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Abstract. We prove that all the translation invariant Gibbs states of the Ising model are a
linear combination of the pure phases µ+

β , µ−
β for any β �= βc. This implies that the average

magnetization is continuous for β > βc. Furthermore, combined with previous results on
the slab percolation threshold [B2] this shows the validity of Pisztora’s coarse graining [Pi]
up to the critical temperature.

1. Introduction

The set of Gibbs measures associated to the Ising model is a simplex (see [Ge]) and
the complete characterization of the extremal measures at any inverse temperature
β = 1/T remains an important issue. The most basic states are the two pure phases
µ+

β , µ−
β which are obtained as the thermodynamic limit of the finite Gibbs mea-

sures with boundary conditions uniformly equal to 1 or −1. In the phase transition
regime (β > βc), these two Gibbs states are distinct and translation invariant. An
important result by Aizenman and Higuchi [A, H] (see also [GH]) asserts that for
the two dimensional nearest neighbor Ising model these are the only two extremal
Gibbs measures and that any other Gibbs measure on {±1}Z2

belongs to [µ+
β , µ−

β ],

i.e. is a linear combination of µ+
β , µ−

β . In higher dimensions Dobrushin [D] proved
the existence of other extremal invariant measures. They arise from well chosen
mixed boundary conditions which create a rigid interface separating the system into
two regions. Thus, contrary to the previous pure phases, the Dobrushin states are
non-translation invariant. We refer the reader to the survey by Dobrushin, Shlosman
[DS] for a detailed account on these states.

In this paper we are going to focus on the translation invariant Gibbs states
in the phase transition regime in dimension d � 3 and prove that they belong to
[µ+

β , µ−
β ]. This problem has a long history and has essentially already been solved,

with the exception of one detail which we will now tie up.
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154 T. Bodineau

Two strategies have been devised to tackle the problem. The first one, imple-
mented by Gallavotti and Miracle-Solé [GS], is a constructive method based on
Peierls estimates. They proved that for any β large enough the set of translation
invariant Gibbs states is [µ+

β , µ−
β ]. This result was extended in [BMP] to the Ising

model with Kac interactions for any β > 1 as soon as the interaction range is
large enough. More generally, in the framework of Pirogov-Sinai theory, similar
results can be obtained for β large enough (see e.g. [Z, M]). A completely different
approach relying on ferromagnetic inequalities was introduced by Lebowitz [L1]
and generalized to the framework of FK percolation by Grimmett [Gr]. The key
argument is to relate the differentiability of the pressure wrt β and the characteriza-
tion of the translation invariant Gibbs states. As the pressure is a convex function, it
is differentiable for all β, except possibly for an at most countable set of inverse tem-
peratures B ⊂ [βc, ∞[. For the Ising model, B is conjectured to be empty, although
the previous method does not provide any explicit control on B. We stress the fact
that the non differentiability of the pressure has other implications, namely that for
any inverse temperature in B, the average magnetization would be discontinuous;
and that the number of pure phases would be uncountable (see [BL]).

We will show that in dimension d � 3, for any β > βc there is a unique infinite
volume FK measure. Several consequences can be drawn from this by using previ-
ous results in [Gr, L1]: the set of translation invariant Gibbs states is [µ+

β , µ−
β ], the

average magnetization is continuous in ]βc, ∞[. Finally, combining this statement
with the characterization of the slab percolation threshold in [B2], we deduce that
Pisztora’s coarse graining is valid up to the critical temperature. All these facts are
summarized in Subsection 2.3. Our method is restricted to β > βc. At β = βc,
the magnetization is known to be continuous in dimension d = 2 for the nearest
neighbor Ising model (see e.g. [O]). The continuity in dimension d � 4 has also
been derived by using the random current representation [AF]. In dimension d = 3,
it is widely believed that the phase transition of the Ising model is of second order
and thus similar results should also hold at βc.

