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Abstract New transportation cost inequalities are derived by means of
elementary large deviation reasonings. Their dual characterization is proved;
this provides an extension of a well-known result of S. Bobkov and F. Götze.
Their tensorization properties are investigated. Sufficient conditions (and nec-
essary conditions too) for these inequalities are stated in terms of the integra-
bility of the reference measure. Applying these results leads to new deviation
results: concentration of measure and deviations of empirical processes.
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1 Introduction

In the whole paper, X is a Polish space equipped with its Borel σ -field. We
denote P(X ) the set of all probability measures on X .

1.1 Transportation cost inequalities and concentration of measure

Let us first recall what transportation cost inequalites are and their well known
consequences in terms of concentration of measure.

Transportation cost Let c : X × X → [0, ∞) be a measurable function on
the product space X × X . For any couple of probability measures µ and ν on
X , the transportation cost (associated with the cost function c) of µ on ν is

Tc(µ, ν) = inf
π

∫

X×X

c(x, y) π(dxdy) ∈ [0, ∞]

where the inf is taken over all probability measures π on X × X with first
marginal π(dx × X ) = µ(dx) and second marginal π(X × dy) = ν(dy).

Tp-inequalities Popular cost functions are c(x, y) = d(x, y)p where d is a
metric on X and p ≥ 1. It is known that for some µ ∈ P(X ) and p ≥ 1 one can
prove the following transportation cost inequality

Tdp(µ, ν)1/p ≤ √
2CH(ν | µ), ∀ν ∈ P(X ) (1)

for some positive constant C, where H(ν | µ) is the relative entropy of ν with
respect to µ defined by

H(ν | µ) =
∫

X

log

(
dν
dµ

)
dν

if ν is absolutely continuous with respect to µ and H(ν | µ) = ∞ otherwise. In
presence of the family of inequalities (1), one says that µ satisfies Tp(C).

For instance, Csiszár–Kullback–Pinsker’s inequality, see (18), is T1(1) with
Hamming’s metric d(x, y) = 1x �=y. Csiszár–Kullback–Pinsker’s inequality is
often called Pinsker’s inequality, it will be refered later as CKP inequality.
It holds for any µ ∈ P(X ). On the other hand, T2-inequalities are much more
difficult to obtain. It is shown in the articles by Otto and Villani [19] and by Bob-
kov et al. [2], that if µ satisfies the logarithmic Sobolev inequality, then it also
satisfies T2. A standard example of probability measureµ that satisfies T2 is the
normal law. In [22], Talagrand has given a proof of T2(C) for the standard nor-
mal law not relying on any log-Sobolev inequality, for the sharp constant C = 1.

Concentration of measure As a consequence of T1(C), Marton [16,17] has
obtained the following concentration inequality for µ:
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µ({x; d(x, A) > r}) ≤ exp

[
−

(
r√
2C

− √
log 2

)2
]

(2)

for all measurable subset A such that µ(A) ≥ 1/2 and all r ≥ √
2C log 2.

Marton’s concentration argument easily extends to more general situations. This
is of considerable importance and justifies the search for T1-inequalities.

Product of measures Suppose that µ1, . . . ,µn satisfy respectively Tp(C1),
. . . , Tp(Cn). By means of a coupling argument which is also due to Marton [17]
(the so-called Marton’s coupling argument), one can check that when p = 1,
the product measure µ1 ⊗ · · · ⊗ µn satisfies the inequality T1(C1 + · · · + Cn)

(for the cost function
∑n

i=1 d(xi, yi)), while when p = 2, µ1 ⊗ · · · ⊗ µn satis-
fies T2(max(C1, . . . , Cn)) (for the cost function

∑n
i=1 d2(xi, yi)). In particular,

if µ satisfies T1(C) then µ⊗n satisfies T1(nC). This inequality deteriorates as
n grows. On the other hand, if µ satisfies T2(C) then µ⊗n also satisfies T2(C)
and so does the infinite product µ⊗∞. One says that T2-inequalities have the
dimension-free tensorization property. This property was first established by
Talagrand in [22].

By Jensen’s inequality, we have (Td)
2 ≤ Td2 so that T2(C) implies T1(C). As

the standard normal law γ satisfies T2(1), it follows easily from the dimension-
free tensorization property that the standard normal law on R

n, denoted by γ n,
satisfies T2(1) and therefore T1(1) and the concentration inequality

γ n({x; d(x, A) > r}) ≤ exp

[
−

(
r√
2

− √
log 2

)2
]

for all measurable subset A such that µ(A) ≥ 1/2 and all r ≥ √
2 log 2 where d

is the Euclidean distance on R
n. This concentration result holds for all n and is

very close to the optimal concentration result obtained by means of isoperimet-
ric arguments which is: γ n({x; d(x, A) > r}) ≤ 1√

2π

∫ +∞
r e−u2/2 du, for all r ≥ 0,

see Borell’s paper [6] or Ledoux’s monograph [13], p. 28. In view of (2) and of
this optimal concentration inequality, it now appears that with X = R

n, T1(C)
implies that µ concentrates at least as a normal law with variance C. One may
say that µ performs a Gaussian concentration when (2) holds for some C.

Criteria for T1 It has recently been proved by Djellout et al. in [10] that µ
satisfies T1(C) for some C if and only if

∫

X

eaod(xo,x)2 µ(dx) < ∞ (3)

for some ao > 0 and some (and therefore all) xo in X . It follows that (3) is a
characterization of the Gaussian concentration. The proof of this result in [10]
relies on a dual characterization of T1 which has been obtained by Bobkov and
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Götze in [1]. This characterization is the following: T1(C) holds if and only if

log
∫

X

es(ϕ−〈ϕ,µ〉) dµ ≤ Cs2/2, (4)

for all s ≥ 0 and all bounded Lipschitz function ϕ with ‖ϕ‖Lip ≤ 1, where
〈ϕ,µ〉 will denote in the sequel the usual duality bracket between measures and
functions, that is 〈ϕ,µ〉 := ∫

X ϕ dµ.
The criterion (3) has been recovered very recently by Bolley and Villani in

[5] where the relation between C and ao is improved. This new proof relies on
a strengthening of CKP inequality where weights are allowed in the total varia-
tion norm. For a statement of this strengthened CKP inequality, see Corollary 3
below.

1.2 Presentation of the results

In this article, a larger class of transportation cost inequalities is investigated.
It appears that the transportation cost inequalities Tp defined by (1) enter the
following larger class of inequalities, which will also be called transportation
cost inequalities (TCIs):

α(Tc(µ, ν)) ≤ H(ν | µ), ∀ν ∈ P(X ) (5)

where α : [0, ∞) → [0, ∞) is an increasing1 function which vanishes at 0. The
inequality (1) corresponds c = dp with α(t) = t2/p/(2C), t ≥ 0. Of course, one
should rigorously restrict (5) to those ν ∈ P(X ) such that Tc(µ, ν) is well-defined.

The aim of this paper is threefold.

(i) One proves TCIs by means of large deviation reasonings. The authors
hope that this should provide a guideline for other functional inequali-
ties.

(ii) One obtains deviation results by means of TCIs.
(iii) One extends already existing results, especially in the area of

T1-inequalities.

One says that we have a T1-inequality if

α(Td(µ, ν)) ≤ H(ν | µ), ∀ν ∈ Pd(X ). (T1)

where d is a metric and Pd(X ) is the set of all probability measures which
integrate d(xo, x).

1 In the whole paper, by an increasing function it is meant a nondecreasing function which may be
constant on some intervals.
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As regards item (i), it is no surprise that, because of the relative entropy
entering TCIs, Sanov theorem plays a crucial role in our approach. Let

Ln = 1
n

n∑
i=1

δXi

be the empirical measure of an n-iid sample (Xi) of the law µ ∈ P(X ). Sanov
theorem states that the sequence {Ln}n≥1 obeys the large deviation principle
with rate function ν 
→ H(ν | µ). The main idea is to control the deviations
of the nonnegative random variables Tc(µ, Ln) as n tends to infinity. An easy
heuristic description of this program is displayed at Sect. 2.2. We obtain the

Recipe 1 Any increasing function α such that α(0) = 0 and

lim sup
n→∞

1
n

log P(Tc(µ, Ln) ≥ t) ≤ −α(t)

for all t ≥ 0, satisfies the TCI (5).

Rigorously, one will have to require that α is a left continuous function. This
result will be proved at Theorem 15 and a weak version of it (with α convex) is
proved at Proposition 4. Under certain hypotheses, one can show that the left
continuous version of the function

t 
→ − lim sup
n→∞

1
n

log P(Tc(µ, Ln) ≥ t)

is optimal in (5), see Corollary 9 at Sect. 7.
Not only TCIs can be derived with this recipe but also another class of func-

tional inequalities which we call Norm-Entropy Inequalities (NEIs), see (11)
for their definition. Let us only emphasize in this introductory section that
T1-inequalities are NEIs.

As regards item (ii), concentration inequalities for general measures and
deviation inequalities for empirical processes are derived by means of
T1-inequalities at Sect. 6.

As regards item (iii), the main technical (easy) result is Theorem 2 which is
an extension of Bobkov and Götze’s characterization of T1(C) stated at (4). It
gives a dual characterization of all convex TCIs: those TCIs with α convex and
increasing. Note that, up to the knowledge of the authors, all known TCIs are
convex. As a consequence among others, one recovers the results of [5] about
weighted CKP inequalities at Corollary 3.

Tensorization of convex TCIs is also handled. The main result on this topic
is Theorem 5. It states that if α1(Tc1(µ1, ν1)) ≤ H(ν1 | µ1) for all ν1 and
α2(Tc2(µ2, ν2)) ≤ H(ν2 | µ2) for all ν2, then α1�α2(Tc1⊕c2(µ1 ⊗ µ2, ν)) ≤ H(ν |
µ1 ⊗µ2) for all ν probability measure on the product space, where α1�α2 is the
inf-convolution of α1 and α2.
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Integral criteria are investigated in Sect. 5. It emerges from our analysis via
large deviations, that integral criteria only control the behavior of α(t) in (5)
for t away from zero. As a consequence, complete results are only derived for
T1-inequalities. It is also proved that the function α(t) of a T1-inequality has
a quadratic behavior for t near zero. The integral criterion for T1 is stated at
Theorem 7. It is the following:

Let d be a lower semicontinuous metric. Suppose that a ≥ 0 satisfies
∫
X ead(xo,x)

µ(dx) ≤ 2 for some xo ∈ X and that γ is an increasing convex function which
satisfies γ (0) = 0 and

∫
X eγ (d(x1,x)) µ(dx) ≤ B < ∞ for some x1 ∈ X , then

α(t) = max
(
(
√

at + 1 − 1)2, 2γ (t/2)− 2 log B
)

, t ≥ 0

satisfies (T1).
Note that (

√
at + 1 − 1)2 = a2t2/4 + ot→0(t2) is efficient for t near zero, while

2γ (t/2)− 2 log B is efficient for t away from zero.
This theorem extends the integral criterion (3) of [10] and [5].

The last Sect. 7 is devoted to abstract results. In particular, the extended
version Recipe 2 of Recipe 1 is proved at Theorem 15. The authors hope that
the set of abstract results stated in this section could be the starting point of the
derivations of new functional inequalities.

2 Deriving T -inequalities by means of large deviations. Heuristics

The dual equality associated with the primal minimization problem leading to
Tc(µ, ν) is

Tc(µ, ν) = sup
(ψ ,ϕ)∈Φc

⎧⎨
⎩
∫

X

ψ dµ+
∫

X

ϕ dν

⎫⎬
⎭ (6)

whereΦc is the set of all couples (ψ ,ϕ) of Borel measurable bounded functions
on X such that ψ(x) + ϕ(y) ≤ c(x, y) for all x, y ∈ X . This result is known
as Kantorovich duality theorem and it holds true provided that c is lower
semicontinuous (a proof of this well known result can be found in Chap. 1 of
[23]). It still holds if Φc is replaced by Cb ∩Φc which is the subset of all couples
(ψ ,ϕ) ∈ Φc of continuous bounded functions. In the special case where c = d
is a lower semicontinuous metric, the above dual equality also holds with Φd
the set of all couples (ψ ,ϕ) of measurable (or continuous as well) bounded
functions such that ψ = −ϕ and ϕ is a d-Lipschitz function with a Lipschitz
constant less than 1. In other words,

Td(µ, ν) = sup

⎧⎨
⎩
∫

X

ϕ d(ν − µ);ϕ ∈ B(X ), ‖ϕ‖Lip ≤ 1

⎫⎬
⎭ := ‖ν − µ‖∗

Lip (7)
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where the space of all Borel measurable bounded functions on X is denoted
B(X ) and ‖ϕ‖Lip = supx �=y

|ϕ(x)−ϕ(y)|
d(x,y) is the usual Lipschitz seminorm. This

result, known as Kantorovich-Rubinstein’s theorem, identifies the transporta-
tion cost Td(µ, ν) with the dual norm ‖ν − µ‖∗

Lip (for a proof, see Chap. 1 of
[23]).

2.1 A larger class of transportation cost inequalities: T -inequalities

After these considerations, it appears that the transportation cost inequality (1)
enters the following larger class of inequalities, which we call T -inequalities:

α(T (ν)) ≤ H(ν | µ), ∀ν ∈ N (8)

where α : [0, ∞) → [0, ∞) is an increasing function which vanishes at 0, N is a
subset of P(X ) and T is defined by

T (ν) = sup
(ψ ,ϕ)∈Φ

⎧⎨
⎩
∫

X

ψ dµ+
∫

X

ϕ dν

⎫⎬
⎭ (9)

where Φ is a class of couples of functions (ψ ,ϕ) with ψ integrable with respect
to µ and ϕ integrable with respect to ν. Note that (8) is a family of inequalities
where the value +∞ is allowed with the convention that α(+∞) = limt→∞ α(t).

We are going to consider two cases which correspond to what will be called
transportation cost inequalities and norm-entropy inequalities.

