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Abstract. For a large collection of random variables, pairwise conditional independence and
mutual conditional independence are shown to be essentially equivalent — i.e., equivalent
to up to null sets. Unlike in the finite setting, a large collection of random variables remains
essentially conditionally independent under further conditioning. The essential equivalence
of pairwise and multiple versions of exchangeability also follows as a corollary. Our result
relies on an iterated extension of Bledsoe and Morse’s completion of the product of two
measure spaces.

1. Introduction

Conditional independence is a fundamental concept in probability theory. For exam-
ple, a Markov process can be defined as a stochastic process in which the past and
future are conditionally independent given the present. Here is a version of a clas-
sical example of Bernstein (see [8, p. 126]): take three random variables α, β and γ

such that α and β represent two independent tosses of a fair coin (with 1 for heads
and 0 for tails), while the value of γ is 1 if the outcomes of the first two tosses are
different and 0 otherwise. These three random variables are pairwise independent
but not mutually independent. Since independence is a trivial case of conditional
independence, this also means that pairwise conditional independence and its mul-
tivariate analog are not equivalent for a finite collection of random variables. Also,
despite the fact that independence is a trivial version of conditional independence,
two independent random variables may lose their independence under conditioning;
in the example above, α and β are independent, but not conditionally independent
given γ (see [4, p. 229]).

The main aim of this paper is to show that for a large collection of random vari-
ables that are essentially pairwise conditionally independent, almost any randomly
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drawn (finite or infinite) sequence of random variables from the collection will
be mutually conditionally independent. This can be illustrated by taking a large
number of mutually independent “copies” of the above three random variables α, β
and γ . It is easy to see that any triple in this collection is not mutually independent
if and only if all three are from the same copy. In particular, almost all triples are
mutually independent.

We will also show that a large collection of random variables will remain
essentially conditionally independent under further conditioning. In addition, the
essential equivalence of pairwise and multiple versions of exchangeability follows
as a corollary. To formulate and prove these results, we generalize Bledsoe and
Morse’s completion of the product of two measure spaces (see [3]).

In this paper, a large collection of random variables is formalized as a process
indexed by points in an atomless probability space, which is simply called a con-
tinuum of random variables. As discussed in [15] and some of the work cited there,
such processes occur in many economic models, especially those with essentially
independent random variables. In particular, a large literature in macroeconomics
has relied on a version of the exact law of large numbers for a continuum of inde-
pendent random variables/stochastic processes — see [16]. Note that an atomless
probability index space provides a convenient idealization for economic models
with a large but finite number of agents. From a technical point of view, such an
idealization is often necessary for developing the relevant models of important
economic phenomena such as competitive markets.

Finally, our exact equivalence results in this paper also correspond to some
asymptotic results for a triangular array of random variables. Specifically, follow-
ing Section 5 of [14] and Section 9 of [15], the routine procedure of lifting, pushing
down, and transfer can be applied to processes on a special Loeb product proba-
bility space in order to demonstrate an appropriate form of asymptotic equivalence
between pairwise and mutual conditional independence for such an array.

The paper is organized as follows. Section 2 generalizes an idea of Bledsoe
and Morse on extending the product of two measures to the setting of finite or
infinite products of measure spaces. This is done by adding the iterated null sets
to the relevant product σ -algebras. Section 3 presents the main results with some
discussion of the literature. The proofs are given in Section 4.

2. Extended products of measure spaces

Let (Tk, Tk, λk), k ∈ N be a sequence of complete and countably additive probabil-
ity spaces. Then (

∏n
k=1 Tk, ⊗n

k=1Tk, ⊗n
k=1λk) is the product of the first n probability

spaces, whereas (
∏∞

k=1 Tk, ⊗∞
k=1Tk, ⊗∞

k=1λk) is the infinite product of the entire
sequence of probability spaces.

Though we can always assume that the above product probability spaces are
complete in the sense that subsets of measure zero are included as measurable sets
with zero measure, this completion is not enough for us to derive our main result —
namely, the essential equivalence of pairwise and mutual conditional independence
(see Remark 2 below).A stronger form of “iterative” completion will be used for the
products (

∏n
k=1 Tk, ⊗n

k=1Tk, ⊗n
k=1λk) and (

∏∞
k=1 Tk, ⊗∞

k=1Tk, ⊗∞
k=1λk), involving
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those “iteratively null” sets whose indicator functions have value zero for iterated
integrals of all orders. The following definition extends what Bledsoe and Morse
[3] suggested for the case of two measure spaces (see also [5, p. 108]).

Definition 1. A set E ⊆ ∏n
k=1 Tk is said to be iteratively null if for every permu-

tation π on {1, . . . , n}, the iterated integral

∫

tπ(1)∈Tπ(1)

. . .

