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Abstract. We study models of continuous time, symmetric, Z¢-valued random walks in
random environments. One of our aims is to derive estimates on the decay of transition
probabilities in a case where a uniform ellipticity assumption is absent. We consider the case
of independent conductances with a polynomial tail near 0 and obtain precise asymptotics
for the annealed return probability and convergence times for the random walk confined to
a finite box.

1. Introduction

We study continuous time, irreducible, symmetric, nearest neighbor random walks
in random environments on Z%. Our aim is to derive estimates on the decay of
transition probabilities in the absence of a uniform ellipticity assumption.

The paper has four sections (other than this introduction). Sections 2 and 4 deal
with the decay of the mean or annealed return probability. In Section 2, we consider
quite general reversible random walks in a random environment and we establish
a comparison lemma for the annealed return probability. The proof is based on a
trace formula (in fact an extension of the trace formula for central probability for
random walks on amenable groups, see [9]). In Section 4, we derive sharp bounds
on the decay of the annealed return probability from direct investigation of traces
and eigenvalues when the rates are i.i.d. random variables chosen from a law with
polynomial tail near 0. We then prove that one might get the classical t~¢/2 decay
or a slower decay of the form =7, where y < d/2 is related to the tail of the law of
the rates near 0. In Section 5 we deal with the quenched decay and obtain a partial
result (Theorem 5.1) that nonetheless establishes a difference with respect to the
annealed decay for small values of y.

In Section 3, we discuss finite volume random walks taking their values in a
torus. We obtain some quenched estimates on convergence times when the random
rates are i.i.d., chosen from a law with polynomial tail near 0. These follow from
sharp bounds on the spectral gap. In particular we prove a universal lower bound
for the spectral gap of a symmetric random walk on a torus of side length N (Prop-
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osition 3.14 below) which allows to separate the effects of the usual diffusive N —2
factor and the contribution of small values of the rates.

The paper is written in such a way to ease independent reading of the differ-
ent parts at the cost of some repetition. Sections 2 and 3 are self-contained; only
the spectral gap lower bound (3.12) from Section 3 is needed to proceed through
Section 4.

2. A comparison lemma for the annealed return probability

We study a family of symmetric, irreducible, nearest neighbors Markov chains tak-
ing their values in Z¢ and constructed in the following way. Let € be the set of func-
tions w : Z4 x 724 — R4 suchthat w(x, y) > 0iff x ~ y,and w(x, y) = w(y, x).
(y ~ x means that x and y are nearest neighbors.) We call elements of €2 environ-
ments.

Define the Markov generator

GUf () =Y o L) - fl 2.1)

y~x

As usual, {X;, r € R} will be the coordinate process on path space (Z%)®+
and we use the notation IP{ to denote the unique probability measure on path space
under which {X;, ¢t € R} is the Markov process generated by (2.1) and satisfying
Xo = x. Under P¢, X¢ = x; then the process waits for an exponentially distributed
random time of parameter Zywx w(x,y) and jumps to point x; with probabil-
ity w(x, x1)/ > y~x @(x, y); this procedure is then iterated choosing independent
hopping times. Equivalently, one can define P{ using the theory of symmetric
Dirichlet forms, see [4]. The reference space is then L%(Z¢), equipped with the
counting measure. For functions f and g with finite support, let

1
DUfg) =5 D @@ NIf@ = FMIEE) =gl

x~yeZd

The bilinear form D® is closable and its closure is a regular, symmetric Dirichlet
form. Thus, there exists a Hunt process associated to D“. Note that points have non
zero capacity. Therefore, the measure IP¢ is uniquely determined by D It is easy
to prove that both constructions yield the same law P¢.

Since w(x, y) > 0 for all neighboring pairs (x, y), X; is irreducible under P
for all x. The counting measure on Z¢ is reversible because we have assumed that
w(x,y) = w(y, x).

We now choose the rates w at random, according to a translation invariant law
Qon Q.

In the sequel Q.IP¢ will be used as a short hand notation for the annealed law
defined by Q.P¢[-] = [ PZ[-1dQ(w). Note that X, is Markov under P% for any
w, but is not Markov anymore under Q.Y for nontrivial Q. Let P“ = P§ and
Q.P* =Q.Pj.

We are interested in estimating the decay of the annealed return probability
Q.P?[X; = 0], as ¢ tends to +00.
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As a subset of (R+)dezd, 2 is a partially ordered set. By duality, one can
define a partial order on the set of probabilities on €2 in the following way. Given
two probabilities, Q and Q’, we say that QV > Q if, for any measurable, bounded,
increasing function f : @ — R, we have Q'(f) > Q(f). (f is increasing if,
whenever w, o’ € Q satisfy o' (x, y) > w(x, y) forall x, y, then f(o') > f(w).)

Remark 2.1. The function @ — P“[X; = 0] is not monotonous in w. It is clearly
not increasing. It is also not very difficult to find subgraphs of Z? for which the
removal of an edge decreases the value of P”[X; = 0] (left as an exercise), which
implies that the function w — P“[X; = 0] is not decreasing.

Lemma 2.2. Let Q and Q' be two probabilities on Q such that Q' > Q. Assume
that for Q' + Q-almost all , the Markov chain X; is conservative under P®. Then,
for all time t, we have

Q' .P?[X, = 0] < Q.P°[X, =0].

Proof. We prove that Q.P*[X; = 0] can be written as a supremum of the Q-expec-
tation of decreasing in w functions. More precisely, let By = [-N, N 19 be the box
centered at the origin and of radius N. Let GV be the restriction of the operator G
to By with Dirichlet boundary conditions outside By (thatis, G®N isthe generator
of the process which coincides with the one given by G until the latter process
leaves By for the first time, and then it is killed). Then —G®N isa positive sym-
metric operator. Let {u(By),i € [1,#By]} be the set of its eigenvalues labeled
in increasing order. We shall prove that

1 o
Q.P?[X; =0] = su Q e BN (2.2)
t NP #By 2,:
Let

1
EN(f) =35 D 0@ NI = FOIgC) = g(v)]

x~y

+ > f0g) Y o, y)
xeBy yx

y¢By

be the Dirichlet form of —G%*V . From the min-max caracterization of uf(By), we
have

w,N

uy(By) = max min M

Sfionficr ZXEBN f2(x)
where the 'max’ is computed on choices of i — 1 functions defined on By and
the min’ is computed on functions f such that, for all j € {1,...,i — 1},
ZXEBN fx)fi(y) = 0. For any function f, E@N(f, f) is clearly increasing
in w, therefore for given N, and i, M;”(BN) is an increasing function of w and
> e MBI ig decreasing in w. Thus (2.2) implies the lemma. O
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Proof of (2.2). Let ty be the exit time of X; outside By. Note that ) _; o1 (BN
is just the trace of the semi-group of the process X, killed when leaving the box
BN, i.e.,

Ze_“?)(BN)t = Z PYIX; = x5t < TN ].
i X€EBy

We compute Q.IP§[X; = 0] using that, from the translation invariance of the
probability Q, we know that Q.PY[X; = x] does not depend on x. Therefore

QPgIX, = 0] = %Bv Z Q]P’“’[Xt_x]>— Z QPY[X, =x;t < 1¥]

XGBN XEBN

Ze—u‘”(BN)t
#BN -

proves the lower bound.
As far as the upper bound is now concerned, note that

QPYIX, =0] = —Z@Pw ¢ =x]

XEBN

— > QPYX,

X€EBy

1
e > QPYIX, = xit = Ty ]

X3t < TNk]

xX€EBy

Z QPY[X; = x5t < TN4k]

XEBN &

1
+§ Z Q.PY[r = tnkl.

xeBy

‘We have

3 QPYX = xit < iyl = Q {Z ell:-‘)(BN+k)t:|
XEBN+k i
1 0
Q [Z o <BM>z] .
#By

i

< #BNk Sup
M

Let n; be the number of jumps the process X; performs by time ¢. For x € By,
under P¢, t > Ty« implies that n; > k. Therefore

Y QP = vl < Y QPYIn > k]

XEBy X€EBy

= #By Q.P”[n; > kI,

using the translation invariance in the last equality.
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So far, we have obtained the bound

#BN+]( 1 —u®(B )
QPYIX, = 0] < sup -——Q [Ze BT+ QP = k).
#By um #By ,-

First let N tend to 400, then let k tend to +o00 to deduce that

1
#B

Q.PY[X, = 0] < sup Q [Z e“:'”(BM)ti| + Q.P?[n; = +ool.
M M .
1
Now the conservativeness assumption and the fact that there are no instanta-
neous points of X; in Z¢ imply that P“[n, = +00] = 0 Q-a.s. O

3. Times of convergence to equilibrium of random walks on the torus

Let Sy be the discrete, d-dimensional torus of side length N. When convenient,
we consider Sy as a subset of Z¢. We construct a family of Markov chains taking
their values in Sy. Let w : Sy — R* , and define the Markov generator

LN ) = low) AoMILF () — F@L, (3.1)
y~x
where the sum is over sites y which are nearest neighbors to x (relation that is
denoted y ~ x). Let {X;, ¢+ € R} be the process with distribution }P’}”’N generated
by (3.1) and the condition X¢ = x. Since w(x) > 0 for all x, X, is ergodic under
]P’ﬂ‘c)’N for all x. The unique invariant probability measure is the uniform law, denoted
by ny. Furthermore, ny is reversible.
We choose the family {w(x), x € 74} iid. according to a law Q on (Ri)Zd
such that

w(x) <1 forall x; (3.2)
Qw(0) <a) ~a” asa | 0, (3.3)
where y > 0 is a parameter.

