin are known.

Proposition 2.3 Set (�E)max := �k,(ñ, p̃)

∣
∣
∣E
[∏sN −1

j=0 Mi j i j+1

]∣
∣
∣. There exists C̃ > 0

independent of p, N , k and sN such that

(�E)max ≤ 2

N sN

sN −k∏

l=2

(
C̃l
)lnl

k∏

m=2

(
C̃m
)mpm

. (14)

Proof of Proposition 2.3 We only sketch the proof which follows essentially the same
steps as in Lemma 1 of [29]. Assume that in Pk , at the unmarked instant t , one makes
a down step with left vertex i . If i is of type 1, then there is no ambiguity in the choice
of the right endpoint of such an edge. In general, the maximal number of possible
right endpoints depends on the multiplicity of i as a marked vertex. Now, the parity of
t specifies whether i is a vertex on the top or on the bottom line of PE . Thus, the sole
top or bottom multiplicity of i has to be taken into account to estimate the number of
ways to close the edge. Then, it is not hard to see that the number of ways to fill in the
blanks of the path is at most

2
sN −k∏

l=2

(2l)lnl

k∏

m=2

(2m)mpm .

The extra factor 2 comes from the case (negligible) where the origin is of type 1.
To consider simultaneously the expectation of the path, one also has to take into

account the number of times each oriented edge is read. Assume that an edge

(
v

w

)

is read 2q times, with q ≥ 2. Call lu(v;w) (resp. ld(w; v)) the number of times
v (resp. w) is a marked vertex of this edge. Then, if ld(w; v)lu(v;w) > 0, one has
that E|Mvw|2q ≤ (τq)q ≤ (2τ lu(v;w))lu(v;w) (2τ ld(w; v))ld (w;v) . Now if an oriented
edge is read 2l times then it is closed l times along the same edge. That is, we overcount
the number of ways to fill in the blanks of the path. Thus, if we let 2l(i j) be the number
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of times the oriented edge (i j) is read in the path, we obtain that

(�E)max

2
≤

∏

l(i j)>1

(Cτ l(i j))l(i j)

l(i j)!
sN −k∏

l=2

(2l)lnl

k∏

m=2

(2m)mpm

≤
sN −k∏

l=2

(
C̃l
)lnl

k∏

m=2

(
C̃m
)mpm

,

where Cτ , C̃ are some constants independent of p, k, N and sN . ��
Remark 2.3 In the case where the entries Xi j have polynomial tails, with P(|Xi j | ≥
x) ≤ (1 + x)mo for some mo > 36, one can first consider (up to a set of negligible
probability) that all the entries of X are smaller in absolute value than N := N 2/mo+εo

for some εo > 0 small enough. This is true if γ < ∞. Then Proposition 2.3 has to be
replaced with

(�E)max

2N−sN
≤

sN −k∏

l=2

(
lC(1 + 4

N 1l≥ mo
4

)
)lnl

k∏

m=2

(
mC(1 + 4

N 1m≥ mo
4

)
)mpm

.

This follows from the fact that to each edge seen 2l ≥ 2mo times there corresponds
at least l/2 (and not l) marked occurrences of one of its endpoints. This is the reason
why our formula differs from Formula 4.7 in [25].

In the next two sections, we investigate moments of Traces of powers of MN in scales
sN � √

N . This will give the foundations for the asymptotics of higher moments.

2.4 Narayana numbers and Marchenko–Pastur distribution

In this section, we illustrate our counting strategy and present a refinement of (12)
allowing to consider higher moments than in Proposition 2.2.

Proposition 2.4 If sN � √
N , one has that

1

N
E
[
TrMsN

N

] =
sN∑

k=1

γ k
N N(sN , k)(1 + o(1)).

Proof of Proposition 2.4 The proof is similar to that of the classical Wigner theorem
using Dyck paths (see e.g. [1]). It is divided into two steps. First, we show that paths
for which

∑
i≥2 ni + pi > 0 yield a negligible contribution to E

[
TrMsN

N

]
. Then we

estimate the contribution of paths with vertices of type 1 at most, which give the
leading term in the asymptotic expansion of E

[
TrMsN

N

]
, as long as sN � √

N .

Denote by Z(k, (ñ, p̃)) the contribution of paths with k odd marked instants and
of type (ñ, p̃). Using Proposition 2.3 and (13), we deduce that
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Z(k, (ñ, p̃))

≤ N(sN , k)
2

N sN
N

p!
po!

N !
no!

k!
p1!

(sN − k)!
n1!

sN∏

i=2

(
C̃i
)ini +i pi

pi !ni !(i !)pi (i !)ni

≤ N(sN , k)N2
sN∏

i=2

(Ck)i pi (C(sN − k))ini

pi !ni !
N
∑

i≥1 ni p
∑

i≥1 pi

N
∑

i≥1 ini +i pi

≤ N(sN , k)N2γ k
N

∏

i≥2

1

ni !
(

Ci (sN − k)i

N i−1

)ni ∏

i≥2

1

pi !
(

Ci ki

pi−1

)pi

, (15)

where in (15) we use that γ

∑
i≥1 pi

N = γ
k−∑i≥2(i−1)pi

N and C > 0 is a constant inde-
pendent of N , p, sN and k (whose value may change from line to line).

We denote by Z2 the contribution of paths for which
∑

i≥2 ni + pi > 0. By
Proposition 2.3, and using summation, one has that

Z2

2N
≤

sN∑

k=1

N(sN , k)γ k
N

∑

M̃1,M̃2:M̃1+M̃2>0

1

M̃1!M̃2!

(
2Cs2

N

N

)M̃1
(

2Cs2
N

p

)M̃2

,

where M̃1 =∑i≥2 ni and M̃2 =∑i≥2 pi . Thus, it is straightforward to see that there
exists some constant B > 0 independent of N such that

Z2

N
≤ B

s2
N

N
×

sN∑

k=1

γ k
N N(sN , k). (16)

From this, we can deduce that Z2/N = o((1 + √
γN )2sN ).

We now show that only the paths with vertices of type 1 at most (the origin being
unmarked) have to be taken into account. In this case, once the vertices occurring
in the path have been chosen, there is no choice for filling in the blanks of the path.
Furthermore, each edge is passed only twice in the path PE , once at an odd instant
and once at an even instant. Thus, denoting by Z1 :=∑sN

k=1 Z1(k) the contribution of
such paths, one has that

Z1 =
sN∑

k=1

NN(sN , k)γ k
N

sN∏

i=1

N − i

N
= (1 + o(1))

sN∑

k=1

NN(sN , k)γ k
N .

Using (16), this finishes the proof that Z2 = o(1)Z1. The contribution of paths with
marked origin and vertices of type 1 at most is of order Z1sN /N and is thus negligible.
This finishes the proof of Proposition 2.4. ��

Remark 2.4 Set k̂ =
[ √

γN
1+√

γN
sN

]
+ 1. For any sequence sN � 1, one can show that

∑
1≤k≤sN

N
sN

Ck
sN

Ck−1
sN

γ k
N = O(usN+ ) and that the main contribution to the expectation
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(4) should come from paths with k̂(1 + o(1)) odd marked instants. Indeed, using
Stirling’s formula, one has that

max
1≤k≤sN

(
Ck

sN

)2
γ k

N ∼
(

Ck̂
sN

)2
γ k̂

N ∼ (1 + √
γN
)2sN (1 + √

γN )2

sN
√

γN

1

2π
.

It is also easy to check that, for any l > 0, one has that

N(sN , k̂ + l)γ k̂+l
N ≤ N(sN , k̂)γ k̂

N exp

{

− Cγ l2

(sN − k̂)

}

, (17)

for some constant Cγ depending on γ only. In the case where l < 0, we fix some � > 0

large. Then one can show that, for any −�(sN − k̂ + 1) < l < 0,
N(sN ,k̂−1+l)γ k̂−1+l

N

N(sN ,k̂−1)γ k̂−1
N

≤
exp
{
− l2

(2�+2)(sN −k̂+1)

}
. One can also check that for any l ≤ −�(sN − k̂ + 1),

N(sN ,k̂−1+l)γ k̂−1+l
N

N(sN ,k̂−1)γ k̂−1
N

≤ e−�(sN −k̂)/3. We thus find that
∑

1≤k≤sN
N
sN

Ck
sN

Ck−1
sN

γ k
N =

O(usN+ ), yielding Remark 2.4.