∫

tπ(n)∈Tπ(n)

1E dλπ(n)(tπ(n)) . . . dλπ(1)(tπ(1)) (1)

is well-defined with value zero, where 1E is the indicator function of the set E in∏n
k=1 Tk; in other words, for λπ(1)-a.e. tπ(1) ∈ Tπ(1), λπ(2)-a.e. tπ(2) ∈ Tπ(2), . . . ,

λπ(n)-a.e. tπ(n) ∈ Tπ(n), one has (t1, t2, . . . , tn) /∈ E.

Let ρ2 denote the product Lebesgue measure on the unit square [0, 1]2. As men-
tioned in [5, p. 113], Sierpiński constructed a subset A of [0, 1]2 whose ρ2-outer
measure is one, although its intersection with every line consists of at most two
points. Obviously the set A is iteratively null, implying that its ρ2-inner measure
is zero. Thus, A is not in the usual product Lebesgue σ -algebra. Also, for the spe-
cial class of atomless Loeb probability spaces constructed in [12] and [13], it is
shown in [2] that there is a continuum of increasing Loeb product null sets with
large gaps, in the sense that their set differences have outer measure one under the
usual product of two atomless Loeb probability spaces. Since a Loeb product is
an extension of the usual product with the Fubini property, Loeb product null sets
must be iteratively null. Hence, there is a large class of iteratively null sets that are
not measurable with respect to the usual completion of the product σ -algebra.

The following two propositions show that one can extend both the finite and
the infinite product probability spaces (

∏n
k=1 Tk, ⊗n

k=1Tk, ⊗n
k=1λk) and (

∏∞
k=1 Tk,

⊗∞
k=1Tk, ⊗∞

k=1λk) respectively by including all the iteratively null sets, and then
forming the iterated completion.

Proposition 1. Given any n ∈ N, let En denote the family of all iteratively null sets
in
∏n

k=1 Tk . Then there exists a complete and countably additive probability space
(
∏n

k=1 Tk, ⊗̄n
k=1Tk, ⊗̄n

k=1λk) that satisfies the Fubini property, with

⊗̄n
k=1Tk := σ([⊗n

k=1Tk] ∪ En)

= [⊗n
k=1Tk

]
�En := { B�E : B ∈ ⊗n

k=1Tk, E ∈ En }
and

[⊗̄n
k=1λk

]
(B�E) = [⊗n

k=1λk

]
(B) whenever B ∈ ⊗n

k=1Tk , E ∈ En.

Proposition 2. There exists a countably additive probability space, denoted by
(
∏∞

k=1 Tk, ⊗̄∞
k=1Tk, ⊗̄∞

k=1λk), in which ⊗̄∞
k=1Tk is the σ -algebra generated by the

union G := ∪∞
n=1Gn of the families Gn of cylinder sets taking the form A ×∏∞

k=n+1 Tk for some A ∈ ⊗̄n
k=1Tk , whereas ⊗̄∞

k=1λk is the unique countably addi-
tive extension to this σ -algebra of the set function µ : G → [0, 1] defined so
that µ(A × ∏∞

k=n+1 Tk) := ⊗̄n
k=1λk(A) for all A ∈ ⊗̄n

k=1Tk . Moreover, for any
D ∈ ⊗̄∞

k=1Tk , there exist B ∈ ⊗∞
k=1Tk and E ∈ ⊗̄∞

k=1Tk such that D = B�E and[⊗̄∞
k=1λk

]
(E) = 0.
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Unlike in the finite product setting, the infinite product measure space (
∏∞

k=1 Tk,

⊗̄∞
k=1Tk, ⊗̄∞

k=1λk) in Proposition 2 above may not be complete in the usual sense.
One can always complete it by the usual procedure (see, for example, [5] pp. 78–
79). We still use the same notation to denote the completion. That completion still
has the property stated in the last sentence of Proposition 2.

The countably additive probability spaces (
∏n

k=1 Tk, ⊗̄n
k=1Tk, ⊗̄n

k=1λk) and
(
∏∞

k=1 Tk, ⊗̄∞
k=1Tk, ⊗̄∞

k=1λk) will be called the iterated completions of (
∏n

k=1 Tk,

⊗n
k=1Tk, ⊗n

k=1λk) and of (
∏∞

k=1 Tk, ⊗∞
k=1Tk, ⊗∞

k=1λk), respectively. They will also
be called iteratively complete product spaces.

When all the probability spaces (Tk, Tk, λk) (k ∈ N) are copies of (T , T , λ),
let (T n, T̄ n, λ̄n) and (T ∞, T̄ ∞, λ̄∞) respectively denote the iterated completions
of the n-fold and infinite product probability spaces.

