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Abstract We introduce a version of Stein’s method for proving concentration
and moment inequalities in problems with dependence. Simple illustrative
examples from combinatorics, physics, and mathematical statistics are provided.
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1 Introduction and results

Stein’s method was introduced by Charles Stein [38] in the context of normal
approximation for sums of dependent random variables. Stein’s version of his
method, best known as the “method of exchangeable pairs”, attained matu-
rity in his later work [39]. A reasonably large literature has developed around
the subject, but it has almost exclusively developed as a method of proving
distributional convergence with error bounds. Stein’s attempts at getting large
deviations in [39] did not, unfortunately, prove fruitful. Some progress for sums
of dependent random variables was made by Raič [33]. A general version of
Stein’s method for concentration inequalities was introduced for the first time
in the Ph.D. thesis [11] of the present author. The purpose of this paper is
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to explain the theory developed in [11] via examples. Another application is
in [12].

This section is organized as follows: First, we give three examples, followed
by the main abstract theorem; finally, towards the end of the section, we present
very condensed overviews of Stein’s method, concentration of measure, and the
related literature. Proofs are in Sect. 2.

1.1 A generalized matching problem

Let {aij} be an n×n array of real numbers. Let π be chosen uniformly at random
from the set of all permutations of {1, . . . , n}, and let X = ∑n

i=1 aiπ(i). This class
of random variables was first studied by Hoeffding [24], who proved that they
are approximately normally distributed under certain conditions. It is easy to
see that various well-studied functions of random permutations, like the num-
ber of fixed points, the sum of a random sample picked without replacement
from a finite population, and the function

∑
i |i − π(i)| (known as Spearman’s

footrule [16]), are all instances of Hoeffding’s statistic.
Hoeffding’s statistic has a long history of association with Stein’s method. In

fact, in an unpublished work Stein introduced his method to treat the normal
approximation problem for this object. Bolthausen [7] used Stein’s method to
give a Berry–Esseen bound. Bolthausen and Götze [8] gave multivariate central
limit theorems under a further generalized setup. However, we have not seen
large deviations or concentration bounds using any method.

Our version of Stein’s method enables us to easily derive the following nice
tail bound.

Proposition 1.1 Let {aij}1≤i, j≤n be a collection of numbers from [0, 1]. Let X =∑n
i=1 aiπ(i), where π is drawn from the uniform distribution over the set of all

permutations of {1, . . . , n}. Then

P{|X − E(X)| ≥ t} ≤ 2 exp

(

− t2

4E(X) + 2t

)

for any t ≥ 0.

Note that the bound does not have an explicit dependence on n. Note also
the automatic transition from Poissonian to gaussian tails as E(X) becomes
large (when E(X) is small the bound is like exp(−Ct), whereas when E(X) is
large, it is essentially a gaussian tail with standard deviation

√
E(X).). These

two properties characterize it as a so-called “Bernstein type inequality”, named
after the classical Bernstein inequality (see [37], page 855) for sums of bounded
independent random variables.

The classical result of Maurey [30] can only imply the weaker inequality
P(X > E(X)+ t) ≤ e−t2/4n. However, it is possible to derive a Bernstein bound
similar to Proposition 1.1 (albeit with a significantly worse constant in the expo-
nent) using Michel Talagrand’s deep theorem about concentration of random
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permutations (Theorem 5.1 in Sect. 5 of [40]; see also McDiarmid [31] and
Luczak and McDiarmid [29]).

For a concrete application, let X be the number of fixed points of a random
permutation π . Then X = ∑n

i=1 aiπ(i), where aij = I{i=j}. Since E(X) = 1, Prop-
osition 1.1 gives P{|X − 1| ≥ t} ≤ 2 exp(−t2/(4 + 2t)). Of course, we do not
expect this to be the best possible bound in this very well-understood problem;
this is just meant to be an illustration. In fact, the exact distribution of the the
number of fixed points is known (see Feller [19], section IV.4), which gives a
tail bound like exp(−Ct log t).

Finally, we also have a “Burkholder-Davis-Gundy” type inequality for
Hoeffding’s statistic which does not require a bound on the aij’s.

Proposition 1.2 Let {aij}1≤i, j≤n be an arbitrary collection of real numbers. Let π

be a uniform random permutation, and let X = ∑n
i=1 aiπ(i). Define

� = 1
4n

∑

i,j

(aiπ(i) + ajπ(j) − aiπ(j) − ajπ(i))
2.

