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Abstract We prove hypercontractivity for a quantum Ornstein–Uhlenbeck semi-
group on the entire algebra B(h) of bounded operators on a separable Hilbert space
h. We exploit the particular structure of the spectrum together with hypercontractiv-
ity of the corresponding birth and death process and a proper decomposition of the
domain. Then we deduce a logarithmic Sobolev inequality for the semigroup and gain
an elementary estimate of the best constant.
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1 Introduction

Semigroups of completely positive, identity preserving maps on an operator algebra
are the fundamental tool in the study of quantum open systems (see [1,2,23,29] and
the references therein). They have been known in the physical literature since the
1970s as quantum dynamical semigroups and they can be viewed as a generalization
of classical Markov semigroups on the Abelian algebra of functions on some space.

The most interesting examples of such semigroups arise in a canonical way in the
Markovian limit of the evolution of a small system coupled with a quasi-free reser-
voir as, for instance, in the spontaneous decay of an atom, the spin–boson interaction,
the Pauli–Fierz model, the one-mode electromagnetic field, resonance fluorescence
and so on. These semigroups act on the von Neumann algebra B(h) of all bounded
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operators on the Hilbert space h (the Hilbert space of the small system) and have
several interesting properties. Indeed, they leave some Abelian subalgebra invariant
and their restriction to this algebra yields a classical Markov semigroup. They admit
explicit representation formulae that are natural non-commutative extensions of well-
known classical formulae. Moreover, they enjoy deepest properties, like exponential
ergodicity or hypercontractivity (see [4,6,7,9,26]) which are essentially equivalent
to the positivity of the spectral gap and to a non-commutative version of logarithmic
Sobolev inequalities. They are also relevant from a physical point of view because,
if the semigroup is interpreted as a quantum channel, a relationship between the con-
traction rate and the entropy production can be found [27].

In this paper we are concerned with the completely positive semigroup describing
a free damped quantum harmonic oscillator. This semigroup acts on the algebra B(h)

of all bounded operators on the Hilbert space h = l2(N) of complex-valued, square
summable sequences indexed by the set N of natural numbers. The Hilbert space h is
isometrically isomorphic to the Fock space on C arising in the canonical representa-
tion of 1D CCR. Denote by A, A∗ the annihilation and creation operators on h. (If we
introduce the canonical basis (en)n≥0, we remember that A and A∗ are described by
A∗en = √

n + 1en+1, for n ≥ 0; Ae0 = 0, Aen = √
nen−1 for n ≥ 1.)

We shall call quantum Ornstein–Uhlenbeck (qOU) semigroup a collection of oper-
ators T = (Tt )t≥0, acting on B(h) and verifying the evolution equation

d

dt
Tt (x) = LTt (x), T0 = id

where, at least for x ∈ B(h) with finite rank,

L(x) = −µ2

2
(A∗ Ax − 2A∗x A + x A∗ A) − λ2

2
(AA∗x − 2Ax A∗ + x AA∗),

with λ and µ real constants such that 0 < λ < µ.
The operator L is a Lindblad operator and the minimal associated semigroup T

(whose existence is guaranteed by Davies’ theorem [13]) is conservative and has a
unique diagonal invariant state (see [9,17] and references therein)

ρ = (1 − ν)
∑

n

νn|en〉〈en|, where ν = λ2/µ2

(we use the Dirac notation: for u and v in h, |u〉〈v| denotes the operator on h defined
by |u〉〈v|(w) = 〈v,w〉u for any w in h). For x and y in B(h), we will use the scalar
product associated with the invariant state ρ, 〈x, y〉ρ = tr(ρ1/2x∗ρ1/2 y); we will also
denote by ‖x‖p = (tr|ρ1/(2p)xρ1/(2p)|p)1/p, p ≥ 1, the usual L p norms associated
with ρ. An interpolating family of L p spaces is then generated considering L∞ = B(h)

and, for p ∈ [1,+∞), taking the space L p(h) as the closure of B(h) with respect to
the norm ‖ · ‖p. Then L2(h) will be a Hilbert space with scalar product 〈·, ·〉ρ . Notice
that the definition of these norms is possible due to the faithfulness of ρ.

The restriction of the operator L to the algebra of diagonal operators (in the above
basis) is the infinitesimal generator of a birth and death process with linear rates (see
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Biane [3], (11) here); more details about this aspect can be found in the last section.
Further, L is usually called the qOU generator since, by Schrodinger representation,
one can see that its restriction to the space of multiplication operators by a function
of a quadrature operator z̄ A + z A∗ (z ∈ C) is the classical Ornstein–Uhlenbeck gen-
erator on smooth functions (see relations (7.5) in [10]). This commutative restriction
of L is well-known and has been deeply studied; in particular hypercontractivity was
proved by Gross [18] through log-Sobolev inequalities. The complexified version of
this result was obtained by Epperson [16] by using a discretization technique and a
simple application of the central limit theorem.

So the operator L is the natural extension of well-known generators on abelian alge-
bras, but it has been extensively studied since it appears in quantum optics models.
A complete study of the spectral properties of the qOU generator is made in [10] and
some other properties, like L p-contractivity and uniform exponential convergence,
are studied in [9].