Remark 3.1. We note that this generator has the same form as G in (2.1) by mak-
ing w(x,y) = w(x) A w(y), but for a process in finite volume. We could have
defined w on edges, instead of points, as in the previous section, with i.i.d. values
for different edges, and the same technique would apply, with similar results, and
heavier computation.

Remark 3.2. If w(0) were a Bernoulli random variable, then we would have a
random walk on a (independent, site) percolation cluster (provided we started in
an occupied site). See [6].

Our main results refer to the following convergence time. For € € (0, 1), let

Tf"’N =inf{t > 0: sup sup [ELV[f(X)]—nn(f)| < e} (3.4)
xesSy |fI=1

where E2*Y is the expectation with respect to P¢*" and JE;’I;]N ()= fIEﬁf’NC) dnn (x).
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Theorem 3.3. Forall y > 0 and € € (0, 1), we have Q-a.s.

log le’N d
lim —— =2vVv —. 3.5)
N—o00 IOg N V4
Remark 3.4. 1f w(0) were bounded away from zero, that is, if w (0) > c¢; Q-a.s. for
some constant ¢; > 0, then limsupy_, .o N _ZT]‘”’N < ¢y Q-a.s. for some constant
c) > 0.

From now on, we shall drop the N’ in some of our notation. For example, we
use the short hand notation § = Sy.
One has to establish both lower and upper bounds:

log TN d
limsup ——1__ <2v <, (3.6)
N—oco l0ogN Y
.. log Tf"’N d
liminf ———— >2vVv — 3.7
N—o0 IOgN 14

The lower bound (3.7) will be discussed in part 3.6. The proof of (3.6) is given
below. The main step is a lower bound on the spectral gap of the random walk. We
first start with some preliminary lemmata.

3.1. Preliminaries

In the next lemmas, for given 0 < £ < 1, we choose G as the largest connected
component of the set {x : w(x) > &} (following a deterministic order in case of
ties) and we set B = S\G.

Lemma 3.5. For& > 0, there exists a number ¢y (&) such that cp(§) — 0asé — 0
and Q-a.s.

limsup ny (B) < ca2(§).

N—oo

Lemma 3.6. There exists a finite number c3 depending only on d such that Q-a.s.,
for all N large enough

inf w(x) > N™%.
xeS
In the proof below, we will see that c3 can be taken as % + € for arbitrary € > 0.

Proof of Lemma 3.5. Consider the site percolation model on Z¢ where a site x is
occupied if w(x) > &. Let & be positive and satisfy Q(w(x) > &) > p¢, the
critical density for the a.s. appearance of an infinite connected component C. Then,
if & < &, C exists a.s. Let CN =Cn SN, where SN is Sy viewed as a subset of 74
(that is, without the boundary identification), say, Sy = (—N /2, N/21¢ N Z4. Let
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Cy be C n viewed as a subset of the torus Sy (that is, with the boundary identifica-
tion). Then, it follows by standard ergodicity arguments that limy_, oo 75 (Cy) =
0(&) :=Q(0 € C) Q-a.s. Since O(§) — 1 as & — 0 (a well known result [5]), the
result would follow if C were connected, which it is not necessarily.

Consider then C N = C N—|VN]* We claim that C N 1s connected in SN, and

thus also in § N> for all large enough N QQ-a.s. Indeed, in the event that C N 1s not
connected in S N, there exist two sites at the boundary of S NN that are con-

nected to the boundary of Sy but are not connected to one another. This implies that
there exists a site x at the boundary of S’N whose (occupied) cluster (in S‘N) has a
boundary (of vacant sites) of size at least [v/N |. Now, the (bond) boundary of any
finite cluster of a site in Sy can be identified with a surface of plaquettes around the
given site, each plaquette crossing orthogonally a boundary bond. For each such
plaquette, there corresponds thus an inner occupied site and an outer vacant one.
For a given such surface of plaquettes of size (total number of plaquettes) n, there
is at least n/(2d) distinct outer vacant sites (since a vacant site can not be adjacent
to more than 24 sites'. In the case of X, the surface of plaquettes will intersect the
boundary of Sy in a closed curve. It will also have to cross the region between
the boundaries of Sy and S N—|/NJ" For this reason it will contain at least |v/N |
plaquettes.
From the arguments in the latter paragraph, we get the following estimate.

Q(é’N is not connected in Sy)
< Z Z Q(all the sites at the outer boundary of I" are vacant), (3.8)

T around x:

XEBSN #F>ij

where the latter sum above is over surfaces of plaquettes I" around x. The number
of distinct such surfaces which have size n can be estimated to be exponential in
n [10]. Proceeding with the estimation we get that the right hand side of (3.8) equals

Z Z Z Q(all the sites at the outer boundary of I are vacant)
7€dSy n=| VN gy
<N YT Q) < &)1,
n>|v/N|
where v depends only on d. Thus, by taking 0 < & < &y small enough, the prob-
ability in the left hand side of (3.8) can be made summable and the claim at the

beginning of the previous paragraph follows by Borel-Cantelli. The lemma then
follows. =

Proof of Lemma 3.6. We will prove that Q-a.s.

loginfy w(x)  d
N—o0 IOgN - Y

' Actually, n/(2d — 1) is a better bound.
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For that, let ¢ < d/y. Then
Qlinf o) = N9 =[Q@E) = N9V =1 =NV <V (3.9

for N large enough and some constant c¢;. Thus the Borel-Cantelli lemma implies
the upper bound in (3.9).
Now, let ¢ > d/y.For ek < N < ek*1, we have

inf w(x)> inf wkx)A inf o).
xeSy XESek xESek+1\Sek

Therefore,

Q <EIN e, Y inf w(x) < N_C)
xGSN

XESek \Sek

<Q ( inf w(x) < eck> +Q ( inf  w(x) < e“k>
XESek

_ (1 _ (1 _ Cle_cyk)edk) i (1 _ (1 _ Cle_cyk)ed(k+l)_edk)

< cpe vk (3.10)

and the result follows from Borel-Cantelli and the summability of the probabilities
on the left hand sides of (3.9) and (3.10), implied by their right hand sides. O

3.2. Proof of (3.6): Spectral gap estimates

Let B denote the set of nearest neighbor bonds of S, i.e., B = {(x,y) : x,y €
S,x ~ y}. For x,y € S, define r®() = N 4 (w(x) A w(y)), if b € B, and
r®(b) = 0, otherwise. The Dirichlet form of £2 on L,(S, nn) can be written as

1
EXN(f ) = 5 l;g(dbf)zrw(b),

where d, f = f(x) — f(y) and the sum ranges over b = (x, y), x,y € S.
Let

2
.L,w,N — sup 7]1]\\’](f )
F20.n (=0 €N S)

be the inverse of the spectral gap. From general facts [12], we have

_ _ o, N

BN (X1 = (] < nw (o)~ 2e™7,
whenever f is any function uniformly bounded by 1. Thus
o.N log 7N

lim sup ! < limsup —————.
N—oo log N N—o00 IOg N
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Using a formula of Saloff-Coste (see Theorem 3.2.3 in [12]), we get

LN~ yd o W)
- beB w(b) o
nx,;sb
W (b 1
=N"“%m L —N(b, b, (3.11)

beB w (b) W(b’)

where (") = 0 (x') A w(y') for b’ = (x',y') € B, W : B — (0,00) is an
arbitrary weight function, {my y : (x,y) € § x S} is an arbitrary complete set of
paths (where 7, , is a path with end points x and y), for an arbitrary path 7 in S,
ITly =D per 1/ W), and N(b, b') :=#{(x,y) € S x S : b, b € my,}.

We need to estimate the right hand side of (3.11). The key point here is the
choices of the weight function and the complete set of paths. Roughly speaking,
the latter will be taken in such a way that no path in it has inferior sites with low
values of w; and the former will give low weight to bonds with low values of w.
We are precise in the definitions below.

Remark 3.7. If the rates w were bounded away from 0, then by taking {n, ,, x,y €
Sy} as the complete set of paths, where 7, is defined below (in Definition 3.11),
and making W(-) = 1, then it is a straightforward matter to verify an upper bound
of const N2 for 7®¥ from (3.11).

To control the w’s which are close to 0 in our case, we will consider a modifi-
cation of the above set of paths and weight function below. For that we start with
the following definitions.

Definition 3.8. Given € > 0, a site x € Sy will be called e-good if w(x) > N™€.
Otherwise, it will be called e-bad. A bond b = (x, y) € B will be e-good if x and
y are €-good. Otherwise, it will be called €-bad.

