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Abstract The Tracy-Widom distribution that has been much studied in recent
years can be thought of as an extreme value distribution. We discuss inter-
polation between the classical extreme value distribution exp(− exp(−x)), the
Gumbel distribution, and the Tracy-Widom distribution. There is a family of
determinantal processes whose edge behaviour interpolates between a Poisson
process with density exp(−x) and the Airy kernel point process. This process
can be obtained as a scaling limit of a grand canonical version of a random
matrix model introduced by Moshe, Neuberger and Shapiro. We also con-
sider the deformed GUE ensemble, M = M0 + √

2SV, with M0 diagonal with
independent elements and V from GUE. Here we do not see a transition
from Tracy-Widom to Gumbel, but rather a transition from Tracy-Widom to
Gaussian.

1 Introduction and results

1.1 Introduction

In the random matrix litterature there has been alot of discussion about the
transition from Poissonian to random matrix eigenvalue statistics, see for exam-
ple [5,6,10,22,24]. One motivation comes from disordered systems, and an-
other from quantum chaos where Poissonian statistics is expected to describe
the eigenvalue statistics of classically integrable systems (Berry–Tabor con-
jecture), and random matrix statistics should describe eigenvalue statistics of
systems whose classical dynamics is fully chaotic (Bohigas–Gianonni–Schmidt
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conjecture). Hence it has been natural to look at transitions between Poissonian
and random matrix statistics. In general there could be many ways to go between
different ensembles, but it is nevertheless interesting to find natural interpo-
lating ensembles and investigate their properties. In particular interpolating
ensembles which are themselves scaling limits. Mathematically it is easiest to
consider Hermitian (unitary) ensembles. Previous papers on the problem have
been mainly concerned with the transition statistics for eigenvalues in the bulk
of the spectrum. In the bulk we should see a transition from a Poisson process to
a sine kernel determinantal point process, and for the nearest neigbour spacing
statistics we should see a transition from the exponential distribution to the
Gaudin distribution.

In this paper we will discuss the edge behaviour of the eigenvalues. In a
finite random matrix ensemble we look at a scaling limit around the largest
eigenvalue instead of in the bulk of the spectrum. If we take a diagonal matrix
with independent Gaussian entries, the largest eigenvalue will, as the size of the
matrix grows, fluctuate according to the Gumbel extreme value distribution.
If we take a full Gaussian matrix from GUE, then the largest eigenvalue will
fluctuate according to the Tracy-Widom distribution. Can we find interesting
distributions that interpolate between Gumbel and Tracy-Widom? Is there a
family of determinantal processes that interpolates? Should we typically expect
to see a transition from Tracy-Widom to Gumbel? To shed some light on these
questions we will discuss two interpolating random matrix ensembles on Her-
mitian matrices.

1.2 The ensembles

(1) Deformed GUE. Let diag (y1, . . . , yN) denote the diagonal matrix with ele-
ments y1, . . . , yN . We take y1, . . . , yN to be independent Gaussian, N (0, 1/2)
say, random variables. Let V be an independent N × N GUE matrix with
density Z−1

N exp[−Tr V2]dV. Consider the random matrix

M = diag (y1, . . . , yN)+ √
2SV, (1)

where S ≥ 0 is a parameter. When S = 0 we have a diagonal matrix with
independent entries and when S → ∞, the matrix M/

√
S approaches a

GUE matrix.
(2) MNS-model. This model was introduced by Moshe et al. [21], and we will

call it the MNS-model. Let H be a Hermitian matrix and U a fixed uni-
tary matrix. A probability measure on the space of Hermitian matrices is
defined by

PN,U(H)dH = 1
ZN

e−Tr H2
e−bTr ([U,H][U,H]∗)dH,

where b > 0, dH is Lebesgue measure on the Euclidean space of Hermitian
matrices, [U, H] = UH − HU and the star denotes Hermitian conjugate.
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The weight is maximal when [U, H] = 0 and then U and H can be simulta-
neously diagonalized. The unitary matrix selects a preferred basis. We can
get a unitarily invariant measure by averaging over the unitary group with
respect to the Haar measure, so that we consider a random preferred basis.
We obtain the probability measure

PN(H)dH = 1
Z′

N
e−Tr H2




∫

U(N)

e−bTr ([U,H][U,H]∗)dU


 dH. (2)

The integral over the unitary group can be evaluated using the Harish–Chandra
or Itzykson/Zuber integral and this makes it possible to compute the eigenvalue
measure induced by (2), [21]. This gives the probability measure

pN(x)dNx = 1
Z′′

N
det

(
e−(b+1/2)(x2

i +x2
j )+2bxixj

)
1≤i,j≤N

dNx (3)

on R
N , where x1, . . . , xN are the eigenvalues of H. Actually we will consider a

grand canonical version of the model, see below, as was also done in [21]. There
is a generalization of the MNS-model to Laguerre/Chiral type ensembles that
we will not discuss here, see [7].

Both of the models above have interpretations in terms of non-interesecting
paths.

(1) Deformed GUE. Consider N standard Brownian motions on the real line,
we think of them as particles, started at y1, . . . , yN at time 0 and conditioned
never to intersect. Let x1, . . . , xN be the positions of the particles at time
S. The probability distribution of x1, . . . , xN is the same as the eigenvalue
distribution of M in (1), see for example [12].

(2) MNS-model. Consider N standard Brownian motions on the real line
started at x1, . . . , xN at time 0, conditioned to come back to x1, . . . , xN
at time t and without having had any collisions during this time. Put an
initial density

∏N
i=1 e−x2

i on the points x1, . . . , xN . By a theorem of Karlin
and McGregor [17], we get a probability density

1
ZN

det

(
e− 1

2 (x
2
i +x2

j )− 1
2t (xi−xj)

2
)

1≤i,j≤N
dNx, (4)

on the xjs. This is the same as (3) if we take b = 1/2t. We can think of this
as a model of non-intersecting paths on a cylinder. As stated above we will
be interested in the transition at the edge of the spectrum. The transition in
the bulk of the spectrum in the the MNS-model occurs when b/N2 ∼ c or
t ∼ 1/2cN2, c > 0 a constant, as N → ∞. (The bulk transition in deformed
GUE occurs when S ∼ C/N2.) It is remarked, but not discussed further,
in [21] that when the bulk transition occurs, the behaviour at the edge is
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still like that of independent eigenvalues. Below, we will see that there is a
transition at the edge when b/N2/3 ∼ c as N → ∞.

1.3 The Gumbel and Tracy-Widom distributions

Consider N independent random variables X1, . . . , XN with distribution
N(0, 1/2). Then it is well known that, [20],

P

[
max(X1, . . . , XN)− aN

bN
≤ x

]
→ FG(x)

.= e−e−x
(5)

as N → ∞, where

aN = √
log N − log(4π log N)

4
√

log N
, (6)

bN = 1

2
√

log N
. (7)

The distribution function FG is often called the Gumbel distribution. If we think
of X1, . . . , XN as a point process on the real line with N points and we take the
appropriate scaling limit around the rightmost point we get a Poisson process
on R with density e−x. Its correlation functions are

ρk(x1, . . . , xk) =
k∏

j=1

e−xj , k ≥ 1. (8)

The Tracy-Widom distribution, FTW, is defined by the Fredholm determinant

FTW(x) = det(I − KAiry)L2(x,∞), (9)

where

KAiry(x, y) =
∞∫

0

Ai (x + λ)Ai (y + λ)dλ, (10)

is the Airy kernel, [30]. This distribution occurs in several different places and
has been much studied in recent years, see [14,31] for reviews.

If we have a point process on R then its correlation functions, ρk(x1, . . . , xk),
are characterized by

E


∏

j

(1 + φ(xj))


 =

∞∑
k=0

1
k!

∫

Rk

k∏
j=1

φ(xj)ρk(x1, . . . , xk)d
kx, (11)
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for any measurable bounded function on R with compact support. Here the
product in the left hand side is over all particles in the process.

A point process on R is called determinantal if all its correlation functions,
ρk(x1, . . . , xk), k ≥ 1, exist and are given by

ρk(x1, . . . , xk) = det(K(xi, xj))1≤i,j≤k (12)

for some function K : R
2 → R, the correlation kernel. A Poisson process on

R with density e−x can be viewed as a, somewhat degenerate, determinantal
process with correlation kernel,

Kext(x, y) =
{

0 if x 	= y
e−x if x = y

. (13)

Here we could replace e−x with an arbitrary density ρ(x).