A natural question is now whether the qOU semigroup is hypercontractive, that is
whether, for all p, q ≥ 1, the operators Tt are contractive from Lq to L p for t large
enough, formally: for all p, q ≥ 1, there exists tpq such that ‖Tt (x)‖p ≤ ‖x‖q for all
x and all t ≥ tpq . We will briefly discuss some weaker and equivalent conditions for
hypercontractivity in Sect. 4. Notice that the previous definition can result different
in some papers, since some authors call this property strict hypercontractivity. Biane
[4] and Bożejko [6] studied hypercontractivity for a (more general) qOU semigroup,
associated with the representation of q-commutation relations, on the algebra gener-
ated by the position operator; an extension to general commutation relations has been
recently analysed by Krȯlak [20].

Here we study hypercontractivity for the previously introduced qOU semigroup on
the whole algebra B(h) and this paper is basically devoted to the proof of the following
main result

Theorem 1.1 The quantum Ornstein–Uhlenbeck semigroup is hypercontractive.

For the Ornstein–Uhlenbeck semigroup on the spaces L p(Rn), the hypercontractiv-
ity was proved in the 1970s [18] but similar problems have been only recently solved
also for finite Markov chains or birth and death semigroups (see [11,12,14,15,24,25,
28], where relations between hypercontractivity and other convergence properties are
emphasized). The extension of the result to the quantum case is not surprising, but
the non-commutative context usually requires additional technical efforts. The usual
approach by logarithmic-Sobolev inequalities (introduced in [18]) has further been
developed by many other authors in non-commutative context (see e.g. [4,8,19,21,22])
and has been finally extended to the semigroups acting on the operator algebras we
consider here by Olkiewicz and Zegarlinsky [26] in 1999. But this kind of approach
would lead to quite difficult computations in our context, so we choose an alternative
solution of the problem, deducing log-Sobolev inequalities by hypercontractivity.

Three main ingredients have been used to tackle the problem: (i) the spectral struc-
ture of the operator L (described in [10]), (ii) a particular diagonal decomposition of
the space which is preserved by L and (iii) the analysis of the associated birth and death
process. The properties (i) and (ii) are described in Sect. 2, where the equivalence of
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hypercontractivity to some norms inequalities for the semigroup is also clarified (see
(2), (5)).

Then, in Sect. 3, we study the previous inequalities and move to similar relations
for norms of commutative functions, defined on the set of natural numbers.

Finally, in Sect. 4, we study some properties of the (birth and death) semigroup
P obtained by restricting T to the algebra of diagonal operators. This allows us to
conclude the proof of Theorem 1.1. Some elementary estimates of the log-Sobolev
constants for the semigroups P and T are also obtained.

2 Preliminaries and orthogonal decomposition of the domain

We want to prove hypercontractivity via spectral theory. Our starting points are

(a) The spectral structure of the OU generator: the operator L (see [10]) has eigen-
values n(λ2 − µ2)/2 with eigenspaces En ,

En = Lin{pn(Qz) : |z| = 1} = Lin{pn(Qz) : z such that z2(n+1) = 1},

where pn is the Hermite polynomial defined by pn(t) = ∑
2r≤n

(
− µ2+λ2

4(µ2−λ2)

)r

n!
r !(n−2r)! t

n−2r and Qz = (z̄ A + z A∗)/
√

2, for z in C. In particular the subspaces
{En : n ≥ 0} are mutually orthogonal and

⊕
n≥0 En = L2(h). Moreover, we

emphasize

Un = Lin{∪n
m=0 Em} = Lin{Qm

z : |z| = 1, m ≤ n} = Lin{A∗i A j : i + j ≤ n}.

(b) This spectral structure of L gives us the necessary conditions to apply a result in
[5] (Theorem 2.1, p. 17), which guarantees that the semigroup generated by L
is hypercontractive if

there exists C > 0 such that ‖x‖4 ≤ Cn‖x‖2 for all x in En, (1)

where C is independent of n and x .

We immediately remark two facts.

(i) Condition (1) is equivalent to

there exists C > 0 such that ‖x‖4 ≤ Cn‖x‖2 for all x in Un . (2)

Notice that the constants C involved in (1) and (2) are different in general, but
both are not less than 1 since, for the identity operator 1l ∈ E0 = U0, we have
‖1l‖2 = ‖1l‖4 = 1.
It is quite obvious that the second condition implies the first and, for the inverse
implication, just consider that any x in Un has the orthogonal decomposition
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Hypercontractivity for a qOU semigroup 509

(in L2(h)) x = ∑n
k=0 yk , where yk ∈ Ek and so, if (1) holds, we have

‖x‖4 ≤
n∑

k=0

‖yk‖4 ≤
∑

k

Ck‖yk‖2 ≤ Cn(n
∑

k

‖yk‖2
2)

1/2 ≤ Cn
1 ‖x‖2, (3)

where we choose C1 such that Cn
1 ≥ Cn√

n for all n.
(ii) Each condition ((1) or (2)) is also equivalent to hypercontractivity since, if T is

hypercontractive, then there exists a t̄ such that ‖Tt (x)‖4 ≤ ‖x‖2 for all t ≥ t̄ .
So, if xn is in En , one has

‖Tt̄ (xn)‖4 = e−t̄n(µ2−λ2)/2‖xn‖4 ≤ ‖xn‖2,

and (1) follows choosing C = et̄(µ2−λ2)/2.