Then for every positive integer k, we have E(X − E(X))2k ≤ (2k − 1)k
E�k.

For a general exposition about the famous Burkholder–Davis–Gundy martin-
gale inequalities we refer to the article by Burkholder [10].

1.2 Magnetization in the Curie–Weiss model

Fix any β ≥ 0, h ∈ R, and consider the probability mass function (the Gibbs
measure) on {−1, 1}n given by

P({σ }) := Z−1 exp

(
β

n

∑

i<j

σiσj + βh
∑

i

σi

)

, (1)

where σ = (σ1, . . . , σn) is a typical element of {−1, 1}n and Z is the normalizing
constant (depends on β and h). This is known as the ‘Curie–Weiss model of
ferromagnetic interaction’ at inverse temperature β and external field h. The
σi’s stand for the spins of n particles, each having a spin of +1 or −1. The
ferromagnetic interaction between the particles is captured in a very simplistic
manner by the first term in the hamiltonian.

The magnetization of the system, as a function of the configuration σ , is
defined as m(σ ) := 1

n

∑n
i=1 σi. If n is large and σ is drawn from the Gibbs

measure, then the magnetization satisfies

m(σ ) ≈ tanh(βm(σ ) + βh) (2)

with high probability. The equation has a unique root for small values of β and
multiple solutions for β above a critical value. In the physics parlance, this is
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described by saying that the Curie–Weiss model exhibits “spontaneous magne-
tization” at low temperatures. For a formal discussion with rigorous proofs, we
refer to Ellis [18], Sect. IV.4.

The following proposition formalizes (2) with finite sample tail bounds.

Proposition 1.3 Suppose σ is drawn from the Gibbs measure (1). Then, for any
β ≥ 0, h ∈ R, n ≥ 1, and t ≥ 0, the magnetization m := 1

n

∑
i σi satisfies

P

{
∣
∣m − tanh(βm + βh)

∣
∣ ≥ β

n
+ t√

n

}

≤ 2 exp

(

− t2

4(1 + β)

)

.

Although the Curie–Weiss model is a simple model of ferromagnetic interac-
tion, we haven’t encountered any result in the literature which gives an explicit
bound like the above. In particular, the result shows concentration of m(σ )

around the set of roots of x = tanh(βx + βh), and not just its mean.
However, concentration inequalities for Gibbs measures without explicit

constants under various mixing conditions have been obtained before. For
a history of the literature and some significant recent progress, we refer to
Chazottes et al. [14].

1.3 Least squares estimation in the Ising model

The Ising model is another model of ferromagnetic interaction. Given an undi-
rected graph G = (V, E) on the vertex set V = {1, . . . , n}, the Ising model
without external field assigns the following probability density on {−1, 1}n:

P({σ }) = Z(β)−1 exp

(

β
∑

{i,j}∈E

σiσj

)

. (3)

Here, as before, β is the inverse temperature and Z(β) is the normalizing con-
stant. A natural statistical problem in this model is the following: How to make
inference about β when your data is a single configuration generated from the
Gibbs measure?

The classical maximum likelihood approach for this problem was first consid-
ered by Pickard [32]. Iterative methods for computing the maximum likelihood
estimator (e.g. Geyer and Thompson [22], Jerrum and Sinclair [26]) are widely
used nowadays. The Jerrum–Sinclair algorithm for computing the normalizing
constant in the Ising model provably converges in polynomial time. However,
it is not so clear whether the MLE is a good estimator at all, particularly at
critical temperatures.

Here we investigate a method of estimating β by minimizing an explicit
sum-of-squares. First, let σ be drawn from the Gibbs measure (3) on {−1, 1}n,
and for each i, let

mi :=
∑

j:{i,j}∈E

σj.
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For each u ≥ 0, let

S(u) := 1
n

n∑

i=1

(
σi − tanh(umi))

2. (4)

The ‘least-squares estimate’ of β is defined to be

β̂LS := argminu≥0 S(u).

Note that it is practically very easy to compute β̂LS, because S is a smooth
function of a single variable.

The least-squares technique is well-known and commonly used in the anal-
ysis of gaussian Markov random field (GMRF) models (probably originating
from Besag [6]), but rigorous results are scarce.