1.4 The interpolating process

Before we discuss the asymptotics of the MNS-model and the deformed GUE
model we will consider a determinantal process which interpolates between
the Poisson process with density e−x and the Airy kernel point process, i.e. the
determinantal process that has kernel (10). We will see later that this process
can be obtained as a scaling limit of the (grand canonical) MNS-model, and we
will call it the interpolating process. Also, we will see that we do not have a tran-
sition between the Tracy-Widom and the Gumbel distribtions in the deformed
GUE ensemble. Rather we will see a transition from Tracy-Widom to Gaussian.
This will be discussed further below.

Define

Mα(x, y) =
∞∫

−∞

eαλ

eαλ + 1
Ai (x + λ)Ai (y + λ)dλ. (14)

That the integral is convergent follows for example from (44) and the Cauchy–
Schwarz inequality.

Proposition 1.1 The kernel Mα defines a trace class operator in L2(a, ∞) for
any real a, and there is a determinantal process, the interpolating process with
correlation kernel Mα .

That the kernel Mα interpolates between the correlation kernels for the Pois-
son process with density e−x and the Airy kernel point process is seen in the
next theorem. The theorem will be proved in Sect. 2.
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Theorem 1.2 We have the following scaling limits

lim
α→0+

1
α

Mα

(
u
α

− 1
2α

log(4πα3),
v
α

− 1
2α

log(4πα3)

)
= Kext(u, v) (15)

and

lim
α→∞ Mα(u, v) = KAiry(u, v). (16)

It is not hard to see that
∫ ∞

t Mα(x, x)dx < ∞ for any t, see (45) below, and
hence the interpolating process has a last particle almost surely. The distribution
function Fα for this last particle will interpolate between the Gumbel and the
Tracy-Widom distributions.

Theorem 1.3 The distribution function for the last particle in the interpolating
process is

Fα(t)=
∞∑

n=0

(−1)n

n!
∫

(t,∞)n

det(Mα(xi, xj))1≤i,j≤ndnx= det(I − Mα)L2(t,∞). (17)

Furthermore

lim
α→0+ Fα

(
ξ

α
− 1

2α
log(4πα3)

)
= FG(ξ) (18)

and

lim
α→∞ Fα(ξ) = FTW(ξ). (19)

We postpone the proof to Sect. 2.
There is a different way of obtaining the distribution Fα that is given in

the next proposition, which will be proved in Sect. 2. The construction in the
theorem will not give us the whole interpolating process though.

Proposition 1.4 Let x1 > x2 > · · · be a realization of the Airy kernel point pro-
cess. Let y1, y2, . . . be independent random variables with common distribution
function

Gα(x) = eαx

1 + eαx , (20)

which are also independent of {xi}. Define a new point process by zj = xj + yj,
j ≥ 1. Then,

P

[
max
j≥1

zj ≤ ξ

]
= Fα(ξ). (21)
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Note that the point process {zj} in the theorem is not the interpolating pro-
cess, it is only the last particle distribution that is the same. Processes with
Poissonian edge behaviour constructed in a similar way have recently been
studied in [25].

1.5 Grand canonical determinantal processes

The probability measure (4) on R
N does not define a finite determinantal point

process on R. To get a determinantal point process we have to consider a grand
canonical ensemble with varying N, see for example [4,13] for related construc-
tions. Let us first consider a general model with the same structure.

Let X be a complete separable metric space with a reference measure µ.
Assume that ψj, j ≥ 0, is an orthonormal family of complex-valued functions in
L2(X,µ). Also, let an ≥ 0 be a sequence such that

∑∞
n=0 an < ∞. Set

φ(x, y) =
∞∑

n=0

anψn(x)ψn(y). (22)

The function φ(x, y) is well-defined in L2(µ × µ) and φ(x, x) is well-defined in
L1(µ). We can define a probability measure on Xn by

pN(x)dNµ(x) = 1
ZN

det(φ(xi, xj))1≤i,j≤NdNµ(x), (23)

where

ZN =
∫

XN

det(φ(xi, xj))1≤i,j≤NdNµ(x). (24)

Here we assume that pN(x) ≥ 0 and ZN > 0. We construct a grand canonical
point process, compare [2], p. 123, by letting

qN = λN

N!
ZN

Z(λ)
(25)

be the probability of seeing exactly N particles, and pN(x)dNµ(x) be the prob-
ability measure for finding particles at x1, . . . , xN given that there are exactly
N particles. Here Z(λ) is a normalization constant (grand canonical partition
function),

Z(λ) =
∞∑

N=0

λN

N! ZN , (26)
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where Z0 = 1. If g is a function in L∞ with bounded support, then

E


∏

j

(1 + g(xj))


 =

∞∑
N=0

qN

ZN

∫

XN

N∏
j=1

(1 + g(xj)) det(φ(xi, xj))1≤i,j≤NdNµ(x),

(27)

where the product in the left hand side is over all particles in the process. The
next theorem, that will be proved in Sect. 3, says that this construction leads to
a determinantal process.

Theorem 1.5 The grand canonical point process defined above is a determinantal
process on X with correlation kernel

Kλ(x, y) =
∞∑

n=0

λan

1 + λan
ψn(x)ψn(y). (28)

We call this type of process a grand canonical determinantal process.

1.6 The MNS-model

In the MNS-model we have X = R andµ is the Lebesgue measure, in the above
construction. We take

φ(x, y) = φt(x, y) = 1√
2π t

e−(x2+y2)/2−(x−y)2/2t (29)

Then the probability measure (4) is exactly the measure (23). That we have an
expansion of the form (22) follows from the next lemma, which is just a way of
writing Mehler’s formula. We will give the details in the beginning of Sect. 4.

Lemma 1.6 Set βq =
√

1+q
1−q . Then

√
q

(1 − q)
√
π

exp

(
−1

2
(x2 + y2)− q

(1 − q)2
(x − y)2

)

=
∞∑

n=0

βqqn+1/2hn(βqx)hn(βqy) exp

(
−β

2
q

2
(x2 + y2)

)
, (30)

where hn(x), n ≥ 0, are the normalized Hermite polynomials.

If we make the identification 1/2t = q/(1 − q)2 and define

ψn(x) = √
βqhn(βqx)e−β2

qx2/2, (31)
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then the ψn, n ≥ 1 are orthonormal and φ = φt can be expanded as in (22) with
an = qn+1/2. Theorem 1.5 then gives the next theorem.

Theorem 1.7 The grand canonical MNS-model coming from (3) or (4) is a
determinantal point process on R with correlation kernel

Kλ(x, y) =
∞∑

n=0

λqn+1/2

1 + λqn+1/2
ψn(x)ψn(y), (32)

where the three parameters are related by

b = 1
2t

= q
(1 − q)2

. (33)

Write

q = e−µ (34)

and fix a number N ≥ 0. Note that µ → ∞ corresponds to t → ∞ and µ → 0+
to t → 0+. If we choose

λ = eµN − 1, (35)

then
∫
R

Kλ(x, x)dx ≈ N, so the expected number of particles in the process is
approximately N.

The next proposition shows that the kernel Kλ interpolates between a point
process defined by N independent Gaussian random variables and GUE as we
should expect. We postpone the proof to Sect. 4.

Proposition 1.8 If we choose q as in (34) and λ as in (35), then

lim
µ→∞ Kλ(x, y) =

N−1∑
n=0

hn(x)hn(y)e−(x2+y2)/2 .= KGUE(N) (36)

uniformly for x, y in a compact set, and

lim
µ→0+ Kλ(x, y) =

{
N√
π

e−x2
if x 	= y

0 if x = y
(37)

pointwise.

As mentioned above the bulk transition occurs when µ ∼ 1/cN. This is the
limit that was studied and discussed in [21].
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Theorem 1.9 Let µ = 1/cN, with c > 0 fixed, and let λ be given by (35). In this
case λ is a constant λ = e1/c − 1. The following limit holds,

lim
N→∞

π

2N
√

c
Kλ

(
πx

2N
√

c
,
πy

2N
√

c

)
= Lc(x, y) .=

∞∫

0

cosπ(x − y)u

λ−1eu2/c + 1
du (38)

uniformly for x, y in a compact set.

The theorem will be proved in Sect. 4.
Thus in this transition region in the bulk of the point pocess we will have

a determinantal process with correlation kernel Lc. Suitable scaling limits will
give the sine kernel as c → 0+ and a uniform Poisson process as c → ∞

In [21] only the following approximate expression

Lc(x, y) ≈ πc
2

sin π(x − y)
sinh π2c(x − y)/2

(39)

is given, valid when c is small. At the end of Sect. 4 we will sketch an argument
leading to this approximate formula without discussing the error.

As briefly mentioned in [21], but not really discussed, when µ = 1/cN, the
behaviour at the edge is still like that of independent particles, i.e. we get a Pois-
son process with density e−x. More precisely we have the following theorem,
which will be proved in Sect. 4.