Transportation cost inequalities We assume that c is a nonnegative lower
semicontinuous cost function. The space of all continuous bounded functions
on X is denoted Cb(X ). In the situation where Φ is equal to

Cb ∩Φc := {(ψ ,ϕ) ∈ Cb(X )× Cb(X );ψ(x)+ ϕ(y) ≤ c(x, y), ∀x, y ∈ X }

the family of inequalities (8) is called a transportation cost inequality (TCI).
Indeed, the Kantorovich dual equality (6) states that

T (ν) = Tc(µ, ν) ∈ [0, ∞],

for all ν ∈ N ⊂ P(X ). In this situation, inequality (8) is

α(Tc(µ, ν)) ≤ H(ν | µ), ∀ν ∈ N (10)

Suppose that there exists a nonnegative measurable function χ on X such
that c(x, y) ≤ χ(x)+ χ(y) for all x, y ∈ X and

∫
X χ dµ < ∞. A natural set N is

the set of all probability measures ν such that
∫
X χ dν < ∞.
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Norm-entropy inequalities Let U be a set of measurable functions on X
such that U = −U. Let us take Φ = ΦU with

ΦU := {(−ϕ,ϕ);ϕ ∈ U}

This gives

T (ν) = sup
ϕ∈U

∫

X

ϕ d(ν − µ) := ‖ν − µ‖∗
U ∈ [0, ∞].

In this case, inequality (8) is

α(‖ν − µ‖∗
U) ≤ H(ν | µ), ∀ν ∈ PU (11)

where PU is the set of all ν ∈ P(X ) such that
∫
X |ϕ| dν < ∞ for all ϕ ∈ U. The

family of inequalities (11) is called a norm-entropy inequality (NEI).
As a typical example, let (F, ‖ · ‖) be a seminormed space of measurable

functions on X and U := {ϕ ∈ F, ‖ϕ‖ ≤ 1} its unit ball. Then, ‖ν − µ‖∗
U is the

dual norm of ‖ · ‖.
In the case where the cost function of a TCI is a lower semicontinuous metric

d, the Kantorovich–Rubinstein theorem (see (7)) states that

Td(µ, ν) = ‖ν − µ‖∗
Lip

for allµ, ν ∈ P(X ), whereΦU is built with F the space of all bounded d-Lipschitz
functions on X endowed with the seminorm ‖ · ‖Lip. In this special important
case, TCI and NEI match.

2.2 Large deviations enter the game

At Sects. 3 and 7, T -inequalities will be proved by means of a large deviation
approach. A good reference for large deviations theory is the book of Dembo
and Zeitouni [9]. The integral functional H(· | µ) will be interpreted as the rate
function of the large deviation principle (LDP) of the sequence of the empirical
measures

Ln = 1
n

n∑
i=1

δXi

of an iid sample (Xi) of the lawµ (δx stands for the Dirac measure at x). Indeed,
by Sanov’s theorem {Ln} obeys the LDP in P(X ) with the rate function

I(ν) := H(ν | µ), ν ∈ N .



A large deviation approach to some transportation cost inequalities 243

Roughly speaking, the sequence of random variables {Ln} obeys the LDP in
N with the rate function I if one has the following collection of estimates

P(Ln ∈ A) � exp[−n inf
ν∈A

I(ν)]

as n tends to infinity, for any A “good” subset of N . Let us introduce the
nonnegative random variables

Tn = T (Ln), n ≥ 1.

Suppose that T is regular enough for the sets At = {ν ∈ N , T (ν) ≥ t}, t ≥ 0, to
be “good” sets. This means that for all t ≥ 0,

P(Tn ≥ t) = P(Ln ∈ At) � exp[−ni(t)]

with i(t) = inf{I(ν), ν ∈ N , T (ν) ≥ t} ∈ [0, ∞]. Suppose that α is a deviation
function for the sequence {Tn} in the sense that it is an increasing nonnegative
function on [0, ∞) such that for all t ≥ 0

lim sup
n→∞

1
n

log P(Tn ≥ t) ≤ −α(t). (12)

We obtain α(t) ≤ i(t) for all t and in particular with t = T (ν), we obtain for all
ν ∈ N ,α(T (ν)) ≤ i(T (ν)) ≤ I(ν). This is precisely the desired inequality (8).
We have just obtained the correct reformulation of Recipe 1:

Recipe 2 Any deviation function α of {Tn} satisfies the T -inequality (8).

Because of the sup entering the definition of Tn = supΦ(〈ϕ, Ln〉 + 〈ψ ,µ〉),
one may expect to get into troubles when trying to prove a full LDP for {Tn}.
Fortunately, only the subclass of “deviation sets” At = {ν ∈ N , T (ν) ≥ t}, t ≥ 0,
will be really useful.

This line of reasoning will be put on a solid ground at Theorem 2, Proposi-
tion 4 and Theorem 15.

3 Convex T -inequalities. A dual characterization

In the rest of the paper (except Sect. 7) our attention is restricted to those
T -inequalities (8) where the function α is increasing and convex. In this case,
(8) is said to be a convex T -inequality.

3.1 Sanov’s theorem

This theorem will be central for the proof of the main result of this section
which is stated at Theorem 2.
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Let the probability measure µ on X be given. We consider a sequence of
independent X -valued random variables (Xi)i≥1 identically distributed with
law µ. For any n the empirical measure of this sample is

Ln = 1
n

n∑
i=1

δXi ∈ P(X ).

We introduce the function space

Fexp(µ) =
⎧⎨
⎩ϕ : X → R;ϕ measurable,

∫

X

exp(a|ϕ|)dµ < ∞ for all a > 0

⎫⎬
⎭
(13)

of all the functions which admit exponential moments of all orders with respect
to the measure µ. We denote

Nexp(µ) =
⎧⎨
⎩ν ∈ P(X );

∫

X

|ϕ| dν < ∞ for all ϕ ∈ Fexp(µ)

⎫⎬
⎭

the set of all probability measures which integrate every function of Fexp(µ).
The set Nexp(µ) is furnished with the cylinder σ -field generated by the func-

tions ν 
→ 〈ϕ, ν〉, ϕ ∈ Fexp(µ) and is endowed with the topology σ(Nexp(µ), Fexp
(µ)), that is, the coarsest topology which makes the maps ν 
→ 〈ϕ, ν〉 continuous
for all ϕ ∈ Fexp(µ).

Theorem 1 (A version of Sanov’s theorem) The effective domain of H(· | µ)
is included in Nexp(µ) and the sequence {Ln} obeys the large deviation prin-
ciple with rate function H(· | µ) in Nexp(µ) equipped with the weak topology
σ(Nexp(µ), Fexp(µ)).

This means that for all measurable subset A of Nexp(µ), we have

lim inf
n→∞

1
n

log P(Ln ∈ A) ≥ − inf
ν∈int A

H(ν | µ) and

lim sup
n→∞

1
n

log P(Ln ∈ A) ≤ − inf
ν∈cl A

H(ν | µ)

where int A and cl A are the interior and closure of A.

Proof The proof is a variation of the classical proof of Sanov’s theorem based
on projective limits of LD systems (see [9], Theorem 6.2.10). For two dis-
tinct detailed proofs of the present theorem, see ([11], Theorem 1.7) or ([15],
Corollary 3.3). For the original result by Sanov, see [21].
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3.2 The class of functions C

The functions α to be considered are assumed to be convex. Since α is also left
continuous and increasing, we consider the following class of functions.

Definition 1 (of C) The class C consists of all the [0, ∞]-valued functions α on
[0, ∞) which are convex increasing, left continuous with α(0) = 0.

For any α belonging to the class C, denoting t∗ = sup{t ≥ 0;α(t) < ∞}, α is
continuous on [0, t∗) and limt↑t∗ α(t) = α(t∗). The only function α ∈ C which is
not right continuous at 0 satisfies α(t) = ∞ for all t > 0.

The convex conjugate of a function α ∈ C is replaced by the monotone
conjugate α� defined by

α�(s) = sup
t≥0

{st − α(t)}, s ≥ 0

where the supremum in taken on t ≥ 0 instead of t ∈ R. In fact, if α is extended
by

α̃(t) =
{
α(t) if t ≥ 0
0 if t ≤ 0

then the usual convex conjugate of α̃ is

α̃∗(s) =
{
α�(s) if s ≥ 0
+∞ if s < 0

.

As α̃ is convex and lower semicontinuous, we have α̃∗∗ = α̃. From this, it is not
hard to deduce the following result.

Proposition 1 For any function α on [0, ∞), we have

(a) α ∈ C ⇔ α� ∈ C
(b) α ∈ C ⇒ α�� = α.

3.3 A convex criterion

Theorem 2 below is a criterion for a convex T -inequality to hold. It extends
two well-known results of Bobkov and Götze ([1], Theorem 1.3 and statement
(1.7)).

Let F be a vector space of measurable functions ϕ on X such that

∫

X

eϕ dµ < ∞, ∀ϕ ∈ F . (14)
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Let PF be the set of all probability measures which integrate F :

PF =
⎧⎨
⎩ν ∈ P(X );

∫

X

|ϕ| dν < ∞, ∀ϕ ∈ F

⎫⎬
⎭ .

Clearly, if the class Φ entering the definition of T (ν) satisfies

(0, 0) ∈ Φ ⊂ F × F , (15)

the function T is a well defined [0, ∞]-valued function on PF .
LetΛφ(s) be the log-Laplace transform of ϕ(X)+ Eψ(X) where X admits µ

as its law. We have for all real s,

Λφ(s) = log
∫

X

exp[s(ϕ(x)+ 〈ψ ,µ〉)]µ(dx)

Theorem 2 We assume (14) and (15). Let us consider the following statements
where α is any function in C :

(a) α(T (ν)) ≤ H(ν | µ), ∀ν ∈ PF .
(b) Λφ(s) ≤ α�(s), ∀s ≥ 0, ∀φ ∈ Φ.
(c) α(t) ≤ Λ∗

φ(t), ∀t ≥ 0, ∀φ ∈ Φ.

(d) lim supn→∞ 1
n log P(〈ϕ, Ln〉 + 〈ψ ,µ〉 ≥ t) ≤ −α(t), ∀t ≥ 0, ∀(ψ ,ϕ) ∈ Φ.

(e) ∀n ≥ 1, 1
n log P(〈ϕ, Ln〉 + 〈ψ ,µ〉 ≥ t) ≤ −α(t), ∀t ≥ 0, ∀(ψ ,ϕ) ∈ Φ.

Then, we have (a) ⇔ (b) ⇔ (c) and (e) ⇒ (d) ⇒ (a).
If it is assumed in addition that for all (ψ ,ϕ) ∈ Φ,

∫

X

(ϕ(x)+ ψ(x)) µ(dx) ≤ 0 (16)

then, we have (a) ⇔ (b) ⇔ (c) ⇔ (d) ⇔ (e).

The most useful statement of this theorem is the criterion (b) ⇒ (a).
Clearly, the requirement (16) holds for all NEIs. It also holds for TCIs under

the assumption that c satisfies

c(x, x) = 0, ∀x ∈ X . (17)

When working with TCIs, this will be assumed in the sequel.

Example 1 (CKP inequality and Hoeffding’s inequality) Let Φ := {(ϕ, −ϕ) :
ϕ measurable such that |ϕ(x)| ≤ 1, ∀x ∈ X }. The associated T (ν) is the total
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variation distance between ν and µ, that is

T (ν) = ‖ν − µ‖TV.

According to Hoeffding’s Lemma (see e.g. [18]),

Λφ(s) = log
∫

X

es(ϕ(x)−〈ϕ,µ〉) µ(dx) ≤ s2

2
,

for all φ ∈ Φ and s ≥ 0. Letting α(t) = t2
2 , one has α�(s) = s2

2 . Thus, applying
Theorem 2, one gets

1
2
‖ν − µ‖2

TV ≤ H(ν | µ), ∀ν ∈ P(X ). (18)

This inequality is the celebrated CKP inequality.

Proof (of Theorem 2) Possibly considering the vector space F ′ spanned by
F ∪ Cb(X ) instead of F , one can assume that F separates PF . Indeed, the
assumptions (14) and (15) still hold with F ′ instead of F and we clearly have
PF ′ = PF . Hence, we assume without loss of generality that F separates PF .
As a consequence, the weak topology σ(PF , F) is Hausdorff: this is necessary
to derive LDPs away from compactness troubles.

Note that the assumption (14) is equivalent to F ⊂ Fexp(µ). It follows that
under this assumption, Sanov’s Theorem 1 implies that {Ln} obeys the LDP in
PF equipped with σ(PF , F) with H(· | µ) as its rate function.

