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Abstract. In this paper we prove Lp estimates (p � 2) for the uniform norm of the paths
of solutions of quasilinear stochastic partial differential equations (SPDE) of parabolic type.
Our method is based on a version of Moser’s iteration scheme developed by Aronson and
Serrin in the context of non-linear parabolic PDE.

1. Introduction

The aim of this paper is to study the following Stochastic Partial Differential Equa-
tion :

dut (x)+Aut(x)dt+f (t, x, ut (x), ∇ut (x)) dt+
d∑

i=1

∂igi (t, x, ut (x), ∇ut (x)) dt

=
d1∑

j=1

hj (t, x, ut (x), ∇ut (x)) dB
j
t , (1)

where A is a second order symmetric differential operator defined in some domain
O ⊂ R

d . We are interested in studying the behavior of the weak solution. More
precisely, if H 1

0 (O) denotes the standard Sobolev space with zero Dirichlet con-
dition, then under suitable Lipschitz hypotheses on the coefficients f, g, h, we get
the following estimate
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principle – Moser’s iteration

Used Distiller 5.0.x Job Options
This report was created automatically with help of the Adobe Acrobat Distiller addition "Distiller Secrets v1.0.5" from IMPRESSED GmbH.You can download this startup file for Distiller versions 4.0.5 and 5.0.x for free from http://www.impressed.de.GENERAL ----------------------------------------File Options:     Compatibility: PDF 1.2     Optimize For Fast Web View: Yes     Embed Thumbnails: Yes     Auto-Rotate Pages: No     Distill From Page: 1     Distill To Page: All Pages     Binding: Left     Resolution: [ 600 600 ] dpi     Paper Size: [ 595 842 ] PointCOMPRESSION ----------------------------------------Color Images:     Downsampling: Yes     Downsample Type: Bicubic Downsampling     Downsample Resolution: 150 dpi     Downsampling For Images Above: 225 dpi     Compression: Yes     Automatic Selection of Compression Type: Yes     JPEG Quality: Medium     Bits Per Pixel: As Original BitGrayscale Images:     Downsampling: Yes     Downsample Type: Bicubic Downsampling     Downsample Resolution: 150 dpi     Downsampling For Images Above: 225 dpi     Compression: Yes     Automatic Selection of Compression Type: Yes     JPEG Quality: Medium     Bits Per Pixel: As Original BitMonochrome Images:     Downsampling: Yes     Downsample Type: Bicubic Downsampling     Downsample Resolution: 600 dpi     Downsampling For Images Above: 900 dpi     Compression: Yes     Compression Type: CCITT     CCITT Group: 4     Anti-Alias To Gray: No     Compress Text and Line Art: YesFONTS ----------------------------------------     Embed All Fonts: Yes     Subset Embedded Fonts: No     When Embedding Fails: Warn and ContinueEmbedding:     Always Embed: [ ]     Never Embed: [ ]COLOR ----------------------------------------Color Management Policies:     Color Conversion Strategy: Convert All Colors to sRGB     Intent: DefaultWorking Spaces:     Grayscale ICC Profile:      RGB ICC Profile: sRGB IEC61966-2.1     CMYK ICC Profile: U.S. Web Coated (SWOP) v2Device-Dependent Data:     Preserve Overprint Settings: Yes     Preserve Under Color Removal and Black Generation: Yes     Transfer Functions: Apply     Preserve Halftone Information: YesADVANCED ----------------------------------------Options:     Use Prologue.ps and Epilogue.ps: No     Allow PostScript File To Override Job Options: Yes     Preserve Level 2 copypage Semantics: Yes     Save Portable Job Ticket Inside PDF File: No     Illustrator Overprint Mode: Yes     Convert Gradients To Smooth Shades: No     ASCII Format: NoDocument Structuring Conventions (DSC):     Process DSC Comments: NoOTHERS ----------------------------------------     Distiller Core Version: 5000     Use ZIP Compression: Yes     Deactivate Optimization: No     Image Memory: 524288 Byte     Anti-Alias Color Images: No     Anti-Alias Grayscale Images: No     Convert Images (< 257 Colors) To Indexed Color Space: Yes     sRGB ICC Profile: sRGB IEC61966-2.1END OF REPORT ----------------------------------------IMPRESSED GmbHBahrenfelder Chaussee 4922761 Hamburg, GermanyTel. +49 40 897189-0Fax +49 40 897189-71Email: info@impressed.deWeb: www.impressed.de