3. Main results

We first fix some notation. Let (T , T , λ) be a complete atomless probability space.
Let (	, A, P ) be a complete, countably additive probability space. Let C be a sub-
σ -algebra of the σ -algebra A, and X a complete separable metric space with the
Borel σ -algebra B. Let M(X) be the space of Borel probability measures on X

endowed with the topology of weak convergence of measures. It is easy to see that
the measurability of a mapping φ from a measurable space (I, I) to M(X) with
the Borel σ -algebra generated by the topology of weak convergence of measures
is equivalent to the I-measurability of each mapping φ(·)(B), for all B ∈ B (see,
for example, [9, p. 748]).

The following definition introduces some basic concepts and notation.

Definition 2. A process g is a mapping from T × 	 to X such that for all t ∈ T ,
the mapping gt (·) = g(t, ·) is A-measurable (i.e., gt is a random variable).

1. Let n ∈ N with n ≥ 2. A finite sequence {fk}nk=1 of X-valued random variables
on (	, A, P ) is said to be mutually conditionally independent given C if, for
any Borel sets Bk ∈ B, k = 1, . . . , n, the conditional probabilities satisfy

P(∩n
k=1f

−1
k (Bk)|C) =

n∏

k=1

P(f −1
k (Bk)|C). (2)

When n = 2 the two random variables f1, f2 satisfing Equation (2) are said
to be pairwise conditionally independent given C.

2. A sequence {fk}∞k=1 of X-valued random variables on (	, A, P ) is said to
be mutually conditionally independent given C if, for every n ≥ 2, the finite
sequence {fk}nk=1 ofX-valued random variables is mutually conditionally inde-
pendent given C.

3. Let n ∈ N with n ≥ 2. The process g is said to be essentially n-wise mutually
conditionally independent given C if, for λ̄n-a.e. (t1, . . . , tn) ∈ T n, the random
variables gt1 , . . . , gtn are mutually conditionally independent given C. When
n = 2, g is said to be essentially pairwise conditionally independent given C.
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4. The process g is said to be essentially mutually conditionally independent given
C if, for λ̄∞-a.e. {tk}∞k=1 ∈ T ∞, the sequence of random variables {gtk }∞k=1 is
mutually conditionally independent given C.

5. Given the process g : T × 	 → X and the σ -algebra C ⊆ A, a T ⊗ C-
measurable mapping µ : T × 	 → M(X) is said to be an essentially regular
conditional distribution process if for λ-a.e. t ∈ T the C-measurable map-
ping ω 	→ µtω is a regular conditional distribution P(g−1

t |C) of the random
variable gt .

6. The σ -algebra C is said to be countably generated if there is a countable family
F ⊆ C that generates C.

For the special case of an exchangeable process under the assumption of pair-
wise measurable probabilities, Theorems 1 and 2 of [9] imply the regularity condi-
tion in Part 5 of Definition 2. For the general case, one result in a paper of ours yet
to be completed establishes the equivalence between this regularity condition and
the measurability condition that for all A ∈ A and B ∈ B, the real-valued function
P(A ∩ g−1

t (B)) on T is T -measurable.
The following theorem shows that essential pairwise conditional independence

is equivalent to its finite or infinite multivariate versions.

Theorem 1. Suppose that the process g from T ×	 to X and the σ -algebra C ⊆ A
admit an essentially regular conditional distribution process µ. Provided that C is
countably generated, the following are equivalent:

1. The process g is essentially pairwise conditionally independent given C.
2. For each fixed n ∈ N with n ≥ 2, the process g is essentially n-wise mutually

conditionally independent given C.
3. The process g is essentially mutually conditionally independent given C.

Because (unconditional) independence is a special case of conditional inde-
pendence given the trivial σ -algebra, the next result is an obvious implication of
Theorem 1.

Corollary 1. Let g be a process from T ×	 to X such that the distribution mapping
Pg−1

t from T to M(X) is T -measurable. Then the following are equivalent:

1. For λ̄2-a.e. (t1, t2) ∈ T 2, the random variables gt1 and gt2 are independent.
2. For λ̄n-a.e. (t1, . . . , tn) ∈ T n, the random variables gt1 , . . . , gtn are mutually

independent.
3. For λ̄∞-a.e. {tk}∞k=1 ∈ T ∞, the sequence {gtk }∞k=1 of random variables is mutu-

ally independent.