Proposition 1.4 (stated below) shows that the random function S indeed
attains an approximate global minimum near β. In fact, it gives

E

∣
∣
∣
∣S(β) − min

u≥0
S(u)

∣
∣
∣
∣ = O

(√
r log n

n

)

,

where r is the maximum degree of the dependency graph G (recall that the
degree of a vertex is the number of neighbors of that vertex, and the maximum
degree of a graph is the maximum vertex degree).

Proposition 1.4 Let r be the maximum degree of the dependency graph G in the
Ising model (3), and let S(u) be defined as in (4). Take any t ≥ 0 and let

ε =
√

r(log n + t)
n

.

Then we have

P

{

S(β) ≥ min
u≥0

S(u) + Cε

}

≤ exp(−Kt2),

where C and K are numerical constants.

Although it is unclear whether Proposition 1.4 is useful from a statistical point
of view, it seems to be interesting as a mathematical result. For instance, observe
that the conclusion is valid at any temperature. This is quite remarkable, since
the low temperature phase in the Ising model is notoriously intractable for most
graphs.

Here we should also mention that the technique can be easily applied to
the Ising model with an external field, but we prefer to restrict ourselves to
the problem of estimating a single parameter (the temperature) for the sake of
clarity.
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1.4 The abstract result

The following theorem encapsulates the concentration and moment inequalities
used to work out all the examples in this paper.

Theorem 1.5 Let X be a separable metric space and suppose (X, X ′) is an
exchangeable pair of X-valued random variables. Suppose f : X → R and
F : X × X → R are square-integrable functions such that F is antisymmetric (i.e.
F(X, X ′) = −F(X ′, X) a.s.), and E(F(X, X ′) | X) = f (X) a.s. Let

�(X) := 1
2

E
(|(f (X) − f (X ′))F(X, X ′)| ∣∣ X

)
.

Then E(f (X)) = 0, and the following concentration results hold for f (X):

(i) If E(�(X)) < ∞, then Var(f (X)) = 1
2E((f (X) − f (X ′))F(X, X ′)).

(ii) Assume that E(eθf (X)|F(X, X ′)|) < ∞ for all θ . If there exists nonnegative
constants B and C such that �(X) ≤ Bf (X) + C almost surely, then for
any t ≥ 0,

P{f (X) ≥ t} ≤ exp

(

− t2

2C + 2Bt

)

and P{f (X) ≤ −t} ≤ exp

(

− t2

2C

)

.

(iii) For any positive integer k, we have the following exchangeable pairs version
of the Burkholder-Davis-Gundy inequality:

E(f (X)2k) ≤ (2k − 1)k
E(�(X)k).

To see how the exchangeable pairs are constructed and the theorem is applied
in our examples, one has to look at the proofs in Sect. 2. However, for a quick
illustration, we will now work out the inequalities for sums of independent
random variables, taking care to spell out details.

1.5 Simplest example

Let X = ∑n
i=1 Yi, where Yi’s are independent square integrable random vari-

ables. Let µi = E(Yi) and σ 2
i = Var(Yi). An exchangeable pair is created by

choosing a coordinate I uniformly at random from {1, . . . , n}, and defining

X ′ =
∑

j 
=I

Yj + Y ′
I ,

where Y ′
1, . . . , Y ′

n are independent copies of Y1, . . . , Yn. Let

F(x, y) = n(x − y).



Stein’s method for concentration inequalities 311

Then

E(F(X, X ′) | Y1, . . . , Yn) = 1
n

n∑

i=1

E(n(Yi − Y ′
i) | Y1, . . . , Yn)

=
n∑

i=1

(Yi − µi) = X − E(X).

Since the right hand side depends only on X, we have

f (X) = E(F(X, X ′) | X) = X − E(X).

Thus, from part (i) of Theorem 1.5 we get the elementary identity

Var(X) = 1
2

n∑

i=1

E(Yi − Y ′
i)

2 =
n∑

i=1

σ 2
i .

Now note that

�(X) = n
2

E((X − X ′)2 | X)

= 1
2

n∑

i=1

E((Yi − Y ′
i)

2 | X).

If c1, . . . , cn are constants such that |Yi − µi| ≤ ci a.s. for each i, then

E((Yi − Y ′
i)

2 | X) = E((Yi − µi)
2 | X) + E((Y ′

i − µi)
2)

≤ c2
i + σ 2

i .