2. Notation and Results

2.1. The Ising model

We consider the Ising model on Z
d (d � 3) with finite range interactions and spins

{σi}i∈Zd taking values ±1. Let σ� ∈ {±1}� be the spin configuration restricted
to � ⊂ Z

d . The Hamiltonian associated to σ� with boundary conditions σ�c is
defined by

H(σ� | σ�c) = −1

2

∑

i,j∈�

J(i − j)σiσj −
∑

i∈�,j∈�c

J (i − j)σiσj ,

where the couplings J (i − j) are ferromagnetic and equal to 0 for ‖i − j‖ � R

(R will be referred to as the range of the interaction). Furthermore, we assume
that J (i − j) > 0 for any pair of nearest neighbors (i, j) so that the Gibbs mea-
sure (defined below) cannot be decomposed as a product of measures on disjoint
sub-lattices.
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The Gibbs measure in � at inverse temperature β > 0 is defined by

µ
σ�c

β,�(σ�) = 1

Z
σ�c

β,�

exp
(− βH(σ� | σ�c)

)
,

where the partition function Z
σ�c

β,� is the normalizing factor. The boundary condi-
tions act as boundary fields, therefore more general values of the boundary condi-
tions can be used. For any h > 0, let us denote by µh

β,� the Gibbs measure with
boundary magnetic field h, i.e. with Hamiltonian

Hh(σ�) = −1

2

∑

i,j∈�

J(i − j)σiσj − h
∑

i∈�,j∈�c

J (i − j)σi .

The phase transition is characterized by symmetry breaking for any β larger
than the inverse critical temperature βc defined by

βc = inf{β > 0, lim
N→∞

µ+
β,�N

(σ0) > 0} .

2.2. The random cluster measure

The random cluster measure was originally introduced by Fortuin and Kasteleyn
[FK] (see also [ES, Gr]) and it can be understood as an alternative representation
of the Ising model (or more generally of the q-Potts model). This representation
will be referred to as the FK representation.

Let E be the set of bonds, i.e. of pairs (i, j) in Z
d such that J (i − j) > 0. For

any subset � of Z
d we consider two sets of bonds
{

E
w
� = {(i, j) ∈ E, i ∈ �, j ∈ Z

d} ,

E
f
� = {(i, j) ∈ E, i, j ∈ �} .

(2.1)

The set � = {0, 1}E is the state space for the dependent percolation measures.
Given ω ∈ � and a bond b = (i, j) ∈ E, we say that b is open if ωb = 1. Two
sites of Z

d are said to be connected if one can be reached from another via a chain
of open bonds. Thus, each ω ∈ � splits Z

d into the disjoint union of maximal con-
nected components, which are called the open clusters of �. Given a finite subset
B ⊂ Z

d we use cB(ω) to denote the number of different open finite clusters of ω

which have a non-empty intersection with B.
For any � ⊂ Z

d we define the random cluster measure on the bond configura-
tions ω ∈ �� = {0, 1}Ef

� . The boundary conditions are specified by a frozen per-
colation configuration π ∈ �c

� = � \��. Using the shortcut cπ
�(ω) = c�(ω ∨π)

for the joint configuration ω ∨ π ∈ E, we define the finite volume random cluster
measure �π

β,� on �� with the boundary conditions π as:

�π
β,� (ω) = 1

Z
β,π
�




∏

b∈E
f
�

(
1 − pb

)1−ωb p
ωb

b



 2cπ
�(ω) , (2.2)
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where the bond intensities are such that p(i,j) = 1 − exp(−2βJ (i − j)). We will
sometimes use the same notation for the FK measure on E

w
�, in which case we will

state it explicitly.
The measures �π

β,� are FKG partially ordered with respect to the lexicograph-
ical order of the boundary condition π . Thus, the extremal ones correspond to the
free (π ≡ 0) and wired (π ≡ 1) boundary conditions and are denoted as �f

β,� and

�w
β,� respectively. The corresponding infinite volume limits �f

β and �w
β always

exist.
The phase transition of the random cluster model is characterized by the occur-

rence of percolation

∀β > βc, lim
N→∞

�w
β,�N

(
0 ↔ �c

N

) = �w
β (0 ↔ ∞) > 0. (2.3)

2.3. Results and consequences

Our main result applies in dimension d � 3

Theorem 2.1. We consider the Ising model in dimension d � 3. Then for any
β �= βc

�f
β

({0 ↔ ∞}) = �w
β

({0 ↔ ∞}) . (2.4)

The proof is postponed to Subsection 3.5 and we first draw some consequences
from this Theorem.
• Continuity of the average magnetization.

