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Abstract We propose in this work to derive a CLT in the functional linear
regression model. The main difficulty is due to the fact that estimation of the
functional parameter leads to a kind of ill-posed inverse problem. We consider
estimators that belong to a large class of regularizing methods and we first
show that, contrary to the multivariate case, it is not possible to state a CLT
in the topology of the considered functional space. However, we show that we
can get a CLT for the weak topology under mild hypotheses and in particular
without assuming any strong assumptions on the decay of the eigenvalues of
the covariance operator. Rates of convergence depend on the smoothness of
the functional coefficient and on the point in which the prediction is made.
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1 Introduction

For several years, there has been a considerable interest in Functional Data
Analysis. Indeed, a consequence of advances in technology is the collection of
many data sets on dense grids (e.g. in remote sensing, spectrometry or medicine)
adding in some sense more and more information. The question is then: can we
do something specific with this new information? It is the merit of the books by
Ramsay and Silverman [31,32] to have prepared the ground for answers to this
question. They, and other authors after them, have shown the practical benefits
of using ad hoc statistical methods for these data sets: the point of view is clearly
to take into account the functional nature of the data. This means that one con-
siders the data as objects belonging to functional spaces with infinite dimension
and one has to use adapted probabilistic and functional analysis tools to derive
properties of estimators in such a context.

This emulates a need for developing theoretical/practical aspects on the
ground of functional data analysis. It is the aim of this paper to contribute to
this kind of development. The framework of our study is itself an important
part of functional data problems. We are interested in the properties of an
estimator of the linear regression in a functional framework, that is to say the
linear regression of a real random variable on a functional variable. The two
main motivations of this work are to study rigorously the asymptotic distribu-
tion of the estimator and from a statistical point of view to deduce asymptotic
confidence intervals for prediction based on functional linear regression.

Estimation of regression with a functional predictor is not new and has many
potential applications such as Chemometrics as it can be noticed in the paper by
Frank and Friedman [13]. Whereas chemometricians have mainly used adapta-
tions of statistical multivariate methods, functional procedures have gained in
popularity more recently as said above. For instance Hastie and Mallows [18]
have raised, in the discussion of the paper by Frank and Friedman [13], the
question of functional alternative methods. Thus, for this case of estimating a
regression, two main approaches have been considered, (1) estimating the func-
tional linear regression which is a “continuous” version of multivariate linear
regression and was first considered in Ramsay and Dalzell [30] and (2) pro-
posing a complete nonparametric point of view developed by Ferraty and Vieu
[12]. We consider the former approach hereafter: see Sect. 2, for the definition
of the functional linear regression. Contrary to the multivariate linear regres-
sion where the vector of parameters is identifiable provided that the covariance
matrix is non-singular, identifiability of the corresponding functional parame-
ter is not ensured unless a sufficient and necessary condition is satisfied (see
Sect. 2).

Different estimators for this functional parameter have been considered: see
for instance [5,6,8,15]. Upper bounds for the L2 rate of convergence found until
now lead to the conjecture that the transition from the finite dimension to the
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infinite dimension does not lead to the usual parametric rate of convergence
(see [6]). As a matter of fact, the main difficulty is that estimating the func-
tional parameter of the functional linear regression can be viewed as an ill-
conditioned inverse problem since it relies on the inversion of the covariance
operator which is compact [3,5,19]. It is even a class of complicated ill-con-
ditioned inverse problem since the covariance operator is unknown. However
the problem of approximating inverses of covariance operators or of selfad-
joint compact operators is not new. It is adressed in Nashed and Wahba [29],
Arsenin and Tikhonov [2], Groetsch [16] among many others. The main point
is always to regularize a matrix M (respectively an operator S) which is invert-
ible but “not by much” (respectively unbounded). This property implies that
for any vector x, Mx (respectively Sx) may have large variations even when x
does not vary much. Numerous procedures were proposed. Such procedures
appear especially in image analysis or deconvolution or in specific M-estimation
problems for instance.

In Sect. 3, we consider a class of regularization methods for inverting the
covariance operator that leads to a quite general class of estimators with the
aim of investigating CLT for prediction and as a by-product producing confi-
dence sets for prediction. The Central Limit Theorem for i.i.d. Hilbert valued
random variables play a central role in deriving the main results of this paper.
The monograph by Araujo and Giné [1] or Chapter 5 in the book by Ledoux
and Talagrand [22] deal with this crucial theorem of probability theory and
provide deep studies about the CLT in infinite dimensional spaces. Müller and
Stadtmüller [28] derived a CLT in the setting of Generalized Linear Models
(including linear regression). For the non independent case we also mention
three recent works by Dedecker and Merlevède [10] and Merlevède [27] and
Mas [25].

Section 4 is devoted to the asymptotic behavior of these estimators relaxing
as much as possible the set of assumptions (moment assumptions, assumptions
on the spectrum of �) and considering a large class of regularizing methods for
inverting the empirical covariance operator. We first derive an important result
which shows that it is not possible to state a CLT for the functional coefficient
with respect to the norm topology of the functional space. Nevertheless, we
show that it is possible to get a CLT if we consider the behavior of the predictor
with respect to the weak topology, that is to say for point-wise prediction. We
show that the results depend on the nature of the predictor and fixed or random
design lead to different CLT. Whereas when the predictor is random it is not
possible to reach a parametric rate of convergence, this rate can be obtained
depending on the value and the smoothness properties of the fixed predictor:
we obtain a parametric rate for pointwise convergence at x whenever x belongs
to the reproducing kernel Hilbert space associated to the covariance operator.
As said above, the estimation procedure is quite general and includes in partic-
ular estimation based on spectral truncation (regression on functional principal
components) studied by Müller and Stadtmüller [28] in the paper mentioned
above. These authors derive asymptotic normality according to a kind of L2

distance between the estimated and true functional coefficient of the model
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whereas we are here interested in proving a CLT for prediction both in the
fixed and random design cases.

The proofs depend heavily on perturbation theory for linear operators to get,
as accurate as possible, approximations of the eigenelements of the empirical
covariance operators. Similar methods based on functional calculus have been
used for deriving asymptotic properties of the functional principal components
analysis by Dauxois et al. [9], Kneip [20], Kneip and Utikal [21] or Mas and
Menneteau [26]. Section 5 proposes a brief discussion about possible exten-
sions and statistical applications of these results. Finally Sect. 6 is devoted to
the proofs.

2 Functional linear regression

We consider a sample (Xi, Yi), i = 1, . . . , n of independent and identically dis-
tributed random variables drawn from a pair (X, Y). The variables X and Y are
defined on the same probability space and Y (the response) is valued in R. The
variable X (the predictor) is a random variable taking values in a general real
separable Hilbert space H with an inner product denoted in the following by
〈., .〉 and an associated norm denoted by ‖.‖. As a matter of fact H may be the
Sobolev space Wm,2 (C) of functions defined on some compact interval C of R

having m square integrable derivatives, m being a positive integer. In that case
the inner product 〈., .〉 is the usual inner product on this space i.e.

〈f , g〉 =
m∑

p=0

∫

C
f (p)(x)g(p)(x)dx, f , g ∈ H.

Note that this special case is particularly interesting for modelling situations
where we have functional data as shown by the numerous applications given in
Ramsay and Silverman [31,32]. Although we develop below theory for general
Hilbertian random variables, we keep in mind this special situation and then
use the word functional variable to qualify X.

In the following we assume that IEY2 < +∞ and that X is a H-valued random
variable such that

IE(‖X‖4) < +∞. (H.1)

Then X is of second order and one can define the expectation of X, namely
IE(X), that we suppose in order to simplify notations to be the null element of
H, (IE(X) = 0). Moreover the covariance operator of X is defined as the linear
operator � defined on H such that

�h = IE(X ⊗ X(h)), h ∈ H,

where X ⊗X is the tensor product operator defined, for every h belonging to H,
as X ⊗ X(h) = 〈h, X〉X. It is known that � is a self-adjoint, positive and nuclear
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operator hence it is Hilbert–Schmidt and hence compact [9]. We denote by (λj)j
the sorted sequence of non null distinct eigenvalues of �, λ1 > λ2 > · · · > 0,
and (ej)j a sequence of orthonormal associated eigenvectors. We assume that
the multiplicity of each λj is one (remind that since � is compact the multiplicity
of each λj �= 0 is finite). We could consider the more general case of multiple
eigenvalues without affecting our forthcoming results but the price would be
more complicated proofs and a poor gain with respect to the main objectives of
the paper. Let us also define the cross-covariance operator of X and Y as the
functional � defined on H by

�h = IE(X ⊗ Y(h)), h ∈ H,

where X ⊗ Y is the tensor product functional defined, for every h belonging to
H, as X ⊗ Y(h) = 〈h, X〉Y. Now, we aim at considering the functional linear
regression of the variable Y on X. This means that we are seeking the solution
ρ ∈ H of the following minimization problem

inf
β∈H

IE
(
|Y − 〈β, X〉|2

)
. (1)

When a solution ρ exists and is uniquely determined, we can write

Y = 〈ρ, X〉 + ε, (2)

where ε is a centered real random variable with variance σ 2
ε such that E(εX) = 0.