Remark 2.5 In the case of polynomial tails, that is if P(|Xi j | ≥ x) ≤ (1 + x)mo

for some mo > 36, (15) has to be multiplied by
∏

i≥mo/4 
4i(ni +pi )
N . If εo < mo−36

12mo

and sN = O(N 2/3), (which is the largest scale considered in this paper), this has no

impact on the computations as
(sN 4

N )i

N i−1 � 1 for any i ≥ mo/4. All the results stated
in the following can be proved in the case of polynomial tails up to minor technical
modifications (which amounts essentially to considering apart vertices of type at least
mo/4).

2.5 A central limit theorem

The main result of this section is the following Proposition. Let u+ be defined by (5).
We show that all the moments of Tr(MN /u+)sN are bounded and universal, as long
as 1 � sN � √

N . Assume that limN→∞ γN = γ < ∞ and set lβ = 1/(βπ) where
β = 1 (resp. β = 2) in the case where MN is real (resp. complex).

Proposition 2.5 Assume that 1 � sN � √
N and set M̃N = MN

u+ . Then, there exists

D > 0 such that Var
(

TrM̃sN
N

)
≤ D, for any N, and lim

N→∞ Var
(

TrM̃sN
N

)
= lβ.

Similarly, for any integer k,

E

[
TrM̃sN

N − E[TrM̃sN
N ]
]2k = (2k − 1)!! lk

β(1 + o(1)),

E

[
TrM̃sN

N − E[TrM̃sN
N ]
]2k+1 = o(1).
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Remark 2.6 In [17], a central limit theorem (CLT) is also established for traces of fixed
(independent of N ) moments of MN . In this case, the limiting Gaussian distribution
does depend on the fourth moment of the law of the entries. The above CLT is also
stated in Remark 6 of [28] (a factor 1/β is missing) in the case where γ = 1.

Proof of Proposition 2.5 We only give the proof for the variance. The proof of the
asymptotics for higher moments is a rewriting of pp. 128–129 in [29] (see also [9]
Sect. 6) and is skipped. In the following, C1, . . . , C6, C ′

2, C ′
3 denote some positive

constants independent of N . One has that

Var (Tr MsN
N ) = 1

N 2sN

∑

PE ,P ′
E

⎡

⎣E

⎛

⎝
∏

ei ∈PE

∏

e′
i ∈P ′

E

X̂ei X̂e′
i

⎞

⎠

−E

⎛

⎝
∏

ei ∈PE

X̂ei

⎞

⎠E

⎛

⎝
∏

e′
i ∈P ′

E

X̂e′
i

⎞

⎠

⎤

⎦ .

Here, given an edge e = (v1, v2), X̂e stands for Xv1v2 if e occurs at an odd instant of
PE or for Xv2v1 if it occurs at an even instant. Now the non zero terms in the above
sum come from pairs of paths PE , P ′

E sharing at least one oriented edge and such
that each edge appears an even number of times in the union of the two paths. We say
that such paths are correlated. To estimate the number of correlated paths and their
contribution to the variance, we use the construction procedure defined in Sect. 3 of
[28]. This construction associates a path of length 4sN −2 to a pair of correlated paths.
Let P1 and P2 be two correlated paths of length 2sN . When reading the edges of P1,
let e denote the first oriented edge common to the two paths. Let also te and t ′e be
the instants of the first occurrence of this edge in P1 and P2. Then we are going to
glue the two paths P1 and P2, in such a way that we erase the two first occurrences
of e in each of these paths. The glued path, denoted P1 ∨ P2, is obtained as follows.
We first read P1 until we meet the left endpoint of e at the instant te. Then we switch
to P2 as follows. Assume first that te and t ′e are of the same parity. We then read the
path P2, starting from t ′e, in the reverse direction to the origin and restart from the
end of P2 until we come back to the instant t ′e + 1. If te and t ′e are not of the same
parity, we read the edges of P2 in the usual direction starting from t ′e + 1 and until
we come back to the instant t ′e. We have then read all the edges of P2 except the edge
e occurring between t ′e and t ′e+1. We then read the end of P1, starting from te + 1.

Having done so, we obtain a path P1 ∨ P2 which is of length 4sN − 2. One can also
note that the Dyck path x associated to P1 ∨ P2 does not descent lower than the level
x(te) during the time interval [te, te + 2sN − 1], by the definition of e and te.

Now, to reconstruct the paths P1 and P2 from P1 ∨ P2, it is enough to determine
the instant at which one has switched from one path to the other, the origin of the path
P2 and the direction in which P2 is read. There are at most 4sN ways to determine the
origin and the direction once the instant of switch is known. To estimate the number
of preimages of a given path P1 ∨ P2 of length 4sN − 2 and with k odd up steps, one
has to give an upper bound for the number of instants te in P1 ∨ P2, which can be the
instants of switch. To this aim, fix some te ∈ [0, 2sN − 1] and assume that the Dyck
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path of P1 ∨ P2 does not go below the level x(te) during an interval of time of length
greater than or equal to 2sN − 1. Assume that x(te) > 0. Set then

l = inf{t ≥ te, x(t) = x(te), x(t + 1) = x(te) − 1} − 2sN + 1.

Denote by T2 the sub-trajectory in the interval [te, te + 2sN − 1 + l]. It is a Dyck path.
Denote also by T1 the remaining part of the trajectory: it is also a Dyck path, along
which the instant te has been chosen. We denote by k1 the number of the odd up steps
of T1. As the Dyck path of P1 ∨ P2 is obtained by inserting T2 at the instant te in T1,
and using the fact that P1 ∨ P2 and P1 ∪ P2 have all the same edges but one, one
can then deduce (see [28], pp. 11–13, for the detail) that the contribution of correlated
pairs is at most of order

2sN −1∑

k=1

2sN −1∑

l=0

∑

k1≤k∧2sN −1−l

N
(

sN − (1+l)
2 , k1

)
N
(
sN + l−1

2 , k − k1
)

N(2sN − 1, k)

×(2sN − 1 − l)
4sN

N
Z1(4sN − 2, k) (18)

+
2sN −1∑

k=1

2sN −1∑

l=0

∑

k1≤k∧2sN −1−l

N
(

sN − (1+l)
2 , k1

)
N
(
sN + l−1

2 , sN + l−1
2 + k1 − k

)

N(2sN − 1, k)

×(2sN − 1 − l)
4sN

N
Z1(4sN − 2, k). (19)

Here Z1(4sN −2, k) is the contribution of paths of length 4sN −2 with k odd up steps
to the expectation E[TrM2sN −1

N ] and (18) [resp. (19)] corresponds to the case where te
is even (resp. odd). The term (2sN − l − 1) in (18) comes from the determination of te
and where 1/N = E(|Xe|2)/N , if e is the edge erased from P1 ∨ P2. It can indeed be
shown that paths for which such an edge occurs also in P1 ∨ P2 yield a contribution
of order sN /N that of typical paths and are thus negligible.

We first show that the variance is bounded. In the following, we set s1(l) = sN − 1+l
2

and s2(l) = sN + l−1
2 . Considering for instance (18), [(19) is similar], it is enough to

prove that there exists a constant C1 > 0 such that

2sN −1∑

l=0

∑

k1≤k∧2sN −1−l

N(s1(l), k1)N(s2(l), k − k1)

N(2sN − 1, k)
(2sN − 1 − l) ≤ C1

√
sN .

