Peter J. Hammond ·Yeneng Sun

The essential equivalence of pairwise and mutual conditional independence*

Received: 26 January 2005 / Revised version: 10 June 2005 / Published online: 7 February 2006 – © Springer-Verlag 2006

Abstract. For a large collection of random variables, pairwise conditional independence and mutual conditional independence are shown to be essentially equivalent — i.e., equivalent to up to null sets. Unlike in the finite setting, a large collection of random variables remains essentially conditionally independent under further conditioning. The essential equivalence of pairwise and multiple versions of exchangeability also follows as a corollary. Our result relies on an iterated extension of Bledsoe and Morse's completion of the product of two measure spaces.

1. Introduction

Conditional independence is a fundamental concept in probability theory. For example, a Markov process can be defined as a stochastic process in which the past and future are conditionally independent given the present. Here is a version of a classical example of Bernstein (see [8, p. 126]): take three random variables α , β and γ such that α and β represent two independent tosses of a fair coin (with 1 for heads and 0 for tails), while the value of γ is 1 if the outcomes of the first two tosses are different and 0 otherwise. These three random variables are pairwise independent but not mutually independent. Since independence is a trivial case of conditional independence, this also means that pairwise conditional independence and its multivariate analog are not equivalent for a finite collection of random variables. Also, despite the fact that independence is a trivial version of conditional independence, two independent random variables may lose their independence under conditioning; in the example above, α and β are independent, but not conditionally independent given γ (see [4, p. 229]).

The main aim of this paper is to show that for a large collection of random variables that are essentially pairwise conditionally independent, almost any randomly

P.J. Hammond: Department of Economics, Stanford University, Stanford, CA 94305, USA. e-mail: peter.hammond@stanford.edu

Y. Sun: Department of Mathematics, National University of Singapore, 2 Science Drive 2, Singapore 117543; and Department of Economics, National University of Singapore, 1 Arts Link, Singapore 117570. e-mail: matsuny@nus.edu.sg

^{*}Part of this work was done while Peter Hammond was visiting the National University of Singapore in March–April 2004. The final version was completed while Yeneng Sun was on sabbatical leave at the University of Illinois at Urbana–Champaign and Stanford University in October 2004 – May 2005.

drawn (finite or infinite) sequence of random variables from the collection will be mutually conditionally independent. This can be illustrated by taking a large number of mutually independent "copies" of the above three random variables α , β and γ . It is easy to see that any triple in this collection is not mutually independent if and only if all three are from the same copy. In particular, almost all triples are mutually independent.

We will also show that a large collection of random variables will remain essentially conditionally independent under further conditioning. In addition, the essential equivalence of pairwise and multiple versions of exchangeability follows as a corollary. To formulate and prove these results, we generalize Bledsoe and Morse's completion of the product of two measure spaces (see [3]).

In this paper, a large collection of random variables is formalized as a process indexed by points in an atomless probability space, which is simply called a continuum of random variables. As discussed in [15] and some of the work cited there, such processes occur in many economic models, especially those with essentially independent random variables. In particular, a large literature in macroeconomics has relied on a version of the exact law of large numbers for a continuum of independent random variables/stochastic processes — see [16]. Note that an atomless probability index space provides a convenient idealization for economic models with a large but finite number of agents. From a technical point of view, such an idealization is often necessary for developing the relevant models of important economic phenomena such as competitive markets.

Finally, our exact equivalence results in this paper also correspond to some asymptotic results for a triangular array of random variables. Specifically, following Section 5 of [14] and Section 9 of [15], the routine procedure of lifting, pushing down, and transfer can be applied to processes on a special Loeb product probability space in order to demonstrate an appropriate form of asymptotic equivalence between pairwise and mutual conditional independence for such an array.

The paper is organized as follows. Section 2 generalizes an idea of Bledsoe and Morse on extending the product of two measures to the setting of finite or infinite products of measure spaces. This is done by adding the iterated null sets to the relevant product σ-algebras. Section 3 presents the main results with some discussion of the literature. The proofs are given in Section 4.

2. Extended products of measure spaces

Let (T_k, T_k, λ_k) , $k \in \mathbb{N}$ be a sequence of complete and countably additive probability spaces. Then $(\prod_{k=1}^n T_k, \otimes_{k=1}^n T_k, \otimes_{k=1}^n \lambda_k)$ is the product of the first n probability spaces, whereas $(\prod_{k=1}^{\infty} T_k, \otimes_{k=1}^{\infty} T_k, \otimes_{k=1}^{\infty} \lambda_k)$ is the infinite product of the entire sequence of probability spaces.

Though we can always assume that the above product probability spaces are complete in the sense that subsets of measure zero are included as measurable sets with zero measure, this completion is not enough for us to derive our main result namely, the essential equivalence of pairwise and mutual conditional independence (see Remark 2 below).A stronger form of "iterative" completion will be used for the products $(\prod_{k=1}^n T_k, \otimes_{k=1}^n T_k, \otimes_{k=1}^n \lambda_k)$ and $(\prod_{k=1}^\infty T_k, \otimes_{k=1}^\infty T_k, \otimes_{k=1}^\infty \lambda_k)$, involving

those "iteratively null" sets whose indicator functions have value zero for iterated integrals of all orders. The following definition extends what Bledsoe and Morse [3] suggested for the case of two measure spaces (see also [5, p. 108]).

Definition 1. A set $E \subseteq \prod_{k=1}^{n} T_k$ is said to be **iteratively null** if for every permu*tation* π *on* $\{1, \ldots, n\}$ *, the iterated integral*

$$
\int_{t_{\pi(1)} \in T_{\pi(1)}} \cdots \int_{t_{\pi(n)} \in T_{\pi(n)}} 1_E \ d\lambda_{\pi(n)}(t_{\pi(n)}) \ldots d\lambda_{\pi(1)}(t_{\pi(1)}) \tag{1}
$$

 $\prod_{k=1}^{n} T_k$ *; in other words, for* $\lambda_{\pi(1)}$ *-a.e.* $t_{\pi(1)} \in T_{\pi(1)}$ *,* $\lambda_{\pi(2)}$ *-a.e.* $t_{\pi(2)} \in T_{\pi(2)}$ *, ..., is well-defined with value zero, where* 1_E *is the indicator function of the set* E *in* $\lambda_{\pi(n)}$ *-a.e.* $t_{\pi(n)} \in T_{\pi(n)}$ *, one has* $(t_1, t_2, \ldots, t_n) \notin E$ *.*

Let ρ^2 denote the product Lebesgue measure on the unit square [0, 1]². As mentioned in [5, p. 113], Sierpiński constructed a subset A of $[0, 1]^2$ whose ρ^2 -outer measure is one, although its intersection with every line consists of at most two points. Obviously the set A is iteratively null, implying that its ρ^2 -inner measure is zero. Thus, A is not in the usual product Lebesgue σ -algebra. Also, for the special class of atomless Loeb probability spaces constructed in [12] and [13], it is shown in [2] that there is a continuum of increasing Loeb product null sets with large gaps, in the sense that their set differences have outer measure one under the usual product of two atomless Loeb probability spaces. Since a Loeb product is an extension of the usual product with the Fubini property, Loeb product null sets must be iteratively null. Hence, there is a large class of iteratively null sets that are not measurable with respect to the usual completion of the product $σ$ -algebra.