Adobe Acrobat Distiller 5.0.x Job Option File
<<     /ColorSettingsFile ()     /AntiAliasMonoImages false     /CannotEmbedFontPolicy /Warning     /ParseDSCComments false     /DoThumbnails true     /CompressPages true     /CalRGBProfile (sRGB IEC61966-2.1)     /MaxSubsetPct 100     /EncodeColorImages true     /GrayImageFilter /DCTEncode     /Optimize true     /ParseDSCCommentsForDocInfo false     /EmitDSCWarnings false     /CalGrayProfile ()     /NeverEmbed [ ]     /GrayImageDownsampleThreshold 1.5     /UsePrologue false     /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [ 2 1 1 2 ] /VSamples [ 2 1 1 2 ] >>     /AutoFilterColorImages true     /sRGBProfile (sRGB IEC61966-2.1)     /ColorImageDepth -1     /PreserveOverprintSettings true     /AutoRotatePages /None     /UCRandBGInfo /Preserve     /EmbedAllFonts true     /CompatibilityLevel 1.2     /StartPage 1     /AntiAliasColorImages false     /CreateJobTicket false     /ConvertImagesToIndexed true     /ColorImageDownsampleType /Bicubic     /ColorImageDownsampleThreshold 1.5     /MonoImageDownsampleType /Bicubic     /DetectBlends false     /GrayImageDownsampleType /Bicubic     /PreserveEPSInfo false     /GrayACSImageDict << /VSamples [ 2 1 1 2 ] /QFactor 0.76 /Blend 1 /HSamples [ 2 1 1 2 ] /ColorTransform 1 >>     /ColorACSImageDict << /VSamples [ 2 1 1 2 ] /QFactor 0.76 /Blend 1 /HSamples [ 2 1 1 2 ] /ColorTransform 1 >>     /PreserveCopyPage true     /EncodeMonoImages true     /ColorConversionStrategy /sRGB     /PreserveOPIComments false     /AntiAliasGrayImages false     /GrayImageDepth -1     /ColorImageResolution 150     /EndPage -1     /AutoPositionEPSFiles false     /MonoImageDepth -1     /TransferFunctionInfo /Apply     /EncodeGrayImages true     /DownsampleGrayImages true     /DownsampleMonoImages true     /DownsampleColorImages true     /MonoImageDownsampleThreshold 1.5     /MonoImageDict << /K -1 >>     /Binding /Left     /CalCMYKProfile (U.S. Web Coated (SWOP) v2)     /MonoImageResolution 600     /AutoFilterGrayImages true     /AlwaysEmbed [ ]     /ImageMemory 524288     /SubsetFonts false     /DefaultRenderingIntent /Default     /OPM 1     /MonoImageFilter /CCITTFaxEncode     /GrayImageResolution 150     /ColorImageFilter /DCTEncode     /PreserveHalftoneInfo true     /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [ 2 1 1 2 ] /VSamples [ 2 1 1 2 ] >>     /ASCII85EncodePages false     /LockDistillerParams false>> setdistillerparams<<     /PageSize [ 576.0 792.0 ]     /HWResolution [ 600 600 ]>> setpagedevice



438 L. Denis et al.

Theorem 1. Let u be a H 1
0 (O)-valued predictable process which is a weak solution

of the equation (1) in the variational sense with initial condition ξ ∈ Lp(�; L∞(O))

for some p � 2. Then the following estimate holds

E ‖u‖p

∞,∞;t ≤ k (t) E

(
‖ξ‖p

∞ +
∥∥∥f 0

∥∥∥
∗p

θ;t
+
∥∥∥|g0|2

∥∥∥
∗p/2

θ;t
+
∥∥∥|h0|2

∥∥∥
∗p/2

θ;t

)
.