Part (ii) of Theorem 1.5 now implies that

P{|X − E(X)| ≥ t} ≤ 2 exp

(

− t2
∑n

i=1(c2
i + σ 2

i )

)

.

This is similar to (but not exactly the same as) the classical Hoeffding inequality
[25] for sums of bounded random variables.

Now suppose that 0 ≤ Yi ≤ 1 a.s. for each i. If the µi’s are very small, then
the Hoeffding bound is wasteful. A more careful analysis gives a better result,
as follows. First, note that

�(X) = 1
2

n∑

i=1

E((Yi − Y ′
i)

2 | X)

= 1
2

n∑

i=1

(EY2
i − 2µiE(Yi | X) + E(Y2

i | X)).
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Using the assumption that 0 ≤ Yi ≤ 1, we get

�(X) ≤ 1
2

n∑

i=1

(E(Yi) + E(Yi | X)) = 1
2
(E(X) + X) = 1

2
f (X) + E(X).

Thus, we can take B = 1/2 and C = E(X) in part (ii) of Theorem 1.5, which
gives

P{|X − E(X)| ≥ t} ≤ 2 exp

(

− t2

2E(X) + t

)

.

Again, this is a version of the classical Bernstein inequality (see [37], page 855)
for sums of independent random variables.

Finally observe that by part (iii) of Theorem 1.5 and an application of Jensen’s
inequality, we have for each positive integer k,

E(X2k) ≤ (2k − 1)k
E

(
1
2

n∑

i=1

E((Yi − µi)
2 + (Y ′

i − µi)
2 | X)

)k

≤ (2k − 1)k
E

( n∑

i=1

(Yi − µi)
2
)k

.

This is exactly what the Burkholder–Davis–Gundy inequality [10] would give
us for sums of independent random variables (although in this case, it can be
derived by easier methods).

In the remainder of this section, we give very short overviews of Stein’s
method and concentration of measure.

1.6 Stein’s method

Suppose we want to show that a random variable X taking value in some space
X has approximately the same distribution as some other random variable Z.
The classical version of Stein’s method [38,39] involves four steps:

1. Identify a “characterizing operator” T for Z, which has the defining prop-
erty that for any function g belonging to a fixed large class of functions,
ETg(Z) = 0. For instance, if X = R and Z is a standard gaussian random
variable, then Tg(x) := g′(x) − xg(x) is a characterizing operator, acting on
all locally absolutely continuous g with subexponential growth at infinity.

2. Construct a random variable X ′ such that (X, X ′) is an exchangeable pair.
3. Find an operator α such that for any suitable h : X → R, αh is an antisym-

metric function (i.e. αh(x, y) ≡ −αh(y, x)) and
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|E(αh(X, X ′)|X = x) − Th(x)| ≤ εh,

where εh is a small error depending only on h.
4. Take a function g and find h such that Th(x) = g(x)−Eg(Z). By antisymme-

try of αh and the exchangeability of (X, X ′), it follows that E(αh(X, X ′)) =
0. Combining with the previous step, we have the error bound |Eg(X) −
Eg(Z)| ≤ εh.

There are other variants of Stein’s method, most notably the generator method
of Andrew Barbour [4], the dependency graph approach introduced by Chen
[15] and Baldi and Rinott [3] and popularized by Arratia, Goldstein and Gor-
don [2], the size-biased coupling method of Barbour, Holst and Janson [5], and
the zero-biased coupling method due to Goldstein and Reinert [23]. The recent
applications to algebraic problems by Jason Fulman [20,21], and the quest for
Berry–Esseen bounds by Rinott and Rotar [34] and Shao and Su [35] are also
worthy of note.

However, it is not our purpose here to go deeply into the regular versions
of Stein’s method. For further references and exposition, we refer to the recent
monograph [17]. For applications of the method of exchangeable pairs and
other versions of Stein’s method to Poisson approximation, one can look at the
survey paper by Chatterjee, Diaconis & Meckes [13].

1.7 Concentration inequalities

The theory of concentration inequalities tries to answer the following question:
Given a random variable X taking value in some measure space X (which is usu-
ally some high dimensional Euclidean space), and a measurable map f : X → R,
what is a good explicit bound on P{|f (X) − Ef (X)| ≥ x}? Exact evaluation or
accurate approximation is, of course, the central purpose of probability theory
itself. In situations where this is not possible, concentration inequalities aim to
do the next best job by providing rapidly decaying tail bounds.