The following two propositions show that one can extend both the finite and the infinite product probability spaces $(\prod_{k=1}^n T_k, \otimes_{k=1}^n T_k, \otimes_{k=1}^n \lambda_k)$ and $(\prod_{k=1}^\infty T_k, \lambda_k)$ $\otimes_{k=1}^{\infty} T_k$, $\otimes_{k=1}^{\infty} \lambda_k$) respectively by including all the iteratively null sets, and then forming the iterated completion.

Proposition 1. *Given any* $n \in \mathbb{N}$ *, let* \mathcal{E}_n *denote the family of all iteratively null sets* in $\prod_{k=1}^{n} T_k$. Then there exists a complete and countably additive probability space $(\prod_{k=1}^{n} T_k, \bar{\otimes}_{k=1}^{n} T_k, \bar{\otimes}_{k=1}^{n} \lambda_k)$ *that satisfies the Fubini property, with*

$$
\begin{aligned}\n\bar{\otimes}_{k=1}^{n} \mathcal{T}_{k} &:= \sigma([\otimes_{k=1}^{n} \mathcal{T}_{k}] \cup \mathcal{E}_{n}) \\
&= [\otimes_{k=1}^{n} \mathcal{T}_{k}] \Delta \mathcal{E}_{n} := \{ B \Delta E : B \in \otimes_{k=1}^{n} \mathcal{T}_{k}, \ E \in \mathcal{E}_{n} \} \\
and \quad [\bar{\otimes}_{k=1}^{n} \lambda_{k}] (B \Delta E) &= [\otimes_{k=1}^{n} \lambda_{k}] (B) \text{ whenever } B \in \otimes_{k=1}^{n} \mathcal{T}_{k}, \ E \in \mathcal{E}_{n}.\n\end{aligned}
$$

Proposition 2. *There exists a countably additive probability space, denoted by* $(\prod_{k=1}^{\infty} T_k, \bar{\otimes}_{k=1}^{\infty} T_k, \bar{\otimes}_{k=1}^{\infty} \lambda_k)$ *, in which* $\bar{\otimes}_{k=1}^{\infty} T_k$ *is the* σ -algebra generated by the *union* $G := \bigcup_{n=1}^{\infty} G_n$ *of the families* G_n *of cylinder sets taking the form* $A \times \Box^{\infty}$ *T*, for some $A \subseteq \overline{\otimes}^n$ *T*, whereas $\overline{\otimes}^{\infty}$), is the unique sountably addi- $\prod_{k=n+1}^{\infty} T_k$ *for some* $A \in \bar{\otimes}_{k=1}^n T_k$ *, whereas* $\bar{\otimes}_{k=1}^{\infty} \lambda_k$ *is the unique countably additive extension to this* σ -algebra of the set function μ : $\mathcal{G} \rightarrow [0, 1]$ *defined so that* $\mu(A \times \prod_{k=n+1}^{\infty} T_k) := \bar{\otimes}_{k=1}^{n} \lambda_k(A)$ *for all* $A \in \bar{\otimes}_{k=1}^{n} T_k$ *. Moreover, for any* $D \in \bar{\otimes}_{k=1}^{\infty} T_k$, there exist $B \in \bar{\otimes}_{k=1}^{\infty} T_k$ and $E \in \bar{\otimes}_{k=1}^{\infty} T_k$ *such that* $D = B \Delta E$ and $\left[\bar{\otimes}_{k=1}^{\infty} \lambda_k\right](E) = 0.$

Unlike in the finite product setting, the infinite product measure space ($\prod_{k=1}^{\infty} T_k$, $\bar{\otimes}_{k=1}^{\infty} \mathcal{I}_k$, $\bar{\otimes}_{k=1}^{\infty} \lambda_k$) in Proposition 2 above may not be complete in the usual sense. One can always complete it by the usual procedure (see, for example, [5] pp. 78– 79). We still use the same notation to denote the completion. That completion still has the property stated in the last sentence of Proposition 2.

The countably additive probability spaces $(\prod_{k=1}^n T_k, \bar{\otimes}_{k=1}^n T_k, \bar{\otimes}_{k=1}^n \lambda_k)$ and $(\prod_{k=1}^{\infty} T_k, \bar{\otimes}_{k=1}^{\infty} T_k, \bar{\otimes}_{k=1}^{\infty} \lambda_k)$ will be called the *iterated completions* of $(\prod_{k=1}^n T_k,$ $\otimes_{k=1}^{n-1} \mathcal{T}_k$, $\otimes_{k=1}^{n-1} \lambda_k$) and of $(\prod_{k=1}^{\infty} T_k, \otimes_{k=1}^{\infty} T_k, \otimes_{k=1}^{\infty} \lambda_k)$, respectively. They will also be called *iteratively complete product spaces*.

When all the probability spaces (T_k, T_k, λ_k) $(k \in \mathbb{N})$ are copies of (T, T, λ) , let $(T^n, \bar{T}^n, \bar{\lambda}^n)$ and $(T^{\infty}, \bar{T}^{\infty}, \bar{\lambda}^{\infty})$ respectively denote the iterated completions of the n-fold and infinite product probability spaces.

3. Main results

We first fix some notation. Let $(T, \mathcal{T}, \lambda)$ be a complete atomless probability space. Let (Ω, \mathcal{A}, P) be a complete, countably additive probability space. Let C be a subσ-algebra of the σ-algebra A, and X a complete separable metric space with the Borel σ -algebra B. Let $\mathcal{M}(X)$ be the space of Borel probability measures on X endowed with the topology of weak convergence of measures. It is easy to see that the measurability of a mapping ϕ from a measurable space (I, \mathcal{I}) to $\mathcal{M}(X)$ with the Borel σ -algebra generated by the topology of weak convergence of measures is equivalent to the *I*-measurability of each mapping $\phi(\cdot)(B)$, for all $B \in \mathcal{B}$ (see, for example, [9, p. 748]).

The following definition introduces some basic concepts and notation.

