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Abstract. According to the Smolukowski-Kramers approximation, we show that the solu-
tion of the semi-linear stochastic damped wave equations µutt (t, x) = �u(t, x)−ut (t, x)+
b(x, u(t, x)) + QẆ(t), u(0) = u0, ut (0) = v0, endowed with Dirichlet boundary condi-
tions, converges as µ goes to zero to the solution of the semi-linear stochastic heat equation
ut (t, x) = �u(t, x)+b(x, u(t, x))+QẆ(t), u(0) = u0, endowed with Dirichlet boundary
conditions. Moreover we consider relations between asymptotics for the heat and for the
wave equation. More precisely we show that in the gradient case the invariant measure of
the heat equation coincides with the stationary distributions of the wave equation, for any
µ > 0.

1. Introduction

The motion of a particle of a mass µ in the field b(q) + σ(q)Ẇ with the damping
proportional to the speed (we put the coefficient equal to 1) is described, according
to the Newton law, by the equation

µq̈
µ
t = b(q

µ
t ) + σ(q

µ
t )Ẇt − q̇t , q

µ
0 = q ∈ Rn, q̇

µ
0 = p ∈ Rn. (1.1)

Here b(q) is the deterministic component of the force and σ(q)Ẇt , where Ẇt

is the standard Gaussian white noise in Rn and σ(q) is an n × n-matrix, is the
stochastic part. It is well known that, for 0 < µ << 1, qµ

t can be approximated by
the solution of the first order equation

q̇t = b(qt ) + σ(qt )Ẇt , q0 = q ∈ Rn, (1.2)

in the sense that

lim
µ↓0

P { max
0≤t≤T

|qµ
t − qt | > δ} = 0, (1.3)
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for any 0 ≤ T < ∞ and δ > 0. Statement (1.3) is called Smoluchowski-Kramers
approximation of q

µ
t by qt . This statement justifies the description of the motion

of a small particle by the first order equation (1.2) instead of the second order
equation (1.1).

Actually, the closeness of q
µ
t and qt is not restricted to equality (1.3). If b(q) is

a potential vector, that is b(q) = −∇U(q) for any q ∈ Rn, and if σ(q) = I is the
unit matrix, then the distribution with the density

mµ(q, p) = cµ exp{−(µ|p|2 + 2U(q))}

(Boltzman distribution) is invariant for the 2n-dimensional Markov process X
µ
t =

(q
µ
t , p

µ
t ), with p

µ
t = q̇

µ
t , if

cµ :=
(∫

Rn×Rn

mµ(q, p) dq dp

)−1

> 0.

To prove this one can check that mµ(q, p) satisfies the stationary forward Kol-
mogorov equation associated with the process X

µ
t .

Then the stationary distribution of q
µ
t is equal to

m(q) =
∫

Rn

mµ(q, p)dp = c̃ exp{−2U(q)}.

On the other hand, m(q) is the stationary density of the process qt defined by (1.2)
with σ = I . Thus, if b(q) = −∇U(q) and σ(q) ≡ I , the stationary distributions
of q

µ
t and qt coincide for any µ > 0. This means that, under certain conditions

providing ergodicity, we can conclude that q
µ
t and qt are close not just on finite

time intervals, but also have similar long time behavior.
If b(x) is not potential, then the invariant measures are not the same. The process

X
µ
t = (q

µ
t , p

µ
t ) may have no finite invariant measure when qt has such a measure.

For all details and proofs on this finite dimensional case we refer to [7]. We also
refer to [16] and [17] for related problems in finite dimension.

In this paper we consider the equation




µ∂2u
∂t2 (t, x) = �u(t, x) − ∂u

∂t
(t, x) + b(x, u(t, x))

+ ∂WQ

∂t
(t, x), t > 0, x ∈ O,

u(0, x) = u0,
∂u

∂t
(0, x) = v0, u(t, x) = 0, x ∈ ∂O.

(1.4)

where O is a bounded open subset of R
d , with d ≥ 1. Here WQ(t, x) is a Gauss-

ian mean zero random field, δ-correlated in time and the operator Q characterizes
the correlation in the space variables (see below for detailed assumptions). In par-
ticular, in the one-dimensional case WQ(t, x) can be the Brownian sheet, so that
∂2WQ

∂t ∂x
(t, x) in this case is the space-time white noise.

Together with the semi-linear wave equation with the damping term (1.4),
consider the heat equation
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∂u

∂t
(t, x) = �u(t, x) + b(x, u(t, x)) + ∂WQ

∂t
(t, x), t > 0, x ∈ O,

u(0, x) = u0, u(t, x) = 0, x ∈ ∂O.

(1.5)

Our first result concerns the convergence of uµ(t, x) to u(t, x), as µ ↓ 0. We
prove this convergence in Section 4 under some natural assumptions. The proof fol-
lows, in general, the arguments used in the finite-dimensional case. But, of course,
in the infinite-dimensional case we have to introduce appropriate functional spaces
and obtain certain bounds uniform with respect to µ ∈ (0, 1], whose proof requires
some work. These auxiliary results together with some notations and assumptions
are presented in Sections 2 and 3.

The results of these sections allow also to address the questions concerning the
invariant measures and the long time behavior for uµ(t, x) and u(t, x). First, we
give an explicit (in a sense) expression for the Boltzman distribution of the process
(uµ(t, x), ∂uµ

∂t
(t, x)). Of course, since there is no universal measure in the func-

tional space similar to the Lebesgue measure, we have to introduce an auxiliary
Gaussian measure with respect to which one can write down the density of the
Boltzman distribution. This auxiliary Gaussian measure is the stationary measure
of the linear wave equation related to problem (1.4). Using the fact that the vector
field B[u] := �u + b(t, u) in the appropriate functional space is of gradient type,
we can express the invariant density through the corresponding potential.

The explicit expression for the invariant measure of the process (uµ, ∂uµ

∂t
) allows

to prove that uµ(t, x) has the same stationary distributions for each µ > 0, which
coincide with the invariant measure of the process u(t, x) defined as the unique
solution of the heat equation (1.5).

The convergence result of Section 4 will be preserved if we replace the Laplacian
� by any second order uniformly elliptic operator with sufficiently smooth coeffi-
cients. The results on stationary distributions and invariant measures of Section 5
can be generalized only to self-adjoint non-degenerate second order differential
operators with regular coefficients. Actually, if the operator is not self-adjoint, the
problem will not be of gradient type.

Now, let q
µ,ε
t and qε

t be the solutions of equations (1.1) and (1.2) with σ(x) =
εI , 0 < ε << 1. Let a point x0 ∈ Rn be an asymptotically stable equilibrium of
the field b(x), and let a domain G ⊂ Rn be attracted to x0. Then, as it shown in [7]
for the case of potential field b(x), the asymptotics in the exit problem from G for
the process q

µ,ε
t and qε

t as ε ↓ 0 is, to some extend, the same. This fact also shows
the advantage of the Smoluchowski-Kramers approximation. One can expect that
a similar result holds for equations (1.4) and (1.5) with a small noise.

These problems, as well as questions related to ergodic properties of processes
uµ(t, x) and u(t, x), will be addressed elsewhere.

2. Assumptions and notations

Let O be a bounded open subset of R
d , with d ≥ 1, and assume that the boundary

is of class C3. In what follows we shall denote by H the Hilbert space L2(O) and
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by {ek}k∈ N the complete orthonormal basis of H which diagonalizes the Laplace
operator �, endowed with Dirichlet boundary conditions in O. Moreover we shall
denote by {−αk}k∈ N the corresponding sequence of eigenvalues.

As we are assuming the boundary of O to be smooth, for any δ ∈ (0, 1) we have

|ek|C2+δ(Ō) ≤ c |�ek|Cδ(Ō) = c αk |ek|Cδ(Ō)

(for a proof see [11, Theorem 6.3.2]). Moreover, by interpolation we have

|ek|Cδ(Ō) ≤ c |ek|2/2+δ
∞ |ek|δ/2+δ

C2+δ(Ō)

(for a proof see [11, Lemma 6.3.1]). Then

|ek|Cδ(Ō) ≤ c α
δ/2+δ
k |ek|2/2+δ

∞ |ek|δ/2+δ

Cδ(Ō)
,

so that

|ek|Cδ(Ō) ≤ c α
δ/2
k |ek|∞. (2.1)

Hypothesis 1. The bounded linear operator Q : H → H is diagonal with respect
to the basis {ek}k∈ N. If {λk}k∈ N denotes the corresponding sequence of eigenvalues,
there exists a constant θ ∈ (0, 1) such that

∞∑
k=1

λ2
k

α1−θ
k

|ek|2∞ < ∞. (2.2)

Hypothesis 2. The mapping b : Ō × R → R is measurable and

sup
x∈ Ō

|b(x, σ ) − b(x, ρ)| ≤ L |σ − ρ|, σ, ρ ∈ R,

for some positive constant L. Moreover

sup
x∈ Ō

|b(x, 0)| =: b0 < ∞.

Remark 2.1. 1. In several cases, as for example in the case of space dimension
d = 1 and in the case of the Laplace operator on the square with Dirichlet
boundary conditions, the eigenfunctions ek are equi-bounded in the sup-norm
and then condition (2.2) becomes

∞∑
k=1

λ2
k

α1−θ
k

< ∞.

