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Abstract. We introduce and study a family of Markov processes on partitions. The pro-
cesses preserve the so-called z-measures on partitions previously studied in connection with
harmonic analysis on the infinite symmetric group. We show that the dynamical correla-
tion functions of these processes have determinantal structure and we explicitly compute
their correlation kernels. We also compute the scaling limits of the kernels in two different
regimes. The limit kernels describe the asymptotic behavior of large rows and columns of
the corresponding random Young diagrams, and the behavior of the Young diagrams near
the diagonal.

Our results show that recently discovered analogy between random partitions arising
in representation theory and spectra of random matrices extends to the associated time–
dependent models.

Introduction

In a series of papers (see [BO1], [Ol2], references therein, and also [BO5]) we have
been studying a remarkable family of probability distributions on partitions (equiv-
alently, Young diagrams) called z-measures. These objects have a representation
theoretic origin, they arise in harmonic analysis on the infinite symmetric group,
see [KOV1], [KOV2]. Surprisingly enough, the z-measures turned out to be related
to a number of probabilistic models of random matrix theory, stochastic growth,
random tilings, percolation theory, etc. In this paper, we introduce and study a fam-
ily of Markov processes on partitions which preserve the z-measures. Our main
result is the computation of the dynamical correlation functions for these Markov
processes. We also compute the scaling limits of the correlation functions corre-
sponding to two different limit regimes as the size of partitions tends to infinity.
In the first regime we look at the largest rows and columns of the random Young
diagram 1 while in the second one we focus on the boundary of the random Young
diagram near the diagonal.

Examples of dynamical models of random matrix type are well known. The
sources of dynamics may be very different: in the Gaussian random matrix ensem-
bles one allows the matrix elements to evolve according to the stationary Ornstein–
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Uhlenbeck process (Dyson’s Brownian motion [Dy]), in tiling models one reads
the two–dimensional picture section by section [Jo3], [Jo6], [Jo7], [OR], in growth
models the time parameter is present from the very beginning [PS].

In our setting the construction of dynamics is different; it is based on repre-
sentation theory. We heavily rely on the fact that the z-measures define characters
of the infinite symmetric group and thus possess a special coherency property. It
reflects the consistency of restrictions of a character of the infinite symmetric group
to various finite subgroups. The resulting Markov processes are analogous to those
arising in other models, and in degenerations they even coincide with some of those,
see [BO7]. It is rather surprising that the similarity of the z-measures to measures
of different origin extends to dynamics associated with those models.

One of the elements of our construction is a special family of birth and death
processes associated with Meixner orthogonal polynomials. Such birth and death
processes, among many others, were extensively studied by Karlin–McGregor
[KMG1], [KMG2]. Certain degenerations of our Markov processes admit a nat-
ural description in the language of Karlin–McGregor, see §6.5 below.

Let us now describe our results in more detail.
Let Y denote the set of all Young diagrams. We consider a family Mz,z′,ξ of

probability measures on Y which depend on two complex parameters z and z′ and a
real parameter ξ ∈ (0, 1). The weight of a Young diagram λ with respect toMz,z′,ξ
is given by

Mz,z′,ξ (λ) = (1 − ξ)zz′ ξ |λ| (z)λ(z′)λ
(

dim λ

|λ|!
)2

.

Here

(z)λ =
∏

(i,j)∈λ
(z+ j − i)

(product over the boxes of λ) is the generalized Pochhammer symbol, and dim λ is
the dimension of the irreducible representation of the symmetric group of degree
|λ| associated to λ. In order forMz,z′,ξ (λ) to be nonnegative for all λ ∈ Y, we need
to impose certain restrictions on z and z′, for instance, z′ = z̄. All possibilities for
(z, z′) are given before Proposition 1.2 below.

Let Yn denote the set of allYoung diagrams with n boxes. RestrictingMz,z′,ξ to

Yn ⊂ Y and renormalizing it, we obtain a probability measureM(n)

z,z′ on Yn, which
does not depend on ξ . The measureMz,z′,ξ may be viewed as a mixture of the finite

level measures M(n)

z,z′ .
The Markov processes that we are about to construct, are jump processes with

countable state space Y and continuous time t ∈ R. The jumps are of two types:
one either adds a box to the random Young diagram, or one removes a box from
the diagram.

The event of adding or removing a box is governed by a birth and death process
Nc,ξ (t) := |λ(t)| on Z+. This process depends on ξ and the product c = zz′, and
its jump rates are given by
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Prob{Nc,ξ (t + dt) = n+ 1 | Nc,ξ (t) = n} = ξ(c + n)dt
1 − ξ ,

Prob{Nc,ξ (t + dt) = n− 1 | Nc,ξ (t) = n} = n dt

1 − ξ .

This is special case of the birth and death processes considered in [KMG2]. Its
invariant distribution, the so–called negative binomial distribution, is the weight
function for the Meixner orthogonal polynomials.

Conditioned on the jump n → n + 1, the choice of the box (i, j) to be added
to λ is made according to the transition probabilities

p↑(n, λ; n+ 1, ν) = (z+ j − i)(z′ + j − i) dim ν

(zz′ + n)(n+ 1) dim λ
,

and conditioned on the jump n→ n− 1, the choice of the box (i, j) to be removed
from λ is made according to the cotransition probabilities

p↓(n, λ; n− 1, µ) = dimµ

dim λ

(here ν = λ ∪ (i, j) and µ = λ \ (i, j)).
The transition and cotransition probabilities are naturally associated with finite

level measures M(n)

z,z′ . These probabilities were introduced in [VK] in the context
of general characters of the infinite symmetric group (see also [Ke2]).

The jump rates λ ↗ ν and λ ↘ µ correctly define a stationary Markov pro-
cess�z,z′,ξ (t) on Y. The measureMz,z′,ξ is the invariant measure for this process.
Moreover, �z,z′,ξ is reversible. In the degenerate case of z or z′ being an integer,
�z,z′,ξ can be interpreted in terms of finitely many independent birth and death
processes subject to a nonintersection condition, see §6.5 below.

One can also construct Markov chains which preserve the finite level measures
M
(n)

z,z′ . The key idea is that finite level measures are preserved by transition and
cotransition probabilities. Thus, adding a random box and removing a random box
afterwards leavesM(n)

z,z′ invariant. Alternatively, one can first remove a box and then
add a box. These two procedures yield two different Markov chains. They were
suggested by Kerov a long time ago (unpublished). The same idea was indepen-
dently exploited by Fulman [Fu]. It should be noted that our methods based on
determinantal point processes are not directly applicable to such Markov chains.
The idea of mixing all finite level measures together2 is essential for us, it allows
us to obtain explicit formulas for dynamical correlation functions, as we explain
below.

It is well known that Young diagrams can be viewed as infinite subsets (point
configurations) in a one-dimensional lattice. This parametrization of Young dia-
grams turns out to be very useful.

Let Z
′ be the lattice of (proper) half–integers

Z
′ = Z + 1

2 = {. . . ,− 5
2 ,− 3

2 ,− 1
2 ,

1
2 ,

3
2 ,

5
2 , . . . }.

2 which may be viewed as a passage to the grand canonical ensemble, cf. [Ve].
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For any λ ∈ Y we set

X (λ) = {λi − i + 1
2 | i = 1, 2, . . . } ⊂ Z

′.

For instance, for the empty diagram λ = ∅, X (∅) = {. . . ,− 5
2 ,− 3

2 ,− 1
2 }. Using

the correspondence λ 
→ X (λ)we interpret the measureMz,z′,ξ on Y as a probabil-
ity measure on 2Z

′
. This makes it possible to speak about the dynamical correlation

functions of �z,z′,ξ which uniquely determine the process. They are defined by

ρn(t1, x1; t2, x2; . . . ; tn, xn) = Prob
{
X (λ) at time ti contains xi for 1 ≤ i ≤ n

}
.

Here n = 1, 2, . . ., and the nth correlation function ρn is a function of n pairwise
distinct arguments (t1, x1), . . . (tn, xn) ∈ R × Z

′.
The notion of the dynamical correlation functions is a hybrid of the finite-

dimensional distributions of a stochastic process and standard correlation functions
of probability measures on point configurations.

The reason why we are interested in dynamical correlation functions is the same
as in the “static” (fixed time) case: As we take scaling limits of our processes, the
notion of weight of a point configuration ceases to make any sense because the
space of relevant point configurations becomes uncountable. On the other hand,
the scaling limits of the correlation functions do exist, and they carry complete
information about the asymptotic behavior of our processes.

Theorem A (Part 1). The dynamical correlation functions of�z,z′,ξ have the deter-
minantal form (n = 1, 2, . . . )

ρn(t1, x1; . . . ; xn, tn) = det
[
K z,z′,ξ (ti , xi; tj , xj )

]n
i,j=1,

where the correlation kernel K z,z′,ξ (s, x; t, y) is a function on (R × Z
′)2 which

can be explicitly computed.
One way of writing the kernel is by a double contour integral

K z,z′,ξ (s, x; t, y)

= e
1
2 (s−t)�(−z′ − x + 1

2 )�(−z− y + 1
2 )(−1)x+y+1

(
�(−z− x + 1

2 )�(−z′ − x + 1
2 )�(−z− y + 1

2 )�(−z′ − y + 1
2 )
) 1

2

× 1 − ξ
(2πi)2

∮
{ω1}

∮
{ω2}

(
1−

√
ξω1

)−z′(
1−

√
ξ ω−1

1

)z(
1−

√
ξω2

)−z(
1−

√
ξ ω−1

2

)z′

× ω
−x− 1

2
1 ω

−y− 1
2

2 dω1dω2

es−t
(
ω1 −

√
ξ
) (
ω2 −

√
ξ
)− (

1 −√
ξω1

) (
1 −√

ξω2
)

with the contours {ω1} and {ω2} of ω1 and ω2 satisfying the following conditions:

• {ω1} and {ω2} go around 0 in positive direction and pass between
√
ξ and 1/

√
ξ .

• The contours are chosen so that the denominator in the formula above does not
vanish. There are two possibilities of doing that; one of them is used for s ≥ t ,
and the other one is used for s < t , see Theorem 6.1 below for details.
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This integral representation is convenient for computing the scaling limits of
the correlation functions. However, it does not reveal important structural features
of the kernel. Let us now present another way of writing the correlation kernel.

Consider a second order difference operatorD on Z
′, depending on parameters

(z, z′, ξ) and acting on functions f ( · ) ∈ 	2(Z′) as follows

(Df )(x) =
√
ξ(z+ x + 1

2 )(z
′ + x + 1

2 ) f (x + 1)

+
√
ξ(z+ x − 1

2 )(z
′ + x − 1

2 ) f (x − 1)− (x + ξ(z+ z′ + x)) f (x).

This is a self-adjoint operator with discrete simple spectrum SpD = {(1 − ξ)Z′}.
Its eigenfunctions ψa ,

Dψa = (1 − ξ)a · ψa,
are explicitly written through the Gauss hypergeometric function, see (5.1) below.
We normalize them by the condition ‖ψa‖ = 1.

Theorem A (Part 2). The correlation kernel for the dynamical correlation func-
tions of the Markov process �z,z′,ξ can also be written as

K z,z′,ξ (s, x; t, y) = ±
∑

a= 1
2 ,

3
2 ,

5
2 ,...

e−a|s−t |ψ±a(x) ψ±a(y)

with “+” taken for s ≥ t and “−” taken for s < t .

The functions {ψa} form an orthonormal basis in 	2(Z′). Thus, for s = t the
kernel K z,z′,ξ defines a projection operator whose range is the span of the eigen-
functions ofD corresponding to the positive part of the spectrum ofD. The kernel
of this projection operator can be written in a simpler, so-called integrable form:

K z,z′,ξ (x, y) = P(x)Q(y)−Q(x)P (y)
x − y ,

where P and Q are expressed through the Gauss hypergeometric function. This
kernel is called the discrete hypergeometric kernel. It was found in [BO2] and
further studied in [BO4], [BO5] (see also [BO8, §3]).

The formula of TheoremA (Part 2) shows that our Markov process is determined
by the following data: a state space X, a Hilbert space H of functions on X, a self-
adjoint operatorD inH , and two complementary spectral projection operators P±
for D. In our case, X = Z

′, H = 	2(Z′), D is the difference operator given above,
and P± are projections on the positive and negative parts of the spectrum of D.

It seems that generating Markov processes with determinantal correlation func-
tions by data (X, H,D, P±) of this type is a rather general phenomenon. Similar
structures have appeared earlier in the dynamics arising in polynuclear growth
models [PS], [Jo4], in tiling models [Jo6], [Jo7], and in random matrix theory
[NF], [Jo5], [TW]. Following the terminology of those papers, we call the kernel
of Theorem A the extended hypergeometric kernel.
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The reader might notice that in our Theorem A as well as in all the papers cited
above, the values of the extended (dynamical) kernels are always given by some-
what different expressions depending on the relative order of the time variables.
This dichotomy is unavoidable because of a certain discontinuity of the dynamical
correlation functions. For example, we must have

s ≈ t ⇒ ρ2(s, x; t, y) ≈
{
ρ2(s, x; s, y), x �= y,

ρ1(s, x), x = y.

If we assume the determinantal structure of the dynamical correlation functions
with a kernel K(s, x; t, y) then

ρ1(s, x) = K(s, x; s, x), ρ2(s, x; t, y) =
∣∣∣∣K(s, x; s, x) K(s, x; t, y)K(t, y; s, x) K(t, y; t, y)

∣∣∣∣ .
If we further assume that the kernel is continuous in s, t subject to the condition
s ≥ t ,3 then the above relations imply

K(s, x; s, y) = lim
ε→+0

K(s, x; s − ε, y) = lim
ε→+0

K(s, x; s + ε, y)+ δxy.

The validity of the last relation for the extended hypergeometric kernel can be
immediately observed from Part 2 of Theorem A using the fact that {ψa} form an
orthonormal basis.

Let us now describe our results on scaling limits of the dynamical correla-
tion functions. In our previous works we considered three asymptotic regimes for
random Young diagrams without dynamics: one for largest rows and columns, one
for rows and columns of intermediate growth, and one for the behavior of the bound-
ary of the Young diagrams near the diagonal, see [BO5] and references therein. In
all three limit regimes the parameter ξ tends to 1, which makes the expected number
of boxes in the random Young diagram go to infinity.

In this paper we concentrate on the first and the third limit regime, but with the
presence of dynamics. Let us start with the behavior of large rows and columns.

In order to catch the largest rows and columns in the limit ξ ↗ 1, we need to
scale them by (1− ξ). This leads to scaling of the state space Z

′ by the same factor.
That is, Z

′ is replaced by (1 − ξ)Z′ which in the limit turns into R
∗ = R \ {0}.

The parametrization of Young diagrams by point configurations X (λ) is not
suitable for this limit transition. Or, rather to say, the positive part of X (λ) indeed
reflects the behavior of largest rows, while the behavior of the largest columns is
captured by the complement of the negative part of X (λ) in {. . . ,− 5

2 ,− 3
2 ,− 1

2 }.
Thus, instead of encoding λ by X (λ) we use the map

λ 
→ X(λ) =
(
X (λ) ∩ { 1

2 ,
3
2 ,

5
2 , . . . }

)
∪
(
{. . . ,− 5

2 ,− 3
2 ,− 1

2 } \X (λ)
)
.

We refer the reader to [BO2], [Ol2] for representation theoretic interpretation of
this map and for further details.

3 We could have used s ≤ t equally well, this is a question of convention. For instance,
transposition of the kernel does not affect the correlation functions, and this operation just
turns s ≥ t into s ≤ t .
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Theorem B. The scaling limits, as ξ → 1, of the dynamical correlation functions
of�z,z′,ξ corresponding to the map λ 
→ X(λ), under the rescaling of Z

′ by (1−ξ),
have determinantal form with the correlation kernelKW

z,z′(s, u; t, v) on (R×R
∗)2.

This kernel has four blocks according to the choices of signs of u and v.
The block with u, v > 0 has an integral representation

KW
z,z′(s, u; t, v) = eπi(z+z

′)(u/v)
z−z′

2 e
1
2 (s−t) 1

(2πi)2

×
0−∮

+∞

0−∮
+∞

ζ−z
′

1 (1+ζ1)
zζ−z2 (1 + ζ2)

z′ e
−u(ζ1+ 1

2 )−v(ζ2+ 1
2 ) dζ1dζ2

es−t (1+ζ1)(1+ζ2)−ζ1ζ2

with different choices of contours for s ≥ t and s < t , see Theorem 8.4 below.
The same block has a series representation

KW
z,z′(s, u; t, v) = ±

∑
a= 1

2 ,
3
2 ,

5
2 ,...

e−a|s−t |w±a(u)w±a(v),

where “+” is taken for s ≥ t , “−” is taken for s < t , and

wa(u) = lim
ξ→1

(1 − ξ) 1
2ψa

(
[(1 − ξ)−1u]

)

are eigenfunctions of a second order differential operator on R+:

uw′′
a(u)+ w′

a(u)+
(
−u

4 + z+z′
2 − (z−z′)2

4u

)
wa(u) = awa(u),

which are explicitly written through the Whittaker functions, see (8.1) below.
Similar expressions are available for three other blocks of KW

z,z′(s, u; t, v), see
Theorems 8.2 and 8.4 below.

We call KW
z,z′(s, u; t, v) the extended Whittaker kernel.

In the “static” case s = t the kernel admits a simpler “integrable” form, see
[BO1], [BO2], [B1], [Ol2], and (8.4) below.

Let us now proceed to the other limit regime which describes the behavior of
the Young diagrams near the diagonal. This just means that we stay on the lattice
Z
′. For this asymptotic regime it does not really matter whether we use X (λ) or
X(λ) to encode the Young diagrams. We refer to [BO5] for a detailed discussion of
this regime.

In the following statement we will use a more detailed notationwa(u; z, z′) for
the functions wa(u) introduced above.

Theorem C. The limits, as ξ → 1, of the dynamical correlation functions of�z,z′,ξ
corresponding to the map λ 
→ X (λ), under the rescaling of time by (1−ξ)−1, have
determinantal form with the correlation kernel K gamma

z,z′ (σ, x; τ, y) on (R × Z
′)2.
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For σ ≥ τ , the correlation kernel can be written in two different ways: as a
double contour integral

K
gamma
z,z′ (σ, x; τ, y)

= �(−z′ − x + 1
2 )�(−z− y + 1

2 )e
−πi(z+z′)(−1)x+y+1

(
�(−z− x + 1

2 )�(−z′ − x + 1
2 )�(−z− y + 1

2 )�(−z′ − y + 1
2 )
) 1

2

× 1

(2πi)2

0−∮
+∞

0−∮
+∞

ζ
z′+x− 1

2
1 (1 + ζ1)

−z−x− 1
2 ζ
z+y− 1

2
2 (1 + ζ2)

−z′−y− 1
2 dζ1dζ2

1 + (σ − τ)+ ζ1 + ζ2

and as a single integral

K
gamma
z,z′ (σ, x; τ, y) =

∫ +∞

0
e−u(σ−τ)wx(u;−z,−z′)wy(u;−z,−z′)du.

The values of the kernel for σ < τ are obtained from the above formulas using the
symmetry property

K
gamma
z,z′ (σ, x; τ, y) = (−1)x+y+1K

gamma
−z,−z′(τ,−x; σ,−y), σ �= τ.

For σ = τ the kernel admits a simpler expression of “integrable” type

P(x)Q(y)−Q(x)P (y)
x − y

where P and Q are expressed through gamma functions only, see [BO5] and
(8.3) below. That kernel was called the gamma kernel, and for this reason we
call Kgamma

z,z′ (σ, x; τ, y) the extended gamma kernel.
Note that the extended gamma kernel fits into the same abstract scheme as the

extended hypergeometric kernel: one takes X = Z
′, H = 	2(Z′), D is the spe-

cial case of the difference operator given above corresponding to the limit value
ξ = 1. The spectrum of this operator fills the whole real axis, the eigenfunctions
are x 
→ wx(u;−z,−z′), and the spectral projections P± again correspond to the
positive and negative parts of the spectrum.

The functions ψa(x) = ψa(x; z, z′, ξ) used in the discussion of the extended
hypergeometric kernel have the following symmetry:

ψa(x; z, z′, ξ) = ψx(a;−z,−z′, ξ).
This means, in particular, that ψa(x) satisfies second order difference equations
both in a and x (the bispectrality property, see [Gr]). The two limit transitions
considered above (Theorems B and C) correspond to taking continuous limits in x
and a, respectively. This explains why we end up with the same functions wa(u)
in Theorems B and C.

Let us make some remarks about our proof of Theorem A. As a matter of fact,
we prove the theorem in a greater generality. We introduce certain time inhomoge-
neous Markov processes on partitions. Their fixed time distributions are also the
measures Mz,z′,ξ , but now ξ = ξ(t) varies with time t . The construction of these
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processes is similar to the stationary ones except that the birth and death process on
Z+ becomes time inhomogeneous. In particular, we consider pure birth and pure
death processes for which the Young diagrams either always gain new boxes or
always lose their boxes. These “pure” processes are simpler, their transition prob-
abilities can be evaluated explicitly. They can also be viewed as building blocks of
general processes, more exactly, the transition matrix P(s, t) for a general process
can be represented as a product P(s, t) = P ↓(s, u)P ↑(u, t) of transition matrices
of “pure” processes for a suitable intermediate time moment u ∈ (s, t).

This product representation of the transition matrix plays an important role in
the proof of Theorem A. We first prove the theorem for a degenerate case, when one
of the parameters z, z′ is an integer, and the process is “finite-dimensional”, that is,
it lives on the Young diagrams with bounded number of rows or columns. Then the
needed formulas are derived from a version of Eynard–Mehta theorem on spectral
correlations of coupled random matrices [EM].4 The passage from the degenerate
case to the general one is based on analytic continuation in the parameters z and
z′. This passage is not trivial since we need to extrapolate from the integer points
to a complex domain. The needed analytic properties of the dynamical correlation
functions are derived from the product formula for the transition matrix P(s, t)
mentioned above. Let us also emphasize that in our approach, the introduction of
time inhomogeneous processes is necessary for handling the stationary case.