Definition 3.9. Given L > 0 and a path w € S connecting given sites x, y, a site
z in w will be called an L-interior site of 7 if ||z — x||cos |12 — Y|loo > L.

Definition 3.10. Given L,e > 0 and T, a set of paths of S, T will be called
(L, €)-good if all the paths of T have all their L-interior sites, if any, €-good.

We now construct for every N a complete set of paths for Sy which will turn
out to be almost surely (L, €)-good for all large enough N and which will have
other properties leading to the validity of (3.6).

We start with an auxiliary set of paths.

Definition 3.11. For x,y € S, let ny,y be the path given by moving sequentially
in the 1-st, 2-nd,..., d-th coordinate direction one step at a time, along the longest
segment (and according to an arbitrary predetermined order in case of a tie), from
X to y, until the coordinates are successively matched.

For example, if d = 3, N = 100, Sy = {1,2,..., 100}3 (with the boundaries
appropriately identified), x = (1, 1, 1) and y = (2, 20, 80), thenny, y, = y1Uy,Uy3
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is the union of the segments

y1 ={(1,1,1) =100, 1,1), (99,1, 1),...,(3, 1, 1), (2,1, 1)}
y»=1{2,1,1) = (2,100, 1), (2,99, 1), ..., (2,21, 1), (2,20, 1)}
y3 = {(2,20, 1), (2,20,2),...,(2,20,79), (2,20, 80)}.

Now for L > 0 we define the L-sausage S; = Sy (x, y) with base 7, , and width
L as follows. We suppose N > 3L.Letiy, i, ... ,ir, 1 <k < d bethe coordinates
where x differs from y in increasing order, so that 1, is the union of the segments
Y1, ..., Yk, €ach of length at least N /2, with y; parallel to the coordinate direction
i.Ifk <d, thenleti* =min{i : 1 <i <dandi #i;,1 <k <d}and

S =1{@1, -, T 1, Wik, Zivg s - 5 2d) -
Zir Swpx < zir+ L —1,(z1, ..., Zi*—1, Zi*s Zit4 1 - -+ 5 2d) € Nx y)e

If k = d, then let

Sp={wi,z2....za) ;a1 <w <z +L—-1,(i,... ,Zd)EUlj-zzl/j},
Sl ={wi,z2...,za) ;21— L+1<w; <z, (21, ... ,Zd)eul;zzyj}~

Now let R; be the uniquely defined rectangle with base y; and width L such that
either R{ NS} or RN S} isa L x L square (one and only one of these possibilities
occurs). In the latter case, Sy = R} U SZ; in the former one, S; = R U S/L. See
Figure 1 below.

Remark 3.12. Notice that S; can be seen as either a single bidimensional? strip of
length at least N /2 and at most d N and width L, when k < d, or the union of two
such strips (one of which is the rectangle R;), when k = d.

Given € > 0 and a strip S of length at least N /2 and at most d N and width L,
we consider the site percolation model in § in which a site is open if and only if it is
€-good and define the event Ag = As (L) that there exists an open path connecting
the two smaller sides of S (within S). Then one argues as usually that A% is the
event that there exists a x-closed path connecting the two larger sides of S (within
S). (Here we adopt the usual concept of x-connectedness from site percolation in
72) 1tis clear that Ag(L) € Ag(L)if L < L'.

Now consider the event Ay = Ay (L) that Ag occurs for all the strips involved
in the sausages Sy (x, y) forall x, y € S. Clearly, Ay (L) € Ay(L")if L < L'.

Definition 3.13. Let
Le =inf{L : 3L < N and Ay (L) occurs},

with the convention that inf ) = oo.

The following result will be proven below.

2 Even if living in k-dimensional space.
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Fig. 1. Dotted cube represents the torus Sy (d = 3); x, x’, y are sites of Sy; thick polygonal
is 1, y; rectangle delimited by dashed lines is R;; strip delimited by thin and thick lines is
S/ (itis also Sy (x', y)); shaded region is the L x L square determining R;

Proposition 3.14.

1
19N < e + 1)* [ N**€ + max , (3.12)
xeSy w(x)

where the positive finite C depends only on d.

End of the proof of (3.6). (3.12)isadeterministic statement. Together with Lemma
3.15, a probabilistic result, it readily yields (3.6), after one uses Lemma 3.6 and Bo-
rel-Cantelli. Its proof uses (3.11) with a choice of the weight function W assigning
small values to the e-bad bonds (see (3.14) below), and a choice of complete set of
paths I' with all paths (£, €)-good. For each (x, y) € Sy, the path in I" connecting
them will be contained in S, (x, y) (see (3.15) below).

Lemma 3.15. For all large enough N

d+1 c
]P’(Ze > ’74 e —D < N (3.13)
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where ¢ depends only on d and § > 0 is independent of N.

Proof of Lemma 3.15. (3.13) follows by a standard path counting argument, which
we now outline. For L > 0 fixed, we have that

IP’(A%(L)) < dN max P(x is connected within S by a *-closed path to S),

xeS

where S and S are the two larger sides of S. Now the latter probability can be
bounded above in a standard way by

S anr,
I>L
where A; is the number of distinct *-paths of length / within S and starting at x.
This is bounded above in a standard way by 7/ and thus
P(AG(L)) <dN Y (IN7€)l < eN'77<b2,
I>L

for some constant ¢ and all large enough N.
Then

P(AC}.\I(L)) < chdH_VEL/Z.

The result now follows from the observation that {¢, > L} C Afv (L). ]

3.3. Proof of Proposition 3.14

We assume £, < 00; otherwise, the bound is obvious. We choose the weight func-
tion W. For b € BB, we make

1, if b is e-good,

L if bis e-bad. (3.14)

W) = {

We now choose a complete set of paths for S, I'. Since £, < oco, we have that

forall x, y € S, there will be a (£, €)-good path within Sy, (x, y) connecting x and

¥, so we choose one of them (according to some arbitrary predetermined order),
call it 7y y, and make

I'={m:y;x,y €S} (3.15)
We now use the above W and ' in (3.11). Let B) = {b € B : b is e-good} and
By ={be B:bise-bad} = B\ B;. Then

w,N

N <t + 15 + 13 + 13, (3.16)

where, fori, j = 1, 2,

Wb 1
7;1.“? = N9 max (b) E N(b, b).
J veB; w(b) W(b")
b/EBj
Forx, y € S,let Q,,resp. Oy, denote the £ x £, square contained in Se, (x, y)
with x, resp. y, as one of its corners.
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Remark 3.16. Notice that for every x, y € §, all bonds of 7y, \ (Qx U Q) are
€-good.

Given b, b’ € B,let M(b,b') = #{(x,y) € S x S : b, b’ € ny y}; see Defini-
tion 3.11.
Estimation of 7¢,.

© e—d /
i = N max D> O N®.b). (3.17)
b'eB
Now for every b, b’ € B
NGB, V) <#{(x,y) e SxS8: b, b €S.(x, y)}

<#{(x,y)eSxS:a,a €y, forsomea,a’ €B:
dist(a, b) v dist(a’, b)) < £¢}
< Z M(a, a).
a,a’:dist(a,b)vdist(a’,b')<t,

where dist is the usual Hausdorff distance between sets. Thus
@ < (XN My (3.18)

where My := N~ max,cp Y en M(a,a).

To estimate My, we start with the observation that since our paths are described
in an oriented way, we must specify which of a or a’ is traversed first and in which
direction. Given a = (w, z), we have

Z M(a, a’):Z#{(x, y)a,a’ €1y, in the order w, z, w’, z'} (3.19)
a'=(w',7)eB a'eB

+ Z #{(x,y): a,d’ €1,y inthe order z, w, w’, 2’} (3.20)

a'eBB
+ Z #{(x,y): a,a’ € nyyinthe order w’, z’, w,z} (3.21)

a'eB
+ Z #{(x,y): a,d’ €1y, inthe order w', z,'z, w}. (3.22)

a'eBB
We estimate the sum in (3.19). The estimation for the ones in (3.20-3.22) is
similar. Let j be the coordinate where w, z differ, that is z; = w; if i # j and

zj = w; £ 1. Then the ordering imposes that z; = w; = w; if i < j. The sum
in (3.19) can then be decomposed as follows.

d

> ) M, a), (3.23)

k=ja' ey
where M'(a, a’) = #{(x, y) : a,d’ € 1y, in the order w, z, w’, z'} and
A ={(Ww,2)eB:zZi=wl=w;, ifi < j;2; #w;, if j <i <k;z; =w;,
ifk <i <dj.
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It is clear that |Agx| < N¥—/*1 Now, fora’ € A
M'(a,a") <#{xeS:xi=w;fori > j}x#{ye S:y =z fori <k}
< N NdkHT

Thus (3.23) and (3.19) are bounded above by d N 2+d  After a similar reasoning
for (3.20-3.22), with the same bounds, we finally get from (3.18) that

T < 4de2INE (3.24)

Remark 3.17. This estimation is similar to the one for the case of w’s bounded
away from 0, if we take {n,,,, x, y € Sy} as complete set of paths, and W(-) = 1.

