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Abstract In this paper we study the problem of adaptive estimation of a multivari-
ate function satisfying some structural assumption. We propose a novel estimation
procedure that adapts simultaneously to unknown structure and smoothness of the
underlying function. The problem of structural adaptation is stated as the problem of
selection from a given collection of estimators. We develop a general selection rule
and establish for it global oracle inequalities under arbitrary Lp-losses. These results
are applied for adaptive estimation in the additive multi-index model.
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1 Introduction

1.1 Motivation

In this paper we study the problem of minimax adaptive estimation of an unknown
function F : R

d → R in the multidimensional Gaussian white noise model
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42 A. Goldenshluger, O. Lepski

Y (dt) = F(t)dt + εW (dt), t = (t1, . . . , td) ∈ D, (1)

where D ⊃ [−1/2, 1/2]d is an open interval in R
d , W is the standard Brownian sheet

in R
d and 0 < ε < 1 is the noise level. Our goal is to estimate the function F on the set

D0 := [−1/2, 1/2]d from the observation {Y (t), t ∈ D}. We consider the observation
set D which is larger than D0 in order to avoid discussion of boundary effects. We
would like to emphasize that such assumptions are rather common in multivariate
models (see, e.g., [5,12]).

To measure performance of estimators, we will use the risk function determined
by the Lp-norm ‖ · ‖p, 1 ≤ p ≤ ∞ on D0: for F : R

d → R, 0 < ε < 1, and for an
arbitrary estimator F̃ based on the observation {Y (t), t ∈ D} we consider the risk

Rp[F̃; F] = EF ||F̃ − F ||p.

Here and in what follows EF denotes the expectation with respect to the distribution
PF of the observation {Y (t), t ∈ D} satisfying (1).

We will suppose that F ∈ Gs , where {Gs, s ∈ S} is a collection of functional classes
indexed by s ∈ S. The choice of this collection is a delicate problem, and below we
discuss it in detail.

For a given class Gs we define the maximal risk

Rp[F̃;Gs] = sup
g∈Gs

Rp[F̃; F], (2)

and study asymptotics (as the noise level ε tends to 0) of the minimax risk

inf
F̃

Rp[F̃;Gs]

where inf F̃ denotes the infimum over all estimators of F . At this stage, we suppose
that parameter s is known, and therefore the functional class Gs is fixed. In other
words, we are interested in minimax estimation of F . The important remark in this
context is that the minimax rate of convergence φε(s) on Gs (the rate which satisfies
φε(s) � inf F̃ Rp[F̃;Gs]) as well as the estimator attaining this rate (called the rate
optimal estimator in asymptotic minimax sense) depend on the parameter s. This
dependence restricts application of the minimax approach in practice. Therefore, our
main goal is to construct an estimator which is independent of s and achieves the
minimax rate φε(s) simultaneously for all s ∈ S. Such an estimator, if it exists, is
called optimally adaptive on S.

Let us discuss now the choice of the collection {Gs, s ∈ S}. It is well known that
the main difficulty in estimation of multivariate functions is the curse of dimension-
ality: the best attainable rate of convergence of estimators becomes very slow, as the
dimensionality grows. To illustrate this effect, suppose, for example, that the underly-
ing function F belongs to Gs = Hd(α, L), s = (α, L), α > 0, L > 0, where Hd(α, L)
is an isotropic Hölder ball of functions. We give the exact definition of this functional
class later. Here we only mention that Hd(α, L) consists of functions g with bounded
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partial derivatives of order ≤ �α	 and such that, for all x, y ∈ D,

∣
∣g(y)− Pg(x, y − x)

∣
∣ ≤ L|x − y|α,

where Pg(x, y−x) is the Taylor polynomial of order ≤ �α	 obtained by expansion of g
around the point x , and | · | is the Euclidean norm in R

d . The parameter α characterizes
the isotropic (i.e., the same in each direction) smoothness of the function g.

If we use the risk (2), uniformly on Hd(α, L) the rate of convergence of estimators
cannot be asymptotically better than

ψε,d(α) =
{
ε2α/(2α+d), p ∈ [1,∞)

(ε
√

ln ε−1)2α/(2α+d) p = ∞.
(3)

(cf. [3,16,26,29,30]). This is the minimax rate on Hd(α, L): in fact, it can be achieved
by a kernel estimator with properly chosen bandwidth and kernel. More general results
on asymptotics of the minimax risks in estimation of multivariate functions can be
found in Kerkyacharian et al. [21] and Bertin [3]. It is clear that if α is fixed then
even for moderate d the estimation accuracy is very poor unless the noise level ε is
unreasonably small.

This problem arises because the d-dimensional Hölder ball Hd(α, L) is too massive.
A way to overcome the curse of dimensionality is to consider models with smaller
functional classes Gs . Clearly, if the class of candidate functions F is smaller, the rate
of convergence of estimators is faster. Note that the massiveness of a functional class
can be described in terms of restrictions on its metric entropy. There are nevertheless
several ways to do it.

1.2 Structural adaptation

In this paper we will follow the modeling strategy which consists in imposing
additional structural assumptions on the function to be estimated. This approach
was pioneered by Stone [31] who discussed the trade-off between flexibility and
dimensionality of nonparametric models and formulated the heuristic dimensionality
reduction principle. The main idea is to assume that even though F is a d-dimensional
function, it has a simple structure such that F is effectively m-dimensional with m < d.
The standard examples of structural nonparametric models are the following.

(i) Single-index model. Let e be a direction vector in R
d , and assume that F(x) =

f (eT x) for some unknown univariate function f .
(ii) Additive model. Assume that F(x) = ∑d

i=1 fi (xi ), where fi are unknown
univariate functions.

(iii) Projection pursuit regression. Let e1, . . . , ed be direction vectors in R
d , and

assume that F(x) =∑d
i=1 fi (eT x), where fi are as in (ii).

(iv) Multi-index model. Let e1, . . . , em , m < d are direction vectors and assume
that F(x) = f (eT

1 x, . . . , eT
m x) for some unknown m-dimensional function f .

In the first three examples the function F is effectively one-dimensional, while in
the fourth one it is m-dimensional. The heuristic dimensionality reduction principle
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44 A. Goldenshluger, O. Lepski

by Stone [31] suggests that the optimal rate of convergence attainable in structural
nonparametric models should correspond to the effective dimensionality of F .

Let us make the following important remark.
The estimation problem in the models of types (i), (iii) and (iv) can be viewed

as the problem of adaptation to unknown structure (structural adaptation). Indeed,
if the direction vectors are given then, after a linear transformation, the problem is
reduced either to the estimation problem in the additive model (cases (i) and (iii))
or to the estimation of an m-variate function. This explains the form of minimax
rate of convergence. The main problem however is to find an estimator that adjusts
automatically to unknown direction vectors. For this purpose one can consider a family
of estimators parameterized by direction vectors and to select an estimator from this
family. Our approach to the problem of structural adaptation is based on selection of
estimators from large parameterized collections.

1.3 Lp-norm oracle inequalities

Suppose that we are given a collection of estimators {F̂θ , θ ∈ � ⊂ R
m} based on

the observation {Y (t), t ∈ D}. In the previous examples parameter θ could be, for
instance, the unknown matrix E = (e1, . . . , ed) of the direction vectors, θ = E , and
F̂E could be a kernel estimator constructed under hypothesis that E and the smoothness
of the functional components are known (a kernel estimator with fixed bandwidth).

With each estimator F̂θ and unknown function F we associate the risk Rp[F̂θ ; F].
The problem is to construct an estimator, say, F̂∗ such that for all F obeying given
smoothness conditions one has

Rp[F̂∗; F] ≤ L inf
θ∈�Rp[F̂θ ; F], (4)

where L is an absolute constant independent of F and ε. Following the modern sta-
tistical terminology we will call the inequality (4) the Lp-norm oracle inequality.

Returning to our example with θ = E we observe that being established, the L p-
norm oracle inequality leads immediately to the minimax result for any given value
of smoothness parameter (α, L). In particular, we can state that the estimator F̂∗ is
adaptive with respect to unknown structure.

It is important to realize that the same strategy allows to avoid dependence of
estimation procedures on smoothness. To this end it is sufficient

• to consider θ = (E, α, L) that leads to the collection of kernels estimators with
the non-fixed bandwidth and orientation;

• to propose an estimator F̂∗ based on this collection;
• to establish for this estimator the L p-norm oracle inequality (4) for any F ∈ L2(D)

(or on a bit smaller functional space).