Let us point out that there exists another way of obtaining the dynamical cor-
relation functions of Theorem A, based on the formalism of infinite wedge Fock
space. In [Ok2] Okounkov gave an elegant derivation of static (s = t) correlation
functions (initially computed in [BO2]) using a representation of SL(2) by the
so-called Kerov operators. We can extend Okounkov’s approach to derive the for-
mula of Theorem A. This alternative path bears some similarity to the formalism
of Schur processes of [OR], [Ok3]. However, the Schur processes seem to be not
applicable in our situation. Note also that despite the beauty of Okounkov’s idea,
a rigorous realization of this approach would have to overcome certain nontrivial
technical difficulties.

One more important subject that we do not touch upon in this paper, is a fam-
ily of Markov processes on partitions related to Plancherel measures. In the limit
z, z′ → ∞, ξ → 0, zz′ξ → θ > 0, the measures Mz,z′,ξ tend to the so-called
poissonized Plancherel measure on Y with Poisson parameter θ . This connection
was used in [BOO] to study the asymptotics of the Plancherel measures. Using
the general scheme presented in this paper, one constructs Markov processes on
Y which preserve the poissonized Plancherel measures. These processes may be
viewed as degenerations of the processes considered in this paper. They are equiv-
alent to the droplet model of polynuclear growth. Our results on this other family
of Markov processes and their scaling limits are presented in [BO7]. Let us note
that the analog of Theorem A for those processes can be obtained either by limit
transition from Theorem A or by using the Schur process of [OR].

The present paper is organized as follows. In Section 1 we introduce the
z-measures, the associated transition and cotransition probabilities, and other

4 Other proofs of this theorem can be found in [NF], [Jo4], [TW], [BR].
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notions related to the Young graph. In Section 2 we introduce time homogeneous
and inhomogeneous Markov processes on Y, prove their existence and unique-
ness, and compute the transition probabilities for “pure” ascending and descending
processes. In Section 3 we evaluate the transition matrices for integral values of
parameters. In Section 4 we study the analytic nature of the dependence of the
dynamical correlation functions on the parameters. In Section 5 we list necessary
facts about the eigenfunctions ψa of the second order difference operator D on Z

′
(more detailed information including proofs can be found in [BO8, §2]). In Section
6 we prove Theorem A first in the degenerate case using Eynard–Mehta theorem
and Meixner polynomials, and then in the general case using analytic continuation.
In Section 7 we derive the dynamical correlation functions of�z,z′,ξ corresponding
to the map λ 
→ X(λ) (as opposed to the map λ 
→ X (λ) used in Theorem A). In
Section 8 we prove Theorem B, and in Section 9 we prove Theorem C.

1. Z-measures

As in Macdonald [Ma] we identify partitions andYoung diagrams. By Yn we denote
the set of partitions of a natural number n, or equivalently, the set ofYoung diagrams
with n boxes. By Y we denote the set of all Young diagrams, that is, the disjoint
union of the finite sets Yn, where n = 0, 1, 2, . . . (by convention, Y0 consists of
a single element, the empty diagram ∅). Given λ ∈ Y, let |λ| denote the number
of boxes of λ (so that λ ∈ Y|λ|), let 	(λ) be the number of nonzero rows in λ (the
length of the partition), and let λ′ denote the transposed diagram.

For two Young diagrams λ and µ we write µ ↗ λ (equivalently, λ ↘ µ) if
µ ⊂ λ and |µ| = |λ|− 1, or, in other words, µ is obtained from λ by removing one
box.

The Young graph is the graph whose vertices are the elements of Y and the
edges join all pairs (µ, λ) such that µ↗ λ. The Young graph will also be denoted
by Y. Clearly, µ↗ λ implies µ′ ↗ λ′, so that the transposition operation λ 
→ λ′
induces an involutive automorphism of the Young graph.

For any λ ∈ Yn, standard Young tableaux of shape λ can be viewed as paths

∅ ↗ λ(1) ↗ · · · ↗ λ(n) = λ

in Y. Let dim λ be the number of all such paths. A convenient explicit formula for
dim λ is

dim λ = n!∏N
i=1(λi +N − i)!

∏
1≤i<j≤N

(λi − i − λj + j), λ ∈ Yn,

where N is an arbitrary integer ≥ 	(λ) (the above expression is stable in N ). For
λ ∈ Yn, µ ∈ Yn−1 set

p↓(n, λ; n− 1, µ) =



dimµ

dim λ
, µ↗ λ,

0, otherwise
(1.1)
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and note that ∑
µ∈Yn−1

p↓(n, λ; n− 1, µ) = 1.

The numbers p↓(n, λ; n − 1, µ) are called the cotransition probabilities of the
Young graph. They admit a nice interpretation in terms of the “hook walk” algo-
rithm of Greene, Nijenhuis, and Wilf [GNW1].

A family {M(n)} of probability measuresM(n) on Yn, n = 0, 1, 2, . . ., is called
a coherent system on Y if the measures are consistent with the cotransition proba-
bilities in the following sense:

M(n−1)(µ)=
∑
λ∈Yn

M(n)(λ)p↓(n, λ; n−1, µ), µ ∈ Yn−1, n=1, 2, . . . . (1.2)

This concept has an important representation theoretic meaning. Namely, there is
a 1–1 correspondence between coherent systems on Y and normalized positive
definite class functions on the infinite symmetric group, see [VK], [Ke2], [Ol2].

Note that the cotransition probabilities are invariant under the involutionλ 
→ λ′
of the Young graph. Consequently, the push–forward of a coherent system under
this involution is again a coherent system.

Example 1.1. The Plancherel measures defined by

M
(n)
P lancherel(λ) =

(dim λ)2

n!

form a coherent family of probability measures, see [VK].

Let T be the set of all infinite paths in Y of the form

∅ ↗ λ(1) ↗ λ(2) ↗ · · · ↗ λ(n) ↗ . . . , λ(n) ∈ Yn.

This is a compact topological space (a closed subset of the product space
∏
n≥0 Yn).

A probability measure M on T is called central if for any n = 1, 2, . . . and
any λ ∈ Yn, the mass of each cylinder set consisting of all paths with fixed
λ(1), . . . , λ(n) = λ depends on λ only (and does not depend on λ(1), . . . , λ(n−1)).

Any coherent system {M(n)} generates a central measure M on T . By defi-
nition, the mass of the cylinder set mentioned above equals M(n)(λ)/ dim λ. The
relation (1.2) ensures that M is correctly defined. This defines a one-to-one corre-
spondence between coherent systems {M(n)} on Y and central measure M on T ,
see [VK], [Ke2], [Ol2].

For any central measure M,

p↓(n, λ; n− 1, µ) = Prob{λ(n−1) = µ | λ(n) = λ},
which is a justification of the term “cotransition probability”.

Assuming M(|λ|)(λ) > 0 for all λ ∈ Y, set

p↑(n, λ; n+ 1, ν) = Prob{λ(n+1) = ν | λ(n) = λ}, n = |λ|.
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In contrast to p↓(n, λ; n − 1, µ), these numbers depend on M. We call them the
transition probabilities of the central measure M (or of the corresponding coherent
system {M(n)}). The transition probabilities define M and {M(n)} uniquely.

Note an important relation between the transition and cotransition probabilities:

M(n)(λ)p↑(n, λ; n+ 1, ν) = p↓(n+ 1, ν; n, λ)M(n+1)(ν). (1.3)

It implies, in particular, that

p↑(n, λ; n+ 1, ν) =


M(n+1)(ν) dim λ

M(n)(λ) dim ν
, λ↗ ν,

0, otherwise .
(1.4)

If M(|λ|)(λ) vanishes for some λ ∈ Y then the definition has to be slightly
modified. Namely, let supp M be the set of those λ ∈ Y for which M(|λ|)(λ) > 0.
Equivalently, λ ∈ supp M if the set of paths passing through λ has positive mass
with respect to M. Note that λ ∈ supp M implies µ ∈ supp M for all µ ↗ λ.
The set supp M spans a subgraph of Y (which may be called the support of M),
and the transition probabilities are correctly defined on this subgraph by the same
formula (1.3). Again, the initial central measure M is uniquely determined by its
support and the transition probabilities.

Note two useful equations

M(n−1)(µ) =
∑
λ

M(n)(λ)p↓(n, λ; n− 1, µ), (1.5)

M(n+1)(ν) =
∑
λ

M(n)(λ)p↑(n, λ; n+ 1, ν). (1.6)

We shall need the generalized Pochhammer symbol (z)λ:

(z)λ =
	(λ)∏
i=1

(z− i + 1)λi , z ∈ C, λ ∈ Y,

where

(x)k = x(x + 1) . . . (x + k − 1) = �(x + k)
�(x)

is the conventional Pochhammer symbol. Note that

(z)λ =
∏

(i,j)∈λ
(z+ j − i)

(product over the boxes of λ), which implies at once the symmetry relation

(z)λ = (−1)|λ|(−z)λ′ .
For two complex parameters z, z′ set

M
(n)

z,z′(λ) =
(z)λ(z

′)λ
(zz′)n

(dim λ)2

n!
, n = 0, 1, . . . , λ ∈ Yn , (1.7)
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where dim λwas defined in the beginning of the section. The expression (1.7) makes
sense if (zz′)n does not vanish, i.e., if zz′ /∈ {0,−1,−2, . . . }. Obviously, (1.7) is
symmetric in z, z′.

Note that (see Example 1.1)

lim
z,z′→∞

M
(n)

z,z′(λ) = M
(n)
P lancherel(λ). (1.8)

Let us say that two nonzero complex numbers z, z′ form an admissible pair of
parameters if one of the following three conditions holds:

• The numbers z, z′ are not real and are conjugate to each other.
• Both z, z′ are real and are contained in the same open interval of the form (m,m+

1), where m ∈ Z.
• One of the numbers z, z′ (say, z) is a nonzero integer while z′ has the same sign

and, moreover, |z′| > |z| − 1.

Proposition 1.2. If (z, z′) is an admissible pair of parameters then {M(n)

z,z′ } is a
coherent family of probability measures.

Proof. It is readily checked that if (and only if) one of the conditions above holds
then (z)λ(z′)λ ≥ 0 for all λ, see [BO5, Proposition 1.8]. Moreover, (zz′)n > 0 for
all n. Hence (1.7) is nonnegative. The fact that each M(n)

z,z′ is a probability mea-
sure and the coherency property can be proved in several ways. See, e.g., [Ol1],
[BO3]. ��

We call the measures M(n)

z,z′ the z–measures on the floors Yn of the Young
graph. Depending on which of the three conditions of Proposition 1.1 holds we
will speak about the principal, complementary or degenerate series of z–measures,
respectively. By virtue of (1.8), the z–measures may be viewed as a deformation of
the Plancherel measure (for any fixed n). The principal series of z–measures first
appeared in [KOV1], see also [KOV2]. For more information about the z–measures
and their generalizations, see [BO2], [BO3], [BO4], [BO5], [BO6], [Ke1].

Note that the involution λ 
→ λ′ of the Young graph takes M(n)

z,z′ to M(n)

−z,−z′ .
Let Mz,z′ be the central measure corresponding to the coherent family

{M(n)

z,z′ }n=0,1,.... In the case of the principal or complementary series the support
of Mz,z′ is the whole Y. For the degenerate series it is a proper subset of Y: if
z = k = 1, 2, . . . and z′ > k−1 then supp Mz,z′ consists of diagrams with at most
k rows, and if z = −k = −1,−2, . . . and z′ < −(k − 1) then supp Mz,z′ consists
of diagrams with at most k columns.

The transition probabilities of the z–measures are given by

p
↑
z,z′(n, λ; n+ 1, ν) = (z+ c(ν/λ))(z′ + c(ν/λ)) dim ν

(zz′ + n)(n+ 1) dim λ
, λ↗ ν, (1.9)

where c(ν/λ) denotes the content of the box (i, j) = ν/λ, that is, c = j−i. Indeed,
(1.9) follows immediately from (1.4) and (1.7). Note that if λ is in supp Mz,z′ while
ν is not (which may happen for the degenerate series) then (1.9) vanishes due to
vanishing of one of the factors z+ c(ν/λ), z′ + c(ν/λ).



Markov processes on partitions 97

For the Plancherel measure, the transition probabilities are

p
↑
P lancherel(n, λ; n+ 1, ν) = dim ν

(n+ 1) dim λ
, λ↗ ν,

see [VK].
The Plancherel transition probabilities admit an interpretation in terms of the

“dual” hook walk algorithm described in [GNW2]. A similar interpretation for the
z–measures is unknown.

Consider a special case of the negative binomial distribution on Z+ depending
on two parameters a > 0 and ξ ∈ (0, 1):

πa,ξ (n) = (1 − ξ)a (a)nξ
n

n!
, n = 0, 1, 2, . . . (1.10)

The next formula defines a probability measure on Y which is the mixture of all
z–measures M(n)

z,′ with given fixed parameters z, z′ and varying n by means of the
distribution (1.10) on n’s, with parameters a = zz′ and ξ :

Mz,z′,ξ (λ) = M
(|λ|)
z,z′ (λ) πzz′,ξ (|λ|) = (1 − ξ)zz′ ξ |λ| (z)λ(z′)λ

(
dim λ

|λ|!
)2

.(1.11)

We call (1.11) the mixed z–measure. An interpretation of formula (1.11) is given
in [BO5, Definition 1.4].

Likewise, consider a mixture of the Plancherel measures, depending on a param-
eter θ > 0:

MPlancherel,θ (λ) = M
(|λ|)
P lancherel(λ) e

−θ θ |λ|

|λ|! = e−θ θ |λ|
(

dim λ

|λ|!
)2

. (1.12)

We call (1.12) the poissonized Plancherel measure. Note that it can be obtained as
a limit case of the mixed z–measures:

lim
z,z′→∞
ξ→0
zz′ξ→θ

Mz,z′,ξ (λ) = MPlancherel,θ (λ).

The main objects of this paper are the z-measures and related Markov processes.
One can also develop a parallel theory associated with the Plancherel measure. We
do not pursue this goal in the present paper. An interested reader can find the state-
ments of the main results related to the Plancherel measure in our paper [BO7].

2. Construction of Markov processes

In this section we introduce the continuous time Markov processes on partitions
which will be studied in the paper. Their fixed time distributions are the z-measures
introduced in section 1.

It is fairly easy to give the jump rates for these processes. We then prove that the
jump rates define the processes uniquely and compute the transition probabilities
for underlying birth–death processes.
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2.1. Preliminaries on Markov processes

Let us recall some basic facts about continuous time Markov processes with discrete
state space, and introduce the notation.

The time parameter t always ranges over an open interval (tmin, tmax) where
tmin ∈ R ∪ {−∞} and tmax ∈ R ∪ {+∞}. Let us denote the state space by A, it is
assumed to be either finite or countable.

We also denote by P(s, t), s ≤ t , the matrix of transition probabilities of a
Markov process. This is a matrix with rows and columns marked by elements of A,
its elements will be denoted by Pab(s, t), a, b ∈ A. By definition, Pab(s, t) is the
probability that the process will be in the state b at the time moment t conditioned
that it is in the state a at time s. Thus, P(s, t) is a (row) stochastic matrix: its
elements are nonnegative, and their sum along any row is equal to 1. The transition
matrices P(s, t) satisfy the Chapman-Kolmogorov equation

P(s, u)P (u, t) = P(s, t), s ≤ u ≤ t. (2.1)

We assume that there exist A × A matrices Q(t) with continuously depending on
t entries, such that

Pab(s, t) = δab +Qab(t)(t − s)+ o(|t − s|), |t − s| → 0. (2.2)

This relation implies that Qab(t) ≥ 0 for a �= b and Qaa(t) ≤ 0. Further, we
assume that ∑

b �=a
Qab(t) = −Qaa(t), for any a ∈ A.

This is the infinitesimal analog of the condition
∑
b∈A

Pab(s, t) = 1.
It is well known that (2.1) then implies that P(s, t) satisfies Kolmogorov’s

backward equation

− ∂

∂s
P (s, t) = Q(s)P (s, t), s ≤ t, (2.3)

with the initial condition

P(t, t) = Id . (2.4)

Under certain additional conditions,P(s, t)will also satisfy Kolmogorov’s forward
equation

∂

∂t
P (s, t) = P(s, t)Q(t). (2.5)

In our concrete situation we would like to define a Markov process by specify-
ing the jump rates Q(t). As is well known, it may happen that the jump rates do
not specify the process uniquely (then the backward equation has many solutions
P(s, t)). Uniqueness always holds if A is finite or, more generally, if A is infi-
nite but the functions |Qaa(t)| are bounded on any closed time interval (see, e.g.
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[Fe1]). However, these conditions are not satisfied in our case. There exist other,
more involved uniqueness conditions for time homogeneous (stationary) Markov
processes. However, in our approach, even if we restrict our attention to station-
ary processes, we still need to handle some non stationary processes as auxiliary
objects. For these reasons we had to find some more special uniqueness condition.

Let us write Q(t) in the form Q(t) = −R(t) + Q̃(t), where −R(t) is the
diagonal part of Q(t) and Q̃(t) is the off-diagonal part of Q(t). In other words,

Rab(t) = −δabQaa(t), Q̃ab(t) =
{
Qab(t), a �= b,

0, a = b.

For s ≤ t set

F(s, t) = exp

(
−

∫ t

s

R(τ)dτ

)
, G(s, t) = F(s, t)Q̃(t).

Define P [n](s, t) recursively by

P [0](s, t) = F(s, t), P [n](s, t) =
∫ t

s

G(s, τ )P [n−1](τ, t)dτ, n ≥ 1,

and set

P(s, t) =
∞∑
n=0

P [n](s, t), s ≤ t.

Theorem 2.1. [Fe1]

(i) The matrix P(s, t) is substochastic (i.e., its elements are nonnegative and∑
b Pab(s, t) ≤ 1). Its elements are absolutely continuous and almost every-

where differentiable with respect to both s and t , and it provides a solution
of Kolmogorov’s backward and forward equations (2.3), (2.5) with the initial
condition (2.4).

(ii) P(s, t) also satisfies the Chapman-Kolmogorov equation (2.1).
(iii) P(s, t) is the minimal solution of (2.3) (or (2.5)) in the sense that for any other

solution P(s, t) of (2.3) (or (2.5)) with the initial condition (2.4) in the class
of substochastic matrices, one has Pab(s, t) ≥ Pab(s, t) for any a, b ∈ A.

Corollary 2.2. If the minimal solution P(s, t) is stochastic (the sums of matrix
elements along the rows are all equal to 1 ) then it is the unique solution of (2.3)
(or (2.5)) with the initial condition (2.4) in the class of substochastic matrices.

Let us note that the construction of P(s, t) is very natural: the summands P [n]
ab (s, t)

are the probabilities to go from a to b in n jumps. The condition of P(s, t) being
stochastic exactly means that we cannot make infinitely many jumps in a finite
amount of time.

Our next goal is to provide a convenient sufficient condition for P(s, t) to be
stochastic.
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Fix s ∈ (tmin, tmax) and a ∈ A. For any finite X, X ⊂ A, a ∈ X, we denote
by Ts, a,X the time of the first exit from X under the condition that the process is
in a at time s. Formally, we can modify A and Q(t) by contracting all the states
b ∈ A \ X into one absorbing state b̃ with Qb̃,c ≡ 0 for any c ∈ X ∪ {̃b}. We
obtain a process with a finite number of states for which the solution P̃ (s, t) of
the backward equation is unique. Then Ts, a,X is a random variable with values in
(s,+∞] defined by

Prob{Ts, a,X ≤ t} = P̃ab̃(s, t).

Proposition 2.3. Assume that for any a ∈ A and any s < t , ε > 0, there exists a
finite set X(ε) ⊂ A such that

Prob{Ts, a,X(ε) ≤ t} ≤ ε.

Then the minimal solution P(s, t) provided by Theorem 2.1 is stochastic.

Proof. Consider the modified process on the finite state spaceX(ε)∪{̃b} described
above. Since its transition matrix P̃ (s, t) is stochastic,

∑
b∈X(ε)

P̃ab(s, t) = 1 − P̃ab̃(s, t) ≥ 1 − ε.

The construction of the minimal solution as the sum of P [n]’s, see above, imme-
diately implies that Pab(s, t) ≥ P̃ab(s, t). Thus,

∑
b Pab(s, t) ≥ 1 − ε for any

ε > 0. ��

2.2. An application to birth-death processes

A birth-death process is a continuous time Markov process on A = Z+ =
{0, 1, 2, . . . } such that the rates Qmn(t) vanish if |n − m| > 1. In other words,
the process can make jumps only of size 1. Our assumption (2.2) means that

−Qnn(t) = Rnn(t) = Qn,n+1(t)+Qn,n−1(t).

Proposition 2.4. Assume that for any closed segment [t ′, t ′′] ⊂ (tmin, tmax) there
exists a sequence {γn}∞n=0 of positive real numbers such that Qn,n+1(t) ≤ γn for
any t ∈ [t ′, t ′′], and

∑
n γ

−1
n = ∞. Then the minimal solution P(s, t) is stochastic.

Proof. We will apply Proposition 2.3. Let us fix a ∈ A = Z+. As X = X(ε) we
will take a set of the form {0, 1, . . . , N − 1} for a suitable fixed N . Then Ts,a,X is
the moment of the first arrival at N given that we start at a at the time moment s.
To simplify the notation, set T = Ts,a,{0,1,...,N−1}.

In order to estimate T we will compare our inhomogeneous birth-death process
to the pure birth homogeneous process with jump rates Q̂n,n+1 = γn, Q̂n+1,n = 0,
for all n ∈ Z+. Let T̂ denote the time of reachingN given that we start at a at time s.
Note that since this is a pure birth process, once the process leaves {0, 1, . . . , N−1}
it never comes back.
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It is known that for the pure birth process with rates γn the minimal solution
is stochastic if and only if

∑
n γ

−1
n = ∞, see [Fe1], [Fe3, ch. XIV, §8]. By our

hypothesis,
∑
n γ

−1
n = ∞, and we may denote by P̂ (s, t) the unique stochastic

solution of the backward and forward equations. Clearly,

Prob{T̂ ≤ t} =
∞∑
b=N

P̂ab(s, t),

which tends to zero as N → ∞. Thus, by virtue of Proposition 2.3 it suffices to
show that Prob{T ≤ t} ≤ Prob{T̂ ≤ t} for any t > s.