One can easily see that it is enough to consider the case where 2sN − 1 − l ≥ √
sN . It

is also straightforward by Remark 2.4 and Proposition 2.4 to see that one can choose

0 < 2β ′ <
√

γ

1+√
γ

< 2β ′′ < 2 such that

∑

k≤β ′sN or k≥β ′′sN

Z1(4sN − 2, k) � s−5
N Nu2sN −1

+ .
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This is enough to ensure that the contribution of correlated pairs such that the corre-
sponding glued path has k odd up steps for some k ≤ β ′sN or k ≥ β ′′sN is negligible
in the large-N -limit. We now set

f (k1) := N(s1(l), k1)N(s2(l), k − k1)

N(2sN − 1, k)
. (20)

Then, l and k being fixed, f is maximal at k̃1 = [k 2sN −1−l
4sN −2 ](+1). Furthermore, one can

check that there exist constants C2, C ′
2 > 0 such that f (k̃1+ j) ≤ C2 exp

{
−C ′

2 j2/k̃1

}

for any j . From this we deduce that

∑

k1≤k∧2sN −1−l

N(s1(l), k1)N(s2(l), k − k1)

N(2sN − 1, k)
(2sN − 1 − l)

≤ C ′
3(2sN − 1 − l)3/2 N(s1(l), k̃1)N(s2(l), k − k̃1)

N(2sN − 1, k)
. (21)

It is now an easy consequence of Stirling’s formula that

2sN −1∑

l=0

C3(2sN − 1 − l)3/2 N(s1(l), k̃1)N(s2(l), k − k̃1)

N(2sN − 1, k)
≤ C4

√
sN

(1 − αN )2 , (22)

where αN = k/(2sN − 1). Using Proposition 2.4, one can also show that there exists
C5 > 0 such that

∑

β ′sN ≤k≤β ′′sN

1

αN (1 − αN )
Z1(4sN − 2, k) ∼ C5s−3/2

N Nu2sN −1
+ .

Combining the whole yields that there exists C6 > 0 such that (18) + (19)≤ C6u2sN+ .

In the case where x(te) = 0, te is chosen amongst the returns to the level 0 of the
Dyck path. It can be shown that the number of such instants is negligible with respect
to

√
sN in typical paths. This follows from arguments already used above and in [28]

p. 13.
To compute the variance, we notice that in (18), the term (2sN −1− l) can actually

be replaced with s1(l) − k1. Indeed as te is even, the first step after te + 2sN − 1 + l is
a down step occurring at an odd instant. Also, there are only sN choices for the origin
of P2, since one knows the parity of e in P2 once the orientation of P2 is fixed. Then,
using (18), (19), Remark 2.4, the exponential decay of f (k1), and Proposition 2.4, one
can deduce that (for the real case)

lim
N→∞Var TrM̃sN

N = lim
N→∞

(

1 + 1√
γ

)
2sN

1 + √
γ

∑

l≤2sN −1

s1(l)

(1 + √
γ )4sN
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×
∑

k≥1

∑

k1≤k

γ k
N N(s1(l), k1)N(s2(l), k − k1) (23)

= lim
N→∞

2sN√
γ

∑

l≤2sN −1

s1(l)

(1 + √
γ )4sN

Es1(l)Es2(l) (24)

= l1.

In (24), we have set Ek =
∫

xk

√
((1 + √

γ )2 − x)(x − (1 − √
γ )2)

2πx
dx , and the

equality follows from the fact that (23) is a Cauchy product. The value of l1 can be
deduced from Formulas 4.7 in [31] and 3.6 in [28]. The computation of l2 follows
from the fact that, in the complex case, the occurrences e in P1 and P2 cannot have
the same parity (in typical paths). ��

3 The case where γN → γ, 1 ≤ γ < ∞

The aim of this section is to prove the following universality result. Let c1, . . . , ck be

positive real numbers and s(i)
N , i=1, . . . , K , be sequences such that limN→∞

s(i)
N

N 2/3 =ci .

Theorem 3.1 Assume that MN = 1
N X X∗ satisfies (i) to (iν) (resp. (i ′) to (iν′)).

Formulas (6) and (7) hold true.

The proof of Theorem 3.1 is the object of this section. We actually focus on the case
where K = 1. The proof of Theorem 3.1 for K > 1 is a rewriting of the arguments
used in [30] (p. 41), Sect. 2.5 and of those used in the case where K = 1. It is not
developed further here. Then, we essentially show that typical paths (i.e. those having
a non negligible contribution to the expectation) have no oriented edge read more than
twice. This ensures that the expectation (4) only depends on the variance of the entries
Xi j , 1 ≤ i ≤ N , 1 ≤ j ≤ p. Universality of the expectation then follows.

3.1 Number of self-intersections and odd marked instants in typical paths

We first give a technical Proposition which bounds the number of self intersections and
gives the approximate number of odd marked instants in typical paths. In the following,
we denote by Z(k) the contribution of paths with k odd marked instants. We also denote
the number of self-intersections on each line by M1 = ∑

i≥2(i − 1)ni and M2 =∑
i≥2(i − 1)pi .

Proposition 3.1 There exists a positive constant d1 such that the contribution of paths
for which M1 + M2 ≥ d1

√
sN is negligible in the large-N-limit, whatever 1 ≤ k ≤ sN

is.
And for any α, α′ such that 0 < α′ <

√
γ

1+√
γ

< α < 1, one has that

∑

k≤α′sN

Z(k) +
∑

k≥αsN

Z(k) = o(1)usN+ .
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Proof of Proposition 3.1 We first give the proof of the first point of Proposition 3.1.
Denote by Z(k, (ñ, p̃)) the contribution of paths with k odd marked instants and of
type (ñ, p̃). Using (15), Remark 2.4 (and exactly the same arguments as in [30] p. 34),
one can see that, for d1 large enough,

sN∑

k=1

∑

(ñ, p̃)/
∑

i≥2(i−1)(ni +pi )≥d1
√

sN

Z(k, (ñ, p̃)) = o(1)usN+ .

We now turn to the second statement. Let then α and α′ be chosen as in Propo-

sition 3.1. We assume that N is large enough so that α′ <
√

γN
1+√

γN
< α. We now

show that
∑

k≥αsN
Z(k) � usN+ . Given any integer k ≤ sN , and using (15), one

can show that there exists a constant C8 > 0 independent of N and k such that
Z(k) ≤ Nγ k

N exp
{
C8 N 1/3

}
N(sN , k). Thus

∑

k≥αsN

Z(k) ≤
∑

k≥αsN

N(sN , k)γ k
N N exp

{
C8 N 1/3

}

≤ NCk̂
sN

Ck̂−1
sN

γ k̂
N exp

{

C8 N 1/3 − C7sN

(

α −
√

γN

(1 + √
γN )

)2
}

� usN+ ,

for N large enough. Similarly, one can show that the contribution of paths for which
k ≤ α′sN is negligible in the large-N -limit. ��

3.2 Asymptotics of E[TrMsN
N ]

In this section, we refine the estimate (15) and in particular deal with vertices of
type 2. Indeed, when summing (15) over ni , i ≤ sN and pi , i ≤ sN , one can note
that terms associated to vertices of type 2 make the summation go to infinity. To
this aim, we shall control the number of vertices for which there is an ambiguity to
continue the path at an unmarked instant. We shall also control the number of such
vertices associated to edges passed four times or more. Finally, we shall also show
that amongst vertices of type 3, none belongs to edges passed more than twice, while
there are no more complex self-intersections in typical paths.

From now on, given α′sN ≤ k ≤ αsN , we consider paths of type (ñ, p̃) with
M1 = ∑

i≥2(i − 1)ni ≤ d1
√

sN (resp. M2 = ∑
i≥2(i − 1)pi ≤ d1

√
sN ) self-

intersections on the bottom (resp. top line). Our counting strategy is refined as follows.
We first choose the moments of self-intersection and the vertices occurring at the
remaining marked moments and the origin. One fills in the blanks of the path until
the first instant of self-intersection. At that moment, one chooses the vertex to be
repeated among the preceding ones (and repeat it if needed at the moment of second
self-intersection and so on). We then proceed in the same way for subsequent vertices.

Let us choose the instants of self-intersection on each line: let t jb,1 < t jb,2 <

· · · < t jb,n2 (resp. t ju,1 < t ju,2 < · · · < t ju,p2 ) be the instants of self-intersection
corresponding to vertices of type 2 on the bottom (resp. top) line, t3,1

jb,1 < t3,1
jb,2 <
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· · · < t3,1
jb,n3

those corresponding to the first repetition of a vertex of type 3 on the

bottom line, t3,2
jb,1 > t3,1

jb,1, t3,2
jb,2 > t3,1

jb,2 . . . for the second repetition of a vertex of type

3 on the bottom line. We do not detail the list of instants since it is the same as in
[30] p. 724, except that we make a distinction between instants marked at the odd or
even instants (even if it is the same vertex). We then choose the origin and the vertices
occurring at the remaining marked instants. The number of pairwise distinct vertices
in the order of appearance occurring in the path on the top and bottom lines is

N
sN −k−M1∏

i=1

(N − i)
k−M2∏

i=1

(p + 1 − i). (25)

Note that (25)∼ N sN −M1−M2+1γ
k−M2
N exp

{
− (sN −k)2

2N − k2

2p

}
.