where

‖u(ω)‖∞,∞,t = sup
0 � s � t, x∈O

|u(s, ω, x)|,

k is a function which only depends on the structure constants of the SPDE ,

f 0(t, ω, x) = f (t, ω, x, 0, 0), g0(t, ω, x) = g(t, ω, x, 0, 0),

h0(t, ω, x) = h(t, ω, x, 0, 0)

and ‖·‖∗
θ;t is a certain norm which will be defined in the next section.

This result implies in particular that P -almost surely, u(t, x) is uniformly
bounded in t and x.

Motivated by numerical problems, Krylov proved in [10] some fundamental
results concerning the Lp -estimates of solutions of SPDE’s. His approach is based
on the theory of Sobolev spaces, in particular, the classical Sobolev embeding
theorem ensures Lp -estimates for the uniform norm. His method requires the
coefficients to have some smoothness. In the present paper we introduce Moser’s
iteration technique in the context of SPDE’s. This method allows us to obtain Lp

estimates for the uniform norm of the paths of solutions under weaker conditions
on the coefficients (all the coefficients are only assumed to be measurable). We
should also mention that Gyöngy and Rovira [9] derived Lp -estimates by deriving
first Lp -estimates for the Green kernel. They assume that the coefficients of the
elliptic operator are smooth and, in particular, deduce that the solution is pathwise
continuous. However their method does not produce Lp estimates for the uniform
norm of the paths.

This paper is divided as follows: in the next section, we recall some facts con-
cerning Lp,q -spaces and set the hypotheses and notations for the rest of the paper.
Next we establish Itô’s formula for the spacial integral of solution of the SPDE
which permits to obtain Lp-estimates. In the fourth section we prove the desired
estimates. Finally, in an appendix we give a technical lemma on Lp,q -norm.

2. Preliminaries

2.1. The Lp,q - spaces

Let O ⊂ R
d be an open domain with finite Lebesgue measure in R

d and L2(O)

the set of square integrable functions with respect to the Lebesgue measure on O .
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We shall recall some preliminary facts from Aronson Serrin [1] in a slightly
modified form. For each t > 0 and for all real numbers p, q � 1, we denote by
Lp,q([0, t] ×O) the space of measurable functions u : [0, t] ×O −→ R such that

‖u‖p,q; t :=
( ∫ t

0

( ∫

O
|u(s, x)|p dx

)q/p

ds
)1/q

is finite. The limiting cases with p or q taking the value ∞ are also considered
with the obvious use of the essential sup norm. In our analysis of solutions of
SPDE’s we need the following interpolation result between the spaces Lp,q which
is a consequence of Hölder’s inequality (see [1]), as well as the classical Sobolev
inequality.

Lemma 2. If u ∈ Lp1,q1
⋂

Lp2,q2 , then u ∈ Lp,q where pi, qi ∈ [1, ∞], i =
1, 2 and

1

p
= µ

p1
+ ν

p2
,

1

q
= µ

q1
+ ν

q2
, µ, ν � 0 and µ + ν = 1 .

Moreover we have

‖u‖p,q; t � ‖u‖µ

p1,q1;t ‖u‖ν
p2,q2; t (2)

Lemma 3 (Sobolev’s inequality). Assume d > 2. Let u ∈ H 1
0 (O) , then u ∈

L2∗
(O) where 2∗ = 2d/d − 2 and there exists a constant c > 0 which depends

only on the dimension d such that

‖u‖2∗ � c ‖∇u‖2 .

If d = 1, 2, then 2∗ may be any finite real greater than 2.

