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two minimizers. We obtain different type of limits, in a positive recurrent regime,
depending on the co-dimension of the subspace and the conditions imposed at the
final time under the presence or absence of a wall. The motivation comes from the
study of polymers or (1 + 1)-dimensional interfaces with δ-pinning.

Keywords Large deviation · Minimizers · Random walks · Pinning · Scaling limit ·
Concentration

Mathematics Subject Classification (2000) Primary: 60K35; Secondary: 60F10 ·
82B41

Supported in part by the JSPS Grants 17654020 and (A) 18204007.

E. Bolthausen
Institut für Mathematik, Universität Zürich,
Winterthurerstrasse 190, 8057 Zürich, Switzerland
e-mail: eb@math.unizh.ch

T. Funaki (B) · T. Otobe
Graduate School of Mathematical Sciences, The University of Tokyo,
Komaba, Tokyo 153-8914, Japan
e-mail: funaki@ms.u-tokyo.ac.jp

T. Otobe
e-mail: tatsushi@ms.u-tokyo.ac.jp

123



442 E. Bolthausen et al.

1 Introduction and main results

The present paper deals with Gaussian random walks on R
d perturbed by an attractive

force toward a subspace M of R
d , especially under the critical situation that the rate

functional of the corresponding large deviation principle admits exactly two minimi-
zers. The macroscopic time, observed after scaling, runs over the interval D = [0, 1].
The starting point of the (macroscopically scaled) walks at t = 0 is always specified,
while we will or will not specify the arriving point at t = 1. We thus consider four dif-
ferent cases, in addition to the conditions at t = 1, depending whether a wall is located
at the boundary of the upper half space of R

d or not, and study how the macroscopic
scaling limits differ in these four cases.

1.1 Weakly pinned Gaussian random walks

In this subsection, we introduce (temporally inhomogeneous) Markov chains called the
weakly pinned Gaussian random walks. Let DN = N D ∩Z ≡ {0, 1, 2, . . . , N } be the
range of (microscopic) time for the Markov chains corresponding to the macroscopic
one D. The state spaces of the Markov chains are R

d or the upper half space R
d+ =

R
d−1 × R+ according as we do not or do put a wall at ∂Rd+, where R+ = [0,∞).

Let M be an m-dimensional subspace of R
d for 0 ≤ m ≤ d − 1 and let M⊥ be

its orthogonal complement. We consider the measure ν(dy) = dy(1)δ0(dy(2)) on
R

d obtained by extending the surface measure dy(1) on M under the decomposition
y = (y(1), y(2)) ∈ R

d ∼= M × M⊥; in particular, if M = {0}, y = y(2) and ν(dy) =
δ0(dy). The co-dimension of M will be denoted by r ≡ codim M = d − m. We
assume M ⊂ ∂Rd+ when the state space of the Markov chains is R

d+.
Given a, b ∈ R

d (or ∈ R
d+), the starting point of the Markov chains φ = (φi )i∈DN

is always aN ∈ R
d (or ∈ R

d+), while, for the arriving point at i = N , we consider
two cases: φN = bN (we call Dirichlet case) or without giving any condition on φN

(we call free case). The distributions of the Markov chains φ on (Rd)N+1 or (Rd+)N+1

with a strength ε ≥ 0 of the pinning force toward M , imposing the Dirichlet or free
conditions at N and putting or without putting a wall at ∂Rd+, are described by the

following four probability measures µD,ε
N , µ

D,ε,+
N , µ

F,ε
N and µF,ε,+

N , respectively:

µ
D,ε,(+)
N (dφ) = 1

Z D,ε,(+)
N

e−HN (φ)δaN (dφ0)
∏

i∈DN \{0,N }

(
ε ν(dφi )+dφ(+)i

)
δbN (dφN ),

(1.1)

µ
F,ε,(+)
N (dφ) = 1

Z F,ε,(+)
N

e−HN (φ)δaN (dφ0)
∏

i∈DN \{0}

(
ε ν(dφi )+ dφ(+)i

)
, (1.2)

where dφ(+)i denotes the Lebesgue measure on R
d (or on R

d+), and Z D,ε,(+)
N and

Z F,ε,(+)
N are the normalizing constants, respectively. The function HN (φ) called the
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Hamiltonian is given by

HN (φ) = 1

2

N−1∑

i=0

|φi+1 − φi |2,

in which | · | stands for the Euclidean norm of R
d . Note that, if ε = 0 (i.e., without

pinning), φ under µF,0
N is a d-dimensional Brownian motion viewed at integer times.

We sometimes denote the partition functions as Z D,ε,(+)
N = Za,b,ε,(+)

N and Z F,ε,(+)
N =

Za,F,ε,(+)
N to clarify the specific conditions at i = 0 and N . The Markov chain φ

satisfies the condition φ0 = aN (a.s.) at i = 0 under these four measures. At i =
N , the Dirichlet condition φN = bN is satisfied under µD,ε

N and µD,ε,+
N , while the

free condition (i.e., no specific condition) is fulfilled under µF,ε
N and µF,ε,+

N . The

superscripts D and F are put to indicate the conditions at i = N . Both µD,ε
N and µF,ε

N

are probability measures on (Rd)N+1 defined under the absence of wall, whileµD,ε,+
N

and µF,ε,+
N are those on (Rd+)N+1 defined under the presence of a wall at ∂Rd+. The

following table exhibits the difference of these four measures in short:

at i = N No wall Wall at ∂Rd+
Dirichlet condition µ

D,ε
N µ

D,ε,+
N

Free condition µ
F,ε
N µ

F,ε,+
N

When d = 1 and m = 0, the Markov chain (φi ∈ R (or ∈ R+))i∈DN
may be

interpreted as the heights of interfaces located in a plane measured from the position i
on a reference line (x-axis), so that the system is called (1 + 1)-dimensional interface
model with δ-pinning at 0, see [3,5,8,15]. See [14] for a relation to the polymer models.

1.2 Scaling limits and large deviation rate functionals

We will sometimes drop the superscripts ε if there is no confusion.
Let hN = {hN (t), t ∈ D} be the macroscopic path of the Markov chain determined

from the microscopic one φ under a proper scaling, namely, it is defined through a
polygonal approximation of

(
hN (i/N ) = φi/N

)
i∈DN

so that

hN (t) = [Nt] − Nt + 1

N
φ[Nt] + Nt − [Nt]

N
φ[Nt]+1, t ∈ D.

Then, the sample path large deviation principle holds for hN under µD
N , µ

D,+
N , µF

N

and µF,+
N , respectively, on the space C = C([0, 1],Rd) equipped with the uniform

topology as N → ∞, see Theorem 4.1 in Sect. 4 (or Theorem 2.2 of [12] for µD
N

when d = 1 and m = 0, and [4,16] when ε = 0). The speeds are always N and the
unnormalized rate functionals are given by �D, �D,+, �F and �F,+, respectively,
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444 E. Bolthausen et al.

all of which are of the form:

�(h) = 1

2

∫

D

|ḣ(t)|2dt − ξ |{t ∈ D; h(t) ∈ M}|, (1.3)

for h ∈ H1
a,b(D) = {h ∈ H1(D); h(0) = a, h(1) = b} in the Dirichlet case

respectively h ∈ H1
a,F (D) = {h ∈ H1(D); h(0) = a} in the free case with cer-

tain non-negative constants ξ , where | · | stands for the Lebesgue measure on D and
H1(D) = H1(D,Rd) is the usual Sobolev space. We define �(h) = +∞ for h’s
outside of these spaces, and also for h such that h(t) /∈ R

d+ for some t ∈ D under the
presence of a wall. The constants ξ differ depending on the absence or presence of a
wall as explained below.

We determine two non-negative constants ξε = ξεr and ξε,+ = ξ
ε,+
r by the ther-

modynamic limits:

ξε = lim
N→∞

1

N
log

Z0,0,ε
N ,r

Z0,0
N ,r

, ξ ε,+ = lim
N→∞

1

N
log

Z0,0,ε,+
N ,r

Z0,0,+
N ,r

, (1.4)

and another two constants ξ F,ε and ξ F,ε,+ by

ξ F,ε = lim
N→∞

1

N
log

Z0,F,ε
N ,r

Z0,F
N ,r

, ξ F,ε,+ = lim
N→∞

1

N
log

Z0,F,ε,+
N ,r

Z0,F,+
N ,r

, (1.5)

where the partition functions in the numerators are associated with the random walks
in R

r with pinning at M ′ = {0} ⊂ R
r (i.e., m = 0) taking a = b = 0 ∈ R

r

in the Dirichlet case and a = 0 ∈ R
r in the free case, while the denominators

Z0,0
N ,r , Z0,0,+

N ,r , Z0,F
N ,r and Z0,F,+

N ,r are defined without pinning effect and equal to their

corresponding numerators with ε = 0. See (2.1) for Z0,0,ε
N ,r , (2.13) for Z0,F,ε

N ,r and
others. As we will state in Theorem 1.1, the constants ξ defined for two different cases
actually coincide with each other, i.e., ξε = ξ F,ε and ξε,+ = ξ F,ε,+ hold.

The constants ξ in (1.3) are defined by ξ = ξεcodim M for the functionals � =
�D, �F and ξ = ξ

ε,+
codim M for � = �D,+, �F,+, respectively, with the choice of

r = codim M .
The non-positive constants τ ε = −ξε and τ ε,+ = −ξε,+ are sometimes called

the pinning free energy and the wall (more precisely, wall+pinning or wetting) free
energy, respectively. Explicit formulae determining ξε and ξε,+ are found in (2.4) and
(2.12). In particular, we will see that ξε > ξε,+ ≥ 0 for all ε ≥ 0 unless ξε = 0,
see Remark 2.1-(1). Furthermore, we have the following result on the phase transition
(localization/delocalization transition) in ε, which is called pinning or wetting transi-
tions in the framework of the interface model under the absence or presence of a wall,
respectively.

Theorem 1.1 1. The limits in (1.4) and (1.5) exist for every ε ≥ 0, and we have that
ξε = ξ F,ε and ξε,+ = ξ F,ε,+.
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2. (Absence of wall) If r ≥ 3, there exists εc > 0 determined by (2.3) such that
ξε > 0 if and only if ε > εc and ξε = 0 if and only if 0 ≤ ε ≤ εc. If r = 1 and 2,
the above statement holds with εc = 0.

3. (Presence of wall) For all r ≥ 1, there exists ε+c > 0 (in fact, ε+c > εc) determined
by (2.11) such that ξε,+ > 0 if and only if ε > ε+c and ξε,+ = 0 if and only if
0 ≤ ε ≤ ε+c .

In short, the pinning transition occurs if r ≥ 3, while the wetting transition occurs for
all dimensions. The Markov chain, being transient at ε = 0, turns to be recurrent when
the strength ε of the attractive force toward 0 increases and exceeds the critical value εc

or ε+c ; see [14] for random walks with discrete values. The asymptotic behavior of the
free energies ξε and ξε,+ for ε close to their critical values is studied in Appendix A.
This gives, in particular, the critical exponents for the free energies.

The large deviation principle (Theorem 4.1) immediately implies the concentration
properties for µN = µD

N , µD,+
N , µF

N and µF,+
N :

lim
N→∞µN (dist∞(hN ,H) ≤ δ) = 1, (1.6)

for every δ > 0, where H = {h∗; minimizers of �} with� = �D, �D,+, �F , �F,+,
respectively, and dist∞ denotes the distance on C under the uniform norm ‖·‖∞. More
precisely, for any δ > 0 there exists c (δ) > 0 such that

µN (dist∞(hN ,H) > δ) ≤ e−c(δ)N

for large enough N .

1.3 Minimizers of the rate functionals

By rotation, we may assume without loss of generality

M =
{

x = (x (1), 0) ∈ R
m × R

r
}

⊂ R
d . (1.7)

Under such coordinate of R
d , we decompose a = (a(1), a(2)) and b = (b(1), b(2)) ∈

M × M⊥.
There are at most two possible minimizers of �D . One is h̄D defined by linearly

interpolating between a and b: h̄D(t) = (1 − t)a + tb, t ∈ D. If |a(2)| + |b(2)| <√
2ξε (i.e., t1 + t2 < 1 for t1 and t2 defined below), we define ĥD(≡ ĥD,ε) by

ĥD(t) =
(

ĥD,(1)(t), ĥD,(2)(t)
)

, where ĥD,(1)(t) = (1 − t)a(1) + tb(1),

ĥD,(2)(t) =
⎧
⎨

⎩

(t1 − t)a(2)/t1, t ∈ [0, t1],
0, t ∈ [t1, 1 − t2],
(t + t2 − 1)b(2)/t2, t ∈ [1 − t2, 1],

(1.8)
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and t1 = |a(2)|/√2ξε and t2 = |b(2)|/√2ξε. The last relation is sometimes called
Young’s relation. Those for �D,+ are two functions h̄D and ĥD,+(≡ ĥD,ε,+) defined
similarly to ĥD with ξε replaced by ξε,+.