In general it holds

|ek|∞ ≤ c kα, k ∈ N,

for some α ≥ 0. Thus, condition (2.2) is fulfilled if

∞∑
k=1

λ2
k k2α

α1−θ
k

< ∞.
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2. For any reasonable domain one has αk ∼ k2/d , for any k ∈ N. Thus, in dimen-
sion d = 1 condition (2.2) is fulfilled by the white noise. As soon as one goes
to higher dimension, this of course is no more possible. In any case, notice that
if the sup-norms of the eigenfunctions ek are equi-bounded, it is never required
to have a noise with Hilbert-Schmidt covariance.

For any δ ∈ R we denote by Hδ(O) the completion of C∞
0 (O) with respect to

the norm

‖h‖2
Hδ(O)

=
∞∑
i=1

αδ
i 〈h, ei〉2

H =
∞∑
i=1

αδ
i h

2
i .

Note that here and in what follows for each h ∈ Hδ(O) we denote by hk the k-th
Fourier coefficient of h, that is

hk = 〈h, ek〉H .

Hδ(O) is a Hilbert space, endowed with the scalar product

〈h, k〉Hδ(O) =
∞∑
i=1

αδ
i hiki, h, k ∈ Hδ(O).

Moreover, for any δ ∈ R we denote by Hδ the Hilbert space Hδ(O) × Hδ−1(O),
endowed with the natural scalar product and norm inherited from each component.

Next, for any µ > 0 and δ ∈ R we define on Hδ the unbounded operator Aµ

by setting

Aµ(h, k) = 1

µ
(µk, �h − k) , (h, k) ∈ D(Aµ) := Hδ+1.

Here for the sake of simplicity we have not written the dependence of Aµ on δ,
as the operators Aµ defined on different Hδ are all consistent. It is known that Aµ

is the generator of a group of bounded linear transformations {Sµ(t)}t∈ R on Hδ

which is strongly continuous (for a proof see e.g. [18, section 7.4]).
Note that the adjoint operator to Aµ is given by

A

µ(h, k) = 1

µ
(−k, −µ�h − k) , (h, k) ∈ D(A


µ) := Hδ+1.

In what follows we shall denote by {S

µ(t)}{t≥0} the semigroup generated by A


µ.
Clearly, for any (u0, v0) ∈ Hδ and for any µ > 0, Sµ(t)(u0, v0) is the solution

of the deterministic linear system




∂u

∂t
(t, x) = v(t, x), µ

∂v

∂t
(t, x) = �u(t, x) − v(t, x), t > 0, x ∈ O,

u(0) = u0, v(0) = v0, u(t, x) = 0, t ≥ 0, x ∈ ∂O,
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which can be written as the following abstract evolution problem in Hδ

dz

dt
(t) = Aµz(t), z(0) = (u0, v0),

where z(t) := (u(t), v(t)).
Our aim now is giving an explicit expression both of Sµ(t)(u, v) and of S


µ(t)

(u, v), for any t ≥ 0 and (u, v) ∈ Hδ .
By writing Sµ(t)(u, v) in Fourier coefficients, if we set �1(u, v) := u and

�2(u, v) := v we have that

�1 Sµ(t)(u, v) =
∞∑

k=1

f
µ
k (t)ek, �2 Sµ(t)(u, v) =

∞∑
k=1

g
µ
k (t)ek,

where the pair (f
µ
k (t), g

µ
k (t)) is for each k ∈ N and µ > 0 the solution of the

system 


f ′(t) = g(t), f (0) = uk

µ g′(t) = −αk f (t) − g(t), g(0) = vk.

(2.3)

In the next proposition we provide an explicit formula for f
µ
k and g

µ
k .

Proposition 2.2. For any µ > 0 and k ∈ N, let us define

γ
µ
k := 1

2µ

√
1 − 4αkµ.

Then, we have

f
µ
k (t) = 1

2
exp

(
− t

2µ

)([(
1 + 1

2µγ
µ
k

)
exp

(
γ

µ
k t

)

+
(

1 − 1

2µγ
µ
k

)
exp

(−γ
µ
k t

)]
uk

+ 1

γ
µ
k

[
exp

(
γ

µ
k t

) − exp
(−γ

µ
k t

)]
vk

)
, (2.4)

and

g
µ
k (t) = 1

2
exp

(
− t

2µ

)(
− αk

µγ
µ
k

[
exp

(
γ

µ
k t

) − exp
(−γ

µ
k t

)]
uk

+
[(

1 − 1

2µγ
µ
k

)
exp

(
γ

µ
k t

)+
(

1 + 1

2µγ
µ
k

)
exp

(−γ
µ
k t

)]
vk

)
, (2.5)

where, in the case γ
µ
k = 0, we have set

1

γ
µ
k

[
exp

(
γ

µ
k t

) − exp
(−γ

µ
k t

)] = 2t.
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Proof. Differentiating the second equation in system (2.3) we have

µ
d 2g

µ
k

dt2 (t) = −αk

df
µ
k

dt
(t) − dg

µ
k

dt
(t) = −αk g

µ
k (t) − dg

µ
k

dt
(t).

Thus, by taking into account the initial conditions, by standard computations we
obtain formulas (2.4) and (2.5). ��

Next, we show that we can express S

µ(t) in terms of Sµ(t).

Proposition 2.3. For any µ > 0 and (u, v) ∈ Hδ we have

S

µ(t)(u, v) = (

�1 Sµ(t) (u, −v/µ) , �2 Sµ(t) (−µu, v)
)
, t ≥ 0. (2.6)

Proof. If we write S

µ(t)(u, v) in Fourier coefficients, we have

�1 S

µ(t)(u, v) =

∞∑
k=1

f̂
µ
k (t)ek, �2 S


µ(t)(u, v) =
∞∑

k=1

ĝ
µ
k (t)ek,

where the pair (f̂
µ
k (t), ĝ

µ
k (t)) is for each k ∈ N and µ > 0 the solution of the

system 


µf ′(t) = −g(t), f (0) = uk

µ g′(t) = µ αk f (t) − g(t), g(0) = vk.

This means that the pair (−µf̂
µ
k (t), ĝ

µ
k (t)) is the solution of system (2.3) with

initial conditions (−µuk, vk), so that for any t ≥ 0 we have

f̂
µ
k (t) = − 1

µ

[
�1Sµ(t)(−µu, v)

]
k
, ĝ

µ
k (t) = [

�2Sµ(t)(−µu, v)
]
k
.

This allows us to conclude, as

[
�1S



µ(t)(u, v)

]
k

= f̂
µ
k (t) = − 1

µ

[
�1Sµ(t)(−µu, v)

]
k

= [
�1Sµ(t) (u, −v/µ)

]
k
,

and
[
�2S



µ(t)(u, v)

]
k

= ĝ
µ
k (t) = [

�2Sµ(t) (−µu, v)
]
k
.

��
Finally, an important consequence of Proposition 2.2 is the following result on

the asymptotic behavior of Sµ(t).

Proposition 2.4. For any fixed µ > 0 and any δ ∈ R, the semigroup {Sµ(t)}t≥0
is of negative type in Hδ , that is there exist some ωµ > 0 and Mµ > 0 such that

‖Sµ(t)‖L(Hδ) ≤ Mµ e−ωµt , t ≥ 0. (2.7)
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Proof. Fix µ > 0. Multiplying the second equation in (2.3) by g
µ
k (t) we get

µ
d |gµ

k |2
dt

(t) + αk

d |f µ
k |2

dt
(t) + 2 |gµ

k (t)|2 = 0,

and hence, integrating with respect to t ≥ 0 and multiplying both sides by αδ−1
k ,

we get

µ αδ−1
k |gµ

k (t)|2 + αδ
k |f µ

k (t)|2 + 2 αδ−1
k

∫ t

0
|gµ

k (s)|2 ds

= µ αδ−1
k |vk|2 + αδ

k |uk|2. (2.8)

Now, in order to prove (2.7), we note that thanks to Proposition 2.2 for any
constant c > 0 and any k ∈ N

lim
t→∞ sup

|uk |+|vk |≤c

|f µ
k (t)| = lim

t→∞ sup
|uk |+|vk |≤c

|gµ
k (t)| = 0.

Thus, according to (2.8) we can conclude that for any fixed µ > 0

lim
t→∞ ‖Sµ(t)‖Hδ

= 0.

As a consequence of the Datko theorem (see [1] for a proof) this yields (2.7). ��

3. Estimates for the stochastic convolution

For each µ > 0, let us consider the linear problem


µ
∂2η

∂t2 (t, x) = �η(t, x) − ∂η

∂t
(t, x) + ∂WQ

∂t
(t, x), t > 0, x ∈ O,

η(0) = 0,
∂η

∂t
(0) = 0, η(t, x) = 0, t ≥ 0, x ∈ ∂O,

(3.1)

where WQ is the noise with covariance given by

E

〈
WQ(t), h

〉
H

〈
WQ(s), k

〉
H

= (t ∧ s) 〈Qh, k〉H .

Note that WQ(t) is formally defined as

WQ(t) =
∞∑

k=1

Qek βk(t) =
∞∑

k=1

λkek βk(t), t ≥ 0,

where {βk(t)}k∈ N is a sequence of mutually independent standard Brownian mo-
tions, all defined on some complete stochastic basis (�, F, Ft , P).
It is well known that if for some θ ∈ R condition (2.2) holds, then for any µ > 0
there exists a unique solution ηµ to problem (3.1) such that for any T > 0 and
p ≥ 1

ηµ ∈ Lp(�; C([0, T ]; Hθ(O))),
∂ηµ

∂t
∈ Lp(�; C([0, T ]; Hθ−1(O))) (3.2)

(for a proof we refer for example to [4] and [9], see also [3]).
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Our aim here is proving that if the constant θ above is strictly positive (as in
Hypothesis 1), then for any δ < θ/2 the process ηµ has a version which is δ-Hölder
continuous with respect to t ≥ 0 and ξ ∈ Ō and the momenta of the δ-Hölder norms
of ηµ are equi-bounded with respect to µ > 0. Namely we prove the following
result.