Theorem 1.10 Let µ = 1/cN, c > 0 fixed and λ = e1/c − 1 as in the previous
theorem. Set

aN(c) = √
log N − log(4π log N/λ2c2)

4
√

log N

and bN = (2
√

log N)−1 as in (7). Then,

lim
N→∞ bNKλ(aN(c)+ bNξ , aN(c)+ bNη) = Kext(ξ , η), (40)

pointwise.

To get an intermediate process at the edge we have to pick a larger µ. In fact
the intermediate process will be exactly the interpolating process with kernel
Mα discussed above. The next theorem will be proved in Sect. 4.

Theorem 1.11 Choose µ = α/N1/3, λ = eαN2/3 − 1, where α > 0 is fixed. Then,

lim
N→∞

√
α

2N1/3
Kλ

(
N1/3√α +

√
α

2N1/3
ξ , N1/3√α +

√
α

2N1/3
η

)
= Mα(ξ , η) (41)

uniformly for ξ , η in a compact set.
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Hence, in the grand canonical version of the MNS-model, we can see a
transition between Gumbel statistics and Tracy-Widom statistics for the largest
eigenvalue.

1.7 The deformed GUE model

We turn now to the deformed GUE model (1). The bulk transition in this and
related models has been discussed for example in [5,10,24] and we will not
discuss it here. It occurs for S ∼ c/N2, which is the same as for the MNS-
model. When we look at the edge, the behaviour of the deformed GUE will
be different from that of the MNS-model. We will not see a transition between
Tracy-Widom and Gumbel. If we choose S = α2/N2/3 we will see a change of
the edge behaviour as we vary α, but the transition will be from Tracy-Widom as
α → ∞ to Gaussian as α → 0+. Informally we can interpret this as follows. The
eigenvalue distribution is approximately a semicircle and with y1, . . . , yN fixed
we would see Tracy-Widom fluctuations. However, the fluctuations of y1, . . . , yN
causes the semicircle to fluctuate, that is the position of the edge fluctuates like a
Gaussian. We can think of the semicircle as fluctuating basically like 1

N

∑N
i=1 yi,

i.e. like a Gaussian. The effect is that the largest eigenvalue will fluctuate like
a Tracy-Widom random variable plus an independent Gaussian. There is some
similarity between this problem and the random growth model with random
parameters studied in [9].

Theorem 1.12 Let dµ(t) be a probability measure on R satisfying
∫

tdµ(t) = 0,∫
t2dµ(t) = σ 2 and

∫ |t|7dµ(t) < ∞. Let y1, . . . , yN be independent random
variables with distribution dµ(t) and consider the random N × N matrix

M = diag(y1, . . . , yN)+ √
2SV, (42)

where S = α2/N2/3 and V is an independent GUE matrix with density Z−1
N

exp(−Tr V2)dV. Let λ(N)max be the largest eigenvalue of M. There is a number
R(N) ∼ 2αN1/6, given by (77) below, which depends on dµ,α and N, so that

lim
N→∞ P

[
λ
(N)
max − R(N)

α/
√

N
≤ t

]
= P[X + Y ≤ t], (43)

where X and Y are independent, X has the Tracy-Widom distribution and Y has
distribution N(0, σ 2/α2).

If we want to compare with proposition 1.4 we can let x1 > x2 > · · · be a
realization of the Airy kernel point process and y be an independent random
variable with distribution N(0, σ 2/α2). Set zj = xj + y. Then maxj≥1 xj = x1 + y,
will be distributed according to the right hand side of (43).
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Remark 1.13 Another model for the transition between independent eigen-
values and GUE random matrix eigenvalues is a band Hermitian matrix with
Gaussian elements. Let mii be independent N(0,1/2), 1 ≤ i ≤ N and Re mij,
Im mij, 1 ≤ i < j ≤ N, and j − i < b, be independent N(0,1/4), for some given
b, 1 ≤ b ≤ N. Set mij = 0 for 1 ≤ i < j ≤ N, and j − i ≥ b and mij = mji. Then
M = (mij)1≤i,j≤N is a diagonal matrix when b = 1 and a GUE matrix when
b = N. It is conjectured, see for example [19] and references therein, that the
local bulk statistics, in the limit N → ∞, shows a transition from a Poissonian to
a determinantal sine-kernel point process when b ∼ cN1/2, 0 < c < ∞. When
is there a transition at the edge? Based on the results above one might guess
that the edge transition takes place for a larger b. Do we see a transition from
Gumbel to Tracy-Widom or is there something else happening in between? It
is not easy to approach these problems. Since we are dealing with the edge and
not the bulk it could be that the method of moments, used with great success in
[27] for Wigner matrices, is useful here also.

Remark 1.14 The comparison of the Tracy-Widom distribution with the Gum-
bel distribution suggests that we are thinking of the Tracy-Widom distribu-
tion as a kind of extreme value distribution. One way to motivate this is as
follows. Let w(i, j), (i, j) ∈ Z

2+, be i.i.d. geometric random variables, and let
π
(N)
k , k = 1, . . . ,

(2N
N

)
, be all up/right paths from (1, 1) to (N, N). Set

X(N)
k =

∑

(i,j)∈π(N)k

w(i, j).

For N large each X(N)
k is approximately normal. Clearly, the X(N)

k are not inde-

pendent. The random variable G(N, N) = maxk X(N)
k is thus a maximum over

dependent random variables each of which is approximately normal. We know,
[11], that G(N, N), appropriately rescaled converges to the Tracy-Widom distri-
bution, which thus arises as an extreme value distribution for certain dependent
random variables. We are not aware of any last-passage percolation problems
that would interpolate between Tracy-Widom and Gumbel.

In measures on partitions both the Gumbel and the Tracy-Widom distribu-
tion appear, [32]. Are there any natural measures on partitions that interpolate
in the way that the MNS-model does?

2 The interpolating model

In this section we will give the proofs of the results for the interpolating
determinantal process with correlation kernel Mα . A basic identity that is
useful is



From Gumbel to Tracy-Widom 87

∞∫

−∞
eαtAi (x + t)Ai (y + t)dt = 1√

4πα
e−(x−y)2/4α−α(x+y)/2+α3/12 (44)

for α > 0 and all x, y, see for example [23].

Proof (Proposition 1.1) We first prove that mα defined by (14) is a trace class
operator on L2(a, b) for −∞ < a < b ≤ ∞. Note that M is symmetric and

n∑
i,j=1

ziz̄jMα(xi, xj) =
∞∫

−∞

eαλ

eαλ + 1

∣∣∣∣∣
n∑

i=1

ziAi (xi + λ)

∣∣∣∣∣
2

dλ,

for any complex numbers z1, . . . , zN and all xi, so M(x, y) is a Hermitian positive
definite function. Hence, see e.g. [26], it suffices to show that

∞∫

a

Mα(x, x)dx < ∞. (45)

It then follows that Mα defines a trace class operator on L2(a, b) with Tr Mα =∫ b
a Mα(x, x)dx. The inequality (45) follows from the estimate

Mα(x, x) =
∞∫

−∞

eαλ

eαλ + 1
Ai (x + λ)2dλ

≤
∞∫

−∞
eαλAi (x + λ)2dλ = 1√

4πα
e−αx+α3/12, (46)

by (44).
If we can show that 0 ≤ Mα ≤ I, it follows that there is a determinantal

process with correlation kernel Mα , see [28]. Let f be a continuous function on
the real line with compact support. Then,

∞∫

−∞

∞∫

−∞
Mα(x, y)f (x)f (y)dxdy =

∞∫

−∞

eαλ

eαλ + 1




∞∫

−∞
Ai (x + λ)f (x)dx




2

dλ

by Fubini’s theorem and hence Mα ≥ 0. Fix ε > 0, 0 < ε < α, and note that

eαλ

eαλ + 1
≤ eελ (47)
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for all real λ. Thus

∞∫

−∞

eαλ

eαλ + 1




∞∫

−∞
Ai (x + λ)f (x)dx




2

dλ

≤
∞∫

−∞

∞∫

−∞




∞∫

−∞
eελAi (x + λ)Ai (y + λ)


 f (x)f (y)dx dy

×
∞∫

−∞

∞∫

−∞

1√
4πε

e−(x−y)2/4ε−ε(x+y)+ε3/12f (x)f (y)dx dy.

Since f is continuous and has compact support this last integral → ||f ||22 as
ε → 0+. Since ε > 0 can be taken arbitrarily small we obtain Mα ≤ I. �

Next we turn to the scaling limits of the kernel Mα .