It is quite easy to show that it is equivalent that ρ satisfies Eq. (2) and that it
satisfies the following moment equation (see for instance [4])

� = �ρ.

However, when the dimension of H is infinite, existence and uniqueness of ρ is
not ensured since a bounded inverse of � does not exist: we need an additional
condition to get existence and uniqueness of ρ, namely

Condition U . The variables X and Y satisfy

∑

j

〈IE(XY), ej〉2

λ2
j

< +∞.

Under condition U , Cardot et al. [4] show that a unique solution to Eq. (2)
exists in ((Ker(�))⊥ and that this solution is of the form

ρ =
∑

j

〈IE(XY), ej〉
λj

ej.
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Then, identifiability is true only in (Ker(�))⊥ or in other words the set of solu-
tion of (2) is of the form ρ + Ker(�). Again, to simplify further developments
we assume from now on that the following condition is satisfied

Ker(�) = {0}. (H.2)

Finally, we assume from now on that the first and second moment of ε given X
are respectively equal to IE(ε|X) = 0 and IE(ε2|X) = σ 2

ε .

3 Inverse problem and regularization procedure

Once we get identifiability through condition U , we turn to the problem of
estimating the “functional” parameter ρ from the sample (Xi, Yi), i = 1, . . . , n.
The first step is to define the empirical versions of � and � which are

�n = 1
n

n∑

i=1

Xi ⊗ Xi, �n = 1
n

n∑

i=1

Xi ⊗ Yi.

We have

�n = �nρ + Un,

where Un = n−1∑n
i=1 Xi ⊗ εi and taking the expectation we get

IE(�n) = � = �ρ.

As shown in the previous section, inversion of � can be viewed as a kind of ill-
conditioned inverse problem (unlike in usual ill-conditioned inverse problems
the operator � is unknown). Also, the inverse of �n does not exist because �n
is almost surely a finite rank operator. As usually for ill-conditioned inverse
problem we need regularization and our aim is now to propose a general and
unified method to get a sequence of continuous estimators for �−1 based on �n.

The method is theoretically based on the functional calculus for operators
(see [11] or [14], for instance).

For further purpose we first define the sequence δj, j = 1, . . . , of the smallest
differences between distinct eigenvalues of � as

{
δ1 = λ1 − λ2,
δj = min(λj − λj+1, λj−1 − λj).

Now take for (cn)n∈N a sequence of strictly positive numbers tending to zero
such that cn < λ1 and set

kn = sup
{
p : λp + δp/2 ≥ cn

}
. (3)
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Then define a class of sequences of positive functions (fn)n∈N with support
[cn, +∞) such that

fn is decreasing on [cn, λ1 + δ1], (F.1)

lim
n→+∞ sup

x≥cn

|xfn(x) − 1| = 0, (F.2)

f ′
n(x) exists for x ∈ [cn, +∞). (F.3)

Moreover, we will make in some cases the additional assumption below which
will be helpful to reduce the bias of our estimator

sup
s≥cn

|sfn(s) − 1| = o(1/
√

n). (H.3)

Now we describe practically the regularization procedure. The eigenvalues
of �n are denoted by λ̂j and the associated eigenfunctions by êj. The bounded
linear operator �

†
n is defined the following way:

• Choose a threshold cn,
• Choose a sequence of functions (fn)n satisfying (F.1)–(F.3),
• Compute the (functional) PCA of �n (i.e. calculate the eigenvalues λ̂j and

the eigenvectors êj),
• Compute the finite rank operator �

†
n with the same eigenvectors as �n and

associated eigenvalues fn(λ̂j) (i.e. �
†
n = ∑n

j=1 fn(λ̂j)êj ⊗ êj).

Obviously cn must be larger than the smallest significatively non-null eigen-
value of �n. Once the threshold cn and the function fn (both depending on the
sample size n) have been chosen, we see that the computation of the estimator
of ρ is quite easy through the relation

ρ̂ = �†
n�n. (4)

Now let us give some examples of functions fn and the derived estimators of ρ.

Example 1 If fn(x) = 1/x when x ≥ cn and 0 elsewhere, condition (H.3) holds
and �

†
n is obtained by simple spectral truncation with threshold cn. The operator

�
†
n�n is nothing but the projection on a finite dimensional space. Note however

that the random dimension of this space, say dn, is not necessarily equal to kn
(see (3)): for instance we may be in the situation where λ̂kn+1 > cn and then
dn ≥ kn + 1. Unlike dn, kn is non random and was introduced because, as will
be seen in the proofs, P (dn �= kn) tends to zero fast enough to consider essen-
tially the situation when dn = kn. In other words the derived estimator for ρ is
asymptotically equivalent to the one considered in [5].

Example 2 Let αn be some scalar parameter. If fn(x) = 1/(x + αn) when x ≥ cn
and 0 elsewhere, we get a ridge-type estimator. Condition (H.3) is satisfied
whenever αn

√
n/cn −→ 0.
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Example 3 Let αn be some scalar parameter. If fn(x) = x/(x2 + αn) on its sup-
port, �

†
n is nothing but the Tikhonov regularization of �n. Once more (H.3)

holds if αn
√

n/c2
n −→ 0.

We may define as well, following Mas [24], a class of approximate for �n
introducing fn,p(x) = xp/(x + αn)p+1 or fn,p(x) = xp/(xp+1 + αn), where again αn
is some scalar parameter and p some integer.

This procedure is quite general to define regularized version or pseudo in-
verses for �n. Up to the authors knowledge, all standard techniques for regu-
larizing ill-conditioned matrices or unbounded operators stem from the above
functional calculus.

We conclude this section by some remarks on computational aspects. Even
if our results are derived when observing the whole curves, in practical situa-
tions the curves are only known in a finite number of discretization points. Well
known numerical methods for approximating inner products (integrals) can be
used to compute the estimators when the discretization points are numerous
and dense enough. Under such a framework, we believe that our theoretical
developments below remain valid under some additional conditions on the reg-
ularity of the trajectories and on the design (deterministic or random) of the
discretization points. This issue, which certainly deserves further attention, is
beyond the scope of the paper and one can find a preliminary discussion on
this topic in Cardot et al. [4]. We must say that our work should be seen in this
context. It may occur however that only few observations are available for each
curve. A recent paper by Yao et al. [33] deals with this specific problem for
sparse longitudinal data by means of a non-parametric regression approach.

Another problem in practice is the choice of the threshold cn. For the esti-
mator based on spectral truncation in example 1 above, this choice is in some
sense the same as the choice of a dimension space kn where the data are pro-
jected (see relation (3)). A cross-validation criterion may be used to select this
dimension space as done in Cardot et al. [4]. Müller and Stadtmüller [28] use an
AIC criterion for choosing the dimension kn in a generalized functional linear
model (including functional linear regression). Then, from (3), replacing the
eigenvalues λj by their empirical counterparts λ̂j provides a practical way to
select cn.

4 Asymptotic results

In this section, we mainly state weak convergence results for the statistical pre-
dictor of Yn+1 for a new value Xn+1 obtained by means of estimator defined in
(4), namely Ŷn+1 = 〈ρ̂, Xn+1〉. Hence, we should study the stochastic conver-
gence of

〈ρ̂, Xn+1〉 − 〈ρ, Xn+1〉. (5)

We also look at prediction for a given value of x ∈ H and study the stochastic
convergence of

〈ρ̂, x〉 − 〈ρ, x〉. (6)
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It is important to note that all the results are obtained without assuming any
prior knowledge for the rate of decay of the eigenvalues λj of � to zero. We will
see that unfortunately a bias term appears which cannot be removed without
very specific assumptions on the sequence on the spectrum of � and on the
smoothness properties of ρ.

We begin to investigate the weak convergence for the norm topology on H
for our estimate. The next and important result underlines the limits of the
functional approach. It tells us that it is not possible to get a general result that
would allow to build confidence sets in the functional setting. This highlights the
fact that when considering functional data one must take care and multivariate
classical results are not necessarily true anymore.

Theorem 1 It is impossible for ρ̂ − ρ to converge in distribution to a
non-degenerate r.e. in the norm topology of H.

The proof of Theorem 1 is postponed to Sect. 6.4: it is shown actually that
for any normalizing sequence αn ↑ +∞, αn (ρ̂ − ρ) does not converge in distri-
bution for the norm topology but to a degenerate random element.

Nevertheless this negative result does not mean that it is not possible to get
some confidence sets. We have to consider a weak topology (with respect to
the inner product), that is to say point-wise confidence bands, and study sepa-
rately the cases of deterministic and random points. We first give results for the
prediction approach.