Proposition 3.1. Assume that Hypothesis 1 is satisfied. Then for any µ > 0 and
δ < θ/2 the process ηµ has a version (which we still denote by ηµ) which is
δ-Hölder continuous with respect to (t, x) ∈ [0, T ] × Ō, for any T > 0.

Moreover, for any p ≥ 1

sup
µ>0

E |ηµ|p
Cδ([0,T ]×Ō)

=: cT ,p < ∞. (3.3)

Proof. For all (t, x) ∈ [0, ∞) × Ō we have

ηµ(t, x) =
∞∑

k=1

η
µ
k (t)ek(x), (3.4)

where, for each k ∈ N, η
µ
k (t) is the solution of the one dimensional problem




dη
µ
k (t) = θ

µ
k (t) dt

µ dθ
µ
k (t) = − (

αkη
µ
k (t) + θ

µ
k (t)

)
dt + λk dβk(t),

η
µ
k (0) = 0, θ

µ
k (0) = 0.

(3.5)

Then, by the variation of constants formula, it is immediate to check that

η
µ
k (t) = λk

µ

∫ t

0
f

µ
k (t − s) dβk(s), (3.6)

with f
µ
k defined as the solutions of the system (2.3) with initial conditions f

µ
k (0) =

0 and g
µ
k (0) = 1.

Therefore, since for any t, s ≥ 0 and x, y ∈ Ō the random variable ηµ(t, x) −
ηµ(s, y) is Gaussian, the proof of (3.3) is a consequence of the following lemma
and of the Garcia-Rademich-Rumsey theorem. ��
Lemma 3.2. Under Hypothesis 1 there exists a constant c > 0 such that

sup
µ>0

E |ηµ(t, x) − ηµ(s, y)|2 ≤ c
(
|t − s|θ + |x − y|2θ

)
, (3.7)

for any t, s ≥ 0 and x, y ∈ Ō.

Proof. First step. There exists c1 > 0 such that for any t ≥ 0 and x, y ∈ Ō
sup
µ>0

E |ηµ(t, x) − ηµ(t, y)|2 ≤ c1 |x − y|2θ . (3.8)
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Due to (3.4) and (3.6), for any t ≥ 0 and x, y ∈ Ō we have

ηµ(t, x) − ηµ(t, y) =
∞∑

k=1

λk

µ

∫ t

0
f

µ
k (t − s) dβk(s) [ek(x) − ek(y)],

so that

E |ηµ(t, x) − ηµ(t, y)|2 =
∞∑

k=1

λ2
k

µ2

∫ t

0
|f µ

k (s)|2 ds |ek(x) − ek(y)|2 .

Hence, due to (2.1)

E |ηµ(t, x) − ηµ(t, y)|2 ≤ c

∞∑
k=1

λ2
kα

θ
k

µ2 |ek|2∞
∫ t

0
|f µ

k (s)|2 ds |x − y|2θ . (3.9)

Now, in order to estimate the series above we can assume µ �= 1/4αk , for any
k ∈ N. Actually, if we can prove the upper bound

sup
µ�=1/4αk

1

µ2

∫ t

0
|f µ

k (s)|2 ds =: ck < ∞,

since

lim
µ→1/4αk

f
µ
k (t) = f

1/4αk

k (t), t ≥ 0, (3.10)

due to the Fatou lemma we have the same upper bound for any µ > 0.
As we are assuming µ �= 1/4αk , with a change of variable we have

E |ηµ
k (t)|2 = λ2

k

µ2

∫ t

0

∣∣f µ
k (s)

∣∣2 ds

= λ2
k

|2µ γ
µ
k |2

∫ t

0
exp

(
− s

µ

) ∣∣exp(γ
µ
k s) − exp(−γ

µ
k s)

∣∣2 ds

= λ2
k µ

|1 − 4αkµ|
∫ t

µ

0
exp

(
−
(

1 −
√

(1 − 4αkµ)+
)

s
)

× ∣∣1 − exp(−2µ γ
µ
k s)

∣∣2 ds.

If 0 <
√

(1 − 4αkµ)+ ≤ 1/2, we have

exp
(
−
(

1 −
√

(1 − 4αkµ)+
)

s
) ∣∣1 − exp(−2µ γ

µ
k s)

∣∣2
|1 − 4αkµ| ≤ c exp

(
− s

2

)
s2,

so that

E |ηµ
k (t)|2 ≤ c λ2

k µ

∫ ∞

0
exp

(
− s

2

)
s2 ds = c λ2

k µ.
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Since ∣∣1 − exp(−2µ γ
µ
k s)

∣∣2
|1 − 4αkµ| ≤ c,

if
√

(1 − 4αkµ)+ > 1/2 we have

E |ηµ
k (t)|2 ≤ c λ2

k µ

∫ ∞

0
exp

(
−
(

1 −
√

(1 − 4αkµ)+
)

s
)

ds

= c λ2
k

αk

(
1 +

√
(1 − 4αkµ)+

)
.

Finally, if
√

(1 − 4αkµ)+ = 0 we have

exp
(
−
(

1 −
√

(1 − 4αkµ)+
)

s
) ∣∣1 − exp(−2µ γ

µ
k s)

∣∣2
|1 − 4αkµ|

= 2 exp(−s)
1 − cos

√
(1 − 4αkµ)−s

(1 − 4αkµ)−
.

Thus, since for any δ ∈ [0, 2] there exists cδ > 0 such that

1 − cos β ≤ cδ

βδ

βδ ∨ 1
, β > 0, (3.11)

for δ = 2 we have

E |ηµ
k (t)|2 ≤ cλ2

k

αk

∫ t
µ

0
exp (−s)

4αkµ s2

(1 − 4αkµ)−s2 ∨ 1
ds

≤ cλ2
k

αk

∫ ∞

0
exp (−s)

(
1 + s2

)
ds.

Therefore, in all these three cases we obtain

E |ηµ
k (t)|2 ≤ cλ2

k

αk

, (3.12)

and hence, according to (3.9), we obtain (3.8).
Second step. There exists a constant c2 > 0 such that for any t, s ≥ 0 and

x ∈ O
sup
µ>0

E |ηµ(t, x) − ηµ(s, x)|2 ≤ c2|t − s|θ . (3.13)

We can assume t > s. As a consequence of (3.6), for any x ∈ Ō we have

ηµ(t, x) − ηµ(s, x) =
∞∑

k=1

λk

µ

(∫ t

0
f

µ
k (t − r) dβk(r)

−
∫ s

0
f

µ
k (s − r) dβk(r)

)
ek(x)
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=
∞∑

k=1

λk

µ

(∫ t

s

f
µ
k (t − r) dβk(r)

+
∫ s

0

(
f

µ
k (t − r) − f

µ
k (s − r)

)
dβk(r)

)
ek(x),

and hence we have

E
∣∣ηµ(t, x) − ηµ(s, x)

∣∣2

=
∞∑

k=1

λ2
k

µ2

∫ t

s

|f µ
k (t − r)|2 dr |ek|2∞

+
∞∑

k=1

λ2
k

µ2

∫ s

0

∣∣f µ
k (t − r) − f

µ
k (s − r)

∣∣2 dr |ek|2∞

=:
∞∑

k=1

I
µ
k |ek|2∞ +

∞∑
k=1

J
µ
k |ek|2∞. (3.14)

Concerning the terms I
µ
k , since for any δ ∈ [0, 1] there exists cδ > 0 such that

1 − exp(−β) ≤ cδβ
δ, β > 0, (3.15)

due to (3.12) we have

I
µ
k = λ2

k

µ2

∫ t−s

0
|f µ

k (r)|2 dr

≤ cλ2
k

αk

[
1 − exp

(
−
(

1 −
√

(1 − 4αkµ)+

2µ

)
(t − s)

)]

≤ cλ2
k

αk

(
1 − (1 − 4αkµ)+

2µ(1 +
√

(1 − 4αkµ)+)

)θ

(t − s)θ ≤ cλ2
k

α1−θ
k

(t − s)θ . (3.16)

Now we go to the estimate of the terms J
µ
k , which is more delicate. As in the

first step, due to (3.10) we can assume that 4αkµ �= 1. We have

2γ
µ
k

(
f

µ
k (t − r) − f

µ
k (s − r)

)

= exp

(
− s − r

2µ

) [
exp(γ

µ
k (s − r))

− exp(−γ
µ
k (s − r))

][
exp

(
− (1 − 2γ

µ
k µ)

2µ
(t − s)

)
− 1

]

+ exp

(
− t − s

2µ

) [
exp(γ

µ
k (t − s))

− exp(−γ
µ
k (t − s))

]
exp

(
− (1 + 2γ

µ
k µ)

2µ
(s − r)

)
.
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This implies that

J
µ
k ≤ cλ2

k

|2γ
µ
k µ|2

∫ s

0
exp

(
− s − r

µ

) ∣∣exp(γ
µ
k (s − r)) − exp(−γ

µ
k (s − r))

∣∣2 dr

×
∣∣∣∣∣exp

(
− (1 − 2γ

µ
k µ)

2µ
(t − s)

)
− 1

∣∣∣∣∣
2

+ cλ2
k

|2γ
µ
k µ|2

∫ s

0
exp

∣∣∣∣∣−
(1 + 2γ

µ
k µ)

µ
(s − r)

∣∣∣∣∣ dr

× exp

(
− t − s

µ

) ∣∣exp(γ
µ
k (t − s)) − exp(−γ

µ
k (t − s))

∣∣2 =: (J
µ
k )1 + (J

µ
k )2.