We now turn to the determination of vertices occurring at the instants of self-
intersection. First, we focus on vertices of type 2. In the general case, there are ju, i −
i = O(sN ) choices for the vertex occurring at the instant t ju,i , since one chooses
vertices occurring twice as marked instants. We first consider the simplest case where
the path is such that there is no choice for closing any edge from vertices of type 2 at
unmarked instants and where no vertex of type 2 belongs to edges passed four times
or more. Then the number of possible choices for the instants of self-intersection and
the corresponding vertices of type 2 is at most

∑

1≤t ju,1<t ju,2<···<t ju,p2 ≤sN −k

p2∏

i=1

( ju,i − i)
∑

1≤t jb,1<t jb,2<···<t jb,n2 ≤k

n2∏

i=1

( jb,i − i)

≤ 1

n2!
(

(sN − k)2

2

)n2 1

p2!
(

k2

2

)p2

.

Such an estimate combined with formula (25) and Remark 2.4 then ensures that the
contribution of such paths to E[Tr(MN /u+)sN ] is bounded.

We now consider the general case. In general, given a vertex v of type 2 (on the
bottom or on the top line), there might be multiple ways to close an edge with v as its
left endpoint at an unmarked instant. Note that there are at most three possible ways
to close the edge. An example of such a vertex is the distinguished vertex 4 in Fig. 1,
as the distinguished edge could have been (4, 4). Indeed, the two up edges with 4
as a marked vertex on the top line are read before any down edge is closed starting
from 4. This leads to the notion of non-closed vertex.

Definition 3.1 A vertex v of type 2 is said to be non-MP-closed if it is an odd (resp.
even) marked instant and if there are more than one choice for closing an edge at an
unmarked instant starting from this vertex on the top (resp. bottom) line.

Remark 3.1 The definition of non-MP-closed vertices differs from that of non-closed
vertices in [30], essentially due to the distinction which is made between the top and
bottom lines.
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Let t be a given marked instant. Assume that the marked vertices before t have been
chosen and that, at the instant t , there is a non-MP-closed vertex. Then, by the definition
of the Dyck path x and that of non-MP-closed vertices, there are at most x(t) possible
choices for this vertex. This can be checked as in [29], p 122. In Lemma 3.1 below,
we show that maxt x(t) ∼ √

sN in typical paths.
Apart from non-MP-closed vertices, a vertex of type 2 can also belong to an edge

that is read four times or more in the path. To consider such vertices, we need to
introduce other characteristics of the path. Let νN (P) be the maximal number of
vertices that can be visited at marked instants from a given vertex of the path P. Let
also TN (P) be the maximal type of a vertex in P. Then, if at the instant t , one reads for
the second time an oriented up edge e, there are at most 2(νN (P)+TN (P)) choices for
the vertex occurring at the instant t . Indeed, one shall look among the oriented edges
already encountered in the path and for which one endpoint is the vertex occurring at
the instant t − 1 (see the Appendix in [29] and [9] Sect. 5.1.2 e.g.). It is an easy fact
that paths for which TN (P) ≥ AN 1/3(ln N )−1 lead to a negligible contribution, if A
is large enough (independently of k). Using Lemma 3.2 stated below, we prove at the
end of this section that there exists ε > 0 small enough such that, for typical paths,
νN (P) ≤ s1/2−ε

N for any α′sN ≤ k ≤ αsN .

For vertices of type i > 2, once the i − 1 moments of self-intersection are fixed,
one chooses at the first moment of self-intersection the vertex to be repeated amongst
those already occurred in the path.

Assuming the above estimates on max x(t) and νN hold, we consider paths Pk of
type (ñ, p̃) with M1 :=∑i≥2(i−1)ni ≤ d1

√
sN and M2 :=∑i≥2(i−1)pi ≤ d1

√
sN

self-intersections respectively on the bottom or on the top line, ri non-MP-closed
vertices of type 2 (i = 1, 2) on the bottom and top lines and qi (i = 1, 2) vertices of
type 2 on the bottom or top line visited at the second marked instant along an oriented
edge already seen in the path. Using Lemma 1 in [29], one can check that Proposition
2.3 can now be refined to

(�E)max ≤ 2

N sN

sN −k∏

l=3

(
C̃l
)lnl

k∏

m=3

(
C̃m
)mpm

3r1+r2 Dq1
3 Dq2

4 ,

where D3, D4 are positive constants independent of k, p, N , and sN . Using (25) and
the above, the contribution of such paths to E[TrMsN

N ] is then at most of order (see
also [30], p. 725)

CN(sN , k)Nγ k
N e

{

− (sN −k)2

2N − k2
2p

}

Ek

×
⎡

⎣ 1

(n2 − r1 − q1)!
(

(sN − k)2

2N

)n2−r1−q1 1

r1!
(

3(sN − k) max x(t)

N

)r1

× 1

q1!
(

D3(sN − k)(νN + TN )

N

)q1 ∏

i≥3

1

ni !
(

Ci (sN − k)i

N i−1

)ni
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× 1

(p2 − r2 − q2)!
(

k2

2p

)p2−r2−q2 1

r2!
(

3k max x(t)

p

)r2

× 1

q2!
(

D4k(νN + TN )

p

)q2 ∏

i≥3

1

pi !
(

Ci ki

pi−1

)pi

⎤

⎦ . (26)

Here Ek denotes the expectation with respect to the uniform distribution on XsN ,k

and we have used the fact that
∑

x∈XsN ,k
f (x) = N(sN , k)Ek( f (x)) for any function

f ≥ 0.
Before considering paths in complete generality, we first restrict to paths with less

than d1
√

sN self-intersections and no vertex of type strictly greater than 3, that is∑
i≥4 pi +ni = 0. Let Z3(k) denote the total contribution of paths with k odd marked

instants such that q := q1 + q2 = 0, with no oriented edges read more than twice and
satisfying the above conditions.

Proposition 3.2 There exists a constant B1 > 0 independent of N such that Z3 :=∑αsN
k=α′sN

Z3(k) ≤ B1usN+ .

Proof of Proposition 3.2 From (26), we deduce that there exists a constant Do > 0
independent of N , p, k and sN , such that

Z3(k) ≤ N(sN , k)Nγ k
N Ek

(

exp

{

6
max x(t)sN

N

})

exp

{

Do
s3

N

N 2

}

. (27)

In Lemma 3.1 proved below, we show that, given a > 0, there exists b > 0, inde-

pendent of N , such that Ek

(

e
{ a max x(t)√

sN
}
)

≤ b, ∀α′sN ≤ k ≤ αsN . This yields that

(27)≤ D5N(sN , k)Nγ k
N , for some constant D5 independent of k. Remark 2.4 ensures

that Z3 :=∑k Z3(k) = O(usN+ ). ��
Assuming that there are no self-intersections of type greater than 3, we can then

show that paths for which q = q1 +q2 ≥ 1 give a contribution of order usN+ νN /
√

sN =
o(usN+ ) and thus there are no edges read more than twice (associated to vertices of type
2). We then proceed in the same way to show that there are no more than ln ln N
vertices of type 3 in typical paths and that there are no oriented edges read more than
twice associated to vertices of type 3. It is then easy to deduce from the above result
that paths with self-intersections of type 4 or greater, or a marked origin, lead to a
contribution of order usN+ sN /N = o(1)usN+ . The detail is skipped.

Finally, we investigate the total contribution of the paths for which νN ≥ s1/2−ε
N

where ε > 0 is fixed (small). Denote by Z4 such a contribution. We only indicate the
tools needed to prove that

Z4 :=
αsN∑

k=α′sN

Z4(k) = o(1)usN+ ,

123



Universality results for the largest eigenvalues of some sample covariance matrix ensembles 503

since the detail of the proof is a rewriting of the arguments of the proof of Lemma 7.8
in [9]. To consider such paths, we introduce the following characteristic of the path,
namely No := r1 + r2 + ∑i≥3 ini + i pi . Assume then that k, No, q1 and q2 are
given. We can then divide the interval [0, 2sN ] into No sub-intervals, so that inside an
interval, there are no non-MP-closed vertices of type 2 and no vertices of type at least 3.
Then there is no choice for closing the edges inside these sub-intervals. Assume that
a vertex v is the starting point of νN up edges. Then, there is a time interval [s1, s2]
during which the Dyck path of Pk comes ν′

N := νN
2No

times to the level xo (of v) and
never goes below. Denote by (ν′

N ) the event that there exists such an interval in a
Dyck path and let Pk denote the uniform distribution on XsN ,k . In Lemma 3.2, we
show that there exist positive constants A1, A2 independent of sN such that

max
1≤k≤sN

Pk
(
(ν′

N )
) ≤ A1s2

N exp
{−A2ν

′
N

}
.

