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Abstract. We show that a QMS on a σ -finite von Neumann algebra A can be decomposed
as the sum of several “sub”-semigroups corresponding to transient and recurrent projections.
We discuss two applications to physical models.

1. Introduction

The analysis of transient and recurrent states is a key step in the study of Markov
processes, where the concepts of transience and recurrence are closely connected
with Potential Theory for semigroups on L∞ spaces (see e.g. [2], [14]). These
are the typical commutative von Neumann algebras. In the theory of open quan-
tum systems, however, models of irreversible evolutions are given by means of
positive and identity-preserving semigroups on an arbitrary von Neumann algebra.
A mathematical theory parallel to the classical theory of Markov processes and
semigroups, however, is still missing. It seems therefore reasonable to provide the
non-commutative generalizations of classical notions like transience, recurrence
and decomposition of semigroups into transient and recurrent parts. This paper is
aimed at clarifying these notions for Quantum Dynamical Semigroups (QDS) and
providing mathematical tools for the study of evolution equations (master equa-
tions) for open quantum systems.

A QDS T on a von Neumann algebra A is a weak* continuous semigroup of
normal completely positive maps {Tt }t≥0 on A; if T is identity-preserving, then it
is Markov (i.e. it is a QMS). In the work [11] transience and recurrence are defined
as the natural extension of the corresponding classical concepts and irreducible
semigroups are shown to be either transient or recurrent. Our intention here is to
find the decomposition of a QMS into “sub”-semigroups corresponding to classes
of transient and recurrent states. To this end we start by defining the fast recurrent
projection pR determined by supports of normal invariant states. We show that
states with support contained in pRApR do not leave pR under the action of T
(see Thm. 1) and establish the ergodic properties of the reduced QMS T pR on the
subalgebra pRApR (see Thm. 3). Moreover, under appropriate hypotesis, we can
write T pR as a direct sum of irreducible “sub-QMS” each one with a unique faithful
normal invariant state (Thm. and Prop. 5).
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Then we define the transient projection pT by means of range projections of
potentials (see [11]). It turns out that a QMS can be either transient or recurrent
according to pT = 1 or pT = 0 respectively. Further, to distinguish between fast
and slow recurrence, we introduce the projection pR0 such that p⊥

T = pR + pR0 ,
calling a semigroup fast recurrent if pR = 1 and slow recurrent if pR0 = 1. We show
then that, when A is σ -finite, the von Neumann subalgebra pT ApT is invariant for
T (see Cor. 2); moreover, the restriction of T to pT ApT is a transient semigroup.
On the other hand, we can construct a recurrent QMS on p⊥

T Ap⊥
T (see Prop. 10)

which contains the fast recurrent “sub”-QMS T pR .
As an application we determine pT , pR and pR0 in two physical models: a

one-mode radiation and an atom with two-degenerate levels.

2. Notations and preliminaries

In this paper A is a von Neumann algebra acting on a complex Hilbert space H,
endowed with a trace tr(·); we denote by 1 the unit of A. A state ω on A is called nor-
mal state if it is σ -weakly continuous or, equivalently, if ω(supα aα) = supα ω(aα)

for any increasing net (aα)α of positive elements in A with an upper bound; we
denote by A∗ the predual of A, that is the space of all σ -weakly continuous linear
functional on A. We recall also that ω is a normal state if and only if there exists a
density matrix ρ, that is, a positive trace-class operator of H with a unit trace, such
that ω(a) = tr(ρa) for all a ∈ A. For all normal state ω on A, the support projec-
tion s(ω) is the smallest projection in A such that ω(s(ω)a) = ω(as(ω)) = ω(a)

for any a ∈ A (c.f. [7], Prop. 3); if s(ω) = 1, we say that ω is faithful. A family G
of normal states on A is called faithful if a ∈ A, a positive and ω(a) = 0 for all
ω ∈ G implies a = 0.

Given a QDS T on A, its infinitesimal generator is the operator L whose domain
D(L) is the vector space of elements a in A for which there exists an element b

in A such that b = limt→0 t−1(Tt (a) − a) in the weak* topology, and L(a) = b;
the predual semigroup of T is the semigroup T∗ of operators in A∗ defined by
(T∗t (ω)) (a) = ω(Tt (a)) for every a ∈ A and ω ∈ A∗. Since any map T∗t is
clearly weak continuous on A∗, by a well-known fact (see, for instance [4] Cor.
3.1.8), T∗ is a strongly continuous semigroup in the Banach space A∗; moreover,
if T is Markov, T and T∗ are semigroups of contractions (see [9], Prop. 2.10.3).

We say that a normal state ω on A is invariant if T∗t (ω) = ω for all t ≥ 0 and
we denote by F(T∗)1 the set of normal invariant states on A.

3. Subharmonic projections and the fast recurrent projection

A positive operator a is subharmonic (resp. superharmonic, resp. harmonic) if
Tt (a) ≥ a (resp. Tt (a) ≤ a, resp. Tt (a) = a) for all t ≥ 0; we denote by F(T ) the
set of harmonic elements of T . We call a QDS T irreducible if T has no non-trivial
subharmonic projections.

We introduce now some results that we shall often use in this paper.

Lemma 1. Given a positive element a ∈ A and a projection p, p⊥ap⊥ = 0
implies a = pap.
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Proof. Let u ∈ p(H)⊥ and v ∈ p(H); since a is positive, we have 〈λu+v, a(λu+
v)〉 = 2
〈λu, av〉 + 〈v, av〉 ≥ 0 for all λ ∈ C. Therefore 〈u, av〉 = 0 for all
u ∈ p(H)⊥, v ∈ p(H), that is p⊥ap = 0. It follows that pap⊥ = 0 as well, and
so a = pap. ��
Proposition 1. A normal state ω on A is faithful on s(ω)A s(ω).

Proof. Let p = s(ω) and suppose ω(a) = 0, where a ∈ pAp, a ≥ 0; if qn denotes
the spectral projection of a associated with the interval ]1/n, ‖a‖], (n ≥ 1), then
ω(qn) ≤ nω(a) = 0 implies qn ≤ p⊥ for all n ≥ 1. Since qn ≤ na ≤ n‖a‖p, this
means that qn = 0 for all n ≥ 1; hence q := supn qn = 0. But q is the projection
onto the closure of the range of a, so a = 0. ��
Theorem 1. Let T be a QMS on A. If ω ∈ A∗ is an invariant state, then its support
projection is subharmonic.

Proof. Let p := s(ω) and fix t ≥ 0. From the invariance of ω it follows ω(p −
pTt (p)p) = ω(p − Tt (p)) = 0 and then pTt (p)p = p, because pTt (p)p ≤ p

and ω is faithful on pAp (see Prop. 1). Therefore, the projection p⊥ satisfies
pTt (p

⊥)p = 0, so Tt (p
⊥) = p⊥Tt (p

⊥)p⊥ by Lemma 1. This implies Tt (p
⊥) ≤

p⊥ and consequently Tt (p) ≥ p. ��
Proposition 2. Let T be a QMS on A and let p1, p2 be subharmonic projections in
A with p1 ≥ p2. If p1 is the support projection of a normal invariant state ω1, then
we have (p1 − p2)Tt (p2)(p1 − p2) = 0 for all t ≥ 0. In particular, if p2 ∈ D(L),
(p1 − p2)L(p2)(p1 − p2) = 0.