Consider, for any (ψ ,ϕ) := φ ∈ Φ and n ≥ 1,

Tφn = 〈ϕ, Ln〉 + 〈ψ ,µ〉 = 1
n

n∑
i=1

(ϕ(Xi)+ Eψ(Xi)) (19)

so that T (Ln) = supφ∈Φ Tφn . Cramér’s theorem states that {Tφn } obeys the LDP
in R with

Λ∗
φ(t) = sup

s∈R

{st −Λφ(s)}, t ∈ R

as its rate function. In particular, for all real t

− inf
u>t

Λ∗
φ(u) ≤ lim inf

n→∞
1
n

log P(Tφn > t)

≤ lim sup
n→∞

1
n

log P(Tφn ≥ t) ≤ − inf
u≥t
Λ∗
φ(u) (20)
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Because of assumption (15), the mapping fφ : ν ∈ PF 
→ 〈ϕ, ν〉 + 〈ψ ,µ〉 ∈ R

is continuous for every (ψ ,ϕ) ∈ Φ. As Tφn = fφ(Ln), one can apply the contrac-
tion principle which gives us for all real t

Λ∗
φ(t) = inf{H(ν | µ); ν ∈ PF : 〈ϕ, ν〉 + 〈ψ ,µ〉 = t}. (21)

It is convenient to extend α on R by taking α(t) = 0, for all t ≤ 0. Doing so,
one has : α�(s) = α∗(s), for all s ≥ 0 and α∗(s) = +∞, for all s ≤ 0, where α∗ is
the usual convex conjugate of α.
[(a) ⇔ (c)] :

(a)
(i)⇔ α

(
sup
φ

(〈ϕ, ν〉 + 〈ψ ,µ〉)
)

≤ H(ν | µ), ∀ν ∈ PF

(ii)⇔ α(〈ϕ, ν〉 + 〈ψ ,µ〉) ≤ H(ν | µ), ∀ν ∈ PF , ∀φ ∈ Φ
⇔ α(t) ≤ H(ν | µ), ∀t ∈ R, ∀φ ∈ Φ, ∀ν ∈ PF : 〈ϕ, ν〉 + 〈ψ ,µ〉 = t

⇔ α(t) ≤ inf{H(ν | µ); ν ∈ PF : 〈ϕ, ν〉 + 〈ψ ,µ〉 = t}, ∀t ∈ R, ∀φ ∈ Φ
(iii)⇔ α ≤ Λ∗

φ

⇔ (c)

The equivalence (i) follows from the definition (9) of T , (ii) holds true because
α is increasing and left continuous while (iii) follows from (21).
[(b) ⇔ (c)].

Let us prove (c) ⇒ (b). Asα(t) = 0, for all t ≤ 0, statement (c) is equivalent to

α(t) ≤ Λ∗
φ(t), ∀t ∈ R, ∀φ ∈ Φ. (22)

As, Λφ is convex and lower semicontinuous, we have: Λ∗∗
φ = Λφ . Hence,

taking the convex conjugates on both sides of (22) one obtains that Λφ ≤ α∗
which entails (b).

Let us prove (b) ⇒ (c). As α is in C, its extension (still denoted by α) is convex
and lower semicontinuous, so that α∗∗ = α. Therefore, taking the conjugate of
(b) leads to α ≤ Λ∗

φ which is (c).
The convexity of α has been used to obtain (b) ⇒ (c) and it won’t be used

anywhere else.
[(e) ⇒ (d) ⇒ (a)]. As (e) ⇒ (d) is obvious and (a) ⇔ (c), all we have to show
is (d) ⇒ (c).

Let m = EY = 〈ϕ + ψ ,µ〉. For all t ≤ m, we have infu>t Λ
∗
φ(u) = infu≥t

Λ∗
φ(u) = 0. As Λ∗

φ is convex, it is continuous on (t−, t+) the interior of its effec-
tive domain. Therefore, we have for all t �= t+, infu>t Λ

∗
φ(u) = infu≥t Λ

∗
φ(u).

Together with (20), this gives for all t �= t+,

− lim
n→∞

1
n

log P(Tφn ≥ t)= inf
u>t

Λ∗
φ(u) = inf

u≥t
Λ∗
φ(u) =

{
0, if t ≤ m
Λ∗
φ(t), if t ≥ m = Λ

�
φ (t).
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Consequently, considering Γ (t)=Λ�
φ (t) if t �= t+ and Γ (t+)= +∞ (if t+<∞),

we have

(d) ⇒ α(t) ≤ Λ
�
φ (t), ∀t �= t+

⇒ α ≤ Γ

⇒ ls α ≤ ls Γ

⇒ α ≤ Λ
�
φ

where ls α and ls Γ are the lower semicontinuous envelopes of α and Γ , and
the last implication holds since α is lower semicontinuous and ls Γ = Λ

�
φ . As

Λ
�
φ ≤ Λ∗

φ , we have the desired result.
[(a) ⇔ (b) ⇔ (c) ⇔ (d) ⇔ (e)]. Let us assume (16). To obtain the stated
series of equivalences, it remains to prove (c) ⇒ (e).

By (19), Tφn = 1
n

∑n
i=1 Yi with Yi = ϕ(Xi)+Eψ(Xi). The standard proof of the

upper bound of Cramér’s theorem is based on an optimization of a collection
of exponential Markov inequalities, as follows. For all real t, all n and all s ≥ 0,

P

(
1
n

n∑
i=1

Yi ≥ t

)
= P

(
exp

[
s

n∑
i=1

Yi

]
≥ enst

)
≤ e−nst

E exp

[
s

n∑
i=1

Yi

]

= exp[n(Λφ(s)− st)]

Optimizing on s ≥ 0, one obtains that

1
n

log P(Tφn ≥ t) ≤ −Λ�
φ (t), ∀t ∈ R, ∀φ ∈ Φ, ∀n ≥ 1.

But, assumption (16) implies that m ≤ 0 so that Λ�
φ (t) = Λ∗

φ(t) for all t ≥ 0. It
follows immediately that (c) ⇒ (e). This completes the proof of the theorem.

3.4 Convex transportation cost inequalities

In the special case of TCIs, we have Φ = Φc = {(ψ ,ϕ);ψ ,ϕ ∈ Cb(X ) : ψ ⊕
ϕ ≤ c}. Optimal transportation theory (see [23]) indicates that Φc may be
replaced with the smaller sets {(−ϕ, Qcϕ);ϕ ∈ Cb(X )} or {(−ϕ, Qcϕ);ϕ
lower semicontinuous and bounded on X } where

Qcϕ(y) = inf
x∈X

{ϕ(x)+ c(x, y)}, y ∈ X

without any change in the value of Tc. One easily proves that if (17) is satisfied:
c(x, x) = 0 for all x ∈ X , then sup |Qcϕ| ≤ sup |ϕ|. If c is continuous, then Qcϕ

is measurable as an upper semicontinuous function. If c is only assumed to be
lower semicontinuous, Qcϕ is still measurable if ϕ is lower semicontinuous and
bounded (but the proof of this result is technical, see [14].) Anyway, Qcϕ ∈ B(X )
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(is a bounded measurable function) as soon as ϕ is lower semicontinuous and
bounded. In particular, assumptions (14) and (15) hold with F = B(X ).

Now, as a corollary of Theorem 2, we have the following result.

Corollary 1 Whenever α ∈ C, the transportation cost inequality (10) holds in
N = P(X ) if and only if

log
∫

X

es[Qcϕ(y)−〈ϕ,µ〉] µ(dy) ≤ α�(s)

for all s ≥ 0 and all ϕ ∈ Cb(X ).
If in addition c is continuous, the same result holds when ϕ ∈ Cb(X ) is replaced

with ϕ ∈ B(X ) : the set of all measurable bounded functions on X .

3.5 Convex norm-entropy inequalities

In the special case of NEIs, we have Φ = {(−ϕ,ϕ);ϕ ∈ U} and Theorem 2
specializes as follows.

Theorem 3 Suppose that U satisfies

∫

X

ea|ϕ| dµ < ∞, ∀ϕ ∈ U, ∀a > 0.

Let α be in C. Then, the norm-entropy inequality (11)

α(‖ν − µ‖∗
U) ≤ H(ν | µ), ∀ν ∈ PU

holds if and only if

Λϕ(s) := log
∫

X

es[ϕ(x)−〈ϕ,µ〉] µ(dx) ≤ α�(s) (23)

for all s ≥ 0 and all ϕ ∈ U.

Specializing Theorem 3 by taking U to be the set of all 1-Lipschitz measur-
able bounded functions with respect to some measurable metric d, one obtains
the following characterization of convex T1-inequalities.

Theorem 4 (T1-inequality) Let d be a lower semicontinuous metric on X and α
be in C. Then,

α(Td(µ, ν)) ≤ H(ν | µ),
for all ν ∈ P(X ) such that

∫
X d(xo, x) ν(dx) < ∞ if and only if

Λϕ(s) := log
∫

X

es[ϕ(x)−〈ϕ,µ〉] µ(dx) ≤ α�(s) (24)
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for all s ≥ 0 and all measurable bounded Lipschitz function ϕ such that
‖ϕ‖Lip ≤ 1.

The following simple result asserts that the functions α of NEIs cannot grow
faster than at2 for t near zero.

Proposition 2 Assuming that F contains functions which are notµ-a.e. constant,
the function α of a convex norm-entropy inequality (11) satisfies

0 ≤ α(t) ≤ at2, ∀0 ≤ t ≤ t1 (25)

for some a > 0 and t1 > 0.

Proof Let ϕo be a non constant function in U. Then, σ 2
o := ∫

X (ϕ(x) − 〈ϕ,µ〉)2
dµ > 0 and for any 0 < σ 2

1 < σ 2
o there exists s1 > 0 such that Λϕo(s) =

σ 2
o s2/2 + o(s2) ≥ σ 2

1 s2/2, for all 0 ≤ s ≤ s1. Let θ1(s) match with σ 2
1 s2/2 on

[0, s1] and be extended on [s1, ∞) by the tangent affine function of s 
→ σ 2
1 s2/2

at s = s1. As Λϕo is convex, we have θ1(s) ≤ Λϕo(s) for all s ≥ 0.
Together with (23), we obtain θ1 ≤ α�. Taking the monotone conjugates on

both sides of this inequality provides us with

α(t) ≤ θ
�
1 (t) =

{
t2/(2σ 2

1 ), if 0 ≤ t ≤ s1σ
2
1+∞, if t > s1σ

2
1

from which the desired result follows.

To explore some consequences of Theorem 3 (see Corollaries 2 and 3 below)
one needs the notion of Orlicz space associated with the exponential function.
It appears that the space Fexp(µ) introduced at (13) is the Orlicz space

⎧⎨
⎩ϕ : X → R; measurable,

∫

X

ρ(aϕ)dµ < ∞ for all a > 0

⎫⎬
⎭

where µ-almost equal functions are not identified and ρ is the Young function

ρ(s) = e|s| − 1, s ∈ R.

Its Orlicz norm is defined by

‖ϕ‖ρ := inf

⎧⎨
⎩b > 0;

∫

X

ρ
(ϕ

b

)
dµ ≤ 1

⎫⎬
⎭

= inf

⎧⎨
⎩b > 0;

∫

X

e|ϕ|/b dµ ≤ 2

⎫⎬
⎭ (26)
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and considering the usual dual bracket 〈η,ϕ〉 = ∫
X ηϕ dµ, its topological dual

space is isomorphic to

Lρ∗(µ) =
⎧⎨
⎩η : X → R; measurable,

∫

X

ρ∗(aη)dµ < ∞ for some a > 0

⎫⎬
⎭

=
⎧⎨
⎩η : X → R; measurable,

∫

X

|η| log |η| dµ < ∞
⎫⎬
⎭

where ρ∗ is the convex conjugate of ρ :

ρ∗(t) =
{ |t| log |t| − |t| + 1, if |t| ≥ 1

0, if |t| ≤ 1

and µ-almost equal functions are identified. Note that the effective domain of
H(· | µ) is included in the set of all probability measures ν which are absolutely
continuous with respect to µ and such that dν

dµ ∈ Lρ∗(µ).
Let us state a useful technical lemma.

Lemma 1 (A Bernstein type inequality) For any measurable function ϕ such
that

∫
X eao|ϕ| dµ < ∞ for some ao > 0, we have ‖ϕ‖ρ < ∞ and

Λϕ(s) ≤ ‖ϕ‖2
ρ s2

1 − ‖ϕ‖ρ s
, ∀ 0 ≤ s < 1/‖ϕ‖ρ .

It follows that, if U is a uniformly ‖ · ‖ρ-bounded set of functions: supϕ∈U ‖ϕ‖ρ ≤
M < ∞, then

Λϕ(s) ≤ M2s2

1 − Ms
, ∀ 0 ≤ s < 1/M, ∀ϕ ∈ U.

Proof By the definition of β := ‖ϕ‖ρ , we have 1 ≥ ∫
X ρ(ϕ/β)dµ = ∑

k≥1〈|ϕ|k,
µ〉/(k!βk). Therefore, for all k ≥ 1, 〈|ϕ|k,µ〉 ≤ k!βk. It follows that for all s ≥ 0,

Λϕ(s) = log

⎛
⎝1 +

∑
k≥1

sk〈ϕk,µ〉/k!
⎞
⎠ − s〈ϕ,µ〉

≤
∑
k≥2

sk〈ϕk,µ〉/k! ≤
∑
k≥2

sk〈|ϕ|k,µ〉/k!

≤
∑
k≥2

(βs)k =
{
(βs)2/(1 − βs), if 0 ≤ βs < 1
+∞, if βs ≥ 1

The last statement holds since β 
→ ∑
k≥2(βs)k is an increasing function, for all

s ≥ 0. This completes the proof of the lemma.
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We are now ready to prove some corollaries of Theorem 2. For any measur-
able function f in Lρ∗(µ), let

‖f‖∗
ρ := sup

⎧⎨
⎩
∫

X

fϕ dµ;ϕ : measurable, ‖ϕ‖ρ ≤ 1

⎫⎬
⎭

= sup

⎧⎨
⎩
∫

X

fϕ dµ;ϕ : measurable,
∫

X

e|ϕ| dµ ≤ 2

⎫⎬
⎭

be the dual norm of ‖ · ‖ρ .

Corollary 2 For any probability measure ν which is absolutely continuous with
respect to µ and such that dν

dµ ∈ Lρ∗(µ), we have

∥∥∥∥ dν
dµ

− 1
∥∥∥∥

∗

ρ

≤ 2
√

H(ν | µ)+ H(ν | µ).

Note that this is the NEI: α1(‖ dν
dµ − 1‖∗

ρ) ≤ H(ν | µ), with α1(t) = (
√

t + 1 − 1)2.

Proof Here U is the unit ball of Fexp(µ) and thanks to Lemma 1 applied with
M = 1, (23) holds as follows:Λϕ(s) ≤ α

�
1 (s) := s2/(1− s). Taking the monotone

conjugate, we obtain α1(t) = (
√

t + 1 − 1)2, which is the desired result.

The following corollary has already been obtained by Bolley and Villani in
[5] with other constants.