We define �† as fn (�). It is important to note that �† depends on the sample
size n through the sequence kn. From this we take in the following

tn,x =

√√√√√
kn∑

j=1

λj
[
fn(λj)

]2 〈x, ej〉2 =
√∥∥�1/2�†x

∥∥2, x ∈ H,

sn =

√√√√√
kn∑

j=1

[
λjfn(λj)

]2 =
√

tr(�†�),

and denote by t̂n,x and by ŝn their empirical counterparts based on the esti-
mated eigenvalues λ̂j’s. Note that the sequence tn,x may either converge or

diverge depending on whether
∑+∞

j=1 λ−1
j 〈x, ej〉2 = ∥∥�−1/2x

∥∥2
is finite or not

(i.e. whether x is in the range of �−1/2 or not). At the opposite, the term sn
always tends to infinity.

4.1 Weak convergence for the predictor

We state a weak convergence theorem for the predictor given in (5). We
denote by 
kn the projector onto the eigenspace associated to the kn first
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eigenvalues, and by 
̂kn its empirical counterpart, i.e. the projector on the
eigenspace associated to λ̂1, λ̂2, ..., λ̂kn .
Assumptions (H.1)–(H.3) are truly basic. They just ensure that the statistical
problem is correctly posed. In order to get deep asymptotic results we introduce
extra assumptions denoted by (A.1)–(A.3).

+∞∑

l=1

|〈ρ, el〉| < +∞. (A.1)

There exists a convex positive function λ, such that,

at least for j large, λj = λ (j) . (A.2)

We recall the Karhunen–Loève expansion of X, that is

X =
+∞∑

l=1

√
λlξlel,

where the ξl’s are centered r.r.v such that Eξlξl′ = 1 if l = l′ and 0 otherwise.
We assume the following assumption for variables ξl

sup
l

Eξ4
l ≤ M < +∞. (A.3)

Remark 1 Assumption (A.2) is clearly unrestrictive since it holds for standard
rates of decrease for the eigenvalues, polynomial or exponential. It implies that

δk = min
(
λk − λk+1, λk−1 − λk

) = λk − λk+1.

Remark 2 Simple calculations show that assumption (A.3) implies assumption
(H.1), namely that E ‖X‖4 < +∞ and does not require any condition on the
stochastic dependence within the ξl’s. Besides (A.3) holds for a very large class
of real-valued random variables (remind that the ξl’s are subject to Eξl = 0 and
Eξ2

l = 1).

Theorem 2 When assumptions (H.2)–(H.3) and (A.1)–(A.3) hold and if

k5/2
n (log kn)2

√
n

→ 0, (7)

then
√

n
sn

(〈
ρ̂, Xn+1

〉− 〈
knρ, Xn+1
〉) w→ N

(
0, σ 2

ε

)
.

If moreover
n1/6 = O(kn), (8)
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and either supp
(∣∣〈ρ, ep

〉∣∣p5/2) < +∞ or supp
(
p4λp

)
< +∞ then

√
n

sn

(〈
ρ̂, Xn+1

〉− 〈ρ, Xn+1
〉) w→ N

(
0, σ 2

ε

)
.

Remark 3 The term sn always tends to infinity and hence we cannot obtain a
“parametric” rate of decay in probability. Using the fact that under assumption
(A.2) sn is of the same order as

√
kn, conditions (8) implies that the more favor-

able rate of convergence in our result is n−5/12 which is quite good compared
to what has been obtained previously. On another side, we think that there is
still a large field of investigation about rates of convergence in functional linear
regression models. An emulating perspective is to seek for optimal rates of
convergence under appropriate assumptions (regularity of X, rate of decay of
the eigenvalues λj, ...).

In the results above sn depends on the unknown eigenvalues. It is worth
trying to get an “adaptive” version: replacing the λi’s with the λ̂i’s in the first
result of Theorem 2 leads to a new result with both a random bias and a random
normalization term.

Corollary 1 Under Assumptions (H.2)–(H.3) and (A.1)–(A.3) and if kn satisfies
(7), we have

√
n

ŝnσε

(〈
ρ̂, Xn+1

〉− 〈
knρ, Xn+1
〉) w→ N (0, 1) ,

where

ŝn =

√√√√√
kn∑

j=1

[
λ̂jfn

(
λ̂j
)]2.

Remark 4 In all the previous results, the variance of the white noise σ 2
ε is

unknown. Replacing σε with a convergent estimate of σε does not change the
Theorems.

4.2 Weak convergence for the estimate of ρ

We are now giving weak convergence results for the prediction at a given value
x in H.

Theorem 3 Fix any x in H. When the assumptions of Theorem 2 hold and if

sup
p

∣∣〈x, ep
〉∣∣2

λp
< +∞ and

k3
n (log kn)2

tn,x
√

n
→ 0,



336 H. Cardot et al.

then
√

n
tn,xσε

(〈ρ̂, x〉 − 〈
̂knρ, x
〉) w→ N (0, 1) .

Remark 5 The bias term here is random. It can be seen from the proof of the
crucial Proposition 2 that the situation cannot be improved without very specific
(maybe artificial) assumptions either on ρ or on the λi’s.

The normalizing sequence
√

n/tn,x depends on the unknown λj’s. It is worth
trying to get again an adaptive version of the above theorem (i.e. replace tn,x

with t̂n,x =
√
∑kn

j=1

(
λ̂j
[
fn
(̂
λj
)]2 〈x, êj

〉2).

Corollary 2 Theorem 3 still holds if tn,x is replaced with its empirical counter-
part t̂n,x.

The following Remark is crucial since it brings out once more what seems to
be a typical feature of the functional setting.

Remark 6 As seen before the sequence tn,x may either converge or diverge.
Indeed, if

∥∥�−1/2x
∥∥ is finite the normalization sequence grows surprisingly at

a parametric rate (i.e
√

n). This could be understood as an extra-smoothing of
the estimate ρ̂ through the integrals involving the scalar product. But in terms
of prediction this fact could be misleading. This “extra-smoothing” is indeed
an excessive and artificial smoothing since P

(∥∥�−1/2Xn+1
∥∥ < +∞) = 0. This

also means the realizations of X do not belong with probability one to the
reproducing kernel Hilbert space associated to its covariance function [17]. In
other words the results of this section are given for the sake of completeness
and to explore the analytical properties of our estimates. For these reasons and
if prediction is under concern, only

〈
ρ̂, Xn+1

〉
should be considered and studied.

In a multivariate setting all these considerations make no sense, since the situ-
ation is simpler (in fact, usually P

(∥∥�−1/2Xn+1
∥∥ < +∞) = 1 because �−1/2 is

bounded when � is a full rank covariance matrix).

Within the proofs it is readily seen that assumption (A.1) plays a crucial
role in getting a non random bias term. The next Proposition illustrates this
situation.

Proposition 1 Assume that λk = k−1−α and 〈x, ek〉2 = k−1−β with β > 1 + α.
Then, if

∑+∞
j=1 j1−β

〈
ρ, ej

〉2 = +∞, the sequence
√

n
tn,xσε

〈(

̂kn − 
kn

)
ρ, x

〉
may not

be bounded in probability even if the random variables Xi, i = 1, . . . , n, are i.i.d.
centered, Gaussian.

Remark 7 The condition β > 1 + α just ensures that
∥∥�−1/2x

∥∥ < +∞. Besides

if
〈
ρ, ej

〉2 = j−1−γ ,
∑n

j=1 j1−β
〈
ρ, ej

〉2 diverges whenever β + γ < 1 which implies
that

∑+∞
j=1

∣∣〈ρ, ej
〉∣∣ = +∞.

In fact the assumption on the location of ρ mentioned in the Proposition
should be understood as smoothness conditions.
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5 Concluding remarks

One important application of previous results is the construction of confidence
sets for prediction. In real life problems, the regression function ρ is unknown
but Theorem 2 allows us to build confidence sets. Let qα be the quantile of order
1 − α/2 of a Gaussian random variable with mean 0 and unit variance, we get
under previous assumptions the following confidence set for prediction,

lim
n→∞ P

( √
n

σ̂ ŝn

∣∣〈ρ̂, Xn+1〉 − 〈ρ, Xn+1〉
∣∣ ≥ qα

)
= 1 − α . (9)

A simulation study [7] has shown that such confidence sets are accurate even
for moderate sample sizes, i.e. for n around 100.

From a mathematical point of view, one of the main novelty of this work
relies on the facts that no prior information on the eigenvalues is assumed and
the dimension sequence kn does not depend on the rate of decrease of these
eigenvalues. As a consequence kn increase rather slowly, but not so much for
a non parametric model. Nevetheless, let us notice that this situation may be
significantly improved if some information on the eigenvalues is available.

From Theorem 2 it is possible to derive a general bound for the L2 prediction
error. Simple calculations (see the proof of Theorem 2) lead to:

〈
ρ̂ − ρ, Xn+1

〉2 = OP

( sn

n

)
+ OP

⎛

⎝
∞∑

j=kn+1

λj〈ρ, ej〉2

⎞

⎠ . (10)

Thus, it is not possible to go further without imposing more precise hypotheses
on the smoothness of function ρ with respect to the basis of eigenfunctions ej
and the rate of decay of the eigenvalues λj as remarked sooner in the article.
Nevertheless, it was seen that the second term on the right in (10) can converge
rapidly to zero in some situations. Besides assumption (A.1) provides us with
some kind of uniformity with respect to ρ when the latter belongs to a subset
of H. Naturally, with these remarks we have in mind the study of the minimax
rate of L2 risk for the class of our predictor.