Remark 1. When g is essentially pairwise independent, Proposition 1.1 in [14]
shows that g is not measurable with respect to the usual product σ -algebra T ⊗ A
except in some trivial cases; in general g is not measurable even with respect to
the iterated completion of T ⊗ A because that only involves including some extra
null sets. However, if both (T , T , λ) and (	, A, P ) are the special Loeb probabil-
ity spaces developed in [12] and [13], one can work with non-trivial independent
processes that are jointly measurable with respect to a specially constructed exten-
sion of the usual measure-theoretic product (T × 	, T ⊗ A, λ ⊗ P) that retains
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the Fubini property. This extended Fubini property is used widely in the proofs of
Theorem 3 and Proposition 3.4 of [14]. Corollary 1 generalizes the corresponding
result without using the extended Fubini property. On the other hand, in order to
prove an exact law of large numbers of the kind we mention in Section 1, one does
need the extended Fubini property (see [16]).

The following proposition shows that essential pairwise conditional indepen-
dence is preserved under further conditioning (i.e. when the underlying countably
generated σ -algebra is enlarged).

Proposition 3. Suppose that the process g from T × 	 to X and the countably
generated σ -algebra C ⊆ A admit an essentially regular conditional distribution
process µ. For any given countably generated sub-σ -algebra C′ of A that contains
C, if the process g is essentially pairwise conditionally independent given C, then
it is essentially pairwise conditionally independent given C′.

As noted in the introduction, two independent random variables may lose their
independence under conditioning (see [4, p. 217]). However, the following result,
which is an obvious corollary of Proposition 3, shows that a large collection of
essentially independent random variables will never lose their essential indepen-
dence under conditioning via any countably generated σ -algebra.

Corollary 2. Let g be a process from T ×	 to X such that the distribution mapping
Pg−1

t from T to M(X) is T -measurable. Suppose that for λ̄2-a.e. (t1, t2) ∈ T 2,
the random variables gt1 and gt2 are independent. Then, given any countably gen-
erated sub-σ -algebra C of A, the process g is essentially pairwise conditionally
independent given C.

Exchangeability is another fundamental concept in probability theory with
many applications; see, for example, the books [1], [4] and the survey papers [10],
[11]. Some work such as [7] also uses the weaker concept of pairwise exchangeabil-
ity. Theorem 4 and Proposition 3.5 of [14] show that essential pairwise exchange-
ability is equivalent to its finite or infinite multivariate versions for processes on
Loeb product spaces. The following corollary extends these results to the general
setting without assuming that the process g satisfies the extended Fubini property
cited in Remark 1. The proof here is based on Theorem 1 and on a de Finetti
type result stating that essential pairwise exchangeability is equivalent to essential
pairwise conditional independence with identical distributions.

Corollary 3. Let g be a process from T × 	 to X. Then the following are equiva-
lent.

1. The random variables gt are essentially pairwise exchangeable — i.e., there is
a symmetric distribution ν2 on X2 such that for λ̄2-a.e. (t1, t2) ∈ T 2, gt1 and
gt2 have a joint distribution ν2.

2. For n ≥ 2, the random variables gt are essentially n-wise exchangeable —
i.e., there is a symmetric distribution νn on Xn such that the joint distribution
of gt1 , . . . , gtn is νn for λ̄n-a.e. (t1, . . . , tn) ∈ T n.

3. For λ̄∞-a.e. {tk}∞k=1 ∈ T ∞, {gtk }∞k=1 is an exchangeable sequence of random
variables.
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4. The Proofs

4.1. Proof of the results in Section 2

Proof of Proposition 1. It is easy to see that En is a hereditary σ -ring in the sense
that D ∈ En whenever D ⊆ E ∈ En, whereas ∪∞

m=1Dm ∈ En for any sequence
Dm (m ∈ N) of sets in En. The usual Fubini theorem also implies that if E ∈
En∩⊗n

k=1Tk , then ⊗n
k=1λk(E) = 0. By the usual argument on completing a measure

(see, for example, [5] pp. 78–79), the σ -algebra generated by [⊗n
k=1Tk]∪En, which

will be denoted by ⊗̄n
k=1Tk , is the collection of all sets A of the form A = B�E

for B ∈ ⊗n
k=1Tk and E ∈ En.

Now extend the product measure ⊗n
k=1λk to a measure ⊗̄n

k=1λk on ⊗̄n
k=1Tk

by letting [⊗̄n
k=1λk](A) = ⊗n

k=1λk(B), which is a well-defined countably additive
measure on ⊗̄n

k=1Tk .
If [⊗̄n

k=1λk](A) = 0, then ⊗n
k=1λk(B) = 0. By the usual Fubini theorem, B

is then iteratively null, which implies that A is also iteratively null. Since all the
measures λ1, . . . , λn are complete, any subset D of A is also iteratively null, and
so belongs to ⊗̄n

k=1Tk . Hence (
∏n

k=1 Tk, ⊗̄n
k=1Tk, ⊗̄n

k=1λk) is a complete measure
space.