Being realized, this program leads to an estimator that is adaptive with respect to
unknown structure and unknown smoothness properties. It is important to note that
such methods allow to estimate multivariate functions with high accuracy without
sacrificing flexibility of modeling.
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1.4 Objective of the paper

In this paper we state the problem of structural adaptation as the problem of selection
from a given collection of estimators. For a collection of linear estimators satisfying
rather mild assumptions we develop a novel general selection rule and establish for it
the Lp-norm oracle inequality (4). Similar ideas were used in Lepski and Levit [22],
Kerkyacharian et al. [21], Juditsky et al. [20] for pointwise adaptation. However we
emphasize that our work is the first where the Lp-norm oracle inequality is derived
directly without applying pointwise estimation results. It is precisely this fact that
allows to obtain adaptive results for arbitrary Lp-losses. The selection rule as well
as the Lp-norm oracle inequality are not related to any specific model, and they are
applicable in a variety of setups where linear estimators are appropriate. We apply
these general results to a specific collection of kernel estimators corresponding to a
general structural model that we call the additive multi-index model.

The additive multi-index model includes models (i)–(iv) as special cases. This
generalization is dictated by the following reasons. On the one hand, structural
assumptions allow to improve the quality of statistical analysis. On the other hand,
they can lead to inadequate modeling. Thus we seek a general structural model that
still allows to gain in estimation accuracy. To our knowledge the additive multi-index
model did not previously appear in the statistical literature. For this model we propose
an estimation procedure that adapts simultaneously to unknown structure and smooth-
ness of the underlying function. The adaptive results are obtained for L∞-losses and
for a scale of the Hölder type functional classes.

1.5 Connection to other works

Structural models. The heuristic dimensionality reduction principle holds for the
additive model (ii) [31], and for the projection pursuit regression model (iii) that
includes as a particular case the single-index model (i) (see [5,9]). In particular, it was
shown that in these models the asymptotics of the risk (2) with p = 2 and with Gs ,
s = (α, L), where Gs is either Hölder or Sobolev ball, is given by ψε,1(α). As we see,
the accuracy of estimation in such models corresponds to the one-dimensional rate
(d = 1).

Further results and references on estimation in models (i)–(iv) can be found, e.g.,
in Nicoleris and Yatracos [28], Györfi et al. [11, Chap. 22], and Ibragimov [17]. Let
us briefly discuss the results obtained.

• The estimators providing the rate mentioned above depend heavily on the use of
L2-losses (p = 2) in the risk definition. As a consequence, all proposed construc-
tions cannot be used for any other types of loss functions.

• Except for the paper by Golubev [9], where an estimator independent of the
parameter s = (α, L) was proposed for the model (i), all other estimators depend
explicitly on the prior information on smoothness of the underlying function.

• As far as we know no minimax results have been obtained for the model (iv). One
can guess that asymptotics of the risk (2) is given byψε,m(α)which is much better
then the d-dimensional rate ψε,d(α) since m < d.
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It is also worth mentioning that there is a vast literature on estimation of vectors
ei , when fi are treated as nonparametric nuisance parameters; (see, e.g., [12–15] and
references therein.)

Oracle approach. To understand the place of the oracle approach within the theory
of nonparametric estimation let us quote Johnstone [19]:

“Oracle inequalities are neither the beginning nor the end of a theory, but when
available, are informative tools.”

Indeed, oracle inequalities are very powerful tools for deriving minimax and minimax
adaptive results. The aim of the oracle approach can be formulated as follows: given a
collection of different estimators based on available data, select the best estimator from
the family (model selection) (see, e.g., [1]), or find the best convex/linear combination
of the estimators from the family (convex/linear aggregation) (see [27,33]). The formal
definition of the oracle requires specification of the collection of estimators and the
criterion of optimality.

The majority of oracle procedures described in the literature use the L2-risk as the
criterion of optimality. The following methods can be cited in this context: penalized
likelihood estimators, unbiased risk estimators, blockwise Stein estimators, risk hull
estimators and so on (see [1,4,10] and references therein). The most general results in
the framework of L2-risk aggregation theory were obtained by Nemirovski [27] who
showed how to aggregate arbitrary estimators.

Other oracle procedures were developed in the context of pointwise estimation;
see, e.g., [2,8,24] for the univariate case, and [21,22] for the multivariate case. More-
over [21,23] show how to derive Lp-norm oracle inequalities from pointwise oracle
inequalities. Although these Lp-norm oracle inequalities allow to derive minimax
results on rather complicated functional spaces, they do not lead to sharp adaptive
results.

Finally we mention the L1-norm oracle approach developed by Devroye and Lugosi
[6] in context of density estimation.

The rest of the paper is organized as follows. In Sect. 2 we present our general
selection rule and establish the key oracle inequality. Section 3 is devoted to adaptive
estimation in the additive multi-index model. The proofs of the mains results are given
in Sect. 4. Auxiliary results are postponed to Appendix.

2 General selection rule

2.1 Preliminaries

In what follows ‖ ·‖p stands for the Lp(D)-norm, while ‖ ·‖p,q denotes the Lp,q(D×
D0)-norm:

‖G‖p,q =
⎛

⎜
⎝

∫

D

⎛

⎜
⎝

∫

D0

|G(t, x)|pdt

⎞

⎟
⎠

q/p

dx

⎞

⎟
⎠

1/q

, p, q ∈ [1,∞]
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with usual modification when p = ∞ and/or q = ∞. We write also | · | for the
Euclidean norm, and it will be always clear from the context which Euclidean space
is meant.

Let � ⊂ R
m . Assume that we are given a parameterized family of kernels K =

{Kθ (·, ·), θ ∈ �}, where Kθ : D × D0 → R. Consider the collection of linear
estimators of F associated with family K:

F(K) =
{

F̂θ (x) =
∫

Kθ (t, x)Y (dt), θ ∈ �
}

.

Our goal is to propose a measurable choice from the collection {F̂θ , θ ∈ �} such that
the risk of the selected estimator will be as close as possible to infθ∈� Rp[F̂θ , F].

Let

Bθ (x) :=
∫

Kθ (t, x)F(t)dt − F(x), Zθ (x) :=
∫

Kθ (t, x)W (dt); (5)

then F̂θ (x) − F(x) = Bθ (x) + εZθ (x), so that Bθ (·) and εZθ (·) are the bias and
the stochastic error of the estimator F̂θ respectively. We assume that the family K of
kernels satisfies the following conditions.

(K0) For every x ∈ D0 and θ ∈ �, supp{Kθ (·, x)} ⊆ D,

∫

Kθ (t, x)dt = 1, ∀(x, θ) ∈ D0 ×�, (6)

σ(K) := sup
θ∈�

‖Kθ‖2,∞ < ∞, (7)

M(K) := sup
θ∈�

{

sup
x

‖Kθ (·, x)‖1 ∨ sup
t

‖Kθ (t, ·)‖1

}

< ∞. (8)

Remark 1 Conditions (6) and (7) are absolutely standard in the context of kernel
estimation, and only condition (8) has to be discussed. First we note that (8) is rather
mild. In particular, if the collection K contains positive kernels such that Kθ (t, x) =
Kθ (t − x) then M(K) = 1. The quantity M(K) will appear in the expression of the
constant L in the Lp-norm oracle inequality (4).

(K1) For any θ, ν ∈ �
∫

Kθ (t, y)Kν(y, x)dy =
∫

Kθ (y, x)Kν(t, y)dy ∀(x, t) ∈ D0 × D. (9)

Remark 2 Assumption K1 is crucial for the construction of our estimation procedure,
and it restricts the collection of kernels to be used. We note that property (9) is trivially
fulfilled for convolution kernels Kθ (t, x) = Kθ (t − x) that correspond to the standard
kernel estimators:

∫

Kθ (t − y)Kν(y − x)dy =
∫

Kθ (y − x)Kν(t − y)dy.
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48 A. Goldenshluger, O. Lepski

The next example describes a collection of kernels corresponding to the single-index
model.

Example Let K : R
d → R,

∫

K (t)dt = 1, E be an orthogonal matrix with the first
vector-column equal to e. Define for all h ∈ R

d+

Kh(t) =
[

d
∏

i=1

hi

]−1

K

(
t1
h1
, . . . ,

td
hd

)

.

Denote H = {h ∈ R
d+ : h = (h1, hmax, . . . , hmax), h1 ∈ [hmin, hmax]}, where the

bandwidth range [hmin, hmax] is supposed to be fixed. The collection of the kernels
corresponding to the single-index model is

K =
{

Kθ (t, x) = Kh[ET (t − x)], θ = (E, h) ∈ � = E × H ⊂ R
d
}

,

where E is the set of all d × d orthogonal matrices.
Clearly, M(K) = ‖K‖1 so that K0 is fulfilled if ‖K‖1 < ∞. Assumption K1 is

trivially fulfilled because Kθ (t, x) = Kθ (t − x).

For θ, ν ∈ � we define

Kθ,ν(t, x) :=
∫

Kθ (t, y)Kν(y, x)dy, (10)

and let

F̂θ,ν(x) :=
∫

Kθ,ν(t, x)Y (dt), x ∈ D0.