Definition 2. *A process* g *is a mapping from* $T \times \Omega$ *to* X *such that for all* $t \in T$ *, the mapping* $g_t(\cdot) = g(t, \cdot)$ *is A-measurable* (*i.e.,* g_t *is a random variable*).

1. Let $n \in \mathbb{N}$ with $n \geq 2$. A finite sequence { f_k } $_{k=1}^n$ of X-valued random variables *on* (Ω, \mathcal{A}, P) *is said to be* mutually conditionally independent *given* \mathcal{C} *if, for any Borel sets* $B_k \in \mathcal{B}$, $k = 1, \ldots, n$, the conditional probabilities satisfy

$$
P(\bigcap_{k=1}^{n} f_k^{-1}(B_k)|\mathcal{C}) = \prod_{k=1}^{n} P(f_k^{-1}(B_k)|\mathcal{C}).
$$
 (2)

When $n = 2$ *the two random variables* f_1 , f_2 *satisfing Equation (2) are said to be* pairwise conditionally independent *given* C*.*

- 2. A sequence $\{f_k\}_{k=1}^{\infty}$ *of* X-valued random variables on (Ω, \mathcal{A}, P) *is said to be* mutually conditionally independent *given* C *if, for every* $n \geq 2$ *, the finite* $\mathit{sequence}\left\{f_k\right\}_{k=1}^n$ of X -valued random variables is mutually conditionally inde*pendent given* C*.*
- *3. Let* $n \in \mathbb{N}$ *with* $n \ge 2$ *. The process g is said to be* essentially *n*-wise mutually conditionally independent *given* C *if, for* $\bar{\lambda}^n$ -a.e. $(t_1, \ldots, t_n) \in T^n$, the random *variables* g_{t_1}, \ldots, g_{t_n} *are mutually conditionally independent given* C. When n = 2*,* g *is said to be* essentially pairwise conditionally independent *given* C*.*
- *4. The process* g *is said to be* essentially mutually conditionally independent *given* C if, for $\bar{\lambda}^{\infty}$ -a.e. $\{t_k\}_{k=1}^{\infty} \in T^{\infty}$, the sequence of random variables $\{g_{t_k}\}_{k=1}^{\infty}$ is *mutually conditionally independent given* C*.*
- *5. Given the process* $g: T \times \Omega \to X$ *and the* σ -*algebra* $C \subseteq A$ *,* $a \in T \otimes C$ *measurable mapping* $\mu : T \times \Omega \rightarrow \mathcal{M}(X)$ *is said to be an essentially regular* conditional distribution process *if for* λ -*a.e.* $t \in T$ *the C-measurable map* $ping \omega \mapsto \mu_{t\omega}$ *is a regular conditional distribution* $P(g_t^{-1}|\mathcal{C})$ *of the random variable* g_t .
- *6. The* σ*-algebra* C *is said to be* countably generated *if there is a countable family* $F \subseteq \mathcal{C}$ *that generates* \mathcal{C} *.*

For the special case of an exchangeable process under the assumption of pairwise measurable probabilities, Theorems 1 and 2 of [9] imply the regularity condition in Part 5 of Definition 2. For the general case, one result in a paper of ours yet to be completed establishes the equivalence between this regularity condition and the measurability condition that for all $A \in \mathcal{A}$ and $B \in \mathcal{B}$, the real-valued function $P(A \cap g_t^{-1}(B))$ on T is T-measurable.

The following theorem shows that essential pairwise conditional independence is equivalent to its finite or infinite multivariate versions.

Theorem 1. *Suppose that the process g from* $T \times \Omega$ *to* X *and the* σ -*algebra* $C \subseteq \mathcal{A}$ *admit an essentially regular conditional distribution process* µ*. Provided that* C *is countably generated, the following are equivalent:*

- *1. The process* g *is essentially pairwise conditionally independent given* C*.*
- *2. For each fixed* $n \in \mathbb{N}$ *with* $n ≥ 2$ *, the process g is essentially n-wise mutually conditionally independent given* C*.*
- *3. The process* g *is essentially mutually conditionally independent given* C*.*

Because (unconditional) independence is a special case of conditional independence given the trivial σ -algebra, the next result is an obvious implication of Theorem 1.

Corollary 1. Let g be a process from $T \times \Omega$ to X such that the distribution mapping $P g_t^{-1}$ from T to $\mathcal{M}(X)$ is T-measurable. Then the following are equivalent:

- *1. For* $\bar{\lambda}^2$ -*a.e.* $(t_1, t_2) \in T^2$, the random variables g_{t_1} and g_{t_2} are independent.
- *2. For* $\bar{\lambda}^n$ *-a.e.* $(t_1, \ldots, t_n) \in T^n$, the random variables g_{t_1}, \ldots, g_{t_n} are mutually *independent.*
- 3. For $\bar{\lambda}^{\infty}$ -a.e. $\{t_k\}_{k=1}^{\infty} \in T^{\infty}$, the sequence $\{g_{t_k}\}_{k=1}^{\infty}$ of random variables is mutu*ally independent.*

Remark 1. When g is essentially pairwise independent, Proposition 1.1 in [14] shows that g is not measurable with respect to the usual product σ -algebra $\mathcal{T} \otimes \mathcal{A}$ except in some trivial cases; in general g is not measurable even with respect to the iterated completion of $T \otimes A$ because that only involves including some extra null sets. However, if both $(T, \mathcal{T}, \lambda)$ and (Ω, \mathcal{A}, P) are the special Loeb probability spaces developed in [12] and [13], one can work with non-trivial independent processes that are jointly measurable with respect to a specially constructed extension of the usual measure-theoretic product ($T \times \Omega$, $T \otimes A$, $\lambda \otimes P$) that retains

the Fubini property. This extended Fubini property is used widely in the proofs of Theorem 3 and Proposition 3.4 of [14]. Corollary 1 generalizes the corresponding result without using the extended Fubini property. On the other hand, in order to prove an exact law of large numbers of the kind we mention in Section 1, one does need the extended Fubini property (see [16]).

The following proposition shows that essential pairwise conditional independence is preserved under further conditioning (i.e. when the underlying countably generated $σ$ -algebra is enlarged).

Proposition 3. Suppose that the process g from $T \times \Omega$ to X and the countably *generated* σ*-algebra* C ⊆ A *admit an essentially regular conditional distribution process* ^µ*. For any given countably generated sub-*σ*-algebra* ^C *of* A *that contains* C*, if the process* g *is essentially pairwise conditionally independent given* C*, then it is essentially pairwise conditionally independent given* ^C *.*

As noted in the introduction, two independent random variables may lose their independence under conditioning (see [4, p. 217]). However, the following result, which is an obvious corollary of Proposition 3, shows that a large collection of essentially independent random variables will never lose their essential independence under conditioning via any countably generated σ -algebra.