To prove this inequality we use a simple coupling argument: we construct a
process in the cone {(m, n) ∈ Z+ × Z+ | m ≤ n} such that the projections onto
the first and the second components are, respectively, our initial process with jump
rates Q and the pure birth process with jump rates Q̂.

Outside the diagonalm = n (that is, in the domainm < n), the process behaves
as if itsm– and n–coordinates were independent. Namely, the jump rates are defined
by

(m, n)→




(m− 1, n) : Qm,m−1,

(m+ 1, n) : Qm,m+1,

(m, n+ 1) : γn,

(m, n) : −γn −Qm,m−1 −Qm,m+1.

On the diagonal m = n, the jump rates are slightly modified:

(n, n)→




(n− 1, n) : Qn,n−1

(n, n+ 1) : γn −Qn,n+1

(n+ 1, n+ 1) : Qn,n+1

(n, n) : −γn −Qn,n−1.

Here the hypothesis Qn,n+1 ≤ γn has been used to ensure nonnegativity of the
transition rate (n, n)→ (n, n+ 1).

It is directly verified that the sum of the jump rates (m, n) → (m′, n′) with
fixedm,m′, n and varying n′ givesQm,m′ (independently of n), while the sum with
fixed m, n, n′ and varying m′ gives Q̂n,n′ (independently of m). This just means
that the projections have the required form.

Since the process does not leave the conem ≤ n, the desired inequality follows.
��

2.3. Birth–death process Nc,ξ(·)

From now on we restrict our attention to birth-death processes with

Qn,n+1 = α(t)(c + n), Qn,n−1 = β(t) n, (2.6)

where α(t) ≥ 0, β(t) ≥ 0 are continuous functions on (tmin, tmax) and c > 0 is
a constant. Proposition 2.4 implies that for any process of this kind there exists a
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unique stochastic solution P(s, t) of Kolmogorov’s backward and forward equa-
tions. By breaking the time interval into finitely many subintervals, we may as well
assume that α(t) and β(t) are piecewise continuous functions with finitely many
points of discontinuity at which they have finite left and right limits.

The negative binomial distribution πc,ξ on Z+ with parameters c > 0 and
ξ ∈ (0, 1) is defined by

πc,ξ (n) = (1 − ξ)c (c)n
n!

ξn, n = 0, 1, 2, . . . .

It will be convenient to interpret πc,ξ as an infinite row-vector.

Proposition 2.5. Let ξ(t) be a continuous, piecewise continuously differentiable
function in t with values in (0, 1). Assume that ξ(t) solves the differential equation

ξ̇ (t)

ξ(t)(1 − ξ(t)) =
α(t)

ξ(t)
− β(t), t ∈ (tmin, tmax). (2.7)

Then the row vector πc,ξ(t) solves πc,ξ(s)P (s, t) = πc,ξ(t) for any s ≤ t .

Proof. Let us differentiate πc,ξ(s)P (s, t) with respect to s and use Kolmogorov’s
backward equation. Collecting the coefficients of Pxy(s, t) in the yth coordinate
gives

πc,ξ(s)(x)Pxy(s, t)

(
− c ξ̇ (s)

1 − ξ(s) +
xξ̇ (s)

ξ(s)
+ α(s)(c + x)+ β(s)x

−α(s)(c + x − 1)
πc,ξ(s)(x − 1)

πc,ξ(s)(x)
− β(s)(x + 1)

πc,ξ(s)(x + 1)

πc,ξ(s)(x)

)
.

Simplifications show that this expression is zero for all x, y if (2.7) holds. The
initial condition πc,ξ(s)P (s, t)

∣∣
s=t= πc,ξ(t) is obviously satisfied. ��

Once we have a family of distributionsπc,ξ(t) satisfyingπc,ξ(s)P (s, t) = πc,ξ(t),
we can define a birth-death process by the matrix of transition probabilities P(s, t)
(which is uniquely determined by the jump rates) and one-dimensional distributions
πc,ξ(t).

It is not a priori clear what is a convenient way to parametrize these processes.
In particular, multiplying both α(t) and β(t) by the same function of t leads only to
a reparametrization of time in our process. In order to eliminate this freedom, we
will always use one specific choice of time in our processes which we call interior
or canonical time of the corresponding process. The convenience of this choice
will soon become clear.

The interior time is uniquely determined by the condition that α(t) and β(t) are
expressed through ξ(t) by

α(t) =
(

1 + ξ̇ (t)

2ξ(t)

)
ξ(t)

1 − ξ(t) , β(t) =
(

1 − ξ̇ (t)

2ξ(t)

)
1

1 − ξ(t) . (2.8)
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Evidently, these formulas imply (2.7). Moreover, for any (α(t), β(t), ξ(t)) satisfy-
ing (2.7), if α(t) and β(t) do not vanish simultaneously, we can choose a new time
variable τ(t) with

τ̇ = 1

2

(
α

ξ
+ β

)
(1 − ξ)

so that
(
τ̇−1α(t (τ )), τ̇−1β(t (τ )), ξ(t (τ )

)
satisfy both (2.7) and (2.8) as functions

in τ .
Thus, from now on we will parametrize our processes by continuous, piece-

wise continuously differentiable functions ξ(t) taking values in (0, 1) such that
|ξ̇ (t)/ξ(t)| ≤ 2 (this condition is necessary to guarantee the nonnegativity of α and
β). Such curves ξ(t)will be called admissible. Then the corresponding birth–death
process is determined by jump rates given by (2.6), (2.8) and one–dimensional
distributions πc,ξ(t). We will denote this process by Nc,ξ(·).

In other words, if we setA(t) = − 1
2 ln ξ(t) thenA(t) has to satisfy three condi-

tions: A(t) ≥ 0 for all t ; |Ȧ(t)| ≤ 1 for all t ; and A(t) is continuous and piecewise
continuously differentiable.

In terms of A(t) it is convenient to single out important special cases: A(t) ≡
const corresponds to the homogeneous birth–death process; A(t) = t + const cor-
responds to pure death processes; andA(t) = −t+ const corresponds to pure birth
processes.

Note that the pure birth process is the well–known Yule process with immi-
gration. The pure death processes is also well known: it describes a collection of
particles which disappear with constant rate independently of each other.

Further, note that in case of a pure birth process A(t) will hit zero in finite
time which means that in terms of the canonical time parametrization, the process
reaches infinity in a finite amount of time.

2.4. The transition matrix of Nc,ξ(·)

Here we derive an expression of P(s, t), the transition matrix of Nc,ξ(·), in terms
of the classical Meixner polynomials.

Recall that the Meixner polynomials are the orthogonal polynomials with
respect to the following weight function on Z+:

Wc,ξ (x) = (c)xξ
x

x!
= �(c + x)ξx

�(c)x!
, x ∈ Z+ .

Here c > 0 and ξ ∈ (0, 1) are parameters. Our notation for the Meixner polynomi-
als is Mn(x; c, ξ), where n = 0, 1, . . . is the degree. We use the same normalization
of the polynomials as in the handbook [KS] (note that in [KS], our parameter c is
denoted as β, and our ξ is denoted as c).

Set

M̃n(x; c, ξ) = (−1)n
Mn(x; c, ξ)

‖Mn( · ; c, ξ)‖
√
Wc,ξ (x), x ∈ Z+ ,
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where

‖Mn( · ; c, ξ)‖2 =
∞∑
x=0

M2
n(x; c, ξ)Wc,ξ (x)

and the factor (−1)n is introduced for convenience (see (5.9) below). These func-
tions form an orthonormal basis in 	2(Z+).

Proposition 2.6. The matrix P(s, t) has the form

Pxy(s, t) =
(
πc,ξ(t)(y)

πc,ξ(s)(x)

) 1
2

∞∑
n=0

en(s−t)M̃n(x; c, ξ(s)) M̃n(y; c, ξ(t)), (2.9)

where s ≤ t and x, y ∈ Z+.

Comments. 1. In the stationary case ξ(t) ≡ const this formula was derived by
Karlin and McGregor [KMG2] as part of a much more general formalism, see
also [KMG1].

2. The formula implies that P(s, t) depends on the initial value ξ(s), final value
ξ(t) and the length t − s of the time interval. However, P(s, t) does not depend
on the behavior of the curve ξ(·) inside this time interval, as one might expect.

3. The simplicity of the factor en(s−t) is a consequence of our choice of the interior
time of the process.

4. Since M̃0(x; c, ξ) = (πc,ξ (x))
1
2 , the prefactor may be rewritten as

(
πc,ξ(t)(y)

πc,ξ(s)(x)

) 1
2

= M̃0(y; c, ξ(t))
M̃0(x; c, ξ(s))

.

5. The formula implies that the following kernel on Z+ × Z+

(x, y) 
→
∞∑
n=0

qn M̃n(x; c, ζ ) M̃n(y; c, η),

where ζ, η ∈ (0, 1) and 0 < q ≤ min
{√
ζ/η,

√
η/ζ

}
,

(2.10)

takes nonnegative values. This result is generalized in Corollary 3.3 below. Note
that the bound on q follows from the inequality |ξ̇ /ξ | ≤ 2.

Our proof of Proposition 2.6 consists of few steps. Let us denote the right–hand
side of (2.9) by P̂xy(s, t).

First, we show that P̂ (s, t) satisfies Kolmogorov’s backward equation. Since
we know that there exists only one stochastic solution, it remains to prove that
P̂ (s, t) is a stochastic matrix.

The fact that the sum of the matrix elements along any row is equal to 1 is
obvious (only n = 0 term gives a nonzero contribution due to orthogonality of
nonconstant Meixner polynomials to constants). The fact that P̂ (s, t) is always
nonnegative is not so obvious. In order to prove that we explicitly evaluate P̂ (s, t)
in the cases of pure birth and pure death processes, and then show that in the gen-
eral case, P̂ (s, t) is always a product of a “pure death” and a “pure birth” transition
matrices.
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Lemma 2.7. The following relations hold

√
ξ(x + 1)(x + c) M̃n(x + 1; c, ξ)+

√
ξx(x + c − 1) M̃n(x − 1; c, ξ)

−(x(1 + ξ)+ cξ)M̃n(x; c, ξ) = −n(1 − ξ)M̃n(x; c, ξ), (2.11)

2ξ(1 − ξ) ∂
∂ξ

M̃n(x; c, ξ)+
√
ξ(x + 1)(x + c) M̃n(x + 1; c, ξ)

−
√
ξx(x + c − 1) M̃n(x − 1; c, ξ) = 0. (2.12)

Proof. Straightforward computation using

ξ2 ∂

∂ξ
Mn(x; c, ξ) = nx

c
Mn−1(x − 1, c + 1, ξ)

and [KS, 1.9.5, 1.9.6, 1.9.8]. ��

Proof of Proposition 2.6. First of all, we need to verify that P̂ (s, t) (the right–hand
side of (2.9)) satisfies the backward equation. This is the equality

− ∂

∂s
P̂xy(s, t) = Qxx(s)P̂xy(s, t)

+Qx,x+1(s)P̂x+1,y(s, t)+Qx,x−1(s)P̂x−1,y(s, t) (2.13)

with Qxx(s) = −Qx,x+1(s)−Qx,x−1(s) and

Qx,x+1(s) = (c + x)
(

1 + ξ̇ (s)

2ξ(s)

)
ξ(s)

1 − ξ(s) ,

Qx,x−1(s) = x

(
1 − ξ̇ (s)

2ξ(s)

)
1

1 − ξ(s) .

The computation proceeds as follows. One substitutes the sum in the right–
hand side of (2.9) into the needed equality (2.13) and collects the coefficients of
M̃n(y; c, ξ(t)) using the relation ∂/∂s = ξ̇ (s) ∂/∂(ξ(s)). Each such coefficient
has two parts: one of them does not involve ξ̇ (s) while the other one is equal to
ξ̇ (s) times an expression not involving ξ̇ (s). It turns out that each of these parts
vanishes, for the first part the needed relation is (2.11), and for the second part one
uses (2.12). The details are tedious but straightforward, and we omit them.

As was mentioned before, it remains to prove that P̂xy(s, t) is always nonneg-
ative.

Let us use the notation P ↑(s, t), P ↓(s, t) for P(s, t) when we consider a pure
birth or a pure death process (that is, ξ(τ ) = econst +2τ or ξ(τ ) = econst −2τ , respec-
tively).

Lemma 2.8. P ↓(s, t) is the unique solution of the backward equation for the pure
death process with the initial condition P(t, t) ≡ Id, and P ↑(s, t) is the unique
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solution of the forward equation for the pure birth process with the same initial
condition. Furthermore, with the notation ζ = ξ(s), η = ξ(t), we have

P ↓
xy(s, t) =



(
(1 − ζ )η
(1 − η)ζ

)x (
ζ − η
(1 − ζ )η

)x−y
x!

(x − y)!y!
, x ≥ y,

0, x < y,

(2.14)

P ↑
xy(s, t) =



(

1 − η
1 − ζ

)c+x (
η − ζ
1 − ζ

)y−x (c + x)y−x
(y − x)! , x ≤ y,

0, x > y.

(2.15)

Proof. Consider P ↓(s, t) first. Since Qx,x+1 ≡ 0, Kolmogorov’s backward equa-
tion takes the form

− ∂

∂s
P ↓
xy(s, t) = −Qx,x−1(s)P

↓
xy(s, t)+Qx,x−1(s)P

↓
x−1,y(s, t)

= 2x

1 − ξ(s)
(
−P ↓

xy(s, t)+ P ↓
x−1,y(s, t)

)
. (2.16)

If we fix y then these differential equations can be solved recursively: we subse-
quently find P ↓

0,y , P ↓
1,y , P ↓

2,y , . . . , using the initial conditions P ↓
x,y(t, t) = δxy . This

shows that the backward equation for the pure death process has a unique solution.
A straightforward calculation shows that the expression in the right–hand side of
(2.14) satisfies this equation (with ξ(s) = econst −2s).

The case of the pure birth process is completely analogous. ��
Since for the pure death process the backward equation has a unique solution,

we have just shown that P̂ (s, t) = P ↓(s, t) is the corresponding transition matrix.
In order to make a similar conclusion for the pure birth process, we need to

know that P̂ (s, t) satisfies the forward equation. This fact can be proved directly
using Lemma 2.7. It can also be reduced to the case of the backward equation as
follows.

Note that πc,ξ(s)(x)P̂xy(s, t) remains invariant under the changes

s 
→ −t, t 
→ −s, ξ(τ ) 
→ ξ̃ (τ ) := ξ(−τ), x ↔ y. (2.17)

Thus, instead of computing ∂
∂t
P̂xy(s, t) we may compute

− ∂

∂u

(
πc,̃ξ(u)(y)P̂yx(u, v)(πc,̃ξ(v)(x))

−1
) ∣∣∣
u=−t,v=−s

with the new ξ̃ (τ ) obtained from ξ(τ ) by the time inversion. Since we already know
that P̂xy(s, t) solves the backward equation, for ξ(τ ) = econst +2τ we obtain,5 cf.
(2.16),

− ∂

∂u

πc,̃ξ(u)(y)P̂yx(u, v)

πc,̃ξ(v)(x)
=

(
− 2c ξ̃ (u)

1 − ξ̃ (u) + 2y

)
πc,̃ξ(u)(y)P̂yx(u, v)

πc,̃ξ(v)(x)

+ 2y

1 − ξ̃ (u)
πc,̃ξ(u)(y)

πc,̃ξ(v)(x)

(
−P̂yx(u, v)+ P̂y−1,x(u, v)

)
.

5 The argument goes through for any admissible curve ξ(·), it just becomes more tedious.
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Using πc,̃ξ(u)(y) = πc,̃ξ(u)(y − 1) · (c + y − 1)̃ξ (u)/y and substituting u = −t ,
v = −s, we obtain the needed forward equation

∂

∂t
P̂xy(s, t) = −2(c + y) ξ(t)

1 − ξ(t) P̂xy(s, t)+ 2(c + y − 1) ξ(t)

1 − ξ(t) P̂x,y−1(s, t).

The conclusion is that in case of the pure birth process, P̂ (s, t) satisfies the
forward equation, and by Lemma 2.8 we have P̂ (s, t) = P ↑(s, t).

Explicit expressions (2.14) and (2.15) show that P̂xy(s, t) ≥ 0 for the pure death
and the pure birth processes. The nonnegativity of P̂xy(s, t) for arbitrary admissible
curves ξ(·) follows from

Lemma 2.9. Let ξ(·) be an admissible curve and Nc,ξ(·) be the corresponding
birth-death process. Then for any s < t , P̂ (s, t) is a product of P ↓(s, u) with
ξ(τ ) = e−2(τ−s)+ln ξ(s) and P ↑(u, t) with ξ(τ ) = e2(τ−t)+ln ξ(t) for a certain
choice of u. Specifically, u is determined from the continuity condition:

e−2(u−s)+ln ξ(s) = e2(u−t)+ln ξ(t) ⇐⇒ u = s + t
2

+ ln ξ(s)− ln ξ(t)

4
. (2.18)

Proof. This statement follows from the Chapman–Kolmogorov equation (2.1),
which P̂ (s, t) obviously satisfies due to the orthogonality of Meixner polynomials,
and from the fact that P̂ (s, t) does not depend on the specific form of the curve ξ(·),
see Comment 2 after the statement of Proposition 2.6. Thus, we may just replace
ξ(τ ) by a continuous combination of e−2τ+const and e2τ+const and preserve ξ(s),
ξ(t), and t − s. Note that the fact that u given by the formula above is between s
and t follows from the inequality |ξ̇ /ξ | ≤ 2. ��

Lemma 2.9 implies that P̂xy(s, t) is always nonnegative, and this completes the
proof of Proposition 2.6. ��

Corollary 2.10. The process obtained from Nc,ξ(·) by the time reversion is also of
the form Nc,̃ξ(·) with ξ̃ (τ ) = ξ(−τ).

Proof. Nc,ξ(·) is characterized by the fact that it is a Markov process with two-
dimensional distributions

Prob{Nc,ξ(s) = x, Nc,ξ(t) = y} = πc,ξ(s)(x)Pxy(s, t).

As was already mentioned above, the right–hand side of (2.9) multiplied byπc,ξ(s)(x)
is invariant with respect to (2.17). This implies the statement. ��

Note that, in particular, time inversion turns our pure birth process into the pure
death process and vice versa (essentially, we gave a proof of this fact before Lemma
2.9), and the stationary process Nc,ξ with ξ ≡ const is reversible. This is well
known; any stationary birth-death process with an invariant measure is reversible
with respect to this measure.
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2.5. Markov processes on partitions

Our next goal is to extend birth–death processesNc,ξ(·) to partitions in the following
sense. We construct continuous time Markov processes on the state space Y (the set
of allYoung diagrams, see §1) parametrized by admissible pairs (z, z′), see §1, and
admissible curves ξ(·). The projection of such a process on Z+ obtained by looking
at the number of boxes of the random Young diagrams, coincides with Nzz′,ξ(·).

Let us fix a pair (z, z′) of admissible parameters and set c = zz′ > 0. Given an
admissible curve ξ(·), we define the matrix Q of jump rates of our future Markov
process �z,z′,ξ on Y by (set n = |λ|)
Qλµ(s)

=




(c + n)
(

1 + ξ̇ (s)

2ξ(s)

)
ξ(s)

1 − ξ(s) · p
↑
zz′(n, λ; n+ 1, µ), λ↗ µ,

n

(
1 − ξ̇ (s)

2ξ(s)

)
1

1 − ξ(s) · p
↓(n, λ; n− 1, µ), λ↘ µ,

−(c + n)
(

1 + ξ̇ (s)

2ξ(s)

)
ξ(s)

1 − ξ(s) − n
(

1 − ξ̇ (s)

2ξ(s)

)
1

1 − ξ(s) , µ = λ,

(2.19)

andQλµ(s) ≡ 0 in all other cases. Here p↑
zz′ and p↓ are transition and cotransition

probabilities from §1, see (1.9) and (1.1), and the expressions involving ξ come
from (2.8). Note that under the projection Y → Z+, λ 
→ |λ|, this matrix Q turns
into the matrix of jump rates for Nc,ξ(·).

Proposition 2.11. The minimal solution P(s, t) of Kolmogorov’s backward equa-
tion with the matrix Q defined above is stochastic.

Proof. We apply Propositions 2.3, 2.4. In the proof of Proposition 2.4 it was shown
that for any a ∈ Z+ there exists a set of the form X = {0, 1, . . . , n− 1} such that
the probability of exiting X during the time period from s to t with the initial state
a is smaller than any given positive number ε. This means that if we start at time
s from λ ∈ Y with |λ| = a then the probability of exiting Y0 ∪ Y1 ∪ · · · ∪ Yn−1
before time t is just the same as for the birth-death process and, hence, is less than
ε. Proposition 2.3 concludes the proof. ��
Proposition 2.12 (cf. Proposition 2.5). For any s < t

Mz,z′,ξ(s)P (s, t) = Mz,z′,ξ(t), (2.20)

where P(s, t) is the transition matrix of Proposition 2.11, andMz,z′,ξ is the mixed
z-measure (1.11) viewed as a row-vector with coordinates indexed by elements of Y.

Proof. Since the formula obviously holds for s = t , it suffices to show that the
derivative with respect to s of the left–hand side of (2.20) vanishes. Thus, it suffices
to show that

− ∂

∂s
Mz,z′,ξ(s)(µ)+

∑
λ∈Y

Mz,z′,ξ(s)(λ)Qλµ(s) = 0 (2.21)

for any µ ∈ Y.
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Recall that

Mz,z′,ξ (λ) = M
(n)

z,z′(λ)πc,ξ (n) with c = zz′, n = |λ|.
Substituting this relation into (2.21) we notice that we can perform the summation
over λ using (1.5) and (1.6). Factoring out M(|µ|)

z,z′ (µ) leads to the formula which
states that the derivative of πc,ξ(s)P (s, t) with P(s, t) being the transition matrix
for the birth-death process Nc,ξ , with respect to s vanishes. But this has already
been proved in Proposition 2.5. ��
We conclude that given an admissible pair (z, z′) and an admissible curve ξ(τ ), there
exists a unique continuous time Markov process on Y with jump rates Q defined
above and with one–dimensional distributionsMz,z′,ξ(τ ). This Markov process will
be denoted by �z,z′,ξ(·).