Proof (Theorem 1.2) Set f (α) = 1
2α log(4πα3). Then

M∗
α(u, v) .= 1

α
Mα

( u
α

− f (α),
v
α

− f (α)
)

= 1
α

∞∫

−∞

eα(t+f (α))

eα(t+f (α)) + 1
Ai (t + u/α)Ai (t + v/α)dt

= √
4πα

∞∫

−∞

eαt
√

4πα3eαt + 1
Ai (t + u/α)Ai (t + v/α)dt. (48)

Using the identity (44) this can be written as M∗
α(u, v) = A − B,where

A = e−(u−v)2/4α3−(u+v)/2+α3/12

B = 4πα2

∞∫

−∞

e2αt
√

4πα3eαt + 1
Ai (t + u/α)Ai (t + v/α)dt.

It is clear that A → 0 as α → 0+ if u 	= v and A → e−u as α → 0+ if u = v.
Hence, we have to show that B → 0 as α → 0+. We can assume that u ≥ v
without loss of generality and write

B = B1 + B2 + B3

=



∞∫

−v

+
−v∫

−u

+
−u∫

−∞


 4παe2y

√
4πα3ey + 1

Ai
(

y + u
α

)
Ai

(
y + v
α

)
dy.
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Now x → Ai (x) is a bounded function and we have the estimates

|Ai (x)| ≤ C

|x|1/4 (49)

for x < 0, and

|Ai (x)| ≤ Ce−2x3/2/3

x1/4
(50)

for x > 0, where C is a numerical constant. It follows from these estimates that

|B1| ≤ Cα3/2e−2v

∞∫

0

e2y

√
y

e−4y3/2/3α3/2
dy

Clearly, B1 → 0 as α → 0+. Similarly,

|B2| ≤ Cα3/2

−v∫

−u

e2y

|y + u|1/4|y + v|1/4 e−(y+u)3/2/3α3/2
dy

and hence B2 → 0 as α → 0+. Finally,

|B3| ≤ Cα3/2e−2u

0∫

−∞

e2y
√|y|dy,

which goes to 0 as α → 0+. This proves (i) in the theorem.
The fact that Mα(u, v) → KAiry(u, v) as α → ∞ follows from the estimates

(49), (50) and the dominated convergence theorem. �
It follows from the estimate (45) that the interpolating process has a last

particle almost surely. Its distribution function is given by Theorem 1.3 which
we now prove.

Proof (Theorem 1.3) It follows from Hadamard’s inequality and (49) that

∞∑
n=0

1
n!

∫

(t,∞)n

det(Mα(xi, xj))dnx ≤
∞∑

n=0

1
n!




∞∫

t

Mα(x, x)dx




n

< ∞.

Hence, the first equality in (17) holds, see for example [16]. The second inequal-
ity follows since Mα is trace class on L2(t, ∞) for any t and Tr Mα=

∫ ∞
t Mα(t, t)dt,

[8].



90 K. Johansson

Next, we turn to the proof of (18). Write f (α) = 1
2α log(4πα3). Then

Fα(ξ/α − f (α)) =
∞∑

n=0

(−1)n

n!
∫

(ξ ,∞)n

det(M∗
α(xi, xj))dnx, (51)

where Mα is as in (48). It follows from the estimate (46) that

M∗
α(x, x) ≤ 1√

4πα3
e−x+αf (α)+α3/12 = e−x+α3/12.

Hence, by Hadamard’s inequality,

det(M∗
α(xi, xj))1≤i,j≤n ≤ enα3/12e− ∑n

j=1 xj ,

and it follows from (15), (51) and the dominated convergence theorem that

lim
α→0+ Fα(ξ/α − f (α)) =

∞∑
n=0

(−1)n

n!
∫

(ξ ,∞)n

n∏
i=1

e−xi dnx

=
∞∑

n=0

(−1)n

n! e−nξ = FG(ξ),

which proves (18).
If we use the estimate (47) with ε = 1 and (44) we see that for α ≥ 1

Mα(x, x) ≤ e−x. (52)

Hence, for α large, we have

det(Mα(xi, xj))1≤i,j≤n ≤ e− ∑n
j=1 xj .

Consequently, we can use (16), (17) and the dominated convergence theorem
to conclude that (19) holds. �

We will now prove Proposition 1.4 which gives an alternative representation
of the Fα-distribution.

Proof (Proposition 1.4) We have

P

[
max
j≥1

zj ≤ ξ

]
= E

[ ∞∏
j=1

(1 − χ(ξ ,∞)(zj))

]
= E




∞∏
j=1

(1 − χ(ξ ,∞)(xj + yj))




= Ex




∞∏
j=1




∞∫

−∞
(1 − χ(ξ ,∞)(xj − y))dGα(y)





 ,
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where Ex denotes expectation with respect to the Airy kernel point process.
Here we have used the fact that the yjs are independent with distribution Gα

and that they are independent of the Airy kernel point process. The last equal-
ity then follows from Fubini’s theorem. We have also used the fact that the
Gα-distribution is symmetric to replace y with −y. Note that χ(ξ ,∞)(xj − y) = 0
if and only if y ≥ xj − ξ and thus the last expression can be written

Ex




∞∏
j=1

(1 − Gα(xj − ξ))




=
∞∑

k=0

(−1)k

k!
∫

Rk

k∏
i=1

Gα(xi − ξ) det




∞∫

0

Ai (xi + t)Ai (xj + t)dt


 dkx

since we have the Airy kernel point process with correlation kernel (10). We
now make the shift xj → xj + ξ and manipulate the expressions as follows

=
∞∑

k=0

(−1)k

k!
∫

Rk

k∏
i=1

Gα(xi) det




∞∫

ξ

Ai (xi + t)Ai (xj + t)dt


 dkx

=
∞∑

k=0

(−1)k

k!
∫

Rk

dkx
k∏

i=1

Gα(xi)

∫

(ξ ,∞)k

dkt det(Ai (xi + ti)Ai (xj + ti))

=
∞∑

k=0

(−1)k

k!
∫

(ξ ,∞)k

dkt
∫

Rk

dkx




k∏
i=1

Gα(xi)Ai (xi + ti)


 det(Ai (xi + tj)),

where we have used the fact that the determinant is unchanged under transpo-
sition. Now, this last expression can be written

∞∑
k=0

(−1)k

k!
∫

(ξ ,∞)k

det




∞∫

−∞
Gα(x)Ai (x + ti)Ai (x + tj)dx


 dkt

= det(I − Mα)L2(ξ ,∞) = Fα(ξ).

�

3 The grand canonical point process

In this section we will show that the grand canonical point process defined in
Sect. 1 using (23) and (25) is a determinantal process with correlation kernel
given by (28). The proof is based on the identity (27).
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Proof (Theorem 1.5) We want to prove that

E


∏

j

(1 + g(xj))


 = 1

Z(λ)

∞∑
N=0

λN

N!
∫

XN

N∏
j=1

(1 + g(xj)) det(φ(xi, xj))1≤i,j≤NdNµ(x)

=
∞∑

N=0

1
N!

∫

XN

N∏
j=1

g(xj) det(Kλ(xi, xj))1≤i,j≤NdNµ(x). (53)

The first equality is just (25) and (27). The identity (53) implies the theorem,
see e.g. [16]. To prove (53) we will use some facts on von Koch determinants,
see e.g. [8]. Let (aij)

∞
i,j=0 be an infinite matrix and assume that

∞∑
i=0

|aii| < ∞,
∞∑

i,j=0

|aij|2 < ∞. (54)

Then,

det(I + A) =
∞∑

n=0

1
n!

∑
m∈Nn

det(amimj)
n
i,j=1 (55)

is well-defined. Furthermore, if we have two such matrices A and B, then

det(I + A) det(I + B) = det(I + A + B + AB). (56)

Inserting (22) into the left hand side of (53) we get

1
Z(λ)

∞∑
N=0

λN

N!
∫

XN

N∏
j=1

(1 + g(xj))
1

N!
∑

m∈NN

N∏
j=1

amj det(ψmi(xj)) det(ψmi(xj))eNx

= 1
Z(λ)

∞∑
N=0

λN

N!
∑

m∈NN

N∏
j=1

amj det




∫

X

(1 + g(x))ψmi(x)ψmj(x)dx




= 1
Z(λ)

det(I + Dg),

where

Dg(i, j) = λa1/2
i

∫

X

(1 + g(x))ψi(x)ψj(x)dµ(x)a
1/2
j .
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Here we have used the determinatal identity

det




∫

X

φi(x)ψj(x)dµ(x)


 = 1

N!
∫

XN

det(φi(xj)) det(ψi(xj))dNµ(x), (57)

where all the determinants are of size N × N, see e.g. [16]. Clearly, D0(i, j) =
λaiδij, and hence Z(λ) = det(I + A), where

A(i, j) = λaiδij.