6 Proofs

Along the proofs we suppose that (H.1)–(H.3) hold. The letter C will always
stand for any (nonrandom and universal) positive constant. For any bounded
operator T defined and with values in H we classically set

‖T‖∞ = sup
x∈B1

‖Tx‖ ,

where B1 is the unit ball of H. We will quite often make use of the following
facts.
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• For any u in H,

E 〈X, u〉2 = 〈�u, u〉 =
∥∥∥�1/2u

∥∥∥
2

.

• For a sufficiently large i, λi ≤ C
i log i .

• The Hilbert–Schmidt norm is more precise than the classical norm for oper-
ators. Hence if T is Hilbert–Schmidt

‖T‖∞ ≤ ‖T‖HS =
√∑

p

∥∥Tup
∥∥2,

where
(
up
)

p∈N
is any complete orthonormal sequence in H.

From definitions of ρ̂ and Un we have

ρ̂ = �†
n�nρ +

(
�†

n − �†
)

Un + �†Un,

from which the forthcoming decomposition is trivial

ρ̂ − 
knρ = Tn + Sn + Rn + Yn, (11)

where

Tn =
(
�†

n�n − 
̂kn

)
ρ, Sn =

(
�†

n − �†
)

Un,

Rn = �†Un, Yn = (

̂kn − 
kn

)
ρ.

We also define

Ln = 
knρ − ρ.

The proofs are tiled into four subsections. After a brief introduction on operator-
valued analytic functions, we begin with providing useful convexity inequalities
for the eigenvalues and subsequent moment bounds. The second part shows that
all the bias terms but Ln, say Tn, Sn and Yn tend to zero in probability when
correctly normalized. Weak convergence of Rn is proved in the short third sub-
section. The last part provides the main results of the paper by collecting the
Lemmas and Propositions previously proved.

6.1 Preliminary results

All along the proofs we will need auxiliary results from perturbation theory
for bounded operators. It is of much help to have basic notions about spec-
tral representation of bounded operators and perturbation theory. We refer to
Dunford-Schwartz [11, Chapter VII. 3] or to Gohberg et al. [14] for an intro-
duction to functional calculus for operators related with Riesz integrals.
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Let us denote by Bi the oriented circle of the complex plane with center λi
and radius δi/2 and define

Cn =
kn⋃

i=1

Bi .

The open domain whose boundary is Cn is not connected but however we can
apply the functional calculus for bounded operators (see Dunford–Schwartz
Section VII.3 Definitions 8 and 9). We also need to change slightly the defini-
tion of the sequence of functions (fn)n by extending it to the complex plane,
more precisely to Cn. We admit that it is possible to extend fn to an analytic
function f̃n defined on the interior of Cn (in the plane) such that supz∈Cn

∣∣̃fn (z)
∣∣ ≤

C supx∈[cn,λ1+δ1] |fn (x)|. For instance if fn (x) = (1/x)11[cn,+∞)(x), take f̃n (z) =
(1/z)11Cn(z). Results from perturbation theory yield


kn = 1
2πι

∫

Cn

(z − �)−1 dz, (12)

�† = 1
2πι

∫

Cn

(z − �)−1 fn (z) dz, (13)

where ι2 = −1.
We also need to introduce the square root of symmetric operators: if T is

a positive self-adjoint operator (random or not), we denote by (zI − T)1/2 the
symmetric operator whose eigenvectors are the same as T and whose eigen-
values are the complex square root of z − λk, k ∈ N, denoted (z − λk)1/2 .

Lemma 1 Consider two large enough positive integers j and k such that k > j.
Then

jλj ≥ kλk and λj − λk ≥
(

1 − j
k

)
λj. (14)

Besides ∑

j≥k

λj ≤ (k + 1) λk. (15)

Proof We set for notational convenience λj = ϕ (1/j) where ϕ is, by assumption
(A.2), a convex function defined on the interval [0, 1] such that ϕ (0) = 0 and
ϕ(1) = λ1.

The two inequalities in (14) follows directly from the well known inequalities
for convex functions

ϕ(x1) − ϕ(x0)

x1 − x0
≤ ϕ(x2) − ϕ(x0)

x2 − x0
≤ ϕ(x2) − ϕ(x1)

x2 − x1
, 0 ≤ x0 < x1 < x2 ≤ 1,

and by taking x0 = 0, x1 = 1/k and x2 = 1/j.
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Set µk = ∑
l≥k λl. It is easy to see that the sequence (µk)k satisfies assumption

(A.2). Indeed for all k

µk − µk+1 ≤ µk−1 − µk,

which is a sufficient condition to construct a convex function µ (k) = µk. We
can then apply the second part of (14) with µk+1 instead of λk and µk instead
of λj, which yields

µk − µk+1 = λk ≥ 1
k + 1

µk,

and (15) is proved. ��
Lemma 2 The following is true for j large enough

∑

l �=j

λl∣∣λl − λj
∣∣ ≤ Cj log j.

Proof We are first going to decompose the sum into three terms

∑

l �=j

λl∣∣λl − λj
∣∣ = T1 + T2 + T3,

where

T1 =
j−1∑

l=1

λl

λl − λj
, T2 =

2j∑

l=j+1

λl

λj − λl
, T3 =

+∞∑

l=2j+1

λl

λj − λl
.

Applying Lemma 1 we get

T1 =
j−1∑

l=1

λl

λl − λj
≤ j

j−1∑

l=1

1
j − l

≤ C1j log j,

where C1 is some positive constant. Also, applying once more (14) then (15),
we get

T2 =
2j∑

l=j+1

λl

λj − λl
≤

2j∑

l=j+1

λl

λj

l
l − j

≤ 2j
2j∑

l=j+1

1
l − j

≤ C2j log j,
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and

T3 ≤
+∞∑

l=2j+1

λl

λj − λl
≤
∑+∞

l=2j+1 λl

λj − λ2j
≤ 2

∑+∞
l=2j+1 λl

λj
≤ C3j.

Hence the result follows and Lemma 2 is proved. ��
Lemma 3 We have for j large enough

E sup
z∈Bj

∥∥∥(zI − �)−1/2 (�n − �) (zI − �)−1/2
∥∥∥

2

∞ ≤ C
n

(j log j)2 , (16)

and

E sup
z∈Bj

∥∥∥(zI − �)−1/2 X1

∥∥∥
2 ≤ Cj log j.

Proof Take z ∈ Bj. By bounding the sup norm by the Hilbert–Schmidt one (see
above), we get

∥∥∥(zI − �)−1/2 (�n − �) (zI − �)−1/2
∥∥∥

2

∞

≤
+∞∑

l=1

+∞∑

k=1

〈
(zI − �)−1/2 (�n − �) (zI − �)−1/2 (el) , ek

〉2

≤
+∞∑

l,k=1

〈(�n − �) (el) , ek〉2

|z − λl| |z − λk|

≤ 4
+∞∑

l,k=1,
l,k �=j

〈(�n − �) (el) , ek〉2
∣∣λj − λl

∣∣ ∣∣λj − λk
∣∣ + 2

+∞∑

k=1,
k �=j

〈
(�n − �)

(
ej
)

, ek
〉2

δj |z − λk|

+
〈
(�n − �)

(
ej
)

, ej
〉2

δ2
j

,

since it can be checked that whenever z = λj + δj
2 eιθ ∈ Bj and i �= j

|z − λi| =
∣∣∣∣λj − λi + δj

2
eιθ

∣∣∣∣ ≥ ∣∣λj − λi
∣∣− δj

2
≥ ∣∣λj − λi

∣∣ /2.

Besides

E 〈(�n − �) (el) , ek〉2 = 1
n

[
E

(
〈X1, ek〉2 〈X1, el〉2

)
− 〈� (el) , ek〉2

]
≤ M

n
λlλk,
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when assumption (A.3) holds. Finally

E sup
z∈Bj

∥∥∥(zI − �)−1/2 (�n − �) (zI − �)−1/2
∥∥∥

2

∞

≤ M
n

⎡

⎢⎢⎣
+∞∑

l,k=1,
l,k �=j

λlλk∣∣λj − λl
∣∣ ∣∣λj − λk

∣∣ + λj

δj

+∞∑

k=1,k �=j

λk∣∣λj − λl
∣∣ +

(
λj

δj

)2

⎤

⎥⎥⎦

= M
n

⎡

⎢⎣

⎛

⎝
+∞∑

k=1,k �=k

λk∣∣λj − λk
∣∣

⎞

⎠
2

+ λj

δj

+∞∑

k=1,k �=j

λk∣∣λj − λl
∣∣ +

(
λj

δj

)2

⎤

⎥⎦ .