The proof of hypercontractivity for T can so be reduced to the research of a constant C
(not necessarily the optimal one) verifying (2). The explicit computation of the norms
in (1) or (2) are in general quite difficult, so the choice of a proper orthogonal basis
of the space Un will help us; notice that it will not be convenient to use the elements
pn(Qz), |z| = 1, generating the eigenspaces, since they are generally not mutually
orthogonal. In this section, we shall introduce a “diagonal” orthogonal decomposition
of the space; then, in Sect. 3, we shall see how this decomposition allows us to sim-
plify the problem by considering norms’ inequalities involving commutative functions
instead of operators in B(h).

An element x of B(h) can always be written as x = ∑
n,m≥0 xnm |en〉〈em |, where

xn,m = 〈en, x(em)〉h ; so x can be identified with the “matrix” (xnm)n,m . We point out
that the sum we have just considered for x (and similarly in what follows) is weak in
B(h) and strong in L p(h) for all p.

The linear spaces

Fk = {x ∈ B(h) | xnm = 0 for m − n �= k}, k ∈ Z

(Fk contains the elements which can have only the k-th diagonal different from zero)
are an orthogonal decomposition of the space B(h) ⊂ L2(h), with respect to 〈 , 〉ρ .
So, for all x , we can write the orthogonal decomposition x = ∑

k ξ k , where ξ k =∑
n≥0 xn,n+k |en〉〈en+k | ∈ Fk , for k in Z.
This “diagonal” orthogonal decomposition will fit our approach to the problem and

some of its good properties are evident:

• first, a simple direct computation shows that the spaces Fk are preserved by the
qOU generator, in the sense that L(Fk) ⊂ Fk ;

• second, the elements of Fk , having only one significant diagonal, are simple oper-
ators, someway similar to commutative functions defined on N (we will work on
this feature in next section);

• finally, the decomposition of an operator in its diagonal components is very easy
to compute explicitly; in particular this is true for the elements of the spaces Un .
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Indeed, an element of the form A∗i A j belongs to F j−i , so 〈A∗i A j , A∗l Am〉ρ = 0
if and only if m − l �= j − i . We consider x in Un , then x = ∑

i, j :i+ j≤n ai j A∗i A j , for
some real coefficients ai j , we call ξk the k-th diagonal of x and write the orthogonal
decomposition

x =
∑

|k|≤n

ξk, where ξk =
∑

i, j :i+ j≤n, j−i=k

ai, j A∗i A j ∈ Fk . (4)

If we introduce the spaces

W n
k = Lin{A∗i A j : i, j ≥ 0, i + j ≤ n, j − i = k} = Fk ∩ Un,

for each k ∈ Z, |k| ≤ n, it is quite simple to see that ξk ∈ W n
k , Un = ⊕|k|≤nW n

k and
L is stable also with respect to each W n

k .
In addition, if the desired inequality is true for ξ in W n

k , that is there exists C0 > 0
such that

‖ξ‖4 ≤ Cn
0 ‖ξ‖2 for all n, k ≤ n, and ξ ∈ W n

k , (5)

then (2) is true, since, for x in Un , using the orthogonal decomposition (4), as in (3)

‖x‖4 ≤
∑

k

‖ξk‖4 ≤ (C0 ∨ 1)n
∑

k

‖ξk‖2 ≤ Cn
0 ((2n + 1)

∑

k

‖ξk‖2
2)

1/2, (6)

and we just have to choose C such that Cn ≥ Cn
0

√
2n + 1 for all n. Notice again that

C0 ≥ 1 since, for the identity operator 1l ∈ W 0
0 , we have ‖1l‖2 = ‖1l‖4 = 1.

Moreover, since for any ξ in W n
k , ξ∗ ∈ W n

−k and ‖ξ‖p = ‖ξ∗‖p for all p, it is
sufficient to prove (5) only for k ≥ 0.

Summing up, in this section, we have seen that the qOU semigroup is hypercon-
tractive if and only if the following condition (H) holds

(H) there exists C0 > 0 such that, for all n, 0 ≤ k ≤ n, ξ ∈ W n
k ‖ξ‖4 ≤ Cn

0 ‖ξ‖2.

In the next section, we show that it is sufficient to verify a corresponding inequality
for polynomials (relation (8) in Proposition 3.2) to prove (H). The hypercontractiv-
ity of the qOU semigroup will consequently follow by the hypercontractivity of the
associated birth and death process described by relation (11).

3 The equivalence with commutative inequalities

We underline that ρ can be thought of as a probability measure on the set N of natural
numbers, giving mass (1 − ν)νm to the singleton {m}. So we can define a family of
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L p spaces for complex valued functions defined on N

l p(N, ρ) =
⎧
⎨

⎩ f : N → C such that
∑

m≥0

νm | f (m)|p < ∞
⎫
⎬

⎭

with norm ‖ f ‖l p(N,ρ) =
⎛

⎝(1 − ν)
∑

m≥0

νm | f (m)|p

⎞

⎠
1/p

.

We will denote by l∞(N) the set of bounded functions defined on N. Notice that, for
a diagonal operator x = ∑

m≥0 f (m)|em〉〈em |, we will have ‖x‖p = ‖ f ‖l p(N,ρ). So
these spaces have a clear connection with the L p(h) spaces introduced before. Our
aim is to rewrite inequalities in condition (H), involving non-commutative operators,
as inequalities for particular functions of l p(N, ρ).