A consequence of Sobolev’s inequality which will be used in our context is the
following

‖|u|2‖ 2∗
2 ,1; t

� c ‖|∇u|2‖1,1; t , ∀ u ∈ L2( [0, t ]; H 1
0 (O)

)
. (3)

Now we introduce the following sets associated to a fixed θ ∈ [0, 1) :

�θ =
{
(p, q) ∈ [1, ∞]2 ,

d

2p
+ 1

q
= d

2
+ θ

}
,

�∗
θ =

{
(p, q) ∈ [1, ∞]2 ,

d

2p
+ 1

q
= 1 − θ

}
.

It is easy to check the following properties:

1. The relations 1
p

+ 1
p′ = 1 and 1

q
+ 1

q ′ = 1 imply that the pair (p, q) belongs

to �θ if and only if the pair
(
p′, q ′) belongs to �∗

θ .
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2. If (pi, qi) ∈ �θ , i = 1, 2 and µ, ν ≥ 0, µ + ν = 1, then the pair (p, q)

defined by

1

p
= µ

p1
+ ν

p2
,

1

q
= µ

q1
+ ν

q2

is in �θ too. A similar property is valid for �∗
θ .

3. The pair (p, q) belongs to �θ if and only if there exists µ, ν ≥ 0, µ + ν = 1
such that

1

p
= µ

d
d−2(1−θ)

+ ν

1
,

1

q
= µ

1
+ ν

1
θ

.

This means that the pair of inverses
(

1
p
, 1

q

)
belongs to the segment in the plane

with end points

(
1
d

d−2(1−θ)

, 1

)
and (1, θ) .

4. If (p, q) ∈ �θ and u : [0, t] × O −→ R, one has

‖u‖p,q; t ≤ ‖u‖ d
d−2(1−θ)

,1; t
∨ ‖u‖1, 1

θ
; t .

Therefore one has

‖u‖θ; t := ‖u‖ d
d−2(1−θ)

,1; t
∨ ‖u‖1, 1

θ
; t = sup

(p,q)∈�θ

‖u‖p,q; t

and this represents a norm on the space Lθ := L
d

d−2(1−θ)
,1 ∩ L1, 1

θ . For θ = 0

one has
(

2∗
2 , 1

)
=
(

d
d−2 , 1

)
, (1, ∞) ∈ �0 and

‖u‖0; t := ‖u‖ d
d−2 ,1; t

∨ ‖u‖1,∞; t .

5. On the space defined as the algebric sum

L∗
θ :=

∑

(p,q)∈�∗
θ

Lp,q,

we introduce the norm

‖u‖∗
θ;t :=

inf

{ n∑

i=1

‖ui‖pi,qi ; t

∣∣∣ u=
n∑

i=1

ui, ui ∈ Lpi,qi , (pi, qi)∈�∗
θ , i =1, ...n; n ∈ N

}

This space represents the dual of Lθ in the sense of the following inequality
∫ t

0

∫

O
u (s, x) v (s, x) dxds ≤ ‖u‖θ; t ‖v‖∗

θ; t (4)

which holds for u ∈ Lθ and v ∈ L∗
θ .
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6. Setting σ = 1 + 2θ
d

, it is easy to see that (σp, σq) ∈ �0 if and only if (p, q) ∈
�θ . Therefore one has

∥∥|u|σ∥∥
1
σ

θ; t = sup
(p,q)∈�θ

∥∥|u|σ∥∥
1
σ

p,q; t = sup
(p,q)∈�θ

‖u‖σp,σq; t � ‖u‖0; t .

In order to understand the main point of the above facts related to the Lp,q -
spaces one should have in mind the following remark. In the theory of parabolic
PDEs the norms of the type

‖u2‖1,∞;t + c1

∫ t

0

∫

O
|∇us |2dxds

with some positive constant c1 appear naturally. From the Sobolev inequality (3)
we have

c

∫ t

0

∫

O
|∇us |2dxds � ‖|u|2‖ d

d−2 ,1;t .

Therefore one has

‖|u|2‖1,∞;t + c

∫ t

0

∫

O
|∇us |2dxdts � ‖|u|2σ ‖

1
σ

θ;t

for σ = 1 + 2θ
d

. This is the main point which allows one to apply Moser’s iteration
scheme.