Grimmett proved in [Gr] (Theorem 5.2) that the function β → �w
β

({0 ↔ ∞}) is

right continuous in [0, 1] andβ → �f
β

({0 ↔ ∞}) is left continuous in [0, ∞[\{βc}.
Therefore Theorem 2.1 implies that the average magnetization

µ+
β (σ0) = �w

β

({0 ↔ ∞}) (2.5)

is a continuous function of β except possibly at βc.
• Translation invariant states.

According to Theorem 5.3 (b) in [Gr], equality (2.4) implies that there exists
only one random cluster measure. This means that �w

β = �f
β for β �= βc.

Alternatively for the spin counterpart, Lebowitz proved in [L1] (Theorem 3 and
remark (iii) page 472) that the continuity of the average magnetization implies the
existence of only two extremal invariant states, i.e. that for β > βc all the translation
invariant Gibbs states are of the form λµ+

β + (1 − λ)µ−
β for some λ ∈ [0, 1].

• Continuity of the energy density.
Using Lebowitz’s result [L1] (Theorem 3 and remark (iii) page 472), one obtains

the continuity of the energy density wrt β, i.e. of µ+
β (σiσj ) for any pair of sites.

More generally, for any finite set A, the function β → µ+
β (σA) is continuous where

σA =∏i∈A σi .
• Pisztora’s coarse graining.

A description of the Ising model close to the critical temperature requires a
renormalization procedure in order to deal with the diverging correlation length.
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A crucial tool for implementing this is the Pisztora’s coarse graining [Pi] which
provides an accurate description of the typical configurations of the Ising model
(and more generally of the q-Potts model) in terms of the FK representation. This
renormalization scheme is at the core of many works on the Ising model and in
particular it was essential for the analysis of phase coexistence (see [C, CP, B1,
BIV]).

The main features of the coarse graining will be recalled in Subsection 3.1.
Nevertheless, we stress that its implementation is based upon two hypothesis:

(1) The inverse temperature β should be above the slab percolation threshold (see
[Pi]).

(2) The uniqueness of the FK measure, i.e. �f
β = �w

β .

The first assumption was proved to hold for the Ising model as soon as β > βc

[B2] and as a consequence of Theorem 2.1, the second is also valid for β > βc.
Thus for the Ising model, Pisztora’s coarse graining applies in the whole of the
phase transition regime and from [CP] the Wulff construction in dimension d � 3
is valid up to the critical temperature.

3. Proof of Theorem 2.1

Let us briefly comment on the structure of the proof. It is well known that the wired
measure �w

β dominates the free measure �f
β in the FKG sense thus the core of the

proof is to prove the reverse inequality. The first step is to show that �f
β domi-

nates the FK counterpart of the finite volume Gibbs measure µh
β,� for some value

of h > 0 and independently of �. This is achieved by introducing intermediate
random variables Z (Subsection 3.2) and Ẑ (Subsection 3.3) which can be com-
pared thanks to a coupling (Subsection 3.4). We then rely on a result by Lebowitz
[L2] and Messager, Miracle Sole, Pfister [MMP] which ensures that µh

β,� con-

verges to µ+
β in the thermodynamic limit (see (3.12)). From this, we deduce that

�f
β dominates �w

β in the FKG sense (Subsection 3.5).
Finally, we stress the fact that the proof is restricted to the Ising model because

it relies on two specific features which are not known for more general q-Potts
models

(1) The occurrence of percolation in a slab up to the critical temperature [B2].
(2) The convergence of µh

β,� to µ+
β in the thermodynamic limit for any h > 0 [L2,

MMP].

Both assertions should be valid in the q-Potts model for q > 1 and any β > βc.
The second statement has been studied for a broad class of models on trees by

Pemantle, Steif [PS] and was referred to as a robust phase transition. Van Enter
proved in [vE] that (2) fails at βc for the q-Potts model with large q. This does not
contradict the fact that assertion (2) should be correct for any β > βc, nevertheless
it indicates that the proof implemented in [L2, MMP] for the Ising model cannot
be easily generalized as it is based on ferromagnetic inequalities which are valid
for all β.
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3.1. Renormalization

We recall the salient features of Pisztora’s coarse graining and refer to the original
paper [Pi] for the details. The reference scale for the coarse graining is an integer
K which will be chosen large enough. The space Z

d is partitioned into blocks of
side length K

∀x ∈ K Z
d , BK(x) = x +

{
−K

2
+ 1, . . . ,

K

2

}d

.