Proof. Since any (Tt (pi))t≥0 (i = 1, 2) is an increasing positive net with upper
bound 1, there exists xi ∈ A such that xi = w∗- limt Tt (pi), xi ≥ pi , i = 1, 2
and x1 ≥ x2 ≥ 0. Therefore, from the invariance of ω1 it follows ω1(x1 − x2) =
limt ω1(Tt (p1 − p2)) = ω1(p1 − p2), i.e. ω1(x1 − p1) = ω1(x2 − p2). But
ω1(x1) = limt ω1(Tt (p1)) = ω1(p1), so ω1(x2 − p2) = 0. Since ω1 is faithful on
p1Ap1 (Prop. 1), this means that p1(x2−p2)p1 = p1(x2−p2) = (x2−p2)p1 = 0
by Lemma 1, and then

0 = (p1 − p2)(x2 − p2)(p1 − p2) ≥ (p1 − p2)(Tt (p2) − p2)(p1 − p2) ≥ 0

which implies (p1 − p2)Tt (p2)(p1 − p2) = (p1 − p2)p2(p1 − p2) = 0 for all
t ≥ 0. Deriving at t = 0 we get also the last statement. ��
Prop. 2 provides us with a good rule to test whether, given two comparable subhar-
monic projections, their upper bound is the support of an invariant state. It will be
very useful to find the normal invariant states in section 7.

Notation. For any ω ∈ A∗ and p projection of A, we denote by pωp the element
of A∗ defined as pωp(a) = ω(pap) for all a ∈ A, and by pA∗p the set of pωp

as ω varies in A∗. Then we can identify the normal states on pAp with the normal
states on A whose support is smaller than p.
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Theorem 2. Let T be a QMS on A. A projection p in A is subharmonic if and only
if

pTt (a)p = pTt (pap)p ∀ a ∈ A, t ≥ 0. (1)

Proof. If p is subharmonic, then for any ω ∈ A∗ we have (T∗t (pωp))(p⊥) =
ω(pTt (p

⊥)p) = 0, so s(T∗t (pωp)) ≤ p for all t ≥ 0; therefore, given a ∈ A, if
qt is the support projection of T∗t (pωp), the equalities

ω(pTt (pap)p) = (T∗t (pωp))(pap) = (T∗t (pωp))(qtpapqt )

= (T∗t (pωp))(qtaqt ) = (T∗t (pωp))(a) = ω(pTt (a)p)

hold for all t ≥ 0. Since ω ∈ A∗ is arbitrary, this means that pTt (a)p = pTt (pap)p

for all t ≥ 0. Conversely, if (1) holds, taking a = 1 we get p = pTt (p)p, that
is pTt (p

⊥)p = 0 for all t ≥ 0; we can then conclude that p is subharmonic by
Lemma 1. ��

If T is a QMS on A and p is a subharmonic projection in A, it follows by Thm.
2 that we can construct a QMS T p on pAp by defining

T p
t (a) := pTt (a)p

for all a ∈ pAp, t ≥ 0. T p is called reduced semigroup associated with the
subharmonic projection p. It is easy to check that its predual semigroup is the
restriction of T to the subspace pA∗p.

We want to construct a subharmonic projection pR , called the fast recurrent
projection, determined by supports of normal invariant states on A.

Definition 1. Given a family (pi)i∈I of projections in A, we denote by supi∈I pi

the projection (in A) onto the closure of the linear space of H generated by the
ranges of pi’s.

Proposition 3. Let (pi)i∈I be a family of subharmonic projections for a QMS T
on A. The projection p = supi∈I pi is also subharmonic for T .

Proof. Fix t ≥ 0; then Tt (p
⊥) ≤ Tt (p

⊥
i ) ≤ p⊥

i for all i ∈ I . Hence, we have
pi(H) = ker p⊥

i ⊆ ker Tt (p
⊥) for all i ∈ I , so p(H) ⊆ ker Tt (p

⊥); it fol-
lows that Tt (p

⊥)p = 0 and then pTt (p
⊥)p = 0. Therefore, by Lemma 1 we get

Tt (p
⊥) ≤ p⊥. ��

Definition 2. We call fast recurrent projection associated with a QMS T the pro-
jection pR = supi∈I pi , where the pi’s are the support projections of all invariant
states of T .

Since the support projections of normal invariant states are subharmonic (Thm. 1),
Prop. 3 implies that pR is also subharmonic, so we can consider the reduced semi-
group T pR associated with pR .

Proposition 4. The family F(T∗)1 is faithful on pRApR .
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Proof. Let a ∈ pRApR be a positive element such that ω(a) = 0 for all ω ∈ F(T∗);
then s(ω)as(ω) = as(ω) = s(ω)a = 0 for all ω in F(T∗) by Prop. 1 and Lemma
1. Therefore, since

a


∑

j∈F

uj


 =

∑
j∈F

a
(
s(ωj )uj

) = 0

if F is a finite subset of I and uj ∈ s(ωj )(H), with ωj ∈ F(T∗), j ∈ F , we find
a(u) = 0 for u ∈ pR(H). Clearly a(u) = apR(u) = 0 if u ∈ ker pR , so that
a = 0. ��

Since any T -invariant state is clearly also T pR -invariant, Prop. 4 assures the
existence of a faithful family of normal invariant states for T pR ; so, the application
of the mean ergodic Thm. of [13] to T pR leads to the following.

Theorem 3. For all a ∈ A the limit

E(a) := w∗- lim
t

1

t

∫ t

0
pRTs(a)pR ds

exists and it defines a pRT pR-invariant normal conditional expectation onto the
von Neumann subalgebra F(T pR ) of pRApR such that E ◦ Tt = E for all t ≥ 0.
A normal state ω on A is T -invariant if and only if ω ◦ E = ω.

We recall that a von Neumann algebra A on H is σ -finite if there exists a count-
able subset S of H which is separating for A (i.e. for any a ∈ A, au = 0 for all
u ∈ S implies a = 0) (see [4], Prop. 2.5.6). If A is σ -finite and p is a projec-
tion in A, then pAp is also σ -finite on p(H) because S separating for A implies
{pe : e ∈ S} separating for pAp.

Theorem 4. If A is σ -finite, then there exists a normal invariant state with support
pR .

Proof. Let {en}n≥1 be a countable subset of pR(H) which is separating for pRApR;
by definition of pR , for any n, m ≥ 1 there exist a finite set Fn,m ⊆ N, ωi ∈ F(T∗)1
(i ∈ Fn,m) and xn,m ∈ span{s(ωi) : i ∈ Fn,m} such that ‖en−xn,m‖ < m−1. There-
fore,

ω(a) :=
∑

n,m≥1

1

2n+m|Fn,m|
∑

i∈Fn,m

ωi(a)

defines a normal invariant state on A by Beppo Levi Theorem. We prove that ω

is faithful on pRApR (i.e. s(ω) = pR). Let a ∈ A+ such that ω(a) = 0; then
ωi(a) = 0 for all i ∈ Fn,m, n, m ≥ 1. This implies s(ωi)a = as(ωi) = 0 for all
i ∈ Fn,m, n, m ≥ 1 by Lemma 1, so that pn,ma = apn,m = 0 for all n, m ≥ 1,
where pn,m is the orthogonal projection onto the closure of span{s(ωi) : i ∈ Fn,m}.
Fix n ≥ 1, since axn,m = apn,mxn,m = 0, we have

‖aen‖ ≤ ‖aen − axn,m‖ + ‖axn,m‖ ≤ ‖a‖ · ‖en − xn,m‖ ≤ m−1‖a‖
for all m ≥ 1, so that apRen = 0. This means apR = 0 = pRapR . ��
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Corollary 1. If A is σ -finite, then pR = 1 if and only if there exists a faithful
normal invariant state on A.