Corollary 3 (Weighted CKP inequalities) Let χ be a nonnegative function such
that

∫
X eaoχ dµ < ∞ for some ao > 0. Then, ‖χ‖ρ < ∞ and for any proba-

bility measure ν which is absolutely continuous with respect to µ and such that
dν
dµ ∈ Lρ∗(µ), ‖χ · (ν − µ)‖TV is well defined, finite and we have

‖χ · (ν − µ)‖TV ≤ ‖χ‖ρ
(

2
√

H(ν | µ)+ H(ν | µ)
)

Note that this is the NEI: α(‖χ · (ν − µ)‖TV) ≤ H(ν | µ), with α(t) =
(
√

t/‖χ‖ρ + 1 − 1)2.

Proof Here U = {χψ ; sup |ψ | ≤ 1}. As χ may not be in Fexp(µ) (if there exists
a1 > 0 such that

∫
X ea1χ dµ = ∞), one must be careful. It happens that

‖χ · (ν − µ)‖TV = sup

⎧⎨
⎩
∫

X

χψ d(ν − µ);ψ : measurable, sup |ψ | ≤ 1

⎫⎬
⎭

= sup

⎧⎨
⎩
∫

X

ϕ d(ν − µ);ϕ : measurable, |ϕ| ≤ χ , sup |ϕ| < ∞
⎫⎬
⎭ .
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To show this, decompose ν−µ into its positive and negative parts, approximate
from below χ |ψ |1supp((ν−µ)+) and χ |ψ |1supp((ν−µ)−) by pointwise converging
sequences of bounded functions, and conclude with the dominated convergence
theorem.

Therefore, U can be replaced with U′ = {ϕ; |ϕ| ≤ χ , sup |ϕ| < ∞} ⊂ Fexp(µ).
As supϕ∈U′ ‖ϕ‖ρ ≤ ‖χ‖ρ , thanks to Lemma 1 applied with M = ‖χ‖ρ , (23) holds
as follows: Λϕ(s) ≤ α

�
M(s) := (Ms)2/(1 − Ms). Taking the monotone conjugate,

we obtain αM(t) = (
√

t/M + 1 − 1)2, which is the desired result.

Remark 1 It follows from Corollaries 2 and 3, that

‖ν − µ‖TV ≤ 1
log 2

(
2
√

H(ν | µ)+ H(ν | µ)
)

,

which of course is worse than CKP inequality (18) but has the same order of
growth

√
H for vanishing entropies.

Let d be a metric on X . The associated dual Lipschitz norm of any signed
bounded measure ξ with zero mass is defined by

‖ξ‖∗
Lip = sup

⎧⎨
⎩
∫

X

ϕ dξ ;ϕ : measurable, ‖ϕ‖Lip ≤ 1, sup |ϕ| < ∞
⎫⎬
⎭

where ‖ϕ‖Lip = supx �=y
|ϕ(x)−ϕ(y)|

d(x,y) is the usual Lipschitz seminorm.

Corollary 4 Suppose that there exist ao > 0 and xo ∈ X such that
∫
X eaod(xo,x)

µ(dx) < ∞. Then, ‖d‖ρ,µ⊗2 = inf{b > 0;
∫
X×X ed(x,y)/b µ(dx)µ(dy) ≤ 2} < ∞

and

‖ν − µ‖∗
Lip ≤ ‖d‖ρ,µ⊗2

(
2
√

H(ν | µ)+ H(ν | µ)
)

, ∀ν ∈ P(X ).

Note that this is the NEI:α(‖ν−µ‖∗
Lip)≤H(ν | µ), withα(t)=(

√
t/‖d‖ρ,µ⊗2 +1−1)2.

Proof This is a corollary of Theorem 4. Here U = {ϕ : ‖ϕ‖Lip ≤ 1, sup |ϕ| <
∞} ⊂ Fexp(µ). Let us show that

sup
ϕ∈U

‖ϕ − 〈ϕ,µ〉‖ρ ≤ ‖d‖ρ,µ⊗2 . (27)
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By Jensen’s inequality, for any 1-Lipschitz function ϕ and all s ≥ 0,

exp

⎡
⎣s

⎛
⎝ϕ(x)−

∫

X

ϕ(y) µ(dy)

⎞
⎠
⎤
⎦ ≤

∫

X

exp[s(ϕ(x)− ϕ(y))]µ(dy)

≤
∫

X

exp[sd(x, y)]µ(dy).

Hence, integrating with respect to µ(dx), one obtains (27).
Thanks to Lemma 1 applied with M = ‖d‖ρ,µ⊗2 , (24) holds as follows:Λϕ(s) ≤

α
�
M(s) := (Ms)2/(1 − Ms). Taking the monotone conjugate, we obtain αM(t) =
(
√

t/M + 1 − 1)2, which is the desired result.

4 Tensorization of convex TCIs

In this section only convex TCIs are considered. It is assumed that the appear-
ing state spaces are Polish and the appearing cost functions are nonnegative
continuous and satisfy (17).

4.1 Statement of the main result

Let µ1, µ2 be two probability measures on two Polish spaces X1, X2, respec-
tively. The cost functions c1(x1, y1) and c2(x2, y2) on X1 × X1 and X2 × X2 give
rise to the optimal transportation cost functions Tc1(µ1, ν1), ν1 ∈ P(X1) and
Tc2(µ2, ν2), ν2 ∈ P(X2).

On the product space X1 ×X2, we now consider the product measureµ1 ⊗µ2
and the cost function

c1 ⊕ c2
(
(x1, y1), (x2, y2)

)
:= c1(x1, y1)+ c2(x2, y2), x1, y1 ∈ X1, x2, y2 ∈ X2

which give rise to the so-called tensorized transportation cost function

Tc1⊕c2(µ1 ⊗ µ2, ν), ν ∈ P(X1 × X2).

Recall that the inf-convolution of two functions α1 and α2 on [0, ∞) is defined
by

α1�α2(t) = inf{α1(t1)+ α2(t2); t1, t2 ≥ 0 : t1 + t2 = t}, t ≥ 0.

Lemma 2 Let α1 and α2 belong to the class C. Then,

(a) α1�α2 ∈ C and
(b) (α1�α2)

� = α
�
1 + α

�
2
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Proof This simple exercise is left to the reader.

The main result of this section is the following theorem.

Theorem 5 (Tensorization) Let c1 and c2 be two continuous nonnegative cost
functions which satisfy (17). Suppose that the convex TCIs

α1(Tc1(µ1, ν1)) ≤ H(ν1 | µ1), ∀ν1 ∈ P(X1)

α2(Tc2(µ2, ν2)) ≤ H(ν2 | µ2), ∀ν2 ∈ P(X2)

hold with α1,α2 ∈ C. Then, on X1 × X2, we have the convex TCI

α1�α2
(
Tc1⊕c2(µ1 ⊗ µ2, ν)

) ≤ H(ν | µ1 ⊗ µ2), ∀ν ∈ P(X1 × X2)

This statement is known in some cases (see for instance [16,22,2].) In [10],
Djellout et al. have obtained a tensorization property for the classical T1
inequality, which holds for non product measures.

There are two ways to prove tensorization properties for TCIs: a direct one,
due to Marton, which is based on a coupling argument, and an indirect one, due
to Ledoux, which makes use of the dual characterization of TCIs. The coupling
method is, to our opinion, much more intuitively appealing, but it has the disad-
vantage of raising difficult measurability questions. The interested reader can
consult the Chapter VI of [12], where this is discussed in details. The proof below
is based upon the indirect dual approach, making use of the characterization of
Corollary 1 and follows the line of proof of ([13], Proposition 1.19).

Proof (of Theorem 5) Recall that, provided that c is continuous nonnegative
and satisfy (17), Qcϕ(x) = infy∈X {ϕ(y)+c(y, x)} is in B(X )whenever ϕ ∈ B(X ).
We denote Q1 = Qc1 , Q2 = Qc2 and Q = Qc1⊕c2 .

By Corollary 1, the convex TCIs “α1(T1) ≤ H1” and “α2(T2) ≤ H2” which
are supposed to hold are equivalent to

∫

X1

esQ1θ1 dµ1 = exp(α�
1 (s)+ s〈θ1,µ1〉), ∀s ≥ 0, ∀θ1 ∈ B(X1) (28)

∫

X2

esQ2θ2 dµ2 = exp(α�
2 (s)+ s〈θ2,µ2〉), ∀s ≥ 0, ∀θ2 ∈ B(X2) (29)

As by Lemma 2 (α1�α2)
� = α

�
1 + α�

2 , thanks to Corollary 1 again, all we have
to prove is

∫

X1×X2

esQϕ d(µ1 ⊗ µ2) = exp(α�
1 + α

�
2 (s)+ s〈ϕ,µ1 ⊗ µ2〉), (30)

for all s ≥ 0, and ϕ ∈ Cb(X1 × X2).
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Let us take ϕ ∈ Cb(X1 × X2). For all (x1, x2) ∈ X1 × X2,

Qϕ(x1, x2) = inf
y1∈X1,y2∈Y2

{ϕ(y1, y2)+ c1(y1, x1)+ c2(y2, x2)}

= inf
y1∈X1

{
inf

y2∈Y2
{ϕ(y1, y2)+ c2(y2, x2)} + c1(y1, x1)

}

= inf
y1∈X1

{θx2(y1)+ c1(y1, x1)} = Q1θx2(x1)

where
θx2(y1) = Q2ϕy1(x2) = inf

y2∈Y2
{ϕ(y1, y2)+ c2(y2, x2)} (31)

with ϕy1(y2) := ϕ(y1, y2). Hence, for all s ≥ 0,

∫

X1×X2

esQϕ d(µ1 ⊗ µ2)
(a)=

∫

X2

(∫

X1

esQ1θx2 (x1) µ1(dx1)

)
µ2(dx2)

(b)≤
∫

X2

eα
�
1 (s)+s〈θx2 ,µ1〉 µ2(dx2)

(c)= eα
�
1 (s)

∫

X2

exp

(
s
∫

X1

Q2ϕy1(x2) µ1(dy1)

)
µ2(dx2)

Equality (a) is justified since ϕ being bounded, (x1, x2) 
→Qϕ(x1, x2)=Q1θx2(x1)

is jointly measurable.
Let us now prove the inequality (b). As ϕ and c are continuous, (x2, y1) 
→

θx2(y1) is jointly upper semicontinuous as the infimum of a collection of contin-
uous functions. Since θx2(y1) = Q2ϕy1(x2) by (31), we have supy1,x2

|θx2(y1)| ≤
supy1

sup |ϕy1 | = sup |ϕ| < ∞. Therefore, (x2, y1) 
→ θx2(y1) is an upper semicon-
tinuous bounded function. Consequently, one is allowed to invoke (28) to obtain∫
X1

esQ1θx2 (x1) µ1(dx1) ≤ eα
�
1 (s)+s〈θx2 ,µ1〉 for all x2. Also note that x2 
→ 〈θx2 ,µ1〉

is measurable since (x2, y1) 
→ θx2(y1) is jointly measurable and bounded.
The last equality (c) is simply (31).

Remark 2 If c2 is only assumed to be lower semicontinuous, the joint measur-
ability of (x2, y1) 
→ θx2(y1) which has been used to prove inequality (b) is far
from being clear. This is the reason why the cost functions are supposed to be
continuous.
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But for all x2,
∫

X1

Q2ϕy1(x2) µ1(dy1) =
∫

X1

inf
y2∈Y2

{ϕ(y1, y2)+ c2(y2, x2)}µ1(dy1)

≤ inf
y2∈Y2

⎧⎪⎨
⎪⎩
∫

X1

ϕ(y1, y2) µ1(dy1)+ c2(y2, x2)

⎫⎪⎬
⎪⎭

= Q2ϕ(x2)

where y2 
→ ϕ(y2) = ∫
X1
ϕ(y1, y2) µ1(dy1) is a continuous bounded function.

Gathering our partial results leads us, for all s ≥ 0, to the inequality (a) below

∫

X1×X2

esQϕ d(µ1 ⊗ µ2)
(a)≤ eα

�
1 (s)

∫

X2

esQ2ϕ dµ2
(b)≤ eα

�
1 (s)eα

�
2 (s)+s〈ϕ,µ2〉

= eα
�
1 (s)+α�

2 (s)+s〈ϕ,µ1⊗µ2〉

Inequality (b) is a consequence of (29). This is (30) and concludes the proof of
the theorem.

4.2 Product of n spaces

The extension of Theorem 5 to the product of n spaces is as follows. Let
X1, . . . , Xn be n Polish spaces and µ1, . . . ,µn be probability measures on each
of these spaces. On each space Xi let ci be a cost function. The cost function on
the product space X1 × · · · × Xn is

c1 ⊕ · · · ⊕ cn
(
(x1, . . . , xn), (y1, . . . , yn)

) = c1(x1, y1)+ · · · + cn(xn, yn)

Corollary 5 Let us assume that the cost functions ci are nonnegative continuous
and satisfy (17). Suppose that the convex transportation cost inequalities

αi(Tci(µi, νi)) ≤ H(νi | µi), ∀νi ∈ P(Xi), i = 1, . . . , n

hold with α1, . . . ,αn ∈ C. Then, on the product space X1 × · · · × Xn, we have the
convex transportation cost inequality

α1� · · · �αn
(
Tc1⊕···⊕cn(µ1 ⊗ · · · ⊗ µn, ν)

)
≤ H(ν | µ1 ⊗ · · · ⊗ µn), ∀ν ∈ P(X1 × · · · × Xn)

where

α1� · · · �αn(t)= inf{α1(t1)+ · · · +αn(tn); t1, . . . , tn ≥0 : t1+ · · · +tn = t}, t ≥ 0

is the inf-convolution of α1, . . . ,αn.
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Proof It is a direct consequence of Theorem 5 which is proved by induction,
noting that α1� · · · �αn = (α1� · · · �αn−1)�αn for all n.