First of all we shall set up the notion of good block on the K-scale which
characterizes a local equilibrium in a pure phase.

Definition 3.1. A block BK(x) is said to be good with respect to the bond config-
uration ω ∈ � if the following events are satisfied

(1) There exists a crossing cluster C∗ in BK(x) connected to all the faces of the
inner vertex boundary of BK(x).

(2) Any FK-connected cluster in BK(x) of diameter larger than
√

K/10 is con-
tained in C∗.

(3) There are crossing clusters in each block
(
B√

K
(x ± K

2 ei)
)

1 � i � d
, where(ei

)
1 � i � d

are the unit vectors (see (4.2) in [Pi]).
(4) There is at least a closed bond in BK1/2d (x).

The important fact which can be deduced from (1,2,3) is that the crossing clus-
ters in two neighboring good blocks are connected. Thus a connected cluster of
good blocks at scale K induces also the occurrence of a connected cluster at the
microscopic level.

To each block BK(x), we associate a coarse grained variable uK(x) equal to 1 if
this is a good block or 0 otherwise. Fundamental techniques developed by Pizstora
(see (4.15) in [Pi]) imply that a block is good with high probability conditionally
to the states of its neighboring blocks. For any β > βc, there is K0 large enough
such that for all scales K � K0 one can find a constant C > 0 (depending on K, β)
such that

�f
β

(
uK(x) = 0

∣∣∣ uK(y) = ηy, y �= x
)

� exp(−C) , (3.1)

this bound holds uniformly over the values ηj ∈ {0, 1} of the neighboring blocks.
Furthermore, the constant C diverges as K tends to infinity. The previous estimate
was originally derived beyond the slab percolation threshold. The latter has been
proved to coincide with the critical temperature in the case of the Ising model [B2].

A last feature of Pisztora’s coarse graining is a control of the density of the
crossing cluster in each good block. Under the assumption that (2.4) holds, one can
prove that with high probability, the density of the crossing cluster in each block is
close to the one of the infinite cluster. Thus, one of the goals of this paper is to prove
that the complete renormalization scheme is valid up to the critical temperature.
Throughout the paper, we will use only the estimate (3.1) and not the full Pisztora’s
coarse graining which includes as well the control on the density.
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For N = nK
2 , we define

�N = {−N + 1, . . . , N}d , ∂�N = �N+R \ �N , (3.2)

where R is the interaction range. ∂�N will be partitioned into (d − 1)-dimensional
slabs of side length L = �K (for some appropriate choice of n and �). We define
the slab

TL = {0, . . . , R} × {−L/2 + 1, . . . , L/2}d−1

and �N,L a subset of ∂�N such that ∂�N can be covered by non intersecting slabs
with centers in �N,L

∂�N =
⋃

x∈�N,L

TL(x) , (3.3)

where TL(x) denotes the slab centered at site x and deduced from TL by rotation
and translation (see figure 1). More precisely, if F (i) is the face of �N with outward
normal the unit vector ei we write

F (i) = {−N, N}i−1 × {N + 1} × {−N, N}d−i .

The sites of �N,L associated to the face F (i) are

�
(i)
N,L =






⋃

j∈Zi−1

j ′∈Zd−i

{Lj} × {N + 1} × {Lj ′}






⋂
F (i) .

For any x in �
(i)
N,L the corresponding slab is

TL(x) = x + {−L/2 + 1, . . . , L/2}i−1 × {0, . . . , R} × {−L/2 + 1, . . . , L/2}d−i .

The rest of the set �N,L is obtained in the same way by symmetry.

3.2. Free boundary conditions

We define new random variables indexed by the set �N,L introduced in (3.3).

Definition 3.2. The collection (Zx)x∈�N,L
depends on the bond configurations in

E \ E
f
�N

. For any x in �N,L, we declare that Zx = 1 if the three following events
are satisfied (see figure 2)

(1) All the bonds in E
w
�N

\ E
f
�N

intersecting TL(x) are open, as well as those in

E
f
TL(x).

(2) If n denotes the outward normal to �N+1 at x then the 3K/4 edges
{(

x +
in, x + (i + 1)n)}0 � i � 3K/4 are open. Let y be the site x + K n. Then BK(y)

is a good block, i.e. uK(y) = 1.
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Fig. 1. The figure corresponds to the nearest neighbor Ising model. The scales are not accu-
rate and one should imagine 1 � K � L � N . The set �N is depicted in dashed lines.
The subset �N,L is the union of the black dots which all belong to ∂�N . Only one set TL(x)
has been depicted at the top.