We need to introduce other function spaces. For n ≥ 0, 0 ≤ k ≤ n, call M :=
[(n − k)/2] ([ · ] denotes the entire part) and define

Vn
k =

{
f : N → C s.t. f (m) =

(
m!

(m − k)!
)1/2

pM (m), pM

polynomial of degree M

}
.

It is obvious that the square of an element f of Vn
k is a polynomial of degree 2M+k ≤ n

and that Vn
k ⊂ l p(N, ρ) for all p.

In the next two propositions we will prove that condition (H) can be written equiva-
lently as an inequality for the norms (in l p(N, ρ)) of functions in the sets Vn

k or, better,
of polynomials, which are the elements of the spaces Vn

0 .

Proposition 3.1 Condition (H) is fulfilled if and only if there exists C0 > 0 such that

‖ f ‖l4(N,ρ) ≤ Cn
0 ν−k/8‖ f ‖l2(N,ρ) (7)

for all n, 0 ≤ k ≤ n, and all functions f in Vn
k .

Proof We denote by N the number operator on the space h, Nen = nen for all n, with
the notations of the Introduction. For the operators A, A∗, ρ, the following commuta-
tion relations hold

Aρs = νsρs A, A∗ρs = ν−sρs A∗,
Am A∗m = (N + 1) · · · (N + m), A∗m Am = N (N − 1) · · · (N − m + 1),

for all real s and for all m in N, m ≥ 1.
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Fix n and consider k ∈ {0, . . . , n}, then any element ξ in W n
k can be written in the

form

ξ =
M∑

i=0

ai,i+k A∗i Ai+k, M = [(n − k)/2],

so we can associate with ξ the function fξ in Vn
k

fξ (m) =
(

m!
(m − k)!

)1/2 M∑

j=0

a j, j+k(m − k) · · · (m − k − j + 1).

The map ξ ∈ W n
k �→ fξ ∈ Vn

k is obviously one-to-one. Indeed, consider any function

f in Vn
k , f (m) =

(
m!

(m−k)!
)1/2

pM (m), with pM polynomial of degree M ; then we can

write pM in the form pM (m) = ∑M
j=0 a j, j+k(m − k) · · · (m − k − j + 1), for suitable

(unique) a j, j+k ; so, choosing ξ = ∑M
i=0 ai,i+k A∗i Ai+k , we obtain fξ = f . Now we

can easily find a relation between the norms of ξ and fξ

‖ξ‖2
2 = tr{ρ1/2ξ̄ρ1/2ξ}

=
M∑

i, j=0

āi,i+ka j, j+k tr(ρ A∗i+k Ai A∗ j A j+k)ν−k/2

= ν−k/2tr

⎧
⎪⎨

⎪⎩
ρ

N !
(N − k)!

∣∣∣∣∣∣

M∑

j=0

a j, j+k(N − k) · · · (N − k − j + 1)

∣∣∣∣∣∣

2
⎫
⎪⎬

⎪⎭

= (1 − ν)ν−k/2
∑

m≥0

νm f 2
ξ (m) = ν−k/2‖ fξ‖2

l2(N,ρ)
,

and similarly,

‖ξ‖4
4 = ν−k/2tr

⎧
⎪⎨

⎪⎩
ρ

(
N !

(N − k)!
)2

∣∣∣∣∣∣

M∑

j=0

a j, j+k(N − k) · · · (N − k − j + 1)

∣∣∣∣∣∣

4
⎫
⎪⎬

⎪⎭

= (1 − ν)ν−k/2
∑

m≥0

νm f 4
ξ (m)

= ν−k/2‖ fξ‖4
l4(N,ρ)

.

Consequently the inequality for ξ given by (H) and (7) are the same. ��
Remark 3.1 The map ξ ∈ W n

k �→ fξ ∈ Vn
k is a kind of isometry (up to a constant

depending on ν) for any L p norm. This relationship describes how to pass our non-
commutative context to a commutative one.
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We can go further and show that it is sufficient to prove the inequality in the previous
proposition only for k = 0. This means that our problem may be reduced to studying
only particular diagonal operators since the spaces Vn

0 correspond to subspaces of F0.

Proposition 3.2 Condition (H) is fulfilled if and only if there exists C1 > 0 such that

‖pn‖l4(N,ρ) ≤ Cn
1 ‖pn‖l2(N,ρ) (8)

for all n and all polynomials pn of degree n.

Proof It is obvious that condition (8) is equivalent to condition (7) with k = 0: just
notice that pn is in V2n

0 and choose C1 = C2
0 . We have to prove that (8) implies (7) also

for k > 0. So let us suppose that (8) holds, consider n ≥ 1, 1 ≤ k ≤ n, and f in Vn
k ,

i.e. f 2(m) = m!
(m−k)! |pM (m)|2, for some pM polynomial of degree M = [(n − k)/2].