The literature on concentration inequalities is huge – from the pioneering
inequalities of Hoeffding [25] to the momentous work of Talagrand [40] – but
most of it revolves around well-behaved functions of independent random vari-
ables. For a nearly complete account of the literature until the year 2001, we
redirect the reader to the definitive resource in this subject – the monograph [28]
by Michel Ledoux. The methods of Kim and Vu [27] and Boucheron, Lugosi,
and Massart [9] are significant recent developments.

The techniques developed in [11] (and partially presented here) have some
basic similarities with the concentration results of Schmuckenschläger [36], but
go much beyond that in terms of applications. Other than that (and log-Sobolev
inequalities, which are much harder to obtain anyway) there is very little – even
in the vast concentration literature – about the concentration of functions of
dependent random variables, particularly in the discrete setting. We hope that
our version of Stein’s method will partially fill this void.
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2 Proofs

Before proving Theorem 1.5, let us see how it is applied to work out the three
examples described in section 1.

Proof of Proposition 1.1 Construct X ′ as follows: Choose I, J uniformly and
independently at random from {1, . . . , n}. Let π ′ = π◦(I, J), where (I, J) denotes
the transposition of I and J. It can be easily verified that (π , π ′) is an exchange-
able pair. Hence if we let

X ′ :=
n∑

i=1

aiπ ′(i),

then (X, X ′) is also an exchangeable pair. Now note that

1
2

E(n(X − X ′)|π) = n
2

E(aIπ(I) + aJπ(J) − aIπ(J) − aJπ(I)|π)

= 1
n

∑

i,j

aiπ(i) − 1
n

∑

i,j

aiπ(j)

= X − E(X).

Thus, we can take f (x) = x−E(X) and F(x, y) = 1
2 n(x−y). Now note that since

0 ≤ aij ≤ 1 for all i and j, we have

1
2

E
(|(f (X) − f (X ′))F(X, X ′)| ∣∣ π) = n

4
E((X − X ′)2|π)

= 1
4n

∑

i,j

(aiπ(i) + ajπ(j) − aiπ(j) − ajπ(i))
2

≤ 1
2n

∑

i,j

(aiπ(i) + ajπ(j) + aiπ(j) + ajπ(i))

= X + E(X) = f (X) + 2E(X).

Since the last quantity depends only on X it follows that �(X) = f (X)+2E(X).
Applying part (ii) of Theorem 1.5 with B = 1 and C = 2E(X) completes the
proof. �

Proof of Proposition 1.2 Follows directly from part (iii) of Theorem 1.5 and the
computations done in the proof of Proposition 1.1. �

Proof of Proposition 1.3 Suppose σ is drawn from the Gibbs distribution. We
construct σ ′ by taking a step in the Gibbs sampler as follows: Choose a coordi-
nate I uniformly at random, and replace the Ith coordinate of σ by an element
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drawn from the conditional distribution of the Ith coordinate given the rest. It
is well-known and easy to prove that (σ , σ ′) is an exchangeable pair. Let

F(σ , σ ′) :=
n∑

i=1

(σi − σ ′
i ).

Now define

mi(σ ) := 1
n

∑

j≤n,j 
=i

σj, i = 1, . . . , n.

Since the Hamiltonian is a simple explicit function, the conditional distribution
of the ith coordinate given the rest is easy to obtain. An easy computation gives
E(σi|{σj, j 
= i}) = tanh(βmi + βh). Thus, we have

f (σ ) = E(F(σ , σ ′)|σ) = 1
n

n∑

i=1

(σi − E(σi|{σj, j 
= i}))

= m − 1
n

n∑

i=1

tanh(βmi + βh).

Now note that |F(σ , σ ′)| ≤ 2, because σ and σ ′ differ at only one coordinate.
Also, since the map x 
→ tanh x is 1-Lipschitz, we have

|f (σ ) − f (σ ′)| ≤ |m(σ ) − m(σ ′)| + β
n

n∑

i=1
|mi(σ ) − mi(σ

′)| ≤ 2(1+β)
n .

Thus, by part (ii) of Theorem 1.5 we have

P

{∣
∣
∣
∣m − 1

n

n∑

i=1

tanh(βmi + βh)

∣
∣
∣
∣ ≥ t√

n

}

≤ 2 exp

(

− t2

4(1 + β)

)

.