Set

Bg(i, j) = λa1/2
i

1 + λai

∫

X

g(x)ψi(x)ψj(x)dµ(x)a
1/2
j .

Note that since g is bounded we have |Dg(i, j)| ≤ Ca1/2
i a1/2

j , |Bg(i, j)| ≤ Ca1/2
i a1/2

j ,
so the conditions (54) are satisfied. Note also that,

δij + λaiδij + Bg(i, j)+ (ABg)ij = δij + Dg(i, j).

Hence, by (56)

1
Z(λ)

det(I + Dg) = 1
det(I + A)

det(I + A) det(I + Bg)

= det(I + Bg) =
∞∑

N=0

1
N!

∑

m∈NN

det(Bg(mi, mj))1≤i,j≤N

=
∞∑

N=0

1
N!

∑

m∈NN

N∏
i=1

λami

1 + λami

1
N!

∫

XN

det(ψmi(xj)) det(ψmi(xj))

N∏
j=1

g(xj)dNµ(x)

=
∞∑

N=0

1
N!

∫

XN

N∏
j=1

g(xj) det

( ∞∑
m=0

λam

1 + λam
ψm(xi)ψm(xj)

)
dNµ(x),

which is the right hand side of (53). Here we have used the identity (57) again.
�

4 The MNS-model

In this section we will give the proofs for the results on the MNS-model stated
in Sect. 1. First we must prove Lemma 1.6 which makes it possible to use the
formalism for a grand canonical determinantal process and obtain Theorem 1.6,
which is the starting point for the asymptotic analysis.
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Proof (Lemma 1.6) We will use Mehler’s formula,

∞∑
n=0

Hn(x)Hn(y)
2nn! qn = 1√

1 − q2
exp

(
− q2

1 − q2 (x
2 + y2)+ 2q

1 − q2 xy
)

, (58)

where 0 < q < 1 and Hn are the standard Hermite polynomials. If we use
instead the normalized Hermite polynomials,

hn(x) = 1

π1/4
√

2nn!Hn(x) (59)

and rewrite the exponent we obtain

∞∑
n=0

qnhn(x)hn(y)e−(x2+y2)/2

= 1

π
√

1 − q2
exp

(
− 1 − q

2(1 + q)
(x2 + y2)+ q

1 − q2 (x − y)2
)

. (60)

The change of variables x → βqx, y → βqy and multiplication by βqq1/2 now
gives (30). �

The choice of the parameter λ in (35) with q given by (34) is motivated by
the fact that the expected number of particles becomes

∫

R

Kλ(x, x)dx =
∞∑

n=0

λqn+1/2

1 + λqn+1/2
≈

∞∫

0

λe−µx

1 + λe−µx dx

= 1
µ

log(1 + λ) = N.

We turn to the proof of proposition 1.8

Proof (Proposition 1.8) With q as in (34) and λ as in (35) we have

Kλ(x, y) =
∞∑

n=0

1
1 + (1 − e−µN)−1e(n+1/2−N)µ

ψn(x)ψn(y),

where ψn is given by (31). We split this into two sums, one from n = 0 to N − 1,
called�1, and one from N to infinity, called�2. Since βq → 1 as µ → ∞ we see
that �1 converges to the right hand side of (36). We have to prove that �2 → 0
as µ → ∞. A useful bound is

|hn(x)e−x2/2| ≤ C

n1/12
, (61)
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for all x, see [18]. Hence,

�2 ≤ C
∞∑

n=N

e(N−n−1/2)µ 1
n1/6

,

which goes to 0 as µ → ∞. This proves (36).
To prove (37) consider first the case x = y. We have

1 ≤ 1 + (eµN − 1)e−(n+1/2)µ ≤ eµN .

Since

Kλ(x, y) =
∞∑

n=0

(eµN − 1)e−(n+1/2)µ

1 + (eµN − 1)e−(n+1/2)µ
ψn(x)ψn(y)

we obtain

1 − e−µN

µN
µN

∞∑
n=0

e−(n+1/2)µψn(x)2 ≤ Kλ(x, x)

eµN − 1
µN

µN
∞∑

n=0

e−(n+1/2)µψn(x)2 ≤ Kλ(x, x).

The formula (30) gives

1 − e−µN

µN
µN

(1−e−µ)
√
π

e−µ/2e−x2 ≤ Kλ(x, x)≤ eµN − 1
µN

µN
(1−e−µ)

√
π

e−µ/2e−x2
.

By letting µ → 0+ we get the first part of (37).
Consider now the second case, x 	= y. Write

Kλ(x, y) = (eµN − 1)
∞∑

n=0

e−(n+1/2)µψn(x)ψn(y)

+(eµN − 1)
∞∑

n=0

[
1

1 + (eµN − 1)e−(n+1/2)µ
− 1

]

×e−(n+1/2)µψn(x)ψn(y)
.= S1 + S2.

By (30),

S1 = eµN − 1
1 − e−µ e−µ/2e−(x2+y2)/2−e−µ(1−e−µ)−2(x−y)2 ,
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which → 0 as µ → 0+. Furthermore,

|S2| ≤ (eµN − 1)2
∞∑

n=0

e−(n+1/2)µ|ψn(x)ψn(y)|

≤ 1
2
√
π
(eµN − 1)2

e−µ/2

1 − e−µ (e
−x2 + e−y2

)

by the Cauchy–Schwarz’ inequality and (30). We see that the last expression
→ 0 as µ → 0+. �

We turn now to the proof of the two theorems that concern the asymptotic
behaviour of the kernel Kλ in the regime where we have a transition in the bulk.

Proof (Theorem 1.9) We will use the following asymptotic formula for the
Hermite polynomials, [3], valid for −1 + δ ≤ x ≤ 1 − δ, δ > 0 fixed,

hn

(√
2nx

)
e−nx2 = 21/4

n1/4√π
1

(1−x2)1/4

(
cos

[
2nF(x)− 1

2
arcsin x

]
+O

(
1
n

))
,

(62)

where

F(x) =
1∫

x

√
1 − y2dy = 1

2
(arccos x − x

√
1 − x2).

Set AN = λ−1e1/2cN . Note that AN = λ−1 + O(1/N) and βq = √
2cN +

O(1/N3/2) as N → ∞. Write fn(x) = hn(x)e−x2/2 Using the asymptotic for-
mula (62) we obtain

π

2N
√

c
Kλ

(
πx

2N
√

c
,
πy

2N
√

c

)

= πβq

N
√

2c

∞∑
n=0

1
ANen/cN + 1

fn

(
πβqx

2N
√

c

)
fn

(
πβqy

2N
√

c

)

= βq

N
√

2c

∞∑
n=1

1
ANen/cN + 1

(
1 −

(
πβqx

2N
√

2cn

)2
)−1/4

×
(

1 −
(

πβqy

2N
√

2cn

)2
)−1/4

× 1
n1/2

cos

[
2nF

(
πβqx

2N
√

2cn

)
− 1

2
arcsin

(
πβqx

2N
√

2cn

)]

× cos

[
2nF

(
πβqy

2N
√

2cn

)
− 1

2
arcsin

(
πβqy

2N
√

2cn

)]
+ o(1)
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= 1√
N

∞∑
n=1

1
λ−1en/cN + 1

1
n1/2

× cos

[
2nF

(
πβqx

2N
√

2cn

)
− 1

2
arcsin

(
πβqx

2N
√

2cn

)]

× cos

[
2nF

(
πβqy

2N
√

2cn

)
− 1

2
arcsin

(
πβqy

2N
√

2cn

)]
+ o(1).