In the special situation where the n TCIs are copies of a unique TCI on a
Polish space X we have the following important result.

Theorem 6 Let us assume that the cost function c is nonnegative continuous and
satisfy (17). Suppose that the convex transportation cost inequality

α(Tc(µ, ν)) ≤ H(ν | µ), ∀ν ∈ P(X )

holds with α ∈ C. Then, on the product space X n, we have the following convex
transportation cost inequality

nα
(Tc⊕n(µ⊗n, ζ )

n

)
≤ H(ζ | µ⊗n), ∀ζ ∈ P(X n)

where c⊕n
(
(x1, . . . , xn), (y1, . . . , yn)

) = c(x1, y1)+ · · · + c(xn, yn).

Proof This is a direct application of Corollary 5, noting that α�n(t) = nα(t/n).

About dimension-free tensorized convex TCIs Let us say that a convex
transportation cost inequality

α (Tc(µ, ν)) ≤ H(ν | µ), ∀ν ∈ P(X ) (32)

has the dimension-free tensorization property, if the inequality

α
(
Tc⊕n(µ⊗n, ζ )

) ≤ H(ζ | µ⊗n), ∀ζ ∈ P(X n)

holds for all n ∈ N
∗.

Clearly, according to Theorem 6, if α ∈ C is of the form α(t) = at with a ≥ 0,
then (32) has the dimension-free tensorization property.

Remark 3 Thanks to the same theorem, a seemingly weaker sufficient condi-
tion on α for (32) to be dimension-free is α(t) ≤ infn≥1 nα(t/n), t ≥ 0. As α
is in C, α(t)/t is an increasing function so that α′(0) := limt↓0 α(t)/t exists. It
follows that limn→∞ nα(t/n) = α′(0)t for all t ≥ 0. Therefore, the condition
α(t) ≤ infn≥1 nα(t/n), t ≥ 0 is equivalent to α(t) ≤ α′(0)t, t ≥ 0. But since
α is convex, the converse inequality also holds, that is α(t) ≥ α′(0)t, t ≥ 0.
Consequently α is of the form α(t) = at with a ≥ 0.

Dimension free tensorization is a phenomenon that can only happen when
dealing with non-metric cost functions. Indeed, we show in the following prop-
osition, that convex T1-inequalities having this property are all trivial.
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Proposition 3 Let (X , d) be a Polish space and µ ∈ P(X ). The convex transpor-
tation cost inequality

α (Td(µ, ν)) ≤ H(ν | µ), ∀ν ∈ P(X ), (33)

with α ∈ C has the dimension free tensorization property if, and only if α = 0 or
µ is a Dirac mass.

Proof If α = 0, it is clear that (33) has the dimension free tensorization prop-
erty. If µ is a Dirac mass, it is easy to see that (33) holds for every α ∈ C.
Noting that a tensor product of Dirac measures is again a Dirac measure, the
dimension-free tensorization property is established in this special case.

Now, suppose that (33) has the dimension-free tensorization property, with
α �= 0 and let us prove that µ is a Dirac mass. According to Theorem 4, the
following inequality

log
∫

X n

es(ϕ(x1)+···+ϕ(xn)−n〈ϕ,µ〉) µ⊗n(dx1 · · · dxn) ≤ α�(s), ∀s ≥ 0

holds for all bounded 1-Lipschitz ϕ and all n ≥ 1. As a consequence, denoting
byΛϕ the Log-Laplace of ϕ(X)− 〈ϕ,µ〉, X of law µ, one hasΛϕ ≤ 1

nα
�, for all

n ≥ 1, and so Λϕ ≤ 0 on dom α� (the effective domain of α�). But by Jensen
inequality, one obtains immediatelyΛϕ ≥ 0. ThusΛϕ ≡ 0 on dom α�. As α �= 0,
[0, a[⊂ dom α�, for some a > 0. Considering −ϕ instead of ϕ in the above
reasoning yields that Λϕ ≡ 0 on ]−a, a[. This easily implies that µϕ (the image
of µ under the application ϕ) is a Dirac mass. Now, let us take a point x0 in the
support ofµ and consider the bounded 1-Lipschitz function ϕ0(x) = d(x, x0)∧1,
x ∈ X . As x0 is in the support of µ, µϕ0([0, ε[) = µ(ϕ0 < ε) > 0 for all ε > 0. As
µϕ0 is a Dirac mass, one thus has µ(ϕ0 < ε) = 1 for all ε > 0. This easily implies
that µ = δx0 . This completes the proof of the proposition.

5 Integral criteria

Our aim in this section is to give integral criteria for a convex T -inequality to
hold.

Let us first note that when two T -inequalities α0(T (ν)) ≤ H(ν | µ), ∀ν ∈ N
and α1(T (ν)) ≤ H(ν | µ), ∀ν ∈ N hold, then we have the resulting new inequal-
ity α(T (ν)) ≤ H(ν | µ), ∀ν ∈ N with

α = max(α0,α1). (34)

This allows us to separate our investigation into two parts: obtaining α0 and
α1 which control respectively the small (neighborhood of t = 0) and large values
of t (the other ones). Let us go on with some vocabulary.
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5.1 Transportation functions and deviation functions

We introduce the following definitions. Recall that T is defined at (9).

Definition 2 (Transportation function) A left continuous increasing function
α : [0, ∞) → [0, ∞] is called a transportation function for T in N if

α(T (ν)) ≤ H(ν | µ), ∀ν ∈ N .

This means that the T -inequality (8) holds with α.

Definition 3 (Deviation function) A left continuous increasing function
α : [0, ∞) → [0, ∞] is called a deviation function for T if

lim sup
n→∞

1
n

log P(T (Ln) ≥ t) ≤ −α(t), ∀t ≥ 0.

These functions will be shortly called later transportation and deviation func-
tions, without any reference to T and N .

Remark 4 For T (Ln) to be measurable, it is assumed that Φ is a set of couples
of continuous functions. Indeed,

{
x ∈ X n; T

(
1
n

n∑
i=1

δxi

)
≤ t

}
=

⋂
φ∈Φ

{
x ∈ X n;

1
n

n∑
i=1

ϕ(xi)+ 〈ψ ,µ〉 ≤ t

}

is a closed set.

Note that an increasing function is left continuous if and only if it is lower
semicontinuous. Clearly, the best transportation function is the left continuous
version of the increasing function

t 
→ inf{H(ν | µ); ν ∈ N , T (ν) ≥ t}, t ≥ 0.

Similarly, the best deviation function is the left continuous version of the increas-
ing function

t 
→ − lim sup
n→∞

1
n

log P(T (Ln) ≥ t) ∈ [0, ∞], t ≥ 0.

Proposition 4 Under the assumptions of Theorem 2, any deviation function α in
the class C is a transportation function.

Proof Let α ∈ C be a deviation function. Since T (Ln) ≥ Tφn for all φ ∈ Φ, we
clearly have P(T (Ln) ≥ t) ≥ P(Tφn ≥ t) for all t ≥ 0 and n. Therefore, for all φ,
n and t, lim supn→∞ 1

n log P(Tφn ≥ t) ≤ lim supn→∞ 1
n log P(T (Ln) ≥ t) ≤ −α(t).

This implies the statement (d) of Theorem 2, which in turn is equivalent to the
statement (a) of Theorem 2, which is the desired result.
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5.2 Controlling the large values of t

In this subsection, it is assumed that the deviation and transportation functions
are in C and are supposed to be 0 on (−∞, 0).

Proposition 5 The first statement is concerned with convex TCIs and the second
one with convex T -inequalities.

(a) If β ∈ C satisfies
∫
X exp[β(∫X c(x, y) µ(dy))]µ(dx) ≤ A < ∞ then

α(t) = max(0,β(t)− log A)), t ≥ 0

is a transportation function.
(b) Let us suppose that α ∈ C is a transportation function which is extended by

α(t) = 0 for all t < 0, then for all (ψ ,ϕ) ∈ Φ
∫

X

exp [δα (ϕ(x)+ 〈ψ ,µ〉)] µ(dx) ≤ 1 + δ

1 − δ
< ∞, ∀0 ≤ δ < 1.

Remarks.

– In (a), because of Jensen’s inequality, one can take A ≥ ∫
X 2 expβ(c(x, y))

µ(dx)µ(dy)
– About (a), if c = d ≤ D < ∞ is a lower semicontinuous bounded metric,

one recovers that

α(t) =
{

0, if t ≤ D
+∞, if t > D

is a transportation function, which is obvious.
– About (b) in the case of a TCI, let us note that sup(ψ ,ϕ)∈Φc

(ϕ(x)+ 〈ψ ,µ〉) ≤∫
X supφ(ϕ(x)+ ψ(y)) µ(dy) ≤ ∫

X c(x, y) µ(dy) for all x. It follows that∫
X exp [δα ((ϕ(x)+ 〈ψ ,µ〉))] µ(dx) ≤ ∫

X exp
[
δα

(∫
X c(x, y) µ(dy)

)]
µ(dx)

for all (ψ ,ϕ) ∈ Φ. It would be pleasant to obtain the finiteness of an integral
in terms of c. In the case where c(x, y) = d(x, y)p, this will be performed
below at Corollary 7.

Proof Let us prove (a). As the product measureµ(dx)Ln(dy) has the right mar-
ginal measures, we get: Tc(µ, Ln) := Tn ≤ ∫

X 2 c(x, y)µ(dx)Ln(dy) = 〈cµ, Ln〉
with cµ(y) := ∫

X c(x, y) µ(dx). It follows that for all t ≥ 0,

P(Tn ≥ t) ≤ P(〈cµ, Ln〉 ≥ t)
(a)= P(β(〈cµ, Ln〉) ≥ β(t))

(b)≤ P(〈β ◦ cµ, Ln〉 ≥ β(t))
(c)= P(e

∑n
i=1 β◦cµ(Xi) ≥ enβ(t))

(d)≤ e−nβ(t)
Ee

∑n
i=1 β◦cµ(Xi) (e)=

[
e−β(t)

Eeβ◦cµ(X)
]n
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where equality (a) follows from the monotony of β, (b) from the convexity of
β and Jensen’s inequality, (c) from the monotony of the exponential, (d) from
Markov’s inequality and (e) from the fact that (Xi) is an iid sequence. Finally,

lim sup
n→∞

1
n

log P(Tn ≥ t) ≤ −β(t)+ log
∫

X

eβ◦cµ dµ, ∀t ≥ 0

which with Proposition 4 leads to the desired result.
Let us prove (b). As α ∈ C is a transportation function, by Theorem 2 (keep-

ing the notations of Theorem 2) we have

α(t) ≤ Λ∗
φ(t), ∀φ ∈ Φ, ∀t ≥ 0.

By Lemma 3 below, as Λ∗
φ is the Cramér transform of ϕ(X)+ 〈ψ ,µ〉 we get

E exp
[
δΛ∗

φ(ϕ(X)+ 〈ψ ,µ〉)
]

≤ 1 + δ

1 − δ
, ∀0 ≤ δ < 1, ∀φ.

Extending αwithα(t) = 0 for all t ≤ 0, we obtainα ≤ Λ∗
φ for allφ. Consequently

we obtain
∫

X

exp [δα(ϕ(x)+ 〈ψ ,µ〉)] µ(dx) ≤ 1 + δ

1 − δ
, ∀0 ≤ δ < 1, ∀φ.

This completes the proof of the proposition.

During the above proof, the following lemma has been used.

Lemma 3 Let Z be a real random variable such that Eeλo|Z| < ∞ for some
λo > 0. Let h(z) = supλ∈R{λz − log EeλZ} be its Cramér transform. Then for all
0 ≤ δ < 1, E exp[δh(Z)] ≤ (1 + δ)/(1 − δ).

Proof This result with the upper bound 2/(1 − δ) instead of (1 + δ)/(1 − δ)

can be found in ([9], Lemma 5.1.14). For a proof of the improvement with
(1 + δ)/(1 − δ) see [12].

Corollary 6 In this statement d is a lower semicontinuous semimetric and c is a
lower semicontinuous cost function such that c(x, x) = 0 for all x ∈ X .

(a) Suppose that there exists a nonnegative measurable function χ such that

c ≤ χ ⊕ χ .

Let γ ∈ C be such that
∫
X exp[γ ◦ χ(x)]µ(dx) ≤ B < ∞, then for any

xo ∈ X

t 
→ 2 max(0, 2γ (t/4)− γ ◦ χ(xo)− log B), t ≥ 0

is a transportation function for c.
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(b) Suppose that there exists θ ∈ C such that

θ(d) ≤ c.

If α ∈ C is a transportation function for c which is extended by α(t) = 0 for
all t < 0, then

∫

X

exp[u α ◦ θ(d(xo, x)/2)]µ(dx) < ∞

for all xo ∈ X and all 0 ≤ u < 2.

Proof We begin with the case where c = d, χ(x) = d(xo, x) and θ(d) = d.

The case c = d. To prove (a) with χ(x) = d(xo, x), we apply statement (a) of
Proposition 5. Let β be in the class C. We have for all xo ∈ X

∫

X

exp

⎡
⎣β

⎛
⎝
∫

X

d(x, y) µ(dy)

⎞
⎠
⎤
⎦ µ(dx)

≤
∫

X 2

exp[β(d(x, y))]µ(dx)µ(dy)

≤
∫

X 2

exp

[
β

(
2d(xo, x)+ 2d(xo, y)

2

)]
µ(dx)µ(dy)

≤
∫

X 2

exp[β(2d(xo, x))/2 + β(2d(xo, y))/2]µ(dx)µ(dy)

=
⎛
⎝
∫

X

exp

[
β(2d(xo, x))

2

]
µ(dx)

⎞
⎠

2

:= A

Taking, β(t) = 2γ (t/2), one gets A = B2 and

t 
→ max(0,β(t)− log A) = max(0, 2γ (t/2)− 2 log B) (35)

is a transportation function for c = d.
Now, let us prove (b). Thanks to Kantorovich–Rubinstein equality (7) one

can take Φ = {(−ϕ,ϕ); ‖ϕ‖Lip ≤ 1,ϕ bounded}. Because of Proposition 5-(b),
we have for all bounded ϕ with ‖ϕ‖Lip ≤ 1 :

∫

X

exp[δα(ϕ(x)− 〈ϕ,µ〉)]µ(dx) ≤ (1 + δ)/(1 − δ), ∀0 ≤ δ < 1.
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The function ϕ(x) = d(xo, x) is 1-Lipschitz but it is not bounded in general.
Let us introduce an approximation procedure. For all k ≥ 0, with m :=∫
X d(xo, y) µ(dy), we have

∫

X

exp[δα(d(xo, x) ∧ k − m)]µ(dx)

≤
∫

X

exp

⎡
⎣δα

⎛
⎝d(xo, x) ∧ k −

∫

X

d(xo, y) ∧ kµ(dy)

⎞
⎠
⎤
⎦ µ(dx)

≤ (1 + δ)/(1 − δ).