Observe that Kθ,ν = Kν,θ in view of (9), so that indeed F̂θ,ν ≡ F̂ν,θ . This property is
heavily exploited in the sequel, since the statistic F̂θ,ν is an auxiliary estimator used
in our construction. We have

F̂θ,ν(x)− F(x) =
∫

Kθ,ν(t, x)F(t)dt − F(x)+ ε

∫

Kθ,ν(t, x)W (dt)

=: Bθ,ν(x)+ εZθ,ν(x). (11)

The next simple result is a basic tool for construction of our selection procedure.

Lemma 1 Let Assumption K0 hold; then for any F ∈ L2(D) ∩ Lp(D)

sup
ν∈�

‖Bθ,ν − Bν‖p ≤ M(K)‖Bθ‖p ∀θ ∈ �. (12)
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Proof By definition of Bθ,ν , Bν and by the Fubini theorem

Bθ,ν(x)− Bν(x) =
∫

Kθ,ν(t, x)F(t)dt −
∫

Kν(t, x)F(t)dt

=
∫

Kν(y, x)

[∫

Kθ (t, y)F(t)dt − F(y)

]

dy

=
∫

Kν(y, x)Bθ (y)dy.

The statement of the lemma follows from the general theorem about boundedness of
integral operators on Lp-spaces (see, e.g., [7, Theorem 6.18]) and (8). ��

2.2 Selection rule

In order to present the basic idea underlying construction of the selection rule we first
discuss the noise-free version (ε = 0) of the estimation problem.

Idea of construction (ideal case ε = 0). In this situation

F(K) =
{

F̂θ (·) =
∫

Kθ (t, ·)F(t)dt ∀θ ∈ �
}

.

so that F̂θ can be viewed as a kernel-type approximation (smoother) of F . Note that
the risk Rp[F̂θ ; F] = ‖F̂θ − F‖p = ‖Bθ‖p represents the quality of approximation.
Let F̂θ∗ be a smoother from F(K) with the minimal approximation error, i.e.

θ∗ = arg inf
θ∈�Rp[F̂θ ; F].

Suppose that K satisfies Assumptions K0 and K1. Based on this collection we want
to select a smoother, say F̂

θ̂
∈ F(K), that is “as good as” F̂θ∗ , i.e., the smoother

satisfying Lp-oracle inequality (4).
To select θ̂ we suggest the following rule

θ̂ = arg inf
θ∈� {sup

ν∈�
‖F̂θ,ν − F̂ν‖p}.

Let us compute the approximation error of the selected smoother F̂
θ̂
. By the triangle

inequality

‖B
θ̂
‖p = ‖F̂

θ̂
− F‖p ≤ ‖F̂

θ̂
− F̂

θ̂ ,θ∗‖p + ‖F̂
θ̂ ,θ∗ − F̂θ∗‖p + ‖F̂θ∗ − F‖p

= ‖B
θ̂

− B
θ̂ ,θ∗‖p + ‖B

θ̂ ,θ∗ − Bθ∗‖p + ‖Bθ∗‖p. (13)

In view of Assumption K1 and (12) the first term on the right hand side of (13)
does not exceed M(K)‖Bθ∗‖p. To bound the second term we use the definition of
θ̂ and (12):
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‖B
θ̂ ,θ∗ − Bθ∗‖p ≤ sup

ν∈�
‖B

θ̂ ,ν
− Bν‖p ≤ sup

ν∈�
‖Bθ∗,ν − Bν‖p ≤ M(K)‖Bθ∗‖p.

Combining these bounds we obtain from (13) that

Rp[F̂
θ̂
; F] ≤ (2M(K)+ 1)‖Bθ∗‖p = (2M(K)+ 1) inf

θ∈�Rp[F̂θ ; F].

Therefore in the ideal situation ε= 0, the Lp-oracle inequality (4) holds with
L = 2M(K)+ 1.

Example (continuation) We suppose additionally that there exists a positive integer l
such that

∫

tk K (t)dt = 0, |k| = 1, . . . , l,

where k = (k1, . . . , kd) is the multi-index, ki ≥ 0, |k| = k1 +· · ·+kd , tk = tk1
1 · · · tkd

d
for t = (t1, . . . . , td). Let e be the true direction vector in the model (i). After rotation
described by the matrix E for any h ∈ H we have

‖Bθ∗‖p ≤
∥
∥
∥
∥

∫

K (u)[ f (· + h1u)− f (·)]du

∥
∥
∥
∥

p
.

If there exists 0 < α < l + 1, L > 0 such that f ∈ H1(α, L) then

‖Bθ∗‖p ≤ cLhα1 ∀h1 ∈ [hmin, hmax], (14)

where c a numerical constant depending on K only. It is evident that when there is no
noise in the model, the best choice of h1 is hmin.

Idea of construction (real case ε > 0) When the noise is present, we use the same
selection procedure with additional control of the noise contribution by its maxi-
mal value. Similarly to the ideal case our selection rule is based on the statistics
{supν∈� ‖F̂θ,ν − F̂ν‖p, θ ∈ �}. Note that

‖F̂θ,ν − F̂ν‖p ≤ ‖Bθ,ν − Bν‖p + ε‖Zθ,ν − Zν‖p

≤ ‖Bθ,ν − Bν‖p + ε sup
x

|σ̃θ,ν(x)| sup
θ,ν

‖Z̃θ,ν‖p, (15)

where Zθ,ν(·) and Zν(·) are given in (11) and (5) respectively, and

σ 2
θ,ν(x) := E|Zθ,ν(x)− Zν(x)|2 = ‖Kθ,ν(·, x)− Kν(·, x)‖2

2, x ∈ D0, (16)

σ̃θ,ν(x) := max{σθ,ν(x) , 1}
Z̃θ,ν(x) := σ̃−1

θ,ν (x)[Zθ,ν(x)− Zν(x)]. (17)
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Remark 3 In what follows we will be interested in large deviation probability for
the maximum of the process Zθ,ν(x)− Zν(x). Typically the variance σθ,ν(x) of this
process tends to infinity as ε → 0; therefore in the most interesting examples σ̃θ,ν(x) =
σθ,ν(x), and Z̃θ,ν(x) has unit variance. However, for an abstract collection of the
kernels, it can happen that σθ,ν(x) is very small, for example, if Kθ approaches the
delta-function. That is why we truncate the variance from below by 1.

In the ideal case we deduced from (12) that

[M(K)]−1 sup
ν∈�

‖F̂θ,ν − F̂ν‖p ≤ ‖Bθ‖p ∀θ ∈ �, (18)

i.e., the left hand side can be considered as a lower estimator of the bias. In the case
of ε > 0 we would like to guarantee the same property with high probability.

This leads to the following control of the stochastic term. Let δ ∈ (0, 1), and let

p = 
p(K, δ) be the minimal positive real number such that

P

{

sup
θ∈�

‖Z̃θ (·)‖p ≥ 
p

}

+ P

{

sup
(θ,ν)∈�×�

‖Z̃θ,ν(·)‖p ≥ 
p

}

≤ δ, (19)

where similarly to (16) and (17) we set

Z̃θ (x) := σ−1
θ (x)Zθ (x),

σ 2
θ (x) := E|Zθ (x)|2 = ‖Kθ (·, x)‖2

2.

The constant 
p controls deviation of ‖Z̃θ,ν‖p as well as the deviation of standardized
stochastic terms of all estimators from the collection F(K). We immediately obtain
from (15), (16) and (19) that

B̂θ (p) := [M(K)]−1 sup
ν∈�

[

‖F̂θ,ν − F̂ν‖p − ε
p sup
x
σ̃θ,ν(x)

]

≤ ‖Bθ‖p ∀θ ∈ �,
(20)

with probability larger than 1 − δ.
Thus, similarly to (18), B̂θ (p) is a lower estimator of the Lp-norm of the bias of

the estimator F̂θ . This leads us to the following selection procedure.

Selection rule Define

θ̂ = θ̂ (δ) := arg inf
θ∈�

{

B̂θ (p)+ 
p(K, δ) ε sup
x
σθ (x)

}

, (21)

and put finally

F̂(δ) = F̂
θ̂
.
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Remark 4 The choice of θ̂ is very natural. Indeed, in view of (20) for any θ ∈ � with
high probability

B̂θ (p)+ 
pε sup
x
σθ (x) ≤ ‖Bθ‖p + 
pε sup

x
σθ (x).

On the other hand, under rather general assumptions (see Sect. 2.4)

‖Bθ‖p + ε
p sup
x
σθ (x) ≤ CRp[F̂θ ; F],

where C is an absolute constant, independent of F and ε. Therefore with high proba-
bility

B̂
θ̂
(p)+ 
pε sup

x
σ
θ̂
(x) ≤ C inf

θ∈�Rp[F̂θ ; F].

Thus in order to establish the Lp-norm oracle inequality it suffices to majorate the
risk of the estimator F̂

θ̂
by B̂

θ̂
(p) + 
pε supx σθ̂ (x) and to choose δ = δ(ε) tending

to zero at an appropriate rate.