Using Lemma 3.1, one can also show that there exists a constant A > 0 such that
max x(t) ≤ AN 1/6√sN in any non-negligible path. Using these estimates and formula
(26), one can then copy the arguments used in [9] Lemma 7.8 to deduce that Z4 =
o(1)usN+ .

This finishes the proof that typical paths have a non-marked origin, vertices of type
3 at most (and less than ln ln N of type 3), less than d1

√
sN self-intersections and no

edges read more than twice. The proof of Theorem 3.1 is completed once Lemmas 3.1
and 3.2 are proved. ��

3.3 Technical Lemmas

In this section, we prove the results used in the previous section on characteristics
of typical paths. This will complete the proof of Theorem 3.1. The first quantity of
interest here is the maximum level reached by the Dyck path x . We shall show that it
roughly behaves as

√
sN in typical paths. The second one is the maximal number of

vertices visited from a given vertex, νN (P), which should not grow faster than sδ
N for

any power δ (but we get a weaker bound).
We shall now prove the announced estimate for maxt∈[0,2sN ] x(t), where x(t)

denotes the level at time t of the Dyck path x associated to a path P = Pk . Let
a > 0 be some constant independent of N and k and denote by Ek the expectation
with respect to the uniform distribution Pk on XsN ,k .

Lemma 3.1 There exists b = b(a) > 0 independent of sN and N such that

max
α′sN ≤k≤αsN

Ek exp

{
a max x(t)√

sN

}

≤ b.

Proof of Lemma 3.1 It is proved in [29] that the above result holds true if one replaces
Ek with the expectation with respect to the uniform distribution on Dyck paths (no
constraint on k) of length 2sN . We will call on this result to prove Lemma 3.1. To this
aim, we cut the Dyck path x into 2-steps, so that there are 4 types of basic 2-steps :
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max x(t)
UU

UU
DD

UD

UU DU

UU DD
UU

DD

max x(t)/ 2

x

Dy(x)

Fig. 2 A Dyck path x and the associated trajectory Dy(x)

UU , U D, DD and DU (D stands here for down, U for up). It is an easy fact that the
number of UU steps equals that of DD steps. Let then l be the number of UU steps
(and DD steps), k2 be those of DU and k3 be those of U D steps. Then,

2l + k3 + k2 = sN , l + k2 = sN − k, l + k3 = k. (28)

As a step U D or DU brings the path to the same level, it is easy to see that the steps
UU and DD are arranged in such a way that they form a Dyck path (if we identify a
UU step with an up step and a DD step with a down step) of length 2l. We denote by
Dy(x) this sub-Dyck path associated to the Dyck path x (see Fig. 2).

We now explain how to build a Dyck path x given Dy(x) of length 2l and sN −k −l
(resp. k − l) DU (resp. U D) steps. To construct x from Dy(x), one has to insert
“horizontal” steps, namely DU and U D steps, in a particular way. Note that two
distinct insertions lead to two different trajectories. The sole constraint is to insert
steps DU when the path Dy(x) is at a level greater than or equal to one. This is the
reason why we enumerate Dyck paths with 2l steps according to the number of times
they come back to the level 0. Call �Dyck(l, Q) the number of Dyck paths with 2l
steps and Q returns to 0. We then have to insert s − k − l horizontal DU steps into
2l − Q boxes. Then we can insert the U D steps arbitrarily. This yields that

N(sN , k) =
k∧(sN −k)∑

l=0

l∑

Q=0

�Dyck(l, Q)Cs−k−l
l−Q+s−k−1Ck−l

s . (29)

From this construction, it is easy to see that the maximum level reached by the Dyck
path x is twice the maximum (+1) reached by the sub-path Dy(x). Let then Yl,Q
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denote the set of Dyck paths of length 2l with Q returns to 0. We do not consider the
degenerate case where Dy(x) = ∅, which corresponds to the Dyck path obtained with
U D steps only. Then one has that

Pk(max x(t) = r)

≤
sN /2∑

l=1

sN∑

Q=0

Pk
(
max Dy(x) = r/2

∣
∣Dy(x) ∈ Yl,Q

)
Pk
(
Dy(x) ∈ Yl,Q

)

+
sN /2∑

l=1

sN∑

Q=0

Pk

(

max Dy(x) = r − 1

2

∣
∣
∣
∣ Dy(x) ∈ Yl,Q

)

Pk
(
Dy(x) ∈ Yl,Q

)
.

(30)

Let Pl,Q denote the uniform distribution on Yl,Q . Let also ao > 0 (small) be given. It
can easily be inferred from [29], p. 11 (see also [30] and [9], Lemma 7.10) that there
exist positive constants a1, a2, independent of l and Q such that, if r ′ ≥ ao

√
l, one

has that

Pl,Q(max x(t) = r ′) ≤ a1√
l

exp

{

−a2r ′2

l

}

. (31)

Thus, inserting (31) in (30), we deduce that there exist some positive constants a3, a4
independent of k, sN and N such that, provided r ≥ ao

√
sN and for any α′sN ≤ k ≤

αsN , Pk(max x(t) = r) ≤ a3√
sN

exp
{
− a4r2

sN

}
. This yields Lemma 3.1. ��

The second estimate we need is a suitable bound on νN (Pk). Recall that (ν′
N )

denotes the event that a Dyck path x comes back from above ν′
N times to some level

xo.

Lemma 3.2 There exist positive constants A1, A2 independent of k, N and p such
that

max
1≤k≤sN

Pk
(
(ν′

N )
) ≤ A1s2

N exp
{−A2ν

′
N

}
. (32)

Proof of Lemma 3.2 Let [s1, s2] be an interval such that x(t1) = x(t2) = xo for some
xo ≥ 0 and x(t) ≥ xo,∀t ∈ [s1, s2] and for which there exists s1 < t1 < t2 < · · · <

tν′
N

≤ s2 such that x(ti ) = xo. We first consider the case where s1 and s2 are even
instants (then xo is also even). Modifications to be made in the case where they are
odd will be indicated at the end of the proof. The instants ti are then called instants
of returns from above to xo of the Dyck path x . Set now Yo to be the Dyck path of
length s2 − s1 defined by yo(t) = x(t + s1) − xo, t ∈ [0, s2 − s1]. Then the returns
from above to xo correspond to returns to 0 of Yo. Now, the returns to 0 of Yo can
either be made using U D steps or correspond to a return of the sub-trajectory Dy(Yo)

to this level. Thus, either the number of U D steps is large or the number of returns
of Dy(Yo) to level 0 is large. We shall show that in both cases, (32) holds. Thanks to
Proposition 3.1, it is enough to consider trajectories x for which α′sN ≤ k ≤ αsN .

The proof of Lemma 3.2 is divided into three steps.

123



506 S. Péché

Step 1 We first show that there exist positive constants C ′
7, C ′

8 independent of N and
k such that, provided α′sN ≤ k ≤ αsN ,

Pk ( x has ηN consecutive U D steps ) ≤ C ′
7s2

N exp
{−C ′

8ηN
}
. (33)

Assume that there exists a time interval [s′
1, s′

2] with ηN consecutive U D steps only.
Given even instants s′

1 and s′
2 (with s′

2 − s′
1 = 2ηN ), the proportion of trajectories x

that have ηN steps U D in [s′
1, s′

2] is at most

1
sN −ηN

(
Ck−ηN

sN −ηN

)2

1
sN

(
Ck

sN

)2 ≤ C9

(
k(k − 1) · · · (k − ηN + 1)

sN (sN − 1) · · · (sN − ηN + 1)

)2

≤ C9α
2ηN , (34)

for some constant C9 > 0. This readily yields (33).