By monotone convergence, one concludes that for all 0 ≤ δ < 1,

∫

X

exp[δα(d(xo, x)− m)]µ(dx) ≤ (1 + δ)/(1 − δ).

As

2δα(d(xo, x)/2) = 2δα
(

d(xo, x)− m
2

+ m
2

)
≤ δ[α(d(xo, x)− m)+ α(m)],

one sees that
∫

X

exp[2δα(d(xo, x)/2)]µ(dx)

≤ eδα(m)
∫

X

exp[δα(d(xo, x)− m)]µ(dx)

≤ eδα(m)(1 + δ)/(1 − δ)

which leads to ∫

X

exp[2δα(d(xo, x)/2)]µ(dx) < ∞ (36)

The general case. Let us prove (a). It is clear that c(x, y) ≤ dχ (x, y) where dχ
is the semimetric defined by

dχ (x, y) = 1x �=y(χ(x)+ χ(y)). (37)

Remark 5 If χ admits two or more zeros, dχ is a semimetric. Otherwise it is
a metric. In the often studied case where c = dp with d a metric and p ≥ 1,
one takes χ(x) = 2p−1d(xo, x)p (see the proof of Corollary 7 below) and dχ is a
metric.
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Of course, for all ν ∈ N = Pχ = {ν ∈ P(X );
∫
X χ(x) ν(dx) < ∞}, we have

Tc(ν) ≤ Tdχ (ν).

Therefore, any transportation function for dχ is a transportation function for c.
This easy but powerful trick is borrowed from the monograph by Villani ([23],
Proposition 7.10).

It has been proved at (35) that if
∫
X exp[β(dχ (xo, x)]µ(dx) ≤ C < ∞ for

some function β ∈ C, then max(0, 2β(t/2)− 2 log C) is a transportation function
for dχ .

Taking β(t) = 2γ (t/2), with convexity we have

β(dχ (xo, x)) ≤ γ ◦ χ(xo)+ γ ◦ χ(x) (38)

so that
∫
X exp[β(dχ (xo, x)]µ(dx) ≤ eγ ◦χ(xo)B = C. This leads us to max(0,

2β(t/2) − 2 log C) = 2 max(0, 2γ (t/4) − γ ◦ χ(xo) − log B) which is the desired
result.

Let us prove (b). Because of Jensen’s inequality, it is easy to show that
θ(Td) ≤ Tc. As α is a transportation function for c, it follows that α ◦ θ is a
transportation function for Td. Applying the already proved result (36) with
α ◦ θ instead of α completes the proof of the corollary.

Now, we consider an important special case of convex TCI.

Corollary 7 (c = dp) In this statement c = dp where d is a lower semicontinuous
metric and p ≥ 1.

(a) Let γ ∈ C be such that
∫
X exp[γ (dp(xo, y))]µ(dy) ≤ B < ∞ for some

xo ∈ X , then

t 
→ max(0, 2γ (2−pt)− 2 log B), t ≥ 0

is a transportation function.
(b) If α ∈ C is a transportation function, then

∫

X

exp[u α(2−pdp(xo, x))]µ(dx) < ∞

for all xo ∈ X and all 0 ≤ u < 2.

Proof This is Corollary 6 with χ(x) = 2p−1dp(xo, x), θ(d) = dp and the fol-
lowing improvement in the treatment of the inequality (38). One can write
β(dχ (xo, x)) ≤ γ ◦ χ(xo)+ γ ◦ χ(x) = γ ◦ χ(x) since γ ◦ χ(xo) = 0 in this situa-
tion. As a consequence max(0, 2γ (2−pt)− 2 log B) is a transportation function,
which is a little better than its counterpart in Corollary 6. This completes the
proof of the corollary.
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Remark 6 It is known that the standard Gaussian measure µ on R satisfies
T2 which is the TCI with c(x, y) = (x − y)2 and the transportation function
α(t) = t/2 (see [22]). As a consequence of Corollary 7-b, for all p > 2, there
is no function α in C except α ≡ 0 which is a transportation function for the
standard Gaussian measure and the cost function |x − y|p.

5.3 Controlling the small values of t

We are going to prove a general result for the behaviour of a transportation
function in the neighbourhood of zero. By a general result, it is meant that µ is
not specified. As a consequence, it will only be shown that under the assumption
that c ≤ χ ⊕ χ where

∫
X eδoχ dµ < ∞ for some δo > 0, there are tranportation

functions which are larger than some quadratic function around zero. Obtaining
better results in this direction is difficult and requires more stringent restrictions
on the reference probability measure µ.

Proposition 6 Let c be a cost function satisfying (17) and c ≤ χ ⊕ χ for some
nonnegative measurable function χ satisfying

∫
X eδoχ dµ < ∞ for some δo > 0.

Then, ‖χ‖ρ is finite and

αo(t) =
(√

t/‖χ‖ρ + 1 − 1
)2

, t ≥ 0

is a transportation function for c and µ.
In particular, for all a ≥ 0 such that

∫
X eaχ dµ ≤ 2, t 
→ (

√
at + 1 − 1)2 is a

transportation function.

Note that (
√

at + 1 − 1)2 = a2t2/4 + ot→0(t2) = at − 2
√

at + 2 + ot→∞(1).
The Orlicz norm ‖χ‖ρ is defined at (26).

Proof Because of our assumptions, we have Tc ≤ Tdχ , see (37). Hence, it is
enough to show that αo is a transportation function for dχ . But this follows
from Lemma 4 below and Corollary 3.

The last statement follows from a simple manipulation on the definition of
the Orlicz norm ‖χ‖ρ . This completes the proof of the proposition.

The following lemma has been used in the previous proof.

Lemma 4 For all µ and ν in Pχ := {ν ∈ P(X );
∫
X χ dν < ∞}, we have

Tdχ (µ, ν) = ‖χ · (µ− ν)‖TV.

Proof By Kantorovich–Rubinstein’s equality (7), we have Tdχ (µ, ν) = sup{∫X ϕ
d(ν−µ);ϕ ∈ B(X ), ‖ϕ‖Lip ≤ 1} where ‖ϕ‖Lip ≤ 1 is equivalent to |ϕ(x)−ϕ(y)| ≤
dχ (x, y) for all x, y. One can prove without trouble (see [12]) that this is equiv-
alent to |ϕ(x)− a| ≤ χ(x), ∀x for some real a. Therefore,
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Tdχ (µ, ν) = sup

⎧⎨
⎩
∫

X

ϕ d(ν − µ);ϕ ∈ B(X ) : |ϕ| ≤ χ

⎫⎬
⎭

= sup
k≥1

sup

⎧⎨
⎩
∫

X

(χ ∧ k)θ d(ν − µ); θ ∈ B(X ) : |θ | ≤ 1

⎫⎬
⎭

= ‖χ · (µ− ν)‖TV

which is the desired result.

5.4 An application: T1-inequalities

A T1-inequality is a TCI with c = d. Let us denote Pd(X ) = {ν ∈ P(X );
∫
X d

(x∗, x) ν(dx) < ∞ for some (and therefore all) x∗ ∈ X }. Suppose that µ is in
Pd(X ). The function α is said to satisfy the T1-inequality for d and µ if

α(Td(µ, ν)) ≤ H(ν | µ), ∀ν ∈ Pd(X ). (39)

Theorem 7 (T1-inequalities) Let d be a lower semicontinuous metric. Suppose
that a ≥ 0 satisfies

∫
X ead(xo,x) µ(dx) ≤ 2 for some xo ∈ X and that γ ∈ C satisfies∫

X eγ (d(x1,x)) µ(dx) ≤ B < ∞ for some x1 ∈ X , then

α(t) = max
(
(
√

at + 1 − 1)2, 2γ (t/2)− 2 log B
)

, t ≥ 0

satisfies (39).
Conversely, if a function α in the class C satisfies (39), then

∫

X

exp[u α(d(x∗, x)/2)]µ(dx) < ∞

for all x∗ ∈ X and all 0 ≤ u < 2.

Proof Gathering Corollary 7-a, Proposition 6 and the trick (34) gives us the
first statement. The second statement is a particular instance of Corollary 7-b.
This completes the proof of the theorem.

Note that by Proposition 2 we know that it is impossible that α escapes from
a quadratic growth at the origin.

Theorem 7 extends the integral criteria for the usual T1(C)-inequality in [10]
and [5]. Nevertheless, the control of the constant C is handled more carefully
in these cited papers.

In a forthcoming paper (see the PhD manuscript [12]), one of the author has
obtained the following result which is very much in the spirit of [10] and [5].
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Theorem 8 Suppose that c(x, y) = dp(x, y), that α satisfies (25) for some a > 0
and that sup{α�(t); t : α�(t) < +∞} = +∞. Then, the following statements are
equivalent:

– There exists b1 > 0 such that α (b1Tdp(ν,µ)) ≤ H(ν|µ) for all ν ∈ P(X ) such
that

∫
X dp(xo, x) ν(dx) < ∞

– There exists b2 > 0 such that
∫∫

X 2 eα(b2dp(x,y)) µ(dx)µ(dy) < +∞.

Further details concerning the relation between b1 and b2 can be found in [12].

6 Some applications: concentration of measure and deviations of empirical
processes

In this section, we give some applications of transportation-cost inequalities.
The first application, Theorem 9 is an easy extension of a well known result
of Marton. The second one, Theorem 10 is more original and concerns the
deviations of empirical processes.

In the whole section, d is a metric on X which turns (X , d) into a Polish space.

6.1 A basic lemma

Theorems 9 and 10 both rely on the following elementary lemma.

Lemma 5 Let µ ∈ P(X ) be such that
∫
X d(xo, x) µ(dx) < +∞, for some (and

thus all) xo ∈ X , and suppose that the T1- inequality

α (Td(µ, ν)) ≤ H(ν | µ), ∀ν ∈ P(X ),

holds. Then, for all 1-Lipschitz function ϕ, one has

µ (ϕ ≥ 〈ϕ,µ〉 + t) ≤ e−α(t), ∀t > 0. (40)

Proof Let ϕ a 1-Lipschitz function. For every n ≥ 1, let us consider ϕn =
ϕ ∨ n ∧ −n. According to Theorem 4, one has

Λϕn(s) := log
∫

X

es(ϕn−〈ϕn,µ〉) dµ ≤ α�(s), ∀s ≥ 0.

By dominating convergence, 〈ϕn,µ〉 −−−−→
n→+∞ 〈ϕ,µ〉. Thus by Fatou’s lemma, one

has

Λϕ(s) := log
∫

X

es(ϕ−〈ϕ,µ〉) dµ ≤ α�(s), ∀s ≥ 0.
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Now, thanks to Chebychev argument, one has for all t ≥ 0 :

µ (ϕ ≥ 〈ϕ,µ〉 + t) ≤ inf
s≥0

∫

X

es(ϕ−〈ϕ,µ〉−t) dµ ≤ inf
s≥0

eα
� (s)−st = e−α(t).

6.2 T1-inequalities and concentration of measure

Let us recall that for a given probability measure µ on a Polish space X , the
concentration function of µ is defined by

θµ(r) = sup{1 − µ(Ar) : A borel set such that µ(A) ≥ 1/2}, ∀r > 0,

where

Ar := {x ∈ X : d(x, A) ≤ r}.

One says that θ is a concentration function for µ, if there is ro ≥ 0 such that

θµ(r) ≤ θ(r), ∀r ≥ ro,

or equivalently

µ(Ar) ≥ 1 − θ(r), ∀r ≥ ro, ∀A Borel set.

Roughly speaking, the following theorem states that if α is a T1-transportation
function for µ then e−α is a concentration function for µ. This link between
transportation cost inequality and concentration inequality was first noticed by
Marton, see [16]. Her result extends as follows.

Theorem 9 Letµ ∈ P(X )be such that
∫
X d(xo, x) µ(dx) < +∞ for some xo ∈ X ,

and suppose that the T1-inequality

α (Td(µ, ν)) ≤ H(ν | µ), ∀ν ∈ P(X ),

holds with an unbounded α ∈ C. Then for all measurable A with µ(A) ∈ (0, 1),
one has the following concentration of measure inequality:

µ(Ar) ≥ 1 − e−α(r−rA), ∀r ≥ rA, (41)

where rA := α−1(− logµ(A)).

Remark 7 According to the assumptions made on α, one sees that the function
α−1 is well defined on (0, +∞). The number rA is thus well defined too.
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The following proof is different from Marton’s original argument. Our proof
is based on deviation arguments while Marton’s one is based on transportation.
For a proof using Marton’s concentration arguments see Proposition VI.81 in
[12].

Proof The function x 
→ d(x, A) is 1-Lipschitz. Thus, according to Lemma 5,

µ(d(·, A) ≥ t + 〈d(·, A),µ〉) ≤ e−α(t), ∀t ≥ 0.