Estimation of t‘l"z.
iy < N“Hlmax Y N b, b). (3.25)
beB b B,

By Remark 3.16, if b’ € By is in 7, € T, then b’ must be either in Q, orin Q,
(see definition right above Remark 3.16). Thus

N(b,b) <#{(x,y) € Sx S: ae€n,,forsomea € Band
dist(a, b) Vv dist(x, b') < £}
+#{(x,y) € Sx S: aeny,forsomea e Band
dist(a, b) v dist(y, b) < €.}

< > [J(a.2) + J(a. 2],

aeB,zeS: dist(a,b)Vvdist(z,b') <l
where
J(@a,z)=#xeS:aens.} j(a,z) =#{yeS:aen,,}.

We conclude that

¥ < g4 Ne-dtl |:r;1€aé( Z J @, )W(z) + max Z J(a, z)W(z):|

zeS z€S
< const 24 N€—dt1 |:maé( E J(a,z)+ max E J (a, z):| . (3.26)
ae ae
zeS zeS

since
W(z) := #{b' € B: dist(z, b') < £} < const £2.

We estimate the first max term in (3.26). The other one is treated similarly, with
the same bound. Let a = (u, v). We decompose J (a, z) in J'(a, z) and J" (a, z),
where
J(a,z2)=#xeS:ac Nx.z, With u traversed before v},
J"(a,z) =#{x € S : a € ny;, with v traversed before u}.
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We estimate max,e5 ) .. J'(a, z). The expression involving J"”(a, z) is treated
similarly, with the same bound. Let j be the coordinate where u and v differ. Then
z must satisfy z; = u;,if 1 <i < j— 1. We conclude that there are at most Nd—i+l
such z’s. For each one, if a € 5y ., then x must satisfy x; = u;,if j +1 <i < d.
We conclude that there are at most N/ such x’s. Thus,

maxzj(a 7)< max. NI Nd—iFl = yd+L

zes si=

We conclude that
¥ < const £24 N2, (3.27)

Remark 3.18. Note that there is an extra N in the factor before the sum in (3.25)
as compared to the one in (3.17). This is compensated by the estimate of the latter
sum having an extra N as compared to the estimate for the former sum; that arises
from the fact that the restriction that a path passes through a bad bond imposes that
that bond be at the begginning or the end of the path.

Estimation of 73].

)N —d- lmaxZN(b ). (3.28)

75 < <max
beB: 2

xeS w(x)

We now estimate the max of the sum above, in much the same way as we esti-
mated max,cp Zb’eBz N (b, b') above. By Remark 3.16,if b € By isinny , € T,
then b must be either in O orin Q. Thus

N, b)) <#{(x,y) € Sx S: ae€ny, forsomea € B and
dist(a, ') v dist(x, b) < £}
+#(x,y) € Sx S: aen,,forsomea e Band
dist(a, b') Vv dist(y, b) < £}

< > [T (a.2) + T (@ 2)].

aeB,zeS: dist(a,b’) vdist(z,b) <l

Thus,

max > N(b.b') < const € |:max > T )Wia) + max P Z)W(a)]

b
BB aeB 5 B

< const EZd |:max Z J(a,z)+ max Z J(a, z):| (3.29)
aeB aeB

where

W(a) :=#{b' € B: dist(a, b') < £} < const £,
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We estimate the first summand within square brackets in (3.29). The second one
can be similarly estimated with the same resulting bound.

max Z J(a,z) < max Z J(a, )+ max Z J" (a,z) (3.30)
aeB aeB aeB

and we estimate the first summand within square brackets in (3.30) only. The sec-
ond one can be similarly treated with the same bound. Let z € S be fixed and j be
the coordinate where 1 and v differ, where (1, v) = a. Then u must satisfy u; = z;,
if 1 <i < j — 1. We conclude that there are at most N9=i+1 guch u’s. For each
one, if a € ny ;, then x must satisfy x; = u;, if j + 1 <i < d. We conclude that
there are at most N/ such x’s. We then conclude that

maXZJ(a 2) <maXZ Z J'(a,z) <d NIt NI = g N9+

aeB j=1 a=@v)eB
u and v differin j

which eventually yields

1
73] < const 62‘1 <ma§( i )) 3.31)
xed w(x

Remark 3.19. Here, the missing factor of N in the estimate of the sum in (3.28)
as compared to the one for the sum in (3.17) is explained in the same way as the
analogous issue discussed in Remark 3.18.

Estimation of 75;.

)N max Z N, b). (3.32)

T < (max
beB: 2

xeS w(x)

By Remark 3.16, if b, b’ € B, is in ., € T, then b’ must be either in Q, or in
0, (see definition right above Remark 3.16). Thus for b € B;, we have

DONGB Y)Y < Y Y b, b € Q)+ 1{b, D € 0,)

b'eB; x,yeSb'eB3,
+1{b e Qb € Oy} +1{b e 0y, € O}

Now

DD Mbb' eQ =) Y lbeQ) ) 1 e Q. (333

x,yeS b e, yeS xeS§ beb,

The two inner summands in the left hand side of (3.33) are uniformly bounded by
const E?, so the left hand side of (3.33) is bounded by const Egd N4. For similar rea-
sons, the same bound holds for >, (¢ > pep, 1D, D' € Oyh D, csd pep, HP
€0, b eQyland 3, oD yep, b € Oy, b' € Oy}, and thus, from (3.32)

75 < const ng max
xeS w(x)

) (3.34)
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Remark 3.20. The missing factor of N 2 in the estimate of the sum in (3.32) as
compared to the one for the sum in (3.17) comes about from the fact that, since
b, b’ are both bad, they must both be at the extremes of the path.

The result of Proposition 3.14 now follows from (3.24), (3.27), (3.31), (3.34)
and (3.16). 0

3.4. Averaged convergence times and generalized Poincaré inequalities

We now introduce a second ’convergence time’:

TN =inf{r > 0 sup sup E2NLf (X0)g(XnT—ny (Hnn (@] <€) (3.35)
=<ligl=

Remark 3.21. The first convergence time Tf’ ‘N'is a worst-case one, that is, it is the

longest convergence time among all initial conditions. Tz‘“’N is an average conver-
gence time among all initial conditions (under uniform weighting).

Remark 3.22. Clearly, T2w’N < le’N for all w.

Theorem 3.23. Forall y > 0 and € € (0, 1/4), we have Q-a.s.

m —2 =2 (3.36)

In fact, for all € € (0, 1/4), there exists a constant ¢ > 0 such that for all ®

liminf N 27" > ¢. (3.37)

N—o00

Remark 3.24. Theorems 3.3 and 3.23 establish that Q-a.s.

log TN log TN
g—]=2v—and lim oglh

=2. (3.38)
N—oo log N 1% N—oo log N

We thus have distinct asymptotic behaviors of 7" N and Tzw’N whend/y > 2. A

heuristic argument to justify that follows. When d/y > 2, le’N, as a worst case
convergence time, is greater than or equal to the convergence time starting at a site
with minimal w, whose order is clearly smaller than or equal to N~¢/7. On the
other hand, choosing a site uniformly at random as a starting point will miss the
low w sites and, starting at high w, the walk will get to equilibrium faster than it
will get to any low w site. It will be as if there were no low w sites, and that means
Tz‘” ‘N'is of order N2 (see Remark 3.4).
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3.5. Proof of the upper bound

We first prove that

log TN
lim sup b T

3.39
N—oo logN ( )

In a similar way as uniform convergence times of the form T{”’N are, for gen-
eral reversible Markov chains on finite sets, estimated by the inverse spectral gap,
it turns out that averaged convergence times of the form Tza’ N can be bounded in
terms of a family of suitable modifications of the classical Poincaré inequalities,
the so-called generalized Poincaré inequalities [ 7], which we recall now. Keep in
mind the notation 5“)'N(f, f) for the Dirichlet form of LN see part (3.2).

For p € (0,2),letqg be such that 1 4+ 1/g = 2/p and

22/
“Npy=  sup v ()70 (3.40)

F20an (=0 EXN(F, OIFIIE

As a particular case of the general results of [7], we then have
;N < gem 12N (p) (3.41)
for all p € (0, 2).
Remark 3.25. Inthe notation of [7], 7N (p), as defined in (3.40), equals 1 /K (p).

For all x,y € §, let m, , be a nearest neighbor path from x to y and let
£* = sup, , |7y, y| be the length of the longest path.

As in part (3.1), consider now a partitioning of § = B U G where, for given 0 <
& < 1, we choose G as the largest connected component of the set {x : w(x) > &}
(following a deterministic order in case of ties). Let

o.N Zb:(x,y)ecxc(dbf)zﬁN(x)nN()’)
o = sup 5 @ ok
f20 beGxG (b f)7re(b)

Lemma 3.26.