Then, for k �= 0, k even, we can write

‖ f ‖4
l4(N,ρ)

= (1 − ν)
∑

m≥k

νm |pM (m)|4(m − k + 1)2(m − k + 2)2 · · · (m − 1)2m2

since s + 1 ≤ 2s for any s ≥ 1

≤ 2k(1 − ν)
∑

m≥k

νm |pM (m)|4(m − k + 1)4(m − k + 3)4 · · · (m − 1)4

by(8)≤ C4M+2k
1 2k

(
(1 − ν)

∑

m≥k

νm |pM (m)

×(m − k + 1)(m − k + 3) · · · (m − 1)|2
)2

≤ C4M+2k
1 2k

⎛

⎝(1 − ν)
∑

m≥k

νm |pM (m)|2(m − k + 1)(m − k + 2) · · · m

⎞

⎠
2

≤ C4M+2k
1 2k‖ f ‖4

l2(N,ρ)
≤ (2C2

1 )n‖ f ‖4
l2(N,ρ)

.

It remains to study the case k odd. Assume now k = 2r +1, with r ≥ 0, and introduce
the constant Cν such that

C2
ν := (1 − ν)

∑

m≥0

νmm4 = ν(1 + ν)(ν2 + 10ν + 1)(1 − ν)−4.
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As in the previous case, we have that

‖ f ‖4
l4(N,ρ)

≤ 22r (1 − ν)
∑

m≥k

νm |pM (m)|4(m − k + 1)4

×(m − k + 3)4 · · · (m − 2)4m2,

by the Schwarts inequality

≤ 22r Cν

(
(1 − ν)

∑

m≥k

νm |pM (m)(m − k + 1)

×(m − k + 3) · · · (m − 2)|8
)1/2

by(8)≤ 22r CνC2(M+r)
1 (1 − ν)

∑

m≥k

νm(|pM (m)|(m − k + 1)

×(m − k + 3) · · · (m − 2)
)4

by(8)≤ 22r CνC6(M+r)
1

(
(1 − ν)

∑

m≥k

νm |pM (m)|2(m − k + 1)

×(m − k + 2) · · · (m − 1)

)2

= 22r CνC6(M+r)
1 ‖ f ‖4

l2(N,ρ)
≤ Cν(2C3

1)n‖ f ‖4
l2(N,ρ)

.

By an apposite choice of C0, we obtain the required estimates. ��
In the next section we shall prove that relation (8) is verified (and so also condition

(H)) by discussing the hypercontractivity of the associated classical birth and death
process.

4 Logarithmic Sobolev inequality and associated birth and death process

Since hypercontractivity is often linked to log-Sobolev inequalities, it is worth consid-
ering the possible relations of the results of the previous section with the log-Sobolev
inequality for the qOU semigroup. A rough estimate of the log-Sobolev constant can
easily be found by searching for some constants (not necessarily the optimal ones)
verifying inequalities (6–8). First, we recall some main definitions and results about
hypercontractivity and log-Sobolev inequalities for semigroups (on eventually non-
commutative algebras).

We consider an interpolating family of Banach spaces L p, p ∈ [0,+∞], which
contain a common dense Banach subspace A; for our purposes, it will be sufficient to
consider A = L∞ = B(h). For a linear operator R on B(h) and p, q in [1,+∞] we
denote by ‖R‖p,q = supx �=0

‖R(x)‖q
‖x‖p

the norm of the operator R : L p(h) → Lq(h).
We shall say that a semigroup R = (Rt )t≥0 of linear maps on B(h) is weakly

hypercontractive if,
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(C1) for all p, q ∈ [1,+∞), there exist tpq and C p,q s.t. ‖Rt‖p,q ≤ C p,q for all
t ≥ tpq .

Recalling our definition of hypercontractivity given in the Introduction, a semigroup
R is hypercontractive when (C1) holds with C p,q = 1 for all p and q.

It is well-known (see [26] or [15], Ch.5) that, if the semigroup is L∞-contractive
(i.e. ‖Rt‖∞,∞ ≤ 1) and there exist a time τ and a constant C such that ‖Rτ‖2,4 ≤ C ,
then

(C2) ‖Rt‖2,q(t) ≤ exp(1 − 2d(q(t))−1), for q(t) = 1 + et/(2τ), d = ln C .

In this case, by interpolation results, (C2) is equivalent to (C1) (that is weak hyper-
contractivity) and we have hypercontractivity when (C2) holds with d = 0.

So, for L∞-contractive semigroups (like the qOU semigroup T ), hypercontrac-
tivity is equivalent to the existence of a time τ such that ‖Rτ‖2,4 ≤ 1. This is a
key-ingredient for the proof of Theorem 2.1 in [5], that we have cited at the beginning
of Sect. 2.

We have already told in the Sect. 1 that, when we consider a semigroup R of linear
maps on B(h), the norms of the interpolating L p spaces can be chosen appropriately
depending on the invariant state. Further, if R has an invariant state (or measure, in
the commutative case) π and infinitesimal generator A, then we shall denote by E the
associated quadratic form, E(x) = −〈x, A(x)〉π = tr(π1/2x∗π1/2 A(x)) and, for any
positive element x of B(h), we shall call entropy of x (w.r.t. π ) the quantity

Entropy(x) = tr(x̃∗ x̃ lg(x̃)) − 1

4
tr(x̃∗(x̃ lg π + lg π x̃)) − ‖x‖2

2,π lg ‖x‖2,π ,

where x̃ = π1/4xπ1/4 and ‖x‖p
p,π = tr(|π1/(2p)xπ1/(2p)|p). The entropy and the qua-

dratic form are the quantities involved in the so called logarithmic-Sobolev inequalities,
that we want to discuss in this section. Here notations and terminology are similar to
the ones used in [26], where we also find the proof of the following result.