We want now to see when we can decompose pR as sum of orthogonal T pR -invari-
ant projections (pn) such that any restriction of T pR to the subalgebra pnApn is
irreducible. In this case, since pnApn is T pR -invariant, we have

T pR
t (x) = pnT pR

t (x)pn = pnTt (x)pn ∀ x ∈ pnApn,

so that the restriction of T pR to pnApn is the reduced semigroup T pn for all
n ≥ 0. Moreover, given ω ∈ F(T∗)1 with ω(pn) �= 0 (which exists by virtue of
Prop. 4), we get pnωpn(T pn

t (x)) = ω(Tt (x)) = ω(x) for all x ∈ pnApn. Hence,
ωn := ω(pn)

−1pnωpn is a normal T pn -invariant state; also, from the irreducibility
of T pn it follows that ωn is faithful on pnApn, so that it is unique by Thm. 1 of
[12]. As a consequence, T pR is the direct sum of the irreducible “sub-QMSS” T pn

each one with a unique faithful normal invariant state.
To see when this decomposition is possible we need to introduce the extremal

states of F(T∗)1.

Lemma 2. Let T be a QMS on A; if ω is a normal state on A and p is a subhar-
monic projection such that p ≥ s(ω), then:

1. ω is T -invariant if and only if ω is T p-invariant;
2. ω is extremal in F(T∗)1 if and only if ω is extremal in F(T p

∗ )1.

Proof. 1. If ω is T p-invariant, then

ω(Tt (a)) = ω(pTt (a)p) = ω(T p
t (pap)) = ω(pap) = ω(a)

for all a ∈ A, t ≥ 0, for s(ω) ≤ p and p is subharmonic. The converse is clear
since T p

∗ is the restriction of T∗ to pA∗p.
2. Let ω be extremal in F(T∗)1 and suppose ω = λω1 + (1 − λ)ω2 in pAp with

0 < λ < 1 and ω1, ω2 ∈ F(T p
∗ )1; since s(ωi), s(ω) ≤ p, i = 1, 2, this

equality holds on all A. Therefore, we get ω = ω1 = ω2 by virtue of point 1.
On the other hand, if ω is extremal in F(T p

∗ )1 and ω = λω1 + (1 − λ)ω2 with
0 < λ < 1 and ωi ∈ F(T∗)1, then s(ωi) ≤ s(ω) ≤ p, that is any ωi belongs to
F(T p

∗ )1; hence, we have ω(a) = ω(pap) = ωi(pap) = ωi(a) for all a ∈ A
and i = 1, 2, i.e. ω = ω1 = ω2. ��

Theorem 5. Let T be a QMS on A. The following facts are equivalent:

1. there exists a set of pairwise orthogonal projections (pn)n∈N , card N ≤ X0,
such that pR = ∑

n∈N pn, T pR
t (pn) = pn and the restriction of T pR to the

subalgebra pnApn is irreducible for all n ∈ N ;
2. there exists a sequence (ωn)n∈N of extremal points of F(T∗)1 such that s(ωm)s

(ωn) = 0 for n �= m and
∑

n∈N s(ωn) = pR .

Proof. 1) ⇒ 2) Fix n ∈ N . By the above remarks, there exists a unique faithful
normal T pn -invariant state on pnApn, so that it is extremal in F(T pn∗ )1 by Thm. 1
of [12]; we can then conclude the proof by virtue of Lemma 2.



Classification and decomposition of Quantum Markov Semigroups 609

2) ⇒ 1) Set pn := s(ωn) for all n ∈ N ; then (pn)n∈N is a sequence of pairwise
orthogonal T pR -harmonic projections (since any pn is subharmonic by Thm. 1 and
ωn is a faithful invariant state on pnApn) such that pR = ∑

n∈N pn.
Fix n ∈ N , since ωn is extremal in F(T∗)1 it is also extremal in F(T pn∗ )1 by Lemma
2; therefore, s(ωn) = pn implies T pn = T pR

|pnApn
irreducible by Thm. 1 of [12]. ��

Lemma 3. If T is a QMS on A and ω, σ are extremal states of F(T∗)1 such that
[s(ω), s(σ )] = 0, then s(ω)s(σ ) = 0.

Proof. Set p = s(ω) and q = s(σ ). The condition [p, q] = 0 implies p∧q = pq;
since p ∧ q is T pR -invariant and ω, σ are extremal, by Thm. 1 of [12] we have
either p ∧ q = 0 or else p ∧ q = p, and correspondingly pq = 0 or p = q. But
p = q means σ = ω by Lemma 1 of [12], for ω is the unique faithful T p-invariant
state on pAp. ��

Proposition 5. Suppose A σ -finite and let T be a QMS on A. The equivalent
conditions of Thm. 5 are satisfied in one of the following cases:

- F(T∗) is finite-dimensional,
- A is commutative and the family of extremal states of F(T∗)1 is faithful on

pRApR .

Proof. Let {ωn}n∈N ; card N ≤ X0, be a maximal family of extremal states of
F(T∗)1 with orthogonal supports. Set q := ∑

n∈N s(ωn) ≤ pR and q ′ := pR−q. If
q �= pR , we want to construct an extremal state σ of F(T∗)1 such that s(σ )s(ωn) =
0 for all n ∈ N ; this contradicts the maximality of {ωn}n∈N .

Let ρ ∈ F(T∗)1 be such that ρ(q ′) �= 0 (which exists by virtue of Prop. 4).
Since q ′ is T pR -harmonic and s(ρ) ≤ pR , we have

q ′ρq ′(Tt (a))=ρ(q ′T pR
t (q ′aq ′)q ′) = ρ(T pR

t (q ′aq ′)) = ρ(Tt (q
′aq ′)) = q ′ρq ′(a)

for all a ∈ A, t ≥ 0, that is ω := ρ(q ′)−1q ′ρq ′ is a normal invariant state.
Therefore, if F(T∗) is finite-dimensional, and since ω is a convex combination of
extremal points of F(T∗)1 by Thm. 2.3.15 of [4], we have q ′ ≥ s(ω) ≥ s(σ ) for
some σ extremal in F(T∗)1, which means s(σ )s(ωn) = 0 for all n ∈ N .
On the other hand, if A commutative and the family of extremal states of F(T∗)1
is faithful on pRApR , we can choose ρ extremal such that ρ(q ′) �= 0; therefore,
since s(ωn) ≤ q, Lemma 3 implies s(ρ)s(ωn) = 0 for all n ∈ N . ��

4. Potential and the transient projection

In this section we study the part of a QMS T without invariant states as well as
the projections in which the system spends a small amount of time; therefore, we
need to introduce a potential associated to T , which really represents the time of
sojourn of a pure state in a projection.

Our reference on quadratic forms is the book of Kato [15].
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Definition 3. Given a positive operator x ∈ A we define the form-potential of x

as a quadratic form U(x) by

U(x)[u] =
∫ ∞

0
〈u, Ts (x) u〉ds, For all u ∈ D(U(x)),

where the domain D(U(x)) is the set of all u ∈ H s.t.
∫ ∞

0 〈u, Ts (x) u〉ds < ∞.

This is clearly a symmetric and positive form and by Thm. 3.13a, and Lemma
3.14a of [15] it is also closed. Therefore, when it is densely defined, it is represented
by a self-adjoint operator (see Thm. 2.1, Thm. 2.6 and Thm. 2.23 of [15]). This
motivates the following definition.

Definition 4. For all positive x ∈ A such that D(U(x)) is dense, we call potential
of x the self-adjoint operator U(x) which represents U(x).We set also Aint := { x ∈
A+ : U(x) is bounded } and we call T -integrable (or integrable) its elements.

Since D(U(x)1/2) = D(U(x)) by [15] Thm. 2.23, taken x ∈ Aint , we have
D(U(x)) = H and then 〈u, U(x)u〉 = ∫ ∞

0 〈u, Ts(x)u〉ds for all u ∈ H.
We recall that a closed operator A is affiliated with a von Neumann algebra A

if a′D(A) ⊆ D(A) and a′A ⊆ Aa′ for all a′ ∈ A′.