In order to derive (41), the only thing to do is to show that 〈d(·, A),µ〉 ≤
α−1(− logµ(A)). Let ν ∈ P(X ) be such that ν(A) = 1. According to the
T1-inequality satisfied by µ, one has

∫

X

d(·, A)dµ =
∫

X

d(·, A)dµ−
∫

X

d(·, A)dν ≤ Td(µ, ν) ≤ α−1(H(ν | µ)).

Thus,

〈d(·, A),µ〉 ≤ α−1 (inf {H(ν | µ) : ν(A) = 1}) .

Let µA ∈ P(X ) be defined by dµA = 1A
µ(A)dµ ; clearly µA(A) = 1, so

inf {H(ν | µ) : ν(A) = 1} ≤ H(µA | µ). (42)

An easy computation yields H(µA | µ) = − logµ(A).

Note that d(·, A) is unbounded so that the inequality
∫
X d(·, A)dµ−∫

X d(·, A)
dν ≤ Td(µ, ν) needs to be justified. Let π be a probability on X 2 with marginals
µ and ν, then

∫
X d(·, A)dµ− ∫

X d(·, A)dν = ∫∫
X 2 d(x, A)− d(y, A) π(dxdy) ≤∫∫

X 2 d(x, y) π(dxdy). Optimizing in π leads to the desired result.

Some comments In Marton’s approach, the probability measure µA plays
also a great role. Thanks to our approach, this role can be further explained.
The choice of µA is optimal in the sense that (42) holds with equality:

inf {H(ν | µ) : ν(A) = 1} = H(µA | µ). (43)

In other words, µA is Csiszár’s I-projection of µ on {ν ∈ P(X ) : ν(A) = 1}, see
[7,8].

If ν is such that ν(A) = 1, one has

H(ν | µ) = H(ν | µA)+
∫

X

log
dµA

dµ
dν

= H(ν | µA)+
∫

X

log 1A dν − logµ(A)

= H(ν | µA)+ H(µA | µ),
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where the last equality follows from
∫
X log 1A dν = 0 and H(µA | µ) =

−logµ(A). This proves (43).

6.3 TCIs and deviations bounds for empirical processes.

Lemma 6 Let p ≥ 1 and µ ∈ P(X ) be such that
∫
X dp(xo, x) µ(dx) < +∞, for

some xo ∈ X , and suppose that the following inequality

α (Tdp(µ, ν)) ≤ H(ν | µ), ∀ν ∈ P(X ),

holds. Then for all function Z : X n → R which is n−1/p-Lipschitz with respect to

the metric (x, y) 
→ p
√∑n

i=1 dp(xi, yi), one has

µ⊗n (
Z ≥ 〈µ⊗n, Z〉 + t

) ≤ e−nα(tp), ∀t ≥ 0 (44)

Proof According to the tensorization property stated in Theorem 6, µ⊗n satis-
fies the TCI

nα
(Tdp⊕n(µ⊗n, ν)

n

)
≤ H(ν | µ⊗n), ∀ν ∈ P(X n),

where dp⊕n(x, y) = ∑n
i=1 d(xi, yi)

p, for all x, y ∈ X n. Applying Jensen’s inequal-
ity, one gets immediately : Tdp⊕n(µ⊗n, ν) ≥ Tdp, n(µ

⊗n, ν)p, ∀ν ∈ P(Xn), where

dp, n is the metric defined by dp, n(x, y) = p
√∑n

i=1 dp(xi, yi). Thus µ⊗n satisfies
the following T1-inequality:

α̃
(
Tdp, n(µ

⊗n, ν)
)

≤ H(ν | µ⊗n), ∀ν ∈ P(X n),

where α̃ ∈ C is defined by α̃(t) = nα
(

tp
n

)
. The function n1/pZ being 1-Lipschitz

with respect to dp, n, it follows from Lemma 5 that

µ⊗n
(

n1/pZ ≥ n1/p〈µ⊗n, Z〉 + n1/pt
)

≤ e−α̃(n1/pt) = e−nα(tp),

for all t ≥ 0, which completes the proof.

Let us consider a class G of 1-Lipschitz functions on X , and Xi an iid sample
of law µ. Let ZG

n be defined by

ZG
n := sup

ϕ∈G

⎧⎨
⎩
∣∣∣∣∣∣
1
n

n∑
i=1

ϕ(Xi)−
∫

X

ϕ dµ

∣∣∣∣∣∣

⎫⎬
⎭ . (45)
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As 0 ≤ ZG
n = supϕ∈G

{∣∣∫
X ϕ dLn − ∫

X ϕ dµ
∣∣} ≤ Td(Ln,µ), one has ZG

n ∈
[0, +∞[. Further, as a supremum of 1/n-Lipschitz functions, the function

(x1, . . . , xn) 
→ sup
ϕ∈G

⎧⎨
⎩
∣∣∣∣∣∣
1
n

n∑
i=1

ϕ(xi)−
∫

X

ϕ dµ

∣∣∣∣∣∣

⎫⎬
⎭

is 1/n-Lipschitz too. This implies in particular that ZG
n is measurable. The ran-

dom variable ZG
n is called an empirical process. Applying Lemma 6, one imme-

diately obtains the following theorem.

Theorem 10 Let µ ∈ P(X ) be such that
∫
X d(xo, x) µ(dx) < +∞, for some

xo ∈ X , and suppose that the T1-inequality

α (Td(µ, ν)) ≤ H(ν | µ), ∀ν ∈ P(X ),

holds. If G is a class of 1-Lipschitz functions on X then the empirical process ZG
n

defined by (45) satisfies the following inequality

P

(
ZG

n ≥ E

[
ZG

n

]
+ t

)
≤ e−nα(t), ∀t ≥ 0. (46)

The literature about the deviations of empirical processes is huge. For a good
overview of this subject, one can read Massart’s Saint-Flour lecture notes [18].

Now, if (X , ‖ · ‖) is a separable Banach space, and µ ∈ P(X ) such that∫
X ‖x‖ dµ < +∞ then taking G = {� ∈ X ∗ : ‖�‖X ∗ = 1}, where X ∗ is the

topological dual space of X , one obtains

ZG
n =

∥∥∥∥∥∥
1
n

n∑
i=1

Xi −
∫

X

x dµ

∥∥∥∥∥∥ ,

where
∫
X xµ(dx) is well defined in the Bochner sense. In this special case, we

have the following result.

Theorem 11 Let µ ∈ P(X ) be such that
∫
X ‖x‖µ(dx) < +∞, and suppose that

the T1-inequality

α
(
T‖ · ‖(µ, ν)

) ≤ H(ν | µ), ∀ν ∈ P(X ),

holds. If Xi is an iid sequence of lawµ, then letting Zn =
∥∥∥ 1

n

∑n
i=1 Xi − ∫

X x dµ
∥∥∥,

one has
P (Zn ≥ E [Zn] + t) ≤ e−nα(t), ∀t ≥ 0. (47)

The preceding tools can also be used to derive quantitative versions of
Sanov’s theorem involving Wasserstein’s metrics. Recall that, if p ≥ 1, then
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Wp(ν1, ν2) := p
√

Tdp(ν1, ν2) defines a metric on Pp(X ), the set of probability
measures on X which integrate dp(xo, . ) for some (and thus all) xo (see Chap. 7
of [23]).

Theorem 12 Let µ ∈ P(X ) be such that
∫
X dp(xo, x) µ(dx) < +∞, for some

xo ∈ X , and suppose that the following inequality

α (Tdp(µ, ν)) ≤ H(ν | µ), ∀ν ∈ P(X ),

holds for some p ≥ 1 and α ∈ C. Then

P
(
Wp(Ln,µ) ≥ E

[
Wp(Ln,µ)

] + w
) ≤ e−nα(wp), ∀w ≥ 0.

Proof Let us denote Lx
n = 1

n

∑n
i=1 δxi , for all x ∈ X n. According to Lemma 6,

it suffices to show that x 
→ Wp(Lx
n,µ) is n−1/p-Lipschitz with respect to the

metric dp, n(x, y) = p
√∑n

i=1 dp(xi, yi). Take x, y ∈ X n; according to the trian-

gle inequality,
∣∣Wp(Lx

n,µ)− Wp(L
y
n,µ)

∣∣ ≤ Wp(Lx
n, Ly

n). As Tdp(µ, ν) is jointly
convex, we have

Wp(Lx
n, Ly

n) ≤ p

√√√√1
n

n∑
i=1

Tdp(δxi , δyi) = n−1/p p

√√√√ n∑
i=1

dp(xi, yi),

which completes the proof.

Remark 8 In order to obtain precise deviations results for ZG
n (resp. Zn), one

must be able to estimate the terms E
[
ZG

n
]
, E [Zn] or E

[
Wp(Ln,µ)

]
.

Let us give some examples.

Example 2 (Quantitative versions of Sanov theorem) In this example, R
q will

be furnished with a norm ‖·‖. The metric associated to this norm will be denoted
by d( . , . ). The following theorem is Theorem 10.2.1 of [20] (volume II).

Theorem 13 Let µ be a probability measure on R
q such that

c :=
∫

‖x‖q+5 dµ < +∞. (48)

Then, there is D > 0 depending only on c and q, such that

E
[
Td2(Ln,µ)

] ≤ Dn− 2
q+4 . (49)

Thanks to this result, one obtains the following quantitative version of Sanov
theorem.
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Corollary 8 Letµ be a probability on (Rq, ‖·‖), satisfying (48) and the inequality

α (Tdp(µ, ν)) ≤ H(ν | µ), ∀ν ∈ P(Rq),

for some p ∈ [1, 2] and some α ∈ C. Then, the following inequality holds:

P
(
Wp(Ln,µ) ≥ w

) ≤ exp

[
−nα

((
w − D/n

1
q+4

)p)]

for all w > 0 and n ≥ (D/w)q+4 where D is the constant of (49).

Proof Noting that E
[
Wp(Ln,µ)

] ≤ E[W2(Ln,µ)] ≤
√

E
[
Td2(Ln,µ)

]
, for all

p ∈ [1, 2], the result follows immediately from Theorems 12 and 13.

In [4], Bolley et al. have shown that if µ satisfies the inequality Tp(C) (see
(1)) with 1 ≤ p ≤ 2, then there are no > 0 and C̃ > 0 such that the inequality

P(Wp(Ln,µ) ≥ w) ≤ e−nC̃w2

holds for n ≥ now−(q+2). Corollary 8 is quite similar but its proof is completely
different.

Example 3 (Deviations bounds for empirical means) Let X be a separable
Banach space and consider

Zn =
∥∥∥∥∥∥

1
n

n∑
i=1

Xi −
∫

X

x dµ

∥∥∥∥∥∥ , (50)

where Xi is an iid sequence of law µ. In order to control the term E[Zn], a clas-
sical assumption is to require that X is of type p > 1, ie there is b > 0 such that
for every sequence (Yi)i of centered random variables with E

[‖Yi‖p
]
< +∞,

one has

E
[‖Y1 + · · · + Yn‖p] ≤ b

[
E

[‖Y1‖p] + · · · + E
[‖Yn‖p]] . (51)

If X is of type p and E
[‖X1‖p

]
< +∞, then one can deduce immediately

from (51) the following control:

E [Zn] ≤ 1
n1−1/p

(
bE

[‖X1 − E[X1]‖p])1/p . (52)

Controls like (52) can be used in Theorem 11 to derive precise deviations
bounds for empirical means. Let us conclude this section with a concrete
example.
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Theorem 14 Let µ be a probability measure on a separable Banach space
(X , ‖ · ‖) such that

∫
X ea‖x‖ µ(dx) < +∞, for some a > 0. Then, for all sequence

Xi of iid random variables with law µ, one has

P (Zn ≥ E[Zn] + t) ≤ e
−n

(√
1+ t

M −1
)2

, ∀t > 0, (53)

where Zn is defined by (50) and M := inf
{

b > 0 :
∫∫

X 2 e
‖x−y‖

b µ(dx)µ(dy) ≤ 2
}

.

Proof According to Corollary 4, µ satisfy the T1-inequality

α
(
T‖ · ‖(µ, ν)

) ≤ H(ν | µ), ∀ν ∈ P(X ),

with α(t) =
(√

1 + t
M − 1

)2
. Thus, applying Theorem 11, the result follows

immediately.

Inequality (53) is very close to a well known inequality by Yurinskii ([24],
Theorem 2.1). Under the same assumptions on µ, one can easily derive from
Yurinskii’s result the following bound :

P (Zn ≥ E [Zn] + t) ≤ exp

(
−1

8
nt2

2M2
o + tMo

)
, ∀t > 0, (54)

where Mo = inf
{

b > 0 :
∫
X e

‖x‖
b µ(dx) ≤ 2

}
. To compare (53) and (54) first note

that (√
1 + u − 1

)2 ≥ u2

2(2 + u)
, ∀u > 0, (55)

(this is left to the reader). Next, let us show that M ≤ 2Mo. This follows from
the following inequality:

∫∫

X 2

e
‖x−y‖
2Mo µ(dx)µ(dy)

(i)≤
⎛
⎝
∫

X

e
‖x‖

2Mo µ(dx)

⎞
⎠

2
(ii)≤

∫

X

e
‖x‖
Mo µ(dx)

(iii)≤ 2,

where (i) comes from the triangle inequality, (ii) from Jensen inequality and
(iii) from the definition of Mo. Thanks to (55), one obtains

(√
1 + t

M
− 1

)2

≥ t2

2(2M2 + tM)
≥ t2

8(2M2
o + tMo/2)

≥ t2

8(2M2
o + tMo)

.

Thus, (53) is a little bit stronger than (54).
Yurinskii’s proof relies on martingale arguments, while our proof is a direct

consequence of the tensorization mechanism.
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7 Large deviations and T -inequalities. Abstract results

The framework is the same as in Sect. 5. See in particular Remark 4.

7.1 A deviation function is a transportation function

In this section, we give a rigorous proof at Theorem 15 of the Recipe 2 for an
increasing deviation function which may possibly be not convex. This extends
Proposition 4.