Theorem 4.1 (R. Olkiewicz and B. Zegarlinski, Theorems 3.8 and 4.2 in [26])

(a) Suppose R = (Rt )t≥0 is a L2-symmetric, positive and contractive (with respect
to any ‖ · ‖p, 1 ≤ p ≤ +∞) semigroup. If R is weakly hypercontractive, that is

‖Rt (x)‖q(t) ≤ exp(d(1 − 2(q(t))−1))‖x‖2 (9)

with d ≥ 0, q(t) = 1 + e2t/c for some c > 0, then the following LS(c, d)

(Logarithmic Sobolev inequality with constants c and d) is true

Entropy(x) ≤ cE(x) + d‖x‖2
2. (10)

(b) Moreover, if LS(c, d) holds and the semigroup has strictly positive spectral gap
η, then LS(c + (d + 1)η−1, 0) holds.

The value α = c−1, where c is the best constant verifying LS(c, 0) is usually called
the log-Sobolev constant of the semigroup R.
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In this section we will also exploit a converse of the previous Theorem 4.1(a), which
is true for classical Markov semigroups (see [14,15] for the proof):

Theorem 4.2 Suppose R = (Rt )t≥0 is a L2-symmetric, positive and contractive
semigroup acting on commutative L p spaces. If LS(c, d) holds, then (9) holds.

Remark 4.1 We would like to point out that in [26] the authors prove a result similar
to Theorem 4.2 also for semigroups acting on operators’ algebras under an additional
regularity condition on the quadratic form E associated with the infinitesimal genera-
tor. We do not write the details here, since this regularity condition is not immediate
to describe and, moreover, our approach will require this “converse result” only in a
commutative environment (so Theorem 4.2 will be sufficient), where the regularity
condition on the quadratic form does not appear, since it is always satisfied. We also
want to stress that, for the qOU semigroup, the structure of the spectrum guarantees
the existence of the spectral gap, which gives a strong condition on E and someway
“helps” the log-Sobolev inequalities (these aspects are also studied in [26], in partic-
ular in Sects. 4 and 5). So we do not need to study explicitly the regularity conditions
of the quadratic form E here, but they are essentially hidden in the step where we use
Theorem 4.2 of [5].

For the qOU semigroup T , we can choose the L p spaces associated with the invariant
state ρ, that we have described in Sect. 1: L∞ = B(h) and, for p ∈ [1,∞), L p(h) as
the closure of the algebra B(h) with respect to the norm ‖ · ‖p = ‖ · ‖p,ρ . We will also
have π = ρ and E(x) = −〈x,L(x)〉ρ , for any x in the domain of L. Then we know
that T is a completely positive semigroup which is contractive with respect to any L p

norm (see [9]); moreover, it has spectral gap η := µ2−λ2

2 (see [9,10]).
As we previously told, we can consider the restriction of L to the commutative

algebra of diagonal operators; this restriction can be seen as an operator G acting on
l∞(N). For any f = ∑

n f (n)en in l∞(N), we define

G f =
∑

n

(
µ2n( f (n − 1) − f (n)) + λ2(n + 1)( f (n + 1) − f (n))

)
en;

then it is easy to see that any diagonal operator x in dom(L) ⊂ B(h) can be written
x = ∑

n f (n)|en〉〈en| for some f in l∞(N) and

L(x) = L
(
∑

n

f (n)|en〉〈en|
)

=
∑

n

(G f )(n)|en〉〈en|. (11)

G is the infinitesimal generator of a semigroup P = (Pt )t≥0 on l∞(N) which can be
similarly seen as the restriction of T to the algebra of diagonal operators. The measure
on N induced by the state ρ is invariant for G and the corresponding L p interpolating
spaces are the spaces l p(N, ρ) that we have introduced in the previous section. P is
obviously a L2-symmetric, positive and contractive semigroup, since T is.

Moreover, P is the commutative semigroup associated with a classical birth and
death process with linear rates (birth rates bn = λ2(n + 1) and death rates an = µ2n).
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Let us call α1 and α0 the log-Sobolev constants of the qOU semigroup T and of its
diagonal restriction P , respectively (obviously we will have α0 ≥ α1).

We shall prove that T is hypercontractive, so Theorem 4.1 will assure us that a
logarithmic Sobolev inequality holds, but we shall also ask for some indications about
the value of the involved constant. We shall obtain some estimates of α0 (which is
unknown, as far as we are aware) and then some estimates of α1 using α0. More
precisely, in this section, we will prove the following facts.

• P satisfies a log-Sobolev inequality LS(α−1
0 , 0), where the best constant α0 verifies

lg(ν−1)

5
√

5µ2(1 − ν)3/2
≤ α−1

0 ≤ 255

4

(1 + lg 2)(1 − ν) + lg(ν−1)

µ2(1 − ν)3 .

As a result, P is hypercontractive by Theorem 4.2.
• By the hypercontractivity of P and the spectral properties of its infinitesimal gen-

erator G, we deduce that condition (8) is verified with C1 = √
2 3(µ2−λ2)/(2α0).