In the free case, first for �F , we set h̄F (t) = a, t ∈ D, and if |a(2)| < √
2ξε (i.e.,

t1 < 1), ĥF (t) = (ĥF,(1)(t), ĥF,(2)(t)) with ĥF,(1)(t) = a(1),

ĥF,(2)(t) =
{
(t1 − t)a(2)/t1, t ∈ [0, t1],
0, t ∈ [t1, 1],

where t1 = |a(2)|/√2ξε. Those for�F,+ are h̄F and ĥF,+(≡ ĥF,ε,+)which is defined
similarly to ĥF with ξε replaced by ξε,+.

Then, the following lemma can be shown similarly to the case where d = 1 and
m = 0, cf. Sects. 6.3 and 6.4 of [8].

Lemma 1.2 The set of minimizers of�D is contained in {h̄D, ĥD}. Similarly, the sets
of minimizers of �D,+, �F and �F,+ are contained in {h̄D, ĥD,+}, {h̄F , ĥF } and
{h̄F , ĥF,+}, respectively.

The structure of the sets of minimizers is clarified in terms of a and b in Appendix
B especially when d = 1 and m = 0.

1.4 Main results

We are concerned with the critical case where h̄ and ĥ are different and both are
simultaneously the minimizers of �D (or �D,+), and similar situations for �F (or
�F,+); especially when d = 1 and m = 0, this is equivalent to ξ = ξε (or ξε,+) > 0
and (a, b) ∈ C1 (see Proposition B.1) in the Dirichlet case and |a| = √

ξ/2 in the free
case. Otherwise, hN converges to the unique minimizer of� as N → ∞ in probability,
recall (1.6). We therefore assume the following conditions in each situation:

(C)D ε > εc and �D(h̄D) = �D(ĥD),
(C)D,+ ε > ε+c and �D,+(h̄D) = �D,+(ĥD,+),
(C)F ε > εc and �F (h̄F ) = �F (ĥF ),
(C)F,+ ε > ε+c and �F,+(h̄F ) = �F,+(ĥF,+).

Note that the second condition in (C)D (or (C)D,+) is equivalent to

√
2ξ
(∣∣∣a(2)

∣∣∣+
∣∣∣b(2)

∣∣∣
)

− ξ = 1

2

∣∣∣a(2) − b(2)
∣∣∣
2
,

while that in (C)F (or (C)F,+) is equivalent to |a(2)| = √
ξ/2.

We are now in a position to state our main results. We say that the limit under µN

is h∗ if

lim
N→∞µN (‖hN − h∗‖∞ ≤ δ) = 1
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holds for every δ > 0. We say that two functions h̄ and ĥ coexist in the limit under
µN with probabilities λ̄ and λ̂ if λ̄, λ̂ > 0, λ̄+ λ̂ = 1 and

lim
N→∞µN (‖hN − h̄‖∞ ≤ δ) = λ̄,

lim
N→∞µN (‖hN − ĥ‖∞ ≤ δ) = λ̂

hold for every 0 < δ < |a(2)| ∧ |b(2)|; it is evident from Lemma 1.2 and (1.6) that one
has to check these properties only for arbitrary small δ > 0.

Theorem 1.3 (Dirichlet case) 1. (No wall) Under the condition (C)D, the limit under
µ

D,ε
N is ĥD if codim M = 1 and h̄D if codim M ≥ 3. If codim M = 2, h̄D and ĥD

coexist in the limit under µD,ε
N with probabilities λ̄D,ε and λ̂D,ε, respectively, given

by (3.16).
2. (Wall at ∂Rd+) Under the condition (C)D,+, the limit under µD,ε,+

N is ĥD,+ if

codim M = 1 and h̄D if codim M ≥ 3. If codim M = 2, h̄D and ĥD,+ coexist in
the limit under µD,ε,+

N with probabilities λ̄D,ε,+ and λ̂D,ε,+, respectively, given by
(3.21).

Theorem 1.4 (Free case) 1. (No wall) Under the condition (C)F , if codim M = 1, h̄F

and ĥF coexist in the limit under µF,ε
N with probabilities λ̄F,ε and λ̂F,ε, respectively,

given by (3.27). If codim M ≥ 2, the limit under µF,ε
N is h̄F .

2. (Wall at ∂Rd+) Under the condition (C)F,+, if codim M = 1, h̄F and ĥF,+

coexist in the limit under µF,ε,+
N with probabilities λ̄F,ε,+ and λ̂F,ε,+, respectively,

given by (3.28). If codim M ≥ 2, the limit under µF,ε,+
N is h̄F .

The central limit theorem holds for the times when the Markov chains first or last
hit M . Set

i
 = min {i ∈ DN ; φi ∈ M} ,
ir = max {i ∈ DN ; φi ∈ M} ,

and consider them under a proper scaling:

X = 1√
N
(i
 − t1 N ) and Y = 1√

N
(ir − (1 − t2)N ) ,

where we set min ∅ = N (in the Dirichlet case), = N +1 (in the free case), max ∅ = 0,
and Y is considered only for the Dirichlet case.

Theorem 1.5 1. (Dirichlet case) Under µD,ε
N or µD,ε,+

N , conditioned on the event
{i
 ≤ N −1} if codim M ≥ 2, the pair of random variables (X,Y )weakly converges to
(U1,U2) as N → ∞,where U1 = N (0, |a(2)|/(2ξ)3/2) and U2 = N (0, |b(2)|/(2ξ)3/2)
(with ξ = ξε or ξε,+) are mutually independent centered Gaussian random variables.

2. (Free case) Under µF,ε
N or µF,ε,+

N conditioned on the event {i
 ≤ N }, X weakly
converges to U = N (0, |a(2)|/(2ξ)3/2) as N → ∞ (with ξ = ξε or ξε,+).
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The conditioning on the event {i
 ≤ N − 1} is unnecessary when codim M = 1,
since the probability of such event converges to one as N → ∞ in this case.

The proof of Theorems 1.3 and 1.4, together with Theorem 1.5, will be given in
Sect. 3. The conditions (C)D–(C)F,+ guarantee that the leading exponential decay
rates of the probabilities of the neighborhoods of the two different minimizers balance
with each other. This enforces us to study their precise asymptotics, which can be
obtained as an application of the renewal theory and discussed in Sect. 2. The proof of
Theorem 1.1 is also given in Sect. 2. Section 4 is for the sample path large deviation
principles. In Appendix A we study the critical exponents for the free energies, while
in Appendix B we clarify the structure of the set of minimizers of � when d = 1 and
m = 0. It is straightforward to generalize our results to HN (φ) of the form

HN (φ) = 1

2

N−1∑

i=0

(φi+1 − φi ) · A(φi+1 − φi )

with a positive symmetric d × d matrix A if M is an eigensubspace of A.
A dichotomy in concentrations on h̄ or ĥ is shown in the Dirichlet case for a

model with the Hamiltonians perturbed by weak self potentials, see [9]. The scaling
limits for the two-dimensional model (more precisely, a model with two-dimensional
time parameters) under the volume conservation law are studied by [1]. Some related
results are obtained by [17,18] for the one-dimensional discrete SOS model and the
two-dimensional Ising model, respectively. The corresponding fluctuation limits are
studied by [5] for general interaction potential and by [3,15] for a discrete model under
the Dirichlet condition at t = 0 with a = 0.

2 Precise asymptotics for the partition functions

In this section, we will prove a number of results on the precise asymptotic behavior
of the ratios of partition functions associated with the Gaussian random walks in R

r

with pinning at 0 ∈ R
r and starting at 0 ∈ R

r (and reaching 0 in the Dirichlet case),
which were mentioned in Sect. 1.2 to determine ξ ’s. In particular, these will imply
the statements in Theorem 1.1. A similar method is used in [3,14]. We will omit the
subscript r of the partition functions, for example, Z0,0,ε

N ,r is simply denoted by Z0,0,ε
N

in this section.

2.1 Dirichlet case without wall

We denote D◦
N := DN \ {0, N }(= {1, 2, . . . , N − 1}). The partition function Z0,0,ε

N
is given by

Z0,0,ε
N =

∫

(Rr )N+1

e−HN (φ)δ0(dφ0)
∏

i∈D◦
N

(εδ0(dφi )+ dφi ) δ0(dφN ), (2.1)
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and Z0,0
N = Z0,0,0

N , i.e., ε= 0. An explicit calculation shows that Z0,0
N = (2π)r N/2/

(2πN )r/2.

Lemma 2.1 The renewal equation holds for Z0,0,ε
N , N ≥ 2 with Z0,0,ε

1 = Z0,0
1 = 1:

Z0,0,ε
N = Z0,0

N + ε
∑

i∈D◦
N

Z0,0
i Z0,0,ε

N−i .

Proof Expand the product measure in (2.1) by specifying i
 as

∏

i∈D◦
N

(εδ0(dφi )+ dφi )

=
∏

j∈D◦
N

dφ j +
∑

i∈D◦
N

∏

j∈D◦
N ,i,−

dφ j · εδ0(dφi ) ·
∏

j∈D◦
N ,i,+

(
εδ0(dφ j )+ dφ j

)
,

where D◦
N ,i,− = {1, 2, . . . , i − 1} and D◦

N ,i,+ = {i + 1, i + 2, . . . , N − 1}. The i on
the right hand side represents the first i such that the factor εδ0(dφi ) appears in the
expansion, i.e., i = i
. If such i does not exist, we have the measure

∏
j∈D◦

N
dφ j . This

expansion immediately leads to the conclusion. ��
Let us define the function

g(x) =
∞∑

n=1

xn

(2πn)r/2
, 0 ≤ x < 1. (2.2)

Note that g is increasing, g(0) = 0, g(1) (:= g(1−)) < ∞ if r ≥ 3 and g(1−) = ∞
if r = 1, 2. Set

εc =
{

1/g(1) > 0, r ≥ 3,
0, r = 1, 2.

(2.3)

For each ε > εc, we determine x = xε ∈ (0, 1) as the unique solution of g(x) = 1/ε
and introduce two positive constants:

ξε = − log xε and C D,ε = (2π)r/2

ε2xεg′(xε)
. (2.4)

Proposition 2.2 For each ε > εc, we have the precise asymptotics for the ratio of two
partition functions:

Z0,0,ε
N

Z0,0
N

∼ C D,εNr/2eNξε ,

as N → ∞, where ∼ means that the ratio of both sides tends to 1.
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Proof We set u0 = a0 = b0 = 0 and, for n = 1, 2, . . ., un = xn Z0,0,ε
n /(2π)rn/2,

an = εxn Z0,0
n /(2π)rn/2 and bn = xn Z0,0

n /(2π)rn/2 = xn/(2πn)r/2, where x = xε.
Then, Lemma 2.1 shows that

un = bn +
n∑

i=0

ai un−i (2.5)

for every n ≥ 0. However, the definition of x = xε implies that

∞∑

n=0

an = ε

∞∑

n=1

xn

(2πn)r/2
= 1.

Thus, an application of the renewal theory (cf. Chapter XIII of [6]) shows that
limn→∞ un = B/A, where

B =
∞∑

n=0

bn = g(x) = 1/ε,

and

A =
∞∑

n=0

nan = ε

∞∑

n=1

nxn

(2πn)r/2
= εxg′(x).

We therefore obtain

lim
n→∞

xn

(2π)rn/2 Z0,0,ε
n = 1

ε2xg′(x)
.

Finally, using Z0,0
N = (2π)r N/2/(2πN )r/2 again, the conclusion is shown by

Z0,0,ε
N

Z0,0
N

∼ (2πN )r/2

ε2xεg′(xε)
(xε)−N = C D,εNr/2eNξε .