It suffices now to apply Lemmas 1 and 2 to get the desired result. The same
method leads to proving the second part of the display. Lemma 3 is proved. ��
Lemma 4 Denoting

Ej (z) =
{∥∥∥(zI − �)−1/2 (�n − �) (zI − �)−1/2

∥∥∥∞ < 1/2, z ∈ Bj

}
,

the following holds

∥∥∥(zI − �)1/2 (zI − �n)−1 (zI − �)1/2
∥∥∥∞ 11Ej(z) ≤ C, a.s.

where C is some positive constant. Besides

P

(
Ec

j (z)
)

≤ j log j√
n

. (17)

Proof We have successively

(zI − �n)−1 = (zI − �)−1 + (zI − �)−1 (� − �n) (zI − �n)−1 ,

hence

(zI − �)1/2 (zI − �n)−1 (zI − �)1/2

= I + (zI − �)−1/2 (� − �n) (zI − �n)−1 (zI − �)1/2 , (18)

and
[
I + (zI − �)−1/2 (�n − �) (zI − �)−1/2

]

× (zI − �)1/2 (zI − �n)−1 (zI − �)1/2 = I. (19)
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It is a well known fact that if the linear operator T satisfies ‖T‖∞ < 1 then I +T
is an invertible and its inverse is bounded and given by formula

(I + T)−1 = I − T + T2 − · · · .

From (18) and (19) we deduce that

∥∥∥(zI − �)1/2 (zI − �n)−1 (zI − �)1/2
∥∥∥∞ 11Ej(z)

=
∥∥∥∥
[
I + (zI − �)−1/2 (�n − �) (zI − �)−1/2

]−1
∥∥∥∥∞

11Ej(z) ≤ 2, a.s.

Now, the bound in (17) stems easily from Markov inequality and (16) in
Lemma 3. This finishes the proof of the Lemma. ��

The empirical counterparts of (12) and (13)-mentioned above- involve a
random contour, say B̂i, centered at λ̂i. It should be noted that these contours
cannot be replaced by the Bi’s since the latter may contain more than kn eigen-
values of �n. The aim of the following Lemma is to find sufficient conditions
under which B̂i may be replaced with Bi. In other words, we have to check
that for a sufficiently large n the pth eigenvalue of �n is close enough to the
pth eigenvalue of �. Before stating this first lemma, we introduce the following
event

An =
{

∀j ∈ {1, ..., kn} |
∣∣̂λj − λj

∣∣
δj

< 1/2

}
.

Lemma 5 If k2
n log kn√

n
→ 0, then

1
2πι

∫

Cn

(z − �n)−1 dz = 
̂kn 11An + rn,

where rn is a random operator satisfying
√

nrn
P→ 0 in the operator norm.

Proof When the event An holds, the kn first empirical eigenvalues λ̂j lie in Bj
and then


̂kn = 1
2πι

∫

Ĉn

(z − �n)−1 dz = 1
2πι

∫

Cn

(z − �n)−1 dz.

From this it is clear that

1
2πι

∫

Cn

(z − �n)−1 dz = 
̂kn 11An + 11Ac
n

1
2πι

∫

Cn

(z − �n)−1 dz.
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Denoting rn = 11Ac
n

1
2πι

∫
Cn

(z − �n)−1 dz, we see that, since∥∥∥ 1
2πι

∫
Cn

(z − �n)−1 dz
∥∥∥∞ = 1, we have for ε > 0

P
(√

n ‖rn‖∞ > ε
) ≤ P

(
11Ac

n > ε
) = P

(
Ac

n
)

.

It remains to find a bound for P
(
Ac

n
)
. We have

P
(
Ac

n
) ≤

kn∑

j=1

P
(∣∣̂λj − λj

∣∣ > δj/2
)

≤ 2
kn∑

j=1

E
∣∣̂λj − λj

∣∣
δj

= 2√
n

kn∑

j=1

λj

δj

√
nE
∣∣̂λj − λj

∣∣
λj

. (20)

In order to get a uniform bound with respect to j of the latter expectation we
follow the same arguments as Bosq [3], proof of Theorem 4.10 p. 122–123. In
Bosq, the setting is quite more general but however his Theorem 4.10 ensures
that in our framework the asymptotic behaviour of

√
n
(∣∣̂λj − λj

∣∣/λj
)

is the same
as

√
n
(∣∣〈(�n − �) ej, ej

〉∣∣/λj
)
. From assumption (A.3), we get

√
n

E
∣∣〈(�n − �) ej, ej

〉∣∣
λj

≤

√
E

∣∣∣
〈
X1ej

〉4 − λ2
j

∣∣∣

λj
≤ C, (21)

where C does not depend on j. From (20) and (21) we deduce, applying Lemma
1 once more, that

P
(
Ac

n
) ≤ C√

n

kn∑

j=1

λj

δj
≤ C√

n

kn∑

j=1

j log j ≤ C√
n

k2
n log kn,

from which the result follows. ��

It may be easily proved that the same result as in the preceding Lemma holds
with �

†
n instead of 
̂kn . From now on we will implicitly work on the space An

and then write


̂kn =
⎛

⎜⎝
1

2πι

∫

Cn

(z − �n)−1 dz

⎞

⎟⎠
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and

�†
n =

⎛

⎜⎝
1

2πι

∫

Cn

(z − �n)−1 f̃n (z) dz

⎞

⎟⎠ .

We will also abusively denote 
kn11An by 
kn and �†11An by �†.

Remark 8 In fact thanks to Lemma 5, we can deal with all our random elements
as if almost surely all the random eigenvalues were in their associated circles Bj.
The reader should keep this fact in mind all along the forthcoming proofs. The
condition on kn needed on the Lemma is clearly weaker that the ones which
appear for the main results to hold.

6.2 Bias terms

This subsection is devoted to the study of the bias terms Sn, Tn and Yn. A bound
is also given for Ln for further purpose. We first begin with the term Tn for which
we have the following lemma.

Lemma 6 If (H.3) holds

‖Tn‖∞ =
∥∥∥
(
�†

n�n − 
̂kn

)
ρ

∥∥∥∞ = oP

(
1√
n

)
.

Proof Obviously �
†
n�n − 
̂kn is a self-adjoint random operator whose eigen-

values are the
(̂
λjfn

(̂
λj
)− 1

)
1≤j≤kn

and 0 otherwise. So we have

∥∥∥�†
n�n − 
̂knρ

∥∥∥∞ ≤ C sup
s≥cn

(|sfn (s) − 1|) .

If assumption (H.3) holds, the last term above is an o
(
1/

√
n
)
, which proves

the second equality. ��

Lemma 7 The two following bounds are valid

√
n
kn

E
∣∣〈Ln, Xn+1〉

∣∣ ≤
√

n
kn

∣∣〈ρ, ekn

〉∣∣
√ ∑

l≥kn+1

λl,

√
n
kn

E
∣∣〈Ln, Xn+1〉

∣∣ ≤ λkn

kn

√
n

log kn

√ ∑

l≥kn+1

〈ρ, el〉.
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Proof We have

E
∣∣〈(I − 
kn

)
ρ, Xn+1

〉∣∣ ≤
√

E

∑

l=kn+1

〈ρ, el〉2 〈Xn+1, el
〉2

=
√ ∑

l≥kn+1

λl 〈ρ, el〉2

≤
⎧
⎨

⎩

∣∣〈ρ, ekn

〉∣∣
√∑

l≥kn+1 λl
λkn√

kn log kn

√∑
l≥kn+1 〈ρ, el〉,

since λl and |〈ρ, el〉| are absolutely summing sequences. ��

Proposition 2 If 1√
n

k5/2
n (log kn)2 → 0 as n goes to infinity, then

√
n
kn

〈(

̂kn − 
kn

)
ρ, Xn+1

〉 P→ 0.

Proof The proof of the Proposition is the keystone of the paper. We begin with

(

̂kn − 
kn

) = 1
2πι

kn∑

j=1

∫

Bj

[
(zI − �n)−1 − (zI − �)−1

]
dz

= 1
2πι

kn∑

j=1

∫

Bj

[
(zI − �n)−1 (�n − �) (zI − �)−1

]
dz

= Sn + Rn,

where

Sn = 1
2ιπ

kn∑

j=1

∫

Bj

[
(zI − �)−1 (�n − �) (zI − �)−1

]
dz,

and

Rn = 1
2ιπ

kn∑

j=1

∫

Bj

[
(zI − �)−1 (�n − �) (zI − �)−1 (�n − �) (zI − �n)−1

]
dz.

(22)
Result (28) below will provide us with a sufficient condition for Rn to be negli-
gible. At first, we turn to Sn. We have
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E
〈
Snρ, Xn+1

〉2 = E

⎛

⎝
+∞∑

l,l′=1

〈Snρ, el〉
〈
Xn+1, el

〉 〈Snρ, el′ 〉
〈
Xn+1, el′

〉
⎞

⎠

= E

(+∞∑

l=1

〈Snρ, el〉2 〈Xn+1, el
〉2
)

=
(+∞∑

l=1

λlE 〈Snρ, el〉2

)
,

since E
(〈

Xn+1, el
〉 〈

Xn+1, el′
〉) = 0 if l �= l′ and Xn+1 is independent from Sn.