2.3 Basic result

The next theorem establishes the basic result of this paper.

Theorem 1 Let Assumptions K0 and K1 hold, and suppose that

(I) θ̂ defined in (21) is measurable with respect to the observation {Y (t), t ∈ D},
and θ̂ belongs to �;

(II) the events in (19) belong to the σ -algebra generated by the observation {Y (t),
t ∈ D}.

Let δ ∈ (0, 1), 
p be defined in (19), and F be such that (I) and (II) hold. Then

EF‖F̂(δ)− F‖p ≤ [3 + 2M(K)] inf
θ∈�

{

‖Bθ‖p + 
pε

[

sup
x
σθ (x)

]}

+ r(δ), (22)

where

r(δ) := ‖F‖∞[1 + M(K)]δ + σ(K)δ1/2[E|ζ |2]1/2,

σ (K) is defined in (7), ζ := supx,θ |Z̃θ (x)|, and E denotes expectation with respect
to the Wiener measure.

Remark 5 In order to verify measurability of θ̂ and the condition (II) we need to
impose additional assumptions on the collection of kernels K. These assumptions
should guarantee smoothness properties of the sample paths of Gaussian processes
{Z̃θ (x), (x, θ) ∈ D0 ×�} and {Z̃θ,ν(x), (x, θ, ν) ∈ D0 ×�×�}. It is well-known
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(see, e.g., [25]) that such properties for Gaussian processes can be described in terms
of their covariance structures. In our particular case, the covariance structure is entirely
determined by the collection of kernels K. These fairly general conditions on K are
given in Sect. 2.4.

To ensure that θ̂ ∈ � we need not only smoothness conditions on the stochastic
processes involved in the procedure description, but also conditions on smoothness
of F . It is sufficient to suppose that F belongs to some isotropic Hölder ball, and
this will be always assumed in the sequel. This hypothesis also guarantees that F is
uniformly bounded, which, in turn, implies boundedness of the remainder term r(δ).
It is important to note that neither the procedure nor the inequality (22) depend on
parameters of this ball.

Remark 6 Our procedure and the basic oracle inequality depend on the design para-
meter δ. The choice of this parameter is a delicate problem. On the one hand, in order
to reduce the remainder term we should choose δ as small as possible. On the other
hand, in view of the definition, 
p = 
p(δ) → ∞ as δ → 0. Note that we cannot
minimize the right hand side of (22) with respect to δ because this leads to δ depending
on the unknown function F . Fortunately, the same assumptions from Sect. 2.4 ensure
that up to an absolute constant

inf
θ∈�

{

‖Bθ‖p + 
pε

[

sup
x
σθ (x)

]}

� ε. (23)

The form of the remainder term r(δ) together with (23) suggests that δ should depend
on ε, for example, δ = δ(ε) = εa , a > 1. Such a choice under assumptions from
Sect. 2.4 allows to show that


p(δ) = 
p(δ(ε)) =
{

C(p), p ∈ [1,∞),√
C(∞) ln(1/ε), p = ∞,

(24)

where C(p), p ∈ [1,∞], are absolute constants, independent of ε.

Although the inequality (22) is not stated in the form of the Lp-norm oracle
inequality, it can be helpful (in view of (24)) for deriving adaptive minimax results.
To demonstrate this we return to the single-index model.

Example (continuation) Remind that θ = (E, h) and note that

σ 2
θ (x) = σ 2

E,h(x) =
[

h1hd−1
max

]−2
∫

K 2
h [ET (t − x)]dt =

[

h1hd−1
max

]−1 ‖K‖2
2

does not depend on E and x . Fix δ = εa and let F̂ε be the estimator F̂(εa) satisfying
(22). Then (22) takes the form
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EF‖F̂ε − F‖p ≤ (3 + 2‖K‖1) inf
E,h

[

‖BE,h‖p + ε
p(ε
a) sup

x
σE,h(x)

]

+ O(εa)

≤ (3+2‖K‖1)inf
h

[

inf
E

‖BE,h‖p+ε
p(ε
a)
[

h1hd−1
max

]−1/2‖K‖2

]

+O(εa)

≤ (3 + 2‖K‖1) inf
h1

[

cLhα1 + 
p(ε
a)
[

h1hd−1
max

]−1/2 ‖K‖2

]

+ O(εa).

The last inequality follows from (14). Taking into account (24), choosing hmax > 0
independent of ε, hmin = ε2, and minimizing the last inequality with respect to
h1 ∈ [hmin, hmax] we obtain for all α > 0, L > 0

sup
f ∈H1(α,L)

EF‖F̂ε − F‖p ≤ C p(L , hmax, K )

{

ε2α/(2α+1), p ∈ [1,∞)
[

ε
√

ln (1/ε)
]2α/(2α+1)

, p = ∞.

It remains to note that F̂ε does not depend on (α, L), and attains in view of the last
inequality the minimax rate of convergence for all values of (α, L) simultaneously. It
means that F̂ε is optimally adaptive on the scale of Hölder balls.

2.4 Key oracle inequality

In this section we discuss the choice of δ which leads to the key oracle inequality. This
inequality is suitable for deriving minimax and minimax adaptive results with minimal
technicalities. In particular, we will use it for adaptive estimation in the additive multi-
index model.

In order to establish the key oracle inequality we need to impose additional condi-
tions on the collection of kernels K. In particular, these conditions should guarantee
the bounds (24) for 
p(δ(ε)). In the case p = ∞ such conditions are rather mild
and standard; they are related to deviation of supremum of Gaussian processes and
therefore can be expressed through smoothness of their covariance functions [25]. As
for the case p < ∞, we need to establish bounds on large deviation probabilities of the
Lp-norm of Gaussian processes. It requires additional assumptions on the collection
of the kernels. Moreover, such bounds cannot be directly obtained from the existing
results. We note nevertheless that (24) for the case p < ∞ can be shown under fairly
general assumptions, and this will be the subject of a forthcoming paper. From now
on we restrict ourselves with the case p = ∞.

In the end of this section we discuss the connection between the key oracle inequality
and the L∞-norm oracle inequality of type (4).

Assumptions We suppose that the set � has the following structure.

(A) � = �1 × �2 where �1 = {θ1, . . . , θ N } is a finite set, and �2 ⊂ R
m is a

compact subset of R
m contained in the Euclidean ball of radius R. Without loss

of generality we assume that R ≥ 1.

Remark 7 Assumption A allows to consider both discrete and continuous parameter
sets. In particular, the case of empty �2 corresponds to selection from a finite set of
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estimators. This setup is often considered within the framework of the oracle approach.
In order to emphasize dependence of kernels Kθ on θ1 ∈ �1 and θ2 ∈ �2, we
sometimes write K(θ1,θ2) instead of Kθ .

(B) There exists M0 such that F ∈ Hd(M0), where

Hd(M0) =
⎧

⎨

⎩
g : g ∈

⋃

α>0,L>0

Hd(α, L), ‖g‖∞ ≤ M0

⎫

⎬

⎭
.

Remark 8 Assumption B is necessary for verification of the condition (I) of Theorem 1.
It is also needed for deriving the key oracle inequality from Theorem 1 since it allows
to bound uniformly the remainder term in (22).

We emphasize that our procedure does not depend on M0. Finally note that Hd(M0)

is a huge set of functions(a bit smaller than the space of all bounded continuous
functions), i.e., Assumption B is not restrictive at all.

(K2) Denote U := D0 ×�2. There exist positive constants L̄ , and γ ∈ (0, 1] such
that

sup
θ1∈�1

sup
u,u′∈U

‖K(θ1,θ2)(·, x)− K(θ1,θ
′
2)
(·, x ′)‖2

|u − u′|γ ≤ L̄,

where u = (x, θ2), and u′ = (x ′, θ ′
2). Without loss of generality we assume

that L̄ ≥ 1.

Remark 9 Assumption K2 ensures that sample paths of the processes {Z̃θ (x), (x, θ) ∈
D0 ×�} and {Z̃θ,ν(x), (x, θ, ν) ∈ D0 ×� ×�} belong with probability one to the
isotropic Hölder spaces Hm+d(τ ) and H2m+d(τ ) with regularity index 0 < τ < γ

[25, Sect. 15]. In particular, it is sufficient for fulfillment of conditions (I) and (II) of
Theorem 1.

Choice of δ. Now we are ready to state the upper bound on the risk of our estimator
(21) under Assumptions A, B, K0–K2. Define

CK := M(K)L̄ R

Theorem 2 Let Assumptions A, B, K0–K2 hold, and assume that there exists a > 0
such that

δ∗ := min

{
1

N
,C−(2m+d)/γ

K , ε2[σ(K)]−2
}

≥ εa . (25)

Let F̂∗ = F̂(δ∗) be the estimator of Sect. 2 associated with the choice δ = δ∗. Then
there exists a constant C1 ≥ M0 depending on d, m and γ only such that

EF‖F̂∗ − F‖∞ ≤ [3 + 2M(K)] inf
θ∈�

{

‖Bθ‖∞ + C1ε
√

ln ε−1 sup
x
σθ (x)

}

. (26)
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Remark 10 Typically in nonparametric setups L̄ ∼ ε−a1 , σ(K) ∼ ε−a2 for some
a1, a2 > 0. If N grows not faster than ε−a3 , then (25) holds.