��

2.2 Dirichlet case with wall

We recall that

Z0,0,+
N =

∫

(Rr+)N+1

e−HN (φ)δ0(dφ0)
∏

i∈D◦
N

dφ+
i δ0(dφN ), (2.6)
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where dφ+
i is the Lebesgue measure on R

r+ = R
r−1 × R+, and this leads to a

representation of the ratio of two partition functions:

qN := Z0,0,+
N

Z0,0
N

= P0,1
0,0 (B(i/N ) ≥ 0 for all 1 ≤ i ≤ N − 1) , (2.7)

by means of a one-dimensional Brownian bridge {B(t), t ∈ [0, 1]} satisfying B(0) =
B(1) = 0 under P0,1

0,0 . It is known (see (20) in [5]) that qN is given by

qN = 1

N
. (2.8)

The partition function Z0,0,ε,+
N , given by (2.1) with (Rr )N+1 replaced by (Rr+)N+1,

satisfies the renewal equation:

Z0,0,ε,+
N = Z0,0,+

N + ε
∑

i∈D◦
N

Z0,0,+
i Z0,0,ε,+

N−i , (2.9)

for N ≥ 2 with Z0,0,ε,+
1 = Z0,0,+

1 = 1. The proof of (2.9) is similar to Lemma 2.1.
With the function

g+(x) =
∞∑

n=1

xn

n(2πn)r/2
, 0 ≤ x ≤ 1, (2.10)

noting that g+(1) < ∞ for all r ≥ 1, we define

ε+c = 1/g+(1) > 0. (2.11)

We then determine, for each ε > ε+c , x = xε,+ ∈ (0, 1) as the unique solution of
g+(x) = 1/ε and introduce two positive constants:

ξε,+ = − log xε,+ and C D,ε,+ = (2π)r/2

ε2g(xε,+)
. (2.12)

Proposition 2.3 We have the precise asymptotics

Z0,0,ε,+
N

Z0,0,+
N

∼ C D,ε,+N 1+r/2eNξε,+

as N → ∞ for each ε > ε+c .

Proof Define three sequences un, an and bn as in the proof of Proposition 2.2 with x ,
Z0,0,ε

n and Z0,0
n replaced by xε,+, Z0,0,ε,+

n and Z0,0,+
n , respectively. Then, we have the

relation (2.5) from (2.9) and also
∑∞

n=0 an = 1 from Z0,0,+
n = Z0,0

n /n, recall (2.7)
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and (2.8). Thus, relying on the renewal theory again (and noting x(g+)′(x) = g(x)),
one obtains

Z0,0,ε,+
N ∼ (2π)r N/2

x N

1

ε2g(x)
,

as N → ∞. Since Z0,0,+
N = (2π)r N/2/N (2πN )r/2, the conclusion is shown as

Z0,0,ε,+
N

Z0,0,+
N

∼ N (2πN )r/2

ε2g(xε,+)
(
xε,+

)−N = C D,ε,+N 1+r/2eNξε,+ .

��

Remark 2.1 1. Comparing (2.3), (2.11) with g(1) > g+(1), we see 0 ≤ εc < ε+c . Set

xε,(+) = 1 and ξε,(+) = 0 for 0 ≤ ε ≤ ε
(+)
c . Then, since g(x) > g+(x) for 0 < x < 1,

we have xε < xε,+ and therefore ξε,+ < ξε for every ε > εc. Indeed, ξε,(+) defined
through the thermodynamic limit in Sect. 1.2 is equal to 0 for every 0 ≤ ε ≤ ε

(+)
c .

2. Propositions 2.2 and 2.3 combined with (2.7), (2.8) imply that

µ
0,0,ε
N (φi ∈ R

r+ for all i ∈ DN ) = Z0,0,ε,+
N

Z0,0,ε
N

∼ C D,ε,+

C D,ε
e−N (ξε−ξε,+)

as N → ∞, if ε > ε+c .

2.3 Free case without wall

We now move to the case with the free condition at t = 1 (or microscopically at
i = N ), and denote D◦,F

N := DN \ {0}(= {1, 2, . . . , N }). The partition function

Z0,F,ε
N is given by

Z0,F,ε
N =

∫

(Rr )N+1

e−HN (φ)δ0(dφ0)
∏

i∈D◦,F
N

(εδ0(dφi )+ dφi ) , (2.13)

and we have Z0,F
N (= Z0,F,0

N ) = (2π)r N/2.

Lemma 2.4 The renewal equation holds for Z0,F,ε
N , N ≥ 1 with Z0,F,ε

0 = 1:

Z0,F,ε
N = Z0,F

N + ε
∑

i∈D◦,F
N

Z0,0
i Z0,F,ε

N−i .
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Proof The proof is concluded, similarly to Lemma 2.1, by expanding the product
measure in (2.13) as

∏

i∈D◦,F
N

(εδ0(dφi )+ dφi )

=
∏

j∈D◦,F
N

dφ j +
∑

i∈D◦,F
N

∏

j∈D◦
N ,i,−

dφ j · εδ0(dφi ) ·
∏

j∈D◦,F
N ,i,+

(
εδ0(dφ j )+ dφ j

)
,

where D◦,F
N ,i,+ = {i + 1, i + 2, . . . , N }. ��

Recall the function g defined by (2.2), the unique solution x = xε ∈ (0, 1) of
g(x)= 1/ε and ξε = − log xε > 0 in (2.4) for each ε > εc. We then define a positive
constant:

C F,ε = 1

εxε(1 − xε)g′(xε)
. (2.14)

Proposition 2.5 We have the precise asymptotics

Z0,F,ε
N

Z0,F
N

∼ C F,εeNξε

as N → ∞ for each ε > εc.

Proof We set u0 = b0 = 1, a0 = 0 and, for n = 1, 2, . . ., un = xn Z0,F,ε
n /(2π)rn/2,

an = εxn Z0,0
n /(2π)rn/2 and bn = xn Z0,F

n /(2π)rn/2 = xn , where x = xε. Then,
Lemma 2.4 shows that (2.5) holds for every n ≥ 0. However, the definition of x = xε

implies that
∑∞

n=0 an = 1. Thus, an application of the renewal theory shows that
limn→∞ un = B/A, where

B =
∞∑

n=0

bn =
∞∑

n=0

xn = 1

1 − x
,

and

A =
∞∑

n=0

nan = εxg′(x).

We therefore obtain

lim
n→∞

xn

(2π)rn/2 Z0,F,ε
n = 1

εx(1 − x)g′(x)
.

Finally, using Z0,F
N = (2π)r N/2 again, the conclusion is shown by

Z0,F,ε
N

Z0,F
N

∼ 1

εxε(1 − xε)g′(xε)
(xε)−N = C F,εeNξε .

��
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2.4 Free case with wall

The partition function Z0,F,ε,+
N , given by (2.13) with (Rr )N+1 replaced by (Rr+)N+1,

satisfies the renewal equation:

Z0,F,ε,+
N = Z0,F,+

N + ε
∑

i∈D◦,F
N

Z0,0,+
i Z0,F,ε,+

N−i , (2.15)

for N ≥ 1 with Z0,F,ε,+
0 = 1. The proof of (2.15) is similar to Lemma 2.4. Recall

the function g+(x) defined by (2.10), the unique solution x = xε,+ ∈ (0, 1) of
g+(x) = 1/ε and ξε,+ = − log xε,+ > 0 in (2.12) for ε > ε+c . We then define a
positive constant:

C F,ε,+ = yε,+

εC F,+g(xε,+)
, (2.16)

where yε,+ = ∑∞
N=0 q F

N (x
ε,+)N , and q F

N and C F,+ are determined by q F
0 = 1 and

q F
N := Z0,F,+

N

Z0,F
N

= P0 (B(i/N ) ≥ 0 for all 1 ≤ i ≤ N ) ∼ C F,+/
√

N , (2.17)

for N ≥ 1 with a one-dimensional standard Brownian motion {B(t), t ∈ [0, 1]}
satisfying B(0) = 0 under P0. See (16) in [5] for the asymptotic behavior of q F

N in
(2.17) as N → ∞.

Proposition 2.6 We have the precise asymptotics

Z0,F,ε,+
N

Z0,F,+
N

∼ C F,ε,+N 1/2eNξε,+

as N → ∞ for each ε > ε+c .

Proof We set u0 = b0 = 1, a0 = 0 and, for n = 1, 2, . . ., un = xn Z0,F,ε,+
n /(2π)rn/2,

an = εxn Z0,0,+
n /(2π)rn/2 and bn = xn Z0,F,+

n /(2π)rn/2, where x = xε,+. Then,
(2.15) shows that (2.5) holds for every n ≥ 0. However, the definition of x = xε,+
implies that

∑∞
n=0 an = 1. Thus, relying on the renewal theory, one obtains that

Z0,F,ε,+
N ∼ (2π)r N/2

x N

yε,+

εg(x)
.

Since Z0,F,+
N ∼ C F,+N−1/2 Z0,F

N = C F,+N−1/2(2π)r N/2, we have

Z0,F,ε,+
N

Z0,F,+
N

∼ yε,+

εC F,+g(xε,+)
N 1/2(xε,+)−N = C F,ε,+N 1/2eNξε,+ .

��
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3 Proof of Theorems 1.3, 1.4 and 1.5

We assume the conditions (C)D–(C)F,+ in this section and give the proof of
Theorems 1.3 and 1.4 together with Theorem 1.5. Our first immediate observation is
that, under the coordinates introduced in (1.7), the two componentsφ(1) = (φ(1)i )i∈DN ∈
M N+1 and φ(2)= (φ(2)i )i∈DN ∈ (M⊥)N+1 of the Markov chain φ= (φi = (φ(1)i ,

φ
(2)
i ))i∈DN ∈ (Rd)N+1 are independent. In fact, for instance in the Dirichlet case

without wall, the distribution of φ and its normalizing constant are decomposed into
the products:

µ
a,b,ε
N = µ

a(1),b(1),0
N ,m × µ

a(2),b(2),ε
N ,r and Za,b,ε

N = Za(1),b(1),0
N ,m × Za(2),b(2),ε

N ,r . (3.1)

The subscripts m and r indicate that the objects are defined for R
m and R

r , respectively.
We may assume without loss of generality d = r and m = 0. To see this, we

choose the norm ‖h‖∞ = maxt∈D |h(t)| for h ∈ C (= C([0, 1],Rd)) with |h(t)| =
max{|h(1)(t)|, |h(2)(t)|} for h(t) = (h(1)(t), h(2)(t)) ∈ R

m × R
r , which is equivalent

to the Euclidean norm of h(t) in R
d . As we are only concerned with the ratio of

probabilities of neighborhoods of ĥ and h̄, the factor coming from the first component
φ(1) cancels. Thus, the proof can be reduced to the Markov chains on R

r (or R
r+) with

pinning at M ′ = {0}.We will omit the subscript r : µD,ε
N ,r and Z D,ε

N ,r are simply denoted

by µD,ε
N and Z D,ε

N , respectively, and a(2), b(2), h̄(2), ĥ(2) are denoted by a, b, h̄, ĥ and
others.

3.1 Proof of Theorems 1.3-(1) and 1.5 for µD,ε
N

If 0 ≤ j < k ≤ N , we write µa,b
j,k for the measure on (Rr ){ j,...,k} = {φ = (φi ) j≤i≤k;

φi ∈ R
r
}

without pinning, under the Dirichlet conditions φ j = aN and φk = bN :

µ
a,b
j,k (dφ) = 1

Za,b
j,k

e−Hj,k(φ)δaN (dφ j )

k−1∏

i= j+1

dφi δbN (dφk), (3.2)

where Za,b
j,k = Za,b

k− j is the normalizing constant and Hj,k (φ) := 1
2

∑k−1
i= j |φi+1−φi |2.

The corresponding measure with pinning is denoted by µa,b,ε
j,k (dφ). Clearly

Za,b
n = e−N 2|a−b|2/2n Z0,0

n ,

Z0,0
n = (2π)rn/2

(2πn)r/2
. (3.3)

Under the measureµa,b
j,k , the macroscopic path determined from (φi ) j≤i≤k concen-

trates on the straight line between ( j/N , a) and (k/N , b):
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ga,b
[ j/N ,k/N ] (t) :=

(
1 − Nt − j

k − j

)
a + Nt − j

k − j
b,

j

N
≤ t ≤ k

N
,

in particular, ga,b
[0,1] = h. More precisely

Lemma 3.1 For any δ′ > 0, there exists c
(
δ′
)
> 0 and N0

(
δ′
) ∈ N such that for any

a, b ∈ R
r , 0 ≤ j < k ≤ N :

µ
a,b
j,k

({
φ; max

i : j≤i≤k

∣∣∣∣
φi

N
− ga,b

[ j/N ,k/N ]
(

i

N

)∣∣∣∣ ≥ δ′
})

≤ e−c(δ′)N

for N ≥ N0
(
δ′
)
.

Proof This is straightforward from the fact that for any i with j ≤ i ≤ k, φi is normally
distributed underµa,b

j,k with mean (1 − (i − j) / (k − j)) Na+((i − j) / (k − j)) Nb,

and standard deviation bounded by const ×√
N . ��

We write

γ
a,b
j,k (δ) := µ

a,b
j,k

(∥∥∥hN
[ j/N ,k/N ] − ĥ[ j/N ,k/N ]

∥∥∥∞ ≤ δ
)

where ĥ = ĥD,(2) in this subsection, and f[u,v] is the restriction of a function f :
[0, 1] → R

d to the subinterval [u, v] of [0, 1]. Also γ a,b,ε
j,k (δ) is the similarly defined

quantity with pinning. We sometimes also write Uδ(ĥ[u,v]) for the δ-neighborhood
with respect to ‖ · ‖∞ in the space of functions on [u, v] of ĥ[u,v]; when the subscript
[u, v] is dropped, it is considered on [0, 1]. We similarly write Uδ(h̄) for h̄ = h̄D,(2).