As for the birth–death processes, we single out three important special cases: the
stationary process ξ(τ ) ≡ const, the ascending process ξ(τ ) = e2τ+const and the
descending process ξ(τ ) = e−2τ+const. The projections of these processes on Z+
are the stationary birth–death process, the pure birth and the pure death processes,
respectively.

As in §1, for λ ∈ Y we denote by dim λ the number of ascending paths in the
Young graph leading from ∅ to λ. More generally, we denote by dim(µ, λ) the
number of ascending paths in Y leading from µ to λ; if there are no such paths we
set dim(µ, λ) = 0. Also, for µ, λ ∈ Y such that µ ⊂ λ we set

(x)λ\µ =
∏

(i,j)∈λ\µ
(x + j − i), x ∈ C,

where the product is taken over all boxes in λ \ µ.

Proposition 2.13 (cf. Lemma 2.8). The transition matrix of the descending process
�z,z′,ξ(·) has the form

P
↓
λµ(s, t) =

(
(1−ζ )η
(1−η)ζ

)x (
ζ−η
(1−ζ )η

)x−y
x!

(x − y)! y!

dimµ dim(µ, λ)

dim λ
(2.22)

and the transition matrix of the ascending process �z,z′,ξ(·) has the form

P
↑
λµ(s, t) =

(
1−η
1−ζ

)zz′+x (
η−ζ
1−ζ

)y−x
x!

(y − x)! y!

dimµ dim(λ, µ)

dim λ

×(z)µ\λ(z′)µ\λ (2.23)

where ζ = ξ(s), η = ξ(t), x = |λ|, y = |µ|.
Proof. Let us consider the descending process first. It is immediate to check that
the matrix P ↓

λµ(s, t) obtained from the transition matrix P ↓
xy(s, t) of the pure death

process by

P
↓
λµ(s, t) = P ↓

xy(s, t)
∑

p↓(x, λ; x − 1, µ(x−y−1))

×p↓(x − 1, µ(x−y−1); x − 2, µ(x−y−2)) · · ·p↓(y + 1, µ(1); y, µ)
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where the sum is taken over all paths µ = µ(0) ↗ µ(1) ↗ · · · ↗ µ(x−y) = λ from
µ to λ, satisfies the backward equation. All terms in the above sum are equal to
dimµ/ dim λ, and the number of terms is equal to dim(µ, λ). Together with (2.14)
this implies (2.22).

Similarly, for the ascending process one has

P
↑
λµ(s, t) = P ↑

xy(s, t)
∑

p
↑
zz′(x, λ; x + 1, λ(1))

×p↑
zz′(x + 1, λ(1); x + 2, λ(2)) · · ·p↑

zz′(y − 1, λ(y−x−1); y, µ)

where the sum is taken over all paths λ = λ(0) ↗ λ(1) ↗ · · · ↗ λ(x−y) = µ from
λ to µ. Again, the product of transition probabilities does not depend on the path
and it is equal to

1

(c + x)y−x
x!

y!

dimµ

dim λ
· (z)µ\λ(z′)µ\λ

while the number of paths is equal to dim(λ, µ). Together with (2.15) this gives
(2.23). ��

3. Transition matrix for integral values of z

Our main goal in this section is to obtain a formula for the transition matrix of
the process �z,z′,ξ(·) in the case when z is a nonnegative integer. For z = 1, the
process�z,z′,ξ(·) coincides with the birth–death processNc,ξ(·), where c = zz′ = z′
(because�z,z′,ξ(·) lives on theYoung diagrams with only one row), and our formula
is reduced to (2.9).

Fix z = N ∈ {1, 2, . . . }. In order for (z, z′) to be an admissible pair, we must
have z′ ∈ R and z′ > N − 1. We will use the notation z′ = N + α, α > −1.

According to the notation of §2.5 we set

c = zz′ = N(N + α).
Note, however, that in the present situation, we take as the first parameter of the
Meixner polynomials not c but α + 1 (these quantities coincide for N = 1 only).

As was mentioned in §1, the support of MN,N+α,ξ consists of the Young dia-
grams with no more than N rows. It is convenient to parameterize such diagrams
λ by sequences of N strictly decreasing nonnegative integers (x1, . . . , xN),

xi = λi +N − i, i = 1, . . . , N.

Given an admissible curve ξ(·), we set for s ≤ t

vs,t (x, y) =
∞∑
k=0

ek(s−t)M̃k(x;α + 1, ξ(s)) M̃k(y;α + 1, ξ(t)), x, y ∈ Z+.

(3.1)

Recall that the functions M̃k were defined in §2.4.
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Theorem 3.1. Let λ, µ denote Young diagrams with no more than N rows, and
let (x1, . . . , xN), (y1, . . . , yN) be the corresponding collections of decreasing non-
negative integers. For any admissible curve ξ(·) the transition matrix of the Markov
process �N,N+α,ξ(·) has the form

Pλµ(s, t) = e
(t−s)N(N−1)

2

(
MN,N+α,ξ(t)(µ)
MN,N+α,ξ(s)(λ)

) 1
2

det
[
vs,t (xi, yj )

]N
i,j=1 . (3.2)

We will use the term Karlin–McGregor representation for this formula. Theo-
rem 3.1 and Proposition 2.6 show that the process�N,N+α,ξ is a Doob h–transform
ofN independent birth–death processesNα+1,ξ . In our situation this transform can
also be realized through a certain conditioning procedure, see §6.5. Similar con-
structions have appeared in the literature earlier, see [Bi1], [Bi2] [Jo3], [KOR],
[O’C].

Proof. The arguments follow the same pattern as in the proof of Proposition 2.6
(which is a special case of this theorem). The first step is to show that the right–hand
side of (3.2) satisfies Kolmogorov’s backward equation. After that we prove that
this solution is stochastic.

We will use the notation

x = (x1, . . . , xN), y = (y1, . . . , yN), εr = (

r−1︷ ︸︸ ︷
0, . . . , 0, 1,

N−r︷ ︸︸ ︷
0, . . . , 0 ),

1 ≤ r ≤ N,

ζ = ξ(s), η = ξ(t), n = |λ| =
N∑
i=1

xi − N(N − 1)

2
,

fk( · ) = M̃k( · ;α + 1, ξ(s)), gk( · ) = M̃k( · ;α + 1, ξ(t)).

Also, denote the right–hand side of (3.2) by P̂xy(s, t).
The formulas of §1 imply

(
MN,N+α,ξ(t)(µ)
MN,N+α,ξ(s)(λ)

) 1
2

= η
|µ|
2 (1 − η) c2

ζ
|λ|
2 (1 − ζ ) c2


 N∏
j=1

�(yj + α + 1)�(xj + 1)

�(xj + α + 1)�(yj + 1)




1
2
V (y)

V (x)

(3.3)

where V (u) = ∏
1≤i<j≤N(ui − uj ) stands for the Vandermonde determinant.

Note that adding to λ one box or removing from λ one box is equivalent to
adding εr to x or subtracting εr from x, where r is the row number of the box. We
have (see (1.9), (1.1), and the dimension formula just before (1.1))

p
↑
N,N+α(n, x; n+ 1, x + εr) = xr + α + 1

c + n
V (x + εr)
V (x)

,

p↓(n, x; n− 1, x − εr) = xr

n

V (x − εr)
V (x)

.
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The right–hand sides of these relations conveniently vanish exactly when x ± εr
does not represent a Young diagram (two of the coordinates of x ± εr are equal).
Using (2.19) we can now write down the needed backward equation:

− ∂

∂s
P̂xy(s, t)

= −
((

1 + ξ̇ (s)

2ξ(s)

)
ξ(s)(c + n)

1 − ξ(s) +
(

1 − ξ̇ (s)

2ξ(s)

)
n

1 − ξ(s)
)
P̂xy(s, t)

+
(

1 + ξ̇ (s)

2ξ(s)

)
ξ(s)

1 − ξ(s)
N∑
r=1

(xr + α + 1)V (x + εr)
V (x)

· P̂x+εr ,y(s, t)

+
(

1 − ξ̇ (s)

2ξ(s)

)
1

1 − ξ(s)
N∑
r=1

xrV (x − εr)
V (x)

· P̂x−εr ,y(s, t).

It is time to use the definition of P̂xy(s, t). The Cauchy–Binet identity (see, e.g.,
[Ga, ch. I,§2]) implies (in all determinants below the indices run from 1 to N )

det
[
vs,t (xi, yj )

] = det

[ ∞∑
k=0

e(s−t)kfk(xi)gk(yj )

]

=
∑

k1>k2>···>kN≥0

e(s−t)(k1+···+kN ) det[fki (xj )] det[gki (yj )]. (3.4)

Let us use this relation and (3.2) for P̂xy(s, t), P̂x±εr ,y(s, t) in the backward equa-
tion and collect the coefficients of det[gki (yj )]. Factoring out

(
MN,N+α,ξ(t)(µ)
MN,N+α,ξ(s)(λ)

) 1
2

e
(s−t)

(
k1+···+kN−N(N−1)

2

)

we obtain (Vandermonde determinants cancel out quite conveniently)
(
N(N − 1)

2
− (k1 + · · · + kN)+ ξ̇ (s)

2

(
n

ζ
− c

1 − ζ
))

det[fki (xj )]

− ∂

∂s
det[fki (xj )]=−

((
1+ ξ̇ (s)

2ζ

)
ζ(c+n)

1−ζ +
(

1− ξ̇ (s)
2ζ

)
n

1 − ζ
)

det[fki (xj )]

+
(

1 + ξ̇ (s)

2ζ

)
1

1 − ζ
N∑
r=1

√
(xr + 1)(xr + α + 1)ζ det

[
fki ((x + εr)j )

]

+
(

1 − ξ̇ (s)

2ζ

)
1

1 − ζ
N∑
r=1

√
xr(xr + α)ζ det

[
fki ((x − εr)j )

]
. (3.5)

We claim that the part of the left–hand side of this relation that does not involve
derivatives ξ̇ (s) and − ∂

∂s
equals the part of the right–hand side without ξ̇ (s), and

the part of the left–hand side with derivatives equals that of the right–hand side
with ξ̇ (s).
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The part without derivatives gives
(
ζ(c + n)+ n+ N(N − 1)

2
(1 − ζ )− (k1 + · · · + kN)(1 − ξ)

)
det[fki (xj )]

=
N∑
r=1

(√
(xr + 1)(xr + α + 1)ζ det

[
fki ((x + εr)j )

]

+
√
xr(xr + α)ζ det

[
fki ((x − εr)j )

])
. (3.6)

The right–hand side of this equality can be rewritten as

∑
σ∈SN

N∑
r=1

sgn σ fkσ(1) (x1) · · · fkσ(N)(xN)

×
√
(xr + 1)(xr + α + 1)ζ fσ(r)(xr + 1)+√

xr(xr + α)ζ fσ(r)(xr − 1)

fσ(r)(xr )
.

By (2.11) the last ratio equals xr(1 + ζ )+ (α+ 1)ζ − kσ(r)(1 − ζ ), and the whole
expression equals
(
(x1 + · · · + xN)(1 + ζ )+N(α + 1)ζ − (k1 + · · · + kN)(1 − ζ )) det[fki (xj )],

which is exactly the left–hand side of (3.6) with c = N(N + α) and n = ∑
xi −

N(N − 1)/2.
The part of (3.5) with derivatives gives

−2ζ(1 − ζ )
ξ̇ (s)

∂

∂s
det[fki (xj )] =

N∑
r=1

(√
(xr + 1)(xr + α + 1)ζ det

[
fki ((x + εr)j )

]

−
√
xr(xr + α)ζ det

[
fki ((x − εr)j )

])
.

The same operation with determinants and (2.12) show that this equality holds.
This concludes the proof of the fact that P̂λµ(s, t) (the right–hand side of (3.2))

satisfies the backward equation for �z,z′,ξ(·). It remains to verify that the Y × Y

matrix P̂λµ(s, t) is stochastic.
Let us check that

∑
µ P̂λµ(s, t) = 1 for any λ ∈ Y and s < t .

Using elementary row operations on the Vandermonde matrix, we obtain

V (u) =
∏

1≤i<j≤N
(ui − uj ) = det

[
uN−i
j

]

= (−1)
N(N−1)

2 det
[
MN−i (uj ;α + 1, ξ)

]
(3.7)

where the sign (−1)
N(N−1)

2 appears because the highest coefficient of Mk(u;α +
1, ξ) is (−1)k . Then (3.2) and (3.3) imply

P̂λµ(s, t) = e
(t−s)N(N−1)

2
det[gN−i (yj )]
det[fN−i (xj )]

det[vs,t (xi, yj )] .
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Apply (3.4) and sum the result over all y1 > · · · > yN ≥ 0. The Cauchy–Binet
identity gives

∑
y1>···>yN≥0

det[gki (yj )] det[gN−i (yj )] = det

[ ∞∑
u=0

gki (u)gN−j (u)

]
. (3.8)

Orthogonality of Meixner polynomials means that
∑
u≥0 gk(u)gl(u) = δkl . Hence,

the last determinant equals 1 if ki = N − i for all i = 1, . . . , N and vanishes
otherwise. This gives the desired result.

Finally, the nonnegativity of P̂λµ(s, t) follows from Proposition 2.13 and

Lemma 3.2 (cf. Lemma 2.9). For any admissible curve ξ(·), the matrix P̂ (s, t)
given by the right–hand side of (3.2) is the product of the transition matrixP ↓(s, u)
for the descending process with ξ(τ ) = e−2(τ−s)+ln ξ(s) and the transition matrix
P ↑(u, t) for the ascending process with ξ(τ ) = e2(τ−t)+ln ξ(t) with u given by
(2.18):

u = s + t
2

+ ln ξ(s)− ln ξ(t)

4
.

The proof of this lemma is very similar to that of Lemma 2.9. The Chapman–
Kolmogorov equation for P̂ (s, t) is easily verified by means of (3.4), the orthogo-
nality of Meixner polynomials, and the trick with the Cauchy–Binet formula used
above.

Since the transition matrices of the descending and ascending processes have
nonnegative matrix elements (2.22), (2.23), the matrix elements of P̂ (s, t) are also
nonnegative, and the proof of Theorem 3.1 is complete. ��
Corollary 3.3. The kernel (2.10) is totally positive.

Proof. Indeed, Theorem 3.1 shows that the minors of this kernel are, up to positive
factors, transition probabilities. ��

In the stationary case (ξ(·) ≡ const) this also follows from old results of Karlin
and McGregor (see [KMG2], [KMG3]).

4. Analytic continuation

This section contains two claims related to analytic continuation in the parameters
(z, z′). In Proposition 4.1 we show that the factorization of the transition matrix
for �z,z′,ξ(·) into the product of transition matrices for descending and ascending
processes is carried over from the case of integral z (Lemma 3.2 above) to the
general case. Proposition 4.2 is a technical result about the analytic dependence of
the finite–dimensional distributions of �z,z′,ξ(·) on the parameters; it will be used
in §6 to compute the dynamical correlation functions of �z,z′,ξ(·).

Proposition 4.1. The statement of Lemma 3.2 holds for arbitrary admissible pair
of parameters (z, z′). That is, the transition matrix P(s, t) for �z,z′,ξ(·) is equal
to the product P ↓(s, u)P ↑(u, t) with the descending and ascending processes and
the time moment u specified as in Lemma 3.2.
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Comments. 1. This statement together with Proposition 2.13 allows to writeP(s, t)
down rather explicitly. Namely, we obtain

Pλν(s, t) = (ζ − θ)l(η − θ)n(1 − η)zz′
ζ l(1 − θ)l+n+zz′

l! dim ν

n! dim λ
(z)ν(z

′)ν

×
∑
µ∈Y

(1 − ζ )m(1 − θ)mηm
(l −m)!(n−m)!

dim(µ, λ) dim(µ, ν)

(z)µ(z′)µ
(4.1)

with the notation

ζ = ξ(s), η = ξ(t), θ = es−t
√
ζη, l = |λ|, m = |µ|, n = |ν|.

The sum above is actually finite; µ ranges over all Young diagrams which are
smaller than both λ and ν.

2. The formula for Pλµ(s, t) above after the multiplication by

Mz,z′,ζ (λ) = (1 − ζ )zz′ζ l(z)λ(z′)λ dim2 λ

l!

becomes symmetric with respect to (λ, ζ )←→ (ν, η). This shows that the time
reversion of �z,z′,ξ(·) is again a process of this form with new ξ̃ (τ ) = ξ(−τ),
cf. Corollary 2.10.

Proof. Set P̂ (s, t) = P ↓(s, u)P ↑(u, t). Clearly, this is a stochastic matrix that
satisfies the initial condition P̂ (t, t) = Id. Thus, it suffices to verify that it satisfies
Kolmogorov’s backward equation

− ∂

∂s
P̂λν(s, t) = Qλλ(s)P̂λλ(s, t)+

∑
µ:λ↗µ

Qλµ(s)P̂µν(s, t)

+
∑
µ:λ↘µ

Qλµ(s)P̂µν(s, t)

with Q(s) given by (2.19). As we substitute the expression in the right–hand side
of (4.1) for P̂ (s, t), we see that both sides of the equality above, as function in z
and z′, have the form

(
1 − η
1 − θ

)zz′
× {

a polynomial in z, z′
}
.

Since the equality has already been established for (z, z′) = (N,N + α) with
N = 1, 2, . . . and α > −1, it must hold for arbitrary (z, z′). ��

We proceed to the second claim, which concerns finite–dimensional distribu-
tions. Take an admissible pair of parameters (z, z′) and an admissible curve ξ(·),
and consider the Markov process�z,z′,ξ(·). Let t1 < t2 < · · · < tn be arbitrary time
moments. Set

ξi = ξ(ti), ηi,i+1 = eti−ti+1
√
ξiξi+1 . (4.2)
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Proposition 4.1 (or formula (4.1)) and the fact that the process is Markovian
imply that the finite-dimensional distributions

Prob{�z,z′,ξ(·)(ti) = λ(i); i = 1, . . . , n}
with given Young diagrams λ(1), . . . , λ(n), depend on parameters ξ1, . . . , ξn and
η12, η23, . . . , ηn−1,n but they do not depend on the behavior of ξ(t) inside the inter-
vals (ti , ti+1). Thus, in order to compute these finite–dimensional distributions we
may replace our process by a sequence of alternating descending and ascending
processes: We start off at the time moment t1 and go down till time

s12 = t1 + t2
2

+ ln ξ1 − ln ξ2

4
,

the value of ξ at this moment is exactly η12. Then we go up till ξ2 and then again
down, etc. The time moments when we change directions are

t1 ≤ s12 ≤ t2 ≤ s23 ≤ · · · ≤ sn,n+1 ≤ tn

with si,i+1 = (ti + ti+1)/2+ (ln ξi − ln ξi+1)/4, and the values of ξ at these points
are ηi,i+1. At ti’s we switch from going up to going down, and at si,i+1’s we switch
from going down to going up.

Fix arbitrary subsets D1 , . . . , Dn of Y. We want to compute the probability
that our new descending–ascending process hits D1 . . . , Dn at the time moments
t1 , . . . , tn, respectively. It is equal to the sum

F(ξ, η;D1 , . . . , Dn)

:=
∑

λ(i)∈Di , i=1,...,n
µ(j,j+1)∈Y, j=1,...,n−1

Mz,z′,ξ1(λ(1)) P
↓
λ(1), µ(1,2)(t1, s12)P

↑
µ(1,2), λ(2)(s12, t2) · · ·

· · ·P ↓
λ(n−1), µ(n−1,n)(tn−1, sn−1,n)P

↑
µ(n−1,n), λ(n)(sn−1,n, tn),

(4.3)

where ξi and ηi,i+1 are given by (4.2). This definition makes sense because the
right–hand side is actually a function in ξ, η. Note that the new variables ξi and
ηi,i+1 may take arbitrary values in (0, 1) subject to the inequalities

ξ1 ≥ η12 ≤ ξ2 ≥ η23 ≤ ξ3 ≥ · · · ≤ ξn−1 ≥ ηn,n−1 ≤ ξn. (4.4)

A “static” version of the next result was proved in [BO8, Lemma 3.11].

Proposition 4.2. Let F(ξ, η;D1 , . . . , Dn) be the function defined above, where
variables ξi and ηi,i+1 are in (0, 1) and satisfy inequalities (4.4).

(i) F(ξ, η;D1 , . . . , Dn) is a real-analytic function in ξ and η.
(ii) For fixed ξ and η, the function ε 
→ F(εξ, εη;D1 , . . . , Dn), which is initially

defined for real ε ∈ (0, 1], can be analytically continued to a small neighbor-
hood of 0 in C. The coefficients of the Taylor decomposition of this function at
ε = 0 are polynomial functions in z, z′.
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Comment. The proposition implies that the function F(ξ, η;D1 , . . . , Dn) viewed
also as a function in z, z′, is uniquely determined by its values on the arguments
(ξ, η, z, z′) such that ξ, η satisfy inequalities 0 < ξi, ηj,j+1 < 1 and (4.4), and
(z, z′) = (N,N + α) with N = 1, 2, . . . and α > −1. This uniqueness property
will be used in the next section to extend certain formulas derived in the case of
integral z to the general case.

Proof. In order to prove (i), byWeierstrass’uniform convergence theorem it suffices
to check that the series (4.2) with Mz,z′,ξ1(λ(1)) and all P ↓, P ↑ replaced by their
expressions given by (1.11), (2.22), (2.23), converges absolutely and uniformly in
ξ ∈ C

n and η ∈ C
n−1 varying in small discs around their initial (real) values. It is

more convenient to work with the case when all Di coincide with Y; clearly, the
needed convergence of the restricted sum follows from that of the unrestricted sum.