N (p) < 22932/ PN (BYY/PE* sup + 247N

b=(x,y):x~y re(b)

Lemma 3.27. For & > 0 small enough, there exists a positive number c| that
depends only on d such that Q-a.s.

limianz/té‘;’N > Ecy.
N—o00
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Proof of (3.39). With w and & > 0 fixed, we choose N big enough so that the
conclusions of Lemmas 3.26, 3.27, 3.5 and 3.6 hold. Then, using also (3.41),

TN < eV N (p)

< %{[126—102(5)]2/PN1+L1+63 +(CI§)_1(46_1)2/17N2]}. (3.42)

Assuming that £ is small enough, let p satisfy

2 (d—14c3)logN +log(ci§)

p logc2(§)~! —log3

With this choice, the two summands in the expression within braces in (3.42) are
equal and thus (3.42) equals

ge . log(c1€)
2 (8 P (@) T —Tog3

(d — 14 c3)log(4e™ 1)
Xexp{[2+ log(c2(£))~! —log3 ]logN}~ (3.43)

Combining (3.42-3.43), we get

) log T2“”N (d —1+c3)log(de™)
lim sup <2 : .
N—oo logN log(c2(6))~! —log3

Since this holds for all £ > 0 sufficiently small and ¢(§) — 0 as & — 0, the result
follows. O

Proof of Lemma 3.26. This is very similar to the results of part III in [8]. We esti-
mate the three terms in the decomposition

1 1
(P = 2+ D+ X [ @ = FOD NN )

x,yeG xeG,yeB x,yeB

= I+I11+1II (3.44)

in turn.

1
1= SCIA 30 (@ = FON NN )

x,yeG
p/2

Hold: _
ST AR Y @ = O @)

x,yeG

— /2
< 2kt (8N ) (3.45)
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1T < Q1 fllo)*" Z (f ) = fOPan ()N ()

xeG,yeB

p
Hold:
°ser<2||f||oo>2—"( 3 <f(x>—f<y)>nN(x>nN<y>) (v (GInw (B)' P

x€G,yeB

IA

P
<2||f||oo)2—1’( > dbf|nN(x>nN<y>) nn(B)' 7P

xeG,yeB bemyy
p

< QIS llo)*™? (Zdbf > nN(X)nN(y)) N (B)' 7P
b

A

xeG,yeB:
7x,y b

Hold P2
SIS Nl (Z |dbf|2r“’(b)>

b
p/2

2
x(Z(r‘“(b))l( > nN(X)nN(y))) nn(B)' 7P
b

xeG,yeB:
7x,y3b

IA

/2 p/2
0?7 (2671 1) (sgp(r‘”(b))l) ()"

p/2
X(Z > nN(X)nN(y)) N (B)' 7P

b xeG,yeB:
7x,y b

p/2
< 2P f 155 <€‘”’N(f, D) sup(r%))—l) (Cny(B))"* nn(B) =2
b
1—-p/2 2—p ®,N w —1 % rz
= 21PP|| £1135 PN (B) (5* (f. ) sup(r ) e) , (3.46)

where the last inequality follows from

DTN av@av = D Imeyliv@an () < Cnn(B).

b xe€G.,yeB: xeG,yeB
nx,yab

Similarly,

p/2
111 < 2P| £1125 7w (B) <€”’N(f, ) slblp(r%))‘ﬁ) . (347)

We conclude from (3.44), (3.45), (3.46) and (3.47) that
p/2 /2
(%) = {3nN<B) (sgp(r%))—lé*) +(=e") }

x 2P PP ECN (f, )P
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Thus,
»/2 P 2/p
v N(p) = 162772 n(B) (sup(rw(b»—le*) 2172 () }
b
4
<2r! {<3nN<B>>2/” sup(r® (b))~ 'e* + rg*N}
b

_ g7+ {(377N(B))2/1’ sup(r® (b))~ Le* + rg”N} . O
b

Proof of Lemma 3.27. Since w(-) > & on G, we have

onN _#*G | —1_1
G SW?E 6 <& 15,

where

oL qup b6 [V HG)
G700 Lveaxcp/EHG)

is the inverse of the spectral gap for the ordinary rate 1 random walk on G. From
Cheeger’s inequality, we get that

ré < SE%;,
and therefore
N —1m2
‘L'g < 8?;: [=TeR} (34‘8)
where the isoperimetric constant E¢ is defined by:

- H#AH#G \ A
B 1= sup ——,
AcG HGH#HOGA
where 0gA = {(x,y): x ~y,x € A,y € G\ A} is the bond boundary of A with
respect to G. The statement of the Lemma will thus follow if we can prove that
N Eal is bounded from below for large N by some constant that only depends on
the dimension. We shall rather show that

Y Q(Eg = aN) < o, (3.49)
N

for some «. One then uses the Borel-Cantelli Lemma to deduce from (3.49) that,
Q.a.s., for large N, we have Eg < «oN and therefore, as follows from (3.48),
1oV <867 1a?N2.

Following [6], Subsection 3.1, we note that we can restrict ourselves to con-
nected A’s such that G \ A is connected.

Since #35A > 1, we have % < gNassoonas#A < N or#G \ A <

5 N. Thus we may also assume that #4 > SN and #G \ A > S N.
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The same argument as in [6], Subsection 3.1, based on the classical isoperimet-
ric inequality on S, shows that (3.49) follows from

N

#F
20 (?‘é% #Hy) € Fro@ = E o) = €] “) <o G20

In (3.50), B = {(x, y) : x, y € S, x ~ y} denotes the set of nearest neighbor bonds

of S. The sup is computed on *-connected sets F C B such that #F > o N dd;],
for some constant «r that depends on o and the dimension.

Given such an F, choose a subset, say F,suchthatb = (x, y) #b' = (x', y') €
F => x # x" and y # y’. Since any point has at most 2d neighbors and #F >

o N e , we may assume that #F > a#F, for some positive as.
Now, forallA > 0

Q@#H{(x,y) € F; w(jf) >& w(y) =&} <#F/a)
QMU y) e Fiox) =& w(y) =&} <#F/a)

=Q( X lowszeloge < #F/a

(x.y)eF
2 _ ~
< s (1 — 72 4 et )F
A —
S eE#F(l _ 7_[2 + e )»71,2)(12#1:’

where 7 = Q(w(x) > &).
By the above inequality, and the fact that the number of distinct *-connected
subsets F' with #F = n is bounded above by N dex3n for some a3 [10], we get

#F
Q <sup > oc)
F #Hx,y) € Fiol) = § o(y) = §}
< Nd Z e[a3+)\a_1+a210g(1—n2+e_)‘n2)]n

d—1

n>a|N d
— Nd Z 67014117
nZalN%
where a4 := —[a3 + ra M tan log(1 — T4+ e_)‘nz)] > (, provided we choose A
and o such that o3 + A/ < lap and & < &, for & close enough to 0, depending
on«, A, @z, a3 and y only. O

3.6. Lower bounds for le’N and TZw’N

Proof of (3.37). Let A = {x = (x1,...,xq) € S:x1 € [0, N/2]}, Ty = inf{r >
0: X; € A} and, for & > 0, h?(\) = E2"(e=*Ta). Choosing f = 1, and
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g = 1 ¢, we have

\f|s|ul|) 1 BN L (X0)g (X1 = nn () (@) = nv (A)ny (A)
Jli181=

PN (Xo ¢ A, X, € A)
>y (A)ny (A9 —PON (X0 ¢ A, Ta < 1) > nn(A)ny (A)
— inf ny(Lach®(1))e™. (3.51)
>0
We now estimate 1y (14ch®(A)). We will compare with the case @ = 1, which
corresponds to the usual random walk on Sy. The Dirichlet form of X; is given by

1

w,N _

Y @@ A0 = fFONE (.52

x~yeS

It is clear that £V (£, f) is nondecreasing in (the natural partial ordering of) w.
We have also that, for A > 0,

Iy (h°G0) = inf EVN(Lf) + A (£). (3.53)

Since E2N (f, £) < EX(f, f), where 1 is the identically 1 vector indexed by S, we
have that

v (R (L) < nn (RL(L)). (3.54)

Since T4 is a hitting time for an ordinary rate 1 random walk on Z under Pl the
invariance principle yields that for all A > 0

1
v (WY (N720)) — REAR (3.55)

as N — oo, where ¢ (1) — 0as A — 00. We also have that ny (h” (1)) = ny(A)+
nn(Lach® (X)) and ny(A) — 1/2 when N — oo. Thus, from (3.53), (3.54)
and (3.55),

1 1
lim sup ny (h?(N21)) = 5 +lim sup ny (1 ach®(N720) < 590 (3:56)

N—o0 N—o00

and it follows that
nv(1ach®(N720)) < ¢ (h). (3.57)

We conclude that

1
liminf sup [EZN[f(Xo)g(Xey)] — v (Fnn (@)= 5 — ep(1/c).  (3.58)
N—0o | 7| |gl<1 4

Since p(1/c) — Oasc — 0, we getthatforalle < 1/4,liminfy_, o N’2T2‘“’N >
c*, where c¢* is any positive constant satisfying ¢ (1/c*) < (1/4 —€)/e. O
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Proof of (3.7). From le’N > T;”N and lim inf y_ oo N_2T2w’N > ¢ Q-a.s., we de-

_Zle,N > ¢Q-a.s.and, thus, lim inf y_, ; log le'N/log N

ducethatliminfy oo N
> 2 Q-a.s.