Note that the sum

1√
N

∞∑
n=1

1
λ−1en/cN + 1

1
n1/2

is bounded in N. We have

πβqx

2N
√

2cn
= πx

2
√

nN
+ O

(
1√

nN5/2

)

and

2nF
(

πx

2
√

nN

)
= πn

2
− πx

√
n
N

+ O
(

1√
nN5/2

)

as N → ∞, x in a compact set. Hence,

π

2N
√

c
Kλ

(
πx

2N
√

c
,
πy

2N
√

c

)

= 1
2N

∞∑
n=1

(−1)n

λ−1en/cN + 1

( n
N

)−1/2
cos

(
π(x + y)

√
n
N

)

+ 1
2N

∞∑
n=1

1
λ−1en/cN + 1

( n
N

)−1/2
cos

(
π(x − y)

√
n
N

)

→ 1
2

∞∫

0

cosπ(x − y)
√

t

λ−1et/c + 1
dt√

t

uniformly for x, y in a compact set as N → ∞. If we make the change of
variables t = u2 we obtain Lc(x, y) in (38). �

When we are in the transition region in the bulk, the behaviour at the edge is
still like that of independent random variables. This is the content of Theorem
1.10 which we prove next.
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Proof (Theorem 1.10) We split the kernel Kλ as follows

Kλ(x, y) =
∞∑

n=0

A−1
N e−n/cNψn(x)ψn(y)

+



MN∑
n=0

+
∞∑

n=MN+1




(
1

ANen/cN + 1
− 1

ANen/cN

)
ψn(x)ψn(y)

.= S1(x, y)+ S2(x, y)+ S3(x, y),

where MN = [(1−δ)cN log N] with δ > 0 small. Here AN has the same meaning
as in the proof of Theorem 1.9. Note that we have the estimate

∣∣∣∣
1

ANen/cN + 1
− 1

ANen/cN

∣∣∣∣ ≤ Ce−2n/cN . (63)

By (30),

bNS1(aN(c)+ bNξ , aN(c)+ bNη)

= bN

AN(1 − q)
√
π

exp

(
−1

2
(aN(c)+ bNξ)

2 − 1
2
(aN(c)+ bNη)

2

− qb2
N

(1 − q)2
(ξ − η)2

)

= exp

(
−ξ + η

2
− (c2N2 + O(N))(ξ − η)2 + o(1)

)

as N → ∞. The last identity explains the choice of aN(c) and bN and we will
get (40) if we can prove that S2 and S3 both tend to zero as N tends to infinity.

From the estimates (61), (63) and βq ∼ √
2cN we obtain

|bNS3(aN(c)+ bNξ , aN(c)+ bNη)| ≤ CN1/2
√

log N

∞∑
n=MN+1

e−2n/cN 1
n1/6

→ 0

as N → ∞ provided δ is sufficiently small.
We can write ψn(aN(c)+ bNξ) = ψn(

√
2ny), where

y = 1√
2n

(√
2cN + O

(
1

N3/2

))

×
(√

log N − (4
√

log N)−1 log

(
4π
λ2c2 log N

)
+ ξ(2

√
log N)−1

)
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For a fixed ξ , we see that y ≥ 1 + δ if N is sufficiently large and 1 ≤ n ≤ MN .
We can then use the estimate,

|hn(
√

2nx)e−nx2 | ≤ C1

n1/4
e−nF(x) (64)

for x ≥ 1 + δ, [3], which gives

|hn(
√

2nx)e−nx2 | ≤ C1

n1/4
e−C2nδ3/2

,

where C2 is a numerical constant. If N is large enough, then y ≥ √
cNn−1 log N

and we get

|bNS2(aN(c)+ bNξ , aN(c)+ bNη)|

≤ 1

2
√

N
+ C

√
N√

log N

MN∑
n=1

1
n1/4

e−C2n(
√

cNn−1 log N−1)3/2

which → 0 as N → ∞. �

The next result shows that the kernel Mα can be obtained as a scaling limit
of the kernel Kλ

Proof (Theorem 1.11) Let AN have the same meaning as in the proof of Theo-
rem 1.9. We have

AN ≈ e−αN2/3+αN−1/3/2

with a negligible error. Also, as N → ∞,

βq =
√

2N1/6
√
α

+ O
(

1√
N

)
.

Write fn(x) = hn(x)e−x2/2 as above. We have

√
α

2N1/3
Kλ

(
N1/3√α +

√
α

2N1/3
ξ , N1/3√α +

√
α

2N1/3
η

)

=
(

1

N1/6
√

2
+ O

(
1

N5/6

)) ∞∑
n=0

1

eαN2/3((n+1/2)/N−1) + 1

×fn

(√
2N + ξ

N1/6
√

2
+ O

(
1

N1/3

))
fn

(√
2N + η

N1/6
√

2
+ O

(
1

N1/3

))
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=
(

1

N1/6
√

2
+O

(
1

N5/6

)) 


−MN−1∑
k=−∞

+
MN∑

k=−MN

+
N∑

k=MN+1


 1

e−α(k−1/2)/N1/3 + 1

×fN−k

(√
2N+ ξ

N1/6
√

2
+O

(
1

N1/3

))
fN−k

(√
2N+ η

N1/6
√

2
+O

(
1

N1/3

))

.= �1 +�2 +�3,

where MN = γN1/3 log N with some fixed γ > 0 that can be chosen. The
asymptotic contribution will come from �2. Here we use the asymptotic for-
mula

fN−k

(√
2N+ u

N1/6
√

2

)
= 21/4

N1/12
Ai

(
u+ k − 1/2

N1/3

) (
1+O

(
log N
N2/3

))
(65)

for |k| ≤ γN1/3 log N and u in a compact set. This formula folows from results
in [3], see [1]. Using this we see that

lim
N→∞�2 = lim

N→∞
1

N1/3

MN∑
−MN

1

e−α(k−1/2)/N1/3 +1
Ai

(
ξ+ k − 1/2

N1/3

)
Ai

(
η+ k−1/2

N1/3

)

=
∞∫

−∞

1
e−αx + 1

Ai (x + ξ)Ai (x + η)dx = Mα(ξ , η).

We still have to prove �1 → 0 and �3 → 0 as N → ∞. For �1 we use the
estimate (61), which gives

|�1| ≤ C

N1/6

−MN−1∑
k=−∞

1

e−α(k−1/2)/N1/3 + 1

1
(N − k)1/6

which goes to zero as N tends to infinity if we choose γ large enough.
For 1 < x ≤ 1 + δ we have an asymptotic formula for fn(

√
2nx) in terms of

the Airy function, see [3]. Estimates of the Airy function then gives

∣∣fn(
√

2nx)
∣∣ ≤ C

N1/12
e−cn(x−1)3/2 (66)

for some constants c, C, when 1 < x ≤ 1 + δ. Since F(x) ≥ c(x − 1)3/2, we can
combine this with (64) to see that (66) holds for all x > 1. For N sufficiently
large this leads to an estimate

∣∣∣∣fN−k

(√
2N + ξ

N1/6
√

2
+ O

(
1

N1/3

))∣∣∣∣ ≤ Ce−ck3/2/
√

N .
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It follows that

|�3| ≤ C
N∑

k=MN+1

e−ck3/2/
√

N → 0

as N → ∞ if we choose γ sufficiently large. �
We give here a sketch of an argument for the approximate expression (39)

for Lc(x, y). Integration by parts gives

Lc(x, y) =
∞∫

0

sin π(x − y)u
π(x − y)

2u
λc

eu2/c

(λ−1eu2/c + 1)2
du

= 2
c

∞∫

0

u
sin π(x − y)u
π(x − y)

du

cosh2(u2/2c + a/2)
,

where a = log(1/λ). When c is small a ≈ −1/c. Make the change of variables
u = 1 + ct. This gives

Lc(x, y) =
∞∫

−1/c

(1 + ct)
sin π(x − y)(1 + ct)

π(x − y)
dt

cosh2(t + ct2/2)

≈ 1
2

∞∫

−∞
(1 + ct)

sin π(x − y)(1 + ct)
π(x − y)

dt

cosh2 t
.

If we use the addition formula for the sine function and neglect terms containing
c2 we get

Lc(x, y) ≈
∞∫

−∞

cos π(x − y)ct
cosh 2t + 1

sin π(x − y)
π(x − y)

= π2(x − y)c
2 sin h(π2c(x − y)/2)

sin π(x − y)
π(x − y)

= πc
2

sin π(x − y)
sin h(π2c(x − y)/2)

.

We see that as c → 0+ the kernel Lc approaches the sine kernel.

5 Largest eigenvalue for deformed GUE

This section contains the proof of Theorem 1.12. Consider N non-intersecting
standard Brownian motions started at y1, . . . , yN and conditioned never to inter-
sect. If we fix y1, . . . , yN the particle distribution at time S is a determinantal
process with correlation functions
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ρm,N(x1, . . . , xm; y) = det(KN(xi, xj; y))1≤i,j≤m, (67)

where

KN(u, v; y) = 1
(2π i)2S

∫

γ

dz
∫

�

e(w−v)2/2S−(z−u)2/2S 1
w − z

N∏
j=1

w − yj

z − yj
, (68)

see e.g. [12]. Here γ is a positively oriented simple closed curve containing
y1, . . . , yN and � a vertical line oriented upwards and not interesecting γ , we
place it to the right of γ . The formula (67) also gives the correlation functions
for the eigenvalues of the hermitian matrix M given by

M = diag (y1 + · · · + yN)+ √
2SV (69)

with V a standard N × N GUE matrix. If λ(N)max is the largest eigenvalue of M
then λ(N)max has the same distribution as max1≤j≤N xj.