Fig. 2. The event Zx = 1 is depicted (the scales are not accurate). The black lines are the
open bonds attached to TL(x). The block BK(y) is good and connected to infinity by a path
of good blocks included in �c

N+3K/2 (represented by the light gray region).

(3) The block BK(y) is connected to infinity by an open path of good blocks included
in �c

N+3K/2.

If one of the events is not satisfied, then Zx = 0.
Let Q be the image measure on {0, 1}�N,L of �f

β by the application ω →
{Zx(ω)}x∈�N,L

.

It is convenient to order the sites of �N,L wrt the lexicographic order and to
index the random variables by {Zk}k � M , where M is the cardinality of �N,L. The
kth element xk of �N,L is associated to Zk = Zxk

.
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We will associate to a given sequence {Zk}k � M a random cluster measure in
E

f
�N

with boundary conditions which will be wired in the regions where Zk = 1
and free otherwise. More precisely, ∂�N is split into two regions

∂ f�N =
⋃

k such that Zk=0

TL(xk), ∂w�N =
⋃

k such that Zk=1

TL(xk) .

We set

∀(i, j) ∈ E
w
�N

\ E
f
�N

, πZ
(i,j) =

{
0, if i ∈ ∂ f�N, j ∈ �N ,

1, if i ∈ ∂w�N, j ∈ �N .
(3.4)

Outside E
w
�N

the boundary conditions will be wired and we set πZ
b = 1 for b

in E \ E
w
�N

. Finally, let us introduce for the FK measure in E
f
�N

with boundary

conditions πZ

∀Z ∈ {0, 1}�N,L, (Z) = �πZ

β,�N

(
0 ↔ ∂w�N

)
. (3.5)

If ∂w�N is empty then (Z) = 0.
By construction, to any bond configuration ω outside E

f
�N

, one can associate

a collection {Zk(ω)} and a bond configuration πZ(ω). Almost surely wrt �f
β , the

infinite cluster is unique for any β > βc [BK] and all the sites xk such that Zk = 1
belong to the same cluster. Thus the following FKG domination holds

�ω
β,�N

� �πZ(ω)

β,�N
, ω − a.s wrt �f

β.

As the event {0 ↔ ∞} is increasing, we get

�f
β

(
0 ↔ ∞) � Q

(

(
Z
))

. (3.6)

We claim that for an appropriate choice of the parameters K, L the collection
of variables {Zk} dominates a product measure

Proposition 3.1. There exists K, L, N0 and α > 0 such that for N � N0

∀k � M, Q
(
Zk = 1

∣∣ Zj = ηj , j � k − 1
)

� α ,

for any collection of variables {ηj }j � M taking values in {0, 1}M .

The proof is postponed to Section 4.
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3.3. Wired boundary conditions

Following the previous Subsection, we are going to define another type of random
variables which are related to the wired FK measure. The FK counterpart of the
Gibbs measure µh

β,�N
with boundary magnetic field h > 0 is denoted by �

s,w
β,�N

and is defined as the wired FK measure in E
w
�N

for which a bond (i, j) in E
w
�N

\E
f
�N

has intensity s(i,j) = 1 − exp(−2hJ (i − j)) instead of p(i,j). The intensities of the
bonds in E

f
�N

remain as defined in Subsection 2.2.
Using the notation of Definition 3.2, we introduce new random variables indexed

by the set �N,L.

Definition 3.3. For any x in �N,L, we declare that Ẑx = 1 if there exists at least
one open bond in E

w
�N

\ E
f
�N

joining TL(x) to �N . Otherwise we set Ẑx = 0.

Let Q̂ be the image measure on {0, 1}�N,L of �
s,w
β,�N

by the application ω →
{Ẑx(ω)}.

As in the previous Subsection, the random variables {Ẑk = Ẑ(xk)}k � M are
ordered wrt the lexicographic order in �N,L.