L∞-norm oracle inequality. Finally we show how the L∞-norm oracle inequality (4)
can be obtained from Theorem 2.

Theorem 3 Assume that there exists a constant C2 > 0 such that

E‖Zθ (·)‖∞ ≥ C2
√

ln(1/ε) sup
x
σθ (x), ∀θ ∈ �, (27)

and let F̂∗ be the estimator from Theorem 2. Then

R∞[F̂∗; F] ≤ L inf
θ∈�R∞[F̂θ ; F],

where L = 3[3 + 2M(K)] max{1,C1/C2}.
Remark 11 The condition (27) seems to be necessary in order to have the constant
L independent of ε. In fact, (27) is an assumption on the collection of kernels K. To
verify this condition one can use the Sudakov lower bound on the expectation of the
maximum of a Gaussian process (see, e.g., [25, Sect. 14]).

The proof of Theorem 3 is an immediate consequence of Theorem 2, (27), and the
following auxiliary result that is interesting in its own right.

Lemma 2 Let F̃(·) = ∫

S(t, ·)Y (dt) be a linear estimator of F(·). Denote by BS(·)
and εZS(·) the bias and the stochastic part of F̃(·)− F(·) respectively. Then for any
F ∈ Lp(D) ∩ L2(D) and p ∈ [1,∞]

1

3
{‖BS‖p + εE‖ZS‖p} ≤ Rp[F̃; F] ≤ ‖BS‖p + εE‖ZS‖p. (28)

3 Adaptive estimation in additive multi-index model

In this section we apply the key oracle inequality of Theorem 2 to adaptive estimation
in the additive multi-index model.

3.1 Problem formulation

We impose the following structural assumption on the function F in the model (1).
Let I denote the set of all partitions of (1, . . . , d), and for η > 0 let

Eη = {E = (e1, . . . , ed) : ei ∈ S
d−1, |det(E)| ≥ η}.

For any I ∈ I and E ∈ Eη let E1, . . . , E|I | be the corresponding partition of columns
of E .
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(F) Let I = (I1, . . . , I|I |) ∈ I, and E ∈ Eη. There exist functions fi : R
|Ii | → R,

i = 1, . . . , |I | such that

F(t) =
|I |
∑

i=1

fi

(

ET
i t
)

.

Assumption F states that the unknown function F can be represented as a sum of |I |
unknown functions fi , i = 1, . . . , |I |, where fi is |Ii |-dimensional after an unknown
linear transformation. Note that partition I is also unknown. The assumption that
|det(E)| ≥ η is chosen for technical reasons; note that our estimation procedure does
not require knowledge of the value of this parameter.

Later on the functions fi will be supposed to be smooth; in particular, we will
assume that all fi ’s belong to an isotropic Hölder ball (see the next definition).

Definition 1 A function f : T → R, T ⊂ R
s , is said to belong to the Hölder ball

Hs(β, L) if f has continuous partial derivatives of all orders ≤ l satisfying the Hölder
condition with exponent α ∈ (0, 1]:

‖Dk f ‖∞ ≤ L , ∀|k| = 0, . . . , l;
∣
∣
∣
∣
∣
∣

f (z)−
l
∑

j=0

1

j !
∑

|k|= j

Dk f (t)(z − t)k

∣
∣
∣
∣
∣
∣

≤ L|z − t |β, ∀z, t ∈ T ,

where β = l + α, k = (k1, . . . , ks) is a multi-index, ki ≥ 0, |k| = k1 + · · · + ks ,
tk = tk1

1 · · · tks
s for t = (t1, . . . . , ts), and Dk = ∂ |k|/∂tk1

1 · · · ∂tks
s .

The described structure includes models (i)–(iv).

1. Single-index model. Let F(t) = f (eT t) for some unknown f : R
d → R and

e ∈ S
d−1. In order to express the single-index model in terms of assumption F,

we set E = (e1, . . . , ed)with e1, e2, . . . , ed being an orthogonal basis of R
d such

that e1 = e. In this case we can set I = (I1, I2) with I1 = {1}, I2 = {2, . . . , d}
and f1 = f , f2 ≡ 0.

2. Additive model. Let F(t) = ∑d
i=1 fi (xi ) for unknown fi : R

d → R. Here E is
the d × d identity matrix, and I = (I1, . . . , Id), Ii = {i}.

3. Projection pursuit model. Let F(t) = ∑d
i=1 fi (eT

i t) for unknown fi : R
d → R

1

and unknown linearly independent direction vectors e1, . . . , ed ∈ S
d−1. Here

E = (e1, . . . , ed), I = (I1, . . . , Id), Ii = {i}.
4. Multi-index model. Let F(t) = f (eT

1 t, . . . , eT
mt) for unknown direction vec-

tors e1, . . . , em ∈ S
d−1, and unknown function f : R

m → R
1. We define

E = (e1, . . . , ed), where (em+1, . . . , ed) is the orthogonal basis of the orthogonal
complement to the subspace span{e1, . . . , em}. In this case we set I = (I1, I2),
I1 = (1, . . . ,m), I2 = (m + 1, . . . , d), and f1 = f , f2 ≡ 0.

Definition 2 We say that function F belongs to the class FI,E (β, L), β > 0, L > 0 if

(i) Assumption F is fulfilled with partition I = (I1, . . . , I|I |) ∈ I and matrix
E ∈ Eη;
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(ii) there exist positive real numbers βi and L such that fi ∈ H|Ii |(βi , L), i =
1, . . . , |I |;

(iii) For all i = 1, . . . , |I |
β = βi

|Ii | . (29)

Remark 12 The meaning of condition (iii) is that smoothness of functions fi is related
to their dimensionality in such a way that the effective smoothness of all functional
components is the same. This condition does not restrict generality as smoothness of a
sum of functions is determined by the worst smoothness of summands. In particular, if
(29) is not fulfilled then the results of this section hold with β = mini=1,...,|I | βi/|Ii |.

Let F̃ be an estimator of F ∈ FI,E (β, L); accuracy of F̃ is measured by the maximal
risk

R∞[F̃; FI,E (β, L)] := sup
F∈FI,E (β,L)

EF‖F̃ − F‖∞.

Proposition 1 (Minimax lower bound) Let ϕε(β) = [ε√ln(1/ε)]2β/(2β+1). Then

lim inf
ε→0

inf
F̃
ϕ−1
ε (β) R∞[F̃; FI,E (β, L)] > 0, I ∈ I, E ∈ Eη,

where inf is taken over all possible estimators F̃ .

Remark 13 The appearance of the univariate rate ϕε(β) in the lower bound is not
surprising since 2β/(2β + 1) = 2βi/(2βi + |Ii |), i = 1, . . . , |I | in view of (29). It
is worth mentioning that ϕε(β) = ψε,|Ii |(βi ) is the minimax rate of convergence in
estimation of each component fi [cf. (3)].

The proof of Proposition 1 is absolutely standard and is omitted. Obviously, the
accuracy of estimation under the additive multi-index model cannot be better than
the accuracy of estimation of one component provided that all other components are
identically zero. Since E is fixed, the problem is reduced to estimating |Ii |-variate
function of smoothness βi in the model (1). In this case the lower bound is well-
known and given by ψε,|Ii |(βi ). It remains to note that ψε,|Ii |(βi ) does not depend on
i and coincides with ϕε(β) in view of (29).

Below we propose an estimator that attains the rate ϕε(β) simultaneously over
FI,E (β, L), I ∈ I, E ∈ Eη, 0 < β ≤ βmax < ∞, L > 0, i.e., the optimally adaptive
estimator.

3.2 Kernel construction

To construct a family of kernel estimators let us consider the idealized situation when
both the partition I = (I1, . . . , I|I |) ∈ I and E ∈ Eη are known.

(G) Let g : [−1/2, 1/2] → R be a univariate kernel satisfying the following condi-
tions
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(i)
∫

g(x)dx = 1,
∫

g(x)xkdx = 0, k = 1, . . . , �;
(ii) g ∈ C

1.

Fix a bandwidth h = (h1, . . . , hd), hmin ≤ hi ≤ hmax and put

G0(t) =
d
∏

i=1

g(ti )

Gi,h(t) =
∏

j∈Ii

1

h j
g

(
t j

h j

)
∏

j �∈Ii

g(t j ), i = 1, . . . , |I |.