We remind the reader that it suffices to evaluate

lim
N→∞

µ
D,ε
N

(
hN ∈ Uδ

(
ĥ
))

µ
D,ε
N

(
hN ∈ Uδ

(
h
))

for arbitrarily small δ > 0.
An expansion of the product measure

∏
i∈D◦

N
(εδ0(dφi )+dφi ) in (1.1) by specifying

0 < i
 ≤ ir < N gives rise to

pN := Z D,ε
N

Za,b
N

µ
D,ε
N

(
hN ∈ Uδ

(
ĥ
))

= γ
a,b
0,N (δ)+

N−1∑

j=1

ε
εN , j, jγ
a,0
0, j (δ) γ

0,b
j,N (δ)

+
∑

0< j<k<N

ε2
εN , j,kγ
a,0
0, j (δ) γ

0,0,ε
j,k (δ) γ

0,b
k,N (δ)

=: I 1
N + I 2

N + I 3,
N (3.4)
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where


εN , j,k = Za,0
j Z0,0,ε

k− j Z0,b
N−k

Za,b
N

(3.5)

for 0 < j ≤ k < N . We set Z0,0,ε
0 = 1 to define 
εN , j, j .

The first term I 1
N covers all paths without touching 0: i
 = N , ir = 0 and I 2

N is for
those touching 0 once: 0 < i
 = ir (= j) < N , while I 3

N is for those touching 0 at
least twice: 0 < i
(= j) < ir (= k) < N .

If δ is chosen small enough, then Uδ(ĥ) ∩ Uδ(g
a,b
[0,1]) = ∅. Using Lemma 3.1, it

follows that I 1
N is exponentially small in N . Similarly, noting that 
εN , j, j is bounded

in N , for I 2
N one has that either Uδ(ĥ[0, j/N ]) ∩ Uδ(g

a,0
[0, j/N ]) = ∅ or Uδ(ĥ[ j/N ,1]) ∩

Uδ(g
0,b
[ j/N ,1]) = ∅ and it follows that I 2

N is exponentially small, i.e., we have

I 1
N + I 2

N ≤ e−cN (3.6)

for N sufficiently large, where c > 0.
By (3.3), the ratio of the partition functions in (3.5) can be rewritten for j < k as


εN , j,k = αN , j,ke−N f̃ (s1,s2)
Z0,0,ε

k− j

Z0,0
k− j

(3.7)

where s1 = j/N , s2 = (N − k)/N ,

f̃ (s1, s2) := 1

2

( |a|2
s1

+ |b|2
s2

− |a − b|2
)
, (3.8)

and

αN , j,k =
[

N

(2π)2 j (k − j)(N − k)

]r/2

.

In the part I 3
N , we decompose the j-k-summation into the part over

A :=
{
( j, k) ; | j − Nt1| ≤ N 3/5, |k − N (1 − t2)| ≤ N 3/5

}
, (3.9)
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and over its complement. We always assume that N is large enough so that Nt1 +
N 3/5 < N (1 − t2)− N 3/5. Using Proposition 2.2, we get

∑

( j,k)/∈A


εN , j,kγ
a,0
0, j (δ) γ

0,0,ε
j,k (δ) γ

0,b
k,N (δ)

≤
∑

( j,k)/∈A


εN , j,k

≤ C
∑

( j,k)/∈A

αN , j,ke−N f̃ (s1,s2)(k − j)r/2e(k− j)ξ

= C
∑

( j,k)/∈A

αN , j,k(k − j)r/2e−N f (s1,s2),

for some C > 0, where ξ = ξε and

f (s1, s2) = f̃ (s1, s2)− ξ(1 − s1 − s2)

= |a|2
2t2

1 s1
(s1 − t1)

2 + |b|2
2t2

2 s2
(s2 − t2)

2. (3.10)

In the second equation, we have used |a−b|2/2 = (|a|2/t1+|b|2/t2)/2−ξ(1−t1−t2)
and |a|/t1 = |b|/t2 = √

2ξ from Condition (C)D. On the complement Ac, we have

N f (s1, s2) ≥ C N 1/5,

with some C > 0 and therefore

∑

( j,k)/∈A


εN , j,k ≤ e−cN 1/5
(3.11)

for some c > 0, and large enough N .
For ( j, k) ∈ A, we can expand f (s1, s2):

f (s1, s2) = |a|2
2t3

1

(s1 − t1)
2 + |b|2

2t3
2

(s2 − t2)
2 + O

(
N−6/5

)
.

Furthermore, the straight lines ga,0
[0,s1] and g0,b

[1−s2,1] are within distance δ/2 to the

restrictions of ĥ[0,s1] and ĥ[1−s2,1], respectively, if N is large enough, and therefore,
using Lemma 3.1 and Theorem 4.1 below (in fact, Proposition 4.3 is sufficient), we
get

∑

( j,k)∈A


εN , j,k

(
1 − e−cN

)
≤

∑

( j,k)∈A


εN , j,kγ
a,0
0, j (δ) γ

0,0,ε
j,k (δ) γ

0,b
k,N (δ)

≤
∑

( j,k)∈A


εN , j,k, (3.12)
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for some c > 0. It therefore suffices to estimate
∑
( j,k)∈A 


ε
N , j,k . By using Proposition

2.2 and substituting j −[Nt1] and k −[N (1 − t2)] into j and k,we have by a Riemann
sum approximation

ε2
∑

( j,k)∈A


εN , j,k ∼ C1 N−r/2
∑

| j |≤N 3/5

e−c1( j/
√

N )2
∑

|k|≤N 3/5

e−c2(k/
√

N )2

∼ C1 N 1−r/2

∞∫

−∞
e−c1x2

dx

∞∫

−∞
e−c2x2

dx

= C1π√
c1c2

N 1−r/2, (3.13)

as N → ∞, with C1 = ε2C D,ε/(2π)r (t1t2)r/2 and c1 = |a|2/2t3
1 = (2ξ)3/2/2|a|,

c2 = |b|2/2t3
2 = (2ξ)3/2/2|b|.

Summarizing, we get from (3.4), (3.6), (3.11) and (3.13), and for sufficiently large
N

pN = C1π√
c1c2

N 1−r/2
(

1 − O
(

e−cN
))

+ O
(

e−cN 1/5
)

+ O
(

e−cN
)

∼ C1π√
c1c2

N 1−r/2. (3.14)

On the other hand, the definition (1.1) of µD,ε
N implies for every 0 < δ < |a| ∧ |b|

that

Z D,ε
N

Za,b
N

µ
D,ε
N

(
hN ∈ Uδ

(
h̄
)) = µ

D,0
N

(
hN ∈ Uδ

(
h̄
)) ∼ 1,

where h̄ = h̄D,(2). Comparing with (3.14), we have the conclusion of Theorem 1.3-(1)
by recalling that (1.6) implies

lim
N→∞

{
µ

D,ε
N

(
hN ∈ Uδ

(
ĥ
))

+ µ
D,ε
N

(
hN ∈ Uδ

(
h̄
))} = 1. (3.15)

In particular, if r = 2, the coexistence of h̄ and ĥ occurs in the limit with probabilities

(λ̄D,ε, λ̂D,ε) :=
(

1

1 + C2
,

C2

1 + C2

)
, (3.16)

where C2 = ε2C D,ε/
{
2π(2|a(2)||b(2)|ξε)1/2} (= C1π/

√
c1c2

)
> 0, and ξε and C D,ε

are the constants given in (2.4).

123



460 E. Bolthausen et al.

Proof of Theorem 1.5 for µD,ε
N For x1 < x2 and y1 < y2, let

A(x1, x2; y1, y2)

:=
{
( j, k) ∈ A;√

N x1 ≤ j − t1 N ≤ √
N x2,

√
N y1 ≤ k − (1 − t2)N ≤ √

N y2

}
.

By the same computation as that leading to (3.13) and (3.14), we obtain

Z D,ε
N

Za,b
N

µ
D,ε
N

(
(i
, ir ) ∈ A(x1, x2; y1, y2), hN ∈ Uδ

(
ĥ
))

∼ C1 N 1−r/2

x2∫

x1

e−c1x2
dx

y2∫

y1

e−c2x2
dx .

Combining with (3.14), we obtain

lim
N→∞µ

D,ε
N

(
(i
, ir ) ∈ A(x1, x2; y1, y2)

∣∣∣hN ∈ Uδ
(

ĥ
))

=
√

c1c2

π

x2∫

x1

e−c1x2
dx

y2∫

y1

e−c2x2
dx .

On the other hand, by the estimates leading to (3.14), we also have

µ
D,ε
N

({
hN ∈ Uδ

(
ĥ
)}
� {i
 ≤ N − 1}

)

≤ Za,b
N

Z D,ε
N

I 1
N + µ

D,ε
N

(
{i
 ≤ N − 1}

∖{
hN ∈ Uδ

(
ĥ
)})

≤ e−cN ,

for some c > 0, where � denotes the symmetric difference, and where the estimate
of the second summand comes from the fact that if hN touches 0, but is not in Uδ(ĥ),
then it is outside Uδ(ĥ) ∪ Uδ(h̄). So by the large deviation estimate (cf. Theorem 4.1
below), the probability of the event that this happens is exponentially small. Therefore,
we can replace the conditioning on {hN ∈ Uδ(ĥ)} by that on {i
 ≤ N − 1}, and obtain

lim
N→∞µ

D,ε
N

(
(i
, ir ) ∈ A(x1, x2; y1, y2)

∣∣∣i
 ≤ N − 1
)

=
√

c1c2

π

x2∫

x1

e−c1x2
dx

y2∫

y1

e−c2x2
dx,

which proves the claim. Remark that the conditioning on {i
 ≤ N − 1} is not needed
for r = 1, as µD,ε

N (i
 ≤ N − 1) → 1. ��
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3.2 Proof of Theorems 1.3-(2) and 1.5 for µD,ε,+
N

For a, b ∈ R
r+ and 0 ≤ j < k ≤ N , let µa,b,+

j,k be the measure on (Rr+){ j,...,k},
defined similarly to µa,b

j,k , with the normalizing constant Za,b,+
j,k = Za,b,+

k− j , i.e., the

measure defined by the formula (3.2) with Za,b
j,k and dφi replaced by Za,b,+

j,k and dφ+
i ,

respectively. One can define the measure µ0,0,ε,+
j,k on (Rr+){ j,...,k} with pinning and the

Dirichlet conditions φ j = φk = 0 having the normalizing constant Z0,0,ε,+
k− j . Taking

ĥ = ĥD,+,(2) in this subsection, an expansion similar to (3.4) gives rise to

p+
N := Z D,ε,+

N

Za,b,+
N

µ
D,ε,+
N

(
hN ∈ Uδ

(
ĥ
))

= I 1,+
N + I 2,+

N + I 3,+
N ,

where I α,+N are the terms corresponding to I αN in (3.4) for α = 1, 2, 3, in which we

replace the measures µa,b
j,k by µa,b,+

j,k , µ0,0,ε
j,k by µ0,0,ε,+

j,k , and
εN , j,k by
ε,+N , j,k defined
as



ε,+
N , j,k = Za,0,+

j Z0,0,ε,+
k− j Z0,b,+

N−k

Za,b,+
N

(3.17)

for 0 < j ≤ k < N , where Z0,0,ε,+
0 = 1 as before. We prepare a lemma to find the

asymptotic behavior of
ε,+N , j,k . We will denote the r th coordinates of a and b ∈ R
r+ =

R
r−1 × R+ by ar and br ∈ R+, respectively.

Lemma 3.2 1. If ar , br > 0 (i.e., a, b ∈ (Rr+)◦), we have as N → ∞

Za,b,+
N

Za,b
N

∼ 1.

2. If ar = 0 (i.e., a ∈ ∂Rr+) and br > 0, we have

Za,b,+
N

Za,b
N

∼ β
(
br ) = exp

{
−

∞∑

n=1

p(br√n)

n

}
,

where p(x) = ∫∞
x e−y2/2 dy/

√
2π.

Proof 1. As we have observed in (2.7), the ratio of two partition functions has a
representation and a bound:

1 ≥ Za,b,+
N

Za,b
N

= P0,1
ar

√
N ,br

√
N
(B(i/N ) ≥ 0 for all 1 ≤ i ≤ N − 1)

≥ P0,1
0,0

(
B(t) ≥ − (ar (1 − t)+ br t

)√
N for all t ∈ [0, 1]

)
→ 1
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as N → ∞. The equality in the first line is by the scaling law of a (one-
dimensional) Brownian bridge. The second line follows by noting that a Brownian
bridge B(t) satisfying B(0) = ar

√
N and B(1) = br

√
N can be represented as

B(t) = B̄(t)+ (ar (1 − t)+ br t)
√

N with another Brownian bridge B̄ such that
B̄(0) = B̄(1) = 0.