Theorem 15 Let us assume (14) and (15).

(a) Any deviation function is a transportation function.
(b) If in addition T is continuous on PF , then the converse also holds: any

transportation function is a deviation function.

Proof (a) As T is lower semicontinuous, for all t ≥ 0 the set {ν∈PF ; T (ν)> t}
is open. It follows from the LD lower bound that

− inf{H(ν | µ); ν ∈ PF , T (ν) > t} ≤ lim inf
n→∞

1
n

log P(T (Ln) > t)

Let α be any deviation function: for all t ≥ 0, lim supn→∞ 1
n log P(T (Ln) ≥

t) ≤ −α(t). Hence we obtain α(t) ≤ inf{H(ν | µ); ν ∈ PF , T (ν) > t} so that
α(t − δ) ≤ H(ν | µ) for all ν ∈ PF and δ > 0 such that T (ν) > t − δ. Taking
t = T (ν) leads us to α(T (ν) − δ) ≤ H(ν | µ) for all ν ∈ PF and δ > 0. As α is
increasing and δ > 0 is arbitrary, we have α(T (ν)−) ≤ H(ν | µ). The desired
result follows from the assumed left continuity of α.

(b) As T is continuous, because of the contraction principle, {T (Ln)} obeys
the LDP with rate function i(t) = inf{H(ν | µ); ν ∈ PF , T (ν) = t}, t ≥ 0. In par-
ticular, the LD upper bound: lim supn→∞ 1

n log P(T (Ln) ≥ t) ≤ − inf{i(s); s ≥ t},
is satisfied.

Let α be a transportation function. It clearly satisfies α(t) ≤ inf{H(ν | µ); ν ∈
PF , T (ν) = t} for all t. That is: α ≤ i. Finally, for all t ≥ 0,

lim sup
n→∞

1
n

log P(T (Ln) ≥ t) ≤ − inf
s≥t

i(s) ≤ − inf
s≥t
α(s) = −α(t)

where the last equality holds because α is increasing. This means that α is a
deviation function. This completes the proof of the theorem.

Remark 9 Note that we didn’t use the specific form (9) of T , but only its lower
semicontinuity.

Similarly, we didn’t use the specific properties of the relative entropy, but
only that it is a LDP rate function for {Ln}.
Let us specialize Theorem 15 to the case where c = dp. Let d be a metric on
X which turns it into a Polish space and 1 ≤ p < ∞. We denote Ndp the set of
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all probability measures ν on X such that
∫
X d(xo, x)p ν(dx) < ∞ for some xo

in X .

Corollary 9 (c = dp) Let µ in P(X ) satisfy
∫
X ead(xo,x)p µ(dx) < ∞ for all a > 0

and some xo in X . Then, a left continuous increasing function α : [0, ∞) →
[0, ∞] satisfies α(Tdp(µ, ν)) ≤ H(ν|µ) for all ν in Ndp if and only if α(t) ≤
− lim supn→∞ 1

n log P(Tdp(µ, Ln) ≥ t) for all t ≥ 0.

In other words, the left continuous version of − lim supn→∞ 1
n log P(Tdp(µ, Ln)

≥ t) is the best transportation function.

Proof It is known that Wasserstein’s metric T 1/p
dp metrizes σ(PF , F)with F the

space of all continuous functions ϕ such that |ϕ(x)| ≤ c(1 + d(xo, x)p), ∀x for
some constant c, see the annex of Bolley’s PhD Thesis manuscript [3]. There-
fore, ν 
→ Tdp(µ, ν) is continuous on PF and one can apply Theorem 15. This
completes the proof of the corollary.

In the case where µ satisfies T2(C), see (1), with Corollary 8 one sees that
lim supn→∞ 1

n log P(Td2(µ, Ln) ≥ t) ≤ −Dt for all t ≥ 0 and some positive D.
In particular, this holds when µ is the Gaussian measure. Corollary 9 states the
converse result provided that

∫
X ead(xo,x)2 µ(dx) < ∞ for all a > 0, which rules

the Gaussian measure out.

7.2 The transportation function JΦ

With Theorem 15 in hand, it is enough to compute a deviation function α to
obtain the TCI

α(T (ν)) ≤ H(ν | µ), ∀ν ∈ PF (56)

But these functions may be rather hard to compute because of the sup in the
definition (9) of

T (Ln) = sup
(ψ ,ϕ)∈Φ

{〈ϕ, Ln〉 + 〈ψ ,µ〉}.

However, it is shown at Theorem 16 below, that more can be said about trans-
portation functions.

Assumptions (A). The following requirements are assumed to hold.

(i) We assume (14): ∫

X

eϕ dµ < ∞, ∀ϕ ∈ F .

(ii) We assume (15):
(0, 0) ∈ Φ ⊂ F × F ,

(iii) For all (ψ ,ϕ) ∈ Φ, ψ + ϕ ≤ 0.
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Requirement (iii) always holds in the norm case:Φ = ΦU , and it holds in the
transportation case Φ = Φc if c(x, x) = 0, ∀x ∈ X .

For all (ψ ,ϕ) ∈ Φ, let us define

Λ(ϕ) := log
∫

X

eϕ dµ, Λψ ,ϕ(s) := Λ(sϕ)+ s〈ψ ,µ〉, s ∈ R,

and
Jψ ,ϕ(t) = sup

s∈R

{st −Λψ ,ϕ(s)}, t ∈ R.

Remark 10 As a consequence of Assumptions (A), {Ln} obeys the LDP in PF
with the rate function H(ν | µ) = Λ∗(ν) = supϕ∈F {〈ϕ, ν〉 −Λ(ϕ)}, ν ∈ PF and
thanks to Cramer theorem, Jψ ,ϕ is the LD rate function of {〈ϕ, Ln〉+〈ψ ,µ〉}n≥1.

We know that Jψ ,ϕ is convex with a minimum value 0 attained at Λ′
ψ ,ϕ(0).

Under assumption (iii), we have Λ′
ψ ,ϕ(0) = 〈ϕ + ψ ,µ〉 ≤ 0. Therefore, Jψ ,ϕ is

an increasing nonnegative function on [0, ∞) and so are JΦ and J̃Φ given by

JΦ(t) := J̃Φ(t−), t > 0 where

J̃Φ(t) := inf
(ψ ,ϕ)∈Φ Jψ ,ϕ(t) ∈ [0, ∞], t ≥ 0 (57)

with JΦ(0) = 0. This last equality follows from assumption (ii). AsΛ′
ψ ,ϕ(0) ≤ 0,

it also holds that for all t ≥ 0, Jψ ,ϕ(t) = Λ
�
ψ ,ϕ(t) := sups≥0{st − Λψ ,ϕ(s)} where

the sup is taken over s ≥ 0 rather than s ∈ R. It follows that one can equivalently
define JΦ as follows.

Definition 4 (of the functions JΦ , Jtr and Jdev).

– JΦ is the left continuous version of the increasing function

t ∈ [0, ∞) 
→ inf
(ψ ,ϕ)∈Φ sup

s≥0
{st −Λ(sϕ)− s〈ψ ,µ〉} ∈ [0, ∞].

– Jtr is the best transportation function. Clearly, it is the left continuous version
of the increasing function

t ∈ [0, ∞) 
→ inf{H(ν | µ); ν ∈ PF : T (ν) ≥ t} ∈ [0, ∞].

– Jdev is the best deviation function. Clearly, it is the left continuous version of
the increasing function

t ∈ [0, ∞) 
→ −lim sup
n→∞

1
n

log P(T (Ln) ≥ t) ∈ [0, ∞].

Although the best transportation function Jtr might be out of reach in many
situations, we have the following reassuring result.
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Theorem 16 Suppose that Assumptions (A) hold. Then, JΦ is a transportation
function and the best transportation function in the class C is the convex lower
semicontinuous regularization of JΦ .

Proof This statement is a collection of the statements of Theorem 17-a and
Corollary 10-a,b which will be proved below.

Theorem 17 Suppose that Assumptions (A) hold.

(a) Then, JΦ is a transportation function for T in PF . This can be equivalently
rewritten as the following TCI

JΦ(T (ν)) ≤ H(ν | µ), ∀ν ∈ PF .

(b) If in addition T is continuous on PF , then JΦ = Jtr = Jdev.

Proof (a) As ν 
→ 〈ϕ, ν〉+〈ψ ,µ〉 is continuous, it follows from Remark 10 and
the contraction principle that Jψ ,ϕ(t) = inf{H(ν | µ); ν ∈ PF , 〈ϕ, ν〉+〈ψ ,µ〉 = t}
for all t ≥ 0. Hence, Jψ ,ϕ(〈ϕ, ν〉+〈ψ ,µ〉) ≤ H(ν | µ) for all ν ∈ PF and a fortiori

J̃Φ(〈ϕ, ν〉 + 〈ψ ,µ〉) ≤ H(ν | µ),

as soon as 〈ϕ, ν〉 + 〈ψ ,µ〉 ≥ 0. As J̃Φ is increasing, by the definition (9) of
T (ν), one obtains: J̃Φ(T (ν)−) ≤ H(ν | µ) which is the desired result. Note that
T (ν) ≥ 0 since (0, 0) ∈ Φ (assumption (A.ii)).

(b) Theorem 15-(b) states that Jtr = Jdev. Hence, it is enough to prove that
JΦ = Jdev. Because of part (a) of the present theorem, JΦ is a transportation
function, and by part (b) of Theorem 15, it is also a deviation function. There-
fore, JΦ ≤ Jdev and it remains to prove that Jdev ≤ JΦ . By the LD lower bound
for {〈ϕ, Ln〉 + 〈ψ ,µ〉}, for all t ≥ 0,

− inf
r>t

Jψ ,ϕ(r) ≤ lim inf
n→∞

1
n

log P(〈ϕ, Ln〉 + 〈ψ ,µ〉 > t)

≤ lim sup
n→∞

1
n

log P

(
sup

(ψ ,ϕ)∈Φ
〈ϕ, Ln〉 + 〈ψ ,µ〉 ≥ t

)

≤ −Jdev(t).

Thus Jdev(t) ≤ infr>t Jψ ,ϕ(r), for all t ≥ 0 and consequently

Jdev(t) ≤ inf
(ψ ,ϕ)∈Φ inf

r>t
Jψ ,ϕ(u) = inf

r>t
inf

(ψ ,ϕ)∈Φ Jψ ,ϕ(u) = J̃Φ(t+).

As Jdev and J̃Φ are increasing and Jdev is left continuous, this gives Jdev(t) ≤
J̃Φ(t−) = JΦ(t) for all t > 0 which is the desired result.
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7.3 Connections with Theorem 2

Let us first give an alternative proof of criterion (b) ⇒ (a) of Theorem 2.
We keep the Assumptions (A) of Sect. 7.2. Note that because of Assumptions

(A.ii) and (A.iii), the function

ΛΦ(s) = sup
(ψ ,ϕ)∈Φ

Λψ ,ϕ(s) withΛψ ,ϕ(s) = Λ(sϕ)+ s〈ψ ,µ〉, s ≥ 0 (58)

is in the class C. It follows that its monotone conjugate

Λ
�
Φ(t) = sup

s≥0
{st −ΛΦ(s)}, t ≥ 0

is also in C. Thanks to formula (57), for all t ≥ 0, we have

Λ
�
Φ(t) ≤ sup

s≥0

{
st − sup

(ψ ,ϕ)∈Φ
Λψ ,ϕ(s)

}
= sup

s≥0
inf

(ψ ,ϕ)∈Φ{st −Λψ ,ϕ(s)}

≤ inf
(ψ ,ϕ)∈Φ sup

s≥0
{st −Λψ ,ϕ(s)} = J̃Φ(t)

But Λ�
Φ(t) is left continuous, hence

Λ
�
Φ ≤ JΦ . (59)

As JΦ is a transportation function (Theorem 17), so is Λ�
Φ .

The criterion (b) ⇒ (a) of Theorem 2 follows from the above considerations.
Indeed, (b) states that ΛΦ ≤ α�. Therefore, with (59): α ≤ Λ

�
Φ ≤ JΦ . Hence, α

is a transportation function.
An easy consequence of Theorem 2 is the following

Corollary 10 Suppose that Assumptions (A) hold.

(a) The best transportation function in the class C isΛ�
Φ . This means that α ∈ C

is a transportation function if and only if α ≤ Λ
�
Φ .

(b) Moreover, Λ�
Φ is the convex lower semicontinuous regularization of JΦ

(in restriction to t ∈ [0, ∞)).
(c) If T is continuous, thenΛ�

Φ is also the best deviation function in the class C.

Proof The best function α� ∈ C satisfying (b) of Theorem 2 is α� = ΛΦ ,
see (58). Because of the equivalence (a) ⇔ (b) of Theorem 2, its monotone
conjugate Λ�

Φ is the best transportation function in C. This is (a).
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Let us prove (b). In order to work with usual convex conjugates, let us state
Jφ(t) = +∞ for all t < 0 and φ ∈ Φ. We have

(inf
φ

Jφ)∗(s) = sup
t

{st − inf
φ

Jφ(t)} = sup
t,φ

{st − Jφ(t)}

= sup
φ

sup
t

{st − Jφ(t)} = sup
φ

J∗
φ(s).

Hence, the convex lower semicontinuous regularization of JΦ := infφ Jφ is
(infφ Jφ)∗∗ = (supφ J∗

φ)
∗ = (supφ Λ

∗∗
φ )

∗ But, the convex lower semicontinu-
ous regularization of supφ Λφ is supφ Λ

∗∗
φ . Therefore, J∗∗

Φ = (supφ Λ
∗∗
φ )

∗ =
(supφ Λφ)

∗ = Λ∗
Φ . But it is already seen that in restriction to t ∈ [0, ∞), ΛΦ is

in C, so that Λ∗
Φ(t) = Λ

�
Φ(t) for all t ≥ 0.

Finally, (c) is a direct consequence of (b) and Theorem 17-(b).
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