We estimate separately the terms (J
µ
k )1 and (J

µ
k )2. Since

λ2
k

|2γ
µ
k µ|2

∫ s

0
exp

(
− r

µ

) ∣∣exp(γ
µ
k r) − exp(−γ

µ
k r)

∣∣2 dr = E |ηµ
k (s)|2,

according to (3.12) we have

(J
µ
k )1 ≤ cλ2

k

αk

∣∣∣∣∣1 − exp

(
− (1 − 2γ

µ
k µ)

2µ
(t − s)

)∣∣∣∣∣
2

.

It is not difficult to check that if z ∈ C

|1 − exp(−z)|2 = (1 − exp(−Re z))2 + 2 exp(−Re z) (1 − cos Im z) . (3.17)

Then we have
∣∣∣∣∣1 − exp

(
− (1 − 2γ

µ
k µ)

2µ
(t − s)

)∣∣∣∣∣
2

≤
[

1 − exp

(
−
(

1 −
√

(1 − 4αkµ)+

2µ

)
(t − s)

)]2

+2

(
1 − cos

√
(1 − 4αkµ)−

2µ
(t − s)

)
.

Then, from (3.15) and (3.11) it follows

(J
µ
k )1 ≤ cλ2

k

αk



(

1 −
√

(1 − 4αkµ)+

2µ

)θ

+
(√

(1 − 4αkµ)−

2µ

)θ

 (t − s)θ

≤ cλ2
k

α1−θ
k

(t − s)θ . (3.18)



376 S. Cerrai, M. Freidlin

Concerning (J
µ
k )2 we have

(J
µ
k )2 ≤ cλ2

k

|2γ
µ
k µ|2

µ

1 + Re 2γ
µ
k µ

exp

(
− t − s

µ

) ∣∣exp(γ
µ
k (t − s))−

exp(−γ
µ
k (t − s))

∣∣2
= cλ2

kµ

|1 − 4αkµ|(1 +
√

(1 − 4αkµ)+)

exp

(
−
(

1 −
√

(1 − 4αkµ)+

µ

)
(t − s)

)

× ∣∣1 − exp
(−2γ

µ
k (t − s)

)∣∣2 .

Then, due to (3.17), (3.15) and (3.11) for any δ ∈ [0, 2] we have

(J
µ
k )2 ≤ cδ λ2

kµ
1−δ

1+
√

(1−4αkµ)+
exp

(
−
(

1−
√

(1−4αkµ)+

µ

)
(t−s)

)
(t−s)δ

×
[(

(1 − 4αkµ)+
)δ/2

|1 − 4αkµ|

+
(
(1−4αkµ)−

)δ/2

|1−4αkµ|

((
(1−4αkµ)−

µ2

)δ/2

(t−s)δ ∨ 1

)−1

 . (3.19)

If we take δ = θ in (3.19) and assume 4αkµ ∈ (0, 1/2], we have

(J
µ
k )2 ≤ cθ λ2

kµ
1−θ

(1 − 4αkµ)1−θ/2 (t − s)θ ≤ c λ2
k

α1−θ
k

(t − s)θ . (3.20)

If we take δ = 2 in (3.19) and assume 4αkµ ∈ (1/2, 1), we have

(J
µ
k )2 ≤ cλ2

k

µ(1 + √
1 − 4αkµ)

(t − s)2 exp

(
− (1 − √

1 − 4αkµ)

µ
(t − s)

)
.

Now, we remark that for any β > 0 there exists a constant cβ > 0 such that

sβe−s ≤ cβ, s ≥ 0, (3.21)

so that

exp

(
− (1 − √

1 − 4αkµ)

µ
(t − s)

)
(t − s)2−θ ≤ c

(
1 + √

1 − 4αkµ

4αkµ

)2−θ

µ2−θ .

As 4αkµ > 1/2 this yields

(J
µ
k )2 ≤ cλ2

k

µ(1 + √
1 − 4αkµ)

(t − s)θ
(

1 + √
1 − 4αkµ

4αkµ

)2−θ

µ2−θ

≤ cλ2
kµ

1−θ (t − s)θ ,

and hence, as 4αkµ < 1, (3.20) follows.
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Next, if we take δ = 2 in (3.19) and assume 4αkµ ∈ (1, 2), due to (3.21) we
get

(J
µ
k )2 ≤ cλ2

k

µ
exp

(
− t − s

µ

)
(t − s)2 ≤ cλ2

k

α1−θ
k

(t − s)θ .

Finally, if we assume 4αkµ ≥ 2, by taking again δ = 2 in (3.19) we have

(J
µ
k )2 ≤ cλ2

k

µ
exp

(
− t − s

µ

)
(t − s)2

(
(4αkµ − 1)

µ2 (t − s)2 ∨ 1

)−1

≤ cλ2
kµ

1−θ

(αkµ)1−θ/2 (t − s)θ ≤ cλ2
k

α1−θ
k

(t − s)θ ,

so that (3.20) holds.
According to (3.14), thanks to (3.18) and (3.20) we obtain (3.13).
Conclusion. Estimate (3.7) follows combining together (3.8) and (3.13). ��

4. The convergence result

In this section we are concerned with the stochastic semi-linear damped wave equa-
tion 



µ∂2u
∂t2 (t, x) = �u(t, x) − ∂u

∂t
(t, x) + b(x, u(t, x))

+ ∂WQ

∂t
(t, x), t > 0, x ∈ O,

u(0) = u0,
∂u

∂t
(0) = v0, u(t, x) = 0, t ≥ 0, x ∈ ∂O.

(4.1)

Our aim is proving that the solution uµ(t) converges to the solution of the stochastic
semi-linear heat equation




∂z
∂t

(t, x) = �z(t, x) + b(x, z(t, x))

+ ∂WQ

∂t
(t, x), t > 0, x ∈ O,

z(0) = u0, z(t, x) = 0, t ≥ 0, x ∈ ∂O,

(4.2)

as the parameter µ converges to zero.
For any µ > 0 and δ ∈ [0, 1] we define the operators

Bµ(h, k)(x) := 1

µ
(0, b(x, h(x))), (h, k) ∈ Hδ, x ∈ O, (4.3)

and

Qµh = 1

µ
(0, Qh), h ∈ H. (4.4)

Note that, since δ ∈ [0, 1], for any z1 = (u1, v1) and z2 = (u2, v2) ∈ Hδ

|Bµ(z1) − Bµ(z2)|Hδ
= 1

µ
|b(·, u1) − b(·, u2)|Hδ−1(O) ≤

c

µ
|b(·, u1) − b(·, u2)|H ,
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and then, thanks to Hypothesis 2

|Bµ(z1) − Bµ(z2)|Hδ
≤ c L

µ
|u1 − u2|H ≤ c L

µ
|z1 − z2|Hδ

. (4.5)

Definition 4.1. Let δ ∈ [0, 1]. A process uµ is a mild solution of problem (4.1) if

uµ ∈ L2(�; C([0, T ]; Hδ(O))), vµ := ∂uµ

∂t
∈ L2(�; C([0, T ]; Hδ−1(O))),

for any T > 0, and

zµ(t) = Sµ(t)(u0, v0) +
∫ t

0
Sµ(t − s)Bµ(zµ(s)) ds +

∫ t

0
Sµ(t − s) dWQµ(s),

where zµ(t) := (uµ(t), vµ(t)).

Note that with these notations, the weak solution ηµ of problem (3.1) introduced
in Section 3 can be written as

ηµ(t) = �1

∫ t

0
Sµ(t − s) dWQµ(s), t ≥ 0,

and hence if uµ is a mild solution of problem (4.1) we have

uµ(t) = �1Sµ(t)(u0, v0)

+�1

∫ t

0
Sµ(t − s)Bµ(uµ(s), vµ(s)) ds + ηµ(t), t ≥ 0. (4.6)

Now we can establish the existence of a unique mild solution to problem (4.1),
for any µ > 0. This result is known in the literature (for a proof see e.g. [5, Theorem
5.3.1]), but here, for the safe of completeness, we give a self-contained proof.

Proposition 4.2. Assume Hypotheses 1 and 2. Then for any µ > 0 and for any ini-
tial data u0 ∈ Hθ(O) and v0 ∈ Hθ−1(O) there exists a unique mild solution zµ(t)

to problem (4.1). Moreover, for any T > 0 and p ≥ 1 there exists cµ,p(T ) > 0
such that

E sup
t∈ [0,T ]

|zµ(t)|pHθ
≤ cµ,p(T )

(
1 + |(u0, v0)|pHθ

)
. (4.7)

Proof. For any z = (u, v) ∈ L2(�; C([0, T ]; Hθ(O))) × L2(�; C([0, T ];
Hθ−1(O))) =: Hθ (T ) we define

Fµ(z)(t) := Sµ(t)(u0, v0) +
∫ t

0
Sµ(t − s)Bµ(z(s)) ds+

∫ t

0
Sµ(t − s) dWQµ(s).

If we show that for some T0 > 0 small enough Fµ is a contraction on Hθ (T0), then
we have a unique mild solution to problem (4.1) in the interval [0, T0].