Corollary 2. Let g be a process from $T \times \Omega$ to X such that the distribution mapping $P g_t^{-1}$ from T to $\mathcal{M}(X)$ is T-measurable. Suppose that for $\bar{\lambda}^2$ -a.e. $(t_1, t_2) \in T^2$, *the random variables* g_t *and* g_t *are independent. Then, given any countably generated sub-*σ*-algebra* C *of* A*, the process* g *is essentially pairwise conditionally independent given* C*.*

Exchangeability is another fundamental concept in probability theory with many applications; see, for example, the books [1], [4] and the survey papers [10], [11]. Some work such as [7] also uses the weaker concept of pairwise exchangeability. Theorem 4 and Proposition 3.5 of [14] show that essential pairwise exchangeability is equivalent to its finite or infinite multivariate versions for processes on Loeb product spaces. The following corollary extends these results to the general setting without assuming that the process g satisfies the extended Fubini property cited in Remark 1. The proof here is based on Theorem 1 and on a de Finetti type result stating that essential pairwise exchangeability is equivalent to essential pairwise conditional independence with identical distributions.

Corollary 3. Let g be a process from $T \times \Omega$ to X. Then the following are equiva*lent.*

- *1. The random variables* g_t *are essentially pairwise exchangeable i.e., there is a symmetric distribution* v_2 *on* X^2 *such that for* $\bar{\lambda}^2$ -*a.e.* $(t_1, t_2) \in T^2$ *,* g_{t_1} *and* gt² *have a joint distribution* ν2*.*
- *2. For* $n \geq 2$, the random variables g_t are essentially n-wise exchangeable *i.e., there is a symmetric distribution* $ν_n$ *on* $Xⁿ$ *such that the joint distribution of* g_{t_1}, \ldots, g_{t_n} *is* v_n *for* $\bar{\lambda}^n$ *-a.e.* $(t_1, \ldots, t_n) \in T^n$ *.*
- 3. For λ^{∞} -a.e. $\{t_k\}_{k=1}^{\infty} \in T^{\infty}$, $\{g_{t_k}\}_{k=1}^{\infty}$ *is an exchangeable sequence of random variables.*

4. The Proofs

4.1. Proof of the results in Section 2

Proof of Proposition 1. It is easy to see that \mathcal{E}_n is a *hereditary* σ -ring in the sense that $D \in \mathcal{E}_n$ whenever $D \subseteq E \in \mathcal{E}_n$, whereas $\bigcup_{m=1}^{\infty} D_m \in \mathcal{E}_n$ for any sequence D_m ($m \in \mathbb{N}$) of sets in \mathcal{E}_n . The usual Fubini theorem also implies that if $E \in$ $\mathcal{E}_n \cap \otimes_{k=1}^n \mathcal{T}_k$, then $\otimes_{k=1}^n \lambda_k(E) = 0$. By the usual argument on completing a measure (see, for example, [5] pp. 78–79), the σ -algebra generated by $\left[\otimes_{k=1}^{n} \mathcal{T}_{k}\right] \cup \mathcal{E}_{n}$, which will be denoted by $\bar{\otimes}_{k=1}^{n}T_k$, is the collection of all sets A of the form $A = B \Delta E$ for $B \in \otimes_{k=1}^n T_k$ and $E \in \mathcal{E}_n$.

Now extend the product measure $\otimes_{k=1}^n \lambda_k$ to a measure $\bar{\otimes}_{k=1}^n \lambda_k$ on $\bar{\otimes}_{k=1}^n \mathcal{T}_k$ by letting $\left[\bar{\otimes}_{k=1}^n \lambda_k\right](A) = \otimes_{k=1}^n \lambda_k(B)$, which is a well-defined countably additive measure on $\overline{\hat{\otimes}_{k=1}^{n}} \mathcal{T}_{k}$.

If $\left[\bar{\otimes}_{k=1}^n \lambda_k\right](A) = 0$, then $\otimes_{k=1}^n \lambda_k(B) = 0$. By the usual Fubini theorem, B is then iteratively null, which implies that A is also iteratively null. Since all the measures $\lambda_1, \ldots, \lambda_n$ are complete, any subset D of A is also iteratively null, and so belongs to $\bar{\otimes}_{k=1}^n \mathcal{T}_k$. Hence $(\prod_{k=1}^n \bar{T}_k, \bar{\otimes}_{k=1}^n \mathcal{T}_k, \bar{\otimes}_{k=1}^n \lambda_k)$ is a complete measure space.

Suppose that $f : \prod_{k=1}^n T_k \to \mathbb{R}_+$ is any non-negative $\bar{\otimes}_{k=1}^n \lambda_k$ -integrable function. Then f is the pointwise limit of an increasing sequence f_m of $\bar{\otimes}_{k=1}^n \mathcal{T}_k$ measurable simple functions. For each m, there exists a $\otimes_{k=1}^{n}T_{k}$ -measurable simple function g_m that differs from f_m on an iteratively null set \overline{E}_m . Let $E := \bigcup_{m=1}^{\infty} E_m$, which is also iteratively null. Then each pair of functions satisfies $f_m \equiv g_m$ outside the set E. So the sequence g_m of functions also converges to f outside the set E. But all the functions g_m are $\otimes_{k=1}^n T_k$ -measurable, so the sequence g_m must converge $\otimes_{k=1}^n \lambda_k$ -a.e. to a limit g that is $\otimes_{k=1}^n T_k$ -measurable and equals f outside the iteratively null set E. Thus, $\int f d(\bar{\otimes}_{k=1}^n \lambda_k) = \int g d(\otimes_{k=1}^n \lambda_k)$. Since any *n*-fold iterated integral of the indicator function 1_E is zero, any *n*-fold iterated integral of f w.r.t. $\bar{\otimes}_{k=1}^n \lambda_k$ equals the corresponding iterated integral of g w.r.t. $\otimes_{k=1}^n \lambda_k$. By the usual Fubini property, $\int g d(\otimes_{k=1}^{n} \lambda_k)$ equals any *n*-fold iterated integral of g; it follows that $\int f d(\bar{\otimes}_{k=1}^n \lambda_k)$ equals any *n*-fold iterated integral of f.

When $h: \prod_{k=1}^{n} T_k \to \mathbb{R}$ is any $\bar{\otimes}_{k=1}^{n} \lambda_k$ -integrable function, we can apply the above result separately to the positive and negative parts h^+ and h^- of h to show that $\int h d(\bar{\otimes}_{k=1}^n \lambda_k)$ equals any *n*-fold iterated integral of *h*. This proves that the iterated completion of each finite product retains the usual Fubini property. 