Let Py denote the probability measure for y1, y2, . . . and let Px;y denote
the probability measure for the determinantal process with correlation kernel
KN(u, v; y) given by (68). Furthermore, we let PN = Py ⊗ Px;y be the product
measure. We are interested in the distribution function

FN(t) = PN[λ(N)max ≤ t] = EN




N∏
j=1

(1 − χ(t,∞)(xj))




= Ey


Ex;y




N∏
j=1

(1 − χ(t,∞)(xj))





 . (70)

When computing the inner expectation we are considering y1, . . . , yN as fixed
and hence we can work with the correlation functions (67).

Fix a number ε ∈ (1/7, 1/6) and set

AN = {y ∈ R
N ; |yi| ≤ Nε , 1 ≤ i ≤ N}.

Define a cut-off measure dµN(t) by

dµN(t) = 1
µ([−Nε , Nε])χ[−Nε ,Nε ](t)dµ(t), (71)

and the function

GN(z) =
∫

R

dµN(t)
z − t

(72)

for z ∈ C \ [−Nε , Nε].
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Since by assumption µ has finite 7th moment it follows that

Py[Ac
N] ≤ N

C
N7ε

which → 0 as N → ∞. Hence, since the expression in the Ey-expectation in
(70) is bounded, we can restrict our attention to AN and use µN instead of µ,
so we regard y1, . . . , yN as independent random variables with distribution µN .
Denote this probability measure by P

(N)
y .

Lemma 5.1 There is a real number wc = wc(N), which is approximately
√

NS =
αN1/6, such that

G′
N(wc) = − 1

α2N1/3
(73)

for all sufficiently large N.

Proof We have

G′
N(z) = −

Nε∫

−Nε

dµN(t)
(z − t)2

.

The moment conditions on µ can be used to see that

∣∣∣∣G′
N(z)− 1

z2

∣∣∣∣ ≤ C
z3 (74)

for real z ≥ 2Nε say. We see that, for N sufficiently large, G′
N is a decreasing

function in [2Nε , ∞). Furthermore, G′
N(z) → 0 as z → ∞ and G′′

N(2Nε) ≈
1/4N2ε > 1/αN1/3 Hence, when N is large enough, there is a z = wc such that
(73) holds. From (74) we see that 1/w2

c ∼ 1/α2N1/3, which gives the asymptotic
behaviour. �

Set

rN(y) = −
N∑

j=1

1
(wc − yj)2

+ NG′
N(wc), (75)

and

vc = wc + S
N∑

j=1

1
wc − yj

. (76)
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Furthermore, set

R(N) = wc + α2N1/3

wc
+ α2N1/3

wc

∫

R

y
1 − y/wc

dµN(y) (77)

and define

sN(y) = α

wcN1/6




N∑
j=1

yj

wc − yj
−

∫

R

y
wc − y

dµN(y)


 . (78)

Note that

vc = R(N)+ α

N1/2
sN(y). (79)

Lemma 5.2 (i) There is a constant C such that

E
(N)
y [rN(y)] ≤ C. (80)

(ii) We have the limit

Var(N)y [sN(y)] → σ 2/α2 (81)

as N → ∞.
(iii) The random variable sN(y) converges in distribution to N(0, σ 2/α2) as

N → ∞
Proof Since the 7th moment is finite and

∫
tdµ(t) = 0 we get | ∫ tdµN(t)| ≤

CN−6ε ≤ CN−6/7. The definition of wc and GN gives E
(N)
y [rN(y)] = 0 and thus

E
(N)
y [rN(y)2] = Var(N)y [rN(y)] = Var(N)y




N∑
j=1

1
(wc − yj)2




= N
[
−1

6
G(3)

N (wc)− G′
N(wc)

2
]

≤ NC

w6
c

,

where the last inequality follows from our moment condition. Since wc ∼ αN1/6

we see that the right hand side is bounded. To prove (ii) we compute

Var(N)y [sN(y)] = α2N2/3

w4
c

(∫
y2

(1 − y/wc)2
dµN(y)−

(∫
y

1 − y/wc
dµN(y)

)2
)

.

(82)
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Writing y(1 − y/wc)
−1 = y + y2/wc + · · · , we get

∫
y(1 − y/wc)

−1dµN(y) =
o(1). Similarly, writing y2/(1 − y/wc)

2 = y2 + 2y3/wc + · · · , we get
∫

y2/(1 −
y/wc)

2dµN(y) = σ 2 + o(1). Using wc ∼ αN1/6, the identity (82) now yields (ii).
The claim (iii) follows immediately from the central limit theorem, since sN is
a sum of independent random variables. �

Define BN to be the set of all y ∈ AN such that |rN(y)| ≤ CNε and |sN(y)| ≤
CNε . It follows from Lemma 5.2 (i) and (ii) that we can restrict ourselves to
y ∈ BN . We will study

F∗
N(t) = E

(N)
y


χBN (y)Ex;y




N∏
j=1

(1 − χ(t,∞)(xj))





 (83)

instead of FN(t) given by (70). Hence it is enough to consider a fixed y in BN
and work with

F∗
N(t; y) = Ex;y




N∏
j=1

(1 − χ(t,∞)(xj))




=
N∑

k=0

(−1)k

k!
∫

(t,∞)k

det(KN(xi, xj; y))dkx. (84)

Our problem is then to investigate the asymptotics of KN(u, v; y) for y ∈ BN .
Set

f (w) = w2

2S
− vcw

S
+

N∑
j=1

log(w − yj),

where we choose the principal branch of the logarithm. The number vc was
defined so that

f ′(wc) = 0. (85)

We consider

u = vc + ξ
α√
N

; v = vc + η
α√
N

, (86)

where ξ and η lie in a compact set.
To perform a saddle-point argument in the integral (68) we must specify

appropriate contours. Let C1 : [0, ∞) � t → wc + t + it, C2 : [0, ∞) � t →
wc + t − it, C3 : [0, ∞) � t → wc − t + it and C4 : [0, ∞) � t → wc − t − it.
We want to show that we can deform � to C1 − C2 and γ to C3 − C4 in the
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contour integral (68). Let CA
i be the parts of the contours where we restrict t to

[0, A + wc] and let γA : [−wc − A, wc + A] � t → −A − it, where A > 0. Then
γ can be deformed to CA

3 + γA − CA
4 in (68) if A is sufficiently large. From (77)

we see that R(N) ∼ 2αN1/6 and since ξ belongs to a compact set we see from
(79), |sN(y)| ≤ Nε and (86) that u ≥ αN1/6 for all sufficiently large N. Since
Re (−(z − u)2) ≤ −2uA we see that we can let A → ∞ and conclude that the
contribution from γA goes to zero.

Choose � to be a vertical line through wc. We want to show that the part of
this line that lies in the upper half plane can be deformed to C1, and the in the
lower half plane to C2. Set w = wc + t + iA, 0 ≤ t ≤ A. Then,

g(t) = Re ((w − v)2) = t2 + 2(wc − v)t + (wc − v)2 − A2.

For 0 ≤ t ≤ A/2, we see that g(t) ≤ −A2/2 for A large, and when A/2 ≤ t ≤ A
we have

g(t) ≤ (wc − v)A + (wc − v)2 ≤ −α
2

N1/6A

for N and A large. Hence we can deform the upper part of � to C1 in (68). The
deformation to C2 is analogous by symmetry.

Next, we want to localize the integration to a small neighbourhood of wc.

Lemma 5.3 Define gi(t) = Re (f (Ci(t)) − f (wc)) for i = 1, 2 and gi(t) = −Re
(f (Ci(t))− f (wc)) for i = 3, 4, t ≥ 0. There is a positive constant c so that

gi(t) ≤
{

−cN1/2t3, 0 ≤ t ≤ αN1/6/2
−cN5/6t t ≥ αN1/6/2

, (87)

for all sufficiently large N.

Proof Consider g1(t) We have

g1(t) = 1
2S

[
(wc + t)2 − t2

] − 1
2

vc(wc + t)

+ 1
2

N∑
j=1

log((wc + t − yj)
2 + t2)− Re f (wc).

Differentiation gives

g′
1(t) = wc − vc

S
+

N∑
j=1

wc − yj + 2t

(wc − yj + t)2 + t2
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and hence g′
1(0) = 0 by (76). Hence

g′
1(t) = g′

1(t)− g′
1(0) = −

N∑
j=1

2t2

(wc − yj)((wc − yj + t)2 + t2)
.