Step 2 We consider the case where the number of returns to level 0 made by the
associated path Dy(Yo) is large. Let Ps denote the uniform distribution on the set of
Dyck paths Y with length 2s. It is proved in [29] that there exist constants C10, C11
independent of s such that

Ps(∃s′
1, s′

2 : Y has ηN returns from above to the level xo in [s′
1, s′

2])≤ C10s2 exp {−C11ηN }. (35)

Denote by Q the number of sub-Dyck paths Ỹi , i = 1, . . . Q, of Dy(Yo) starting and
ending at level 0. From the above result and (29), one can deduce that there exists
constants C12, C13 > 0, independent of sN and k, such that

P(Q = ηN ) ≤ C12s2
N exp {−C13ηN }. (36)

Step 3 We can now turn to the proof of Lemma 3.2. A Dyck path x coming back
ν′

N times to the level xo during [s1, s2] can be described as follows. Denote by Q the
number of sub-Dyck paths Yi , i = 1, . . . Q, going from level xo to xo and starting
with a UU step and ending with a DD step. Denote by li , i = 1, . . . Q, the respective
length of these sub-Dyck paths. Then these sub-Dyck paths are interspaced by ν′

N − Q
U D steps that split in at most Q + 1 sequences. Let νi

N (i ≤ Q + 1) be the respective
lengths of these disjoint sequences of U D steps from xo to xo. Using the estimates
of Step 1 and Step 2, there exist constants C ′

12, C ′
13 > 0 such that for any constants

A, A′ > 0 (fixed later),

Pk

(
∃ νi

N ≥ ν′
N /A

)
≤ C ′

12s2
N exp

{−C ′
13ν

′
N /A

}
, ∀ 1 ≤ k ≤ sN ,

Pk
(
Q ≥ ν′

N /A′) ≤ C ′
12s2

N exp
{−C ′

13ν
′
N /A′}, ∀ 1 ≤ k ≤ sN . (37)

Thus it is enough to consider trajectories such that A ≤ Q ≤ ν′
N /A′. To count these

trajectories, we study their structure in more detail. Set Lo = (s2 − s1)/2 and let then
ko < k be the number of odd marked instants of the sub-trajectory inside the interval
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[s1, s2]. The remaining trajectory x(t), t ∈ [0, 2sN ] \ [s1, s2], is then a Dyck path of
length 2sN − 2Lo with k − ko odd up steps. Assume s1 and s2 are known. In order to
count the number of such trajectories x, we first re-order the paths Yi and U D steps
inside the interval [s1, s2] as follows. We first read the Dyck paths Yi , i = 1, . . . Q,

and then read all the U D steps.
Fix some 0 < ε < (1 − α)/2 (small). Assume first that

Lo − ko < (1 − ε)sN + ε(Lo − (ν′
N − Q)) − k. (38)

As k ≤ αsN for some α < 1, (38) ensures that k − ko + ν′
N − Q ≤ (1 − ε)(sN −

Lo + ν′
N − Q). Thus, we can apply Step 1 to the sub-trajectory obtained from x by

erasing the sub-paths Yi , i = 1, . . . , Q. Then, given Q, ko, s1 and s2, the number of
trajectories of length L = 2sN −2Lo +2(ν′

N − Q) with k −ko +ν′
N − Q odd up steps

and that have ν′
N − Q U D steps between [L − (sN − s2)−2(ν′

N − Q), L − (sN − s2)]
is of order

C14 exp
{−C ′

o(ν
′
N − Q)

}× N2, if N2 = �{X2sn−2Lo+2(ν′
N −Q), k−ko+ν′

N −Q}.

Here C14, C ′
o are some positive constants independent of sN , k and N . Note that the

constant C ′
o depends only on ε and α. Then, the number of Dyck paths of length

∑Q
i=1 li = 2Lo − 2(ν′

N − Q), with ko − (ν′
N − Q) odd up steps and coming back Q

times to the level 0 using DD steps is at most of order

C15 exp
{−C ′′

o Q
}× N1, if N1 = �

{
X∑Q

i=1 li , ko−(ν′
N −Q)

}
.

As above C15, C ′′
o are positive constants independent of N , sN and k. Finally, the

number of ways to order the paths Yi and the U D steps inside the interval [s1, s2] is
equal to the number of ways to write ν′

N − Q as a sum of Q + 1 integers. There are

C Q
ν′

N
such ways. Thus the number of trajectories x coming ν′

N times to some level xo

never falling below is at most

∑

0≤s1<s2≤sN

ν′
N /A′
∑

Q=A

∑

ko≤k

C Q
ν′

N
C16 exp

{−Coν
′
N

}
N1 N2

≤ C16s2
N

ν′
N /A′
∑

Q=A

C Q
ν′

N
exp
{−Coν

′
N

}
N(sN , k), (39)

if Co = min{C ′
o, C ′′

o }. Indeed, Lo, Q, k and ν′
N being fixed, one has that

∑
ko

N1 N2 ≤
N(sN , k). This yields the following estimate:

Pk

(

x has ν′
N returns to 0, A ≤ Q ≤ ν′

N

A′

)

≤ ν′
N s2

N e−Coν′
N C

ν′
N /A′

ν′
N

.
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We can then choose A′ large enough so that there exists a constant C18 > 0, indepen-
dent of N , k and sN , such that

ν′
N e−Coν′

N C
ν′

N /A′
ν′

N
≤ C18 exp

{−Coν
′
N /2

}
.

This yields Lemma 3.2 if (38) is satisfied.
Assume now that (38) is not satisfied. Then necessarily ko ≤ (α+ε)Lo ≤ (α+1)Lo/2.

Thus the number of trajectories Yo coming ν′
N times to some level xo with Q returns

made using DD steps is at most

C Q
ν′

N
Ñ(Lo − (ν′

N − Q), ko − (ν′
N − Q), Q),

where Ñ(Lo − (ν′
N − Q), ko − (ν′

N − Q), Q) is the number of Dyck paths of length
2Lo − 2(ν′

N − Q), with Q returns to 0 made only with DD steps and admitting
ko − (ν′

N − Q) odd up steps. From Step 2, one deduces that there exists a constant
C20 (independent of ko, Lo) such that

Ñ(Lo − (ν′
N − Q), ko−(ν′

N − Q), Q)≤e{−C20 Q}N(Lo−(ν′
N − Q), ko−(ν′

N −Q)).

As ko ≤ (α + ε)Lo, there also exists C21 > 0 (depending on ε and α only) such that
N(Lo − (ν′

N − Q), ko − (ν′
N − Q)) ≤ exp

{−C21(ν
′
N − Q)

}
N(Lo, ko). The end of

the proof is as above. This finishes the proof of Lemma 3.2 in the case where s1 and
s2 are even.
To consider the case where s1 and s2 are odd, one can then use exactly the same
arguments as above, up to the following modifications. An odd marked instant of Yo

simply defines an even marked instant of x . Then it is an easy task to show that Step
1 holds if one replaces α with 1 − α′ in (34). Step 2 and Step 3 can then be obtained
by using arguments as above. ��

4 The case where p,N → ∞ and N/p → 0

In this section, we prove the following universality result. Let c1, . . . , ck be positive

real numbers and s(i)
N , i = 1, . . . , K , be sequences such that limN→∞

s(i)
N√

γN N 2/3 = ci .

Theorem 4.1 Assume that MN = 1
N X X∗ satisfies (i) to (iν) (resp. (i ′) to (iν′)).

Formulas (6) and (7) hold true.

The proof of Theorem 4.1 is the object of the whole section. We only consider the
case where K = 1 and where sN is a sequence such that limN→∞ sN√

γN N 2/3 = c, for

some real c > 0. We also choose to consider traces of the sequence of random matrices
Mp := 1

p X X∗ instead of MN . One can check that

E

(

Tr

(
Mp

v+

)sN
)

= E

(

Tr

(
MN

u+

)sN
)

, where v+ =
(

1 + 1√
γN

)2

.
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As in the preceding section, we establish that the typical paths have no edges read
more than twice. This ensures that the leading term in the asymptotic expansion of
E
[
TrMsN

p
]

is the same as that for Wishart ensembles. The idea of the proof is very
similar to that of the preceding section, but requires some minor modifications. This
is essentially due to the discrepancy between marked vertices on the bottom and top
lines, due to the fact that p � N .