Suppose that f :
∏n

k=1 Tk → R+ is any non-negative ⊗̄n
k=1λk-integrable

function. Then f is the pointwise limit of an increasing sequence fm of ⊗̄n
k=1Tk-

measurable simple functions. For each m, there exists a ⊗n
k=1Tk-measurable simple

function gm that differs from fm on an iteratively null set Em. Let E := ∪∞
m=1Em,

which is also iteratively null. Then each pair of functions satisfies fm ≡ gm outside
the set E. So the sequence gm of functions also converges to f outside the set E.
But all the functions gm are ⊗n

k=1Tk-measurable, so the sequence gm must con-
verge ⊗n

k=1λk-a.e. to a limit g that is ⊗n
k=1Tk-measurable and equals f outside

the iteratively null set E. Thus,
∫

f d(⊗̄n
k=1λk) = ∫

gd(⊗n
k=1λk). Since any n-fold

iterated integral of the indicator function 1E is zero, any n-fold iterated integral of
f w.r.t. ⊗̄n

k=1λk equals the corresponding iterated integral of g w.r.t. ⊗n
k=1λk . By

the usual Fubini property,
∫

gd(⊗n
k=1λk) equals any n-fold iterated integral of g;

it follows that
∫

f d(⊗̄n
k=1λk) equals any n-fold iterated integral of f .

When h :
∏n

k=1 Tk → R is any ⊗̄n
k=1λk-integrable function, we can apply the

above result separately to the positive and negative parts h+ and h− of h to show
that

∫
hd(⊗̄n

k=1λk) equals any n-fold iterated integral of h. This proves that the
iterated completion of each finite product retains the usual Fubini property. �

Proof of Proposition 2. It is obvious that µ is a finitely additive measure on the
algebra G. The usual proof that an infinite-dimensional product measure exists (see
[4], p. 193) can be used here to show that µ is actually countably additive. Note
that this proof uses the Fubini property. But any iterative completion of a finite
product probability space also has the Fubini property, so this does not create any
problem. Therefore µ can be extended to the countably additive measure ⊗̄∞

k=1λk

on σ(G) = ⊗̄∞
k=1Tk by the Carathéodory Extension Theorem.

Let M be the class of all sets D ∈ ⊗̄∞
k=1Tk satisfying D = B�E for some

B ∈ ⊗∞
k=1Tk and E ∈ ⊗̄∞

k=1Tk with
[⊗̄∞

k=1λk

]
(E) = 0. It is easy to check that the
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complement of a set in M is still in M, as is the union of an increasing sequence
of sets in M. Hence, M is a monotone class. Because M contains G, the usual
Monotone Class Theorem (see, for example, Theorem 1, [4], p. 7) implies that M
equals ⊗̄∞

k=1Tk . The rest is clear. �

4.2. Proof of the results in Section 3

Lemma 1. Let g be a process from T × 	 to X. Let C ⊆ A be a countably gener-
ated σ -algebra on 	 and µ a T ⊗ C-measurable mapping from T × 	 to M(X).
Suppose that for λ̄2-a.e. (t1, t2) ∈ T 2, one has

P(g−1
t1

(B1) ∩ g−1
t2

(B2)|C) = µt1ω(B1)µt2ω(B2) whenever B1, B2 ∈ B. (3)

Then for all A ∈ A and B ∈ B one has P(A∩g−1
t (B)) = ∫

A
µtω(B)dP for λ-a.e.

t ∈ T .

Proof. Consider the case when B2 in Equation (3) is the whole space 	. Then, for
λ̄2-a.e. (t ′, t) ∈ T 2, one has

P(g−1
t ′ (B)|C) = P(g−1

t ′ (B) ∩ g−1
t (	)|C) = µt ′ω(B)µtω(	) = µt ′ω(B)

for all B ∈ B, which implies that for λ-a.e. t ′ ∈ T , the measure µt ′ω is a version of
the regular conditional distribution P(g−1

t ′ (·)|C) of gt ′ conditioned on C.
Now fix B ∈ B. By hypothesis, there exists a fixed set T1 with λ(T1) = 1 such

that, for each t ′ ∈ T1, one has

P(g−1
t ′ (B) ∩ g−1

t (B)|C) = E(1
g−1
t ′ (B)

1
g−1
t (B)

|C) = µt ′ω(B)µtω(B) (4)

for λ-a.e. t ∈ T , and also

P(g−1
t ′ (B)|C) = E(1

g−1
t ′ (B)

|C) = µt ′ω(B). (5)

Equations (4) and (5) imply in particular that for any t ′ ∈ T1, one has

P(g−1
t ′ (B) ∩ g−1

t (B)) =
∫

	

P (g−1
t ′ (B) ∩ g−1

t (B)|C)dP

=
∫

	

µt ′ω(B)µtω(B)dP =
∫

	

E(1
g−1
t ′ (B)

(ω)µtω(B)|C)dP

=
∫

	