2. If ar = 0, we have

Za,b,+
N

Za,b
N

= P0,N
0,0

(
B̄(i)+ br i ≥ 0 for all 1 ≤ i ≤ N − 1

) =: c0
N (b

r ),

with a Brownian bridge B̄ such that B̄(0) = B̄(N ) = 0. Replacing B̄ with the
standard Brownian motion B, one can prove that

cN (b
r ) := P0,N

0

(
B(i)+ br i ≥ 0 for all 1 ≤ i ≤ N − 1

) −→ β
(
br ) . (3.18)

In fact, Theorem 1 (p. 413) of [7] shows that

log
1

1 − τ (s)
=

∞∑

n=1

sn

n
P0(B(n) > br n),

for τ (s) = ∑∞
n=1 (cn(br )− cn+1(br )) sn, 0 ≤ s ≤ 1. This identity by taking

s = 1 implies (3.18), since 1 − τ(1) = limN→∞ cN (br ) noting that the limit
exists by monotonicity. To complete the proof of (2), rewriting c0

N (b
r ) into

c0
N (b

r ) = P0,N
0

(
B(i)− i

N
B(N )+ br i ≥ 0 for all 1 ≤ i ≤ N − 1

)
,

one can compare it with cN (br ) as

cN (b
r −θ)−P0,N

0 (B(N ) > θN )≤c0
N (b

r )≤cN (b
r +θ)+P0,N

0 (B(N ) <−θN ) ,

for every θ > 0. The conclusion is shown by letting N → ∞ and then θ ↓ 0.
��

The proof of Theorem 1.3-(2) can be given along the same line as Theorem 1.3-(1).
Indeed, by Lemma 3.2 and then by (2.7), (2.8) and Proposition 2.3, if ε > ε+c , we have



ε,+
N , j,k ∼ β

(
ar )β

(
br ) Za,0

j Z0,0,ε,+
k− j Z0,b

N−k

Za,b
N

= β
(
ar )β

(
br )αN , j,ke−N f̃ (s1,s2) · Z0,0,ε,+

k− j

Z0,0
k− j

∼ β
(
ar )β

(
br )αN , j,kC D,ε,+(k − j)r/2e−N f +(s1,s2),
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as j, N − k, N and k − j → ∞, where f +(s1, s2) is the function f (s1, s2) in (3.10)
with ξ = ξε,+, so that

f +(s1, s2) = |a|2
2t2

1 s1
(s1 − t1)

2 + |b|2
2t2

2 s2
(s2 − t2)

2,

by the condition (C)D,+. If we define A as in (3.9), we get

ε2
∑

( j,k)∈A



ε,+
N , j,k ∼ C3 N 1−r/2,

with C3 = ε2β (ar ) β (br )C D,ε,+π/(2π)r (t1t2)r/2
√

c1c2 > 0, which is shown
similarly to (3.13) (just replace C D,ε with β (ar ) β (br )C D,ε,+), and this proves that

p+
N ∼ C3 N 1−r/2. (3.19)

On the other hand, we have

Z D,ε,+
N

Za,b,+
N

µ
D,ε,+
N

(
hN ∈ Uδ

(
h̄
)) = µ

D,0,+
N

(
hN ∈ Uδ

(
h̄
)) ∼ 1, (3.20)

for 0 < δ < |a|∧|b|. The conclusion of Theorem 1.3-(2) follows from the combination
of (3.19) and (3.20). In particular, if r = 2, the coexistence of h̄ and ĥ occurs in the
limit with probabilities

(λ̄D,ε,+, λ̂D,ε,+) :=
(

1

1 + C3
,

C3

1 + C3

)
, (3.21)

where C3 = ε2β (ar ) β (br )C D,ε,+/
{
2π(2|a(2)||b(2)|ξε,+)1/2} > 0, β (ar ) is in

Lemma 3.2-(2), and ξε,+ and C D,ε,+ are the constants given in (2.12).
The proof of Theorem 1.5 under µD,ε,+

N is parallel to that for µD,ε
N and omitted.

3.3 Proof of Theorems 1.4-(1) and 1.5 for µF,ε
N

Let µa,F
N (= µ

F,0
N ) be the measure defined on (Rr )DN without pinning and having the

normalizing constant Za,F
N (= Za,F,0

N ):

µ
a,F
N (dφ) = 1

Za,F
N

e−HN (φ)δaN (dφ0)
∏

i∈D◦,F
N

dφi . (3.22)

For 0 ≤ j < k ≤ N , one can define the measure µ0,F,ε
j,k on (Rr ){ j,...,k} with

pinning, the condition φ j = 0 at j , and the free condition (no specific condition)
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at k, having the normalizing constant Z0,F,ε
k− j . The expansion of the product measure∏

i∈D◦,F
N
(εδ0(dφi )+ dφi ) in (1.2) by specifying 0 < i
 ≤ N + 1 leads to

pF
N := Z F,ε

N

Za,F
N

µ
F,ε
N

(
hN ∈ Uδ

(
ĥ
))

= µ
a,F
N

(
hN ∈ Uδ

(
ĥ
))

+
∑

j∈D◦,F
N

ε

F,ε
N , jµ

a,0
0, j

(
hN

[0, j/N ] ∈ Uδ
(

ĥ[0, j/N ]

))

×µ0,F,ε
j,N

(
hN

[ j/N ,1] ∈ Uδ
(

ĥ[ j/N ,1]

))

=: I 1,F
N + I 2,F

N , (3.23)

where ĥ = ĥF,(2) in this subsection and



F,ε
N , j = Za,0

j Z0,F,ε
N− j

Za,F
N

for j ∈ D◦,F
N . Noting that Za,F

n = Z0,F
n = (2π)rn/2 and recalling (3.3) for Za,0

j , we
see that



F,ε
N , j = (2π j)−r/2e−N f̃ (s1) · Z0,F,ε

N− j

Z0,F
N− j

,

where s1 = j/N and f̃ (s1) = |a|2/2s1.
We put here

A :=
{

j ∈ D◦,F
N ; | j − Nt1| ≤ N 3/5

}

and arrive in the same way as in Sect. 3.1, using the large deviation estimate for µa,0
0, j

and µ0,F,ε
j,N (cf. Theorem 4.1 below), to

pF
N = ε

∑

j∈A



F,ε
N , j

(
1 − O

(
e−cN

))
+ O

(
e−cN 1/5

)
+ O

(
e−cN

)
, (3.24)

for some c > 0. Furthermore, we get by Proposition 2.5,

ε
∑

j∈A



F,ε
N , j ∼ εC F,ε(2π)−r/2

∑

j∈A

(Ns1)
−r/2e−N f F (s1),
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where f F (s) = f̃ (s)−ξ(1− s)with ξ = ξε. By the second condition of (C)F , being
equivalent to ξε = 2|a|2, one can rewrite f F as

f F (s) = 2|a|2
s
(s − 1/2)2. (3.25)

This finally proves, recalling t1 = 1/2 and (3.24), that

pF
N ∼ εC F,επ−r/2 N (1−r)/2

∞∫

−∞
e−4|a|2x2

dx = εC F,επ(1−r)/2

2|a| N (1−r)/2. (3.26)

On the other hand, for every 0 < δ < |a|, we have that

Z F,ε
N

Za,F
N

µ
F,ε
N

(
hN ∈ Uδ

(
h̄
)) = µ

F,0
N

(
hN ∈ Uδ

(
h̄
)) ∼ 1,

where h̄ = h̄F,(2). Comparing this with (3.26), and recalling (1.6), the conclusion of
Theorem 1.4-(1) is proved. In particular, if r = 1, the coexistence of h̄ and ĥ occurs
in the limit with probabilities

(λ̄F,ε, λ̂F,ε) :=
(

2|a(2)|
εC F,ε + 2|a(2)| ,

εC F,ε

εC F,ε + 2|a(2)|

)
, (3.27)

where C F,ε is the constant given in (2.14).
The proof of Theorem 1.5 under µF,ε

N conditioned on the event {i
 ≤ N } is similar
based on the computation like in (3.26), note that the variance of the limiting Gaussian
distribution is 1/8|a(2)|2 which is equal to |a(2)|/(2ξ)3/2.

3.4 Proof of Theorems 1.4-(2) and 1.5 for µF,ε,+
N

For a ∈ R
r+, let µa,F,+

N (= µ
F,0,+
N ) be the measure defined on (Rr+)DN similarly

to µa,F
N without pinning and having the normalizing constant Za,F,+

N (= Za,F,0,+
N ),

i.e., the measure defined by (3.22) with Za,F
N and dφi replaced by Za,F,+

N and dφ+
i ,

respectively. For 0 ≤ j < k ≤ N , one can define the measure µ0,F,ε,+
j,k on (Rr+){ j,...,k}

with pinning and the normalizing constant Z0,F,ε,+
k− j . Taking ĥ = ĥF,+,(2) and h̄ =

h̄F,(2) in this subsection, a similar expansion to (3.23) leads to

pF,+
N := Z F,ε,+

N

Za,F,+
N

µ
F,ε,+
N

(
hN ∈ Uδ

(
ĥ
))

= I 1,F,+
N + I 2,F,+

N ,

where I α,F,+N are the terms corresponding to I α,FN for α = 1, 2, in which we

replace the measures µa,F
N , µ

a,0
0, j and µ0,F,ε

j,N with µa,F,+
N , µ

a,0,+
0, j and µ0,F,ε,+

j,N , and the
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constant 
F,ε
N , j with



F,ε,+
N , j = Za,0,+

j Z0,F,ε,+
N− j

Za,F,+
N

,

respectively. The next lemma can be shown similarly to Lemma 3.2-(1).

Lemma 3.3 If ar > 0, we have

Za,F,+
N

Za,F
N

∼ 1

as N → ∞.

Using Lemmas 3.2-(2), 3.3, and then (2.17) and Proposition 2.6, if ε > ε+c , we
have



F,ε,+
N , j ∼ β

(
ar ) Za,0

j Z0,F,ε,+
N− j

Za,F
N

= β(ar )(2π j)−r/2e−N f̃ (s1) · q F
N− j

Z0,F,ε,+
N− j

Z0,F,+
N− j

∼ β
(
ar )C F,+C F,ε,+(2π j)−r/2e−N f F,+(s1),

where f F,+ is the function f F with ξ = ξε,+, which can be rewritten as (3.25) by
the second condition of (C)F,+. Therefore, we obtain in the same way as in Sect. 3.3

pF,+
N ∼ εβ

(
ar )C F,+C F,ε,+(2π)−r/2

∑

| j−Nt1|≤N 3/5

(Ns1)
−r/2e−N f F,+(s1)

∼ εβ (ar )C F,+C F,ε,+π(1−r)/2

2|a| N (1−r)/2.

In particular, if r = 1, the coexistence of h̄ and ĥ occurs in the limit with probabilities

(λ̄F,ε,+, λ̂F,ε,+) :=
(

2|a(2)|
εβ(ar )C F,+C F,ε,++2|a(2)| ,

εβ(ar )C F,+C F,ε,+

εβ(ar )C F,+C F,ε,++2|a(2)|

)
,

(3.28)
where β (ar ) is in Lemma 3.2-(2), C F,ε,+ is in (2.16) and C F,+ is in (2.17), respecti-
vely; in fact, a(2) = ar if r = 1.

The rest of the proof is essentially the same as Sect. 3.3.
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4 Large deviation principle

This section is devoted to the sample path large deviation principle. Note that we do
not require the conditions (C)D–(C)F,+.

4.1 Formulation of results

Theorem 4.1 The large deviation principle (LDP) holds for hN = {hN (t), t ∈ D}
distributed under µN = µ

D,ε
N , µ

D,ε,+
N , µ

F,ε
N and µF,ε,+

N on the spaces C or C+ =
C([0, 1],Rd+) as N → ∞ with the speed N and the good rate functionals I =
I D,ε, I D,ε,+, I F,ε and I F,ε,+ of the form:

I (h) =
{
�(h)− inf H �, if h ∈ H,
+∞, otherwise,

(4.1)

with � = �D,ε, �D,ε,+, �F,ε and �F,ε,+ given by (1.3), where H = H1
a,b(D),

H1,+
a,b (D) = H1

a,b(D) ∩ C+, H1
a,F (D) and H1,+

a,F (D) = H1
a,F (D) ∩ C+, respectively.