Proposition 6. Let T be a QMS and let x ∈ A be positive. Then the orthogo-
nal projection onto the closure of D(U(x)) and the projection onto K(x) = {u ∈
D(U(x)) : U(x)[u] = 0} are subharmonic.

In particular, if T is irreducible, then D(U(x)) is either dense or {0}.
We refer to [11], Prop. 2 and 4 for the proof.
The following Thm. extends some results in [11] to the general case, when

D(U(x)) is not dense in H.

Theorem 6. Let x be a positive element of A with D := D(U(x)) �= {0}; then there
exists a positive self-adjoint operator X on the Hilbert space D with D(X) ⊆ D,
D(X1/2) = D(U(x)) and

〈u, Xu〉 =
∫ ∞

0
〈u, Tt (x)u〉dt ∀ u ∈ D(X), (2)

‖X1/2u‖2 =
∫ ∞

0
〈u, Tt (x)u〉dt ∀ u ∈ D(U(x)). (3)

Moreover, if p is the orthogonal projection onto D, then:

(i) X is affiliated with pAp;
(ii) if X̃u := X(p+X)−1pu for all u ∈ H, then X̃ is superharmonic and T p

t (X̃)

converges strongly to 0 as t → ∞;
(iii) if Xt = ∫ t

0 Tr (x) dr for all t ≥ 0 and x̂ := s − limt→∞ Xt(1 + Xy)
−1, then

x̂ is superharmonic and px̂p = X̃;
(iv) if u ∈ D, then px̂pu = 0 implies U(x)[u] = 0.
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Proof. The form Q[u] := ∫ ∞
0 〈u, Ts(x)u〉ds for all u ∈ D is a symmetric, positive

and closed form on D. Therefore it is represented by a self-adjoint operator X :
D(X) ⊆ D → D which satisfies (2) and (3).

(i) Fix y ∈ (pAp)′ and define X̃t = pXtp for all t ≥ 0; clearly, both X̃t and

X̃t
1/2

belong to pAp. Given any u ∈ D, we have

∫ t

0
〈yu, pTs (x)pyu〉ds=〈yu, X̃tyu〉=〈yX̃t

1/2
u, yX̃t

1/2
u〉 ≤ ‖y‖2〈u, X̃tu〉.

Taking the supremum on t ≥ 0, it follows that, if u ∈ D(U(x)) = D(X1/2),
then pyu = yu ∈ D.
Now, if v, u ∈ D(X) ⊆ D, then y∗v, yu ∈ D and

∫ t

0
〈y∗v, pTs (x)pu〉ds=

∫ t

0
〈pTs (x)py∗v, u〉ds =

∫ t

0
〈pTs (x)pv, yu〉ds,

so that, letting t → ∞, we get 〈y∗v, Xu〉 = 〈Xv, yu〉. Hence, 〈v, y Xu〉 =
〈Xv, yu〉 which implies yu ∈ D(X) and Xyu = y Xu by Thm. of represen-
tation (see [15]); therefore y X ⊆ Xy, i.e. X is affiliated with pAp.

(ii) We first notice that X̃ = f (X) with f (z) = z
1+z

for all z ≥ 0, so it belongs to
pAp because f is bounded on [0, ∞).
Since p is subharmonic (see Prop. 6.i), Thm. 2 implies

pTt

(
X̃s

)
p =

∫ s

0
pTt+r (x)p dr =

∫ t+s

t

pTr (x)p dr = X̃t+s − X̃t (4)

for any s, t ≥ 0, so

pTt

(
X̃s

)
p ≤ X̃t+s . (5)

Since pTt (·)p is 2-positive and pTt (p)p = p = 1pAp, by Lemma 1.4.2 of
[5] we get

(
p + pTt

(
X̃s

)
p
)−1 ≤ pTt

(
(p + X̃s)

−1
)
p.

From (5) we have then

(
p + X̃t+s

)−1 ≤ pTt

(
(p + X̃s)

−1
)
p.

Therefore

pTt

(
X̃s(p + X̃s)

−1
)
p = p − pTt

(
(p + X̃s)

−1
)
p ≤ p −

(
p + X̃t+s

)−1

= X̃t+s

(
p + X̃t+s

)−1
.
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Since X̃t+su converges to Xu as s → ∞ for all u ∈ D(X) and D(X) is dense
in p(H), Thms. 4.2, 4.5 of [17] imply that

lim
s

(p + X̃t+s)
−1u = (p + X)−1u (6)

for all u ∈ H, t ≥ 0; hence, letting s → ∞, the inequality p, Tt (X̃)p ≤ X̃

holds, because the map Tt (·) is normal. Finally, since (4) implies

pTt

(
X̃s(p + X̃s)

−1
)

p ≤ pTt

(
X̃s

)
p = X̃t+s − X̃t ,

for all u ∈ D we get

〈u, pTt

(
X̃s(p + X̃s)

−1
)

pu〉 ≤
∫ t+s

t

〈u, pTr (x) pu〉dr;

letting s → ∞ again,

〈u, pTt (X̃)pu〉 ≤
∫ ∞

t

〈u, pTr (x) pu〉dr,

thus, 〈u, pTt (X̃)pu〉 vanishes for all u ∈ D, as t goes to infinity. Since D is
dense in p(H) and the operators pTt (X̃)p are uniformly bounded in norm by
‖X̃‖, the last statement follows.

(iii) Since the map s �→ Xs(1 + Xs)
−1 = 1 − (1 + Xs)

−1 is increasing and
Xs(1+Xs)

−1 ≤ 1 for all s ≥ 0, there exists the strong limit x̂ of Xs(1+Xs)
−1;

clearly, x̂ belongs to A and it is positive. Moreover, arguing as in the above
point, we can show that x̂ is superharmonic.
Since X̃s is positive, p + X̃s is invertible on p(H) and we have

p(1 + Xs)
−1u = p(p + X̃s)

−1u ∀ u ∈ p(H). (7)

Indeed, if Es is the spectral measure of Xs , Ẽs(B)u := pEs(B)u ∈ p(H)

defines the spectral measure of X̃s for any set B ∈ B(R+) and u ∈ p(H);
hence we get

〈u, p(1 + Xs)
−1u〉 = 〈u, (1 + Xs)

−1u〉 =
∫

(1 + λ)−1dEsu,u(λ)

=
∫

(1 + λ)−1dẼsu,u(λ) = 〈u, (p + X̃s)
−1u〉

for all u ∈ p(H), which is (7). Therefore, (6) implies that

px̂pu = lim
s

pXs(1 + Xs)
−1u = lim

s
(pu − p(1 + Xs)

−1u)

= lim
s

(pu − p(p + X̃s)
−1u) = pu − p(p +X)−1u = pX(p+X)−1u

for all u ∈ p(H), that is px̂p = X̃.
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(iv) Let u ∈ D; then px̂pu = X(p + X)−1u by the above point. Hence, if E is
the spectral measure of X, px̂pu = 0 means

0 = 〈u, X(p + X)−1u〉 =
∫ ∞

0
λ(1 + λ)−1dEu,u(λ),

that is Eu,u = δ0; it follows that 0 = ‖X1/2u‖2 = U(x)[u]. ��
Remark 1. When D(U(x)) is dense in H, then X = U(x).

Theorem 7 (Riesz Decomposition). Let x be a positive element in A; if x is su-
perharmonic and Tt (x) is weakly* convergent to 0 as t → ∞, then for any λ > 0
there exists yλ ∈ Aint such that Rλ(x) = U(yλ), where Rλ is the resolvent of T .