Now we define the kernel associated with partition I , matrix E , and bandwidth h. Fix
θ = (I, E, h) ∈ � = I × Eη × [hmin, hmax]d , and let

Kθ (t) = |det(E)|
|I |
∑

i=1

Gi,h(E
T t)− (|I | − 1)|det(E)|G0(E

T t). (30)

3.3 Properties of the kernel

First we state evident properties of the kernel Kθ .

Lemma 3 For any θ ∈ �
∫

Kθ (t)dt = 1

‖Kθ‖1 ≤ (2|I | − 1)‖g‖d
1 .

‖Kθ‖2 ≤ |det(E)|1/2‖g‖d
2

⎛

⎝

|I |
∑

i=1

∏

j∈Ii

h−1/2
j + |I | − 1

⎞

⎠. (31)

The proof follows straightforwardly from (30).
Next lemma establishes approximation properties of Kθ . Put for any x ∈ D0

Bθ (x) =
∫

Kθ (t − x)F(t)dt − F(x).

Clearly, Bθ (·) is the bias of the estimator associated with kernel Kθ .

Lemma 4 Let F ∈ FI,E (β, L), and let Assumption G hold with � = maxi�βi	. Then

‖Bθ‖∞ ≤ L
|I |
∑

i=1

‖g‖|Ii |
1

∑

j∈Ii

hβi
j . (32)
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Remark 14 Lemmas 3 and 4 allow to derive an upper bound on the accuracy of esti-
mation on the class FI,E (β, L) for given I and E . Indeed, the typical balance equation
for the bandwidth selection takes the form

ε
√

ln(1/ε)‖Kθ‖2 = ‖Bθ‖∞.

Therefore using the upper bounds in (32) and (31) we arrive to the optimal choice of
bandwidth given by h = h∗ = (h∗

1, . . . , h∗
d),

h∗
j =

( ε

L

√

ln(1/ε)
)2/(2βi +|Ii |) (‖g‖2

‖g‖1

)2d/(2βi +|Ii |)
, j ∈ Ii , i = 1, . . . , |I |. (33)

If F̂θ (x) = ∫ Kθ (t − x)Y (dt) is a kernel estimator with θ = (I, E, h∗) then we have
the following upper bound on its L∞-risk:

R∞[F̂θ ; FI,E (β, L)] ≤ C L1/(2β+1)ϕε(β), (34)

where C is an absolute constant. Thus, in view of Proposition 1, ϕε(β) is the minimax
rate of convergence on the class FI,E (β, L). We stress that construction of minimax
estimator F̂θ requires knowledge of all parameters of the functional class: I , E , β
and L .

3.4 Optimally adaptive estimator

Let hmin = ε2 and hmax = ε2/[(2βmax+1)d] for some βmax > 0. Consider the collection
of kernels K = {Kθ (·), θ = (I, E, h) ∈ �} where Kθ (·) is defined in (30). The
corresponding collection of estimators is given by

F(K) =
{

F̂θ (x) =
∫

Kθ (t − x)Y (dt), θ ∈ �
}

.

Based on the collection F(K) we define the estimator F̂∗ following the selection rule
(21) with the choice of δ = εa where a = 24d3 + 12d2.

Theorem 4 Suppose that Assumption G holds with � = �dβmax	. Then for any I ∈ I,
E ∈ Eη, 0 < β ≤ βmax, and L > 0

lim sup
ε→0

ϕ−1
ε (β)R∞[F̂∗; FI,E (β, L)] ≤ C L1/(2β+1),

where C depends on d, βmax, and the kernel g only.

Combining the results of Theorem 4 and Proposition 1 we obtain that the estimator
F̂∗ is optimally adaptive on the scale of functional classes FI,E (β, L). Thus this esti-
mator adjusts automatically to unknown structure as well as to unknown smoothness.
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We note that traditionally any structural assumption is understood as the existence
of the structure. Mathematically in our case it means that the underlying function
belongs to the union of classes FI,E (β, L) with respect to I ∈ I and E ∈ Eη, i.e.,

F ∈ F(β, L) =
⋃

I∈I,E∈Eη
FI,E (β, L).

Next theorem shows that our estimation procedure is optimally adaptive on the scale
of functional classes F(β, L), 0 < β ≤ βmax, L > 0.

Theorem 5 Suppose that Assumption G holds with � = �dβmax	. Then for any 0 <
β ≤ βmax, and L > 0

lim sup
ε→0

ϕ−1
ε (β)R∞[F̂∗; F(β, L)] ≤ C L1/(2β+1),

where C depends on d, βmax, and the kernel g only.

Theorem 4 follows immediately from Theorem 5. Proposition 1 together with Theo-
rem 5 shows that in terms of rates of convergence there is no price to pay for adaptation
with respect to unknown structure.

4 Proofs of Theorems 1, 2 and 5

Proof of Theorem 1. Define the random event

A = A1 ∩ A2 :=
{

ω : sup
θ∈�

‖Z̃θ‖p ≤ 
p

}

∩
{

ω : sup
(θ,ν)∈�×�

‖Z̃θ,ν‖p ≤ 
p

}

.

10. First, we observe that

B̂θ (p) 1(A) ≤ ‖Bθ‖p, ∀θ ∈ �. (35)

Indeed, in view of Lemma 1 on the set A

‖Bθ‖p ≥ sup
ν∈�

1

‖Kν‖1,∞

∥
∥
∥
∥

∫

Kν(t, x)Bθ (t)dt

∥
∥
∥
∥

p

≥ [M(K)]−1 sup
ν∈�

(

‖F̂θ,ν − F̂ν‖p − ε‖Zθ,ν − Zν‖p

)

≥ [M(K)]−1 sup
ν∈�

[

‖F̂θ,ν − F̂ν‖p − 
pε sup
x
σ̃θ,ν(x)

]

= B̂θ (p),

where we have also used definition of A and the fact that

F̂θ,ν(x)− F̂ν(x) =
∫

Kν(t, x)Bθ (t)dt + ε[Zθ,ν(x)− Zν(x)].
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20. Second, we note that for any θ, ν ∈ �

sup
x
σθ,ν(x) = ‖Kθ,ν − Kν‖2,∞ ≤ ‖Kθ,ν‖2,∞ + ‖Kν‖2,∞

≤ ‖Kθ‖1,∞‖Kν‖2,∞ + ‖Kν‖2,∞ ≤ [1 + M(K)] ‖Kν‖2,∞
= [1 + M(K)] sup

x
σν(x).

Here we have used the inequality ‖Kθ,ν‖2,∞ ≤ ‖Kθ‖1,∞‖Kν‖2,∞ which follows
from the Minkowski integral inequality.

The Cauchy–Schwarz inequality and (6) yieldσν(x)≥(mes{D})−1/2 for all x and ν.
This implies without loss of generality that for any θ, ν ∈ �

sup
x
σ̃θ,ν(x) ≤ [1 + M(K)] sup

x
σν(x). (36)

30. Now define

θ∗ := arg inf
θ∈�{ ‖Bθ‖p + 
pε sup

x
σθ (x) },

and let F̂∗ = F̂θ∗ . We write

‖F̂ − F‖p1(A) ≤ ‖F̂θ∗ − F‖p 1(A)+ ‖F̂θ∗ − F̂
θ̂ ,θ∗‖p 1(A)

+ ‖F̂
θ̂

− F̂
θ̂ ,θ∗‖p 1(A), (37)

and note that

‖F̂θ∗ −F‖p 1(A) ≤ ‖Bθ∗‖p +
pε sup
x
σθ∗(x) = inf

θ∈�{ ‖Bθ‖p +
pε sup
x
σθ (x) }. (38)

Furthermore,

‖F̂θ∗ − F̂
θ̂ ,θ∗‖p 1(A) ≤ M(K)B̂

θ̂
(p) 1(A)+ 
pε sup

x
σ̃
θ̂ ,θ∗(x)

≤ M(K)B̂
θ̂
(p) 1(A)+ [1 + M(K)]
pε sup

x
σθ∗(x),

where the first inequality follows from definition of B̂θ (p); the second inequality is a
consequence of (8) and (36). Similarly,

‖F̂
θ̂

− F̂
θ̂ ,θ∗‖p1(A) ≤ M(K)B̂θ∗(p) 1(A)+ 
pε sup

x
σ̃
θ∗,θ̂ (x)

≤ M(K)B̂θ∗(p) 1(A)+ [1 + M(K)]
pε sup
x
σ
θ̂
(x).
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Now using (21) and (35) we obtain

[‖F̂θ∗ − F̂
θ̂ ,θ∗‖p + ‖F̂

θ̂
− F̂

θ̂ ,θ∗‖p]1(A)
≤ [1 + M(K)]

{

[B̂
θ̂
(p)+ B̂θ∗(p)]1(A)+ 
pε sup

x
σ
θ̂
(x)+ 
pε sup

x
σθ∗(x)

}

≤ 2[1 + M(K)]
{

‖Bθ∗‖p + 
pε sup
x
σθ∗(x)

}

.