Due to (2.7), we have

Sµ(t)(u0, v0) ∈ Hθ (T ), T > 0.
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Moreover, as seen in (4.5) Bµ maps Hθ into itself, so that, by using again (2.7) we
have

t �→
∫ t

0
Sµ(t − s)Bµ(z(s)) ds ∈ Hθ (T ).

Thanks to (3.2) we can conclude that Fµ(z) ∈ Hθ (T ), for any z ∈ Hθ (T ).
Now, thanks to (4.5) Fµ is a contraction on Hθ (T0), provided T0 is sufficiently

small. This means that Fµ admits a unique fixed point in Hθ (T0), which is the
unique mild solution defined in the time interval [0, T0]. As the same arguments
can be repeated in the intervals [T0, 2T0], [2T0, 3T0] and so on, we obtain a unique
global solution in the time interval [0, T ].

We skip here the proof of estimate (4.7). A proof can be found for example in
[5, Theorem 5.3.1]. ��

Next step is proving that the family of probability measures {L(uµ)}µ∈ (0,1] is
tight on C([0, T ]; H), for any T > 0.

Proposition 4.3. Assume that u0 ∈ H 1(O) and v0 ∈ H . Then, under Hypotheses
1 and 2 the family of probability measures {L(uµ)}µ∈ (0,1] is tight on C([0, T ]; H),
for any T > 0.

Proof. If ηµ is the solution of the stochastic linear damped wave equation (3.1) and
if we define

ρµ(t) := uµ(t) − ηµ(t), t ≥ 0,

then the process ρµ(t) solves the deterministic equation


µ
∂2ρµ

∂t2 (t, x) = �ρµ(t, x) − ∂ρµ

∂t
(t, x) + b(x, ρµ(t, x)

+ηµ(t, x)), t > 0, x ∈ O,

ρµ(0) = u0,
∂ρµ

∂t
(0) = v0, ρµ(t, x) = 0, t ≥ 0, x ∈ ∂O.

If we multiply both sides of the first equation above by (−�)θ−1∂ρµ/∂t and inte-
grate with respect to x ∈ O, we easily get

µ
d

dt

∣∣∣∣∂ρ
µ

∂t
(t)

∣∣∣∣
2

Hθ−1(O)

+ d

dt

∣∣ρµ(t)
∣∣2
Hθ (O)

+ 2

∣∣∣∣∂ρ
µ

∂t
(t)

∣∣∣∣
2

Hθ−1(O)

= 2

〈
b(·, ρµ(t) + ηµ(t)), (−�)θ−1 ∂ρµ

∂t
(t)

〉
H

≤ |b(·, ρµ(t) + ηµ(t))|2H +
∣∣∣∣∂ρ

µ

∂t
(t)

∣∣∣∣
2

Hθ−1(O)

.

Hence, integrating with respect to t ≥ 0 it follows

µ

∣∣∣∣∂ρ
µ

∂t
(t)

∣∣∣∣
2

Hθ−1(O)

+ ∣∣ρµ(t)
∣∣2
Hθ (O)

+
∫ t

0

∣∣∣∣∂ρ
µ

∂t
(s)

∣∣∣∣
2

Hθ−1(O)

ds

≤ µ |v0|2Hθ−1(O)
+ |u0|2Hθ (O)

+
∫ t

0
|b(·, ρµ(s) + ηµ(s))|2H ds.
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Now, due to Hypothesis 2, for any s ∈ [0, T ] we have

|b(·, ρµ(s) + ηµ(s))|2H ≤ c

(
1 + |ρµ(s)|2

L2(O)
+ sup

t∈ [0,T ]
|ηµ(t)|2H

)
,

and then

µ

∣∣∣∣∂ρ
µ

∂t
(t)

∣∣∣∣
2

Hθ−1(O)

+ ∣∣ρµ(t)
∣∣2
Hθ (O)

+
∫ t

0

∣∣∣∣∂ρ
µ

∂t
(s)

∣∣∣∣
2

Hθ−1(O)

ds

≤ µ |v0|2Hθ−1(O)
+ |u0|2Hθ (O)

+cT

(
1 + sup

t∈ [0,T ]
|ηµ(t)|2H

)
+ c

∫ t

0
|ρµ(s)|2

Hθ (O)
ds.

Thanks to the Gronwall lemma, for any µ ∈ (0, 1] and T > 0 this yields

sup
t∈ [0,T ]

∣∣ρµ(t)
∣∣2
Hθ (O)

+
∫ T

0

∣∣∣∣∂ρ
µ

∂t
(s)

∣∣∣∣
2

Hθ−1(O)

ds

≤ cT

(
|v0|2Hθ−1(O)

+ |u0|2Hθ (O)
+ sup

t∈ [0,T ]
|ηµ(t)|2H + 1

)
. (4.8)

According to (3.3), this means that we can find some constant cT independent of
µ ∈ (0, 1] such that

E sup
t∈ [0,T ]

∣∣ρµ(t)
∣∣2
Hθ (O)

+ E

∫ T

0

∣∣∣∣∂ρ
µ

∂t
(s)

∣∣∣∣
2

Hθ−1(O)

ds ≤ cT .

In particular ρµ ∈ L2(�; C([0, T ]; Hθ(O))) and, since uµ = ρµ + ηµ, due to
(3.3) we have that uµ ∈ L2(�; C([0, T ]; H)) and

sup
µ∈ (0,1]

E |uµ|2C([0,T ];H) ≤ cT . (4.9)

Next, by using once more (3.3), for any ε > 0 we can find λ > 0 such that

P
(
ηµ ∈ Kλ,1

) ≥ 1 − ε, µ > 0, (4.10)

where, by the Ascoli-Arzelà theorem, Kλ,1 is the compact subset of C([0, T ]; H)

defined by

Kλ,1 :=
{

f : [0, T ] × Ō → R, : |f |Cδ([0,T ]×Ō) ≤ λ
}

,

with δ < θ/2. Now, as we are assuming that u0 ∈ H 1(O) and v0 ∈ H , due to
(4.8) we have

ηµ ∈ Kλ,1 �⇒ sup
t∈ [0,T ]

∣∣ρµ(t)
∣∣2
H 1(O)

+ sup
t∈ [0,T ]

∫ t

0

∣∣∣∣∂ρ
µ

∂t
(s)

∣∣∣∣
2

H

ds ≤ cT ,λ,
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so that
{
ηµ ∈ Kλ,1

} ⊂ {
uµ = ρµ + ηµ ∈ Kλ,2 + Kλ,1

}
,

where, again by theAscoli-Arzelà theorem, Kλ,2 is the compact subset of C([0, T ];
H) defined by

Kλ,2 :=

 f : sup

t∈ [0,T ]
|f (t)|H 1(O) ≤ cT ,λ, sup

t,s∈ [0,T ]
t �=s

|f (t) − f (s)|H
|t − s|1/2 ≤ c

1/2
T ,λ


 .

Hence, in view of (4.10) we have

P
(
uµ ∈ Kλ,1 + Kλ,2

) ≥ 1 − ε,

and this concludes the proof of tightness. ��
Next, we prove an integration by parts formula.

Lemma 4.4. Assume Hypotheses 1 and 2 and fix u0 ∈ Hθ(O) and v0 ∈ Hθ−1(O).
Then for any µ > 0 and for any ϕ ∈ C2([0, T ] × Ō), such that ϕ ≡ 0 on ∂O, we
have∫

O
uµ(t, x)ϕ(t, x) dx =

∫
O

u0(x)ϕ(0, x) dx

+
∫ t

0

∫
O

uµ(s, x)

[
∂ϕ

∂t
(s, x) + �ϕ(s, x)

]
ds dx

+
∫ t

0

∫
O

b(x, uµ(s, x))ϕ(s, x) ds dx

+
∫ t

0

∫
O

ϕ(s, x) WQ(ds, dx) + Rµ(t), (4.11)

where

Rµ(t) : = µ
(

1 − e
− t

µ

) ∫
O

v0(x)ϕ(0, x) dx −
∫ t

0
e
− t−s

µ Mµ(s) ds

−
∫ t

0
e
− t−s

µ

[∫
O

(
u0(x)

∂ϕ

∂t
(0, x) − uµ(s, x)

∂ϕ

∂t
(s, x)

+
∫ s

0
uµ(r, x)

∂2ϕ

∂t2 (r, x) dr

)
dx

]
ds

−
∫ t

0

∫
O

e
− t−s

µ ϕ(s, x)WQ(ds, dx), (4.12)

and

Mµ(t) :=
∫
O
(
uµ(t, x)�ϕ(t, x) + b(x, uµ(t, x))ϕ(t, x)

)
dx. (4.13)



382 S. Cerrai, M. Freidlin

Proof. Since we are assuming u0 ∈ Hθ(O) and v0 ∈ Hθ−1(O), due to Proposition
4.2 we only have

uµ ∈ L2(�; C([0, T ]; Hθ(O))),
∂uµ

∂t
∈ L2(�; C([0, T ]; Hθ−1(O))).

Thus, in order to have enough regularity, in our computations we replace uµ with
its finite dimensional Galerkin approximations which belong to C2,2([0, T ] × Ō).
Once we get formula (4.11) for the Galerkin approximations, we pass easily to the
limit and we get formula (4.11) for uµ.

Note that for simplicity of notations we still denote the Galerkin approxima-
tions by uµ. If we set vµ := ∂uµ/∂t , multiplying both sides of the first equation in
problem (4.1) by some ϕ ∈ C2([0, T ] × Ō) and integrating with respect to t ≥ 0
and x ∈ O, we get

∫ t

0

∫
O

∂vµ

∂t
(s, x)ϕ(s, x) ds dx = 1

µ

∫ t

0

∫
O

ϕ(s, x) WQ(ds, dx)

+ 1

µ

∫ t

0

∫
O
[
�uµ(s, x) − vµ(s, x) + b(x, uµ(s, x))

]
ϕ(s, x) ds dx.