Proof. Let λ > 0; since x is superharmonic, we have Rλ(x) ≤ λ−1x and Tt (Rλ(x))

≤ Rλ(x) for all t ≥ 0. It follows that w∗- limt Tt (Rλ(x)) ≤ λ−1w∗- limt Tt (x) =
0. Therefore, since for all t ≥ 0

∫ t

0
Ts(−L(Rλ(x)))ds = Rλ(x) − Tt (Rλ(x)),

getting t → ∞, we obtain U(−L(Rλ(x))) = Rλ(x), with −L(Rλ(x)) ≥ 0
because Rλ(x) is superharmonic. We can then put yλ = −L(Rλ(x)) ∈ Aint . ��

We introduce now the transient projection.
For each operator x on H, we call range projection of x and denote it by [x]

the orthogonal projection onto the closure of x(H); it is well-known that x ∈ A
implies [x] ∈ A.

Definition 5. We call transient projection associated with the QMS T the projection
pT in A defined by pT := sup{ p : p ∈ P } where

P := { p projection in A : ∃ x ∈ Aint s.t. p = [U(x)] }.
The transient projection is orthogonal to the supports of normal invariant states,
that is

Proposition 7. We have pT ≤ p⊥
R .

Proof. Given p = [U(x)] with x ∈ Aint and ω a normal invariant state, we have

ω(U(x)) =
∫ ∞

0
ω(Ts(x))ds =

∫ ∞

0
ω(x)ds,

which implies ω(U(x)) = 0. Since ω is faithful on the subalgebra s(ω)A s(ω), this
means that s(ω)U(x) = 0 by Lemma 1, i.e. U(x)(H) ⊆ ker s(ω); then p(H) ⊆
ker pR , so p ≤ p⊥

R for all p ∈ P , which implies pT ≤ p⊥
R . ��

By Prop. 6 any projection p in P is superharmonic, but it is not clear whether
the supremum of a family of superharmonic projections is still superharmonic.
However, we will prove that pT is superharmonic when A is σ -finite.
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Lemma 4. If e ∈ pT (H), then there exists x ∈ Aint such that e ∈ Ran(U(x)).

Proof. Since pT (H) is the closure of the union of p(H) as p ∈ P , for any n ≥ 1
there exists un ∈ pn(H), pn ∈ P , such that ‖e−un‖ < n−1; suppose pn = [U(xn)]
with xn ∈ Aint for all n ≥ 1 and put

x :=
∑
n≥1

2−n(‖xn‖ + ‖U(xn)‖ + 1)−1xn.

Then x ∈ Aint and ker U(x) = ⋂
n≥1 ker U(xn); so, if we define p = supn pn, we

have p = [U(x)]. Moreover, since un ∈ pn(H) and pn ≤ p for all n ≥ 1, we get

‖e − pe‖ ≤ ‖e − un‖ + ‖pun − pe‖ < n−1 + ‖un − e‖ < 2n−1

for all n ≥ 1, which implies pe = e, that is e ∈ p(H). ��
Theorem 8. If A is σ -finite, there exists an increasing sequence (pn)n≥0 in P such
that pT = supn≥0 pn. Moreover pT ∈ P .

Proof. Let {en}n≥0 be a countable subset of H which is separating for A and
suppose pT en ∈ U(xn)(H) for some xn ∈ Aint , n ≥ 0 (see Lemma 4). Define
yn := ∑n

k=0 xk and put pn := [U(yn)] for all n ≥ 0; then any yn belongs to Aint

and (pn)n≥0 is an increasing sequence in P . Moreover, since

ker U(yn) = ∩n
k=0 ker U(xn)

for all n ≥ 0, we have pT en ∈ U(xn)(H) ⊆ U(yn)(H) = pn(H), which implies
(pT − supm≥0 pm)pT en = 0 for all n ≥ 0, so pT = supn≥0 pn because {pT en}n≥0
is separating for pT ApT and pT − supn≥0 pn ∈ pT ApT .

Finally, if

y :=
∑
n≥0

2−n(‖yn‖ + ‖U(yn)‖ + 1)−1yn,

it is clear that y ∈ Aint and ker U(y) = ∩n≥0 ker U(yn) = ker pT , so that [U(y)] =
pT , i.e. pT ∈ P . ��
Corollary 2. If A is σ -finite, then the transient projection pT is superharmonic.
In particular, the subalgebra pT ApT is Tt -invariant for all t ≥ 0.

Proof. By Thm. 8 we have pT = w∗- limn pn, pn ∈ P for all n ≥ 0; since any
pn satisfies Tt (pn) ≤ pn ≤ pT for all t ≥ 0, letting n → ∞ the inequality
Tt (pT ) ≤ pT holds for all t ≥ 0.

Finally, if x is a positive element of A, x = pT xpT , we have x ≤ ‖x‖pT ,
so 0 ≤ p⊥

T Tt (x)p⊥
T = 0 for all t ≥ 0, because pT is superharmonic; it follows

then by Lemma 1 that Tt (x) = pT Tt (x)pT for all t ≥ 0, i.e. any Tt (x) belongs to
pT ApT . ��

We can then consider the restriction of T to the subalgebra pT ApT . Notice that,
if (pn)n≥0 is a sequence of projections as in Thm. 8, then the map t �→ 〈u, Tt (pn)u〉
is integrable on [0, ∞) for all u ∈ H; this implies that Tt (pn) is strongly convergent
to 0 as t → ∞. Therefore, we have the following
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Corollary 3. If A is σ -finite, then the restriction of T to pT ApT has no normal
invariant states.

Proof. If ω is a normal invariant state on pT ApT , then limn ω(pn) = ω(pT ) = 1
for every t ≥ 0, so there exists m > 0 such that ω(Tt (pm)) = ω(pm) > 1/2 for
all t ≥ 0. Since Tt (pm) is uniformly bounded in t and converges strongly to 0 as
t → ∞, we get the contradiction 0 > 1/2. ��
Proposition 8. If A is σ -finite, then

pT = {p projection of A : p ∈ Aint } .

Proof. By Thm. 8 we have pT = [U(x)] with x ∈ Aint .
Fix λ > 0 and put y = Rλ(x). It is easy to see that y ∈ Aint and [U(x)] = [y];
therefore, if pn := Ey(] 1

n
, ‖x‖]), we get that pn ≤ ny, so that it belongs to Aint

for all n ≥ 1 and sup pn = [y] = pT . ��

5. Decomposition of QMS

In this section we define in first the slow recurrent projection pR0 and introduce the
transient, fast and slow recurrent semigroups in terms of pT , pR, pR0 ; we will show
that it is possible to decompose a QMS as the sum of a transient and a recurrent
part.

Definition 6. The projection pR0 = p⊥
R − pT is called slow recurrent projection

associated with the QMS T .

Definition 7. We call a QMS T transient if pT = 1, recurrent if pT = 0, fast
recurrent if pR = 1 and slow recurrent if pR0 = 1.

Notice that we can also define pT , pR and pR0 for a QDS T on A such that
Tt (1) ≤ 1 for all t ≥ 0; since it is easy to check that this projections satisfy the
same properties, we can introduce the concepts of transience and recurrence for
such semigroup too.

Prop. 8 implies that, when the von Neumdun algebra A is σ -finite, the defi-
nition of transient QMS is equivalent with the one given in [11]; instead, it is not
yet clear if the same holds for the recurrent QMS. In order to prove this, starting
with a positive element x such that U(x)[u] > 0 for some u ∈ D(U(x)) we have to
construct a non-zero integrable element. This is done in the following

Lemma 5. Let x be a positive non-zero element in A such that there exists u0 ∈
D(U(x)) with U(x)[u0] > 0 and let Xt = ∫ t

0 Tr (x) dr for all r ≥ 0. If y =
s − limt→∞ Xt(1 + Xt)

−1, then z = −L(Rλ(y)) is non-zero and integrable for
all λ > 0.