To any bond configuration ω in E
w
�N

\E
f
�N

, one associates two types of boundary

conditions: πẐ(ω) which is defined as in (3.4) and

∀b �∈ E
f
�N

, πω
b =

{
ωb, if b ∈ E

w
�N

\ E
f
�N

,

1, otherwise .
(3.7)

Thus the following FKG domination holds πẐ(ω) � πω and conditionally to the
bond configuration outside E

f
�N

(Ẑ(ω)) � �πω

β,�N

(
0 ↔ ∂�N

)
,

where  was introduced in (3.5). This leads to

Q̂
(
(Ẑ)

)
� �

s,w
β,�N

(
0 ↔ ∂�N

)
. (3.8)

Finally, we check that uniformly in N the variables {Ẑk} satisfy

Proposition 3.2. For any collection of variables {ηj }j � M taking values in {0, 1}M

∀k � M, Q̂
(
Ẑk = 1

∣∣ Ẑj = ηj , j � k − 1
)

� CRLd−1sh ,

where sh = max s(i,j) and CR is a constant depending only on the interaction
range.

Proof. For a given k � M , the variable Ẑk is an increasing function supported only
by the set of bonds joining TL(xk) to �N which we denote by Tk .

Q̂
(
Ẑk = 1

∣∣ Ẑj = ηj j � k − 1
)

= �
s,w
β,�N

(∃ an open bond in Tk

∣∣ Ẑj = ηj j � k − 1
)

�
∑

b∈Tk

�
s,w
β,�N

(
ωb

∣∣ Ẑj = ηj j � k − 1
)

.
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By construction the support Tk of Ẑk is disjoint from any other Tk′ , so that each
bond b in Tk is open with intensity at most sh uniformly wrt the bond configurations
in the rest of the graph E

w
�N

(see e.g. equation (3.10) in [Gr]). As the total number

of bonds in Tk is less than CRLd−1, the Proposition follows. ��

3.4. The coupling measure

We are going to define a joint measure P for the variables {Zk, Ẑk}k � M . The
coupling will be such that

P a.s. {Zk} � {Ẑk}, i.e. P
({

Zk � Ẑk, ∀k � M
}) = 1 , (3.9)

and the marginals coincide with Q and Q̂, i.e. for any function φ in {0, 1}�N,L

P
(
φ(Z)

) = Q
(
φ(Z)

)
and P

(
φ(Ẑ)

) = Q̂
(
φ(Ẑ)

)
. (3.10)

Proposition 3.3. There exists K, L and h > 0 such that for any N large enough,
one can find a coupling P satisfying the conditions (3.9) and (3.10).

Proof. The existence of the coupling is standard and follows from Propositions 3.1
and 3.2. First choose K, L large enough such that Proposition 3.1 holds and then
fix h such that α > CRLd−1sh. The coupling P is defined recursively. Suppose that
the first k � M − 1 variables Zk = {Zi}i � k, Ẑk = {Ẑi}i � k are fixed such that

∀i � k, Zi � Ẑi .

We define





P
(
Zk+1 = 1, Ẑk+1 = 0

∣∣Zk, Ẑk

) = Q
(
Zk+1 = 1

∣∣Zk

)− Q̂
(
Ẑk+1 = 1

∣∣Ẑk

)
,

P
(
Zk+1 = 1, Ẑk+1 = 1

∣∣Zk, Ẑk

) = Q̂
(
Ẑk+1 = 1

∣∣Ẑk

)
,

P
(
Zk+1 = 0, Ẑk+1 = 0

∣∣Zk, Ẑk

) = Q
(
Zk+1 = 0

∣∣Ẑk

)
.

Thanks to Propositions 3.1 and 3.2 the measure is well defined and one can
check that the conditions (3.9) and (3.10) are fulfilled. ��

3.5. Conclusion

For β < βc Theorem 2.1 holds (see Theorem 5.3 (a) in [Gr]), thus we focus on the
case β > βc. As the wired FK measure dominates the free FK measure in the FKG
sense, it is enough to prove

�f
β

({0 ↔ ∞}) � �w
β

({0 ↔ ∞}) . (3.11)

Let us first fix K, L, h such that Proposition 3.3 holds. From (3.6) and (3.10)

�f
β

({0 ↔ ∞}) � Q
(

(
Z
)) = P

(

(
Z
))

.

As  is an increasing function, we get from (3.9)

P
(

(
Z
))

� P
(

(
Ẑ
))

.
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Finally from (3.10) and (3.8) we conclude that

P
(

(
Ẑ
)) = Q̂

(
(Ẑ)

)
� �

s,w
β,�N

(
0 ↔ ∂�N

)
.