Now, integrating by parts we have

∫ t

0

∫
O

∂vµ

∂t
(s, x)ϕ(s, x) ds dx = 〈

vµ(t), ϕ(t)
〉
H

− 〈v0, ϕ(0)〉H

−
∫ t

0

〈
vµ(s),

∂ϕ

∂t
(s)

〉
H

ds,

and if ϕ vanishes at the boundary of O
∫ t

0

∫
O

�uµ(s, x)ϕ(s, x) ds dx =
∫ t

0

〈
uµ(s), �ϕ(s)

〉
H

ds.

Thus, if we define

H(t) : =
∫ t

0

〈
vµ(s), ϕ(s)

〉
H

ds = 〈
uµ(t), ϕ(t)

〉
H

− 〈u0, ϕ(0)〉H −
∫ t

0

〈
uµ(s),

∂ϕ

∂t
(s)

〉
H

ds, (4.14)

and if Mµ(t) is defined as in (4.13), we obtain

H ′(t) = − 1

µ
H(t) + 〈v0, ϕ(0)〉H + 1

µ

∫ t

0

〈
ϕ(s), dWQ(s)

〉
H

+ 1

µ

∫ t

0

[
Mµ(s) + µ

〈
vµ(s),

∂ϕ

∂t
(s)

〉
H

]
ds.
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As H(0) = 0, this yields

H(t) = µ
(

1 − e
− t

µ

)
〈v0, ϕ(0)〉H + 1

µ

∫ t

0
e
− t−s

µ

∫ s

0

〈
ϕ(r), dWQ(r)

〉
H

ds

+ 1

µ

∫ t

0
e
− t−s

µ

∫ s

0

[
Mµ(r) + µ

〈
vµ(r),

∂ϕ

∂t
(r)

〉
H

]
dr ds.

Hence, due to (4.14) we get

〈
uµ(t), ϕ(t)

〉
H

= 〈u0, ϕ(0)〉H +
∫ t

0

〈
uµ(s),

∂ϕ

∂t
(s)

〉
H

ds

+µ
(

1 − e
− t

µ

)
〈v0, ϕ(0)〉H

+ 1

µ

∫ t

0
e
− t−s

µ

∫ s

0

〈
ϕ(r), dWQ(r)

〉
H

ds (4.15)

+ 1

µ

∫ t

0
e
− t−s

µ

∫ s

0

[
Mµ(r) + µ

〈
vµ(r),

∂ϕ

∂t
(r)

〉
H

]
dr ds.

Now, integrating by parts it is immediate to check that for any function f : [0, T ] →
R

1

µ

∫ t

0
e
− t−s

µ

∫ s

0
f (r) dr ds =

∫ t

0
f (s) ds −

∫ t

0
e
− t−s

µ f (s) ds. (4.16)

Similarly, for the stochastic integral we have

1

µ

∫ t

0
e
− t−s

µ

∫ s

0

〈
ϕ(r), dWQ(r)

〉
H

ds

=
∫ t

0

〈
ϕ(s), dWQ(s)

〉
H

−
∫ t

0
e
− t−s

µ

〈
ϕ(s), dWQ(ds)

〉
H

. (4.17)

Therefore, recalling how Mµ(t) is defined, if we plug (4.16) and (4.17) into (4.15)
we obtain

〈
uµ(t), ϕ(t)

〉
H

= 〈u0, ϕ(0)〉H +
∫ t

0

〈
uµ(s),

∂ϕ

∂t
(s)

〉
H

ds

+µ
(

1 − e
− t

µ

)
〈v0, ϕ(0)〉H

+
∫ t

0

〈
ϕ(s), dWQ(s)

〉
H

+
∫ t

0

(〈
uµ(s), �ϕ(s)

〉
H

+ 〈
b(·, uµ(s)), ϕ(s)

〉
H

)
ds

−
∫ t

0
e
− t−s

µ

〈
ϕ(s), dWQ(s)

〉
H

−
∫ t

0
e
− t−s

µ Mµ(s) ds

+
∫ t

0
e
− t−s

µ

∫ s

0

〈
vµ(r),

∂ϕ

∂t
(r)

〉
H

dr ds.
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This concludes the proof of the lemma, as∫ t

0
e
− t−s

µ

∫ s

0

〈
vµ(r),

∂ϕ

∂t
(r)

〉
H

dr ds =
∫ t

0
e
− t−s

µ

(〈
uµ(s),

∂ϕ

∂t
(s)

〉
H

−
〈
u0,

∂ϕ

∂t
(0)

〉
H

−
∫ s

0

〈
uµ(r),

∂2ϕ

∂t2 (r)

〉
H

dr

)
ds.

��
Concerning the remainder term Rµ(t) defined in (4.12), we have the following

limiting result.

Lemma 4.5. Under the same hypotheses of Lemma 4.4 we have

lim
µ→0

E |Rµ(t)|2 = 0, t ≥ 0.

Proof. We have

|Rµ(t)|2 ≤ 3 µ2
∣∣〈v0, ϕ(0)〉H

∣∣2 + 3

∣∣∣∣
∫ t

0
e
− t−s

µ

〈
ϕ(s), dWQ(s)

〉
H

∣∣∣∣
2

+3

∣∣∣∣
∫ t

0
e
− t−s

µ

[
Mµ(s) +

〈
u0,

∂ϕ

∂t
(0)

〉
H

−
〈
uµ(s),

∂ϕ

∂t
(s)

〉
H

+
∫ s

0

〈
uµ(r),

∂2ϕ

∂t2 (r)

〉
H

dr

]
ds

∣∣∣∣
2

=: I 1
µ(t) + I 2

µ(t) + I 3
µ(t).

Now, with a change of variable we have

E I 2
µ(t) = 3

∫ t

0
e
− 2(t−s)

µ |ϕ(s)|2H ds = 3 µ

∫ t
µ

0
e−2s |ϕ(t − µs)|2H ds

≤ 3

2
µ sup

s∈ [0,T ]
|ϕ(s)|2H

Moreover, recalling how Mµ(t) is defined in (4.13), with a change of variables we
easily get

I 3
µ(t) ≤ µ c t

∫ ∞

0
e−2s ds (1 + T 2)|uµ|2C([0,T ];H)|ϕ|2

C2([0,T ]×Ō)
,

and hence, due to (4.9) we conclude

E I 3
µ(t) ≤ µ cT

(
1 + E |uµ|2C([0,T ];H)

)
|ϕ|2

C2([0,T ]×Ō)
≤ µ cT |ϕ|2

C2([0,T ]×Ō)
.

This implies that

E |Rµ(t)|2 ≤ I 1
µ(t) + E I 2

µ(t) + E I 3
µ(t) ≤ µ cT ,

for some constant cT depending only on T , u0 and ϕ, and the lemma is proved. ��
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Now we can prove the main result of this section.

Theorem 4.6. Assume Hypotheses 1 and 2 and fix u0 ∈ H 1(O) and v0 ∈ H .
Then, if uµ is the solution of the stochastic semi-linear damped wave equation
(4.1) and z is the solution of the stochastic semi-linear heat equation (4.2), for any
T > 0 and for any ε > 0 we have

lim
µ→0

P
(|uµ − z|C([0,T ];H) > ε

) = 0.

Proof. Due to the tightness in C([0, T ]; H) of the sequence {L(uµ)}µ∈ (0,1], the
Skorokhod theorem assures that for any two sequences {µn}n and {µm}m converg-
ing to zero there exist subsequences {µn(k)}k∈ N and {µm(k)}k∈ N and a sequence of
random elements

{ρk}k∈ N :=
{
(uk

1, u
k
2, Ŵk

Q
)
}

k∈ N
,

in C := C([0, T ]; H)2 × C([0, T ]; D′(O)), defined on some probability space
(�̂, F̂, P̂), such that the law of ρk coincides with the law of (uµn(k) , uµm(k) , WQ), for
each k ∈ N, and ρk converges P̂-a.s. to some random element ρ :=(u1, u2, Ŵ

Q)∈
C.

Now, if we show that u1 = u2, we have that there exists some z ∈ C([0, T ]; H)

such that uµ converges to z in probability. Actually, as observed by Gyöngy and
Krylov in [8], if E is any Polish space equipped with the Borel σ -algebra, a se-
quence {ρn} of E-valued random variables converges in probability if and only if
for every pair of subsequences {ρm} and {ρl} there exists an E2-valued subsequence
wk := (ρm(k), ρl(k)) converging weakly to a random variable w supported on the
diagonal {(h, k) ∈ E2 : h = k}.

Note that both uk
1 and uk

2 solve equation (4.1) with WQ replaced by Ŵk
Q

. Then
they both verify formula (4.11), with Rk

1 and Rk
2 obtained replacing uµ respectively

with uk
1 and uk

2 and WQ with Ŵ
Q
k . According to Lemma 4.5 we have that both Rk

1

and Rk
2 converge to zero in L2(�̂), as µn(k) and µm(k) go to zero, and then, possibly

for a subsequence, they converge P̂-a.s. to zero. Due to formula (4.11) this implies∫
O

ui(t, x)ϕ(t, x) dx =
∫
O

u0(x)ϕ(0, x) dx

+
∫ t

0

∫
O

ui(t, x)

[
∂ϕ

∂t
(s, x) + �ϕ(s, x)

]
ds dx

+
∫ t

0

∫
O

b(x, ui(s, x))ϕ(s, x) ds dx

+
∫ t

0

∫
O

ϕ(s, x) ŴQ(ds, dx), i = 1, 2,

and then both u1 and u2 coincide with the solution of the semi-linear heat equation
perturbed by the noise ŴQ, which is unique.