Proof. Since y is superharmonic by Thm. 6.iii, Rλ(y) is also superharmonic (λ >

0); therefore, z := −L(Rλ(y)) is positive and
∫ t

0
Ts(z)ds =

∫ t

0
Ts(−L(Rλ(y)))ds = Rλ(y) − Tt (Rλ(y)) ≤ Rλ(y)
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for all t ≥ 0, that is z is integrable (letting t → ∞). To conclude the proof it is
enough to prove that z �= 0.

If z = 0, we have Tt (Rλ(y)) = Rλ(y) for all t ≥ 0; since the map t �→
e−λsTs(y −Tt (y)) is positive and continuous, this means that y is harmonic. There-
fore, if D := D(U(x)) and p is the orthogonal projection onto the closure of D,
pTt (pyp)p = pTt (y)p = pyp holds for all t ≥ 0, p being subharmonic by Prop.
6. But pTt (pyp)p converges strongly to 0 as t → ∞ by Thm. 6.ii and iii, so that
pyp = 0; by virtue of iv of the same Thm., this implies U(x)[u] = 0 for all u ∈ D,
which is a contradiction since U(x)[u0] > 0 for u0 ∈ D(U(x)) = D. ��
Proposition 9. A QMS T is recurrent if and only if for each positive x ∈ A and
u ∈ H either u �∈ D(U(x)) or u ∈ D(U(x)) and U(x)[u] = 0.

Proof. ⇐) It is trivial since we have Aint = {0}, so P = {0} and pT = 0.
⇒) If there exist a positive element x in A, x �= 0, and u ∈ D(U(x)) such that
U(x)[u] > 0, by Lemma 5 we can find z ∈ Aint , z �= 0. Therefore 0 ≤ [z] ≤
[U(z)] ≤ pT = 0 which is a contradiction. ��

As a consequence, definitions 7.2 and 3 of [11] are equivalent.
In general, a QMS T is not type 1, 2, 3, 4, but, if A is σ -finite, we can write it

as sum of a transient QDS (which is the restriction of T to the subalgebra pT ApT )
and a recurrent QMS (which is the reduced semigroup T p⊥

T associated to the sub-
harmonic projection p⊥

T ). To see it, we show the following

Proposition 10. For all positive x ∈ p⊥
T Ap⊥

T and u ∈ H we have either p⊥
T u �∈

D(U(x)) or p⊥
T u ∈ D(U(x)) and U(x)[p⊥

T u] = 0.

Proof. Suppose that there exist a positive x in p⊥
T Ap⊥

T and u ∈ H such that
p⊥

T u ∈ D(U(x)) and U(x)[p⊥
T u] > 0; we can then also assume that u is a non zero

element of p⊥
T (H). If D = D(U(x)) and p is the orthogonal projection onto D, by

Lemma 5 we can find z ∈ Aint \ {0}, z = −L(Rλ(y)), where the superharmonic
element y is the strong limit of Xs(1 + Xs)

−1, Xs = ∫ s

0 Th(x)dh.
Since −L(Rλ(y)) = (λ − L − λ)(λ − L)−1y = y − λRλ(y) belongs to Aint ,

then [y − λRλ(y)] ≤ [U(y − λRλ(y))] ≤ pT , that is (y − λRλ(y))p⊥
T = 0; but

0 = 〈v, (y − λRλ(y))v〉 =
∫ ∞

0
λe−λs〈v, (y − Ts(y))v〉ds ∀ v ∈ p⊥

T (H)

means (y − Ts(y))v = 0 for all v ∈ p⊥
T (H) and s ≥ 0, i.e. (y − Ts(y))p⊥

T = 0. In
particular

pypu = pyp⊥
T pu = pTt (y)p⊥

T pu = pTt (y)pu = pTt (pyp)pu

holds for all t ≥ 0, where p⊥
T pu = u = pu (since u = p⊥

T u ∈ D ⊆ p(H)) and
Tt (p) ≤ p have been used. Letting t → ∞, by virtue of Thm. 6.ii and iii we get
pypu = 0, and this implies the contradiction U(x)[u] = 0 by iv of the same Thm.
��
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Theorem 9. If A is σ -finite and T is a QMS on A, then the restriction of T to
pT ApT is a transient QDS on pT ApT while T p⊥

T is a recurrent QMS on p⊥
T Ap⊥

T .

Moreover T p⊥
T contains the fast recurrent “sub”-QMS T pR on pRApR .

Proof. T|pT ApT
is transient by Thm. 8 and Prop. 8; since the form-potential of any

positive x ∈ p⊥
T Ap⊥

T is
∫ ∞

0
〈u, T p⊥

T
s (x)u〉ds =

∫ ∞

0
〈p⊥

T u, Ts(x)p⊥
T u〉ds = U(x)[p⊥

T u]

for all u ∈ H such that this integral is convergent, we can also conclude that T p⊥
T

is recurrent by Prop. 9 and 10. Finally, since any normal T -invariant state belongs
to pRA∗pR (because its support is ≤ pR) and it is also T pR -invariant, we get
sup{s(ω) : ω ∈ F(T pR∗ )1} = pR , so that the last statement follows. ��

Instead, it is not yet clear if we can decompose T p⊥
T as sum of a fast and a slow

recurrent semigroup.
We now study better the evolution of a pure state ϕu defined by a density matrix

ρ = |u〉〈u| with u ∈ p(H), ‖u‖ = 1, and p ∈ {pT , pR, pR0}.
Notice that, since the map t �→ 〈u, Tt (p)u〉 is positive and continuous on

[0, +∞), we have U(p)[u] > 0 when u belongs to the range of p.
The following statement is immediate

Proposition 11. Suppose A σ -finite. If T is a QMS on A, then:

1. U(pT )[u] = 0 for u ∈ p⊥
T (H);

2. if u ∈ p⊥
T (H), then u �∈ D(U(p⊥

T ));
3. if u ∈ pR(H), then u �∈ D(U(pR));
4. for u ∈ p⊥

R (H) either u �∈ D(U(pR)) or u ∈ D(U(pR)) and U(pR)[u] = 0;
5. for u ∈ pT (H) either u �∈ D(U(p⊥

T )) or u ∈ D(U(p⊥
T )) and U(p⊥

T )[u] = 0;
6. U(pR0)[u] = 0 for u ∈ pR(H);
7. if u ∈ pR0(H), then u �∈ D(U(pR0)).

Proof. 1, 2, 3 are trivial because pT is superharmonic while pR and p⊥
T are sub-

harmonic.
4. Let u ∈ p⊥

R (H)∩D(U(pR)) and show that U(pR)[u] = 0. If U(pR)[u] > 0
and we let ωu = tr(|u〉〈u|·), there exists tu > 0 s.t. (T∗tu (ωu))(pR) =
〈u, Ttu (pR)u〉 > 0. The subharmonicity of pR implies

U(pR)[u] ≥
∫ ∞

0
(T∗tu (ωu))Ts(pR)ds ≥

∫ ∞

0
T∗tu (ωu)(pR)ds = +∞,

so that u �∈ D(U(pR)), which is a contradiction.
5. It is enough to argue as in 4, for p⊥

T is also subharmonic.
6. It is clear because pR0 ≤ p⊥

R and p⊥
R is superharmonic.