Then (37) and (38) lead to

‖F̂ − F‖p1(A) ≤ [3 + 2M(K)] inf
θ∈�

{

‖Bθ‖p + 
pε sup
x
σθ (x)

}

. (39)

40. In order to complete the proof it suffices to bound ‖F̂ − F‖p1(Ac). Note that
by our choice of 
p (see (19)), P(Ac) ≤ δ. Moreover

‖F̂ − F‖p1(Ac) ≤ (sup
θ∈�

‖Bθ‖p + sup
θ∈�

‖Zθ (·)‖p) 1(Ac)

≤ ‖F‖∞[1 + M(K)]1(Ac)+ σ(K)ζ 1(Ac),

where σ(K) is defined in (7), and ζ := supx,θ |Z̃θ (x)|. Therefore

E‖F̂ − F‖p1(Ac) ≤ ‖F‖∞[1 + M(K)]P(Ac)+ σ(K)[Eζ 2]1/2
P

1/2(Ac)

≤ ‖F‖∞[1 + M(K)]δ + √
δ σ (K)[E|ζ |2]1/2

where we have used (19). Combining this inequality with (39) we complete the proof.
��

Proof of Theorem 2. 10. First we show that Assumptions A, B, and K2 imply condi-
tions (I) and (II) of Theorem 1.

Indeed, Assumption K2 ensures that sample paths of the processes {Z̃θ (x), (x, θ) ∈
D0 ×�} and {Z̃θ,ν(x), (x, θ, ν) ∈ D0 ×� ×�} belong with probability one to the
isotropic Hölder spaces Hm+d(τ ) and H2m+d(τ ) with regularity index 0 < τ < γ

[25, Sect. 15]. Thus the condition (II) is fulfilled.
Moreover, together with Assumption B this implies that for any F ∈ Hd(M0)

sample paths of the process F̂θ,ν(x)−F̂ν(x)belong with probability one to the isotropic
Hölder space H2m+d(τ

′) on D0 × � × � with some regularity index 0 < τ ′ < γ .
This, in turn, shows that for any F ∈ Hd(M0) sample paths of the process

sup
ν∈�

‖F̂θ,ν − F̂ν‖p

belong to Hm(τ
′) on�. Then condition (I) holds in view of Assumption A and Jennrich

[18].

123



64 A. Goldenshluger, O. Lepski

20. It follows from Lemma 6 in Appendix that for any 
 ≥ 1 + √
(2m + d)/γ

P

{

sup
θ∈�

‖Z̃θ (·)‖∞ ≥ 


}

+ P

{

sup
(θ,ν)∈�×�

‖Z̃θ,ν(·)‖∞ ≥ 


}

≤ N 2[c1 M(K)L̄ R
](2m+d)/γ exp{−
2/2},

where c1 is an absolute constant. By definition of 
 we obtain that

exp{
2/2} ≤ N 2[c1 M(K)L̄ R
](2m+d)/γ δ−1∗ (40)

which, in turn, implies


 ≤
[

2 ln δ−1∗ + 4 ln N + 2(2m + d)

γ
ln CK + 2m + d

γ
(ln 
2 + c2)

]1/2

≤
√

c3 ln ε−1 =: 
̄, (41)

where c3 depends on (2m + d)/γ only; here we have used (25).
Now we bound the remainder term in (22). It follows from Lemma 6 that for any

λ ≥ 1 + √
(d + m)/γ one has

E|ζ |2 =
∞∫

0

2tP(ζ > t)dt ≤ 2λ+ 2

∞∫

λ

t N [c4 L̄ Rt](d+m)/γ e−t2/2dt

≤ 2λ+ 2N [c4 L̄ R](d+m)/γ e−λ2/4

∞∫

0

t1+(d+m)/γ e−t2/4dt.

If we choose λ = √
2
̄ and apply (40), we get

E|ζ |2 ≤ 2
√

2
̄ + c5 N−1δ∗ ≤ c6 ln δ−1∗ .

Using (25) and the fact that σ(K) ≥ c7 we finally obtain r(δ∗) ≤ M0[1 + M(K)]ε +
c8ε

√
ln ε−1 which yields (26). ��

Proof of Theorem 5. 10. In order to apply the result of Theorem 2 we have to verify
Assumption K2 for the collection of kernels defined in (30). Recall that θ = (I, E, h),
and in notation of Assumptions A and K2, θ = (θ1, θ2), where θ1 = I ∈ �1 = I,
and θ2 = (E, h) ∈ �2 = Eη × [hmin, hmax]d .

We deduce from (30) and Assumption G(ii) that Kθ (t) is continuously differentiable
in θ2 and t , and

sup
θ2∈�2

sup
t∈D

|∇θ2,t Kθ (t)| ≤ L̃h−3d
min ,
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where L̃ is an absolute constant depending only on d and ‖g‖∞. Taking into account
that hmin = ε2 we arrive to Assumption K2 with

L̄ = L̃ε−6d , and γ = 1/2. (42)

20. In view of (42), assumption (25) is verified.
30. Fixβ and L and assume that F ∈ F(β, L). By definition of the class F ∈ F(β, L)

there exist I∗ ∈ I and E∗ ∈ Eη such that F ∈ FI∗,E∗(β, L). Let h∗ be given by (33).
Then from (26) and (34)

EF‖F̂∗ − F‖∞ ≤ [3 + 2M(K)] inf
(I,E,h)∈�

{

‖BI,E,h‖∞+C1ε
√

ln ε−1 sup
x
σI,E,h(x)

}

≤ [3 + 2M(K)]
{

‖BI∗,E∗,h∗‖∞ + C1ε
√

ln ε−1 sup
x
σI∗,E∗,h∗(x)

}

≤ 2[3 + 2M(K)](C1 ∨ 1)C L1/(2β+1)ϕε(β),

where C is the constant appearing in (34). ��

Appendix

Proof of Lemma 2. Only the left hand side inequality should be proved. First we note
that

‖ f ‖p = sup

{

|
∫

φ f | : ‖φ‖q = 1

}

[7, p. 188]. Thus we have for p < ∞

EF‖F̃ − F‖p = EF‖BS + εZS‖p

= EF sup
g:‖g‖q≤1

∫

[BS(x)+ εZS(x)]g(x)dx

≥ EF

∫

[BS(x)+ εZS(x)]g∗(x)dx,

where g∗(x) = ‖BS‖−p/q
p |BS(x)|p−1 sign{BS(x)}. Therefore

EF‖BS + εZS‖p ≥
∫

BS(x)g∗(x)dx + E

∫

ZS(x)g∗(x)dx = ‖BS‖p. (43)

On the other hand, by the triangle inequality EF‖BS + εZS‖p ≥ εE‖ZS‖p − ‖BS‖p.
Multiplying the both side of (43) by 2 and summing up with the last inequality we
obtain (28).

If p = ∞ then for any x0 ∈ D0 one has E‖Bθ + εZθ‖∞ ≥ ±E[Bθ (x0)+εZθ (x0)] =
±Bθ (x0), and therefore E‖Bθ + εZθ‖∞ ≥ ‖Bθ‖∞. ��
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Proof of Lemma 4. We will use the following notation: for any vector t ∈ R
d , and

partition I = (I1, . . . , I|I |) we will write t(i) = (t j , j ∈ Ii ). Throughout the proof
without loss of generality we assume that E is the d × d identity matrix.

Using the fact that F(t) =∑|I |
i=1 fi (ET

i t) we have

∫

Kθ (t − x)F(t)dt =
|I |
∑

i=1

|I |
∑

j=1

∫

G j,h(t − x) fi (t(i))dt

−(|I | − 1)
|I |
∑

i=1

∫

G0(t − x) fi (t(i))dt.

Note that for all i = 1, . . . , |I |

∫

G0(t − x) fi (t(i))dt =
∫
⎡

⎣
∏

j∈Ii

g(t j − x j )

⎤

⎦ fi (t(i))dt(i)

∫

Gi,h(t − x) fi (t(i))dt =
∫
⎡

⎣
∏

j∈Ii

1

h j
g

(
t j − x j

h j

)
⎤

⎦ fi (t(i))dt(i)

∫

G j,h(t − x) fi (t(i))dt =
∫
⎡

⎣
∏

j∈Ii

g(t j − x j )

⎤

⎦ fi (t(i))dt(i), j �= i.