As we have recalled above, thanks to the remark by Gyöngy-Krylov in [8] this
implies thatuµ converges in probability to some random variable z ∈ C([0, T ]; H).
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But, by using again formula (4.11) and Lemma 4.5 we have that z solves the heat
equation (4.2). This completes the proof of the theorem. ��

5. Stationary distributions

In this section we study the relation between the stationary distributions of the
processes uµ(t) and z(t), defined respectively as the solution of the semi-linear
stochastic damped wave equation (4.1) and as the solution of the semi-linear sto-
chastic heat equation (4.2).

If we set

zµ(t) := (uµ(t), vµ(t)), t ≥ 0, µ > 0,

with the notations introduced in Section 2 and Section 4 we can write equation
(4.1) as the abstract evolution equation on the Hilbert space H0 = H × H−1(O)

dzµ(t) = [
Aµzµ(t) + Bµ(zµ(t))

]
dt + dWQµ, zµ(0) = (u0, v0), (5.1)

where Bµ and Qµ are the operators already defined in (4.3) and (4.4), respectively.
Note that the adjoint of the operator Qµ : H → H0 is the operator Q


µ : H0 →
H defined by

Q

µ(u, v) = 1

µ
(−�)−1Qv.

In particular we have that QµQ

µ : H0 → H0 is given by

QµQ

µ (u, v) = 1

µ2 (0, (−�)−1Q2v), (u, v) ∈ H0. (5.2)

Next, for any µ > 0 we introduce the operator Cµ ∈ L+(H0) by setting

Cµ :=
∫ ∞

0
Sµ(s) QµQ


µ S

µ(s) ds,

where {S

µ(t)}t≥0 is the semigroup generated by A


µ, the adjoint to the operator Aµ.

Proposition 5.1. Under Hypothesis 1, with θ = 0, we have

Cµ(u, v) = 1

2

(
(−�)−1Q2u,

1

µ
(−�)−1Q2v

)
, (u, v) ∈ H0. (5.3)

In particular Cµ is a trace-class operator with

Tr Cµ = 1

2

(
1 + 1

µ

) ∞∑
k=1

λ2
k

αk

.
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Proof. Due to (2.6) and (5.2), for any (u, v) ∈ H0 and µ > 0 we have

Sµ(t) QµQ

µ S


µ(t)(u, v) = 1

µ2 Sµ(t)(0, (−�)−1Q2 �2S


µ(t)(u, v))

= 1

µ2 Sµ(t)(0, (−�)−1Q2 �2Sµ(t)(−µu, v)).

Thus, from (2.4) and (2.5), for any k ∈ N we easily have

[
�1 Sµ(t) QµQ


µ S

µ(t)(u, v)

]
k

= λ2
k

4αk µ2γ
µ
k

exp

(
− t

µ

) (
αk

γ
µ
k

[
exp

(
γ

µ
k t

)

− exp
(−γ

µ
k t

)]2
uk + [

exp
(
γ

µ
k t

)

− exp
(−γ

µ
k t

)] [(
1 − 1

2µγ
µ
k

)
exp

(
γ

µ
k t

)

+
(

1 + 1

2µγ
µ
k

)
exp

(−γ
µ
k t

)]
vk

)
,

with the usual assumption that if γ
µ
k = 0 then for any t ≥ 0

1

γ
µ
k

[
exp

(
γ

µ
k t

) − exp
(−γ

µ
k t

)] = 2t.

Therefore, by some computations for any k ∈ N we obtain

[
�1 Cµ(u, v)

]
k

=
∫ ∞

0

[
�1 Sµ(t) QµQ


µ S

µ(t)(u, v)

]
k

dt = λ2
k

2αk

uk.

Concerning the second component, due to (2.5) we have

[
�2 Sµ(t) QµQ


µ S

µ(t)(u, v)

]
k

= λ2
k

4αk µ2 exp

(
− t

µ

)
[(

1 − 1

2µγ
µ
k

)
exp

(
γ

µ
k t

) +
(

1 + 1

2µγ
µ
k

)
exp

(−γ
µ
k t

)]

(
αk

γ
µ
k

[
exp

(
γ

µ
k t

) − exp
(−γ

µ
k t

)]
uk

+
[(

1 − 1

2µγ
µ
k

)
exp

(
γ

µ
k t

) +
(

1 + 1

2µγ
µ
k

)
exp

(−γ
µ
k t

)]
vk

)
,

and, as for the first component, by some computations this implies that

[
�2 Cµ(u, v)

]
k

=
∫ ∞

0

[
�2 Sµ(t) QµQ


µ S

µ(t)(u, v)

]
k

dt = λ2
k

2µαk

vk.

This allows to obtain (5.3) and hence to conclude the proof of the proposition. ��
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5.1. The linear case

Our aim here is studying the invariant measure of the system

dz(t) = Aµz(t) dt + d WQµ(t), z(0) = (u0, v0) ∈ H0, (5.4)

and showing that the stationary distribution for the solution of the linear stochastic
damped wave equation

µ
∂2u

∂t2 (t, x) = �u(t, x) − ∂u

∂t
(t, x) + ∂WQ

∂t
(t, x),

u(t, x) = 0, x ∈ ∂O, (5.5)

coincides for all µ > 0 with the unique invariant measure of the linear stochastic
heat equation

∂u

∂t
(t, x) = �u(t, x) + ∂WQ

∂t
(t, x), u(0, x) = 0, x ∈ ∂O. (5.6)

Theorem 5.2. Under Hypothesis 1, with θ = 0, the Gaussian measure N (0, Cµ)

is the unique invariant measure of system (5.4), for each µ > 0, and for any
ϕ ∈ Cb(H0) and z0 ∈ H0

lim
t→∞ E

z0 ϕ(zµ(t)) =
∫
H0

ϕ(z) N (0, Cµ)(dz), (5.7)

so that N (0, Cµ) is ergodic and strongly mixing.
Moreover the Gaussian measure ν = N (0, (−�)−1/2) is the stationary distri-

bution of (5.5). In particular, ν does not depend on µ > 0 and coincides with the
unique invariant measure of the stochastic heat equation (5.6).

Proof. According to Proposition 5.1, the operator Cµ is non-negative, symmetric
and of trace-class onH0. Thus problem (5.4) admits an invariant measure of the form

ν 
 N (0, Cµ),

where ν is an invariant measure for the semigroup Sµ(t) and N (0, Cµ) is the Gauss-
ian measure, with zero mean and covariance operator Cµ (for a proof see e.g. [4,
Theorem 11.7]). Moreover, as the semigroup {Sµ(t)}t≥0 is of negative type (see
Proposition 2.4), due to [4, Theorem 11.11] N (0, Cµ) is the unique invariant mea-
sure for (5.1) and (5.7) holds. As well known this implies that N (0, Cµ) is ergodic
and strongly mixing.

Next, due to (5.3) the measure N (0, Cµ) defined on H0 is the product of two
Gaussian measures, defined respectively on H and H−1(O). Namely

N (0, Cµ) = N
(

0, (−�)−1/2
)

× N
(

0, (−�)−1/2µ
)

.

In particular the marginal measure νµ := �1N (0, Cµ) equals N (0, (−�)−1/2),
so that it does not depend on µ > 0 and coincides with the unique invariant measure
ν of the Ornstein-Uhlenbeck process solving problem (5.6).
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This allows us to conclude the proof of the theorem, as the process ūµ(t) =
�1z̄

µ(t), with

z̄µ(t) = (ūµ(t), v̄µ(t)) :=
∫ t

0
Sµ(t − s)dWQµ(s),

is the stationary solution to problem (5.5) and its distribution is �1N (0, Cµ). ��

5.2. The semi-linear case

We show that an analogous result holds also in the non-linear case, if Q is the
identity operator (and in particular if d = 1).

Our aim first is proving that system (5.1) is of gradient type and admits an
invariant measure of the following type

νµ(dz) = cµ e 2U(z) N (0, Cµ)(dz),

for some mapping U : H0 → R which does not depend on µ > 0 and is a function
of u ∈ H only.

To this purpose we introduce some notations. For anyn ∈ N and ξ =(ξ1, . . . , ξn)

∈ R
n we define

Tnξ :=
∑
k≤n

ξkek.

Clearly the mapping Tn is well defined from R
n into Hδ(O) and the mapping

T̄n(ξ, η) := (Tnξ, Tnη) is well defined from R
n × R

n into Hδ , for any δ ∈ R.
Moreover, if we define

Rnu := (〈u, e1〉H , . . . , 〈u, en〉H ) ,

we have that Rn maps Hδ(O) into R
n, for any δ ∈ R, and RnTn = IdRn . Further-

more, if we set Pn := TnRn, we have that Pn is the projection of Hδ(O) onto the
finite dimensional space generated by {e1, . . . , en} and for any fixed u ∈ Hδ(O)

we have that Pnu converges to u in Hδ , as n goes to infinity. In particular, setting

P̄n(z) := (Pnu, Pnv), z = (u, v) ∈ Hδ,

we have

lim
n→∞ P̄nz = z, in Hδ (5.8)

In what follows, for any Banach space X we denote by Bb(X) the Banach space of
Borel and bounded functions from X into R, endowed with the sup-norm, and we
denote by Cb(X) the subspace of uniformly continuous functions.