7. It follows by Prop. 10. ��
Remark 2. The hypotesis “A σ -finite” was used only in the proof of 1.
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Writing, for any projection p in A, U(p)[u] = +∞ when u �∈ D(U(p)), if A is
σ -finite we can then summarize the situation in this way:

τ(pT )[u] τ(p⊥
T )[u]

u ∈ pT (H) l > 0, +∞ 0, +∞
u ∈ p⊥

T (H) 0 +∞
where τ(p)[u] := U(p)[u] and the norm one vector u belongs either to pT (H) or
p⊥

T (H). Since for all projections p ∈ A U(p)[u] = ∫ ∞
0 〈u, Ts(p)u〉ds represents

the time of sojourn of the state tr(|u〉〈u|·) (‖u‖ = 1) in p (see [11]) and any normal
state ω is defined by a density matrix

∑
k λk|ek〉〈ek| with ek ∈ s(ω)(H), the table

should be read as follows:

- starting from a transient (support in pT ApT ) state, the semigroup T∗ spends a
finite or an infinite amount of time in pT but, if it leaves pT to come into p⊥

T ,
(i.e. its support is in p⊥

T Ap⊥
T ), it stays there forever;

- starting from a recurrent state, the semigroup T∗ cannot leave p⊥
T .

Moreover, by Prop. 11.iv and vii, we have that:

- starting from a slow recurrent (support in pR0ApR0 ) state, the system spends an
infinite amount of time in pR0 , it cannot enter in pT , but it can spend a null or
an infinite amount of time in pR;

- starting from a fast recurrent state, the semigroup T∗ cannot leave pR .

It is not clear if, starting from a transient state, the system can spend a finite amount
of time in pR0 .

6. The finite-dimensional case

In this section we suppose that A acts on a finite-dimensional Hilbert space H and
analyze the properties of the recurrent and transient projections.

As for the Markov chains with a finite state space, we are going to show that
pR �= 0 and pR0 = 0. Moreover, pT is integrable.

Notice that, if dim H < +∞, then T has an invariant state by the Markov-Ka-
kutani Theorem. Therefore, we have the following

Lemma 6. If dim H < +∞ and T is a QMS on A, then pR �= 0.

Lemma 7. If dim H < +∞ and T is a QMS on A, then p⊥
R ∈ Aint . In particular,

the net {Tt (p
⊥
R )}t is convergent to 0 as t goes to ∞.

Proof. Since {Tt (p
⊥
R )}t≥0 is a positive decreasing net in p⊥

RAp⊥
R (p⊥

R is superhar-
monic), it is convergent toward a positive element x0 ∈ p⊥

RAp⊥
R which is clearly

harmonic. Let

Sn := 1

n

n∑
k=1

T∗k (n ≥ 1),
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passing to subsequences if necessary, we can suppose that {Sn(ω)}n is convergent
for all ω ∈ A∗ = A∗; if ω is a normal state on A and S(ω) = limn Sn(ω), we have
S(ω) ∈ F(T∗)+, so s(S(ω)) ≤ pR . Hence

ω(x0) = lim
n

1

n

n∑
k=1

ω(T k
1 (x0)) = S(ω)(x0) = S(ω)(s(S(ω))x0) = 0,

which implies x0 = 0. Since H is finite-dimensional, this means that Tt (p
⊥
R ) is

norm-convergent to 0, and then ‖Tt0(p
⊥
R )‖ < 1 for some t0 > 0; therefore, we get

‖Tt (p
⊥
R )‖ ≤ ‖Tt0(p

⊥
R )‖ < 1 for all t ≥ t0, so that

∫ ∞

0
‖Tt (p

⊥
R )‖dt ≤ t0 +

∫ ∞

t0

‖Tt (p
⊥
R )‖dt < ∞,

i.e. p⊥
R ∈ Aint . ��

Theorem 10. If dim H < +∞ and T is a QMS on A, then pR0 = 0.

Proof. By Lemma 7 it follows that w∗- limt→∞ Tt (p
⊥
R ) = 0, so Rλ(p

⊥
R ) = U(yλ)

for some yλ ∈ Aint by Thm. 7.
Therefore we have p⊥

R ≤ [Rλ(p
⊥
R )] ≤ pT ≤ p⊥

R , i.e pR0 = 0. ��
Corollary 4. If dim H < +∞ and T is a QMS on A, then pT ∈ Aint .

The following Prop. is useful to see when a superharmonic projection is integrable.

Proposition 12. Let p ∈ A be a superharmonic projection such that there exist
s, ε > 0 with p − Ts(p) ≥ εp; then ‖Ts|pAp

‖ < 1 and

∫ ∞

0
‖Tt|pAp

‖dt < ∞. (8)

In particular p ∈ Aint .

Proof. We set St := Tt|pAp
for all t ≥ 0; then {St }t≥0 is a QDS on pAp, because

p is superharmonic. Moreover

‖Ss‖ = ‖Ss(p)‖ ≤ 1 − ε < 1.

Finally, since we can write any t ≥ 0 as t = kt s + r with kt = [t/s] and 0 ≤ r < s,
we have

∫ ∞

0
‖St‖dt ≤

∫ ∞

0
‖Ss‖kt dt =

∫ ∞

0
‖Ss‖ t−r

s dt =
∫ ∞

0
e

t−r
s

ln ‖Ss‖dt;

but ln ‖Ss‖ < 0 because ‖Ss‖ < 1, and t − r ≥ 0 (indeed if t < s, r = t , otherwise
r < s ≤ t), so (8) follows.

The last statement is a trivial consequence. ��
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7. Examples

1) We follow [1]. Let H := 
2(N) and A = B(H). If {ej }j≥0 is an orthonormal
basis of H, we define

L(x) = −1

2

∑
{h,k:h<k}

γ −
k,h ({|ek〉〈ek|, x} − 2|ek〉〈eh| x |eh〉〈ek|) + i[H, x]

for all x ∈ A, where {·, ·} denotes the anticommutant, H = ∑
j≥0 δj |ej 〉〈ej |

and the positive constants δj , γ
−
k,h (h, k, j ≥ 0, h < k) satisfy

sup
j≥0

δj < ∞, sup
k≥0

∑
h<k

γ −
k,h < ∞. (9)

Since (9) ensure its boundedness, L is the generator of a uniformly continuous
semigroup T ; moreover, the operators

G = −1

2

∑
k≥0

∑
h<k

γ −
k,h|ek〉〈ek| − iH, Lh,k =

√
γ −
k,h|eh〉〈ek|

if h < k and Lh,k = 0 if h ≥ k, are bounded by (9), so that L can be represented
in the Lindblad form and so T is a QDS on A. Finally, it is Markov because
L(1) = 0.
If we suppose for simplicity that γ −

k,k+1 > 0 for all k ≥ 0, then pR = |e0〉〈e0|.
Namely, by L∗(|e0〉〈e0|) = 0 follows immediately that |e0〉〈e0| ≤ pR; to prove
the conversely, we find the subharmonic projections of T . If p is a non trivial
subharmonic projection, then it fulfills p⊥Lh,kp = 0 for all h < k by Thm.
III.1 of [10], so, in particular, we have either pek = 0 or p⊥ek−1 = 0, for
γk,k−1 > 0. It is easy to check that this means p = pd for some d ≥ 0, where
pd := ∑d

j=0 |ej 〉〈ej |; on the other hand, since any pd satisfy also p⊥
d Gpd = 0,

the set of subhamonic projections is {0, pd : d ≥ 0} by Thm. III.1 and Lemma
III.1 of [10].
If pd is the support of a normal invariant state for some d ≥ 1, by Prop. 2
we get

∑d−1
s=0 γ −

d,s |ed〉〈ed | = (pd − pd−1)L(pd−1)(pd − pd−1) = 0, but this

is impossible since γ −
d,d−1 > 0. Therefore, the only projection which can be

support of an invariant normal state is p0 = |e0〉〈e0|, i.e. pR = |e0〉〈e0|. We
want now to prove that pR0 = 0.
Let T d be the reduced semigroup associated with pd , d ≥ 0, and let pd

R ,
pd

T be the fast recurrent and the transient projection of T d respectively; since
T d is a QMS on pdApd which acts on the finite dimensional Hilbert space
pd(H) = 
∞({1, . . . , d}), by Lemma 7 and Thm. 10 it follows pd

T = (pd
R)⊥

and T d
t (pd

R) ↗ pd for all d ≥ 0. But pd
R = pR = |e0〉〈e0| for all d ≥ 0 because

anyT d -invariant state is clearly alsoT -invariant, soT d
t (pR) ↗ pd ; therefore, if

x := w∗- limt Tt (pR), pdxpd = w∗- limt pdTt (pR)pd = w∗- limt T d
t (pR) =

pd holds. Letting d → ∞ it is easy to show that this means x = 1, i.e.
Tt (pR) ↗ 1. We can then conclude that pT = p⊥

R as in the proof of Thm. 10.
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The second example is a model for an atom with two-degenerate levels; it is
given in [3] and its greater complexity lies in the fact that is not easy to find the
invariant states.