We argue now for the inequality lim inf y _, o log 7}” N /log N > d/yQ-as. Let
x € S. During an exponential time of parameter o (y) A @ (x), the process

X starting at x stays still. Therefore,

sup [ECN £(X) — oy () = POV (X, =x) - N4

yiy~x

[f1=1
> e’ Z)WX o(MA(X) Nfd > e*Zdw(x)t _ N*d’

ie.,

1

le’N > —supw(x) ' log(e + N~

2d

Therefore,
log TN 1 -1
g 1 > Ogsupxw(x) +0(1)

logN — log N
Now, let 0 < § < 1 be arbitrary.

Q (log supo(x)~ < (1 — 8>§ log N ) = [Q(e(x) > N~1=9d/ry N
< [1— N~0=0dp

for any 1 > & > §, provided N is large enough. Thus, the above probability is
summable in N for any § > 0, and the result follows by Borel-Cantelli. O

4. Decay of the annealed return probability for random walks on Z¢

We go back to the study of Markov chains taking their values in Z¢. Let w : Z¢ —
Ri, and define the Markov generator

LY f(x) = Z[w(X) NoWILf () = fF(L, (4.1)

y~x

where the sum is over sites y which are nearest neighbors to x.

As in Section 2, {X;, t € R4} will be the coordinate process on path space
(Z4)R+ and we use the notation P9 to denote the unique probability measure on
path space under which {X;, t € R,} is the Markov process generated by (4.1)
and satisfying Xo = x.

As in Section 3, we choose the family {w(x), x € Zd} at random, according to
alaw Q on (R*Jr)zd such that

the random variables { w(x), x € Zd} areii.d. ;
w(x) <1 forall x;
Q@) <a) ~a’asa | 0, 4.2)

where y > 0 is a parameter.



On symmetric random walks with random conductances on Z¢ 589

Remark 4.1. We note that this generator has the same form as G* in (2.1) by mak-
ing w(x, y) = o(x) Aw(y), and also the same form as £-" in (3.1), but in infinite
volume. There would also be similar results for w defined on edges, instead of
points, with i.i.d. values for different edges, and the same technique would apply.

Remark 4.2. If w(0) were a Bernoulli random variable, then we would have a
random walk on a (independent, site) percolation cluster, see [6].

In the sequel Q.Y will be used as a short hand notation for the annealed law
defined by Q.PY[-] = f P[-1dQ(w). We are interested in estimating the decay
of the return probability under Q.P?, Q.P*[X; = 0], as ¢ tends to +o0. Itis actually
quite easy to derive lower bounds for Q.P“[X; = 0]. Indeed, on one hand, one can
use the comparison lemma 2.2 with the usual nearest neighbor random walk on Z¢
to prove that

Q.P?[X, = 0] > ct2, 4.3)

for some contant ¢ that depends on the dimension d. There is another way to prove
(4.3), as follows. It is known [3] that, under Q.P®, X, satisfies the central limit
theorem. Together with the reversibility and the translation invariance of the law
Q, the C.L.T. implies (4.3) (See Appendix D, in [6]).

On the other hand, for any realization of w, the first jump of X, follows an
exponential law of parameter Zy~o w(0) A w(y) < 2dw(0). Therefore

PYIX; = 0] = PY[X, =0, Vs < 1] = ¢ 2000100 5 (=240

Taking expectation w.r.t. Q and using the condition (4.2) on the law of w(0), a
simple computation leads to a lower bound of the form

QP?[X, =0]>ct™?. 4.4)

As is indicated in the next statement, these lower bounds turn out to be of the
correct logarithmic order.

Theorem 4.3.

lim
t——+00 log ¢t

— Ay 4.5)

logQ.P?[X, =0] (d )
=-(3 .

Remark 4.4. From the point of view of statistical mechanics — here the statisti-
cal mechanics of a disordered system — one might consider Theorem 4.3 as an
example of a dynamical phase transition.

Remark 4.5. Such tools as Sobolev embeddings, isoperimetric or Nash inequalities
of constant use for estimating transition probabilities of Markov chains, see [2], can-
not be directly applied here because of the lack of ellipticity of the transition rates
. Thus (4.5) is also an example of exotic ’heat kernel decay’ for a non uniformly
elliptic generator.
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Remark 4.6. A fruitful technique to handle r.w.r.e. is to isolate the effect of the
fluctuations of the environment w in a given scale. See for instance random walks
in Poisson environments [11] where one single eigenvalue dominates the rest of
the spectrum. There does not seem to exist such a separating scale in our model.

In view of (4.3) and (4.4), only the upper bound is missing in the proof of (4.5).
We use spectral theory. We rely on a trace formula similar to the one obtained
in Section 2 and on our spectral gap estimates from Proposition 3.14.

4.1. Trace formula

We express the annealed return probability as a trace. The argument is the same
as in Section 2, except that we restrict ourselves to computing the trace on cubes
whose radius can be chosen as a function of time. This is possible because rates are
assumed to be uniformly bounded.

Let & > 0. In the sequel, we shall use the notation N = r4+$/2_ (In fact, N
should be defined as the integer part of t(+8)/2 put, for notational ease, we will
omit integer parts.)

Let By = [—N, N1¢, be the box centered at the origin and of radius N. Let
LN be the restriction of the operator £ to By. Thus £-V is defined by

LONfx) = o) AoMILFK) — f@)], (4.6)

yx

where the sum is now restricted to neighboring points x and y in By and we impose
periodic boundary conditions. —£“*" is then a symmetric operator. We denote by
{A;"(BN), i € [1,#Bn]} the set of its eigenvalues in increasing order.

Let ty be the exit time of X, outside By .

We compute Q.P[X; = 0] using the translation invariance of the probability
Q. Since Q.PY[X; = x] does not depend on x, we have

1
QFGIXr =01 = 5 > QPYIX, =x]

xXeBy
1
=15 2 QX =xit <oy
xeBy
1
+ﬁ Z QPY[X; = x5t > on]
N XeByN
1
< — Z QPY[X; = x;t < o]
#BN xXeB
2N
1
+— Y QP = nonl.
#BN X€BN

If under P¢, x € By, we have t > 1oy, then the process must have left the ball
x + By before time 7. Since the probability Q.PY[3s < ¢ s.t. X ¢ x + By] does
not depend on x, we have that Q.P{[r > ©oy] < Q.PF[r > Tn].
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We note that er By PY[X; = x;t < 1n] is the trace of the semi-group
of the process X; killed when leaving the box By, i.e., with Dirichlet boundary
conditions outside By y . It is therefore dominated by the trace of exp(tL"“’ZN ), that

is
Z PYIX: = x5t < ;on] < Ze_)‘,@(BZN)t'
i

xeBn

Thus, we have proved that

QPFIX, =0] < _#B ZQ[e‘*w(BzN” +Q.P°[t > ty].

From the Carne-Varopoulos inequality, it follows that

Pt > ty] < 2tN4 e -5 +e 4.7

where ¢ is a numerical constant, see Appendix C in [6]. With our choice of N =
tU+8)/2 e get that P°[r > 1] decays faster than any polynomial as ¢ tends to
+o00.

Thus Theorem 4.3 will be proved if we can check that

1 LA (BNt d
lim lim sup 28 @12i € I _ov <— . y) . (4.8)
£§—0 1>+t00 log? 2

4.2. Min-Max

C is a constant that depends only on d and Q. For constants depending on other
parameters, we indicate it.

Let us first recall the lower bound on the first non trivial eigenvalue of an
operator of the form £V In Section 3, we proved that

1
<C N>+ sup — | dV. (4.9)
75 (By) ( cey w0 )) ‘

In (4.9), ¢ is any positive number; C is a constant depending on the dimension only;
dN is a measure of the set {x € By : w(x) < N~¢}.

With the notation of Section 3, Proposition 3.14, dN (¢ + D% (But note
that £, depends on N.) Thus dN is a random variable, i.e., depends on &, N and
also w.

Using the properties of Q, we get that, for some constant ¢, that depends on Q
only, we have

Q@) > A) <cN~F, (4.10)

where A can be chosen such that A > < and N is supposed to be large enough.
(How large depends on the dimension only ) A proof of (4.10) can be found in the
proof of Lemma 3.15.
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From the min-max characterization of the eigenvalues of symmetric operators,

we have
2
A2 (By) = max mianXNyGBN[w(X) A6<)(y)2] Lf&x)— fOn] 7
frofi £ 2 > veny f2X)

where the ‘max’ is computed on choices of i functions defined on By and the ‘min’
is computed on functions f such that, for all j € [1, i], erBN fx) fix)=0.

Thus, in the computation of X;"H (Bn), we may impose at most i different linear
constraints on the test function f. We consider two kind of conditions.