Namely, for every open set O and closed set C of C or C+ equipped with the uniform
topology, we have that

lim inf
N→∞

1

N
logµN (h

N ∈ O) ≥ − inf
h∈O

I (h),

lim sup
N→∞

1

N
logµN (h

N ∈ C) ≤ − inf
h∈C

I (h),

in each of four situations.

The LDP for µD,ε
N is shown in [12], Theorem 2.2, when d = 1. Indeed, one can

give the proof of Theorem 4.1 essentially just by copying the proof stated in [12] line
by line. But, for completeness, we give another proof with slightly different flavor,
which might be simpler in some aspect.

4.2 Preliminaries

4.2.1 The case without pinning

We start with the LDP for the case without pinning, which is actually standard.

Proposition 4.2 The LDP holds for hN under µN = µ
a,b
N , µ

a,b,+
N , µ

a,F
N and µa,F,+

N
on the spaces C or C+ as N → ∞ with the speed N and the unnormalized rate
functional

�0(h) = 1

2

∫

D

|ḣ(t)|2 dt.
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Proof We first discuss the situation without a wall. The assertion for µa,F
N follows

by Schilder’s theorem (or Mogul’skii’s theorem [16], [4]), while for µa,b
N , we may

employ the contraction principle for the LDP in addition as in the proof of Lemma 6.1
of [12].

We now put a wall at ∂Rd+. Assuming a, b ∈ R
d+, let us denote µa,b

N or µa,F
N by µN

and µa,b,+
N or µa,F,+

N by µ+
N , correspondingly. Then, µ+

N is a conditional distribution
ofµN on the event A+

N = {φi ∈ R
d+ for all i ∈ DN }. First, we consider the case where

a, b ∈ (Rd+)◦. Then, the LDP for µN shown above proves that

lim
N→∞

1

N
logµN (A

+
N ) = 0. (4.2)

Since a closed set C of C+ is closed in C, combined with (4.2), the LD upper bound
for µN implies that for µ+

N . The LD lower bound for µ+
N is also easy, since Õ =

O ∩ {h(t) ∈ (Rd+)◦ for all t ∈ D} is open in C for every open set O in C+ and
µN (O ∩ C+) = µN (Õ).

The case where a or/and b ∈ ∂Rd+ is more involved. The idea is to reduce the

proof of the LDP for such case to the case where a, b ∈ (Rd+)◦. For µa,F,+
N , we have

a nice coupling (hN ,a, hN ,a′
) for every pair of a and a′ ∈ R

d+ realized on a common

probability space distributed under µa,F,+
N and µa′,F,+

N (hN ,a ∼ µ
a,F,+
N , hN ,a′ ∼

µ
a′,F,+
N ), respectively, such that ‖hN ,a − hN ,a′ ‖∞ ≤ |a − a′| a.s. (which is uniform

in N ). In fact, we may apply Lemma 2.2 of [11] in one dimension componentwisely
noting that components {φα = (φαi )i∈DN }d

α=1 are mutually independent underµa,F,+
N .

This coupling implies

µ
a,F,+
N (C) ≤ µ

aγ ,F,+
N (Cγ ) and µ

a,F,+
N (O) ≥ µ

aγ ,F,+
N (Oγ )

for every closed C and open O in C+ and γ > 0, where aγ = a + γ ed ∈ (Rd+)◦,
ed = (0, . . . , 0, 1) is the dth unit vector, Cγ = {h ∈ C+; B(h, γ ) ∩ C �= ∅}, Oγ =
{h; B(h, γ ) ⊂ O} and B(h, γ ) = {g; ‖g − h‖∞ ≤ γ }. Since Cγ and Oγ are closed
and open in C+, respectively, we have the LDP for µa,F,+

N with a ∈ ∂Rd+ from that

for µaγ ,F,+
N with aγ ∈ (Rd+)◦ by noting that

lim
γ↓0

inf
h∈Cγ

�0(h) = inf
h∈C

�0(h) and lim
γ↓0

inf
h∈Oγ

�0(h) = inf
h∈O

�0(h).

Indeed, the first one is shown by the closedness of C and the lower semicontinuity of
�0, while the second is from the openness of O. The proof of the LDP for µa,b,+

N with
a or/and b ∈ ∂Rd+ is similar. ��
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4.2.2 Reduction to the case of m = 0

As we have seen in (3.1), the probability measure µa,b,ε
N is decomposed into the

product:

µ
a,b,ε
N = µ

a(1),b(1),0
N ,m × µ

a(2),b(2),ε
N ,r .

Once Theorem 4.1 is shown for the second component µa(2),b(2),ε
N ,r , combining with

Proposition 4.2 for the first component, Theorem 4.1 for µa,b,ε
N is shown. In fact,

the LDP lower and upper bounds are shown first for products O = O1 × O2 and
C = C1 × C2 of open and closed sets O1,C1 in C(D,Rm) and O2,C2 in C(D,Rr ),
respectively; note that {t ∈ D; h(2)(t) = 0} = {t ∈ D; h(t) ∈ M}. Then, these
estimates can be extended easily to general open set O in C(D,Rd) and closet set
C in C(D,Rd). Other three measures µa,b,ε,+

N , µ
a,F,ε
N and µa,F,ε,+

N can be treated
similarly. We may thus assume that d = r and m = 0. In particular, M = {0} and,
therefore, the unnormalized rate functional should have the form

�(h) = 1

2

∫

D

|ḣ(t)|2dt − ξ |{t ∈ D; h(t) = 0}|. (4.3)

4.2.3 Estimates via stochastic domination

The proof of the lower bound in Theorem 4.1 will be reduced to the following estimates
for the measures with pinning starting at 0, see Sect. 4.3.1 below.

Proposition 4.3 For every δ > 0, there exist C, c > 0 such that

µεN (‖hN ‖∞ ≥ δ) ≤ Ce−cN

for µεN = µ
0,0,ε
N , µ

0,0,ε,+
N , µ

0,F,ε
N and µ0,F,ε,+

N .

The idea of the proof of Proposition 4.3 is simple. We will apply a coupling
argument. For instance, under µ0,F,ε

N , the Markov chains φε = (φεi )i∈DN occasio-
nally jump to the origin 0 ∈ R

d . It is therefore natural to expect to have a coupling,
compared with the Markov chains φ0 = (φ0

i )i∈DN without pinning distributed under

µ
0,F,0
N (i.e., ε = 0), such that |φεi | ≤ |φ0

i |, i ∈ DN for Euclidean norms. This can be
shown based on the FKG inequality, see Remark 4.1-(1) below. Once such coupling
is established, the estimates stated in Proposition 4.3 are immediate from Proposition
4.2 for measures without pinning. We will actually establish the coupling not for the
Euclidean norms of the Markov chains but for one-dimensional chains obtained by
conditioning the original ones, in particular, to deal with the case with a wall.

Let X α
N and X α,+

N , 1 ≤ α ≤ d, be the sets of all ψ =
(
ψβ = (ψ

β
i )i∈DN

)

β �=α ∈
(Rd−1)DN respectively ∈ (Rd−1+ )DN such that ψβi = 0 for all β �= α if ψγi = 0

for some γ �= α and i . Note that µ0,0,ε
N (X α

N ) = µ
0,F,ε
N (X α

N ) = 1 for 1 ≤ α ≤ d,

123



470 E. Bolthausen et al.

µ
0,0,ε,+
N (X α,+

N ) = µ
0,F,ε,+
N (X α,+

N ) = 1 for 1 ≤ α ≤ d − 1 and µ0,0,ε,+
N (X d

N ) =
µ

0,F,ε,+
N (X d

N ) = 1.

For 1 ≤ α ≤ d and ψ ∈ X α,(+)
N satisfying ψ0 = ψN = 0 in the Dirichlet case

and ψ0 = 0 in the free case, let νε,αN ,ψ (more precisely, ν0,0,ε,α
N ,ψ , ν

0,0,ε,α,+
N ,ψ , ν

0,F,ε,α
N ,ψ and

ν
0,F,ε,α,+
N ,ψ ) be the conditional distribution on the space YN = R

DN (or Y+
N = R

DN+ ) of

the αth coordinate φα = (φαi )i∈DN underµεN (= µ
0,0,ε
N , µ

0,0,ε,+
N , µ

0,F,ε
N andµ0,F,ε,+

N ,

respectively) under the condition that the other coordinates
(
φβ = (φ

β
i )i∈DN

)

β �=α
satisfy φβ = ψβ for 1 ≤ β �= α ≤ d. For instance, we set ν0,0,ε,α

N ,ψ (dx) =
µ

0,0,ε
N

(
φα ∈ dx

∣∣(φβ)β �=α = ψ
)

for x ∈ YN . For ψ ∈ X α,(+)
N satisfying the above

conditions, we define a probability measure ν̄N ,ψ on YN , which describes a Markov
chain in a random environment ψ , by

ν̄N ,ψ (dx) = 1

Z N ,ψ
e−∑N−1

i=0 (xi+1−xi )
2/2

∏

i∈i(ψ)

δ0(dxi )
∏

i∈DN \i(ψ)

dxi , (4.4)

where i(ψ) = {i ∈ DN ;ψi = 0}. We will write ν̄N ,ψ in two ways: ν̄0,0
N ,ψ and ν̄0,F

N ,ψ to
clarify which case we are discussing; in particular, i(ψ) ⊃ {0, N } or i(ψ) ⊃ {0} in the
Dirichlet or free cases, respectively. These measures are independent of ε and α. These
probability measures restricted on Y+

N and renormalized properly are denoted by ν̄0,0,+
N ,ψ

and ν̄0,F,+
N ,ψ , respectively. We also define the probability measures ν̃0,0

N , ν̃
0,F
N , ν̃

0,0,+
N and

ν̃
0,F,+
N by replacing i(ψ) on the right hand side of (4.4) with {0, N } in the Dirichlet

case and {0} in the free case, respectively; note that these measures are independent
of ψ . In fact, these are the same as µ0,0,0

N , µ
0,F,0
N , µ

0,0,0,+
N and µ0,F,0,+

N (i.e., µεN with
ε = 0) in d = 1, respectively.

The following lemma gives the conditional distributions νε,αN ,ψ of µεN :

Lemma 4.4 For ε > 0, we have that

1. ν
0,0,ε,α
N ,ψ = ν̄

0,0
N ,ψ (µ

0,0,ε
N -a.s.ψ), ν0,F,ε,α

N ,ψ = ν̄
0,F
N ,ψ (µ

0,F,ε
N -a.s.ψ), 1 ≤ α ≤ d,

2. ν
0,0,ε,α,+
N ,ψ = ν̄

0,0
N ,ψ (µ

0,0,ε,+
N -a.s.ψ), ν0,F,ε,α,+

N ,ψ = ν̄
0,F
N ,ψ (µ

0,F,ε,+
N -a.s.ψ), 1 ≤

α ≤ d − 1,
3. ν

0,0,ε,d,+
N ,ψ = ν̄

0,0,+
N ,ψ (µ

0,0,ε,+
N -a.s.ψ), ν0,F,ε,d,+

N ,ψ = ν̄
0,F,+
N ,ψ (µ

0,F,ε,+
N -a.s.ψ).

Proof Conditioned by the σ -field F0 = σ {φi = 0, i ∈ DN } of XN = (Rd)DN ,
random variables φα and (φβ)β �=α are mutually independent under µ0,0,ε

N . Thus, for
every F = F(φα) and G = G((φβ)β �=α), we have

Eµ
0,0,ε
N [FG] = Eµ

0,0,ε
N

[
Eµ

0,0,ε
N [F |F0]Eµ

0,0,ε
N [G|F0]

]

= Eµ
0,0,ε
N

[
E
ν̄

0,0
N ,(φβ )β �=α [F]G

]
.

This completes the proof of the first identity in (1). The rest is similar. ��
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The space Y+
N is equipped with a natural partial order x ≤ y for x = (xi )i∈DN , y =

(yi )i∈DN ∈ Y+
N defined by xi ≤ yi for every i ∈ DN . For two probability measures

ν1 and ν2 on Y+
N , we say that ν2 stochastically dominates ν1 and write ν1 ≤ ν2 if

Eν1 [F] ≤ Eν2 [F] holds for all bounded non-decreasing (in the above partial order)
functions F on Y+

N . Note that ν1 ≤ ν2 is equivalent to the existence of two Y+
N -valued

random variables X and Y , realized on a common probability space and distributed
under ν1 and ν2 (X ∼ ν1,Y ∼ ν2), respectively, in such a manner that X ≤ Y a.s.,
see [13,19]. Let R : YN → Y+

N be the mapping defined by Rx = (|xi |)i∈DN ∈ Y+
N

for x = (xi )i∈DN ∈ YN .