Now

E 〈Snρ, el〉2 = E 〈ρ, Snel〉2 = E

(+∞∑

l′=1

〈ρ, el′ 〉 〈Snel, el′ 〉
)2

.

The operator Sn was explicitly computed by Dauxois et al. [9]. More precisely

1
2πι

∫

Bj

[
(zI − �)−1 (�n − �) (zI − �)−1

]
dz = vj (�n − �) πj + πj (�n − �) vj,

with vj = ∑
j′ �=j

1
λj′−λj

πj′ where πj is the projector on the eigenspace associated

to the jth eigenfunction of �. Hence

〈Snel, el′ 〉 =
kn∑

j=1

[ 〈
(�n − �) πjel, vjel′

〉+ 〈(�n − �) vjel, πjel′
〉 ]

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 if (l′ ≤ kn and l ≤ kn) or if (l′ > kn and l > kn),

〈(�n−�)el ,el′ 〉
λl′−λl

if l′ > kn and l ≤ kn,

〈(�n−�)el ,el′ 〉
λl−λl′

if l′ ≤ kn and l > kn.

(23)

Finally, if we take for instance l ≤ kn

E 〈Snρ, el〉2 = E

⎛

⎝
+∞∑

l′≥kn+1

〈ρ, el′ 〉 〈(�n − �) el, el′ 〉
λl′ − λl

⎞

⎠
2

= E

⎛

⎝1
n

n∑

j=1

+∞∑

l′≥kn+1

〈ρ, el′ 〉
〈
(Xj ⊗ Xj − �)el, el′

〉

λl′ − λl

⎞

⎠
2

= E

⎛

⎝1
n

n∑

j=1

Z∗
j,l,n

⎞

⎠
2

,
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where

Z∗
j,l,n =

+∞∑

l′≥kn+1

〈ρ, el′ 〉
〈(

Xj ⊗ Xj − �
)

el, el′
〉

λl′ − λl
,

and the (Z∗
j,l,n)j≥1 are centered and uncorrelated random variables. Hence

E

⎛

⎝1
n

n∑

j=1

Z∗
j,l,n

⎞

⎠
2

= 1
n

E

⎛

⎝
+∞∑

l′≥kn+1

〈ρ, el′ 〉 〈(X1, el)〉 〈(X1, el′)〉
λl′ − λl

⎞

⎠
2

.

Since l ≤ kn < l′, by using the Karhunen–Loève expansion of X1, we get

+∞∑

l′≥kn+1

〈ρ, el′ 〉 〈(X1, el)〉 〈(X1, el′)〉
λl′ − λl

=
+∞∑

l′≥kn+1

〈ρ, el′ 〉
√

λlλl′ξlξl′

λl′ − λl
.

and then

E

⎛

⎝
+∞∑

l′≥kn+1

〈ρ, el′ 〉 〈(X1, el)〉 〈(X1, el′)〉
λl′ − λl

⎞

⎠
2

=
+∞∑

l′,m≥kn+1

〈ρ, el′ 〉 〈ρ, em〉
√

λ2
l λlλmE

(
ξ2

l ξl′ξm
)

(λl′ − λl) (λm − λl)
.

By applying twice Cauchy–Schwarz inequality to the ξk’s and under assumption
(A.3), we get

E

(
ξ2

l ξl′ξm

)
≤
√

E
(
ξ4

l

)√
E
(
ξ2

l′ ξ
2
m
)

≤ √
M

√
M.

Summing up what we made above we get

E

⎛

⎝
+∞∑

l′≥kn+1

〈ρ, el′ 〉 〈(X1, el)〉 〈(X1, el′)〉
λl′ − λl

⎞

⎠
2

≤ M

⎛

⎝
+∞∑

l′≥kn+1

〈ρ, el′ 〉
√

λlλl′

λl′ − λl

⎞

⎠
2

.

Remember that we had fixed l ≤ kn. Now, if we take l > kn similar calculations
lead to

E

⎛

⎝
kn∑

l′=1

〈ρ, el′ 〉 〈(X1, el)〉 〈(X1, el′)〉
λl′ − λl

⎞

⎠
2

≤ M

⎛

⎝
kn∑

l′=1

〈ρ, el′ 〉
√

λlλl′

λl′ − λl

⎞

⎠
2

.
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At last

n
kn

E
〈
Snρ, Xn+1

〉2 ≤ M
kn

kn∑

l=1

λl

⎛

⎝
+∞∑

l′≥kn+1

〈ρ, el′ 〉
√

λlλl′

λl′ − λl

⎞

⎠
2

(24)

+ M
kn

∑

l>kn

λl

⎛

⎝
kn∑

l′≥1

〈ρ, el′ 〉
√

λlλl′

λl′ − λl

⎞

⎠
2

. (25)

We apply Lemma 1 first to bound (24)

M
kn

kn∑

l=1

λl

⎛

⎝
+∞∑

l′≥kn+1

〈ρ, el′ 〉
√

λlλl′

λl − λl′

⎞

⎠
2

≤ M
kn

kn∑

l=1

λl

⎛

⎝
+∞∑

l′≥kn+1

〈ρ, el′ 〉
√

λl′

λl

1

1 − l
l′

⎞

⎠
2

≤ M
kn

kn∑

l=1

⎛

⎝
+∞∑

l′≥kn+1

〈ρ, el′ 〉
√

λl′
1

1 − l
l′

⎞

⎠
2

.

Now we set hn =
[√

kn
log kn

]
where [u] , u ∈ R, denotes the largest integer smaller

than u. Note that the last inequality in the display above may be split as follows

M
kn

kn∑

l=1

λl

⎛

⎝
+∞∑

l′≥kn+1

〈ρ, el′ 〉
√

λlλl′

λl − λl′

⎞

⎠
2

≤ 2M
kn

kn∑

l=1

⎛

⎝
kn+hn∑

l′≥kn+1

|〈ρ, el′ 〉|
√

λl′
1

1 − l
l′

⎞

⎠
2

+ 2M
kn

kn∑

l=1

⎛

⎝
+∞∑

l′≥kn+hn

|〈ρ, el′ 〉|
√

λl′
1

1 − l
l′

⎞

⎠
2

.

(26)

Dealing with the second term we get for l′ ≥ kn + hn

1 − l
l′

≥ 1 − kn

kn + hn
= hn

kn + hn
,

and hence

+∞∑

l′≥kn+hn

|〈ρ, el′ 〉|
√

λl′
1

1 − l
l′

≤
+∞∑

l′≥kn+hn

|〈ρ, el′ 〉|
√

λl′
(

1 + kn

hn

)

≤
+∞∑

l′≥kn+hn

|〈ρ, el′ 〉|
√

λl′
(

1 +√kn log kn

)
.
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Now obviously

sup
l′≥kn+hn

√
λl′
(

1 +√kn log kn

)
≤ K,

since
√

λl′ l′ log l′ → 0 from which we deduce that

2M
kn

kn∑

l=1

⎛

⎝
+∞∑

l′≥kn+hn

〈ρ, el′ 〉
√

λl′
1

1 − l
l′

⎞

⎠
2

≤ 2MK
kn

kn∑

l=1

⎛

⎝
+∞∑

l′≥kn+hn

|〈ρ, el′ 〉|
⎞

⎠
2

.

When assumption (A.3) holds, Cesaro’s mean Theorem ensures that the term
on the left above tends to zero. We turn to the first term in equation (26)

⎛

⎝
kn+hn∑

l′≥kn+1

|〈ρ, el′ 〉|
√

λl′
1

1 − l
l′

⎞

⎠
2

≤ h2
n max

kn+1≤l′≤kn+hn,
1≤l≤kn

{
|〈ρ, el′ 〉|

√
λl′

1

1 − l
l′

}2

≤ kn

log kn
λknk2

n max
kn+1≤l′≤kn+hn,

(
|〈ρ, el′ 〉|2

)
.

Now λknkn as well as kn maxkn+1≤l′≤kn+hn, (|〈ρ, el′ 〉|) tend to zero when assump-
tion (A.3) holds. We get once more

2M
kn

kn∑

l=1

⎛

⎝
kn+hn∑

l′≥kn+1

|〈ρ, el′ 〉|
√

λl′
1

1 − l
l′

⎞

⎠
2

→ 0.