Finally note that for each i, by the Lipschitz nature of the tanh function, we get

∣
∣
∣
∣
1
n

n∑

i=1

tanh(βmi + βh) − tanh(βm + βh)

∣
∣
∣
∣

≤ 1
n

n∑

i=1

| tanh(βmi + βh) − tanh(βm + βh)|

≤ 1
n

n∑

i=1

β|mi − m| ≤ β

n
.

This completes the proof. �
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Proof of Proposition 1.4 As in the proof of Proposition 1.3, we produce σ ′ by
taking a step in the Gibbs sampler: A coordinate I is chosen uniformly at
random, and σI is replace by σ ′

I drawn from the conditional distribution of the
Ith coordinate given (σj)j 
=I . For each i, let

mi = mi(σ ) :=
∑

j:{i,j}∈E

σj.

Now fix u ≥ 0 and define

F(σ , σ ′) := (σI − σ ′
I)(tanh(βmI) − tanh(umI)).

Then F(σ , σ ′) = −F(σ ′, σ) because mI(σ ) = mI(σ
′) . Now let

f (σ ) := E(F(σ , σ ′) | σ)

= 1
n

n∑

i=1

(σi − tanh(βmi))(tanh(βmi) − tanh(umi)).

Now, if r is the maximum degree of G, then at most r + 1 terms in the sums
defining f (σ ) and f (σ ′) are unequal, and they all lie in the interval [−4, 4].
Thus, |f (σ ) − f (σ ′)| ≤ 8(r + 1)/n. Also, evidently, |F(σ , σ ′)| ≤ 4. Using all this
information in part (ii) of Theorem 1.5, we get

P{f (σ ) ≤ −t} ≤ exp

(

− nt2

32(r + 1)

)

.

Now, a direct verification shows that

S(u) − S(β) = 1
n

n∑

i=1

(tanh βmi) − tanh(umi))
2 + 2f (σ ).

Thus,

P{S(β) ≥ S(u) + t} ≤ P{2f (σ ) ≤ −t} ≤ exp

(

− nt2

128(r + 1)

)

. (5)

Now note that for any u, v ≥ 0, we have

|S(u) − S(v)|

≤ 1
n

n∑

i=1

|(2σi − tanh(umi) − tanh(vmi))(tanh(vmi) − tanh(umi))|

≤ 4
n

n∑

i=1

| tanh(vmi) − tanh(umi)| ≤ 4r|u − v|,
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since |mi(u − v)| ≤ r|u − v|. Let N = �√nr log n�, and let

uk = k

√
log n

nr
for k = 1, 2, . . . , N.

Then, if uk−1 ≤ u ≤ uk, the above inequality gives

|S(u) − S(uk)| ≤ 4r|u − uk| ≤ 4

√
r log n

n
.

Now take any u ≥ uN . Since mi ∈ {0, ±1, . . . , ±r}, therefore | tanh(umi) −
tanh(uNmi)| ≤ 1 − tanh(uN |mi|) ≤ 1 − tanh(uN). Thus,

|S(u) − S(uN)| ≤ 4
n

n∑

i=1

| tanh(umi) − tanh(uNmi)|

≤ 4(1 − tanh(uN)) ≤ 4e−uN ≤ 4e
n

.

If n ≥ 3, then
√

log n/n ≥ e/n. Combining the steps, we see that for n ≥ 3,

min
1≤k≤N

S(uk) ≤ min
u≥0

S(u) + 4

√
r log n

n
.

Finally, combining this with (5), we get

P

{

S(β) ≥ min
u≥0

S(u) + 4

√
r log n

n
+ t

}

≤ P
{
S(β) ≥ min

1≤k≤N
S(uk) + t

}

≤
N∑

k=1

P
{
S(β) ≥ S(uk) + t

} ≤ N exp

(

− nt2

128(r + 1)

)

.

It is now easy to complete the proof by substituting the value of N and choosing
t >

√
Cr log n/n for sufficiently large C, so that the effect of N washes out. �

Finally, let us prove our main result.