We know that wc ∼ αN1/6 and |yj| ≤ Nε . If |t| ≤ αN1/6/2, we see that there is
a positive constant c such that g′

1(t) ≤ −cN1/2t2 for 0 ≤ t ≤ αN1/6/2. Since
g1(0) = 0 we obtain the first part of (87) for i = 1. If t ≥ αN1/6/2, then
g′

1(t)≥−cN5/6 for some postive constant c, and we obtain the second part of (87).
Consider next g3(t). Again g3(0) = g′

3(0) = 0 and we get

g′
3(t) = −

N∑
j=1

2t2

(wc − yj)((wc − yj + t)2 + t2)

and we can proceed as above. The functions g2 and g3 are treated analogously.
�

We also need a local approximation of f (w) in a neighbourhood of wc. By
(85) we have f ′(wc) = 0 and we also have

f ′′(wc) = 1
S

−
N∑

j=1

1
(wc − yj)2

= rN(y), (88)

by (73) and (75). Furthermore,

f (3)(wc) =
N∑

j=1

2
(wc − yj)3

. (89)

Lemma 5.4 For ζ ∈ C and |ζ | ≤ N1/18,

f (wc + ζαN−1/6) = f (wc)+ 1
3
ζ 3 + o(1), (90)

as N → ∞, where o(1) is uniform for |ζ | ≤ N1/18.

Proof Define R(ζ ) by

f (wc + ζ ) = f (wc)+ f ′(wc)ζ + 1
2

f ′′(wc)ζ
2 + 1

6
f (3)(wc)ζ

3 + R(ζ ). (91)

Since wc ∼ αN1/6 and |wc − yj| is much greater than 1 for N large enough a
Taylor expansion gives
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|R(ζ )| ≤ CN1/3|ζ |4 (92)

for |ζ | ≤ 1. It follows from (85), (88) and (89) that

f (wc + iζαN−1/6) = f (wc)− α2

2
rN(y)ζ 2N−1/3

+1
3

N∑
j=1

ζ 3N−1/2

(wc − yj)3
+ R(ζαN−1/6). (93)

Since |rN(y)| ≤ CNε and |ζ | ≤ N1/18 we see that |rN(y)ζ 2N−1/3| ≤ CN−1/18.
Furthermore, by (92), |R(ζαN−1/6)| ≤ CN−1/9. We can write

N∑
j=1

1
(wc − yj)3

= N
w3

c
+

N∑
j=1

w3
c − (wc − yj)

3

w3
c(wc − yj)3

= N1/2

α3 (1 + o(1))

as N → ∞. We see now that (90) follows from (93). �
It follows from (68), the definition of f and the change of contours discussed

above that

KN(vc + ξ
α√
N

, vc + η
α√
N
)

= ev2−u2
N2/3

(2π i)2α2

∫

C3−C4

dz
∫

C1−C2

dw
ef (w)−f (z)

w − z
e−ηN1/6w/α+ξN1/6z/α (94)

Consider z on C3 and w on C1. The other cases are similar. Set z = wc + (−t +
it)αN−1/6, w = wc + (−τ + iτ)αN−1/6, t, τ ≥ 0. It follows from Lemma 5.3 that
we can localize the evaluation of (94) to t, τ ≤ N1/18. By Lemma 5.4

f (w)− f (z) = 1
3
(τ + iτ)3 − 1

3
(−t + it)3 + o(1)

uniformly for 0 ≤ t, τ ≤ N1/18. Hence, the contribution to (94) from z on C3
and w on C1 is

N1/2ev2−u2+(ξ−η)N1/6wc/α

(2π i)2α

N1/18∫

0

dt

N1/18∫

0

dτ
e

1
3 (τ+iτ)3− 1

3 (−t+it)3+ξ(−t+it)−η(τ+iτ)

(τ + iτ)− (−t + it)
.

Define

K∗
N(u, v; y) = ev2−u2+(u−v)wc/SKN(u, v; y). (95)
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We can just as well use K∗
N as KN . If we argue as above for all parts of the

contours we get

lim
N→∞

α√
N

K∗
N

(
vc + ξ

α√
N

, vc + η
α√
N

)

= 1
(2π i)2

∫

γ ′
dz

∫

�′
dwew3/3−z3/3+ξz−ηw 1

w − z
, (96)

where γ ′ is the contour given by t + it for t ≤ 0 and −t + it for t ≥ 0, and �′ is
the reflection of γ ′ in the imaginary axis.

We have to show that the right hand side of (96) is really the Airy kernel. Let C
be the contour given by t+ i|t|, t ∈ R. If we change variables by z = iζ , w = −iω,
then γ ′ maps to C and �′ to −C and we see that the right hand side of (96)
becomes

− 1
4π2

∫

C
dζ

∫

C
dωeiω3/3+iηω+iζ 3/3+iξζ 1

i(ζ + ω)
,

which is the Airy kernel KAiry(ξ , η), [15].
We have proved

Lemma 5.5 Define

K̃N(ξ , η; y) = α√
N

K∗
N

(
vc + ξ

α√
N

, vc + η
α√
N

)
(97)

with K∗
N as in (95) and vc given by (79). Then

lim
N→∞ K̃N(ξ , η; y) = KAiry(ξ , η) (98)

uniformly for ξ , η in a compact set and y ∈ BN.

To control the convergence of (84) we need some more estimates.

Lemma 5.6 Fix a constant A. There is a constant C, depending on A, such that
for ξ , η ≥ −A and all sufficiently large N we have the estimate

K̃N(ξ , η; y)| ≤ Ce− 2
3 (|ξ |3/2+|η|3/2) (99)

for y ∈ BN.

Proof Deform the contour C3 − C4 to γ = γ1 + γ2 + γ3 and C1 − C2 to
� = �1 + �2 + �3, where γ1 : (−∞, −αδN−1/6) � t → wc + t + it, γ2 : (−δ, δ) �
t → wc −αδN−1/6 +αitN−1/6, γ3 : (αδN−1/6, ∞) � t → wc − t + it and �1,�2,�3
are obtained by reflection in the line Re z = wc.
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Note that for z on γ and w on �,

1
|w − z| ≤ N1/6

2αδ

From (94), (95) and (97) we obtain

K̃N(ξ , η; y)| ≤ N1/3

8α2δπ2




∫

γ

e−Re (f (z)−f (wc))+ξN1/6α−1Re (z−wc)|dz|



×



∫

γ

e−Re (f (w)−f (wc))+ηN1/6α−1Re (w−wc)|dw|

 . (100)

On �2 we can use Lemma 5.4 to get

Re [f (wc + α(δ + it)N−1/6)− f (wc)] = 1
3
δ3 − δt2 + o(1).

This gives

∫

�2

e−Re (f (w)−f (wc))+ηN1/6α−1Re (w−wc)|dw| ≤ C

N1/6
eδ

3/3−ηδ
δ∫

−δ
e−δt2dt

≤ C

N1/6δ1/2
eδ

3/3−ηδ .

On �3 we can use Lemma 5.3 to get

∫

�3

e−Re (f (w)−f (wc))+ηN1/6α−1Re (w−wc)|dw|

≤
αN1/6/2∫

−δαN−1/6

e−cN1/2t3−ηN1/6t/αdt +
∞∫

αN1/6/2

e−cN5/6t−ηN1/6t/αdt

≤ C

N1/6
e−ηδ .

The contribution from �1 is analogous. Choosing δ = √
η for η ≥ 1 and δ = 1

otherwise, we get

∫

�

e−Re (f (w)−f (wc))+ηN1/6α−1Re (w−wc)|dw| ≤ C

N1/6
e− 2

3 |η|3/2 .
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The estimate for the other integral in (100) is analogous and the estimate (99)
follows. �

Define the distribution function HN by

HN(t; y) =
N∑

k=0

(−1)k

k!
∫

(t,∞)k

det(K̃N(ξi, ξj; y))dkξ . (101)

It follows from Lemmas 5.5 and 5.6 that

lim
N→∞ HN(t; y) = FTW(t) (102)

uniformly for t in a compact subset and y ∈ BN .
If we change from KN to K∗

N in (84) and make the change of variables
xi = vc + αξi/

√
N, we see that

F∗
N(t) = E

(N)
y

[
χBN (y)GN(

√
N(t − vc)/α; y)

]
.

Thus

F∗
N(R(N)+ ξα/

√
N) = E

(N)
y [χBN (y)GN(ξ − sN(y); y)].

We can now use Lemma 5.2 and (102) to see that

lim
N→∞ F∗

N(R(N)+ ξα/
√

N) =
∫

R

FTW(ξ − u)h(u)du,

where h(u) = (2πσ 2/α2)−1/2 exp(−u2α2/2σ 2). This completes the proof of
theorem 1.12.

Acknowledgments I thank Y. Chen for drawing my attention to some papers on intermediate
ensembles.
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