Lemma 4.5 (Stochastic domination) For all ε > 0 and ψ , we have that

ν̄
0,0
N ,ψ ◦ R−1 ≤ ν̃

0,0
N ◦ R−1, ν̄

0,F
N ,ψ ◦ R−1 ≤ ν̃

0,F
N ◦ R−1,

ν̄
0,0,+
N ,ψ ≤ ν̃

0,0,+
N , ν̄

0,F,+
N ,ψ ≤ ν̃

0,F,+
N ,

where ν ◦ R−1 stands for the image measure of ν under the mapping R.

Proof All four probability measures on the right hand side satisfy the FKG inequality.
In fact, since x = (xi )i∈DN is a reflecting Brownian motion (i.e., one-dimensional
Bessel process) viewed at integer times under ν̃0,F

N ◦ R−1 and a pinned reflecting

Brownian motion under ν̃0,0
N ◦ R−1, the measures ν̃0,0

N ◦ R−1 and ν̃0,F
N ◦ R−1 satisfy

the FKG inequality; see Sect. 5.3 of [10] for the FKG inequality for Bessel processes.
On the other hand, the densities of ν̃0,0

N and ν̃0,F
N fulfill the Holley’s condition on YN

(since x is a Brownian motion or a pinned Brownian motion under these measures, see
[10,13]), and therefore their restrictions ν̃0,0,+

N and ν̃0,F,+
N satisfy the same condition

on Y+
N . This implies the FKG inequality for ν̃0,0,+

N and ν̃0,F,+
N .

The four probability measures on the left hand side are given by the weak limits of
probability measures having non-increasing densities with respect to the corresponding
measures on the right hand side. For instance, we have

ν̄
0,0
N ,ψ ◦ R−1 = lim

θ↓0
νθ;N ,ψ ,

where νθ;N ,ψ (dx) = ∏
i∈i(ψ) fθ (xi ) ν̃

0,0
N ◦ R−1(dx)/Zθ;N ,ψ with a suitable normali-

zing constant Zθ;N ,ψ and a non-negative non-increasing function fθ on R+ such that
fθ (x)dx weakly converges to δ0(dx) as θ ↓ 0. Since the FKG inequality for ν̃0,0

N ◦ R−1

implies the stochastic domination νθ;N ,ψ ≤ ν̃
0,0
N ◦ R−1, by taking the limit θ ↓ 0, we

have that ν̄0,0
N ,ψ ◦ R−1 ≤ ν̃

0,0
N ◦ R−1. The other three stochastic dominations can be

shown similarly. ��
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Proof of Proposition 4.3 The conclusion follows by

µεN (‖hN ‖∞ ≥ δ) ≤
d∑

α=1

µεN (‖hN ,α‖∞ ≥ δ/
√

d)

=
d∑

α=1

Eµ
ε
N

[
µεN

(
‖hN ,α‖∞ ≥ δ/

√
d
∣∣(φβ)β �=α

)]

≤
d∑

α=1

ν̃N (‖hN ‖∞ ≥ δ/
√

d) ≤ Ce−cN ,

where hN ,α is the αth coordinate of hN ∈ C, and ν̃N = ν̃
0,0
N , ν̃

0,0,+
N , ν̃

0,F
N and ν̃0,F,+

N

according as µεN = µ
0,0,ε
N , µ

0,0,ε,+
N , µ

0,F,ε
N and µ0,F,ε,+

N , respectively. In the third
line, we have first used Lemmas 4.4 and 4.5, and then applied Proposition 4.2 with
a, b = 0 and d = 1. ��
Remark 4.1 1. At least under the absence of a wall, one can show the stochastic

domination for the Euclidean norms of Markov chains:

µ
0,0,ε
N ◦ R̄−1 ≤ µ

0,0,0
N ◦ R̄−1 and µ

0,F,ε
N ◦ R̄−1 ≤ µ

0,F,0
N ◦ R̄−1, (4.5)

where R̄ : (Rd)DN → Y+
N is defined by Rφ = (|φi |)i∈DN ∈ Y+

N for φ =
(φi )i∈DN ∈ (Rd)DN . In fact, (|φi |)i∈DN is a d-dimensional Bessel process viewed
at integer times under µ0,F,0

N , and therefore µ0,F,0
N ◦ R̄−1 and µ0,0,0

N ◦ R̄−1 (i.e.,
ε = 0) satisfy the FKG inequality, see Sect. 5.3 of [10]. Then, (4.5) is shown by
expressing µ0,0,ε

N ◦ R̄−1 as a weak limit of a sequence of probability measures

having non-increasing densities with respect to µ0,0,0
N ◦ R̄−1 as in the proof of

Lemma 4.5. The free case is similar.
2. Proposition 4.3 can be shown due to the renewal theory. This method is applicable

to the situation that the FKG inequality does not work.
3. What we needed in Sect. 3 are, in fact except (3.15), only the estimates given in

Proposition 4.3 rather than the full large deviation principle.

4.3 Proof of Theorem 4.1 for µD,ε
N

We first note that, for the proof of Theorem 4.1 for µD,ε
N , it is enough to show the

following two estimates for every g ∈ H1
a,b(D):

lim inf
N→∞

1

N
logµD,ε

N (‖hN − g‖∞ < δ) ≥ −I D,ε(g), (4.6)

for every δ > 0, and

lim sup
N→∞

1

N
logµD,ε

N (‖hN − g‖∞ < δ) ≤ −I D,ε(g)+ θ, (4.7)
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for every θ > 0 with some δ > 0 (depending on θ ), where I D,ε is defined by (4.1)
with � = �D,ε and H = H1

a,b(D). This step of reduction is standard, for instance,
see (6.6) and the estimate just above (6.11) in [12].

4.3.1 Lower bound

Let JK , K ≥ 1 be the family of all j = { j p
1 , j p

2 ∈ N}K
p=1 such that 0 < j1

1 ≤ j1
2 <

j2
1 ≤ j2

2 < · · · < j K
1 ≤ j K

2 < N . For j ∈ JK , K ≥ 1, we set


εN ,j = 1

Z D,ε
N

Za,0
j1
1

·
K∏

p=1

Z0,0,ε
j p
2 − j p

1
·

K−1∏

p=1

Z0,0

j p+1
1 − j p

2

· Z0,b
N− j K

2

and

�εN ,j(g; δ) = µ
a,0
j1
1

(
‖hN − g‖∞,[0, j1

1 /N ]<δ
)

·
K∏

p=1

µ
0,0,ε
j p
2 − j p

1

(
‖hN ‖∞,[ j p

1 /N , j p
2 /N ]<δ

)

×
K−1∏

p=1

µ
0,0

j p+1
1 − j p

2

(
‖hN − g‖∞,[ j p

2 /N , j p+1
1 /N ] < δ

)

×µ0,b
N− j K

2
(‖hN − g‖∞,[ j K

2 /N ,1] < δ),

where g ∈ H1
a,b(D); note that g is not appearing in the second term of �εN ,j(g; δ).

We say that a sequence jN = { j p,N
1 , j p,N

2 }K
p=1 ∈ JK is macroscopically t =

{t p
1 , t p

2 }K
p=1 ∈ TK if limN→∞ j p,N


 /N = t p

 hold for every 1 ≤ p ≤ K and 
 = 1, 2,

where TK is a family of all t such that 0 < t1
1 < t1

2 < t2
1 < t2

2 < · · · < t K
1 < t K

2 < 1.
We now assume that g ∈ H1

a,b(D) satisfies the condition:

{t ∈ D; g(t) = 0} =
K⋃

p=1

[t p
1 , t p

2 ] with t ∈ TK . (4.8)

Lemma 4.6 If a sequence jN is macroscopically t and if g ∈ H1
a,b(D) satisfies (4.8),

we have

1. limN→∞ 1
N log
εN ,jN

= ξ
∑K

p=1(t
p
2 − t p

1 )−�0(a, b; t1
1 , t K

2 )+ inf H1
a,b(D)

�(h),

2. lim inf N→∞ 1
N log�εN ,jN

(g; δ) ≥ −�0(g)+�0(a, b; t1
1 , t K

2 ),

for every δ > 0, where ξ = ξε and �0(a, b; t1
1 , t K

2 ) = {|a|2/t1
1 + |b|2/(1 − t K

2 )
}
/2.

Proof The first task for (1) is to calculate the limit as N → ∞ of ratio of two partition
functions Za,b

N and Z D,ε
N up to an exponential order. To this end, we recall the expansion
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(3.4) which implies by letting δ → ∞

Z D,ε
N

Za,b
N

= 1 +
∑

j∈D◦
N

ε
εN , j, j +
∑

0< j<k<N

ε2
εN , j,k .

However, from (3.7) and Proposition 2.2, 
εN , j, j and 
εN , j,k behave as

e−N f̃ (s1,s2)+Nξ(1−s1−s2)

except algebraic factors as N → ∞, where s1 = j/N , s2 = (N − k)/N (we regard
k = j for
εN , j, j ) and f̃ (s1, s2) is given by (3.8). Let ĥs1,s2 ∈ C, 0 < s1 ≤ 1 − s2 < 1

be the function ĥD,(2) defined by (1.8) with t1, t2, a(2), b(2) replaced by s1, s2, a, b,
respectively. Then, since

f̃ (s1, s2)− ξ(1 − s1 − s2) = �(ĥs1,s2)−�0(h̄
D),

and also by Lemma 1.2, we obtain that

lim
N→∞

1

N
log

Za,b
N

Z D,ε
N

= −
[

0 ∨ sup
0<s1≤1−s2<1

{
−�(ĥs1,s2)+�0(h̄

D)
}]

= −�0(h̄
D)+ inf

H1
a,b(D)

�(h). (4.9)

The equality (1) follows from (4.9) and Proposition 2.2 recalling (3.3) (with r = d).
The inequality (2) is a consequence of Propositions 4.2 and 4.3 noting the condition
(4.8). ��

We are now in a position to conclude the proof of the LD lower bound (4.6) for
µ

D,ε
N . We may assume the condition (4.8) for g ∈ H1

a,b(D), cf. [12]; if K = 0 (i.e.,
g(t) �= 0 for all t ∈ D), (4.6) follows from Proposition 4.2 and (4.9). Determine jN

from t in (4.8) by j p,N

 = [Nt p


 ], 1 ≤ p ≤ K , 
 = 1, 2, which is macroscopically t.
Then, we have

µ
D,ε
N (‖hN − g‖∞ < δ) ≥ ε2K
εN ,jN

�εN ,jN
(g; δ), (4.10)

by noting that g = 0 on [t p
1 , t p

2 ]. In fact, this follows by restricting the probability on
the left hand side on the event {φ

j p,N



= 0 for all 1 ≤ p ≤ K , 
 = 1, 2} ∩ {φi �= 0 for

all i ∈ ∪K
p=0[ j p,N

2 , j p+1,N
1 ] ∩ Z}, where j0,N

2 = 0 and j K+1,N
1 = N . The LD lower

bound (4.6) is shown from Lemma 4.6 and (4.10) for g satisfying (4.8). The rest of
the proof is similar to [12], Proof of Theorem 2.2, Step 1.

Remark 4.2 We have implicitly assumed that a �= 0 and b �= 0. The proof can be
easily modified when a = 0 or b = 0. Indeed, if a = 0, we take j1

1 = 0 for j ∈ JK
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and remove the first factors Za,0
j1
1

from 
εN ,j and µa,0
j1
1
(‖hN − g‖∞,[0, j1

1 /N ] < δ) from

�εN ,j(g; δ), respectively. The factor |a|2/t1
1 does not appear in �0(a, b; t1

1 , t K
2 ) in

Lemma 4.6. Similar modification is possible when b = 0, and the LD lower bound
can be shown when a = 0 or b = 0.

4.3.2 Upper bound

Let g ∈ H1
a,b(D) be a function satisfying the condition:

for every γ > 0 small enough,

{t ∈ D; |g(t)| ≤ γ } =
K⋃

p=1

[t p,γ
1 , t p,γ

2 ] (=: I γ
)

with tγ = {t p,γ
1 , t p,γ

2 }K
p=1 ∈ TK .