2) Let H = C
2F−+1 ⊕ C

2F++1, F+ = F− + 1, 2F− ∈ N. We denote by
{e±

j }j=−F±,... ,F± the orthonormal basis of H, where e−
l = (el+F−+1, 0) for l =

−F−, . . . , F−, e+
k = (0, ek+F++1) for k = −F+, . . . , F+ and {ei}i=1,... ,4F−+4

is the canonical basis of C
4F−+4. Let us denote by P± the projections onto

C
2F±+1, P± = ∑F±

j=−F± |e±
j 〉〈e±

j |.
If K is a separable Hilbert space with orthonormal basis {zk}k≥1, we define an
operator on A = B(H) by

LB(x) = B

8
([(P+ − P−)x, P+ − P−] + [P+ − P−, x(P+ − P−)] + i[H, x])

+1

2

∑
k≥1

(
2D(zk)

∗xD(zk) − xD(zk)
∗D(zk) − D(zk)

∗D(zk)x
)
,

where

Qm =
F−∑

l=−F−

cl,m|e−
l 〉〈e+

l+m| (m = −1, 0, 1),

D(zk) =
1∑

m=−1

αk,mQm + �eiδ(βk,+P+ + βk,−P−),

H = γ

2
(P+ − P−) + i

4
�

[
eiδ(1 + e2iδ−)Q∗

1 − e−iδ(1 + e−2iδ−)Q1

]
,

B, �, δ ≥ 0, δ± ∈ [0, 2π) and the complex constants cl,m, αk,m, βk,± satisfy
1.

∑
k≥1 βk,−αk,m = 0 for m = −1, 0, rank({αk,m}m=−1,0,1, k≥1) = 3;

2.
∑1

m=−1 Q∗
mQm = P+ and cl,m �= 0 for l = −F−, . . . , F−, m = −1, 0, 1.

It is easy to check that 2 implies |cF−,1| = |c−F−,−1| = 1 and |cl,m| < 1 for
(l, m) �∈ {(F−, 1), (−F−, −1)}.

Since L is represented in the form of Lindblad taking L0 = √
B2−1(P+ −P−),

Lk = D(zk) for k ≥ 1 and G = −2−1 ∑
k≥0 L∗

kLk − iH , it is the generator of an
uniformly continuous QDS T on A; T is Markov because L(1) = 0.

We find the subharmonic projections to determine pR; if p is a such projection,
by Thm. III.1 and Lemma III.1 of [10] it follows that p(H) is invariant for any Lk

and G, i.e. p fulfills:

a) pLkp = Lkp for all k ≥ 0;
b) pGp = Gp.

For k = 0 in a), we get pP±p = P±p, because P+ = 1 − P−; hence, for k ≥
1, p

∑1
m=−1 αk,mQmp = ∑1

m=−1 αk,mQmp holds, which means pQmp = Qmp

for all m = −1, 0, 1 by 1. Therefore, b) implies that p(H) is invariant for

1

2

1∑
m,n=−1

εQ∗
mQn − 1

2
�eiδζQ∗

1,
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ε := ∑
k≥1 αk,mαk,n, ζ := ∑

k≥1 βk,−αk,1 − 1
2 (1 + e2iδ−), since 1 holds. Finally,

using that pP− = (P−p)∗ = (pP−p)∗ = pP−p = P−p and QnP− = 0 for all
n = −1, 0, 1, we obtain pQ∗

1p = Q∗
1p.

As a consequence, we claim that p = pj for some j ∈ {−F−, . . . , F−}, where

pj := ∑F−
i=j (|e+

i+1〉〈e+
i+1| + |e−

i 〉〈e−
i |).

Indeed, if {f1, . . . , fs} is the orthonormal basis of p(H),

fi =
F−∑

l=−F−

λi,le
−
l +

F+∑
k=−F+

µi,ke
+
k ,

put j := min{l = −F−, . . . , F− : ∃ i s.t. λi,l �= 0}, we have clearly P−p(H) ⊆
span{e−

j , . . . , e−
F−}; moreover, if there exists k0 < j + 1 such that µi,k0 �= 0

for some i ∈ {1, . . . , s}, by
∑F+

k=−F+ µi,kck−1e
−
k−1 = Q1P+fi ∈ p(H) we get

a contradiction since the coefficient of e−
k0−1 is µi,k0ck0−1 �= 0 and k0 − 1 <

j . Therefore every fi belongs to span{e+
j+1, . . . , e+

F+ , e−
j , . . . , e−

F−}, that is p ≤
pj . On the other hand, since pQ1 = (Q∗

1p)∗ = (pQ∗
1p)∗ = pQ1p = Q1p,

Q∗
1p = pQ∗

1 holds too, we have pQ∗
1Q1 = Q∗

1Q1p, so that p commutes with
any spectral projections of the self-adjoint operator Q∗

1Q1; because |cF−,1|2 = 1
is a simple eigenvalue of Q∗

1Q1 by an above remark, this means that p commutes
in particular with |e+

F+〉〈e+
F+|, i.e. pe+

F+ = νe+
F+ with ν ∈ {0, 1}. It follows that

νcF−,1e
−
F− = Q1pe+

F+ = pQ1e
+
F+ = cF−,1pe−

F− , that is pe−
F− = νe−

F− ; moreover,

since Q0pe+
F− = pQ0e

+
F− = cF−,0νe−

F− holds, if we let pe+
F− = ∑F−

l=j (ale
−
l +

bl+1e
+
l+1), we obtain

F−−1∑
l=j

bl+1cl+1,0e
−
l+1 = νcF−,0e

−
F− ,

so bl+1 = 0 for all l ∈ {j, . . . , F− − 2}, bF− = ν and pe+
F− = ∑F−

l=j ale
−
l + νe+

F− .
Finally, by

F−∑
l=j

alcl,1e
+
l+1 = Q∗

1pe+
F− = pQ∗

1e
+
F− = 0

we infer al = 0 for all l ∈ {j, . . . , F−}, and consequently pe+
F− = νe+

F− . There-

fore, by iteration, we have pe+
l+1 = νe+

l+1 for all l ∈ {j, . . . , F−}, which implies
pe−

l = νe−
l for all l ∈ {j, . . . , F−} by application of Q1. Since p �= 0, this shows

that e+
l+1 and e−

l belong to p(H) for all l ∈ {j, . . . , F−}, that is p = pj .
Hence, since (pj −pF−)L(pF−)(pj −pF−) �= 0 for all j ∈ {−F−, . . . , F−−1},

Prop. 2 entails that pj cannot be the support of an invariant normal state for j �= F−,
so pR = 0 or pR = pF− . We can then conclude that pR = pF− by Lemma 6.
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