1
g−1
t ′ (B)

(ω)µtω(B)dP (6)

for λ-a.e. t ∈ T .
Fix any A ∈ A. Consider the Hilbert space L2(	, A, P ), and let L be the small-

est closed linear subspace which contains both the family of C-measurable functions
{ µtω(B) | t ∈ T1 } and the family of indicator functions { 1

g−1
t (B)

| t ∈ T1 }. Let
the function h : 	 → R be the orthogonal projection of the indicator function
1A onto L, with h⊥ as its orthogonal complement. By definition, 1A = h + h⊥
where h⊥ is orthogonal to each member of L. So for all t ∈ T1, one has 0 =
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E(h⊥µtω(B)) = ∫
	

h⊥µtω(B)dP and 0 = E(h⊥1
g−1
t (B)

) = ∫
	

h⊥1
g−1
t

(B)dP .

Because 1A = h + h⊥, it follows that for all t ∈ T1,

E(1A µtω(B)) = E(h µtω(B)) and E(1A 1
g−1
t (B)

) = E(h 1
g−1
t (B)

). (7)

Next, because h ∈ L, there exists a sequence of functions

hn(ω) =
in∑

k=1

[
αkn µtknω(B) + βkn1

g−1
tkn

(B)
(ω)

]
(n = 1, 2, . . . , )

with tkn ∈ T1, as well as αkn and βkn (k = 1, . . . , in) all real constants, such that
hn → h in the norm of L2(	, A, P ) — that is,

∫
	
(hn − h)2dP → 0.

Let Tkn be the intersection of the set of t for which Equation (4) holds when
t ′ = tkn with the set of t ′ for which Equation (5) holds. By hypothesis, λ(Tkn) = 1

because each tkn ∈ T1. Define T ∗ := T1 ∩
(
∩∞

n=1 ∩in
k=1 Tkn

)
. Because T ∗ is the

intersection of a countable family of sets all having measure 1 w.r.t. λ, it follows
that λ(T ∗) = 1. Also, for any t ∈ T ∗, Equation (7) and the limiting property of the
sequence hn imply that

P(A ∩ g−1
t (B)) = E(1A1

g−1
t (B)

) = E(h 1
g−1
t (B)

) = lim
n→∞ E(hn1

g−1
t (B)

) (8)

It follows from Equations (4)–(6) that

E(hn1
g−1
t (B)

) =
in∑

k=1

[
αkn E

(
µtknω(B) 1

g−1
t (B)

)
+ βknE

(
1
g−1
tkn

(B)
1
g−1
t (B)

)]

=
in∑

k=1

[
αkn E(µtknω(B) µtω(B)) + βknE

(
1
g−1
tkn

(B)
µtω(B)

)]

= E(hn(ω)µtω(B)).

Taking the limit as n → ∞ and using Equation (8), one infers that

P(A ∩ g−1
t (B)) = E(h1

g−1
t (B)

) = E(h(ω)µtω(B)) =
∫

A

µtω(B)dP,

where the last equality follows from Equation (7). Since λ(T ∗) = 1, this completes
the proof. �
Lemma 2. Let g be a process from T × 	 to X. Let C ⊆ A be a countably gener-
ated σ -algebra on 	 and µ a T ⊗ C-measurable mapping from T × 	 to M(X).
Assume that for each fixed A ∈ A and B ∈ B, one has

P(A ∩ g−1
t (B)) =

∫

A

µtω(B) dP (9)

for λ-a.e. t ∈ T . Then:

1. for λ-a.e. t ∈ T , µtω(·) is a regular conditional distribution P(g−1
t |C) of the

random variable gt ;
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2. for any fixed k ∈ N with k ≥ 2, the process g is essentially k-wise mutually
conditionally independent given C.

Proof. A sub-collection Fπ of a σ -algebra F is said to be a π -system for F if it
is closed under the formation of finite intersections and generates F . Let Cπ =
{Cn}∞n=1 and Bπ = {Bπ

m}∞m=1 be countable π -systems for C and B respectively. For
each pair (m, n), there exists a set Tmn with λ(Tmn) = 1 such that for all t ∈ Tmn,
Equation (9) holds withA = Cn andB = Bπ

m. So for any t ∈ T ∗ := ∩∞
m=1∩∞

n=1Tmn,
Equation (9) holds whenever A = Cn and B = Bπ

m, for all pairs (m, n) simulta-
neously. Because Cπ is a π -system that generates C, Dynkin’s π–λ theorem (see
[6], p. 404) implies that Equation (9) must hold whenever t ∈ T ∗, for all A ∈ C
and all B ∈ Bπ simultaneously. Finally, because Bπ is a π -system that generates
B, Equation (9) must hold whenever t ∈ T ∗, A ∈ C, and B ∈ B. In particular, µtω

must be a version of the regular conditional distribution P(g−1
t |C), for all t ∈ T ∗.