Proof of Proposition 2. It is obvious that μ is a finitely additive measure on the algebra G . The usual proof that an infinite-dimensional product measure exists (see [4], p. 193) can be used here to show that μ is actually countably additive. Note that this proof uses the Fubini property. But any iterative completion of a finite product probability space also has the Fubini property, so this does not create any problem. Therefore μ can be extended to the countably additive measure $\bar{\otimes}_{k=1}^{\infty} \lambda_k$ on $\sigma(\mathcal{G}) = \bar{\otimes}_{k=1}^{\infty} \mathcal{T}_k$ by the Carathéodory Extension Theorem.

Let M be the class of all sets $D \in \bar{\otimes}_{k=1}^{\infty} T_k$ satisfying $D = B \Delta E$ for some $B \in \otimes_{k=1}^{\infty} T_k$ and $E \in \bar{\otimes}_{k=1}^{\infty} T_k$ with $\left[\bar{\otimes}_{k=1}^{\infty} \lambda_k\right](E) = 0$. It is easy to check that the complement of a set in M is still in M , as is the union of an increasing sequence of sets in M. Hence, M is a monotone class. Because M contains \mathcal{G} , the usual Monotone Class Theorem (see, for example, Theorem 1, [4], p. 7) implies that $\mathcal M$ equals $\bar{\otimes}^{\infty}$, $\mathcal T_k$. The rest is clear. equals $\bar{\otimes}_{k=1}^{\infty}T_k$. The rest is clear.

4.2. Proof of the results in Section 3

Lemma 1. Let g be a process from $T \times \Omega$ to X. Let $C \subseteq A$ be a countably gener*ated* σ -algebra on Ω and μ a $\mathcal{T} \otimes \mathcal{C}$ -measurable mapping from $T \times \Omega$ to $\mathcal{M}(X)$. *Suppose that for* $\bar{\lambda}^2$ -*a.e.* $(t_1, t_2) \in T^2$ *, one has*

$$
P(g_{t_1}^{-1}(B_1) \cap g_{t_2}^{-1}(B_2)|\mathcal{C}) = \mu_{t_1\omega}(B_1)\mu_{t_2\omega}(B_2) \text{ whenever } B_1, B_2 \in \mathcal{B}. \tag{3}
$$

Then for all $A \in \mathcal{A}$ *and* $B \in \mathcal{B}$ *one has* $P(A \cap g_t^{-1}(B)) = \int_A \mu_{t\omega}(B) dP$ *for* λ -*a.e.* $t \in T$.

Proof. Consider the case when B_2 in Equation (3) is the whole space Ω . Then, for $\bar{\lambda}^2$ -a.e. $(t', t) \in T^2$, one has

$$
P(g_{t'}^{-1}(B)|\mathcal{C}) = P(g_{t'}^{-1}(B) \cap g_t^{-1}(\Omega)|\mathcal{C}) = \mu_{t'\omega}(B)\mu_{t\omega}(\Omega) = \mu_{t'\omega}(B)
$$

for all $B \in \mathcal{B}$, which implies that for λ -a.e. $t' \in T$, the measure $\mu_{t' \omega}$ is a version of the regular conditional distribution $P(g_{t'}^{-1}(\cdot)|\mathcal{C})$ of $g_{t'}$ conditioned on \mathcal{C} .

Now fix $B \in \mathcal{B}$. By hypothesis, there exists a fixed set T_1 with $\lambda(T_1) = 1$ such that, for each $t' \in T_1$, one has

$$
P(g_{t'}^{-1}(B) \cap g_t^{-1}(B)|\mathcal{C}) = \mathbb{E}(\mathbb{1}_{g_{t'}^{-1}(B)} \mathbb{1}_{g_t^{-1}(B)}|\mathcal{C}) = \mu_{t'\omega}(B)\mu_{t\omega}(B) \tag{4}
$$

for λ -a.e. $t \in T$, and also

$$
P(g_{t'}^{-1}(B)|\mathcal{C}) = \mathbb{E}(1_{g_{t'}^{-1}(B)}|\mathcal{C}) = \mu_{t'\omega}(B). \tag{5}
$$

Equations (4) and (5) imply in particular that for any $t' \in T_1$, one has

$$
P(g_{t'}^{-1}(B) \cap g_t^{-1}(B)) = \int_{\Omega} P(g_{t'}^{-1}(B) \cap g_t^{-1}(B) | \mathcal{C}) dP
$$

=
$$
\int_{\Omega} \mu_{t'\omega}(B) \mu_{t\omega}(B) dP = \int_{\Omega} \mathbb{E}(\mathbb{1}_{g_{t'}^{-1}(B)}(\omega) \mu_{t\omega}(B) | \mathcal{C}) dP
$$

=
$$
\int_{\Omega} \mathbb{1}_{g_{t'}^{-1}(B)}(\omega) \mu_{t\omega}(B) dP
$$
 (6)

for λ -a.e. $t \in T$.

Fix any $A \in \mathcal{A}$. Consider the Hilbert space $L_2(\Omega, \mathcal{A}, P)$, and let L be the smallest closed linear subspace which contains both the family of C -measurable functions $\{\mu_{t\omega}(B) \mid t \in T_1\}$ and the family of indicator functions $\{1_{g_t^{-1}(B)} \mid t \in T_1\}$. Let the function $h : \Omega \to \mathbb{R}$ be the orthogonal projection of the indicator function 1_A onto L, with h^{\perp} as its orthogonal complement. By definition, $1_A = h + h^{\perp}$ where h^{\perp} is orthogonal to each member of L. So for all $t \in T_1$, one has $0 =$

 $\mathbb{E}(h^{\perp}\mu_{t\omega}(B)) = \int_{\Omega} h^{\perp}\mu_{t\omega}(B)dP$ and $0 = \mathbb{E}(h^{\perp}1_{g_t^{-1}(B)}) = \int_{\Omega} h^{\perp}1_{g_t^{-1}}(B)dP$. Because $1_A = h + h^{\perp}$, it follows that for all $t \in T_1$,

$$
\mathbb{E}(1_A \mu_{t\omega}(B)) = \mathbb{E}(h \mu_{t\omega}(B)) \text{ and } \mathbb{E}(1_A 1_{g_t^{-1}(B)}) = \mathbb{E}(h 1_{g_t^{-1}(B)}).
$$
 (7)

Next, because $h \in L$, there exists a sequence of functions

$$
h_n(\omega) = \sum_{k=1}^{i_n} \left[\alpha_{kn} \,\mu_{t_{kn}\omega}(B) + \beta_{kn} 1_{g_{t_{kn}}^{-1}(B)}(\omega) \right] \quad (n = 1, 2, \dots,)
$$

with $t_{kn} \in T_1$, as well as α_{kn} and β_{kn} ($k = 1, \ldots, i_n$) all real constants, such that $h_n \to h$ in the norm of $L_2(\Omega, \mathcal{A}, P)$ — that is, $\int_{\Omega} (h_n - h)^2 dP \to 0$.