Set li = |λ(i)|, mi,i+1 = |µ(i, i + 1)|. As seen from the proof of Proposition
2.13, the matrix elements P ↓

λµ and P ↑
λµ split into products of transition proba-

bilities for pure death and pure birth processes of Lemma 2.8 and (co)transition
probabilities on theYoung graph. By (1.11),Mz,z′,ξ (λ) is also a product of the neg-

ative binomial distribution πc,ξ (l) on Z+ and the probability distributionsM(l)

z,z′(λ)
on Yl’s. The probabilities related to the Young graph do not depend on ξ and η.
Thus, we can represent the sum in (4.2) (remember that all Di are equal to Y) as
a double sum: the outer sum is taken over all nonnegative integers l1, . . . , ln and
m12, . . . , mn−1,n satisfying

l1 ≥ m12 ≤ l2 ≥ m23 ≤ · · · ≥ mn−1,n ≤ ln, (4.5)

and the inner sum is taken over allYoung diagrams λ(i) ∈ Yli ,µ(i, i+1) ∈ Ymi,i+1 .
Since all factors related to theYoung graph are nonnegative we can write (using

the relations (1.5), (1.6) applied to the z-measures)

∑
λ(i)∈Y, i=1,...,n

µ(j,j+1)∈Y, j=1,...,n−1

∣∣∣Mz,z′,ξ1(λ(1)) P
↓
λ(1), µ(1,2)(t1, s12)P

↑
µ(1,2), λ(2)(s12, t2) · · ·

· · ·P ↓
λ(n−1), µ(n−1,n)(tn−1, sn−1,n)P

↑
µ(n−1,n), λ(n)(sn−1,n, tn)

∣∣∣
=

∑
l1,...,ln

m1,2,...,mn−1,n

∣∣∣πzz′,ξ1(l1) P
↓
l1,m12

(t1, s12)P
↑
m12, l2

(s12, t2) · · ·

· · ·P ↓
ln−1,mn−1,n

(tn−1, sn−1,n)P
↑
mn−1,n, ln

(sn−1,n, tn)

∣∣∣
(4.6)

where, in the right–hand side, the quantities P ↓ and P ↑ are given by Lemma 2.8,
and the summation is taken over indices subject to (4.5). Thus, we need to verify
the uniform convergence of the right–hand side under small complex variations of
ξ and η.
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It is convenient to set

ui = ξi − ηi−1,i

1 − ηi−1,i
, i = 1, . . . , n, with η0,1 := 0, (4.7)

vi,i+1 = (1 − ξi) ηi,i+1

(1 − ηi,i+1) ξi
, i = 1, . . . , n− 1. (4.8)

The inequalities (4.4) imply that ui ∈ [0, 1) and vi,i+1 ∈ (0, 1] for all i. Clearly,
small (complex) variations of ξ and η lead to small (complex) variations of ui’s
and vi,i+1’s. What is important for us here is that if the variations are small enough
then ui’s are bounded away from 1 and vi,i+1’s are bounded away from 0.

The probabilities entering the right–hand side of (4.6) can be expressed through
variables (4.7) and (4.8), as follows (here we use (1.10), (2.14) and (2.15))

πzz′,ξ1(l1) = (1 − u1)
c u

l1
1
(c)l1

l1!
, (4.9)

P
↑
mi−1,i ,li

(si−1,i , ti ) = (1 − ui)c+mi−1,i u
li−mi−1,i
i

(c +mi−1,i )li−mi−1,i

(li −mi−1,i )!
(i = 2, . . . , n), (4.10)

P
↓
li ,mi,i+1

(ti , si,i+1) = v
li
i,i+1

(
1

vi,i+1
− 1

)li−mi,i+1 li!

(li −mi,i+1)!mi,i+1!
(i = 1, . . . , n− 1), (4.11)

where, as before, c = zz′. Note that (4.9) is a special case of (4.10) withm0,1 = 0.
We proceed to estimating the right–hand side of (4.6). Start with summa-

tion over ln. The only factor in the right–hand of (4.6) that depends on ln is∣∣∣P ↑
mn−1,n, ln

(sn−1,n, tn)

∣∣∣. Using (4.11) we obtain

∑
ln≥mn−1,n

∣∣∣P ↑
mn−1,n, ln

(sn−1,n, tn)

∣∣∣ = |1 − un|c+mn−1,n

×
∑

ln≥mn−1,n

|un|ln−mn−1,n
(c+mn−1,n)ln−mn−1,n

(ln −mn−1,n)!
=

( |1 − un|
1 − |un|

)c+mn−1,n

. (4.12)

We conclude that this expression can be estimated, as a function of mn−1,n, by a
constant times a geometric progression of the form rmn−1,n with a suitable r > 0. If
the variation of un is small enough, un is close to the real axis. Hence, by decreasing
the variations we can take r arbitrarily close to 1.

Next, consider the double sum overmn,n−1 ≤ ln−1 and ln ≥ mn−1,n, where we
have two relevant factors. Applying the above estimate and using (4.10) we obtain
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∑
mn−1,n≤ln−1

∑
ln≥mn−1,n

∣∣∣P ↓
ln−1,mn−1,n

(tn−1, sn−1,n)P
↑
mn−1,n, ln

(sn−1,n, tn)

∣∣∣

≤ const |vn−1,n|ln−1
∑

mn−1,n≤ln−1

∣∣∣∣ 1

vn−1,n
− 1

∣∣∣∣
ln−1−mn−1,n

rmn−1,n

× ln−1!

(ln−1 −mn−1,n)!mn−1,n!
= const

(∣∣∣∣ 1

vn−1,n
− 1

∣∣∣∣+ r
)ln−1

|vn−1,n|ln−1 .

Again, this is bounded by a constant times a geometric progression r̃ ln−1 where r̃
can be made arbitrarily close to 1 by considering small enough variations of un and
vn−1,n.

The next step, the triple summation, is performed similarly to (4.12). The only
difference is in the presence of the additional geometric progression r̃ ln−1 . The
summation yields

const

( |1 − un−1|
1 − r̃ |un−1|

)c+mn−2,n−1

.

Once again, for small variations of un−1, vn−1,n, un, this is bounded by a constant
times a geometric progression with exponentmn−2,n−1 and a ratio that is close to 1.

Iterating this procedure we finally obtain that the whole sum in the right–hand
side of (4.6) is bounded by

const |1 − u1|c
∑
l1≥0

|u1|l1 rl1 (c)l1
l1!

with a certain r > 0 close to 1. This sum is finite, which completes the argument.
Let us prove (ii). Fix ξ and η as in the formulation of the proposition. For a small

complex ε, let u(ε)i and v(ε)i,i+1 be defined according to (4.7) and (4.8) with ξ and η

replaced by εξ and εη, respectively. Remark that u(ε)i is a small variation of 0 while

v
(ε)
i,i+1 is a small variation of ηi,i+1/ξi which a real number in (0, 1]. Recall now that

the only assumption on the variablesui and vi,i+1 that we exploited in the proof of (i)
is thatui and vi,i+1 are small complex variations of certain real numbers in [0, 1) and
(0, 1], respectively. Therefore, exactly the same argument as in (i) shows that ε 
→
F(εξ, εη;D1 , . . . , Dn) is well defined as an analytic function for small complex ε.

It remains to check that the Taylor coefficients of this function are polynomials
in z, z′. To do this we return to the initial expression (4.3). Using formulas (2.22) and
(2.23) (which we adapt to our present notation) we can write (4.3) in the following
form

F(ξ, η;D1 , . . . , Dn) =
∑

λ(i)∈Di , i=1,...,n
µ(j,j+1)∈Y, j=1,...,n−1

C(
−→
λ,µ),

where
−→
λ,µ = (λ(1), µ(1, 2), λ(2), . . . , λ(n− 1), µ(n− 1, n), λ(n)),

C(
−→
λ,µ) = Mz,z′,ξ1(λ(1))P

↓
λ(1), µ(1,2)(ξ1, η12)P↑

µ(1,2), λ(2)(η12, ξ2) · · ·
· · ·P↓

λ(n−1), µ(n−1,n)(ξn−1, ηn−1,n)P↑
µ(n−1,n), λ(n)(ηn−1,n, ξn)
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with

Mz,z′,ξ1(λ(1)) = (1 − ξ1)
zz′ ξ l11 (z)λ(1)(z

′)λ(1)
(

dim λ(1)

l1!

)2

(see (1.11)),

P↓
λi ,µi,i+1

(ξi, ηi,i+1) =
(
(1 − ξi)ηi,i+1

(1 − ηi,i+1)ξi

)li ( ξi − ηi,i+1

(1 − ξi)ηi,i+1

)li−mi,i+1

× li!

(li −mi,i+1)!mi,i+1!

dimµ(i, i + 1) dim(µ(i, i + 1), λ(i))

dim λ(i)

and

P
↑
µ(i−1,i),λ(i)(ηi−1,i , ξi) =

(
1 − ξi

1 − ηi−1,i

)zz′+mi−1,i
(
ξi − ηi−1,i

1 − ηi−1,i

)li−mi−1,i

× mi−1,i!

(li −mi−1,i )! li!

dim λ(i) dim(µ(i − 1, i), λ(i))

dimµ(i − 1, i)

×(z)λ(i)\µ(i−1,i)(z
′)λ(i)\µ(i−1,i) .

Remark that each termC(
−→
λ,µ)with ξ, η replaced by εξ , εη, involves the factor

εl1+···+ln−m12−···−mn−1,n .

Indeed, it comes from the factors (εξi − εηi−1,1)
li−mi−1,i in P ↑’s and from (εξ1)

l1

in Mz,z′,εξ1(λ(1)).
Next, remark that inequalities (4.5) imply

l1 + · · · + ln −m12 − · · · −mn−1,n ≥ max(l1, . . . , ln).

Indeed, let i be such that li = max(l1, . . . , ln). Then we have

λj ≥ µj,j+1 (j = 1, . . . , i − 1), λj+1 ≥ µj,j+1 (j = i, . . . , n− 1),

whence l1 + · · · + ln −m12 − · · · −mn−1,n ≥ li .

Thus, only finitely many terms C(
−→
λ,µ) contribute to a fixed Taylor coefficient.

Each of these terms involves polynomial expressions in z, z′ and expressions of the
form (1 − εξi)zz′ , (1 − εηi,i+1)

−zz′ , and their Taylor coefficients at ε = 0 are also
polynomials in z, z′. ��

5. A basis in the �2 space on the lattice and the Meixner polynomials

This short section contains a summary of formulas which will be used in what
follows. For proofs and more details we refer to [BO8, §2].

Throughout the section we will assume (unless otherwise stated) that (z, z′)
is in the principal series or in the complementary series but not in the degenerate
series. In particular, z, z′ are not integers.
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Consider the lattice of (proper) half–integers

Z
′ = Z + 1

2 = {. . . ,− 5
2 ,− 3

2 ,− 1
2 ,

1
2 ,

3
2 ,

5
2 , . . . }.

We introduce a family of functions on Z
′ depending on a parameter a ∈ Z

′ and
also on our parameters z, z′, ξ :

ψa(x; z, z′, ξ) =
(
�(x + z+ 1

2 )�(x + z′ + 1
2 )

�(z− a + 1
2 )�(z

′ − a + 1
2 )

) 1
2

ξ
1
2 (x+a)(1 − ξ) 1

2 (z+z′)−a

×
F(−z+ a + 1

2 ,−z′ + a + 1
2 ; x + a + 1; ξ

ξ−1 )

�(x + a + 1)
, x ∈ Z

′,

(5.1)

where F(A,B;C;w) is the Gauss hypergeometric function. Due to the �–factor
in the denominator, these functions are well defined on the whole lattice. Note that
they are real–valued.

Further, we introduce a second order difference operator D(z, z′, ξ) on the
lattice Z

′, depending on parameters z, z′, ξ and acting on functions f (x) (where x
ranges over Z

′) as follows

D(z, z′, ξ)f (x) =
√
ξ(z+ x + 1

2 )(z
′ + x + 1

2 ) f (x + 1)

+
√
ξ(z+ x − 1

2 )(z
′ + x − 1

2 ) f (x − 1)− (x + ξ(z+ z′ + x)) f (x).

Note that D(z, z′, ξ) is a symmetric operator in 	2(Z′).
The functions ψa(x; z, z′, ξ) are eigenfunctions of the operator D(z, z′, ξ):

D(z, z′, ξ)ψa(x; z, z′, ξ) = a(1 − ξ)ψa(x; z, z′, ξ), a ∈ Z
′. (5.2)

For any fixed triple (z, z′, ξ), they form an orthonormal basis in 	2(Z′).
We have the following integral representation

ψa(x; z, z′, ξ)

=
(
�(x + z+ 1

2 )�(x + z′ + 1
2 )

�(z− a + 1
2 )�(z

′ − a + 1
2 )

) 1
2 �(z′ − a + 1

2 )

�(z′ + x + 1
2 )
(1 − ξ) z

′−z+1
2

× 1

2πi

∮
{ω}

(
1 −

√
ξω

)−z′+a− 1
2
(

1 −
√
ξ

ω

)z−a− 1
2
ω−x−a dω

ω
(5.3)

Here {ω} is an arbitrary simple contour which goes around the points 0 and
√
ξ in

the positive direction leaving 1/
√
ξ outside. We also assume that the argument of

1 −√
ξω and 1 −√

ξ/ω equals 0 for real negative values of ω.
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A related useful formula is

ψa(x; z, z′, ξ)ψa(y; z, z′, ξ)

= ϕz,z′(x, y)
1 − ξ
(2πi)2

∮
{ω1}

∮
{ω2}

(
1 −

√
ξω1

)−z′+a− 1
2
(

1 −
√
ξ

ω1

)z−a− 1
2

×
(

1 −
√
ξω2

)−z+a− 1
2
(

1 −
√
ξ

ω2

)z′−a− 1
2

×ω−x−a
1 ω

−y−a
2

dω1

ω1

dω2

ω2
, (5.4)

where

ϕz,z′(x, y) =
√
�(x + z+ 1

2 )�(x + z′ + 1
2 )�(y + z+ 1

2 )�(y + z′ + 1
2 )

�(x + z′ + 1
2 )�(y + z+ 1

2 )
. (5.5)

It is worth noting that (5.4), in contrast to (5.3), does not contain �–prefactors
depending on index a. This is achieved due to switching z ↔ z′ in the second
integral (for more detail, see the proof of (5.4) in [BO8, Proposition 2.3]).

The following symmetry relations hold

ψa(x; z, z′, ξ) = ψx(a;−z,−z′, ξ) (5.6)

ψa(x; z, z′, ξ) = (−1)x+aψ−a(−x;−z,−z′, ξ). (5.7)

Let us explain how the functions ψa are related to the Meixner polynomials.
Below elements of Z+ will be denoted by symbols x̃, ỹ (we reserve the notation
x and y for points of the lattice Z

′). Let us drop the assumption that (z, z′) is
not in the degenerate series, and assume, just on the contrary, that z = N and
z′ = N + α, where N = 1, 2, . . . and α > −1. Then expression (5.1) for the
functions ψa(x; z, z′, ξ) still makes sense provided that

x̃ := x +N − 1
2 , n := N − a − 1

2 (5.8)

are in Z+, and in this notation we have

ψa(x; z, z′, ξ) = M̃n(x̃;α + 1, ξ), (5.9)

where the functions M̃n on Z+ were defined in §2.4.
The following explanation might help the reader to follow the analytic con-

tinuation arguments in §6. Our functions ψa can be obtained from the Meixner
polynomials by the following procedure:

• We replace the initial polynomials Mn by the functions M̃n. This step is quite
clear: as a result we get functions which form an orthonormal basis in the 	2

space on Z+ with respect to the weight function 1.
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• Next, we make a change of the argument. Namely, we introduce an additional
parameter N = 1, 2, . . . and we set x = x̃ − N + 1

2 . Then we get orthogonal
functions on the subset

{−N + 1
2 ,−N + 3

2 ,−N + 5
2 , . . . } ⊂ Z

′

which exhausts the whole Z
′ in the limit as N goes to infinity.

• Then we also need a change of the index. Namely, instead of n we have to take
a = N − n − 1

2 . We cannot give a conceptual explanation of this transforma-
tion, it is dictated by the formulas. Again, the range of the possible values for
a becomes larger together with N , and in the limit as N → +∞ we get the
whole lattice Z

′.
• Finally, we make a (formal) analytic continuation in parametersN and α, using

an appropriate analytic expression for the Meixner polynomials (see [BO8,
§3]). Note that the difference equation (5.2) precisely corresponds to a similar
relation for the Meixner polynomials.

Of course, instead of the lattice Z
′ we could equally well deal with the lattice

Z, and then numerous “ 1
2 ” would disappear. However, dealing with the lattice Z

′
makes main formulas more symmetric.

6. Dynamical correlation functions

6.1. Definitions

As in §5, we are dealing with the lattice Z
′ = Z + 1

2 of (proper) half–integers. For
an arbitrary λ ∈ Y we set

X (λ) = {λi − i + 1
2 | i = 1, 2, . . . } ⊂ Z

′.

For instance, X (∅) = {− 1
2 ,− 3

2 , . . . }. The correspondence λ 
→ X (λ) is an
embedding of Y into the set of point configurations in Z

′ (here “point configu-
ration” means simply “subset”).

Assume we are given a continuous time stochastic process �(t) with the state
space Y. Using the above correspondence we can convert�(t) into a process with
values in point configurations in Z

′; let us denote the latter process by X (t).
For anyn = 1, 2, . . . define thenth dynamical correlation function ofn pairwise

distinct arguments (t1, x1), . . . (tn, xn) ∈ (tmin, tmax)× Z
′ by

ρn(t1, x1; t2, x2; . . . ; tn, xn) = Prob
{
X (ti) contains xi for all i = 1, . . . , n

}
.

In other words, the dynamical correlation functions describe the probabilities
of events of the following type: for given time moments s1 < · · · < sm and given
finite sets Y1, . . . , Ym, the random point configurationsX (s1), . . . , X (sm) contain
Y1, . . . , Ym, respectively. Thus, the notion of the dynamical correlation functions is
a hybrid of the finite–dimensional distributions of a stochastic process and standard
correlation functions of probability measures on point configurations.
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Clearly, the dynamical correlation functions uniquely determine the finite–
dimensional distributions of the process and, thus, the process itself. The reason why
we are interested in these quantities is the same as in the “static” (fixed time) case:
As we take scaling limits of our processes, for the limiting object the notion of the
weight of a point configuration does not make sense anymore. Thus, the probabili-
ties of the form Prob

{
X (s1) = X 1, . . . , X (sm) = Xm

}
do not have any meaning

in the limit while the scaling limits of the correlation functions are well-defined
and, moreover, carry a lot of useful information about the limit process.

We say that the process X (t) is determinantal if there exists a kernel

K : ((tmin, tmax)× Z
′)× ((tmin, tmax)× Z

′)→ C

such that for any n = 1, 2, . . .

ρn(t1, x1; . . . ; xn, tn) = det
[
K(ti, xi; tj , xj )

]n
i,j=1 .

If such a kernel exists then it is not unique. In particular, transformations of the
form

K(s, x; t, y) −→ f (s, x)

f (t, y)
K(s, x; t, y) (6.1)

do not change the correlation functions.

6.2. Main results

Theorem 6.1. Let (z, z′) be a pair of admissible parameters and ξ(·) be an admis-
sible curve. Consider the Markov process �z,z′,ξ(·) defined in §2, and denote by
X z,z′,ξ(·) the corresponding process with values in the space of point configurations
in Z

′. Then the process X z,z′,ξ(·) is determinantal.

Recall that in §5 we introduced the functions ψa(x; z, z′, ξ) which form, for
any ξ ∈ (0, 1), an orthonormal basis in 	2(Z′). These functions were defined under
the condition that (z, z′) belong to either principal or complementary series.

Theorem 6.2. Assume that (z, z′) is either in principal or complementary series.
Then the kernel

K z,z′,ξ(·)(s, x; t, y)=±
∑
a∈Z

′+

e±a(t−s)ψ±a(x; z, z′, ξ(s)) ψ±a(y; z, z′, ξ(t)) (6.2)

with “+” taken for s ≥ t and “−” taken for s < t , is a correlation kernel of the
process X z,z′,ξ(·).

Theorem 6.3. The correlation kernel (6.2) can also be written in the form

K z,z′,ξ(·)(s, x; t, y) = e
1
2 (s−t)ϕz,z′(x, y) K̂ z,z′,ξ(·)(s, x; t, y), (6.3)
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where, as in (5.5),

ϕz,z′(x, y) =
√
�(x + z+ 1

2 )�(x + z′ + 1
2 )�(y + z+ 1

2 )�(y + z′ + 1
2 )

�(x + z′ + 1
2 )�(y + z+ 1

2 )

and the kernel K̂ z,z′,ξ(·)(s, x; t, y) can be written as a double contour integral (set
ζ = √

ξ(s), η = √
ξ(t))

K̂ z,z′,ξ(·)(s, x; t, y) =
√
(1 − ζ )(1 − η)
(2πi)2

×
∮

{ω1}

∮
{ω2}

(1 − ζω1)
−z′

(
1 − ζ ω−1

1

)z
(1 − ηω2)

−z
(

1 − η ω−1
2

)z′
(6.4)

× ω
−x− 1

2
1 ω

−y− 1
2

2

es−t (ω1 − ζ ) (ω2 − η)− (1 − ζω1) (1 − ηω2)
dω1dω2

with the contours {ω1} and {ω2} of ω1 and ω2 satisfying the following conditions:

• {ω1} goes around 0 in positive direction and passes between ζ and ζ−1;
• {ω2} goes around 0 in positive direction and passes between η and η−1;
• if s ≥ t then the image of {ω1} under the fractional–linear map

ω 
→ A(ω) = ω
(
es−t η − ζ )+ 1 − es−t ζ η

ω
(
es−t − ζη)+ η − es−t ζ (6.5)

is contained inside {ω2};
• if s < t then the domain bounded by {ω2} does not intersect the image of {ω1}

under the map above.