After this preliminary step, we prove by induction on k that for λ̄k-a.e. (t1, . . . , tk)
∈ T k , one has

E

(
k∏

i=1

1
g−1
ti

(Bi )

∣
∣
∣
∣
∣
C
)

=
k∏

i=1

µtiω(Bi) (10)

for all Bi ∈ Bπ (i = 1 to k). When k = 1, this is shown in the last paragraph.
As the induction hypothesis, suppose that (10) holds for k − 1 (where k ≥ 2).

That is, for λ̄k−1-a.e. (t1, . . . , tk−1) ∈ T k−1, one has

E

(
k−1∏

i=1

1
g−1
ti

(Bi )

∣
∣
∣
∣
∣
C
)

=
k−1∏

i=1

µtiω(Bi) (11)

for all Bi ∈ Bπ (i = 1 to k − 1). Take any (t1, . . . , tk−1) ∈ T k−1 with the above
property.

Fix any C ∈ Cπ , and any family Bi (i = 1, . . . , k) from the countable π -system
Bπ . Because (9) holds in particular when A = C ∩ [∩k−1

i=1 g−1
ti

(Bi)], it follows that
for λ-a.e. tk ∈ T ∗,

∫

C

k∏

i=1

1
g−1
ti

(Bi )
dP = P

(
C ∩

[
∩k

i=1g
−1
ti

(Bi)
])

=
∫

C∩
[
∩k−1

i=1 g−1
ti

(Bi )
] µtkω(Bk)dP =

∫

C

k−1∏

i=1

1
g−1
ti

(Bi )
µtkω(Bk)dP . (12)

Since µtkω(·) = P(g−1
tk

(·)|C) for tk ∈ T ∗,

E

(
k−1∏

i=1

1
g−1
ti

(Bi )
(ω) µtkω(Bk)

∣
∣
∣
∣
∣
C
)

= µtkω(Bk)E

(
k−1∏

i=1

1
g−1
ti

(Bi )

∣
∣
∣
∣
∣
C
)

=
k∏

i=1

µtiω(Bi) (13)



The essential equivalence of pairwise and mutual conditional independence 425

by Equation (11). Hence Equations (12) and (13) imply that

∫

C

k∏

i=1

1
g−1
ti

(Bi )
dP =

∫

C

k∏

i=1

µtiω(Bi) dP . (14)

Summarizing, given any fixed C ∈ Cπ and any fixed family Bi (i = 1, . . . , k)
from the countable π -system Bπ , we have shown that Equation (14) holds for
λ̄k−1-a.e. (t1, . . . , tk−1) ∈ T k−1 and for λ-a.e. tk ∈ T . Let D be the set of all
(t1, . . . , tk) ∈ T k such that Equation (14) fails. Then, we know that the iterated
integral

∫

t1∈T

. . .

∫

tk∈T

1D dλ(tk) . . . dλ(t1)

is zero. But the symmetry of Equation (14) implies that D is symmetric — i.e., for
any permutationπ on {1, . . . , k} and any (t1, . . . , tk) ∈ T k , one has (t1, . . . , tk) ∈ D

if and only if (tπ(1), . . . , tπ(q)) ∈ T k . For this reason, all the iterated integrals of
1D in any other order are also zero, which means that D is iteratively null. This
proves that Equation (14) holds for λ̄k-a.e. (t1, . . . , tk) ∈ T k .

For each n ∈ N and each list mk = (mi)
k
i=1 ∈ N

k , let T k(n, mk) denote the set
of all (t1, . . . , tk) ∈ T k such that Equation (14) holds for the sets Cn and Bπ

mi
(i = 1

to k) of the countable π -systems Cπ and Bπ respectively. We have just proved that
λ̄k(T k(n, mk)) = 1. Define the set

T̂ k := (T ∗)k ∩ ∩∞
n=1 ∩∞

m1=1 · · · ∩∞
mk=1 T k(n, mk)

where (T ∗)k denotes the k fold Cartesian product of the set T ∗. Then λ̄k(T̂ k) = 1.
For all (t1, . . . , tk) ∈ T̂ k and all Bi ∈ Bπ (i = 1 to k), Equation (14) holds for all
C ∈ Cπ . Because Cπ is a π -system for C, it follows that Equation (10) holds for all
(t1, . . . , tk) ∈ T̂ k , and all Bi ∈ Bπ (i = 1 to k). This proves the induction step.

Finally, since Bπ is a π -system for B, for each (t1, . . . , tk) ∈ T̂ k Equation (10)
holds for all Bi ∈ B (i = 1 to k), and also P(g−1

ti
|C) = µtiω. Hence, the random

variables gt1 , . . . , gtk are mutually conditionally independent given C. The rest is
clear. �

Remark 2. We have only shown that the set D where Equation (14) fails is itera-
tively null. In general it will not be T k-measurable. That is why we need the concept
of iterated completion.