Thus the previous inequalities imply that for any N large enough

�f
β

({0 ↔ ∞}) � �
s,w
β,�N

(
0 ↔ ∂�N

) = µh
β,�N

(σ0) ,

whereµh
β,�N

denotes the Gibbs measure with boundary magnetic fieldh = − 1
2 log(1−

s). It was proven by Lebowitz [L2] and Messager, Miracle Sole, Pfister [MMP] that
for any h > 0

lim
N→∞

µh
β,�N

(σ0) = µ+
β (σ0) . (3.12)

Therefore the correspondence between the Ising model and the FK representation
(2.5) completes the derivation of inequality (3.11).

4. Proof of Proposition 3.1

For any k, we write Zk = Zxk
= XkYk , where the random variables Xk and Yk are

defined as follows

• Xk = 1 if and only if the conditions (1) and (2) of Definition 3.2 are both satisfied.
Otherwise Xk = 0.

• Yk = 1 if and only if the condition (3) of Definition 3.2 is satisfied. Otherwise
Yk = 0.

For any collection of variables {ηj }j � M taking values in {0, 1}M , we set

C = {Zj = ηj , j � k − 1
}

.

We are going to prove that for K, L large enough there exists c1, c2 ∈ [0, 1[
(depending on K, L) such that

Q
(
Xk = 0

∣∣ C
)

� c1 , (4.1)

Q
(
Xk = 1, Yk = 0

∣∣ C
)

� c2Q
(
Xk = 1

∣∣ C
)

. (4.2)

Proposition 3.1 is a direct consequence of the previous inequalities. First we
write

Q
(
Zk = 0

∣∣ C
) = Q

(
Xk = 0

∣∣ C
)+ Q

(
Xk = 1, Yk = 0

∣∣ C
)

.

Using (4.2) and (4.1)

Q
(
Zk = 0

∣∣ C
)

� 1 − (1 − c2)Q
(
Xk = 1

∣∣ C
)

� 1 − (1 − c2)(1 − c1) .

Thus for K, L large enough there is α > 0 such that

Q
(
Zk = 1

∣∣ C
)

� α .
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Proof of (4.1). The counterpart for xk of the site y in Definition 3.2 is denoted by
yk . The event Xk = 1 requires first of all that

• All the bonds in E
w
�N

\ E
f
�N

intersecting TL(x) are open, as well as those in

E
f
TL(x).

• The 3K/4 edges
{(

xk +in, xk +(i+1)n)}0 � i � 3K/4 are open, where n denotes
the outward normal to �N+1 at xk .

Let A be the intersection of both events. The support of A is disjoint from the
support of C, so that A can be satisfied with a positive probability depending on K

and L but not on C or N .
It remains to check that conditionally to A ∩ C, the block BK(y) is good with

a positive probability depending on K . Notice that this statement is not a direct
consequence of (3.1) because A cannot be expressed in terms of the coarse grained
variables. Nevertheless A is an increasing event and Pisztora proved in Proposi-
tion 4.1 (page 452) of [Pi] that (3.1) remains true also after conditioning wrt some
increasing event.

Combining the previous statements, we deduce that (4.1) holds with a constant
c1 < 1. ��

Proof of (4.2). Let yk be the counterpart of the site y in Definition 3.2. If Yk = 0
then there exists � a contour of bad blocks in �c

N+3K/2 disconnecting yk from
infinity (see (3) of Definition 3.2). More precisely, we define the contour � as
follows. Let C be the maximal connected component of good blocks in �c

N+3K/2
connected to BK(yk). If Yk = 0, C is finite and γ is defined as the support of the
maximal �-connected component of bad blocks in �c

N+3K/2 which intersects the
external boundary of C or simply intersects the block connected to BK(yk) if C
is empty. By construction the boundary of γ , denoted by ∂γ , contains only good
blocks. The contour � is defined as the intersection of the events �0 and �1, where
the configurations in �0 contain only bad blocks in γ and those in �1 contain only
good blocks in ∂γ (see figure 3).

Fig. 3. The support of the contour � is γ ∪ ∂γ and is included in �c
N+3K/2 (the light gray

region). The blocks BK(yk) and BK(y1) are disconnected from infinity by �. The event
Y2 = 1 associated to the block BK(y2) is not determined by �.
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We write

Q ({Xk = 1} ∩ {Yk = 0} ∩ C) =
∑

�

�f
β (� ∩ {Xk = 1} ∩ C) , (4.3)

where the sum is over the contours in �c
N+3K/2 surrounding yk .