2.2. Hypotheses and definitions

Let {Bt := (B
j
t )j∈{1,··· ,d1} }t � 0 be a d1-dimensional Brownian motion defined on

a standard filtered probability space
(
�, F, (Ft )t � 0, P

)
.

Let A be a symmetric second order differential operator expressed by

A := −L = −
d∑

i,j=1

∂i(a
i,j ∂j )

with zero Dirichlet boundary conditions. We assume that a is a measurable and
symmetric matrix defined on O which satisfies the uniform ellipticity condition

λ|ξ |2 �
∑

i,j

ai,j (x)ξ i ξ j � 
|ξ |2, ∀x ∈ O, ξ ∈ R
d , (5)

where λ and 
 are positive constants.
Let (F, E) be the associated Dirichlet form given by F := D(A1/2) = H 1

0 (O)

which implies

E(u, v) := (
A1/2u, A1/2v

)
and E(u, u) = ‖

√
Au‖2, ∀u, v ∈ F

where (·, ·) and ‖ . ‖ are respectively the inner product and the norm on L2(O).
H 1

0 (O) is the first order Sobolev space of functions vanishing at the boundary . For
the notion of Dirichlet form we refer to [8] or [4].
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We consider the quasilinear stochastic partial differential equation (in short
SPDE) for the real-valued random field ut (x)

dut (x)+Aut(x)dt+f (t, x, ut (x), ∇ut (x))dt+
d∑

i=1

∂igi(t, x, ut (x), ∇ut (x))dt

=
d1∑

j=1

hj (t, x, ut (x), ∇ut (x)) dB
j
t , (6)

with initial condition u(0, .) =: ξ(.) and Dirichlet boundary condition

ut (x) = 0, for all (t, x) ∈ (0, +∞) × ∂O .

We assume that we have predictable random functions

f : R+ × � × O × R × R
d → R ,

g = (g1, ..., gd) : R+ × � × O × R × R
d → R

d

h : R+ × � × O × R × R
d → R

d1 ,

which satisfy the following Lipschitz conditions with respect to the last two vari-
ables

|f (t, ω, x, y, z) − f (t, ω, x, y
′
, z

′
)| � C

(|y − y
′ | + |z − z

′ |) ,

( d∑

i=1

|gi(t, ω, x, y, z) − gi(t, ω, x, y
′
, z

′
)|2
) 1

2 � C |y − y
′ | + α |z − z

′ | ,

( d1∑

j=1

|hj (t, ω, x, y, z) − hj (t, ω, x, y
′
, z

′
)|2
) 1

2 � C |y − y
′ | + β |z − z

′ | , (7)

where C, α, β are non negative constants.
For the existence of solutions we will make use of the result from [7] and, in

order to ensure the validity of the result, we assume that the constants α and β

satisfy the condition

α + β2

2
< λ . (8)

This last condition means that the size of the second order perturbation and the first
order perturbation associated with the Brownian motion, should be small. Moreover
we define

f (·, ·, ·, 0, 0) := f 0

h(·, ·, ·, 0, 0) := h0 = (h0
1, ..., h

0
d1

)

g(·, ·, ·, 0, 0) := g0 = (g0
1, ..., g0

d).
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We also assume that ξ is a F0-measurable, L∞(O)-valued random variable. The
coefficient f 0, |g0|2, |h0|2 are L∗

θ -valued random variable, for a certain θ ∈ [0, 1),
and for each t � 0 one has

‖ξ‖∞ ,

∥∥∥f 0
∥∥∥

∗
θ;t

,
( ∥∥∥|g0|2

∥∥∥
∗
θ;t

) 1
2
,

( ∥∥∥|h0|2
∥∥∥

∗
θ;t

) 1
2 ∈ Lp (�, P ) .

(9)

for a certain number p � 2.

2.3. Weak solutions

Let L2
loc

(
R+; H 1

0 (O)
)

be the space of all measurable functions u : R+ → H 1
0 (O)

such that
(∫ T

0

(
‖ut‖2 + E (ut )

)
dt

)1/2

< ∞, for any T > 0.