Proof of Theorem 1.5 Let us begin with a useful general identity. Suppose h :
X → R is any measurable map such that E|h(X)F(X, X ′)| < ∞. Then clearly
E(h(X)f (X)) = E(h(X)F(X, X ′)). Using the exchangeability of X and X ′, and
the antisymmetric nature of F, we have

E(h(X)F(X, X ′)) = E(h(X ′)F(X ′, X)) = −E(h(X ′)F(X, X ′)).
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Thus, we have

E(h(X)f (X)) = E(h(X)F(X, X ′)) = 1
2

E((h(X) − h(X ′))F(X, X ′)). (6)

The above equation is the basis of all that follows. First, note that by putting
h ≡ 1, we immediately get E(f (X)) = 0, Similarly, part (i) of the Theorem
follows by putting h = f . Next, let us start proving (ii). Let m(θ) := E(eθf (X))

be the moment generating function of f (X). We can differentiate m(θ) and
move the derivative inside the expectation because of the assumption that
E(eθf (X)|F(X, X ′)|) < ∞ for all θ . Thus, by Eq. (6), we have

m′(θ) = E(eθf (X)f (X)) = 1
2

E((eθf (X) − eθf (X ′))F(X, X ′)).

Now note that for any x, y ∈ R,

∣
∣
∣
∣
ex − ey

x − y

∣
∣
∣
∣ =

1∫

0

etx+(1−t)ydt

≤
1∫

0

(tex + (1 − t)ey)dt = 1
2
(ex + ey). (7)

Using this inequality, and the exchangeability of X and X ′, we get

|m′(θ)| ≤ |θ |
4

E((eθf (X) + eθf (X ′))|(f (X) − f (X ′))F(X, X ′)|)

= |θ |
2

E(eθf (X)�(X) + eθf (X ′)�(X ′))

= |θ |E(eθf (X)�(X))

≤ |θ |E(eθf (X)(Bf (X) + C)) = B|θ |m′(θ) + C|θ |m(θ).

Since m is a convex function and m′(0) = E(f (X)) = 0, therefore m′(θ) always
has the same sign as θ . Thus, for 0 ≤ θ < 1/B, the above inequality translates
into

d
dθ

log m(θ) ≤ Cθ

1 − Bθ
.

Using this and recalling that m(0) = 1, we have

log m(θ) ≤
θ∫

0

Cu
1 − Bu

du ≤ Cθ2

2(1 − Bθ)
.



Stein’s method for concentration inequalities 319

Putting θ = t/(C + Bt), we get

P{f (X) ≥ t} ≤ exp(−θ t + log m(θ)) ≤ e−t2/(2C+2Bt).

The lower tail can be done similarly; note that for θ ≤ 0, we have m′(θ) ≤ 0,
and hence

|m′(θ)| ≤ B|θ |m′(θ) + C|θ |m(θ) ≤ C|θ |m(θ),

and this is the reason why B does not appear in the lower tail bound. This
completes the proof of part (ii). For the moment inequalities in part (iii), first
observe that by Eq. (6), we have

E(f (X)2k) = 1
2

E((f (X)2k−1 − f (X ′)2k−1)F(X, X ′)).

By the inequality

|x2k−1 − y2k−1| ≤ 2k − 1
2

(x2k−2 + y2k−2)|x − y|

which follows easily from a convexity argument very similar to (7), we have

E(f (X)2k) ≤ (2k − 1)E(f (X)2k−2�(X)).

By Hölder’s inequality, we get

E(f (X)2k) ≤ (2k − 1)(E(f (X)2k))(k−1)/k(E(�(X)k))1/k.

The proof is completed by transferring E(f (X)2k)(k−1)/k to the other side. �

Acknowledgements I am grateful to Persi Diaconis and Yuval Peres for many useful comments
and suggestions. Thanks are also due to the two anonymous referees for pointing out several
omissions and errors.

References

1. Arratia, R., Goldstein, L., Gordon, L.: Two moments suffice for Poisson approximations: the
Chen–Stein method. Ann. Probab. 17(1), 9–25 (1989)

2. Arratia, R., Goldstein, L., Gordon, L.: Poisson approximation and the Chen-Stein method.
Statist. Sci. 5(4), 403–434 (1992)

3. Baldi, P., Rinott, Y.: On normal approximations of distributions in terms of dependency graphs.
Ann. Probab. 17(4), 1646–1650 (1989)

4. Barbour, A.D.: Stein’s method for diffusion approximations. Probab. Theory Relat. Fields
84(3), 297–322 (1990)

5. Barbour, A.D., Holst, L., Janson, S.: Poisson approximation. In: Oxford Studies in Probability,
vol. 2 The Clarendon Press, Oxford University Press, New York (1992)