So the qOU semigroup is hypercontractive.
• The qOU semigroup verifies a log-Sobolev inequality LS(α−1

1 , 0) where the best
constant α1 verifies

α−1
0 ≤ α−1

1 ≤ 4 (5 − lg(1 − ν))

µ2(1 − ν)
+ (3 lg 3)α−1

0 .

4.1 Hypercontractivity for the birth and death process

We are going to show that P is hypercontractive and we are interested, in particular, in
proving that it satisfies a log-Sobolev inequality. This and other kinds of contractivity
properties for semigroups on commutative spaces have been deeply investigated; we
refer to [11] for a review of the existing results and to [12,14,24,25] for some recent
developments on hypercontractivity. Here we will follow the technique described by
Chen in [12], remembering that we are treating a birth and death process with birth
rates bn = λ2(n + 1), death rates an = µ2n, and so with invariant measure induced
by ρ.

We introduce the constant

Bν = sup
n≥1

n∑

j=1

1

µ2 jν j
M

(
νn

1 − ν

)
,

where M(x) =
√

4x + 1 − 1

2
+ x lg

(
1 +

√
4x + 1 + 1

2x

)
, for x > 0.

Adjusting some results in [12], we get the following estimate for α0

Lemma 4.1 2
5 (M((1 − ν)−1))−1 Bν ≤ α−1

0 ≤ 255
4 Bν.

123



518 R. Carbone, E. Sasso

Proof These inequalities are slightly different from the ones written in [12], but they
can be easily obtained by Theorems 3.3 and 7.3 of [12] (and attentively reading the
proof of the second theorem). ��

Proposition 4.1 P is hypercontractive and verifies a LS(α−1
0 , 0) inequality with

lg(ν−1)

5
√

5µ2(1 − ν)3/2
≤ α−1

0 ≤ 255

4

(1 + lg 2)(1 − ν) + lg(ν−1)

µ2(1 − ν)3 .

Proof The proof consists in a direct application of Lemma 4.1, where we only have
to estimate Bν . So consider

M

(
νn

1 − ν

)
= νn

1 − ν

⎡

⎣2

(
1 +

√
1 + 4νn

1 − ν

)−1

+ lg

(
1 + 1 − ν

2νn

(
1 +

√
1 + 4νn

1 − ν

))⎤

⎦

and notice that

νn

1 − ν
lg

(
1 + (1 − ν)ν−n) ≤ M

(
νn

1 − ν

)

≤ νn

1 − ν
(1 + lg(2ν−n)).

We use these inequalities for M in order to obtain some bounds for Bν .
Lower estimate for Bν . For any ν, we denote by nν the smallest integer such that

(1 − ν)ν−n ≥ ν−n/2 for all n ≥ nν . Then

Bν ≥ sup
n≥1

n∑

j=1

1

µ2 jν j

νn

1 − ν
lg

(
1 + (1 − ν)ν−n)

≥ 1

µ2(1 − ν)
sup

n≥nν

n∑

j=1

νn− j

j
lg(ν−n/2)

= 1

2µ2(1 − ν)
sup

n≥nν

n∑

j=1

νn− j n

j
lg(ν−1)

≥ lg(ν−1)

2µ2(1 − ν)
sup

n≥nν

n−1∑

j=0

ν j = lg(ν−1)

2µ2(1 − ν)2 .
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Upper estimate for Bν .

Bν ≤ sup
n≥1

n∑

j=1

1

µ2 jν j

νn

1 − ν
(1 + lg(2ν−n))

≤ 1

µ2(1 − ν)
sup
n≥1

n∑

j=1

νn− j

j
(1 + lg(2ν−n))

≤ 1

µ2(1 − ν)
sup
n≥1

n−1∑

j=0

ν j 1 + lg 2 + n lg(ν−1)

n − j

≤ 1

µ2(1 − ν)
sup
n≥1

n−1∑

j=0

ν j (1 + lg 2 + lg(ν−1)( j + 1))

≤ (1 + lg 2)(1 − ν) + lg(ν−1)

µ2(1 − ν)3 .

Using these bounds for Bν in Lemma 4.1, we have

2

5M((1 − ν)−1)

lg(ν−1)

2µ2(1 − ν)2 ≤ α−1
0 ≤ 255

4

(1 + lg 2)(1 − ν) + lg(ν−1)

µ2(1 − ν)3

and, since M(x) ≤ √
4x + 1 for any x , we finally get

lg(ν−1)

5
√

5µ2(1 − ν)3/2
≤ α−1

0 ≤ 255

4

(1 + lg 2)(1 − ν) + lg(ν−1)

µ2(1 − ν)3 .

Since a log-Sobolev inequality is verified, by Theorem 4.2, P is hypercontractive.
��

Now we can go back to the study of hypercontractivity for the qOU semigroup and
try to connect the formulation of the problem given in the previous section with the
results we have just obtained.

It is known that the “diagonal” infinitesimal generator G has eigenvalues (λ2−µ2)n,
n ≥ 0, each with eigenspace generated by a particular qn , polynomial function of
degree n (see Proposition 7.4 in [10]). We remember that {qn, n ≥ 0} is a family of
orthogonal polynomials in l2(N, ρ). This description of the spectrum of G allows us
to complete the proof of Theorem 1.1 by the following.

Corollary 4.1 The qOU semigroup is hypercontractive since condition (8) holds, for
instance with C1 = √

2 3(µ2−λ2)/(2α0).