We recall that the transition semigroup {P µ(t)}t≥0 associated with system (5.1)
in H0 is defined for any t ≥ 0 and ϕ ∈ Bb(H0) by

P µ(t)ϕ(z) = E ϕ(uµ(t), vµ(t)), z = (u, v) ∈ H0,

where (uµ(t), vµ(t)) is the solution to (5.1) with initial datum z = (u, v).
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Next, we denote by z
µ
n (t) the solution to the finite dimensional problem

dz(t) = [
Aµz(t) + P̄nBµ(P̄nz(t))

]
dt + dWIµ,n(t), z(0) = P̄nz, (5.9)

where Iµ,n = P̄nIµ. Due to (5.8), to the fact that Bµ is Lipschitz continuous (see
(4.5)) and to estimate (4.7), it is possible to prove the following approximation
result

lim
n→∞ E |zµ

n (t) − zµ(t)|2H0
= 0, t ≥ 0.

An important consequence of this fact is that the semigroup P µ(t) can be approxi-
mated by the semigroup P n

µ(t) associated with z
µ
n (t). Namely, for any ϕ ∈ Cb(H0)

and t ≥ 0 it holds

lim
n→∞ P µ

n (t)ϕ(z) = lim
n→∞ E ϕ(zµ

n (t)) = P µ(t)ϕ(z), z ∈ H0. (5.10)

Now, for any u ∈ H we set

U(u) :=
∫
O

∫ u(x)

0
b(x, σ ) dσ dx. (5.11)

Since b(x, ·) : R → R has linear growth, uniformly with respect to x ∈ O (see
Hypothesis 2), it is not difficult to check that

|U(u)| ≤ c
(

1 + |u|2H
)

, |U(u) − U(v)| ≤ c |u − v|H (1 + |u|H + |v|H ) ,

so that U : H → R is well defined and locally Lipschitz continuous. Moreover it
is differentiable and DU(u) = b(·, u), for any u ∈ H .

Hypothesis 3. The mapping U : H → R defined in (5.11) is bounded from above,
that is

sup
u∈ H

U(u) < ∞.

Remark 5.3. 1. The assumption of boundedness from above for U implies that

Z :=
∫

H

e 2U(u) N (0, (−�)−1/2)(du) < ∞,

and

Zn :=
∫

H

e 2U(Pnu) N (0, (−�)−1/2)(du) < ∞, n ∈ N.

2. Hypothesis 3 above is satisfied if for example

b(x, σ ) = −c1(x) σ + c2(x), (x, σ ) ∈ Ō × R,

for some continuous mappings c1, c2 : Ō → R, with minx∈ Ō c1(x) > 0.
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3. From the proof of Theorem 5.4 one sees that it is sufficient to assume a weaker
condition than Hypothesis 3. Namely, what is needed is that both Z and Zn are
finite and

lim
n→∞

∫
H0

ϕn(z)e
2U(Pnu) N (0, Cµ) dz =

∫
H0

ϕ(z)e 2U(u) N (0, Cµ) dz,

for any sequence {ϕn} ⊂ Cb(H0) uniformly bounded and pointwise convergent
to some ϕ ∈ Cb(H0).

Theorem 5.4. Assume that Hypotheses 1, 2 and 3 hold and take Q = I . Then the
probability measure

νµ(dz) := 1

Z
e 2U(u) N (0, Cµ)(dz)

is invariant for system (5.1).
Moreover the distribution

ν(du) := 1

Z
e 2U(u) N (0, (−�)−1/2)(du)

is stationary for equation (4.1), for any µ > 0, and coincides with the unique
invariant measure for the stochastic semi-linear heat equation (4.2).

Proof. For any µ > 0, n ∈ N and (q, p) ∈ R
n × R

n, we denote by ζ
µ
n (t) :=

(q
µ
n (t), p

µ
n (t)) the solution of the system in R

n




q̇ µ
n (t) = pµ

n (t), qµ
n (0) = q

µ ṗ µ
n (t) = Rn�Tnq

µ
n (t) + Rnb(·, Tnq

µ
n (t)) − pµ

n (t) + Ẇn(t), pµ
n (0) = p,

(5.12)

where Wn(t) = (β1(t), . . . , βn(t)), for any t ≥ 0. The transition semigroup asso-
ciated with system (5.12) is defined for any ϕ ∈ Cb(R

2n) by

P̂ µ
n (t)ϕ(q, p) = E ϕ

(
ζµ
n (t)

)
, t ≥ 0.

Note that if we define Un(q) := U(Tnq), we have

DUn(q) = Rn b(·, Tnq), q ∈ R
n,

and

1

2
D 〈Rn�Tnq, q〉Rn = Rn�Tnq q ∈ R

n.

Moreover, since ∫
Rn

exp
(〈Rn�Tnq, q〉Rn + 2 U(Tnq)

)
dq

= cn

∫
Rn

e2 U(Tnq) N (0, Rn(−�)−1Tn/2) dq,

for the obvious normalizing constant cn, by a change of variable from Hypothesis
3 we have
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∫
Rn

exp
(〈Rn�Tnq, q〉Rn + 2 U(Tnq)

)
dq = cn

∫
H

e2 U(Pnu) N (0, (−�)−1/2) du

< ∞.

As a well-known fact, the Boltzmann distribution

ν̂µ,n(dq, dp) = cµ,n exp
(〈Rn�Tnq, q〉Rn + 2 Un(q)

)
exp

(
−µ|p|2

Rn

)
(dq, dp)

= 1

Zn

e2 Un(q)N (0, Rn(−�)−1Tn/2)(dq) × N (0, IRn/2µ)(dp)

is invariant for system (5.12), so that for any ϕ̂ ∈ Cb(R
n) and t ≥ 0∫

Rn×R n

P̂ µ
n (t)ϕ̂(q, p) ν̂µ,n(dq, dp) =

∫
Rn×R n

ϕ̂(q, p) ν̂µ,n(dq, dp). (5.13)

Now, it is immediate to check that the H0-valued process T̄nζ
µ
n (t) coincides with

the solution z
µ
n (t) of the approximating system (5.9) with initial datum T̄n(q, p).

For any ϕ ∈ Cb(H0) this yields

P µ
n (t)ϕ(T̄n(q, p)) = P̂ µ

n (t)(ϕ ◦ T̄n)(q, p), (q, p) ∈ R
n × R

n,

and hence from (5.13) for any ϕ ∈ Cb(H0) we obtain∫
Rn×Rn

P µ
n (t)ϕ(T̄n(q, p)) ν̂µ,n(dq, dp)

=
∫

Rn×Rn

ϕ(T̄n(q, p)) ν̂µ,n(dq, dp). (5.14)

If Tn is considered as a mapping from R
n into H by reasoning as above we have[

e2 Un(q)N (0, Rn(−�)−1Tn/2)
]

◦ T −1
n (du)

= e2 U(u)N (0, (−�)−1Pn/2)(du). (5.15)

Moreover, if Tn is considered as a mapping from R
n into H−1(O) we have

N (0, IRn/2µ) ◦ T −1
n = N (0, (−�)−1Pn/2µ). (5.16)

Actually, for any λ ∈ H−1(O) we have∫
H−1(O)

exp
(
i 〈λ, v〉H−1(O)

) [
N (0, IRn/2µ) ◦ T −1

n

]
dv

=
∫

Rn

exp
(
i
〈
(−�)−1λ, Tnp

〉
H

)
N (0, IRn/2µ) dp

= exp

(
− 1

4µ

〈
Rn(−�)−1λ, Rn(−�)−1λ

〉
Rn

)

= exp

(
− 1

4µ

〈
(−�)−1Pnλ, Pnλ

〉
H−1(O)

)

=
∫

H−1(O)

exp
(
i 〈λ, v〉H−1(O)

)N (0, (−�)−1Pn/2µ) dv,

and by uniqueness of the Fourier transform we obtain (5.16).
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Therefore, from (5.15) and (5.16) we have

ν̂µ,n ◦ T̄ −1
n (dz) = 1

Zn

e2 U(u)N (0, (−�)−1Pn/2) × N (0, (−�)−1Pn/2µ) (dz)

= 1

Zn

e2 U(u)
[
N (0, Cµ) ◦ P̄ −1

n

]
(dz),

and hence, since

P µ
n (t)ϕ(z) = P µ

n (t)ϕ(P̄nz), z ∈ H0,

from (5.14) it follows

1

Zn

∫
H0

P µ
n (t)ϕ(z) e2 U(Pnu)N (0, Cµ) dz

= 1

Zn

∫
H0

ϕ(P̄nz) e2 U(Pnu)N (0, Cµ) dz. (5.17)

Now, due to (5.8) and (5.10) we have

lim
n→∞ P µ

n (t)ϕ(z) e2 U(Pnu) = P µ(t)ϕ(z) e2 U(u).

Then, thanks to Hypothesis 3, by the dominated convergence theorem we can take
the limit as n goes to infinity in both sides of (5.17) and we get

1

Z

∫
H0

P µ(t)ϕ(z) e2 U(u)N (0, Cµ) dz = 1

Z

∫
H0

ϕ(z) e2 U(u)N (0, Cµ) dz,

for any ϕ ∈ Cb(H0). By a monotone class argument the same identity follows for
arbitrary ϕ ∈ Bb(H0). This in particular implies that the measure

νµ = 1

Z
e2 U(u)N (0, Cµ)(dz)

is invariant for P µ(t).
Finally, we obtain the second part of the theorem, as we have

�1 [
1

Z
e2 U(u)N (0, Cµ)(dz)] = 1

Z
e2 U(u)N (0, (−�)−1/2)(dz).

��
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