A similar truncating technique would prove that the term in (25) also tends to
zero as n goes to infinity which leads to

n
kn

E
〈
Snρ, Xn+1

〉2 → 0. (27)

In order to finish the proof of the Proposition we must deal with the term
introduced in (22). We have the following result

√
n
kn

∣∣〈Rnρ, Xn+1
〉∣∣ = OP

(
1√
n

k5/2
n (log kn)2

)
, (28)

when k2
n log kn√

n
→ 0. Indeed, consider

Tj,n =
∫

Bj

[
(zI − �)−1 (�n − �) (zI − �)−1 (�n − �) (zI − �n)−1

]
dz.
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Then setting

Gn(z) = (zI − �)−1/2 (�n − �) (zI − �)−1/2 ,

we have

∣∣〈Tj,nρ, Xn+1
〉∣∣

=

∣∣∣∣∣∣∣

∫

Bj

〈
(zI − �)−1/2 (�n − �) (zI − �)−1 (�n − �) (zI − �n)−1 ρ,

(zI − �)−1/2 Xn+1

〉
dz
∣∣∣

≤
∫

Bj

∣∣∣
〈
G2

n (z) (zI − �)1/2 (zI − �n)−1 (zI − �)1/2 (zI − �)−1/2 ρ,

(zI − �)−1/2 Xn+1

〉∣∣∣dz

≤
∫

Bj

‖Gn (z)‖2∞
∥∥∥(zI − �)1/2 (zI − �n)−1 (zI − �)1/2

∥∥∥∞

×
∥∥∥(zI − �)−1/2 Xn+1

∥∥∥
∥∥∥(zI − �)−1/2 ρ

∥∥∥ dz. (29)

Following Lemma 4, the random variable
∥∥∥(zI −�)1/2 (zI − �n)−1(zI − �)1/2

∥∥∥∞
is decomposed in two terms

∥∥∥(zI − �)1/2 (zI − �n)−1 (zI − �)1/2
∥∥∥∞

(
11Ej(z) + 11Ec

j (z)

)
.

On the one hand when Ej (z) holds it was proved in Lemma 4 that

‖(zI − �)‖∞
∥∥∥(zI − �n)−1

∥∥∥∞ ≤ C. (30)

On the other hand when Ec
j (z) holds we may write for all η > 0 thanks to

bound (17)

P

(∣∣〈Tj,nρ, Xn+1
〉∣∣ 11Ec

j (z) > η
)

≤ P

(
Ec

j (z)
)

≤ M√
n

(j log j) ,
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which entails that

P

⎛

⎝
kn∑

j=1

∣∣〈Tj,nρ, Xn+1
〉∣∣ 11Ec

j (z) > η

⎞

⎠

≤ M
kn∑

j=1

1√
n

(j log j) ≤ k2
n log kn√

n
→ 0.

Consequently we can deal with all Tj,n as if the event Ej (z)-hence the bound
(30)-holds almost surely. We take expectation and note that Gn (z) and Xn+1
are independent

E
∣∣〈Tj,nρ, Xn+1

〉∣∣ ≤ C
∫

Bj

E ‖Gn (z)‖2∞E

∥∥∥(zI − �)−1/2 Xn+1

∥∥∥
∥∥∥(zI − �)−1/2ρ

∥∥∥ dz.

By Lemma 3 we have

E
∣∣〈Tj,nρ, Xn+1

〉∣∣ ≤ C
n

diam
(
Bj
) · (j log j)5/2 sup

z∈Bj

∥∥∥(zI − �)−1/2 ρ

∥∥∥

≤ C
√

δj · (j log j)5/2 ‖ρ‖ ≤ C (j log j)2 ,

since δj ≤ C (j log j)−1 at least for a sufficiently large j. Finally summing over all
the j’s from 1 to kn leads to

√
n
kn

E
∣∣〈Rnρ, Xn+1

〉∣∣ ≤ C
1√
nkn

kn∑

j=1

(j log j)2 ≤ C√
n

k5/2
n (log kn)2

which proves (28) and achieves the proof of the proposition. ��
The methods used to prove the next Proposition are close to those developed

above.

Proposition 3 If 1√
n

k5/2
n (log kn)2 → 0, then

√
n
kn

∣∣∣
〈(

�†
n − �†

)
Un, Xn+1

〉∣∣∣ P→ 0.

Besides if x is a fixed vector in H such that supp
|〈x,ep〉|2

λp
< +∞ and k3

n(log kn)2

tn,x
√

n
→ 0,

√
n

tn,x

∣∣∣
〈(

�†
n − �†

)
Un, x

〉∣∣∣ P→ 0.
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Proof Once again we develop the expression above by means of complex inte-
grals for operator-valued analytic functions. Hence

�†
n − �† = 1

2πι

∫

Cn

f̃n (z)
[
(zI − �n)−1 (� − �n) (zI − �)−1

]
dz

=
kn∑

j=1

1
2πι

∫

Bj

f̃n (z)
[
(zI − �n)−1 (� − �n) (zI − �)−1

]
dz,

and

∣∣∣
〈(

�†
n − �†

)
Un, Xn+1

〉∣∣∣ ≤ C
kn∑

j=1

Hj,n,

where

Hj,n =
∫

Bj

∣∣∣̃fn (z)
〈
(zI − �)1/2 (zI − �n)−1 (zI − �)1/2 Gn

(z) (zI − �)−1/2 Un, (zI − �)−1/2 Xn+1

〉∣∣∣ dz.

We copy verbatim the arguments used to bound (29) : first of all we reintroduce
the operator Gn (z) below and

(zI − �)1/2 (zI − �n)−1 (zI − �)1/2 ,

remains almost surely bounded by a constant which does not depend on n or j
plus a negligible term as was proved just below (30). Hence

Hj,n ≤ C
∫

Bj

∣∣̃fn (z)
∣∣ ‖Gn (z)‖

∥∥∥(zI − �)−1/2 Un

∥∥∥
∥∥∥(zI − �)−1/2 Xn+1

∥∥∥ dz.

We take expectation

EHj,n ≤ C
∫

Bj

∣∣̃fn (z)
∣∣E
(
‖Gn (z)‖

∥∥∥(zI − �)−1/2 Un

∥∥∥
)

E

∥∥∥(zI − �)−1/2 Xn+1

∥∥∥ dz

≤ Cdiam
(
Bj
)

sup
z∈Bj

(∣∣̃fn (z)
∣∣E
∥∥∥(zI − �)−1/2 Xn+1

∥∥∥
√

E ‖Gn (z)‖2

×
√

E

∥∥∥(zI − �)−1/2 Un

∥∥∥
2
)

,
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where Cauchy–Schwarz inequality was applied. Now invoking Lemma 3 yields

EHj,n ≤ C
diam

(
Bj
)

√
n

(j log j)3/2 sup
z∈Bj

(
∣∣̃fn (z)

∣∣
√

E

∥∥∥(zI − �)−1/2 Un

∥∥∥
2
)

.

Obviously

E

∥∥∥(zI − �)−1/2 Un

∥∥∥
2 = σ 2

ε

n
E

∥∥∥(zI − �)−1/2 X1

∥∥∥
2

= σ 2
ε

n

+∞∑

l=1

λl

|z − λl| ,

hence

sup
z∈Bj

(√
E

∥∥∥(zI − �)−1/2 Un

∥∥∥
2
)

≤ 1√
n

(j log j)1/2 .

At last

EHj,n ≤ C
δj

λjn
(j log j)2 ≤ C

n
(j log j)2 ,

and

E

∣∣∣
〈(

�†
n − �†

)
Un, Xn+1

〉∣∣∣ ≤ C
n

k3
n (log kn)2 ,

which proves the first part of the Proposition. Replacing Xn+1 with a fixed x in

H, means replacing E

∥∥∥(zI − �)−1/2 Xn+1

∥∥∥ with

∥∥∥(zI − �)−1/2 x
∥∥∥ ≤

√√√√√
+∞∑

p=1

〈
x, ep

〉2
∣∣z − λp

∣∣ ≤
√

sup
p

∣∣〈x, ep
〉∣∣

λp

√√√√
+∞∑

p=1

λp∣∣z − λp
∣∣ ,

and the derivation of the second part of the Proposition stems from the first
part. ��

6.3 Weakly convergent terms

This subsection is quite short but was separated from the others for the sake of
clarity and in order to give a logical structure to the proofs.



CLT in functional linear regression models 355

Lemma 8 We have

√
n

tn,x
〈Rn, x〉 w→ N

(
0, σ 2

ε

)
, x ∈ H,

and

√
n
sn

〈
Rn, Xn+1

〉 w→ N
(

0, σ 2
ε

)
.

Proof We have

〈Rn, x〉 =
〈
�†Un, x

〉
= 1

n

n∑

i=1

〈
�†Xi, x

〉
εi,

which is an array – �† implicitly depends on n – of independent real r.v. The
Central Limit Theorem holds for this sequence and leads to the first announced
result. We turn to the second display

〈
Rn, Xn+1

〉 =
〈
�†Un, Xn+1

〉

= 1
n

n∑

i=1

〈
�†Xi, Xn+1

〉
εi =

n∑

i=1

Zi,n.