Let k € N*. We chop Z¢ into a disjoint union of boxes of radius k, say
74 = U,cz¢B;, where B; = (2k + 1)z + B. We now choose for some of the
function f;’s, the indicator function of the boxes B, that intersect By, i.e., we

require that
Y fw=0,

xeByNB;

for all z € Z? such that By N B, # . The number of such z’s is at most

(2N+1+2k+1)d
np=——e—

2k + 1
Clearly,
Yorwm=) Y fm,
X€By Z xeByNB;
and
Y oW A0MU@W—FfON*=Y. > (@ AoMILFx)—fO]I
x~yeBy z x~yeByNB;
Therefore
Yx~yepy @) AwWILf(x) — FOPR
Y veny 2 X)
. Dx~yesynB, @) Ao (x) — FOP
> min )
< erBNmBZ 2
where, for each z € Z¢, erBNmB, f(x)=0.
Next, let us choose 7 points in By, say 61, ..., 6,,. We choose for some of

the f;’s, the indicator function of the points §; and their neighbors in By, i.e., we
specify that f(x) = 0, forx € {81, ..., 8,,} orx ~ §;, for some j. This recipe leads
to, at most, (2d + 1)n; different conditions. We note that, for such a function f,
the value of the Dirichlet form

Y e AoWILfE) = FOP

x~yeBy
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does not depend on the value of w(8;) anymore. Therefore, we may assume that
w(8;) =1,for j € [1,n1].
Thus we see that, if i > ny + (2d + 1)ny, then

A?(By) = minAS(By NB,),
Z

where @ is a new environment obtained by modifying the value of w to 1 on all
points &; and z ranges through those points in Z¢ such that B, intersects By.

We now choose for §; the points in By where w achieves its lowest values. Let
us use (4.9) to estimate each eigenvalue A‘;’(BN NB,):

1
—ol Vs av. 4.11
By ( T e ) D

We used d¥ as a uniform upper bound for the minimal side length of strips for
which the event Ay (L) in Definition 3.13 occurs.
supi‘e By 1/w(x) denotes the maximal value of 1/@(x), i.e.,

ni
sup
X€By w(x

=max{h: #{x € By : w(x) =1/h} >n; + 1}.

4.3. Proof of Theorem 4.3

Remember that we have already chosen some parameter £ > 0 (that we want to
choose close to 0 and which is related to by N = r11£)/2) and another parameter
& > 0 which is arbitrarily close to 0. We need a third parameter a € (0, 1). The
constant A in (4.10) is at our disposal. We also still have to choose n; and nj,
depending on i and such thati > ny 4+ (2d + 1)n;.

Write

Q |:Z e—k?’(BN)l:|

i

@ w B ia/d 2
SQ[Ze KB gV ZA]+ZQ|:€ B0 (By) = N g( . ) :|

i i

Y ca/d 2
+>°Q [e—*f BV gN < A and A?(By) < N~° <lN ) ]

l

N—¢ ia/d 2
< @N +14QLaY = A1+ ) e (5)

1

ca/d 2
+>°Q [dgv < Aand A?(By) < N <’N ) } . (4.12)

1
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Using (4.10), we see that we can choose A in such a way that

log[2N + D4Q(dN > A d
Jim sup 28LEN + DTQ( Moy (—— ) (4.13)
t—+00 logt 2

An easy computation shows that
_.(ald
—N"E(! t

gy e V)T
lim sup 12221 < (é—' +o 4 85) (4.14)
t—>—4+00 10gt 2 2

Let us now bound the last term in (4.12). Assume that défv < A and
)
A?(By) < N°° (%) . From (4.11), we must have

NP2~ < (12 4 sup ! A
xeBy C()(X)

We choose ny = i and assume that i is large enough, how large depending
a2+
on the dimension, a and y only, which we may do. Then k>4 < N%+¢;~ e

Therefore, we must have

NEF2—F <C sup !
xXeBy (I)(x)

with a possibly different value for C.
From now on, we deal separately with the cases of large or small values of y.
Case y > %.We then choose ¢ < 2% anda =1 — 2i + %.
The computation goes as follows (the value of C changes from line to line)

jald?
Z@ dY < Aand A2 (By) 51\/8( v )
i
1 2a
<Y 0| c sup > Net2i—7
Z [ xeBy (,()()C)
1
< Q C Su N8+2 2a
Z [ S oo =
=Ql#{i: C S’l1]1p ! > NEt2-2a
xeBy a)(x)

i 1
<CQ|#qi:C Slllp > NEt2-2a
xeBy Cl)(x)

— C(ZN + 1)(1@ [% > Né‘+22a}

< CNIN-YEH220 — o N (4.15)
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where the second inequality follows because i < (2N + 1)d , and the third one
because ny = (i —i%)/(2d + 1) and a < 1. Thus we deduce from (4.15), (4.12),
(4.13) and (4.14) that

logQ [¥; e B0r] (g- LE g)

lim su
P 22

< —
1—>4o0 10gt - 261

Let ¢ tend to 0 and then £ tend to 0 to deduce (4.8). This ends the proof of Theorem
4.3 in the case y > %.

Case y < %. Let § € (0, y), to be chosen later. We have

|: N 1) — (ia/d>2:|
> Q|dN <Aandi’(By) < N ~

1

s
SN(2a—s—2)8 ZQ (s’ffp 1 )
i

XEBN w(x)

since i < (2N + 1)?. Remember that n, = i% is much smaller than n; =
(@ —i%)/(2d + 1) for large values of i, say i/(4d +2) < n; < i/Q2d + 1).
Let X0, ...xj, ...X(2n4+1)d—1 be an enumeration of the points in By such that the
sequence w(x;) is increasing. Thus

Srll,l1 ! = 1 < !
xeBI:V o) 0Cn) ~ o (xijadr)
Therefore
1 ’ 1 8
m o1 1 _ .,
X;:Q (xseugv w(x)> §(4d+2)x§NQ[<‘”(x)> } cs(dd +2)2N + 1),

s s
where ¢ = Q [(ﬁ) :| Note that Q |:( ﬁ) ] is finite and does not depend on

x. Therefore

ia/d

Z@ [dgv < Aand AY(By) < N~* < v

2
) ] S CSNQa—E—Z)(S(ZN_i_ l)d

Gathering this last inequality with (4.13) and (4.14), we get that
log @[3, e (]
lim sup
t—+00 logt

d - d e &\ 1+§& o
Emax{z—y,%(é—i-z—l—?),—z [d+ (2a — ¢ 2)8]}, (4.16)
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with a € (0,1) and § € (0, y). First replace § by y. Then let ¢ tend to 0 and
choose a = % The upper bound in (4.16) becomes max [% -y, %(d —2y)

+—(1£)§de ] Finally let £ tend to O and conclude that

log @ [ X, e (5]

d
lim lim sup <——vy,
£>0 1> 400 logt 2
and Theorem 4.3 is now proved in the case y < %. O

5. Quenched decay of the return probability

In this section, we investigate the quenched decay of the return probability when
y < %. Model and notation are the same as in Section 4: a random walk among
i.i.d. random conductancies with a power law with an exponent y. Now we are
rather interested in the asymptotics of the return probability Pj[X; = 0] in Q
probability. Let us set «. to be the best exponent o such that

QIPY[X; =0] <t™®] — last — oo. (5.1)
From Theorem 4.3, it is clear that o, > ‘71 A y. We can do better in the case y < %’:

Theorem 5.1. Forany y < % then a. > y.

Remark 5.2. Although rather unsatisfactory — because it does not give the true
value of o, — Theorem 5.1 shows that the typical decay of the return probability is
strictly faster than the averaged decay. Such a situation is sometimes called in the
literature a ‘high disorder regime’.

Remark 5.3. The proof of Theorem 5.1 actually yields the lower bound
d 1+vy

Qe > — .
2144d/2

There is no reason to believe that this bound is sharp for a given value of y. Notice
however that, in the regime y — %, we get the inequality o, > %, which seems to

be sharp. -

(5.2)

Let us sketch the proof: we use the fact that, with large QQ probability, the origin
lies in an infinite percolation cluster, say C, of ‘good’ sites, where w is bounded
from below. Estimates on the return probability for random walks on percolation
clusters have been proved in [6] (See also [1] ). One strategy would then be to try
to couple the random walk in the environment @ with the random walk on C: we
have no idea on how to do that. We rather rely on spectral theory to compare the
behaviours of the eigenvectors for the two random walks. Note that from the results
of [6] follow precise estimates on the eigenvalues of the discrete Laplace operator
on C. The core of the proof is to show that eigenvectors of the generator of the
random walk in the environment @, when they correspond to small enough eigen-
values, are concentrated outside C, and therefore do not contribute too much to the
asymptotics of the return probability as soon as the random walk starts outside C.
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5.1. Proof of Theorem 5.1. Step 1

d 1ty
2T+d/2"
notation N = ¢(1+6)/2 (In fact, N should be defined as the integer part of (14672
but, for notational ease, we will omit integer parts.) All the limits to be taken are to
be understood as t — oo or, equivalently N — oo.