Let T_{kn} be the intersection of the set of t for which Equation (4) holds when $t' = t_{kn}$ with the set of t' for which Equation (5) holds. By hypothesis, $\lambda(T_{kn}) = 1$ because each $t_{kn} \in T_1$. Define $T^* := T_1 \cap \left(\bigcap_{n=1}^{\infty} \bigcap_{k=1}^{i_n} T_{kn}\right)$. Because T^* is the intersection of a countable family of sets all having measure 1 w.r.t. λ , it follows that $\lambda(T^*) = 1$. Also, for any $t \in T^*$, Equation (7) and the limiting property of the sequence h_n imply that

$$
P(A \cap g_t^{-1}(B)) = \mathbb{E}(1_A 1_{g_t^{-1}(B)}) = \mathbb{E}(h \, 1_{g_t^{-1}(B)}) = \lim_{n \to \infty} \mathbb{E}(h_n 1_{g_t^{-1}(B)}) \tag{8}
$$

It follows from Equations (4)–(6) that

$$
\mathbb{E}(h_n 1_{g_t^{-1}(B)}) = \sum_{k=1}^{i_n} \left[\alpha_{kn} \mathbb{E} \left(\mu_{t_{kn}\omega}(B) 1_{g_t^{-1}(B)} \right) + \beta_{kn} \mathbb{E} \left(1_{g_{t_{kn}}^{-1}(B)} 1_{g_t^{-1}(B)} \right) \right]
$$

=
$$
\sum_{k=1}^{i_n} \left[\alpha_{kn} \mathbb{E}(\mu_{t_{kn}\omega}(B) \mu_{t\omega}(B)) + \beta_{kn} \mathbb{E} \left(1_{g_{t_{kn}}^{-1}(B)} \mu_{t\omega}(B) \right) \right]
$$

=
$$
\mathbb{E}(h_n(\omega) \mu_{t\omega}(B)).
$$

Taking the limit as $n \to \infty$ and using Equation (8), one infers that

$$
P(A \cap g_t^{-1}(B)) = \mathbb{E}(h1_{g_t^{-1}(B)}) = \mathbb{E}(h(\omega)\mu_{t\omega}(B)) = \int_A \mu_{t\omega}(B)dP,
$$

where the last equality follows from Equation (7). Since $\lambda(T^*) = 1$, this completes the proof. \Box

Lemma 2. Let g be a process from $T \times \Omega$ to X. Let $C \subseteq A$ be a countably gener*ated* σ -algebra on Ω and μ a $\mathcal{T} \otimes \mathcal{C}$ -measurable mapping from $T \times \Omega$ to $\mathcal{M}(X)$. *Assume that for each fixed* $A \in \mathcal{A}$ *and* $B \in \mathcal{B}$ *, one has*

$$
P(A \cap g_t^{-1}(B)) = \int_A \mu_{t\omega}(B) dP \tag{9}
$$

for λ *-a.e.* $t \in T$ *. Then:*

1. for λ *-a.e.* $t \in T$ *,* $\mu_{t\omega}(\cdot)$ *is a regular conditional distribution* $P(g_t^{-1}|\mathcal{C})$ *of the random variable* g_t ;

2. for any fixed $k \in \mathbb{N}$ *with* $k \geq 2$ *, the process g is essentially k-wise mutually conditionally independent given* C*.*

Proof. A sub-collection \mathcal{F}^{π} of a σ -algebra $\mathcal F$ is said to be a π -system for $\mathcal F$ if it is closed under the formation of finite intersections and generates \mathcal{F} . Let \mathcal{C}^{π} = ${C_n}_{n=1}^{\infty}$ and $\mathcal{B}^{\pi} = {B_m^{\pi}}_{m=1}^{\infty}$ be countable π -systems for C and B respectively. For each pair (m, n) , there exists a set T_{mn} with $\lambda(T_{mn}) = 1$ such that for all $t \in T_{mn}$, Equation (9) holds with $A = C_n$ and $B = B_m^{\pi}$. So for any $t \in T^* := \bigcap_{m=1}^{\infty} \bigcap_{n=1}^{\infty} T_{mn}$, Equation (9) holds whenever $A = C_n$ and $B = B_m^{\pi}$, for all pairs (m, n) simultaneously. Because \mathcal{C}^{π} is a π -system that generates C, Dynkin's $\pi-\lambda$ theorem (see [6], p. 404) implies that Equation (9) must hold whenever $t \in T^*$, for all $A \in \mathcal{C}$ and all $B \in \mathcal{B}^{\pi}$ simultaneously. Finally, because \mathcal{B}^{π} is a π -system that generates B, Equation (9) must hold whenever $t \in T^*$, $A \in \mathcal{C}$, and $B \in \mathcal{B}$. In particular, $\mu_{t\omega}$ must be a version of the regular conditional distribution $P(g_t^{-1}|C)$, for all $t \in T^*$.

After this preliminary step, we prove by induction on k that for $\bar{\lambda}^k$ -a.e. (t_1,\ldots,t_k) $\in T^k$, one has

$$
\mathbb{E}\left(\left.\prod_{i=1}^{k} 1_{g_{t_i}^{-1}(B_i)}\right| \mathcal{C}\right) = \prod_{i=1}^{k} \mu_{t_i\omega}(B_i)
$$
\n(10)

for all $B_i \in \mathcal{B}^{\pi}$ (i = 1 to k). When $k = 1$, this is shown in the last paragraph.

As the induction hypothesis, suppose that (10) holds for $k - 1$ (where $k \ge 2$). That is, for $\bar{\lambda}^{k-1}$ -a.e. $(t_1,\ldots,t_{k-1}) \in T^{k-1}$, one has

$$
\mathbb{E}\left(\prod_{i=1}^{k-1} 1_{g_{t_i}^{-1}(B_i)} \middle| \mathcal{C}\right) = \prod_{i=1}^{k-1} \mu_{t_i\omega}(B_i)
$$
\n(11)

for all $B_i \in \mathcal{B}^{\pi}$ (i = 1 to k – 1). Take any $(t_1, \ldots, t_{k-1}) \in T^{k-1}$ with the above property.