In this section, C , Ci , C ′
i , Di , Bi , i = 0, . . . , 9, denote some positive constants

independent of N , p, k and sN whose value may vary from line to line (and from
the preceding sections).

4.1 Typical paths

We now state the counterpart of the second point in Proposition 3.1 in the following two
Propositions. Let Z∞,0 = Z∞,0(A) be the sub-sum corresponding to the contribution
to E

(
TrMsN

p
)

of the paths for which k ≤ sN (1 − A√
γN

), for some A > 0 to be fixed.

Proposition 4.1 There exists A > 0 such that Z∞,0 = o(1)v
sN+ .

Proof of Proposition 4.1 By (15), one has that

Z∞,0 ≤
sN (1− A√

γN
)

∑

k=1

N

sN

k

sN − k + 1

(
Ck

sN

)2 2

γ
sN −k
N

∑

(ñ, p̃)

∏

i≥2

1

ni !
(

Ci (sN − k)i

N i−1

)ni ∏

i≥2

1

pi !
(

Ci ki

pi−1

)pi

. (40)

Now there exists a constant C1 > 0 such that, for any 1 ≤ k ≤ sN ,

∑

pi ,1≤i≤k

∏

i≥2

1

pi !

(
Ci si

N

pi−1

)pi

≤ exp
{

C1 N 1/3
}
. (41)

Similarly, using the fact that
∑sN −k

i=1 ini = sN − k, we find that

1√
γN

sN −k

∑

ni ,1≤i≤sN −k

∏

i≥2

1

ni !
(

Ci (sN − k)i

N i−1

)ni

≤ 1√
γN

sN −k

∑

ni ,1≤i≤sN −k

∏

i≥2

1

ni !

(
Ci si

N

N i−1

)ni (
sN − k

sN

)ini

≤ exp
{

C2 N 1/3
}( sN − k

sN

)sN −k

, (42)
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as sN − k > AsN γ
−1/2
N and provided A > 2. Inserting (42) and (41) in (40) yields

that

Z∞,0 ≤
sN (1− A√

γN
)

∑

k=1

N

sN

k

sN − k + 1

(
Ck

sN

)2
(

sN − k√
γN sN

)sN −k

e{C3 N 1/3}. (43)

We deduce the following upper bound. For N large enough, one has that

(43) ≤ C4 N
∑

k≤sN (1− A√
γN

)

e{C3 N 1/3}
√

γN
sN −k

(
2s2

N e2

(sN − k)2

)sN −k (
sN − k

sN

)sN −k

≤ C4 exp
{

C4 N 1/3
} ∑

k≤sN (1− A√
γN

)

(
2e2

A

)sN −k

= o(1)v
sN+ ,

where in the last line we have chosen A > 4e2. This finishes the proof of Proposi-
tion 4.1. ��

Given 0 < ε < 1/2, we also consider the contribution Z∞,1 = Z∞,1(ε) of the
paths for which k ≥ sN (1 − ε√

γN
).

Proposition 4.2 There exists 0 < ε < 1/2 such that Z∞,1 = o(1)v
sN+ .

Proof of Proposition 4.2 By (15) and as sN − k = O(N 2/3), one has that

Z∞,1 ≤ 2
sN∑

k=sN (1− ε√
γN

)

NN(sN , k) exp
{
(C1 + C ′

2)N 1/3
}
γ

−(sN −k)
N

≤ C ′
4 N exp

{
C ′

4 N 1/3
}

N
(

sN , [sN −
[

εsN√
γN

+ 1

])

γ
−
[

εsN√
γN

]
−1

N

≤ C ′
4 N exp

{
C ′

4 N 1/3
}

exp
{
−C5 N 2/3/8

}
v

sN+ , (44)

provided ε < 1/2. This is enough to ensure Proposition 4.2. ��
Set now IN = [sN (1 − A√

γN
), sN (1 − ε√

γN
)]. Thanks to Propositions 4.1 and 4.2,

typical paths are such that k ∈ IN . This implies in particular that (sN −k)2

N = O(N 1/3)

and k2

p = O(N 1/3). Using the fact that
∑

k∈IN
N(sN , k)Nγ

k−sN
N = O(v

sN+ ), it is
easy to deduce from (15), that it is enough to consider paths for which M1 + M2 =∑

i≥2(i − 1)(ni + pi ) ≤ d1 N 1/3 for some constant d1 independent of k ∈ IN , N
and p. For such paths, denote by Z∞(k) the contribution of paths with k odd marked
instants. We now prove the following Proposition yielding Theorem 4.1.

Proposition 4.3 There exists D1 >0 such that
∑

k∈IN
Z∞(k) ≤ D1v

sN+ . Furthermore,
the contribution of paths admitting either an edge read more than twice, or more than
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ln ln N vertices of type 3, or a vertex of type 4 or greater, or a marked origin is
negligible in the large-N-limit.

Remark 4.1 Considering the paths Pk, k ∈ IN , admitting only vertices of type 2 at
most and no non-MP-closed vertices, one can also deduce from the subsequent proof
of Proposition 4.3, that there exists D2 > 0 such that

∑
k∈IN

Z∞(k) ≥ D2v
sN+ .

Proof of Proposition 4.3 First, one can state the counterpart of Formula (26). Due
to the different scales sN − k = O(N 2/3), while k = O(

√
γN N 2/3), we need in

this section to distinguish vertices being the left endpoint of an up edge according
to the parity of the corresponding instant. Define νN ,o(Pk) (resp. νN ,e(Pk) to be the
maximum number of vertices visited (at marked instants) from a vertex of the path
occurring at odd instants (resp. even instants). Then,

Z∞(k) ≤ CN(sN , k)Nγ
k−sN
N e

{

− (sN −k)2

2N − k2
2p

}

∑

n2,r1,q1,n3,...,nsN −k

∑

p2,r2,q2,p3,...,pk

Ek

⎡

⎣

(
(sN − k)2/(2N )

)n2−r1−q1

(n2 − r1 − q1)!

× 1

r1!
(

3(sN − k) max x(t)

N

)r1 1

q1!
(

D3(sN − k)(νN ,o + TN )

N

)q1

×
(
k2/(2p)

)p2−r2−q2

(p2 − r2 − q2)!
1

r2!
(

3k max x(t)

p

)r2 1

q2!
(

D4k(νN ,e + TN )

p

)q2

×
∏

i≥3

1

ni !
(

Ci (sN − k)i

N i−1

)ni ∏

i≥3

1

pi !
(

Ci ki

pi−1

)pi

⎤

⎦ . (45)

One still has that TN < A′′N 1/3/ ln N for some A′′ > 0 in typical paths (independently
of k ∈ IN ). This ensures that the analysis performed in the case where limN→∞ γN <

∞ can be copied, provided the counterparts of the lemmas of Sect. 3.3 hold. Let a > 0
be given. Assume for a while that typical paths are such that there exists ε′ > 0 such
that, ∀k ∈ IN ,

max
k∈IN

Ek

(

exp

{

a
max x(t)

N 1/3

})

< b, for some b > 0,

νN ,o < N 1/3−ε′
and νN ,e <

√
γN N 1/3−ε′

. (46)

The above statement will be proved in the subsequent section (Lemmas 4.1 and 4.2)
and using exactly the same arguments as in Lemma 7.8 in [9]. We then copy the
arguments of Proposition 3.2 and the sequel. Then it is easy to deduce that typical
paths have a non-marked origin, vertices of type 3 at most (and a number of vertices
of type 3 smaller than ln ln N ) and no edge passed more than twice. The other paths
lead to a negligible contribution. We can also deduce that non-MP-closed vertices of
type 2 as well as vertices of type 3 occur only on the bottom line in typical paths.
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In particular, let Z3,∞ denote the contribution of paths for which q1 + q2 = 0,

r2 = 0,
∑

i≥4 ni +∑i≥3 pi = 0, n3 ≤ ln ln N and no edges read more than twice.
Then E

[
TrMsN

p
] = Z3,∞(1 + o(1)) and

Z3,∞ ≤ C6

∑

k∈IN

Nγ
k−sN
N N(sN , k) ≤ D1

2
v

sN+ .