The kernelsK z,z′,ξ(·)(s, x; t, y)and K̂ z,z′,ξ(·)(s, x; t, y)are equivalent. Namely,
they are related by a “gauge transformation” (6.1),

K̂ z,z′,ξ(·)(s, x; t, y) = fz,z′(s, x)

fz,z′(t, y)
K z,z′,ξ(·)(x, y), x, y ∈ Z

′,

where

fz,z′(s, x) =
e−

1
2 s �(x + z′ + 1

2 )√
�(x + z+ 1

2 )�(x + z′ + 1
2 )

(6.6)

The kernel K̂ z,z,ξ(·)(s, x; t, y) can serve as a correlation kernel for all admis-
sible values of parameters (z, z′), including the degenerate series.

Comments. 1. The fractional–linear transformation (6.5) arises from the condi-
tion that the denominator in the integral representation (6.4) has to be nonzero.
Indeed, the equation “denominator=0” is equivalent to ω2 = A(ω1).
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2. It is not a priori clear why the needed contours {ω1} and {ω2} exist. Let us show
that it is indeed so. Set q = es−t and note that A(ζ ) = η−1 and A(ζ−1) = η.
Consider the case q ≥ 1 (i.e. s ≥ t) first. Let us take a circle with center at

the origin and radius r slightly smaller than ζ−1 as {ω1}. Then its image under A
is again a circle which is symmetric with respect to the real axis and which passes
through A(r) and A(−r). Remark that A(r) is close to A(ζ−1) = η, and A(−r)
is close to

A(−ζ−1) = −qη(ζ + ζ−1)+ 2

−q(ζ + ζ−1)+ 2η
.

Since ζ and η are strictly between 0 and 1, we immediately see that the denominator
is negative, and the whole expression is < η. Thus, the image of {ω1} is a finite
circle that lies to the left of η+ ε with a small ε > 0. Clearly, there exists a contour
{ω2} that passes between η and η−1 and encircles both 0 and the image of {ω1}.

Let us consider the case q < 1 now. As {ω1}we again take a circle with center at
the origin but with radius slightly greater than ζ . Then its image A({ω1}) is a circle
which is symmetric with respect to the real axis and which passes near A(ζ ) = η−1

and

A(−ζ ) = ζ + ζ−1 − 2qη

η(ζ + ζ−1)− 2q
.

If the denominator of this ratio is negative then the whole expression is negative,
and there exists a contour {ω2} inside this circle that passes between η and η−1 and
goes around the origin. If the denominator is positive then the whole expression is
> η−1, and {ω2} can be a circle of radius between η and η−1 with center at the
origin. The same choice is possible in the limit case when the denominator is 0 and
A({ω1}) degenerates to the vertical line passing through η−1. ��

6.3. Proof of Theorems 6.1, 6.2, and 6.3

Although our argument is self–contained, it might be helpful to the reader to look
first at [BO8, §3], where similar claims are proved in the static case t1 = · · · = tn.

The first step is to examine the case z = N ∈ {1, 2, . . . }, z′ = N +α, α > −1.
As was already mentioned in §1, the measureMN,N+α,ξ is concentrated on a proper
subset of Y — the set of diagrams with at most N rows; let us denote it by Y(N).
Consider the embedding of Y(N) into the set of N–point configurations of Z+
given by

λ ∈ Y(N) 
→ X̃(λ) = (̃x1, . . . , x̃N ), x̃i = λi +N − i, i = 1, . . . , N.

Our starting point is the following observation from [BO2, Proposition 4.1]:

MN,N+α,ξ (λ) = const ·
∏

1≤i<j≤N
(x̃i − x̃j )2

n∏
i=1

Wα+1,ξ (x̃i ), λ ∈ Y(N),
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where Wα+1,ξ is the Meixner weight function on Z+ with parameters α + 1 and ξ
(see §2.4). This means that the pushforward ofMN,N+α,ξ under the above embed-
ding is the N–point Meixner orthogonal polynomial ensemble on Z+. 6

Denote by X̃N,N+α,ξ(·) the stochastic process on the space ofN–point configu-
rations in Z+ corresponding to�N,N+α,ξ(·) under the embedding λ 
→ X̃(λ). (The
definition is correct because �N,N+α,ξ(·) lives on the subset Y(N) ⊂ Y.) Thus,
�N,N+α,ξ(·) gives rise to two processes on point configurations: XN,N+α,ξ(·) and
X̃N,N+α,ξ(·). Obviously, these two processes are essentially equivalent: ifλ ∈ Y(N)

then X (λ) = (x1, x2, . . . ) and X̃(λ) = (̃x1, . . . , x̃N ) are related by

xi =
{
x̃i −N + 1

2 , i = 1, . . . , N,

−i + 1
2 , i ≥ N + 1.

This implies that the dynamical correlation functions ρl of XN,N+α,ξ(·) and ρ̃l of
X̃N,N+α,ξ(·) are related by

ρl(τ1, x1; . . . ; τl, xl) = ρ̃l(τ1, x̃1; . . . ; τl, x̃l)
with x̃i = xi +N − 1

2 ∈ Z+ for i = 1, . . . , l.
Define the extended Meixner kernel KMeixner

N,α,ξ(·) by

KMeixner
N,α,ξ(·)(s, x̃; t, ỹ) =

{
K

Meixner,+
N,α,ξ(·) (s, x̃; t, ỹ), s ≥ t,

K
Meixner,−
N,α,ξ(·) (s, x̃; t, ỹ), s < t,

with x̃, ỹ ∈ Z+ and

K
Meixner,+
N,α,ξ(·) (s, x̃; t, ỹ) =

N−1∑
m=0

em(s−t)M̃m(̃x;α + 1, ξ(s))M̃m(ỹ;α + 1, ξ(t)),

(6.7)

K
Meixner,−
N,α,ξ(·) (s, x̃; t, ỹ) = −

∞∑
m=N

em(s−t)M̃m(̃x;α + 1, ξ(s))M̃m(ỹ;α + 1, ξ(t)).

(6.8)

Lemma 6.4. The process X̃N,N+α,ξ(·) is determinantal. Its correlation functions
have the form

ρ̃l(τ1, x̃1; . . . ; τl, x̃l) = det
[
KMeixner
N,α,ξ(·)(τi, x̃i; τj , x̃j )

]l
i,j=1

, l = 1, 2, . . .

We postpone the proof of this lemma till §6.4. Note that in the particular case s = t

the extended Meixner kernel turns into the conventional Meixner kernel associated
with the Meixner ensemble,

KMeixner
N,α,ξ (̃x, ỹ) =

N−1∑
m=0

M̃m(̃x;α + 1, ξ)M̃m(ỹ;α + 1, ξ),

6 The Meixner ensemble was also exploited in Johansson’s papers [Jo1], [Jo2].
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and the statement of the lemma reduces to a well–known general fact about orthog-
onal polynomial ensembles.

The next step is to connect the extended Meixner kernelKMeixner and the kernel
K of Theorem 6.2.

Lemma 6.5. We have

KMeixner
N,α,ξ(·)(s, x̃; t, ỹ) = e(N− 1

2 )(s−t)K N,N+α,ξ(·)(s, x; t, y) (6.9)

with x̃ = x +N − 1
2 ∈ Z+, ỹ = y +N − 1

2 ∈ Z+.

Proof. For s ≥ t take (6.7) and change the summation index: m = N − a − 1
2 .

Then, see the end of §5,

em(s−t) = e(N− 1
2 )(s−t) · ea(t−s), M̃m(̃x;α + 1, ξ) = ψa(x;N,N + α, ξ)

with x̃ = x+N− 1
2 . Furthermore,ψa(x;N,N+α, ξ) ≡ 0 if a = N+ 1

2 , N+ 3
2 , . . .

because of the factor�(z−a+ 1
2 ) in (5.1). This yields (6.9). For s < t the argument

is similar; it uses (6.8), the summation index change m = N − a − 1
2 and

em(s−t) = e(N− 1
2 )(s−t) · e−a(s−t), M̃m(̃x;α + 1, ξ) = ψ−a(x;N,N + α, ξ).

(6.10)

��

Lemma 6.4 and Lemma 6.5 imply that the correlation functionsρl ofXN,N+α,ξ(·)
can be written as

ρl(τ1, x1; . . . ; τl, xl) = det
[
K N,N+α,ξ(·)(τi, xi; τj , xj )

]l
i,j=1

, l = 1, 2, . . . ,

provided that xi ≥ −N + 1
2 for all i = 1, . . . , l (indeed, the factor e(N− 1

2 )(s−t) in
(6.9) does not affect the correlation functions).

Lemma 6.6. Assume that

• either (z, z′) is not in the degenerate series and x, y ∈ Z
′ are arbitrary

• or z = N = 1, 2, . . ., z′ > N − 1, and both x, y are in Z+ −N + 1
2 .

Then the kernel K̂ z,z′,ξ(·)(s, x; t, y) of Theorem 6.3 is related to the kernel
K z,z′,ξ(·)(s, x; t, y) of Theorem 6.2 by equality (6.3). Or, equivalently, by the
“gauge transformation”

K̂ z,z′,ξ(·)(s, x; t, y) = fz,z′(s, x)

fz,z′(t, y)
K z,z′,ξ(·)(s, x; t, y),

where fz,z′ is defined in (6.6).
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Proof. Applying formula (5.3) to ψa and setting a = k + 1
2 we obtain

ψk+ 1
2
(x; z, z′, ξ(s))

=
(
�(x + z+ 1

2 )�(x + z′ + 1
2 )

�(z− k)�(z′ − k)

) 1
2
�(z′ − k)(1 − ξ(s)) z

′−z+1
2

�(x + z′ + 1
2 )

×
∮ (

1 −
√
ξ(s)ω1

)−z′+k (
1 −

√
ξ(s) ω−1

1

)z−k−1
ω
−x−k− 1

2
1

dω1

ω1
,

ψk+ 1
2
(y; z, z′, ξ(t))

=
(
�(x + z+ 1

2 )�(x + z′ + 1
2 )

�(z− k)�(z′ − k)

) 1
2
�(z− k)(1 − ξ(t)) z−z

′+1
2

�(x + z+ 1
2 )

×
∮ (

1 −
√
ξ(t)ω2

)−z+k (
1 −

√
ξ(t) ω−1

2

)z′−k−1
ω
−y−k− 1

2
2

dω2

ω2
.

(Here we used the symmetry ψa(x; z, z′, ξ) = ψa(x; z′, z, ξ) to get the second
relation.)

Note that both sides of (6.3) are real–analytic functions of q = es−t on the ray
q > 1 and on the interval 0 < q < 1 with all other parameters (z, z′, ξ(s), ξ(t), x, y)
being fixed. Thus, it suffices to prove (6.3) for q large enough in the case of q ≥ 1,
and for q small enough in the case q < 1.

Let us consider the case q ≥ 1. Substituting the integral representations above
in (6.2), we observe that the summation index k = a− 1

2 ∈ Z+ enters the resulting
expression only as the exponent in

((
1 −√

ξ(s)ω1
) (

1 −√
ξ(t)ω2

)
q
(
ω1 −

√
ξ(s)

) (
ω2 −

√
ξ(t)

)
)k
.

For large enough q the geometric progression
∑
k≥0 with this ratio converges uni-

formly on any fixed contours {ω1}, {ω2}. Computing the sum yields (6.3), (6.4).
Similarly, in the case q < 1 the computation reduces to summing the geometric

progression with the ratio

q
(
ω1 −

√
ξ(s)

) (
ω2 −

√
ξ(t)

)
(
1 −√

ξ(s)ω1
) (

1 −√
ξ(t)ω2

)

which always makes sense for small enough q.
For large q the image of any finite contour under (6.5) is concentrated near

η = √
ξ(t), and for small q such image is concentrated near η−1. These points are

always inside/outside of any contour {ω2} used in the integral representation of §5.
The conditions on contours in the statement of Theorem 6.3 reflect the deformations
of the contours of §5. Note that the denominator of (6.4) must stay away from zero
while deforming the contours, which means that the image of {ω1} under (6.5) is
not allowed to intersect ω2. ��
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The relations (6.10) and (6.3) yield the following formula for the correlation
functions of XN,N+α,ξ(·):

ρl(τ1, x1; . . . ; τl, xl)=det
[
K̂ N,N+α,ξ(·)(τi, xi; τj , xj )

]l
i,j=1

, l = 1, 2, . . . ,

(6.11)

where xi + N − 1
2 ∈ Z+ for all i = 1, . . . , l. In order to prove Theorem 6.3, we

need to extend this formula to arbitrary admissible (z, z′) instead of (N,N + α),
and to arbitrary xi ∈ Z

′. We will do that by means of Proposition 4.2.
Up till now the time moments τ1, . . . , τl were arbitrary, they were not ordered

and some of them were allowed to coincide. Let us denote by t1, . . . , tn, n ≤ l, the
same numbers but ordered and without repetitions (t1 < · · · < tn). Thus, each τj
is equal to one and only one ti . As in §4, we set

ξi = ξ(ti), 1 ≤ i ≤ n; ηi,i+1 = eti−ti+1
√
ξiξi+1, 1 ≤ i ≤ n− 1.

Then in the notation of §4, see (4.2) and below, ρl(τ1, x1; . . . ; τl, xl) is equal to
F(ξ, η;D1, . . . ,Dn)with a suitable choice of the sets D1, . . . ,Dn. Namely, the set
Di is determined according to the following recipe: take all numbers j ∈ {1, . . . , l}
such that τj = ti , then the corresponding points xj ∈ Z

′ must be pairwise distinct.
Then

Di =
{
λ ∈ Y | X (λ) contains all xj such that τj = ti

}
.

Proposition 4.2 says that ρl(τ1, x1; . . . ; τl, xl) is a real analytic function in ξ, η,
and after the substitution (ξ, η) 
→ (εξ, εη) the corresponding function in ε can be
analytically continued in a neighborhood of ε = 0. Moreover, its Taylor coefficients
at this point are polynomials in z and z′.

Now let us look at the right–hand side of (6.11) with N,N + α replaced by
z, z′. The values K̂ z,z′,ξ(·)(τi, xi; τj , xj ) of the kernel are given by (6.4). This for-
mula involves

√
ξ(τi),

√
ξ(τj ), and eτi−τj , which is expressible through

√
ξi ’s and

ηi,i+1’s. Moreover, eτi−τj do not change if we scale ξ and η by ε. Indeed, this
follows from the fact that

eti+1−ti =
√
ξiξi+1

ηi,i+1
, i = 1, . . . , n− 1.

The integral representation (6.4) implies that K̂ z,z′,ξ(·)(τi, xi; τj , xj ) are real ana-
lytic functions in

√
ξi ’s and ηi,i+1’s (the η variables enters only the factors eti−tj ).

Further, if we scale ξ and η by ε, then (6.4) viewed as a function in δ = ε
1
2 , extends

to an analytic function in a small enough disc {δ : |δ| < const}.7 Moreover, its Tay-
lor coefficients at δ = 0 are polynomials in z and z′ because the Taylor coefficients
of (1 − u)κ at u = 0 are polynomials in κ .

7 It is worth noting that for small εwe can choose the contours of integration in (6.4) which
would be independent of ε; it suffices to consider suitable circles centered at the origin.
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We conclude that both sides of (6.11) are uniquely determined by their values
for (z, z′) = (N,N + α) with any large enough natural N and any α > −1. This
completes the proof of Theorem 6.3.

Theorem 6.2 is a direct corollary of Theorem 6.3 and Lemma 6.6. Theorem 6.1
follows from Theorem 6.3. ��

6.4. Eynard–Mehta theorem and the proof of Lemma 6.4

Here we state the Eynard–Mehta theorem [EM] in a form which is convenient for
our purposes and then we show that Lemma 6.4 is a corollary of this theorem.

Let m be a fixed natural number and let the index k range over {1, . . . , m}.
Consider the Hilbert space 	2(Z+) taken with respect to the counting measure on
the set Z+ = {0, 1, 2, . . . }. Assume that for each k we are given an orthonormal
basis {φk,n}n=0,1,... of real–valued functions in 	2(Z+). Next, assume that for each
k = 1, . . . , m− 1 and each n = 0, 1, . . . we are a given a number ck,k+1;n > 0. As
n→ ∞, these numbers have to decay fast enough to make convergent certain infi-
nite sums specified below. Finally, we will impose on these data certain positivity
conditions, see below.

We aim to construct a probability measure on collections (X1, . . . , Xm), where
eachXk is an arbitraryN–point subset in Z+ andN is a fixed natural number. This
measure can be regarded as a Markov process with “time” k = 1, . . . , m, the state
space being the set of N–point subsets in Z+.

The construction goes as follows. For an arbitrary N–point subset X = (x1 <

· · · < xN) ⊂ Z+ we introduce the N ×N matrix φk(X) with the entries φk,i(xj ),
where the row index i takes values in {0, . . . , N −1}, and the column index j takes
values in {1, . . . , N}.

As X ranges over all N–point subsets of Z+, one has∑
X

(det φk(X))
2 = 1.

The proof follows from the Cauchy–Binet identity and orthonormality of φk,n’s,
cf. (3.8).

Thus, for each k = 1, . . . , m we have a probability measure σk on N–point
subsets in Z+ which assigns to a subset X its weight (det φk(X))2. The measures
σk are the 1–dimensional distributions for our future Markov process.

For each k = 1, . . . , m− 1 we set

vk,k+1(x, y) =
∞∑
n=0

ck,k+1;nφk,n(x)φk+1,n(y), x, y ∈ Z+ ,

where the sum is assumed to be convergent. Since {φk,n} is an orthonormal basis
for each fixed k, we have∑

x∈Z+

φk,n(x)vk,k+1(x, y) = ck,k+1;nφk+1,n(y),

(6.12)∑
y∈Z+

vk,k+1(x, y)φk+1,n(y) = ck,k+1;nφk,n(x).
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For arbitrary subsets X = (x1 < · · · < xN) and Y = (y1 < · · · < yN) we form an
N ×N matrix vk,k+1(X, Y ) with entries vk,k+1(xi, yj ), and we set

σk,k+1(X, Y ) = det φk(X) det vk,k+1(X, Y ) det φk+1(Y )

N−1∏
n=0

ck,k+1;n

Once again, using the Cauchy-Binet identity and (6.12), it is not hard to show that
for any k = 1, . . . , m− 1 one has

∑
Y

σk,k+1(X, Y ) = σk(X),
∑
X

σk,k+1(X, Y ) = σk+1(Y ).

Assume that σk,k+1(X, Y ) ≥ 0 for all X and Y . Then we may regard σk,k+1 as a
probability measure on couples (X, Y )with marginal measures σk and σk+1. This is
the “one step” 2–dimensional distribution of our Markov process. We also assume
that det φk(X) does not vanish. Then we define the “one step” transition probability
function as follows

PX,Y (k, k + 1) = σk,k+1(X, Y )

σk(X)
= det vk,k+1(X, Y ) det φk+1(Y )

det φk(X)
N−1∏
n=0

ck,k+1;n
. (6.13)

We regard this as a matrix P(k, k + 1) whose rows and columns are labelled by
N–point subsets.

Finally, we define a Markov process X(k), where the “time” k takes values
from 1 to m and X(k) is an N–point subset of Z+, using the initial distribution σ1
and the “one step” transition probabilities (6.13):

Prob(X(1), . . . , X(m)) = σ1(X1)PX(1),X(2)(1, 2) . . .PX(m−1),X(m)(m− 1,m).

For arbitrary indices k, l such that 1 ≤ k < l ≤ m we set

ck,l;n = ck,k+1;n ck+1,k+2;n . . . cl−1,l;n , n = 0, 1, . . . ,

vk,l(x, y) =
∞∑
n=0

ck,l;nφk,n(x)φl,n(y), x, y ∈ Z+ .

Theorem 6.7 (Eynard–Mehta [EM]). Under the above assumptions, let us regard
the Markov process X(k) as a probability measure on mN–point configurations
X = (X(1), . . . , X(m)) in the space {1, . . . , m}×Z+. Then this measure is deter-
minantal, and its correlation kernel has the form

K(k, x; l, y) =
N−1∑
i=0

1

cl,k;i
φk,i(x)φl,i(y), k ≥ l,

(where we agree that ck,k;i = 1) and
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K(k, x; l, y) =
N−1∑
i=0

ck,l;i φk,i(x)φl,i(y) − vk,l(x, y)

= −
∞∑
i=N

ck,l;i φk,i(x)φl,i(y), k < l.

In other words, for any n = 1, 2, . . . we have

ρn(k1, x1; . . . ; kn, xn) : = Prob{X(ki) � xi for each i = 1, . . . , n}
= det

[
K(ki, xi; kj , xj )

]n
i,j=1 ,

where (ki, xi) ∈ {1, . . . , m} × Z and (ki, xj ) �= (kj , xj ) for i �= j .

Proof. See [EM], [NF], [Jo4], [TW], [BR]. ��
Proof of Lemma 6.4. The process �N,N+α,ξ(·) restricted to any finite sequence of
time moments t1 < · · · < tm fits into this formalism perfectly. Indeed, we take

φk,n(x) = M̃n(x;α + 1, ξ(tk)), ck,k+1;n = en(tk−tk+1).

Recall the connection between measureMN,N+α,ξ and theN–point Meixner orthog-
onal ensemble (see the beginning of §6.3). It readily follows that (under the corre-
spondence λ 
→ X̃(λ)) MN,N+α,ξ(tk) is exactly σk , and the transition matrix (3.2)
coincides with (6.13). Lemma 6.4 is thus a direct corollary of Theorem 6.7. ��

6.5. An interpretation via nonintersecting paths

In this section we are dealing with the process �N,N+α,ξ(·) with ξ(·) ≡ ξ , where
ξ ∈ (0, 1) is a fixed number. We denote this stationary process as �N,N+α,ξ , and
we also write ξ instead of ξ(·) for some related processes. Our aim is to interpret
�N,N+α,ξ in terms of N nonintersecting trajectories of independent birth–death
processes. This is done using formulas of Karlin–McGregor [KMG3] and an idea
of Johansson [Jo3] (see also [Bi1], [Bi2], [KOR], [O’C]).