Fix any $C \in \mathcal{C}^{\pi}$, and any family B_i $(i = 1, ..., k)$ from the countable π -system \mathcal{B}^{π} . Because (9) holds in particular when $A = C \cap [\bigcap_{i=1}^{k-1} g_{t_i}^{-1}(B_i)]$, it follows that for λ -a.e. $t_k \in T^*$,

$$
\int_{C} \prod_{i=1}^{k} 1_{g_{i_i}^{-1}(B_i)} dP = P\left(C \cap \left[\bigcap_{i=1}^{k} g_{i_i}^{-1}(B_i)\right]\right)
$$
\n
$$
= \int_{C \cap \left[\bigcap_{i=1}^{k-1} g_{i_i}^{-1}(B_i)\right]} \mu_{i_k \omega}(B_k) dP = \int_{C} \prod_{i=1}^{k-1} 1_{g_{i_i}^{-1}(B_i)} \mu_{i_k \omega}(B_k) dP. \quad (12)
$$

Since $\mu_{t_k\omega}(\cdot) = P(g_{t_k}^{-1}(\cdot)|\mathcal{C})$ for $t_k \in T^*$,

$$
\mathbb{E}\left(\prod_{i=1}^{k-1} 1_{g_{t_i}^{-1}(B_i)}(\omega)\,\mu_{t_k\omega}(B_k)\middle|\mathcal{C}\right) = \mu_{t_k\omega}(B_k)\mathbb{E}\left(\prod_{i=1}^{k-1} 1_{g_{t_i}^{-1}(B_i)}\middle|\mathcal{C}\right)
$$
\n
$$
= \prod_{i=1}^{k} \mu_{t_i\omega}(B_i) \tag{13}
$$

by Equation (11). Hence Equations (12) and (13) imply that

$$
\int_C \prod_{i=1}^k 1_{g_{t_i}^{-1}(B_i)} dP = \int_C \prod_{i=1}^k \mu_{t_i\omega}(B_i) dP.
$$
 (14)

Summarizing, given any fixed $C \in \mathcal{C}^{\pi}$ and any fixed family B_i $(i = 1, ..., k)$ from the countable π -system \mathcal{B}^{π} , we have shown that Equation (14) holds for $\bar{\lambda}^{k-1}$ -a.e. $(t_1,\ldots,t_{k-1}) \in T^{k-1}$ and for λ -a.e. $t_k \in T$. Let D be the set of all $(t_1,...,t_k) \in T^k$ such that Equation (14) fails. Then, we know that the iterated integral

$$
\int_{t_1 \in T} \ldots \int_{t_k \in T} 1_D \ d\lambda(t_k) \ldots d\lambda(t_1)
$$

is zero. But the symmetry of Equation (14) implies that D is symmetric $-$ i.e., for any permutation π on $\{1, \ldots, k\}$ and any $(t_1, \ldots, t_k) \in T^k$, one has $(t_1, \ldots, t_k) \in D$ if and only if $(t_{\pi(1)},...,t_{\pi(q)}) \in T^k$. For this reason, all the iterated integrals of 1_D in any other order are also zero, which means that D is iteratively null. This proves that Equation (14) holds for $\bar{\lambda}^k$ -a.e. $(t_1,\ldots,t_k) \in T^k$.

For each $n \in \mathbb{N}$ and each list $m^k = (m_i)_{i=1}^k \in \mathbb{N}^k$, let $T^k(n, m^k)$ denote the set of all $(t_1, ..., t_k) \in T^k$ such that Equation (14) holds for the sets C_n and $B_{m_i}^{\pi}$ ($i = 1$) to k) of the countable π -systems C^{π} and B^{π} respectively. We have just proved that $\bar{\lambda}^k(T^k(n, m^k)) = 1$. Define the set

$$
\hat{T}^k := (T^*)^k \cap \bigcap_{n=1}^{\infty} \bigcap_{m_1=1}^{\infty} \cdots \bigcap_{m_k=1}^{\infty} T^k(n, m^k)
$$

where $(T^*)^k$ denotes the k fold Cartesian product of the set T^* . Then $\bar{\lambda}^k(\hat{T}^k) = 1$. For all $(t_1,...,t_k) \in \hat{T}^k$ and all $B_i \in \mathcal{B}^{\pi}$ $(i = 1 \text{ to } k)$, Equation (14) holds for all $C \in \mathcal{C}^{\pi}$. Because \mathcal{C}^{π} is a π -system for C, it follows that Equation (10) holds for all $(t_1, \ldots, t_k) \in \hat{T}^k$, and all $B_i \in \mathcal{B}^{\pi}$ $(i = 1 \text{ to } k)$. This proves the induction step.

Finally, since \mathcal{B}^{π} is a π -system for B, for each $(t_1,\ldots,t_k) \in \hat{T}^k$ Equation (10) holds for all $B_i \in \mathcal{B}$ ($i = 1$ to k), and also $P(g_{t_i}^{-1} | \mathcal{C}) = \mu_{t_i\omega}$. Hence, the random variables g_{t_1}, \ldots, g_{t_k} are mutually conditionally independent given C. The rest is clear. clear. \Box

Remark 2. We have only shown that the set D where Equation (14) fails is iteratively null. In general it will not be \mathcal{T}^k -measurable. That is why we need the concept of iterated completion.

Proof of Theorem 1. (1) \Longrightarrow (2) follows from Lemmas 1 and 2.

Next consider (2) \implies (3). For $k \geq 2$, let E_k be the collection of all the $(t_1, \ldots, t_k) \in T^k$ such that g_{t_1}, \ldots, g_{t_k} are mutually conditionally independent given C, and let $D_k = E_k \times T^{\infty}$. By $(2) \overline{\lambda}^{\infty}(D_k) = \overline{\lambda}^k(E_k) = 1$. Let $D = \bigcap_{k=2}^{\infty} D_k$. It is clear that $\bar{\lambda}^{\infty}(D) = 1$, and that for any $(t_1, t_2, ...,) \in D$, the random variables in the sequence ${g_{t_k}}_{k=1}^{\infty}$ are mutually conditionally independent given C.

 $(3) \Longrightarrow (1)$ is obvious.

We use the following corollary in the remaining proofs. It is an obvious implication of Lemmas 1 and 2.