Proof Inequality LS(α−1
0 , 0) is true for P and P is hypercontractive, so, by Theo-

rem 4.1(a), we have

‖Pt‖q(t),2 ≤ 1, for q(t) = 1 + exp(2tα0);
in particular ‖Pt‖4,2 ≤ 1, for t ≥ t̄ := (2α0)

−1 lg 3.
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Repeating for P the same considerations made for T in Sect. 2 (just after Eq. (2)), we
have the following inequalities for the eigenpolynomials’ norms

‖qn‖l4(N,ρ) ≤ et̄n(µ2−λ2)‖qn‖l2(N,ρ), for all n.

So, if pn is any polynomial of degree n, we can write pn = ∑n
k=0 ckqk for appropriate

(ck)k=0...n and, similarly as in (6), we obtain

‖pn‖l4(N,ρ) ≤ (n + 1)1/2et̄n(µ2−λ2)‖pn‖l2(N,ρ)

= (n + 1)1/2en(µ2−λ2) lg 3/(2α0)‖pn‖l2(N,ρ),

which is equivalent to condition (8), where a possible choice of the constant C1 can
be obtained asking

C1 ≥ (n + 1)1/(2n)3(µ2−λ2)/(2α0) for all n;

so we take C1 = √
2 3(µ2−λ2)/(2α0). ��

4.2 Log-Sobolev inequality for qOU semigroup

In order to get the aims of this section, we still have to study the log-Sobolev inequality
for the qOU semigroup T .

Proposition 4.2 T is hypercontractive and verifies a LS(α−1
1 , 0) inequality with

α−1
0 ≤ α−1

1 ≤ 4 (5 − lg(1 − ν))

µ2(1 − ν)
+ (3 lg 3)α−1

0 .

Proof We have proved that T is hypercontractive, so the idea of this proof is that we
can estimate the constants involved in Eq. (9), written for the qOU semigroup, and
then obtain a L S(c, 0) inequality. By this way, we get an estimate from above for α−1

1 .
In order to choose C0 in (7), reading the proof of Proposition 3.2, it is clearly

sufficient to ask

Cn
0 ν−k/8 ≥

{
(2C2

1 )n/4 for k even,

C1/4
ν (2C3

1)n/4 for k odd.

Some elementary computations show that we can choose

C0 = (2C3
1(Cν ∨ 1))1/4 = 25/8(C1/4

ν ∨ 1)33(µ2−λ2)/(8α0).

Then inequality (6) is verified (‖x‖4 ≤ Cn
0

√
2n + 1‖x‖2 ≤ Cn‖x‖2 for all n and all

x in Un) if we take C = C0
√

3 = √
3 25/8(C1/4

ν ∨ 1)33(µ2−λ2)/(8α0).
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So, by Theorem 2.1 in [5] (or by direct computation, using the spectral decompo-
sition of L), we have

‖Tt (x)‖4 ≤ (1 − Ce−ηt )−1‖x‖2 for any x ∈ B(h);

then, by Proposition 3.4 in [26] (alternatively see [15]), for all x ,

‖Tt (x)‖q(t) ≤exp(d(1 − (q(t))−1))‖x‖2, q(t)=1 + et/(2τ), d =− lg(1 − Ce−ητ )

for all τ such that 1 − Ce−ητ > 0, or equivalently for all τ >
2 lg C
µ2−λ2 .

Therefore the inequalities LS(4τ,− lg(1 − Ce−ητ )) are verified for the semigroup
T for all τ >

2 lg C
µ2−λ2 . Moreover, since T has spectral gap (µ2 − λ2)/2, by Theo-

rem 4.1(b), also inequality LS(c′, 0) is verified, where

c′ = c′(τ ) = 4τ + 2

µ2 − λ2

[
1 − lg

(
1 − Ce−τ(µ2−λ2)/2

)]
.

We minimize c′ as a function of τ >
2 lg C
µ2−λ2 and obtain that the optimal τ is τ ∗ =

2 lg(5C/4)

µ2−λ2 with corresponding

c′∗ = c′(τ ∗) = 2

µ2 − λ2 lg(552−11/232e(Cν ∨ 1)) + (3 lg 3)α−1
0 .

Finally we obtain the estimate

α−1
0 ≤ α−1

1 ≤ c′∗ ≤ 2

µ2(1 − ν)

(
lg(552−11/232e) + 1

2
lg

11

(1 − ν)4

)
+ (3 lg 3)α−1

0

≤ 2

µ2(1 − ν)
(9.022 − 2 lg(1 − ν)) + (3 lg 3)α−1

0

and the conclusion follows. ��
Remark 4.2 Now by Proposition 4.1, we can control α−1

1 . In particular, there exist
two positive constants A and B, such that

A(1 − ν)−1/2 ≤ α−1
1 ≤ B(1 − ν)−2,

as ν → 1. Obviously these estimates are not accurate and could be easily improved,
also with the same method, but here we are not concentrated on this aspect.

Remark 4.3 By proving the equivalence of different inequalities, we finally seem to
deduce hypercontractivity for the quantum semigroup from the hypercontractivity of
the associated birth and death process. Yet, we notice that this fact alone is not suffi-
cient and, further, the involved constants get worse when considering the quantum
case. This is quite natural and also happens for uniform exponential convergence and
spectral gap (see once again [9]).
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