Instead of dealing with�N,N+α,ξ we will use the associated process X̃N,N+α,ξ
introduced in the beginning of §6.3. Recall that its state space consists of N–point
configurations in Z+.

In the special case N = 1 the process X̃1,1+α,ξ is just the birth–death process
N1+α,ξ . We aim to construct X̃N,N+α,ξ directly in terms of N1+α,ξ .

Let us take a large T > 0 and consider a new process YN,α,ξ,T introduced as
follows. This process is defined on the time interval [−T , T ]. Let us takeN indepen-
dent birth–death processes which start at the moment −T at points a1 < · · · < aN
and end up at the moment T at points b1 < · · · < bN conditioned on the event that
the trajectories xi(t) do not intersect on [−T , T ]:

x1(t) < x2(t) < · · · < xN(t), −T ≤ t ≤ T .

The boundary conditions {ai} and {bi} are arbitrary but fixed while the parameter
T will vary.
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Theorem 6.8. In the above notation, as T → ∞ the processes YN,α,ξ,T converge
to X̃N,N+α,ξ in the sense of convergence of the finite dimensional distributions.

Proof. Consider the orthonormal basis

φn(x) = M̃n(x;α + 1, ξ), n = 0, 1, . . . , x ∈ Z+

in 	2(Z+). According to (3.1) set

vs,t (x, y) =
∞∑
n=0

e(s−t)nφn(x)φn(y), s ≤ t, x, y ∈ Z+ .

Let us fix arbitrary time moments t1 < · · · < tk inside (−T , T ). Then by
[KMG3] and Theorem 3.1, the corresponding finite-dimensional distribution of
YN,α,ξ,T has the form

Prob{YN,α,ξ,T (ti) = (y
(i)
1 < · · · < y

(i)
N ) for all i = 1, . . . , k}

=
det[v−T ,t1(ai, y

(1)
j )] ·

k−1∏
r=1

det[vtr ,tr+1(y
(r)
i , y

(r+1)
j )] · det[vtk,T (y

(k)
i , bj )]

det[v−T ,T (ai, bj )]
.

(6.14)

On the other hand, the finite-dimensional distribution of X̃N,N+α,ξ is given by

Prob{X̃N,N+α,ξ (ti) = (y
(i)
1 < · · · < y

(i)
N ) for all i = 1, . . . , k}

= e
(tk−t1)N(N−1)

2 det[φi−1(y
(1)
j )] det[φi−1(y

(k)
j )]

k−1∏
r=1

det[vtr ,tr+1(y
(r)
i , y

(r+1)
j )].

(6.15)

Indeed, by Theorem 3.1,

Prob{X̃N,N+α,ξ (ti) = (y
(i)
1 < · · · < y

(i)
N ) for all i = 1, . . . , k}

= e
(tk−t1)N(N−1)

2
(
MN,N+α,ξ (λ(1))MN,N+α,ξ (λ(k))

)1/2

×
k−1∏
r=1

det[vtr ,tr+1(y
(r)
i , y

(r+1)
j )],

where λ(1) and λ(k) are the Young diagrams such that

X̃(λ(1)) = (y
(1)
1 , . . . , y

(1)
N ), X̃(λ(k)) = (y

(k)
1 , . . . , y

(k)
N ).

Using the fact that the measure MN,N+α,ξ corresponds to the Meixner ensemble
(see the beginning of §6.3) one can readily see that

(
MN,N+α,ξ (λ(1))MN,N+α,ξ (λ(k))

)1/2 = det[φi−1(y
(1)
j )] det[φi−1(y

(k)
j )],

which proves (6.15).



Markov processes on partitions 135

Comparing (6.14) and (6.15) we see that it remains to prove that

lim
T→+∞

det[v−T ,t1(ai, y
(1)
j )] det[vtk,T (y

(k)
i , bj )]

det[v−T ,T (ai, bj )]

= e
(tk−t1)N(N−1)

2 det[φi−1(y
(1)
j )] det[φi−1(y

(k)
j )]. (6.16)

Note that we have the following asymptotic relation: for arbitrary x′1, x
′′
1 , . . . ,

x′N, x
′′
N ∈ Z+

det

[ ∞∑
n=0

εnφn(x
′
i )φn(x

′′
j )

]
= ε

N(N−1)
2 det[φi−1(x

′
j )] det[φi−1(x

′′
j )]

+O
(
ε
N(N−1)

2 +1
)

as ε → 0, cf. (3.4). Applying this asymptotic relation to v−T ,t1 , vtk,T , v−T ,T , we
obtain

det[v−T ,t1(ai, y
(1)
j )] ∼ e−

(t1+T )N(N−1)
2 det[φi−1(aj )] det[φi−1(y

(1)
j )],

det[vt1,T (y
(k)
i , bj )] ∼ e−

(T−tk )N(N−1)
2 det[φi−1(y

(k)
j )] det[φi−1(bj )],

det[v−T ,T (ai, bj )] ∼ e−TN(N−1) det[φi−1(aj )] det[φi−1(bj )],

as T → +∞. This implies (6.16) and completes the proof. ��

6.6. Remark on the Charlier limit

Keeping N fixed, let α go to ∞ and ξ go to 0 in such a way that αξ tends to a
finite value θ > 0. Then the measure MN,N+α,ξ on Y(N) ⊂ Y converges to a
probability measure with parameters N and θ . Under the embedding λ 
→ X̃(λ)

the latter measure turns into a discrete orthogonal polynomial ensemble on Z+
— the N–point Charlier ensemble associated with the Charlier polynomials (cf.
[BO4, §6]). The Charlier ensemble also possesses a dynamical version X̃N,θ(·),
which is a limit of the process X̃N,N+α,ξ(·). Everything said in §6.3–§6.5 about the
process X̃N,N+α,ξ(·) has a counterpart for the process X̃N,θ(·). In the pure birth case
(θ(t) = e2t+const), the process X̃N,θ(·) and its discrete time analog (which may be
viewed as a random walk on Y(N)) have been previously studied in [Bi1], [Bi2],
[KOR], [O’C].

7. Particle–hole involution

For any set X and its subset Y one can define an involution on point configurations
X ⊂ X by X 
→ X�Y (here � is the symbol of symmetric difference). This map
leaves intact the “particles” of X outside of Y, and inside Y it picks the “holes”
(points of Y free of particles). This involution is called the particle-hole involution
on Y.



136 A. Borodin, G. Olshanski

The goal of this section is to give a different description of the z-measures using
a new identification of Young diagrams and point configurations on Z

′. Instead of
using the configurations

X (λ) = {λi − i + 1
2 | i = 1, 2, . . . }

we will use the configurations

X(λ) = (X (λ) ∩ Z
′
+) ∪ (Z′

− \X (λ)) = X (λ)�Z
′
−

which are obtained from X (λ) by applying the particle–hole involution on Z
′−.

The parametrization of Young diagrams λ by configurations X(λ) corresponds
to considering the Frobenius coordinates of λ, see [BOO, §1.2] for details. The
reason for passing toX(λ) is very simple: in the continuous limit ξ ↗ 1 which will
be considered below in §8, the point process generated by X (λ) does not survive,
while the process corresponding to X(λ) has a well defined limit. This fact has a
representation theoretic explanation, see e.g. [Ol2].

Observe that X(λ′) = −X(λ) for any λ ∈ Y.
Given an arbitrary kernelK(x, y) on X×X, and a subset Y of X, we assign to

it another kernel,

K◦(x, y) =
{
K(x, y), x /∈ Y,

δxy −K(x, y), x ∈ Y,

where δxy is the Kronecker symbol. Slightly more generally, given an arbitrary map
ε : X → R

∗, we set

K◦,ε(x, y) = ε(x)K◦(x, y)ε(y)−1.

Proposition 7.1. Let P be a probability measure in the space of point configura-
tions on a discrete space X and let P ◦ be the image of P under the particle–hole
involution on Y ⊂ X. Assume that the correlation functions of P have determinan-
tal form with a certain kernel K(x, y),

ρm(x1, . . . , xm | P) = det
1≤i,j≤m

[K(xi, xj )], m = 1, 2, . . . .

Then the correlation functions of the measure P ◦ also have a similar determinantal
form, with the kernel K◦(x, y) as defined above or, equally well, with the kernel
K◦,ε(x, y), where the map ε : X → R

∗ may be chosen arbitrarily,

ρm(x1, . . . , xm | P ◦) = det
1≤i,j≤m

[K◦(xi, xj )] = det
1≤i,j≤m

[K◦,ε(xi, xj )],

m = 1, 2, . . . .

Proof. The factor ε( · ) does not affect the values of determinants in the right–hand
side of the above formula, so that we may take ε( · ) ≡ 1. Then the result is obtained
by applying the inclusion/exclusion principle, see Proposition A.8 in [BOO]. ��
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Later on we choose the function ε( · ) in a specific way (see (7.3) below) which
is appropriate for the limit transition of §8.

The main result of this section is a determinantal formula for the dynamical
correlation functions of �z,z′,ξ computed in terms of X(λ). For any n = 1, 2, . . .
define the nth dynamical correlation function of n pairwise distinct arguments
(t1, x1), . . . (tn, xn) ∈ (tmin, tmax)× Y by

ρn(t1, x1; t2, x2; . . . ; tn, xn)
= Prob {X(λ) at the moment ti contains xi for all i = 1, . . . , n} .

Here and in what follows we denote by �z,z′,ξ the stationary Markov process
corresponding to the constant curve ξ(t) ≡ ξ , where ξ ∈ (0, 1) is fixed.

Theorem 7.2. Let (z, z′) be a pair of admissible parameters not from the degener-
ate series. Consider the Markov process �z,z′,ξ , and denote by Xz,z′,ξ the process
with values in the space of point configurations in Z

′, obtained from �z,z′,ξ via
λ 
→ X(λ).

Then the processXz,z′,ξ is determinantal and its correlation kernel can be writ-
ten as follows (in all the formulas below x and y are positive, in symbols ± and ∓
the upper sign corresponds to the case s ≥ t , and the lower sign corresponds to
s < t)

Kz,z′,ξ (s, x; t, y) = ±
∑
a∈Z

′+

e−a|s−t |ψ±a(x; z, z′, ξ)ψ±a(y; z, z′, ξ),

Kz,z′,ξ (s, x; t,−y) = ±
∑
a∈Z

′+

(−1)±a−
1
2 e−a|s−t |

×ψ±a(x; z, z′, ξ)ψ∓a(y;−z,−z′, ξ),
Kz,z′,ξ (s,−x; t, y) = ∓

∑
a∈Z

′+

(−1)±a−
1
2 e−a|s−t | (7.1)

×ψ∓a(x;−z,−z′, ξ)ψ±a(y; z, z′, ξ),
Kz,z′,ξ (s,−x; t,−y) = ∓

∑
a∈Z

′+

e−a|s−t |

×ψ∓a(x;−z,−z′, ξ)ψ∓a(y;−z,−z′, ξ),

where the fourth formula is valid for s �= t , and for s = t we have

Kz,z′,ξ (s,−x; s,−y) =
∑
a∈Z

′+

ψa(x;−z,−z′, ξ)ψa(y;−z,−z′, ξ). (7.2)

Comments. 1. For s = t this kernel coincides with the hypergeometric kernel
derived in [BO2] (see also [BO4], [B2], [BO5]). In those papers the kernel was
written in another, so-called “integrable form”.
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2. The kernel Kz,z′,ξ has the following symmetries (x, y ∈ Z
′):

Kz,z′,ξ (s, x; t, y) = (−1)sgn x·sgn yKz,z′,ξ (s, y; t, x),

Kz,z′,ξ (s, x; t, y) =
{
K−z,−z′,ξ (t,−x; s,−y), s �= t,

(−1)sgn x·sgn yK−z,−z′,ξ (t,−x; s,−y), s = t.

Proof. We use Proposition 7.1. As the initial kernel we take the expression for
K z,z′,ξ(·) given in Theorem 6.2, the set X is the union of finitely many copies of Z

′
which correspond to times at which we evaluate the dynamical correlation function,
and Y is the union of the same number of copies of Z

′−. On each copy of Z
′ the

function ε( · ) is chosen in the following way:

ε(x) =
{

1, x > 0,

(−1)−x−
1
2 , x < 0.

(7.3)

The statement then follows from (5.7). The last formula (for s = t) arises from the
relation

δx,y −
∑
a∈Z

′+

ψ−a(x;−z,−z′, ξ)ψ−a(y;−z,−z′, ξ)

=
∑
a∈Z

′+

ψa(x;−z,−z′, ξ)ψa(y;−z,−z′, ξ),

which follows from the fact that ψa form an orthonormal basis. ��

Remark 7.3. Denote by Kz,z′,ξ (x, y) the specialization of the kernel of Theorem
7.2 at s = t . This is a correlation kernel for the z–measure Mz,z′,ξ , corresponding
to the map λ 
→ X(λ). Let us abbreviate

ψ± 1
2
(x) = ψ± 1

2
(x; z, z′, ξ), ψ̃± 1

2
(x) = ψ± 1

2
(x;−z,−z′, ξ).

One can check that for x, y ∈ Z
′+

Kz,z′,ξ (x, y) =
√
zz′ξ

1−ξ
ψ− 1

2
(x)ψ 1

2
(y)−ψ 1

2
(x)ψ− 1

2
(y)

x−y

Kz,z′,ξ (x,−y) =
√
zz′ξ

1−ξ
ψ− 1

2
(x)ψ̃− 1

2
(y)+ψ 1

2
(x)ψ̃ 1

2
(y)

x+y

Kz,z′,ξ (−x, y) = −
√
zz′ξ

1−ξ
ψ̃ 1

2
(x)ψ 1

2
(y)+ψ̃− 1

2
(x)ψ− 1

2
(y)

x+y

Kz,z′,ξ (−x,−y) =
√
zz′ξ

1−ξ
ψ̃− 1

2
(x)ψ̃ 1

2
(y)−ψ̃ 1

2
(x)ψ̃− 1

2
(y)

x−y

(7.4)

These four formulas coincide with the expressions obtained in [BO2, Theorem 3.3].
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8. Limit transition to the Whittaker kernel

In this section we compute the scaling limit of the kernelKz,z′,ξ of Theorem 7.2 as
ξ ↗ 1 and the arguments x and y are scaled by (1 − ξ). In this limit the lattice Z

′
turns into the punctured real line R

∗ = R \ {0}.
Let us introduce the continuous analogs of the functions ψa . These new func-

tions wa(u; z, z′) are indexed by a ∈ Z
′ and their argument u varies in R>0. They

are expressed through the classical Whittaker functionsWκ,µ(u), see [Er, ch. 6] for
the definition, as follows:

wa(u; z, z′) =
(
�(z− a + 1

2 )�(z
′ − a + 1

2 )
)− 1

2 u−
1
2 Wz+z′

2 −a, z−z′2
(u). (8.1)

Since Wκ,µ(u) = Wκ,−µ(u), this expression is symmetric with respect to z↔ z′.
It will be convenient for us to use the following integral representation of wa :

wa(u; z, z′) =
�(z′ − a + 1

2 )e
πi(z′−a)u

z−z′
2

2π
(
�(z− a + 1

2 )�(z
′ − a + 1

2 )
) 1

2

×
∫ 0−

+∞
ζ−z

′+a− 1
2 (1 + ζ )z−a− 1

2 e−u(ζ+
1
2 )dζ. (8.2)

The (standard) notation for the contour of integration means that we start at +∞,
go along the real axis, then around the origin in the clockwise direction, and back
to +∞ along the real axis. On the last part of the contour we choose the principal

branch of ζ−z+a−
1
2 , which uniquely determines the values of this function on the

whole contour.
This formula is easily seen to be equivalent to one of the classical integral

representations for the confluent hypergeometric function �, see [Er, 6.11.2(9)].

Proposition 8.1. If ξ ↗ 1 and x ∈ Z
′+ goes to +∞ so that (1 − ξ)x → u > 0,

then

ψa(x; z, z′, ξ) ∼ (1 − ξ) 1
2wa(u; z, z′).

Proof. This statement can be proved in a number of ways, see e.g. [Er, 6.8(1)].
We will give an argument which uses the integral representations of ψa and wa . A
similar argument will also be employed in the proof of Theorem 8.2 below.

We start with the integral representation (5.3) for ψa . Let us choose as {ω} the
following contour C(R, r, ξ), where r > 0 is small enough (smaller than the dis-
tance between

√
ξ and 1/

√
ξ ) and R > 0 is big enough (greater than 1/

√
ξ + r):

The contour starts at the point ω = R, goes along the full circle |ω| = R in the
positive direction, then along the real line until the point ω = 1/

√
ξ + r , further

along the full circle |ω − 1/
√
ξ | = r in the negative direction, and back along the

real line to ω = R. Thus, C(R, r, ξ) consists of a “big circle” of radius R, a “small
circle” of radius r , and a “bridge” between them.

We now fix R, pick r of order (1− ξ), and take the limit ξ ↗ 1 of the integral.
The integration over the “big circle” |ω| = R converges to zero exponentially in
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(1 − ξ)−1 thanks to the factor ω−x−a . To take care of the rest of the integral, we
make the change of the integration variable

ω = 1/
√
ξ + (1 − ξ) ζ.

Then we have

1 −
√
ξω = −(1 − ξ)ζ ·

√
ξ,

1 −
√
ξ/ω = (1 − ξ)(1 + ζ ) · (1/

√
ξ −√

ξ)(1 − ξ)−1 + ζ
(1 + ζ )(1/√ξ + (1 − ξ)ζ ) .

Note that the second factors in these formulas,

√
ξ and

(1/
√
ξ −√

ξ)(1 − ξ)−1 + ζ
(1 + ζ )(1/√ξ + (1 − ξ)ζ ) ,

are asymptotically equal to 1 for ξ close to 1 and ζ bounded, and are uniformly
bounded away from 0 and ∞ for ξ close to 1 and ζ corresponding to arbitrary ω on
the contour. Hence, the rest of the integral is asymptotically equal to the absolutely
convergent integral

(1 − ξ)z−z′
2πi

∫ 0−

+∞
(−ζ )−z′+a− 1

2 (1 + ζ )z−a− 1
2 e−u(ζ+

1
2 )dζ.

Taking into account the convention about the arguments stated after (5.3) one can
check that arg(−ζ ) = −πi on the last part of the contour. Therefore, changing

(−ζ )−z′+a− 1
2 to ζ−z′+a−

1
2 produces the factor

eπi(z
′−a+ 1

2 ) = i eπi(z
′−a) .

Finally, the prefactor in (5.3) asymptotically equals

(1 − ξ)z′−z+ 1
2

�(z′ − a + 1
2 )u

z−z′
2

(
�(z− a + 1

2 )�(z
′ − a + 1

2 )
) 1

2

.

Thus, (5.3) asymptotically equals

(1 − ξ) 1
2

�(z′ − a + 1
2 )e

πi(z′−a)u
z−z′

2

2π
(
�(z− a + 1

2 )�(z
′ − a + 1

2 )
) 1

2

×
∫ 0−

+∞
ζ−z

′+a− 1
2 (1 + ζ )z−a− 1

2 e−u(ζ+
1
2 )dζ.

��
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Theorem 8.2. Consider the kernelKz,z′,ξ (s, x; t, y) as described in Theorem 7.2.
Let ξ ↗ 1 and assume thatx, y → ∞ inside Z

′ so that (1−ξ)x → u, (1−ξ)y → v,
where u, v ∈ R

∗.
Then there exists a limit kernel KW

z,z′(s, u; t, v) on R
∗ × R

∗

lim
ξ↗1

(1 − ξ)−1Kz,z′,ξ (s, x; t, y) = KW
z,z′(s, u; t, v). (8.3)

For s �= t the formulas for the limit kernel are obtained from formulas (7.1)
for the kernel Kz,z′,ξ by replacing ψa’s with wa’s and setting ξ = 1. Namely, for
u, v > 0

KW
z,z′(s, u; t, v) = ±

∑
a∈Z

′+

e−a|s−t |w±a(u; z, z′)w±a(v; z, z′),

KW
z,z′(s, u; t,−v) = ±

∑
a∈Z

′+

(−1)±a−
1
2 e−a|s−t |w±a(u; z, z′)w∓a(v;−z,−z′),

KW
z,z′(s,−u; t, v) = ∓

∑
a∈Z

′+

(−1)±a−
1
2 e−a|s−t |w∓a(u;−z,−z′)w±a(v; z, z′),

KW
z,z′(s,−u; t,−v) = ∓

∑
a∈Z

′+

e−a|s−t |w∓a(u;−z,−z′)w∓a(v;−z,−z′).

Comments. 1. The prefactor (1 − ξ)−1 in (8.3) is due to rescaling of the state
space Z

′ by (1 − ξ).
2. The reason of the restriction s �= t in above formulas is the divergence of the se-

ries forKW
z,z′(s, u; s,−v) andKW

z,z′(s,−u; s, v). The series forKW
z,z′(s, u; s, v)

and KW
z,z′(s,−u; s,−v) do converge and give the correct answer. For s = t

there exist analogs of formulas (7.4):

KW
z,z′(u, v) =

√
zz′

w− 1
2
(u)w 1

2
(v)− w 1

2
(u)w− 1

2
(v)

u− v ,

KW
z,z′(u,−v) =

√
zz′

w− 1
2
(u)w̃− 1

2
(v)+ w 1

2
(u)w̃ 1

2
(v)

u+ v ,

KW
z,z′(−u, v) = −√

zz′
w̃ 1

2
(u)w 1

2
(v)+ w̃− 1

2
(u)w− 1

2
(v)

u+ v ,

KW
z,z′(−u,−v) =

√
zz′

w̃− 1
2
(u)w̃ 1

2
(v)− w̃ 1

2
(u)w̃− 1

2
(v)

u− v .

(8.4)

Here we abbreviate

w± 1
2
(u) = w± 1

2
(u; z, z′), w̃± 1

2
(u) = w± 1

2
(u;−z,−z′).

Formulas (8.4) can be derived from (7.4) using Proposition 8.1. They were
previously obtained in [B1], [BO2, §5].