Corollary 4. Let g be a process from $T \times \Omega$ to X. Let $C \subseteq A$ be a countably *generated* σ -*algebra on* Ω *and* μ *a* $\mathcal{T} \otimes \mathcal{C}$ -measurable mapping from $T \times \Omega$ to M(X)*. Then the following two conditions are equivalent.*

- *1. For all* $A \in \mathcal{A}$ *and* $B \in \mathcal{B}$ *one has* $P(A \cap g_t^{-1}(B)) = \int_A \mu_{t\omega}(B) dP$ *for* λ -*a.e.* $t \in T$.
- *2. Given* C*, the process* g *has an essentially regular conditional distribution process* µ*, and is essentially pairwise conditionally independent given* C*.*

Proof of Proposition 3. Since $\mu_{t\omega}(\cdot)$ is a regular conditional distribution $P(g_t^{-1} | \mathcal{C})$ of the random variable g_t for λ -a.e. $t \in T$, if the process g is essentially pairwise conditionally independent given C , then Part 2 of Corollary 4 is satisfied, which implies Part 1 of Corollary 4.

Since $C \subseteq C'$ and the mapping μ is $T \otimes C$ -measurable, it is automatically $T \otimes C'$ -measurable. Because μ satisfies Part 1 of Corollary 4, we can apply Corollary 4 with C replaced by C' to show that for $\bar{\lambda}^2$ -a.e. $(t_1, t_2) \in T^2$, g_{t_1} and g_{t_1} are conditionally independent given C' . The contract of the contract

Proof of Corollary 3. It is obvious that $(3) \implies (1)$. The proof that $(2) \implies (3)$ is similar to the corresponding part in the proof of Theorem 1. It remains only to prove that $(1) \Longrightarrow (2)$.

If the random variables g_t are essentially pairwise exchangeable, then Lemmas 4 and 5 in [9] imply that there is a measurable mapping $\omega \mapsto \mu_{\omega}$ from (Ω, \mathcal{A}) to $\mathcal{M}(X)$ such that for each $A \in \mathcal{A}$ and $B \in \mathcal{B}$, and for λ -a.e. $t \in T$, one has $P(A \cap g_t^{-1}(B)) = \int_A \mu_\omega(B) dP$. (Note that the proofs of Lemmas 4 and 5 in [9] still carry through without the additional assumption of pairwise measurable probabilities that is made in [9]. Nor does it matter that the earlier paper uses the classical rather than the iterative definition of a product null set.) Let C be the sub- σ -algebra of A generated by μ_{ω} , which is countably generated. This means that Part 1 of Corollary 4 is satisfied. By the equivalence in Corollary 4, we obtain that for λ -a.e. $t \in T$, $\mu_{\omega}(\cdot)$ is a regular conditional distribution $P(g_t^{-1}|\mathcal{C})$ of the random variable g_t , and for $\bar{\lambda}^2$ -a.e. $(t_1, t_2) \in T^2$, g_{t_1} and g_{t_2} are conditionally independent given C. By Theorem 1, for $\bar{\lambda}^k$ -a.e. $(t_1,\ldots,t_k) \in T^k$ the random variables g_{t_1},\ldots,g_{t_k} are mutually conditionally independent given C with essentially identical regular conditional distributions. In particular, for $\bar{\lambda}^k$ -a.e. $(t_1,\ldots,t_k) \in T^k$ and for any $B_i \in \mathcal{B}$ $(i = 1 \text{ to } k),$

$$
P\left(\bigcap_{i=1}^k g_{t_i}^{-1}(B_i)\middle|\mathcal{C}\right)=\mathbb{E}\left(\prod_{i=1}^k 1_{g_{t_i}^{-1}(B_i)}\middle|\mathcal{C}\right)=\prod_{i=1}^k \mu_{\omega}^k(B_i),
$$

which implies that

$$
P\left((g_{t_1},\ldots,g_{t_k})^{-1}\left(\prod_{i=1}^k B_i\right)\right)=\int_{\Omega} \mu_{\omega}^k \left(\prod_{i=1}^k B_i\right) dP.
$$

But the family of k-fold Cartesian product sets $\prod_{i=1}^{k} B_i$ with $B_i \in \mathcal{B}$ $(i = 1, ..., k)$ is a π -system for the k-fold product σ -algebra B^k . So for $\bar{\lambda}^k$ -a.e. $(t_1,\ldots,t_k) \in T^k$, it follows that

$$
P((g_{t_1},\ldots,g_{t_k})^{-1}(V))=\int_{\Omega}\mu_{\omega}^k(V)dP
$$

for all $V \in \mathcal{B}^k$. Hence, the random variables g_t are essentially k-wise exchangeable. \Box

References

- 1. Aldous, D.J.: Exchangeability and Related Topics. Lecture Notes in Mathematics **1117**, Springer, Berlin, 1985
- 2. Berger, J., Osswald, H., Sun, Y.N., Wu, J.L.: On nonstandard product measure spaces. Illinois Journal of Mathematics **46**, 319–330 (2002)
- 3. Bledsoe, W.W., Morse, A.P.: Product measures, Transactions of the American Mathematical Society **79**, 173–215 (1955)
- 4. Chow, Y.S., Teicher, H.: Probability Theory: Independence, Interchangeability, Martingales. 3rd Edition, Springer, New York, 1997
- 5. Dudley, R.M.: Real Analysis and Probability. Chapman & Hall, New York, 1989
- 6. Durrett, R.: Probability: Theory and Examples. Wadsworth, Belmont, California, 1991
- 7. Etemadi, N.: Maximal inequalities for averages of i.i.d. and 2-exchangeable random variables. Statistics and Probabilility Letters **44**, 195–200 (1999)
- 8. Feller, W.: An Introduction to Probability Theory and Its Applications. 3rd Edition, Wiley, New York, 1968
- 9. Hammond, P.J., Sun, Y.N.: Monte Carlo simulation of macroeconomic risk with a continuum of agents: The symmetric case. Economic Theory **21**, 743–766 (2003)
- 10. Kallenberg, O.: From optional skipping to random time change on some recent advances in exchangeability theory. Theory of Probability and Applications **37**, 67–75 (1992)
- 11. Kingman, J.F.C.: Uses of exchangeability. Ann. Probability **6**, 183–197 (1978)
- 12. Loeb, P.A.: Conversion from nonstandard to standard measure spaces and applications in probability theory. Transactions of the Amererican Mathematical Society **211**, 113–122 (1975)
- 13. Loeb, P.A., Wolff, M. eds.: Nonstandard Analysis for the Working Mathematician. Kluwer Academic Publishers: Dordrecht, 2000
- 14. Sun,Y.N.: The almost equivalence of pairwise and mutual independence and the duality with exchangeability. Probability Theory and Related Fields **112**, 425–456 (1998)
- 15. Sun,Y.N.: A theory of hyperfinite processes: The complete removal of individual uncertainty via exact LLN. J. Math. Economics **29**, 419–503 (1998)
- 16. Sun, Y.N.: The exact law of large numbers via Fubini extension and characterization of insurable risks. J. Economic Theory. Available online 28 January 2005 **126** (1), 31–69 January (2006)