Combining these equalities we obtain

∫

Kθ (t − x)F(t)dt =
∫
⎡

⎣
∏

j∈Ii

1

h j
g

(
t j − x j

h j

)
⎤

⎦ fi (t(i))dt(i),

and

Bθ (x) =
|I |
∑

i=1

∫
⎡

⎣
∏

j∈Ii

1

h j
g

(
t j − x j

h j

)
⎤

⎦ [ fi (t(i))− fi (x(i))]dt(i)

=
|I |
∑

i=1

∫
⎡

⎣
∏

j∈Ii

1

h j
g

(
t j − x j

h j

)
⎤

⎦

×
⎡

⎣ fi (t(i))− fi (x(i))−
li∑

s=1

1

s!
∑

|k|=s

Dk fi (x(i))(t(i) − x(i))
k

⎤

⎦ dt(i),
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where the last equality follows from the fact that

∫
∏

j∈Ii

1

h j
g
( t j − x j

h j

)

(t(i) − x(i))
kdt(i) = 0, ∀|k| : |k| = 1, . . . , li , i = 1, . . . , |I |,

see Assumption G(i). Because fi ∈ H|Ii |(βi , Li ), we obtain

|Bθ (x)| ≤
|I |
∑

i=1

Li

∫
∣
∣
∣
∣
∣
∣

∏

j∈Ii

1

h j
g

(
t j − x j

h j

)
∣
∣
∣
∣
∣
∣

|t(i) − x(i)|βi dt(i) ≤
|I |
∑

i=1

Li‖g‖|Ii |
1

∑

j∈Ii

hβi
j .

as claimed. ��
We quote the following result from Talagrand [32] that is repeatedly used in the

proof of Lemma 6 below.

Lemma 5 Consider a centered Gaussian process (Xt )t∈T . Let σ 2 = supt∈T E X2
t .

Consider the intrinsic semi-metric ρX on T given by ρ2
X (s, t) = E(Xs − Xt )

2. Assume
that for some constant A > σ , some v > 0 and some 0 ≤ ε0 ≤ σ we have

ε < ε0 ⇒ N (T, ρX , ε) ≤
(

A

ε

)v

,

where N (T, ρX , ε) is the smallest number of balls of radius ε needed to cover T . Then
for u ≥ σ 2[(1 + √

v)/ε0] we have

P

(

sup
t∈T

Xt ≥ u

)

≤
(

K Au√
vσ 2

)v

�
( u

σ

)

,

where K is universal constant, and �(u) = 1√
2π

∫∞
u e−s2/2ds.

Lemma 6 Let Assumptions A, K0 and K2 hold. Then for any 
 ≥ 1 +
√

d+m
γ

one has

P

{

sup
θ∈�

‖Z̃θ (·)‖∞ ≥ 


}

≤ N [C1 L̄ R
](d+m)/γ exp{−
2/2}, (44)

where C1 is an absolute constant.

Furthermore, for any 
 ≥ 1 +
√

d+2m
γ

one has

P

{

sup
(θ,ν)∈�×�

‖Z̃θ,ν(·)‖∞ ≥ 


}

≤ N 2[C2 M(K)L̄ R
](d+2m)/γ exp{−
2/2}, (45)

where C2 is an absolute constant.
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Proof 10. First we prove (44). Recall our notation:

Zθ (x) =
∫

Kθ (t, x)W (dt), σθ (x) = ‖Kθ (·, x)‖2, Z̃θ (x) = σ−1
θ (x)Zθ (x).

By Assumption A, θ = (θ1, θ2) ∈ �1 ×�2. Because the set �1 is finite, throughout
the proof we keep θ1 ∈ �1 fixed. For brevity, we will write θ = (θ1, θ2), θ ′ = (θ1, θ

′
2),

u = (x, θ2), u′ = (x ′, θ ′
2). Also with a slight abuse of notation we write Z(u), Z̃(u)

and σ(u) for Zθ (x), Z̃θ (x) and σθ (x) respectively. The same notation with u replaced
by u′ will be used for the corresponding quantities depending on u′.

Consider the random process {Z(u), u ∈ U }, U := D0 × �2. Clearly, it has
zero mean and variance EZ2(u) = σ 2(u). Let ρZ denote the intrinsic semi-metric of
{Z(u), u ∈ U }; then

ρZ (u, u′) := [E|Z(u)− Z(u′)|2]1/2

= ‖K(θ1,θ2)(·, x)− K(θ1,θ
′
2)
(·, x ′)‖2

≤ L̄|u − u′|γ ,

where the last inequality follows from Assumption K2.
Now consider the random process {Z̃(u), u ∈ U }. Let σ = infu∈U σ(u); then

ρZ̃ (u, u′) :=
[

E|Z̃(u)− Z̃(u′)|2
]1/2

=
[

E

∣
∣
∣
∣

Z(u)

σ (u)
− Z(u′)
σ (u′)

∣
∣
∣
∣

2
]1/2

≤ 1

σ(u)
ρZ (u, u′)+ σ(u′)

∣
∣
∣
∣

1

σ(u)
− 1

σ(u′)

∣
∣
∣
∣

≤ σ−1 [ρZ (u, u′)+ |σ(u)− σ(u′)|]

≤ 2σ−1ρZ (u, u′) ≤ 2(mes{D})1/2 L̄|u − u′|γ . (46)

Here we have taken into account that σ ≥ (mes{D})−1/2, and

|σ(u)− σ(u′)| = | ‖Kθ (·, x)‖2 − ‖Kθ ′(·, x ′)‖2 |
≤ ‖Kθ (·, x)− Kθ ′(·, x ′)‖2 = ρZ (u, u′).

It follows from (46) that the covering number N (U, ρZ̃ , η) of the index set
U = D0 × �2 with respect to the intrinsic semi-metric ρZ̃ does not exceed
[c1 L̄ Rη−1](d+m)/γ , where c1 is an absolute constant. Then using the exponential
inequality of Lemma 5 [with v = (d + m)/γ , A = c1 L̄ R and σ = ε0 = 1], and
summing over all θ1 ∈ �1 we obtain (44).
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20. Now we turn to the proof of (45). We recall that

Zθ,ν(x)− Zν(x) =
∫
[

Kθ,ν(t, x)− Kν(t, x)
]

W (dt),

σθ,ν(x) = ‖Kθ,ν(·, x)− Kν(·, x)‖2,

where Kθ,ν(·, ·) is defined in (10). We keep θ1, ν1 ∈ �1 fixed, and denote θ = (θ1, θ2),
θ ′ = (θ1, θ

′
2), ν = (ν1, ν2), ν′ = (ν1, ν

′
2). We also denote V = D0 ×�2 ×�2, v =

(θ, ν, x), v′(θ ′, ν′, x ′), and consider the Gaussian random processes {ζ(v), v ∈ V }
and {ζ̃ (v), v ∈ V }, where

ζ(v) = Zθ,ν(x)− Zν(x), ζ̃ (v) = σ̃−1
θ,ν (x)[Zθ,ν(x)− Zν(x)].

Let ρζ and ρζ̃ be the intrinsic semi-metrics of these processes. Similarly to (46), it is
straightforward to show that ρζ̃ (v, v

′) ≤ 2ρζ (v, v′), and our current goal is to bound
ρζ (v, v

′) from above.
We have

ρζ (v, v
′) =

[

E|ζ(v)− ζ(v′)|2
]1/2

= ‖Kθ,ν(·, x)− Kν(·, x)− Kθ ′,ν′(·, x ′)+ Kν′(·, x ′)‖2

≤ ‖Kν(·, x)− Kν′(·, x ′)‖2 + ‖Kθ,ν(·, x)− Kθ ′,ν′(·, x ′)‖2

≤ ‖Kν(·, x)− Kν′(·, x ′)‖2 + ‖Kθ,ν(·, x)− Kθ,ν′(·, x ′)‖2

+ ‖Kθ,ν′(·, x ′)− Kθ ′,ν′(·, x ′)‖2 =: J1 + J2 + J3.

By Assumption K2

J1 ≤ L̄|v − v′|γ .

In order to bound J2 we recall that

Kθ,ν(t, x)− Kθ,ν′(t, x ′) =
∫

Kθ (t, y)
[

Kν(y, x)− Kν′(y, x ′)
]

dy.

Then applying the general theorem about the boundedness of integral operators on
Lp-spaces (see, e.g., [7, Theorem 6.18]) and using (8) we obtain that

J2 ≤ M(K)‖Kν(·, x)− Kν′(·, x ′)‖2 ≤ M(K)L̄|v − v′|γ ,

where the last inequality follows from Assumption K2. It is shown similarly that
J3 ≤ M(K)L̄|v−v′|γ . Combining upper bounds for J1, J2 and J3 we get ρζ (v, v′) ≤
[1 + 2M(K)]L̄|v − v′|γ , and finally

ρζ̃ (v, v
′) ≤ 2[1 + 2M(K)]L̄|v − v′|γ . (47)
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It follows from (47) that the covering number N (V, ρζ̃ , η) of the index set V =
D0×�2×�2 with respect to the intrinsic semi-metricρζ̃ does not exceed [c2 M(K)L̄ R

η−1](d+2m)/γ , where c2 is an absolute constant. Then noting that supv var(ζ̃ (v)) ≤ 1,
using the exponential inequality of Lemma 5 [with v = (d +2m)/γ , A = c2 M(K)L̄ R
and σ = ε0 = 1], and summing over all (θ1, ν1) ∈ �1 ×�1 we obtain (45).
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