Proof of Theorem 1. (1) �⇒ (2) follows from Lemmas 1 and 2.
Next consider (2) �⇒ (3). For k ≥ 2, let Ek be the collection of all the

(t1, . . . , tk) ∈ T k such that gt1 , . . . , gtk are mutually conditionally independent
given C, and let Dk = Ek×T ∞. By (2) λ̄∞(Dk) = λ̄k(Ek) = 1. Let D = ∩∞

k=2Dk .
It is clear that λ̄∞(D) = 1, and that for any (t1, t2, . . . , ) ∈ D, the random variables
in the sequence {gtk }∞k=1 are mutually conditionally independent given C.

(3) �⇒ (1) is obvious. �
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We use the following corollary in the remaining proofs. It is an obvious impli-
cation of Lemmas 1 and 2.

Corollary 4. Let g be a process from T × 	 to X. Let C ⊆ A be a countably
generated σ -algebra on 	 and µ a T ⊗ C-measurable mapping from T × 	 to
M(X). Then the following two conditions are equivalent.

1. For all A ∈ A and B ∈ B one has P(A ∩ g−1
t (B)) = ∫

A
µtω(B)dP for λ-a.e.

t ∈ T .
2. Given C, the process g has an essentially regular conditional distribution pro-

cess µ, and is essentially pairwise conditionally independent given C.

Proof of Proposition 3. Since µtω(·) is a regular conditional distribution P(g−1
t |C)

of the random variable gt for λ-a.e. t ∈ T , if the process g is essentially pairwise
conditionally independent given C, then Part 2 of Corollary 4 is satisfied, which
implies Part 1 of Corollary 4.

Since C ⊆ C′ and the mapping µ is T ⊗ C-measurable, it is automatically
T ⊗ C′-measurable. Because µ satisfies Part 1 of Corollary 4, we can apply Cor-
ollary 4 with C replaced by C′ to show that for λ̄2-a.e. (t1, t2) ∈ T 2, gt1 and gt1 are
conditionally independent given C′. �
Proof of Corollary 3. It is obvious that (3) �⇒ (1). The proof that (2) �⇒ (3) is
similar to the corresponding part in the proof of Theorem 1. It remains only to prove
that (1) �⇒ (2).

If the random variables gt are essentially pairwise exchangeable, then Lemmas
4 and 5 in [9] imply that there is a measurable mapping ω 	→ µω from (	, A)

to M(X) such that for each A ∈ A and B ∈ B, and for λ-a.e. t ∈ T , one has
P(A ∩ g−1

t (B)) = ∫
A

µω(B) dP . (Note that the proofs of Lemmas 4 and 5 in [9]
still carry through without the additional assumption of pairwise measurable proba-
bilities that is made in [9]. Nor does it matter that the earlier paper uses the classical
rather than the iterative definition of a product null set.) Let C be the sub-σ -algebra
of A generated by µω, which is countably generated. This means that Part 1 of
Corollary 4 is satisfied. By the equivalence in Corollary 4, we obtain that for λ-a.e.
t ∈ T , µω(·) is a regular conditional distribution P(g−1

t |C) of the random variable
gt , and for λ̄2-a.e. (t1, t2) ∈ T 2, gt1 and gt2 are conditionally independent given
C. By Theorem 1, for λ̄k-a.e. (t1, . . . , tk) ∈ T k the random variables gt1 , . . . , gtk

are mutually conditionally independent given C with essentially identical regular
conditional distributions. In particular, for λ̄k-a.e. (t1, . . . , tk) ∈ T k and for any
Bi ∈ B (i = 1 to k),

P
(
∩k

i=1g
−1
ti

(Bi)

∣
∣
∣ C
)

= E

(
k∏

i=1

1
g−1
ti

(Bi )

∣
∣
∣
∣
∣
C
)

=
k∏

i=1

µk
ω(Bi),

which implies that

P

(

(gt1 , . . . , gtk )
−1

(
k∏

i=1

Bi

))

=
∫

	

µk
ω

(
k∏

i=1

Bi

)

dP.
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But the family of k-fold Cartesian product sets
∏k

i=1 Bi with Bi ∈ B (i = 1, . . . , k)
is a π -system for the k-fold product σ -algebra Bk . So for λ̄k-a.e. (t1, . . . , tk) ∈ T k ,
it follows that

P((gt1 , . . . , gtk )
−1(V )) =

∫

	

µk
ω(V )dP

for all V ∈ Bk . Hence, the random variables gt are essentially k-wise exchangeable.
�
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