For a given �, we are going to prove

�f
β (� ∩ {Xk = 1} ∩ C) � exp

(
−C

2
|�|
)

�f
β ({Xk = 1} ∩ C) , (4.4)

where C = C(K, β) was introduced in (3.1) and |�| stands for the number of
blocks in γ . For K large enough, the constant C can be chosen arbitrarily large
so that the combinatorial factor arising by summing over the contours � in (4.3)
remains under control. This implies that there exists c2 ∈]0, 1[ such that

Q ({Xk = 1} ∩ {Yk = 0} ∩ C) � c2 �f
β ({Xk = 1} ∩ C) .

Thus the inequality (4.2) follows.
In order to prove (4.4), we specify the set C and for notational simplicity assume

that it is of the form C = C0 ∩ C1 with

C0 = {Zj = 0, j � k0
}
, C1 = {Zj = 1, k0 + 1 � j � k − 1

}
.

The difficulty to derive (4.4) is that � may contribute to the event C0 so that a
Peierls argument cannot be applied directly. For this reason we decompose C0 into
2k0 disjoint sets for which the state of the first k0 variables is prescribed such that
either {Xj = 1, Yj = 0} or {Xj = 0}. Once again for simplicity we will only
consider the subset D = D0 ∩ D1 of C0 such that

D0 = {Xj = 1, Yj = 0, j � k1
}
, D1 = {Xj = 0, k1 + 1 � j � k0

}
.

The derivation of (4.4) boils down to proving the estimate below

�f
β (� ∩ {Xk = 1} ∩ D ∩ C1) � exp

(
−C

2
|�|
)

�f
β ({Xk = 1} ∩ D ∩ C1) . (4.5)

Finally, we suppose that D0 is such that the first k2 sites {yj }j � k2 are disconnected
from infinity by � and the others k1 − k2 are not surrounded by � (see figure 3).
Notice that erasing the contour � may affect the state of the first k2 sites, but not of
the other k1 − k2. By construction, if E = {Xj = 1, Yj = 0, k2 + 1 � j � k1

}
,

then

�f
β (� ∩ {Xk = 1} ∩ D ∩ C1)

= �f
β

(
� ∩ {Xk = 1} ∩ {Xj = 1, j � k2

} ∩ E ∩ D1 ∩ C1
)

.
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Conditionally to �1, all the events in the RHS are independent of �0 so that by
conditioning wrt the configurations in ∂γ , one can apply the Peierls bound (3.1)

�f
β (� ∩ {Xk = 1} ∩ D ∩ C1)

� exp (−C|�|) �f
β

(
�1 ∩ {Xk = 1} ∩ {Xj = 1, j � k2

} ∩ E ∩ D1 ∩ C1
)

.

By modifying the bonds around each block BK(yj ) one can recreate the events
{Yj = 0}j � k2 and thus D. First of all notice that �1 screens the blocks BK(yj )

from the other events in the RHS. Thus one can turn the blocks in �c
N+3K/2 con-

nected to each site {yj }j � k2 into bad blocks without affecting the event below

{Xk = 1} ∩ {Xj = 1, j � k2
} ∩ E ∩ D1 ∩ C1.

For each block, this has a cost αK depending only on K (and β)

�f
β (� ∩ {Xk = 1} ∩ D ∩ C1) � exp (−C|�|) (αK

)k2 �f
β ({Xk = 1} ∩ D ∩ C1) .

By construction, the distance between each site {yj }j � k2 is at least L = �K . The
contour � surrounds k2 sites in �N,L so that |�| must be larger than �k2 (see figure

3). Therefore for � large enough, the Peierls bound compensates the cost
(
αK

)k2

�f
β (� ∩ {Xk = 1} ∩ D ∩ C1) � exp

(
−C

2
|�|
)

�f
β ({Xk = 1} ∩ D ∩ C1) .

This completes (4.5). Similar results would be valid for any decomposition of
the set C. In particular C0 can be represented as the disjoint union of the type
C0 =∨D0,D1

D0 ∩ D1, thus summing over the sets D, we derive (4.4). ��
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