This ensures that the limiting expectation depends only on the variance of the entries
and has the same behavior as for Wishart ensembles. The proof of Theorem 4.1 is
complete, provided we prove the announced Lemmas. ��

4.2 Technical Lemmas

We now state the counterpart of Lemma 3.1.

Lemma 4.1 Let a > 0 be a given real number. There exists b = b(a) > 0 such that

max
k∈IN

Ek

(

e{ a max x(t)(sN −k)

N }
)

< b.

Remark 4.2 Lemma 4.1 also yields that max
k∈IN

Ek

(

e{a max x(t)k
p }

)

− 1 � 1.

Proof of Lemma 4.1 The proof refers to the proof of Lemma 3.1 in Sect. 3.3. Let l be
the number of UU steps of a Dyck path x for which k ∈ IN . From (28), one deduces

that l ≤ sN − k ≤ A sN√
γN

. Thus by (31), we deduce that, if r ≥ ao

√

AsN γ
−1/2
N , and

for any k ∈ IN , Pk(max x(t) = r) ≤ a3√
sN −k

exp
{
− a4r2

(sN −k)

}
. This readily proves

Lemma 4.1. ��
One next turns to establishing the counterpart of Lemma 3.2. We denote by νN ,o(x)

(resp. νN ,e(x)) the event that the maximal number of times the Dyck path x comes
from above (without falling below) to some level xo at even instants (resp. odd instants)
is νN ,e (resp. νN ,o).

Lemma 4.2 There exist positive constants B1, B2, B3, B4, independent of N and p
such that

max
sN (1− A√

γN
)≤k≤sN (1− ε√

γN
)

Pk(νN ,o(x)) ≤ B1
s2

N

γN
exp
{−B2νN ,o

}
. (47)

max
sN (1− A√

γN
)≤k≤sN (1− ε√

γN
)

Pk(νN ,e(x)) ≤ B3
s2

N

γN
exp

{

− B4νN ,e√
γN

}

. (48)

Proof of Lemma 4.2 As in Sect. 3.3, we have to estimate the probability that the Dyck
path x comes ν′

N times to some level xo without falling below in some (maximal) time
interval [s1, s2]. Note that the two steps leading and starting at s1 (resp. s2) are up
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(resp. down) steps. This is because [s1, s2] is a maximal interval. Thus the number of
possible choices for s1 and s2 is at most of order s2

N /γN , as k ∈ IN .

We first prove (47) and thus assume that s1 is odd. Then the returns to xo occur at odd
instants. The counterpart of formula (34) states

Pk

(
x |t∈[s′

1,s
′
2] has only ηN U D steps

)
≤ C ′

9

(
2A√
γN

)ηN

. (49)

The two steps preceding (and following) [s′
1, s′

2] are either both up steps or both down
steps (regardless of the fact that s′

1, s′
2 are even or odd). The estimate (35) still holds

(up to the change s2
N → s2

N /γN ) so that formula (47) is proved, copying the proof of
Lemma 3.2.
We now turn to the proof of (48) which is more involved than in Lemma 3.2. Formula
(34) translates to

Pk
(
x has ηN UD steps in between [s′

1, s′
2]
) ≤ C9 exp

{

−ε
ηN√
γN

}

.

Step 1 and Step 2 are then obtained as in Lemma 3.2 (with s2
N → s2

N /γN ). From that,
we can deduce that we can consider in Step 3 only the paths for which A1 ≤ Q ≤
Aoν

′
N /

√
γN for some constants A1, Ao > 0. We need to refine the estimate for Step 3.

Let then [s1, s2] be the interval where ν′
N returns to some level xo occur. We call Yo the

trajectory defined by x(t)− xo, t ∈ [s1, s2]. We then define ko to be its number of odd
up steps, Q to be its number of returns to 0 using DD steps, l (resp. µo, ν′′

o ) to be its
number of UU steps (resp. of DU steps and of U D steps occurring at some positive
level). Assume that l, Q, µo, ko are given and observe that ko = l + ν′

N − Q + ν′′
o .

Let then Pl,Q,ko,µo denote the conditional probability on the event that Yo has ko odd
up steps, µo DU steps and Dy(Yo) has 2l steps and Q returns to 0. Then, one has that

Pl,Q,ko,µo( Yo has ν′
N − Q U D steps at level 0 ) ≤

C Q
ν′

N
C

ν′′
o

(s2−s1)/2−ν′
N

Cko−l
(s2−s1)/2

.

One first shows that it is enough to consider the subpaths Yo such that 2ko
s2−s1

= k
sN

(1+
o(1)) ∈

[
1 − ε−1

1 γ
−1/2
N , 1 − ε1γ

−1/2
N

]
for some ε1 > 0 small enough. This follows

from the fact that k ∈ IN and arguments already used in Sect. 2.5 [see also (17)]. This
yields that

Pk

(

νN ,e(x) ∩
{

2ko

(s2 − s1)
≤ 1 − ε−1

1 γ
−1/2
N

})

≤
∑

s1≤s2

∑

2ko
(s2−s1)

≤1−ε−1
1 γ

−1/2
N

N( s2−s1
2 , ko)N(sN − s2−s1

2 , k − ko)

N(sN , k)

≤ s2
N

γN
exp
{
−ηN 2/3

}
,
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for some η > 0 provided ε−1
1 > 2A, where A has been fixed in Proposition 4.1.

The analysis of the case where 2ko/(s2 − s1)) ≥ 1 − ε1γ
−1/2
N is similar. We can

assume that B4 in (48) is small enough so that B4sN <
√

γN ηN 2/3. This yields (48)
and ensures that it is enough to consider the case where 2ko

s2−s1
= k

sN
(1 + o(1)) ∈

[1 − ε−1
1 γ

−1/2
N , 1 − ε1γ

−1/2
N ]. Fixing l and ko we set QT := (1 − ko−l

(s2−s1)/2 )ν′
N . As

l ≤ s2−s1
2 − ko ≤ ε−1

1√
γN

s2−s1
2 , one has that ε1√

γN
≤ QT

ν′
N

≤ 2ε−1
1√
γN

. One can check that

there exists a constant Co independent of s1, s2, ko and l such that, for a given constant
A2 > 4,

C Q
ν′

N
C

ν′′
o

(s2−s1)/2−ν′
N

Cko−l
(s2−s1)/2

≤ Co exp

{

− (Q − QT )2

(A2 + 1)QT

}

, if Q ≥ Q A2 := QT (1 − A2),

C Q
ν′

N
C

ν′′
o

(s2−s1)/2−ν′
N

Cko−l
(s2−s1)/2

≤ Co exp

{

− A2 QT

2

}(
1

5

)QT (1−A2)−Q

, if Q ≤ Q A2 .

Thus, it is clear that the proportion of paths coming back ν′
N times from above to some

level xo and for which Q ≤ QT (1−ε1) is at most of order s2
N /γN exp

{

− ε3
1ν′

N
(A2+1)

√
γN

}

.

Paths for which Q ≥ QT (1 − ε1) ≥ ε1ν
′
N

2
√

γN
are considered as in Step 2. This is enough

to ensure (48). ��
Remark 4.3 The investigation of higher moments follows the same steps as in Sect. 2.5.
In particular, considering Var(TrMsN

p ), only pairs of correlated paths such that P1 ∨P2

has a number of odd up steps of order 2sN

(

1 − O(

√
γ −1

N )

)

are non-negligible. In

(18), one can also replace the term (2sN −1−l) with sN −(1+l)/2−k1. Considering as
above the exponential decay of (20), one can also show that

∑
k1≤k∧2sN −1−l f (k1) ≤

C ′
3(2sN −1−l−k̃1)

1/2 f (k̃1) where k̃1 =
[
k 2sN −1−l

4sN −2

]
(+1). Thus (22) can be replaced

with

2sN −1∑

l=0

C3(sN − l + 1

2
− k̃1)

√
(2sN − 1 − l)√

γN
f (k̃1) ≤ C4

√
sN γ

−3/4
N

(1 − αN )2 ,

where αN = k/(2sN − 1) ∼ 1 − 1/
√

γN . One can readily deduce from the above that
the contribution of (19) is negligible. The case where x(te) = 0 yields a negligible
contribution, as readily seen from (46) and Lemma 4.2. The latter is then enough to
ensure that Var(TrMsN

p ) is bounded and only depends on the variance of the entries.
The investigation of higher moments is similar.
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