6. Besag, J.E.: Statistical analysis of non-lattice data. Statistician 24, 179–195 (1975)



320 S. Chatterjee

7. Bolthausen, E.: An estimate of the remainder in a combinatorial central limit theorem. Z.
Wahrsch. Verw. Gebiete 66(3), 379–386 (1984)

8. Bolthausen, E., Götze, F.: The rate of convergence for multivariate sampling statistics. Ann.
Statist. 21(4), 1692–1710 (1993)

9. Boucheron, S., Lugosi, G., Massart, P.: Concentration inequalities using the entropy method.
Ann. Probab. 31(3), 1583–1614 (2003)

10. Burkholder, D.L.: Distribution function inequalities for martingales. Ann. Probab. 1, 19–42
(1973)

11. Chatterjee, S.: Concentration inequalities with exchangeable pairs. Ph.D. thesis, Department
of Statistics, Stanford University. Available at http://arxiv.org/math.PR/0507526 (2005)

12. Chatterjee, S.: Concentration of Haar measures, with an application to random matrices. (Sub-
mitted, 2005) Available at http://arxiv.org/math.PR/0508518

13. Chatterjee, S., Diaconis, P., Meckes, E.: Exchangeable pairs and Poisson approximation. Probab.
Surv. 2, 64–106 (2005)

14. Chazottes, J.-R., Collet, P., Külske, C., Redig, F.: Concentration inequalities for random fields
via coupling. (Submitted, 2006) Available at http://arxiv.org/math.PR/0503483

15. Chen, L.H.Y.: Poisson approximation for dependent trials. Ann. Probab. 3(3), 534–545 (1975)
16. Diaconis, P., Graham, R.L.: Spearman’s footrule as a measure of disarray. J. R. Statist. Soc. Ser.

B 39(2), 262–268 (1977)
17. Diaconis, P., Holmes, S. (eds.): Stein’s method: expository lectures and applications. In: IMS

Lecture Notes—Monograph Series, vol. 46 (2004)
18. Ellis, R.S.: Entropy, large deviations, and statistical mechanics. Grund. der Mathemat. Wissens-

chaften, vol. 271. Springer, New York
19. Feller, W.: An Introduction to Probability Theory and its Applications, vol. I, 3rd edn. Wiley

New York (1968)
20. Fulman, J.: Stein’s method and non-reversible Markov chains. In: Stein’s Method: Exposi-

tory Lectures and Applications, pp. 69–77. IMS Lecture Notes Monogr. Ser., vol. 46. IMS,
Beachwood (2004)

21. Fulman, J.: Stein’s method and Plancherel measure of the symmetric group. Trans. Am. Math.
Soc. 357(2), 555–570 (electronic) (2005)

22. Geyer, C.J., Thompson, E.A.: Constrained Monte Carlo maximum likelihood for dependent
data. J. R. Statist. Soc. Ser. B 54(3), 657–699 (1992)

23. Goldstein, L., Reinert, G.: Stein’s method and the zero bias transformation with application to
simple random sampling. Ann. Appl. Probab. 7(4), 935–952 (1997)

24. Hoeffding, W.: A combinatorial central limit theorem. Ann. Math. Statist. 22(4), 558–566 (1951)
25. Hoeffding, W.: Probability inequalities for sums of bounded random variables. J. Am. Stat.

Assoc. 58, 13–30 (1963)
26. Jerrum, M., Sinclair, A.: Polynomial-time approximation algorithms for the Ising model. SIAM

J. Comput. 22(5), 1087–1116 (1993)
27. Kim, J.H., Vu, V.H.: Divide and conquer martingales and the number of triangles in a random

graph. Random Struct. Algor. 24(2), 166–174 (2004)
28. Ledoux, M.: The Concentration of Measure Phenomenon. Am. Math. Soc., Providence, RI

(2001)
29. Luczak, M.J., McDiarmid, C.: Concentration for locally acting permutations. Discrete Math.

265(1–3), 159–171 (2003)
30. Maurey, B.: Construction de suites symétriques. C. R. Acad. Sci. Paris Sér. A-B 288(14), A679–

A681 (1979)
31. McDiarmid, C.: Concentration for independent permutations. Combin. Probab. Comput. 11(2),

163–178 (2002)
32. Pickard, D.K.: Inference for discrete Markov fields: the simplest nontrivial case. J. Am. Statist.

Assoc. 82(397), 90–96 (1987)
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