Denoting by Fi the σ -algebra generated by (X1, ε1, ..., Xi, εi), we see that Zi,n is
a martingale difference sequence w.r.t. Fi. Also note that

E

(
Z2

i,n|Fi

)
= ε2

i

n2

∥∥∥�1/2�†Xi

∥∥∥
2

,

and that

E

[
ε2

i

∥∥∥�1/2�†Xi

∥∥∥
2
]

= E

[∥∥∥�1/2�†Xi

∥∥∥
2
E

(
ε2

i |Xi

)]

= σ 2
ε E

∥∥∥�1/2�†Xi

∥∥∥
2

= σ 2
ε

kn∑

j=1

[
λjfn

(
λj
)]2 = σ 2

ε s2
n.

Applying the Central Limit Theorem for real valued martingale difference
arrays (see e.g. [23]) we get the second result. ��
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6.4 Proofs of the main results

The careful reader has noted that within the preceding steps of the proofs s2
n

was replaced with kn in the normalizing sequence. Very simple computations
prove that under (A.2) and if kn/

√
n tends to zero this permutation is possible

in the sense that s2
n and kn are asymptotically equivalent. enough to prove that

kn ≥ Cs2
n for some constant C). Using this argument, we give now the proof of

main results of the paper, some of them being straightforward consequences of
Lemmas and Propositions established above.

Proof of Theorem 1 From (11) and all that was made above it suffices to prove
that the Theorem holds with Un replacing ρ̂ − 
̂knρ. Now suppose that for
a given normalizing sequence αn > 0, αnUn converges weakly in the norm
topology of H. For all x in H, αn 〈Un, x〉 converges weakly too and

αn 〈Un, x〉 = αn

n

n∑

i=1

〈
Xi, �†x

〉
εi,

is an array of real independent random variable. Suppose that x belongs to the
domain of �−1, namely that

+∞∑

j=1

〈
x, ej

〉2

λ2
j

< +∞,

then

1√
n

n∑

j=1

〈
Xj, �†x

〉
εj

w→ N
(

0, βxσ
2
ε

)
,

where βx depends on x and on the eigenvalues of �. Consequently αn = √
n.

Now if
∑

j
〈
x, ej

〉2
/λ2

j is divergent, E(〈Xi, �†x〉2ε2
i ) ↑ +∞ and αn 〈Un, x〉 cannot

converge in distribution. This finishes the proof of the Theorem. ��
Proof of Theorem 2 The proof of the first part of Theorem 2 stems from the
decomposition (11), Lemma 6, Proposition 2, the first part of Proposition 3 and
from the second result of Lemma 8.

To prove the second part of Theorem 2, it suffices to apply Lemma 7 with
condition (8) and the suitable assumption on the eigenelements of �. ��

Proof of Corollary 1 It suffices to prove that
∣∣̂s2

n−s2
n
∣∣

s2
n

P→ 0, or equivalently that

∑kn
j=1

∣∣λjfn
(
λj
)− λ̂jfn

(̂
λj
)∣∣ (λjfn

(
λj
)+ λ̂jfn

(̂
λj
))

∑kn
j=1

[
λjfn

(
λj
)]2

P→ 0.
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Clearly since supj∈N

∣∣̂λj − λj
∣∣ = OP

(
1/

√
n
)

and xfn(x) is bounded for x > cn it
is enough to get ∑kn

j=1

∣∣λjfn
(
λj
)− λ̂jfn

(̂
λj
)∣∣

∑kn
j=1

[
λjfn

(
λj
)]2

P→ 0. (31)

But by assumption (H.3)

kn∑

j=1

∣∣λjfn
(
λj
)− λ̂jfn

(̂
λj
)∣∣ ≤

kn∑

j=1

∣∣λjfn
(
λj
)− 1

∣∣+
kn∑

j=1

∣∣1 − λ̂jfn
(̂
λj
)∣∣

= oP
(
kn/

√
n
)

,

and kn/
√

n → 0. ��
Proof of Theorem 3 The proof of Theorem 3 stems from (11), Proposition 3
and from Lemma 8. ��
Proof of Corollary 2 We have to prove that

t̂ 2
n,x − t2n,x

t2n,x
=
∑kn

j=1 λ̂j
[
fn
(̂
λj
)]2 〈x, êj

〉2 − λj
[
fn
(
λj
)]2 〈x, ej

〉2
∑kn

j=1 λj
[
fn
(
λj
)]2 〈x, ej

〉2
P→ 0.

We split the expression into two terms

wn1 =
∑kn

j=1

(
λ̂j

[
fn
(̂
λj
)2]− λj

[
fn
(
λj
)]2) 〈x, êj

〉2

∑kn
j=1 λj

[
fn
(
λj
)]2 〈x, ej

〉2 ,

wn2 =
∑kn

j=1 λj
[
fn
(
λj
)]2 (〈x, êj

〉2 − 〈x, ej
〉2)

∑kn
j=1 λj

[
fn
(
λj
)]2 〈x, ej

〉2 .

Copying what was done for the proof of Corollary 1, we can easily prove that

wn1
P→ 0. In order to alleviate formulas and displays, we are going to prove that

wn2
P→ 0 in the special case when fn

(
λj
) = 1/λj. The general situation stems

easily from this special case. Thus, we have now

wn2 =
∑kn

j=1

(〈
x, êj

〉2 − 〈x, ej
〉2)

/λj

∑kn
p=1

〈
x, ej

〉2
/λj

.

We denote by π̂j the projector on the eigenspace associated to the jth eigenfunc-

tion of �n. Then, with this notation, we can write
〈
x, êj

〉2 − 〈
x, ej

〉2 = ∥∥π̂jx
∥∥2

∞ −
∥∥πpx

∥∥2
∞ = 〈(

π̂j − πj
)

x; x
〉

and we have
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∣∣∣
〈
x, êj

〉2 − 〈
x, ej

〉2∣∣∣ ≤ ∥∥π̂j − πj
∥∥∞ ‖x‖2 ,

π̂j − πj = 1
2πι

∫

Bj

[
(zI − �n)−1 − (zI − �)−1

]
dz

= 1
2πι

∫

Bj

[
(zI − �n)−1 (�n − �) (zI − �)−1

]
dz,

and

E
∥∥π̂j − πj

∥∥∞ ≤ C
j log j√

n
.

Finally

|wn2| ≤ C
1√
n

kn∑

j=1

j log j ≤ C
k2

n log kn√
n

→ 0,

which finishes the proof of the Corollary. ��

Proof of Proposition 1 Take x = ∑
xiei and ρ = ∑

ρiei in H. Obviously, it
suffices to prove that the Proposition holds when 
̂kn − 
kn is replaced with

ϕkn ((�n − �)) =
kn∑

j=1

[
Sj (�n − �) 
j + 
j (�n − �)Sj

]
.

Following Dauxois et al. [9] p 143–144, we can check that when X1 is Gaussian,√
n (�n − �) converges weakly to the Gaussian random operator G defined by

G =
∑

j≤j′

√
λjλj′ξj,j′

(
ej ⊗ ej′ + ej′ ⊗ ej

)+ √
2
∑

j

λj
(
ej ⊗ ej′

)
ξj,j,

where ξj,j′ ’s are i.i.d. Gaussian centered r.r.v. with variance equal to 1. Thus, we
replace once more

√
n (�n − �) with G (the situation is indeed the same as if

the operator X1 ⊗ X1 was assumed to be Gaussian). We are going to prove that
〈ϕkn (G)ρ,x〉

tn,x
is not bounded in probability, whatever the sequence kn → +∞, by

choosing a special ρ. We focus on the jth term of the above sum.
The exact computation of <

(

jGSj + SjG
j

)
(x) , ρ > may be deduced from

Dauxois et al. [9] p. 146. Assuming that all the λj’s have all the same order of
multiplicity equals to 1, we easily get
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〈(

jGSj + SjG
j

)
(x) , ρ

〉 =
∑

l �=j

√
λlλj

λj − λl

(
xjρl + xlρj

)
ξjl.

The previous sum is a real centered Gaussian random variable with variance

∑

l �=j

λlλj
(
λj − λl

)2
(
xjρl + xlρj

)2 .

Summing over j provides the variance of
〈
ϕkn (G) ρ, x

〉

kn∑

j=1

∑

l �=j

λlλj
(
λj − λl

)2
(
xjρl + xlρj

)2 ≥
kn∑

j=1

λjρ
2
j

∑

l �=j

λlx2
l(

λj − λl
)2

≥
kn∑

j=1

λjρ
2
j

j−1∑

l=1

λlx2
l(

λj − λl
)2 .

For the sake of simplicity we assume that xk > 0 and ρk > 0. Now if x2
l = l−1−β

and λl = l−1−α the computation of the second sum stems from

j−1∑

l=1

λlx2
l(

λj − λl
)2 ∼

j−1∫

1

sα−β

(
1 −

(
s
j

)1+α
)2 ds ∼ Cj2+α−β .

Finally

kn∑

j=1

λjρ
2
j

j−1∑

l=1

λlx2
l(

λj − λl
)2 ≥ C

kn∑

j=1

j1−βρ2
j → +∞.

We see that the variance of 〈ϕkn (G)ρ,x〉
tn,x

explodes and that this random variable
cannot converge in distribution. ��
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