3. In accordance with the terminology of these papers (where the kernel (8.4)
was called the Whittaker kernel) we call the limit kernel KW

z,z′(s, u; t, v) the
extended Whittaker kernel.
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Proof. We use Proposition 8.1. In order to prove the theorem, we need to justify the
interchange of the summation and the limit transition in (7.1). To do this it suffices
to show that the series converge uniformly in ξ .

We will prove that each of the four expressions

|ψ±a(x; z, z′, ξ)ψ±a(y; z, z′, ξ)|, |ψ∓a(x;−z,−z′, ξ)ψ∓a(y;−z,−z′, ξ)|,
(8.5)

|ψ±a(x; z, z′, ξ)ψ∓a(y;−z,−z′, ξ)|, |ψ∓a(x;−z,−z′, ξ)ψ±a(y; z, z′, ξ)|
(8.6)

is estimated from above by const(u, v)(1 − ξ) · q |a|, where q > 1 can be chosen
arbitrarily close to 1, and const(u, v) does not depend on a and ξ . Together with
the factors e−a|s−t | in (7.1) this ensures the needed uniform convergence.

Both expressions (8.5) are estimated in the same way, let us handle the first
one. We apply formula (5.4) and we get a double contour integral, in which we
single out the terms involving a; we observe that all together they can be written
in the form (F (ω1, ω2; ξ))k , where k := a − 1

2 ranges over Z+, and ω1 and ω2
are the variables of integration. Let us write down precisely the whole expression
separately for the upper and the lower choice of sign in the subscript ±a:

ψa(x; z, z′, ξ)ψa(y; z, z′, ξ)

= (�(x + z+ 1
2 )�(x + z′ + 1

2 )�(y + z+ 1
2 )�(y + z′ + 1

2 ))
1
2

�(x + z′ + 1
2 )�(y + z+ 1

2 )
(1 − ξ)

× 1

(2πi)2

∮
{ω1}

∮
{ω2}

(F++(ω1, ω2; ξ))k
(

1 −
√
ξω1

)−z′ (
1 −

√
ξ

ω1

)z−1

×
(

1 −
√
ξω2

)−z (
1 −

√
ξ

ω2

)z′−1

ω
−x− 1

2
1 ω

−y− 1
2

2
dω1

ω1

dω2

ω2
(8.7)

with

F++(ω1, ω2; ξ) = F+(ω1; ξ)F+(ω2, ξ),

where

F+(ω, ξ) = 1 −√
ξω

ω −√
ξ
. (8.8)

For ψ−a(x; z, z′, ξ)ψ−a(y; z, z′, ξ) we obtain a similar expression:

ψ−a(x; z, z′, ξ)ψ−a(y; z, z′, ξ)

= (�(x + z+ 1
2 )�(x + z′ + 1

2 )�(y + z+ 1
2 )�(y + z′ + 1

2 ))
1
2

�(x + z′ + 1
2 )�(y + z+ 1

2 )
(1 − ξ)

× 1

(2πi)2

∮
{ω1}

∮
{ω2}

(F−−(ω1, ω2; ξ))k
(

1 −
√
ξω1

)−z′−1
(

1 −
√
ξ

ω1

)z

×
(

1 −
√
ξω2

)−z−1
(

1 −
√
ξ

ω2

)z′
ω
−x+ 1

2
1 ω

−y+ 1
2

2
dω1

ω1

dω2

ω2
(8.9)
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with

F−−(ω1, ω2; ξ) = F−(ω1; ξ)F−(ω2, ξ),

where

F−(ω, ξ) = (F+(ω, ξ))−1 = ω −√
ξ

1 −√
ξω

. (8.10)

Now we need a lemma.

Lemma 8.3. Let F±(ω, ξ) be defined by (8.8) and (8.10). For any q > 1 there
exists a contour C±(ξ, q) which is of the same kind as in the proof of Proposition
8.1, and such that

|F±(ω, ξ)| ≤ q ∀ω ∈ C±(ξ, q). (8.11)

Proof of Lemma 8.3. Recall that in the proof of Proposition 8.1 we used a specific
family {C(R, r, ξ)} of contours. We will show that it is possible to takeC±(ξ, q) =
C(R, r, ξ) with an appropriate choice of parameters R and r (the radii of the “big
circle” and the “small circle” in C(R, r, ξ)).

Consider first the case of F+. Fix q > 1 and let ω̃ be related to ω by the
equivalent relations

ω̃ = F+(ω, ξ)/q = 1 −√
ξω

qω − q√ξ , ω = 1 + q√ξω̃
qω̃ +√

ξ
.

To fulfill inequality (8.11) the contour C+(ξ, q) must be contained in the image of
the unit disk |ω̃| ≤ 1 under the conformal map ω̃ 
→ ω. Let S+(ξ, q) denote the
image of the circle |ω̃| = 1; S+(ξ, q) is the circle that is symmetric with respect to
the real axis and passes through the real points

q
√
ξ − 1

q −√
ξ
,

q
√
ξ + 1

q +√
ξ

(these are the images of −1 and 1, respectively). Since we are interested in the limit
transition as ξ ↗ 1 we may assume that ξ is so close to 1 that q > 1/

√
ξ . Then we

have

q
√
ξ − 1

q −√
ξ
<

√
ξ <

q
√
ξ + 1

q +√
ξ
<

1√
ξ
. (8.12)

Observe that the image of the disk |ω̃| ≤ 1 is the exterior of S+(ξ, q) (for instance,
this follows from the fact that the image of 0 is the point 1/

√
ξ which is outside

S+(ξ, q)). Now we take C+(ξ, q) = C(R, r, ξ), where R and r are chosen so that
both the “big circle” and the “small circle” in C(R, r, ξ) are in the exterior of the
circle S+(ξ, q): the “big circle” surrounds S+(ξ, q) while the “small circle” lies to
the right of S+(ξ, q). This is possible due to inequalities (8.12) and the fact that the

distance between the points q
√
ξ+1

q+√
ξ

and 1√
ξ

is of order 1 − ξ .
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The case of F− is handled analogously. We define ω̃ by the equivalent relations

ω̃ = F−(ω, ξ)/q = ω −√
ξ

q − q√ξω , ω = qω̃ +√
ξ

q
√
ξω + 1

.

Instead of the circle S+(ξ, q) we have another circle, denoted by S−(ξ, q), which
is symmetric with respect to the real axis and passes through the points

q +√
ξ

q
√
ξ + 1

,
q −√

ξ

q
√
ξ − 1

.

We note that

√
ξ <

q +√
ξ

q
√
ξ + 1

<
1√
ξ
<

q −√
ξ

q
√
ξ − 1

.

The contour C−(ξ, q) must lie in the exterior of S−(ξ, q). We again can take
C−(ξ, q) = C(R, r, ξ) with appropriate R and r . But, in contrast to the case
of F+, now the “small circle” inC(R, r, ξ)must surround S−(ξ, q) (because 1/

√
ξ

is inside S−(ξ, q), see the inequalities above). This requirement can be satisfied

because the diameter of S−(ξ, q) (the distance between the points q+√
ξ

q
√
ξ+1

and
q−√

ξ

q
√
ξ−1

) is of order (1 − ξ).
This completes the proof of Lemma 8.3. ��
We return to the proof of Theorem 8.2. Let us estimate (8.7). The product of

the prefactors is asymptotically

(1 − ξ)u 1
2 (z−z′)v

1
2 (z

′−z) .

To estimate the integral we take as contours {ω1} and {ω2} the contourC+(ξ, q
1
2 ) as

described in Lemma 8.3.According to Lemma 8.3, on the product of these contours,
|F++(ω1, ω2; ξ)| ≤ q, whence we get

∮

{ω1∈C+(ξ,q
1
2 }

∮

{ω2∈C+(ξ,q
1
2 )}

∣∣∣∣F++(ω1, ω2; ξ)k
(

1 −
√
ξω1

)−z′ (
1 −

√
ξ

ω1

)z−1

×
(

1 −
√
ξω2

)−z (
1 −

√
ξ

ω2

)z−1

ω
−x− 1

2
1 ω

−y− 1
2

2
dω1

ω1

dω2

ω2

∣∣∣∣
≤ qk

∮

{ω1∈C+(ξ,q
1
2 )}

∮

{ω2∈C+(ξ,q
1
2 )}

∣∣∣∣
(

1 −
√
ξω1

)−z′ (
1 −

√
ξ

ω1

)z−1

×
(

1 −
√
ξω2

)−z (
1 −

√
ξ

ω2

)z−1

ω
−x− 1

2
1 ω

−y− 1
2

2
dω1

ω1

dω2

ω2

∣∣∣∣
Arguing as in the proof of Proposition 8.1 we check that the last integral is uni-
formly bounded as ξ ↗ 1. This yields for (8.7) the required estimate of the form
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const(1 − ξ)qk with arbitrary q > 1. The estimate for (8.9) is obtained in exactly

the same way, by using the contours {ω1} = {ω2} = C−(ξ, q
1
2 ).

The quantities in (8.6) are estimated similarly. We leave the details to the reader,
and only point out two minor differences. First, while writing the double integral
representation, we do not need to switch parameters z and z′ (as in the proof of
(5.4), see [BO8, Proposition 2.3]) to get rid of the gamma factors containing a.

Second, we have to use as {ω1} and {ω2} two distinct contours: either (C+(ξ, q
1
2 )

and C−(ξ, q
1
2 )) or (C−(ξ, q

1
2 ) and C+(ξ, q

1
2 )). ��

Our next goal is to give an integral representation for the extended Whittaker
kernel computed in Theorem 8.2. Let us introduce contoursC±(q) for q > 1. They
can be viewed as limits of the images of the contoursC±(ξ, q) as ξ ↗ 1 in the new
variable ζ where

ω = 1/
√
ξ + (1 − ξ)ζ.

The contour C+(q) starts at +∞, goes along the real axis, circles around 0 in
the negative direction, and returns to +∞ along the real axis. It has to leave on its
left the point −1 together with the circle which is symmetric with respect to the
real axis and passes through the points −q/(q − 1) and −q/(q + 1) (this circle
contains −1).

The contour C−(q) also starts at +∞, goes along the real axis, circles around
0 in the negative direction, and returns to +∞ along the real axis. It has to leave
on its left the point −1, and it has to surround the circle which is symmetric with
respect to the real axis and passes through the points −1/(q + 1) and 1/(q − 1)
(this circle contains 0).

Note that if ζ ∈ C+(q) then |ζ/(1 + ζ )| < q, and if ζ ∈ C−(q) then |(1 +
ζ )/ζ | < q.

Theorem 8.4. The extended Whittaker kernel KW
z,z′(s, u; t, v) of Theorem 8.2 for

s �= t has the following integral representation (u > 0, v > 0):

KW
z,z′(s, u; t, v) = eπi(z+z

′)(u/v)
z−z′

2 e
1
2 (s−t)

× 1

(2πi)2

0−∮
+∞

0−∮
+∞

ζ−z
′

1 (1 + ζ1)
zζ−z2 (1 + ζ2)

z′

× e−u(ζ1+ 1
2 )−v(ζ2+ 1

2 ) dζ1dζ2

es−t (1 + ζ1)(1 + ζ2)− ζ1ζ2

where for s > t both contours {ζ1} and {ζ2} are of the form C+(e
1
2 (s−t)), and for

s < t both contours are of the form C−(e
1
2 (t−s));

KW
z,z′(s, u; t,−v) =

(sin(πz) sin(πz′))
1
2

sin(πz′)
(u/v)

z−z′
2 e

1
2 (s−t)

× 1

(2π)2

0−∮
+∞

0−∮
+∞

ζ−z
′

1 (1 + ζ1)
zζ−z

′
2 (1 + ζ2)

z e−u(ζ1+ 1
2 )−v(ζ2+ 1

2 ) dζ1dζ2

es−t (1 + ζ1)ζ2 − ζ1(1 + ζ2)
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where for s > t , the contour {ζ1} is of the form C+(e
1
2 (s−t)) and the contour {ζ2} is

of the formC−(e
1
2 (s−t)), while for s < t the contour {ζ1} is of the formC−(e

1
2 (t−s))

and the contour {ζ2} is of the form C+(e
1
2 (t−s));

KW
z,z′(s,−u; t, v) = −KW

z,z′(s, v; t,−u);
KW
z,z′(s,−u; t,−v) = KW

−z,−z′(t, u; s, v).
The contours may be chosen differently by deforming the contours above so that
the denominators of the integrands do not vanish.

Proof. We take the integral representation (8.2) for the functions wa and plug it in
into the series of Theorem 8.2. Computing the sum of geometric progression under
the integral yields the formulas above. The contours are chosen in such a way that the
absolute values of the ratios of geometric progressions involved are less than one.

As in the proof of (5.4) (see [BO8, Proposition 2.3]), in the derivation of the first
formula we switch z and z′ in the integral representation of the second factor, which
cancels the gamma factors involving the summation index. In the derivation of the
second formula we do not need to do that, the gamma factors disappear thanks to
the relation �(x)�(1 − x) = π/ sin(πx) . ��
9. Limit transition to the gamma kernel

In this section we compute the limit of the extended hypergeometric kernelKz,z′,ξ
(s, x; t, y) as ξ ↗ 1 and the time variables are scaled (1 − ξ) : s = (1 − ξ)σ ,
t = (1 − ξ)τ with finite σ, τ ∈ R.

Theorem 9.1. There exists a limit of the extended hypergeometric kernel

K
gamma
z,z′ (σ, x; τ, y) = lim

ξ→1
K z,z′,ξ ((1 − ξ)σ, x; (1 − ξ)τ, y)

where x, y ∈ Z
′, σ, τ ∈ R.

For σ ≥ τ , the correlation kernel can be written in two different ways: as a
double contour integral

K
gamma
z,z′ (σ, x; τ, y)

= �(−z′ − x + 1
2 )�(−z− y + 1

2 )e
−πi(z+z′)(−1)x+y+1

(
�(−z− x + 1

2 )�(−z′ − x + 1
2 )�(−z− y + 1

2 )�(−z′ − y + 1
2 )
) 1

2

× 1

(2πi)2

0−∮
+∞

0−∮
+∞

ζ
z′+x− 1

2
1 (1 + ζ1)

−z−x− 1
2 ζ
z+y− 1

2
2 (1 + ζ2)

−z′−y− 1
2 dζ1dζ2

1 + (σ − τ)+ ζ1 + ζ2

(9.1)

and as a single integral

K
gamma
z,z′ (σ, x; τ, y) =

∫ +∞

0
e−u(σ−τ)wx(u;−z,−z′)wy(u;−z,−z′)du. (9.2)

The values of the kernel for σ < τ are obtained from the above formulas using the
symmetry property
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K
gamma
z,z′ (σ, x; τ, y) = (−1)x+y+1K

gamma
−z,−z′(τ,−x; σ,−y), σ �= τ.

Comment. For σ = τ the kernel K gamma
z,z′ has a simpler “integrable” expression

K
gamma
z,z′ (x; y) = sin(πz) sin(πz′)

π sin(π(z− z′))
× {

�(z+ x + 1
2 )�(z

′ + x + 1
2 )�(z+ y + 1

2 )�(z
′ + y + 1

2 )
}−1/2

×�(z+ x +
1
2 )�(z

′ + y + 1
2 )− �(z′ + x + 1

2 )�(z+ y + 1
2 )

x − y , (9.3)

see [BO5, Theorem 2.3]. We called this kernel the gamma kernel. The more gen-
eral kernel K gamma

z,z′ (σ, x; τ, y) of Theorem 9.1 will be called the extended gamma
kernel.

Proof. We start with the series representation of the extended hypergeometric ker-
nel, Theorem 6.2. Using the symmetry relations (5.6) and (5.7), we rewrite the
kernel in the following form

K z,z′,ξ (s, x; t, y)

=




∑
a∈Z

′+
e−a|s−t |ψx(a;−z,−z′, ξ) ψy(a;−z,−z′, ξ), s ≥ t,

(−1)x+y+1 ∑
a∈Z

′+
e−a|s−t |ψ−x(a; z, z′, ξ) ψ−y(a; z, z′, ξ), s < t.

This formula implies that if we prove the statement for σ ≥ τ , then the case
σ < τ will follow by symmetry. Thus, we continue with the assumption s ≥ t and
therefore σ ≥ τ .

Formula (9.2) is the limit variant of the formula for K z,z′,ξ (s, x; t, y) above.
Indeed, by virtue of Proposition 8.1,

ψx(a;−z,−z′, ξ) ψy(a;−z,−z′, ξ) ∼ (1 − ξ)wx(u;−z,−z′) wy(u;−z,−z′)
provided that a ∼ (1− ξ)−1u. The factor (1− ξ) is responsible for turning the sum
into an integral over u; this sum is just an approximation to the integral.

This empirical argument needs a rigorous justification. It is simpler to turn
the series representation for K z,z′,ξ (s, x; t, y) into a double contour integral and
then pass to the limit in the integral. The limit integral will be identified with the
right-hand side of (9.2).

Using formula (5.4) with appropriately changed parameters, we obtain

K z,z′,ξ (s, x; t, y)

= �(−z′ − x + 1
2 )�(−z− y + 1

2 )(
�(−z− x + 1

2 )�(−z′ − x + 1
2 )�(−z− y + 1

2 )�(−z′ − y + 1
2 )
) 1

2

× 1 − ξ
(2πi)2

∑
a∈Z

′+

∮ ∮
e−a(s−t)

(
1 −

√
ξω1

)z′+x− 1
2
(

1 −
√
ξ

ω1

)−z−x− 1
2

×
(

1 −
√
ξω2

)z+y− 1
2
(

1 −
√
ξ

ω2

)−z′−y− 1
2
ω−x−a

1 ω
−y−a
2

dω1

ω1

dω2

ω2
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with contours {ω1} and {ω2} chosen as in (5.3). Now we want to sum the geo-
metric progression inside the integrals. The ratio of the geometric progression is
et−sω−1

1 ω−1
2 . In order to justify the interchange of summation and integration we

need to ensure that the absolute value of this ratio, as a function in ω1, ω2, is
bounded from above by a constant strictly less than one. This is easy to arrange by
requiring, for example, that both contours contain the unit circle.

Performing the summation, we obtain

K z,z′,ξ (s, x; t, y)

= e
1
2 (s−t)�(−z′ − x + 1

2 )�(−z− y + 1
2 )(

�(−z− x + 1
2 )�(−z′ − x + 1

2 )�(−z− y + 1
2 )�(−z′ − y + 1

2 )
) 1

2

× 1 − ξ
(2πi)2

∮ ∮ (
1 −

√
ξω1

)z′+x− 1
2
(

1 −
√
ξ

ω1

)−z−x− 1
2

×
(

1 −
√
ξω2

)z+y− 1
2
(

1 −
√
ξ

ω2

)−z′−y− 1
2 ω

−x− 1
2

1 ω
−y− 1

2
2

es−tω1ω2 − 1
dω1dω2.

Recall the notation C(R, r, ξ) for certain type of contours introduced in the proof
of Proposition 8.1. We assume that both integration variables range over such a
contour with R being a fixed number greater than 1, and r being of order 1 − ξ ,
and such that 1/

√
ξ − r > 1.

Let us split each of the contours into two parts: the first one is the “big” circle
|ω| = R, and the second part is the rest. If both ω1 and ω2 range over their big
circles then the integrand is uniformly bounded, and the prefactor (1− ξ) sends the
whole expression to zero as ξ → 1.

If one of the variables, say, ω2 ranges over its big circle and ω1 ranges over the
second part of its contour, we observe that all the factors of the integrand involving
ω2 are uniformly bounded. The absolute value of the remaining part of the integrand

(
1 −

√
ξω1

)z′+x− 1
2
(

1 −
√
ξ

ω1

)−z−x− 1
2

is uniformly bounded by

const ·
∣∣∣∣∣(1 − ξ)z′−z−1ζ

z′+x− 1
2

1 (1 + ζ1)
−z−x− 1

2

∣∣∣∣∣
with ω1 = 1/

√
ξ + (1 − ξ)ζ1, where we used the same argument as in the proof

of Proposition 8.1. Thus, our double integral is bounded in absolute value by the
following one-dimensional integral in ζ1:

const ·(1 − ξ)#(z′−z)
∮ 0−

R̃

∣∣∣∣∣ζ
z′+x− 1

2
1 (1 + ζ1)

−z−x− 1
2 dζ1

∣∣∣∣∣
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with

R̃ = 1/
√
ξ + R(1 − ξ)−1 ∼ R(1 − ξ)−1.

Hence, our expression is bounded by

const ·(1 − ξ)#(z′−z)
∫ R̃

1
ζ
#(z′−z)−1
1 dζ1

which is bounded either by a constant (if #(z − z′) �= 0) or by | ln(1 − ξ)| (if
#(z − z′) = 0). In both cases, the prefactor (1 − ξ) in the integral representation
for K z,z′,ξ (s, x; t, y) sends the whole expression to zero.

The only asymptotically significant part of the integral comes from the case
when both ω1 and ω2 vary over the second parts of their contours. Making the
change of variables

ω1 = 1/
√
ξ + (1 − ξ)ζ1, ω2 = 1/

√
ξ + (1 − ξ)ζ2,

and arguing as in the proof of Proposition 8.1, we conclude, using the asymptotic
relation

1 − ξ
es−tω1ω2 − 1

∼ 1

1 + (σ − τ)+ ζ1 + ζ2
,

that the limit value of the kernel is given by the right-hand side of (9.1). Note that
the integral in (9.1) is absolutely convergent. To see this we use the estimate

|1 + (σ − τ)+ ζ1 + ζ2| ≥ const ·|ζ1|ν |ζ2|1−ν

which holds for any ζ1, ζ2 on our contours and any ν ∈ (0, 1). We apply this
inequality with ν = 1

2 + #(z′ − z)/2. The fact that ν ∈ (0, 1) follows from our
basic assumptions on z, z′, see §1.

Thus, we have proved the integral representation (9.1). To see the equivalence
of (10.1) and (10.2) we substitute the integral representation (8.2) into (10.2) and
integrate explicitly over u. ��
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