(4.11)

Then, if 0 < δ < γ , since |g(t)| > γ implies on the event ‖hN − g‖∞ < δ that
|hN (t)| > γ − δ > 0 and therefore φi �= 0 for i ∈ N (I γ )c ∩ Z, we have

µ
D,ε
N (‖hN − g‖∞ < δ) ≤ Za,b

N

Z D,ε
N

µ
a,b
N (‖hN − g‖∞ < δ)

+
K∑

k=1

ε2k
∑

j∈Jk (tγ )


εN ,j�
ε
N ,j(g; δ + γ ). (4.12)

Here, for t ∈ TK and 1 ≤ k ≤ K , j = { j p
1 , j p

2 }k
p=1 ∈ Jk(t) means that there exists

s = {s p
1 , s p

2 }k
p=1 ∈ Tk such that s ⊂ t and s p

1 ≤ j p
1 /N ≤ j p

2 /N ≤ s p
2 for every

1 ≤ p ≤ k.
We elaborate the results in Lemma 4.6 to some extent, i.e., we need uniform upper

bounds for 
εN ,j and �εN ,j(g; δ). For γ̃ > 0, let Tk,γ̃ be the set of all t ∈ Tk such that

t p
2 − t p

1 ≥ γ̃ (1 ≤ p ≤ k) and t p
1 − t p−1

2 ≥ γ̃ (1 ≤ p ≤ k + 1), where t0
2 = 0 and

tk+1
1 = 1. The function g ∈ H1

a,b(D) satisfying the condition (4.11) is fixed in the
next lemma.

Lemma 4.7 For every γ̃ > 0 and θ > 0, there exist δ > 0, N0 ≥ 1 and η > 0 such
that

1. 
εN ,j ≤ exp
{

N
(
ξ
∑k

p=1(t
p
2 −t p

1 )−�0(a, b; t1
1 , tk

2 )+inf H1
a,b(D)

�(h)+θ
)}
,

2. �εN ,j(g; δ) ≤ exp
{

N
(
− 1

2

∫
D\I |ġ(t)|2dt +�0(a, b; t1

1 , tk
2 )+ θ

)}
,

hold for all N ≥ N0 and j ∈ Jk , t ∈ Tk,γ̃ , k ≥ 1, satisfying | j p

 /N − t p


 | ≤ η for each
1 ≤ p ≤ k and 
 = 1, 2, where I = ∪k

p=1[t p
1 , t p

2 ].
Proof The bound (1) is shown by looking over each step of the proof of Lemma 4.6-(1)
attentively; we omit the details. To show the bound (2), since the second term (i.e., the
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product of probabilities under µ0,0,ε
j p
2 − j p

1
) of �εN ,j(g; δ) is estimated by 1 from above,

we may deal with other terms. Since those terms can be treated essentially in a same
way, we discuss only the first term denoting j1

1 simply by j . Choose a sufficiently
small η > 0 (in particular, η < δ ∧ 1) in such a manner that |g(s)− g(t)| ≤ δ holds
for |s − t | ≤ η. Then, we have

I j
N (δ) := µ

a,0
j (‖hN − g‖∞,[0, j/N ] < δ) = µ

a,0
j

(∥∥∥∥
j

N
h j (·)− g

(
j

N
·
)∥∥∥∥∞

< δ

)
,

where hN (t) on the left hand side is defined for t ∈ [0, j/N ] while h j (t) on the right
is for t ∈ D = [0, 1], and this implies the following uniform estimate in j satisfying
| j/N − s| ≤ η with s = t1

1 :

µ
a,0
j (‖hN − g‖∞,[0, j/N ] < δ) ≤ µ

a,0
j (h j ∈ Aδ),

where Aδ = {h ∈ C; ‖h(·)− g(s·)/s‖∞ < cδ} for some c > 0. Indeed, one can take
c = (2s + ‖g‖∞) /s(s − η) by estimating

‖h(·)− g(s·)/s‖∞ ≤ ‖h(·)− g(u·)/u‖∞ + ‖g(u·)− g(s·)‖∞/u
+|u−1 − s−1| ‖g‖∞,

for u = j/N . Since the event Aδ is independent of j , from Proposition 4.2, this leads
to the uniform upper bound for I j

N (δ):

I j
N (δ) ≤ exp

⎧
⎨

⎩N

⎛

⎝−1

2

s∫

0

|ġ(t)|2dt + |a|2
2s

+ θ

⎞

⎠

⎫
⎬

⎭

for N large enough, δ > 0 small enough and all j satisfying | j/N − s| ≤ η. Thus,
repeating this procedure for other terms, we obtain the upper bound (2). ��

The LD upper bound (4.7) follows from (4.12) and Lemma 4.7 for g ∈ H1
a,b(D)

satisfying the condition (4.11) by choosing γ > 0 sufficiently small. The rest of the
proof is similar to [12], Proof of Theorem 2.2, Step 2.

4.4 Proof of Theorem 4.1 for µD,ε,+
N , µ

F,ε
N and µF,ε,+

N

For µF,ε
N , we modify the definition of
εN ,j and�εN ,j(g; δ) by replacing their first/last

terms with 1/Z F,ε
N , Z0,F

N− j K
2

and µ0,F
N− j K

2
(‖hN − g‖∞,[ j K

2 /N ,1] < δ), respectively. The

modification is also clear under the presence of a wall. Then, one can follow the steps
presented in Sect. 4.3 and obtain Theorem 4.1 for µD,ε,+

N , µ
F,ε
N and µF,ε,+

N .
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Appendix A: Critical exponents for the free energies

Here we study the asymptotic behavior of the free energies ξεr and ξε,+r near the
critical values εc = εc,r and ε+c = ε+c,r , respectively. In general, when the physical
order parameter exhibits a power law behavior in ε close to its critical value, the power
is called the critical exponent. Our results give such critical exponents associated with
the free energies.

Recall that the free energies ξεr and ξε,+r are defined by the thermodynamic limits

(1.4) and characterized by the equations: gr (e−ξεr ) = g+
r (e

−ξε,+r ) = 1/ε. We put the
subscripts r for gr and g+

r to indicate their dependence on r . These functions are
defined by (2.2) and (2.10), respectively, i.e., gr (x) = fr (x)/(2π)r/2 and g+

r (x) =
fr+2(x)/(2π)r/2, where fr is the so-called polylogarithm given by the power series:

fr (x) =
∞∑

n=1

xn

nr/2 (A.1)

for 0 ≤ x < 1 (or 0 ≤ x ≤ 1). The critical values εc,r and ε+c,r are determined by εc,r =
1/gr (1) and ε+c,r = 1/g+

r (1) as in (2.3) and (2.11), respectively. Recall that εc,r = 0
for r = 1, 2, εc,r = (2π)r/2/ζ(r/2) > 0 for r ≥ 3 and ε+c,r = (2π)r/2/ζ(r/2+1) > 0
for all r ≥ 1, where ζ is the Riemann’s ζ -function.

The results of this section are summarized in the following proposition.

Proposition A.1 1. (Absence of wall) As ε ↓ εc,r , we have that

ξεr ∼

⎧
⎪⎪⎨

⎪⎪⎩

Cr (ε − εc,r )
2, r = 1, 3,

e−2π/ε, r = 2,
C4 ϕ(ε − εc,4), r = 4,
Cr (ε − εc,r ), r ≥ 5,

where C1 = 1/2,C3 = 2π2/ε4
c,3, C4 = 4π2/ε2

c,4, Cr = 2πεc,r−2/ε
2
c,r for r ≥ 5 and

ϕ(x) = −x/ log x for sufficiently small x > 0.
2. (Presence of wall) As ε ↓ ε+c,r , we have that

ξε,+r ∼
⎧
⎨

⎩

C+
1 (ε − ε+c,1)2, r = 1,

C+
2 ϕ(ε − ε+c,2), r = 2,

C+
r (ε − ε+c,r ), r ≥ 3,

where C+
1 = (2π)2C3

(
= 1/2(ε+c,1)4

)
, C+

2 = 2πC4

(
= 2π/(ε+c,2)2

)
and C+

r =
2πCr+2

(
= 2πε+c,r−2/(ε

+
c,r )

2
)

for r ≥ 3.

Remark A.1 Proposition A.1 indicates that the critical exponents κr and κ+
r associated

with the free energies ξεr and ξε,+r , respectively, are given by κ1 = 2, κ2 = ∞, κ3 = 2,
κ4 = 1+ and κr = 1 for r ≥ 5, while κ+

1 = 2, κ+
2 = 1+ and κ+

r = 1 for r ≥ 3. Here
κ = ∞ means that the free energy vanishes faster than any power of ε, and κ = 1+
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means that the exponent is 1 with a logarithmic correction. The asymptotic behavior
of ξε1 is studied in [2].

Lemma A.2 We have that 2πε+c,r = εc,r+2 and ξε,+r = ξ2πε
r+2 for all ε ≥ 0 and r ≥ 1.

Proof The conclusion is immediate from the relation g+
r (x) = 2πgr+2(x). ��

The following asymptotics for the functions fr as x ↑ 1 may be well-known, but
we give the proof for the completeness.

Lemma A.3 As x ↑ 1, we have that

f1(x) ∼ √
π(1 − x)−1/2,

f2(x) = − log(1 − x),

f3(1)− f3(x) ∼ 2
√
π(1 − x)1/2,

f4(1)− f4(x) ∼ −(1 − x) log(1 − x),

fr (1)− fr (x) ∼ ζ(r/2 − 1)(1 − x), r ≥ 5.

Proof The result for f1 is a consequence of the Tauberian theorem, see [7], Theorem 5,
p. 447. When r = 2, (A.1) is nothing but the Taylor expansion of − log(1 − x) at
x = 0. For r = 3 and 4, the relation x f ′

r (x) = fr−2(x) for 0 < x < 1 implies

fr (1)− fr (x) =
1∫

x

fr−2(y)

y
dy,

and this combined with the results for f1 and f2 shows the asymptotics for f3 and f4. If
r ≥ 5, fr is differentiable at x = 1 from the left and f ′

r (1−) = fr−2(1) = ζ((r−2)/2).
This shows the last asymptotic formula. ��
Proof of Proposition A.1 The assertion (1) follows from Lemma A.3 recalling that
fr (e−ξεr ) = (2π)r/2/ε. Note that 1 − e−ξεr ∼ ξεr as ε ↓ εc,r and, if r ≥ 3 in addition,
fr (1) = (2π)r/2/εc,r . Also note that ψ−1(x) ∼ ϕ(x) holds as x ↓ 0 for the inverse
function ψ−1 of ψ(ξ) = −ξ log ξ defined for small enough ξ > 0. The assertion (2)
follows from (1) combined with Lemma A.2. ��

Appendix B: Structure of minimizers in d = 1

In this section, we consider the case where d = 1 and m = 0 so that a, b ∈ R, and
clarify the structure of the set of minimizers of� = �D, �D,+, �F and�F,+. Indeed,
for each ξ > 0, the minimizers of �D (or �D,+) are completely characterizable in
terms of (a, b) ∈ R

2 (or (a, b) ∈ R
2+), and those of �F (or �F,+) in a ∈ R (or

a ∈ R+) as well. The result is summarized in the following proposition. In particular,
if a and b have different signs, �D (or �D,+) admits a unique minimizer h∗. We
simply write ξ, h̄ and ĥ omitting the superscripts D, F, ε and +.
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Proposition B.1 Assume that ξ > 0, namely, ε > 0 is arbitrary under the absence of
wall and ε > ε+c under the presence of wall.
1. (Dirichlet case) Let O be the bounded open region of R

2 surrounded by its boundary
C1 ∪ C2, where C1 = {√|a| + √|b| = (2ξ)1/4, ab > 0} and C2 = {|a| + |b| =
(2ξ)1/2, ab ≤ 0}, which consists of four curves (see Fig. A). Then, the set HD of all
minimizers of �D (or �D,+) is given as follows: HD = {ĥ} on O, HD = {h̄} on
R

2 \ Ō, HD = {ĥ, h̄} on C1 and HD = {h̄} on C2. Note that ĥ = h̄ on C2 ∪ {(0, 0)}
and ĥ �= h̄ on C1.
2. (Free case) Let HF be the set of all minimizers of �F (or �F,+). Then, HF = {ĥ}
on {|a| < √

ξ/2}, HF = {h̄} on {|a| > √
ξ/2} and HF = {ĥ, h̄} on {|a| = √

ξ/2}.
Note that ĥ = h̄ at a = 0 and ĥ �= h̄ at |a| = √

ξ/2.

Fig. A

Proof We first give the proof of (1) assuming a, b > 0. If a + b ≥ √
2ξ in addition,

then h̄ is the minimizer since it is the unique candidate in this case. If a + b <
√

2ξ ,
noting that

�(ĥ) = a2

2t1
+ b2

2t2
− ξ(1 − t1 − t2) = √

2ξ(a + b)− ξ

by Young’s relation, we have

2
{
�(h̄)−�(ĥ)

}
= a2 − 2a(b + 2ξ)+

(
b −√

2ξ
)2
.

Therefore, we easily see that �(h̄) = �(ĥ) is equivalent to
√

a + √
b = (2ξ)1/4

(noting that a + b <
√

2ξ ) and the conclusion of (1) follows when a, b > 0. The
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case where a, b < 0 can be reduced to this case by symmetry. The case where a > 0
and b < 0 is also a simple computation. The minimizers of �F (or �F,+) are easily
studied so that the proof of (2) is immediate. ��
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