Let C* be the largest connected component of the set {x € 7% w(x) > N¢).
We assume that N is large enough so that Q[w(x) > N %] becomes larger than
the critical percolation probability on Z¢. Then C® is the unique infinite connected
component of the set {x € Z¢ : w(x) > N~¢}, see [5]. We denote by Cy the
largest connected component of the intersection C® N By, where By = [-N, N 1.

In the next step of the proof, we will define a set of environments, denoted Q,

such that Q[Q2y] — 1. We further have the property Q[%] — 1.

Calling {A?(By), i € [1,#By]} the eigenvalues of — £ in increasing order,
and {¥”, i € [1, #By]} the corresponding eigenvectors with due normalization in
L?*(By), a very similar computation as in Subsection 4.1 leads to the following
series of inequalities.

We first use the invariance by translation of Q.

Let v < Choose two parameters ¢ > 0 and & > 0. We shall use the

QIPFIX; =01 = 7] = QIPY[X; = x] = 7]

holds for any x € By. Therefore
1
0) _ -7 %) _ —o
QUEGLX, =01 = 1] = ZBj QIPYIX, = x]=17¢].
N

Note that

QIPYIX, =x]1 =t %] < QIPY[X; = x5t < Toy] = 17%/2]
+QIPY[r > Ton] = t7%/2],

where 1oy is the exit time of Byy. Since sup,, sup, PY[t > 1ox] decays faster than
any polynomial, see (4.7), we have

lim sup Q[PG[X, = 0] > 7]

> QIPYIX, =xit < Tan] = 7%/2].

xX€eBy

) 1
< lim sup

#Byn
We now restrict our attention to those environments belonging to €2 and to the

1 w .
points x € Cy:

QIPY[X, = x5t < on] = 17%/2]
<QMPY[X; =x;t <on] = 17%/2;x € Cy; Qa1+ Q4]+ Qlx ¢ Cy 1.
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Since Q[Qﬁv] — 0, we therefore get that
lim sup Q[P[X; = 0] = 1]

1
s O QPYIX = xit < ooyl > 17/2x € Cs Q]
N
xXeBy

. #(CY)°
—Hlmsup(@[ ¥ By ]

< lim sup

But since Q[%] — 1 (see step 2 below), we have
lim sup Q[P§[X; = 0] > +7“]
. 1 _
<limsup ——— 3 QIPYIX, = x;7 < 1ay] 2 17%/2; x € Cy: Q]
XEBy
From the Markov inequality, we deduce that
QIPYIX, = x;t < Tan] > 17%/2; x € C; 2]
< 2tQIPY[X: = x; t < an]; x € Cyy; Q]
and thus

lim sup Q[PG[X, = 0] > 7]
o

t
5 D PYIX, =x:it < TNl Q.

w
xeCy

< 2lim sup m

Finally we express the probability P{[X; = x; ¢ < ton] in the spectral decom-
position as

1 ©
POIX, =x;t < oyl = —— e M By (x))2,
#By -

and get that
lim sup Q[PG[X; = 0] > 7]

. 1% @By L 2.
5211msup%<@ lZe ¢ (Ban B Z(llfim(x)) Q|- (5.3)

(2
xeCy

Let us pause a little to look at (5.3). It is true that #ﬁ erCﬁ (1/11.“’(x))2 <1;

but if we would use this upper bound, we would be left with Q[Zi e~ (Bay )’],
and the best value for « would then be y, as the results of Section 4 show. We have
to find a better way. Note that terms corresponding to large values of i, and thus
large values of A" (Bay), can be easily controlled. Thus the main point is to show
that ﬁ erC;@ Wy (x))2 is small enough for small i, i.e. we have to prove that
eigenvectors corresponding to small eigenvalues are concentrated outside C4. And
in fact one would expect this to be true since small eigenvalues arise because of
small values of w, and these precisely sit outside CY;.
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5.2. Step 2. Definition of Qn

The set Qy is defined by two requirements: we ask that for any w € Qy we have
i 0ecCy.

The second requirement deals with the behaviour of the random walk on C§:
let (u;, i € [1,#Cy]) be the eigenvalues of the discrete Laplace operator on Cy as
defined in [6]. We will also use the notation (¢;, i € [1, #C}]) for the correspond-
ing eigenvectors. We assume that the eigenvalues are in increasing order and the
eigenvectors are normalized in L2 (C}) for the counting measure. Of course the ;s
and ¢;s depend on w and N.

Let

R
—landJ—N "

1+y
=7
274

Note that since y < d/2, then n < d. We then require that, on Qy,
:2/d

J
N2(log N)Sd-n/d"

(ii) ) >

The definition of 2y is now complete and all that remains to be done is to check
that Q(Qy) — 1.

That Q((i) holds) = Q(0 € Cy) — 1 is obvious.

As for condition (ii), we rely on the results of [6]. Calling PP[X ?’ = y] the
transition probabilities for the random walk on C4, we quote from formula (6) of
[6]: Q-a.s. on the set where C? is infinite

2d
wp |1 popx = | < ¢ 0N
L T

where C is a dimension dependent constant, s is arbitrary, and N > Ny(w) is large
enough. (In [6], formula (6) is deduced from the isoperimetric inequality (4), (4) is
aconsequence of (21), and (21) is proved for both site and bond percolation models
with parameter p close enough to 1, which is our case here. Besides, we replaced
&(N) by its value e(N) = d + 2d loigolgolg\,N, noticing that (4e(N)/BHEM)/2 then
behaves like a constant.)

We then choose x = y, sum over x € CI“\}, and express the result as a trace to
get that

(log N)*

d loglogN *
s2 +d logN

D et < 14 CHCY,

1
Therefore

(log N)*

d dloglogN ‘
s2 log N

jeE < 1 4+ CHCY
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Take now s = ;;/—/Zd(log N)8W@=m/d Then

1 (log N)?*¢
~CHCN g

K 2+d log N

— 0,

so that e7*/* — 0, and we have proved that Q-a.s. on the set where C® is infinite,
for large enough N, condition (ii) is fullfilled.

Finally we already used the fact that Q[%] — 1 that should be justified:
from the result of Appendix B of [6], we know that the expected density in By
of the component of C* N By that contains the origin goes to 1 as N — oo, and
Lemma 3.5 implies that the expected density in By of the largest component of
C®N By goesto 1 as N — oo. Thus the component of C* N By that contains the
origin and C}, coincide for large N and its density tends to 1.

5.3. Step 3. Spectral analysis

Assume that w € Q.
We bound the term er By (WP (x))% in (5.3) in two steps by writing that

1 .
——2}wm> a5 2 W@ = PlyP )

w (o
xeC xeCy

= > (PTyP)),

w
xeCy

where P/ is the projection on the subspace of L2(C ) spanned by the eigenvectors
(¢i.i €[, jD.

On one hand, since ﬁ erBN (¢i (x))? < 1, then

Ze*k?(BzN)l% Z (ij (x)?* < Z B Z (P/ Y (x))?

i xeCy xeCy

—ZZ mewm

i k<j xECw

—Z” > (e (x))?

k<j xeCy

<j=N

On the other hand, for any function f on C%), we have

#CDEZQﬂm l”f@D2<-—%mw 3 (F) - FOA

xeC‘” x~yeC“’
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this last expression being the Dirichlet form of the random walk on C%. Since
w(x) = N7% on Cy, we get

YT @ =FONP SN D (&) Ao (fE) = FON
x~yeCy X~y€ByN

this last expression being now the Dirichlet form of the random walk on B; . Since
¥ is an eigenvector,

1
s O @AW =) = A (Ba).
2N
x~yeBoy
So
B
TEe 2 WP — PIye) < 2lNe e M),
xEC“’ Kj

From these two estimates, we deduce that

=1 (Ban)t 2] 2 Nd—rl +2d A°(B =2 (Ban) 1
Z e ¥By E m(lﬂ, ()= y E i (Ban)e

i xeCyy i
(5.4)

5.4. Step 4

Combining (5. 3) and (5.4), we see that Theorem (5.1) will be proved once we have
checked that z5— N d=1 _ () and that

% 1 »
_NEQ |:_ Z)V?)(BZN)eiki (BzN)t; QN:| - 0. (55)
#BN /,Lj ;
1/d
We recall that ¢ < %1%};2, N = U972 5 = 211)/ and ju; (L)z

(log N)~ 8(d=n)/d on Q. It is then immediate to see that —Nd T — 0. Besides,

(5.5) will hold for any o < % 1:_;’;2 and some ¢ > 0 if

)La) B 7)»“(32N)t d
lim lim sup QU2 4 (Ban)e T_d (5.6)
=0 logt 2

_ 1,
}e M we get

QR )‘;'U(BZN)e_)‘?J(BZN)Z]

But using the inequality A;e % <

lim lim sup
£—0

log ¢
,—AP(Ban) /2
< —1+ lim lim sup QUi e |
£—0 logt
< -1+ d
= 3 Y

by (4.5). O
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