H is the space of H 1
0 (O)-valued predictable processes (ut )t � 0 such that

(
E

∫ T

0
‖ut‖2 dt +

∫ T

0
E E (ut ) dt

)1/2

< ∞ , for each T > 0 .

Of special interest is the subspace F̂ ⊂ L2
loc

(
R+; H 1

0 (O)
)

consisting of functions
u ∈ L2

loc

(
R+; H 1

0 (O)
)
,which admit a continuous version in L2 (O) . On this

space we have the natural seminorms expressed by

‖u‖T =
(

sup
s≤T

‖us‖2 +
∫ T

0
E (us) ds

) 1
2

, T > 0.

The space of test functions in our study will be D = C∞
c ([0, ∞ ))⊗C2

c (O), where
C∞

c ([0, ∞)) denotes the space of functions with compact support definde on [0, ∞)

which admit an extention as an infinity differentiable function on (−∞, ∞) and
C2

c (O) the set of C2-functions with compact support on O. Since C∞
c ([0, ∞)) is

dense in L2
loc (R+) and C2

c (O) is dense in H 1
0 (O) and in L2(O) respectively, it

follows that D is bothly dense in L2
loc

(
R+; H 1

0 (O)
)

and in L2
loc

(
R+; L2(O)

)
.

Definition 4. We say that u ∈ H is a weak solution of equation (6) with initial
condition ξ ∈ L2(� × O), if the following relation holds almost surely, for each
ϕ ∈ D,

∫ ∞

0
[(us, ∂sϕ) − E (us, ϕs) − (f (s, us, ∇us) , ϕs)

+
d∑

i=1

(gi (s, us, ∇us) , ∂iϕs)]ds

+
d1∑

j=1

∫ ∞

0

(
hj (s, us, ∇us) , ϕs

)
dB

j
s + (ξ, ϕ0) = 0. (10)
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3. Lp-estimates of the solution and Itô’s formula

3.1. A stronger Hypothesis

Concerning existence of solutions we shall rely on the result from [7]. Since the
condition (9) does not ensure applicability of the existence theorem (Theorem 8
from [7]), in the first stage we will strengthen it and assume that

ξ ∈ L∞(� × O), f 0, g0, h0 ∈ L∞(R+ × � × O) (11)

We point out that we always denote by c > 0 a constant whose value may change
from line to line and that, for any ε > 0, we denote by cε a constant which depends
on ε like the one appearing in the following typical inequality

ab � εa2 + cεb
2, a, b ∈ R .

The proof of the next theorem may be found in [7].

Theorem 5. Under hypotheses (7), (8) and (11), the SPDE (6) admits a unique
solution u ∈ H and this solution has L2(O)-continuous trajectories.

3.2. Itô’s formula for the Lp-norm

We will denote by u := U(ξ, f, g, h) the solution of the equation (6) with initial
condition ξ and coefficients f, g, h. In order to prove an Itô type formula with
respect to the p -integral over O we first study solutions of the equation (6) with
ξ, f, g, h of a particular type. In the next lemma we consider the linear case, that
is we assume that f, g, h do not depend on the last two variables.

Lemma 6. 1) Iff ,h1, · · · , hd1 belong toC∞
c ([0, ∞))⊗L2(�)⊗D(A),g1, · · · , gd

belong to C∞
c ([0, ∞))⊗L2(�)⊗D(A3/2) and if ξ belongs to L2(�)⊗D(A) then

u := U(ξ, f, g, h) is an L2(O)-valued square integrable semimartingale.
2) If f , h1, · · · , hd1 , g1, · · · , gd belong to L2

loc

(
R

+; L2(� × O
)
) and ξ ∈

L2
(
� × O

)
, then there exists a sequence (uk)k∈N of L2(O)-valued square inte-

grable semimartingales which approximates u := U(ξ, f, g, h) in the sense that
limk→∞ E ‖uk − u‖2

T = 0 for all T > 0.

Proof. 1) The fact that u is a semi-martingale is a consequence of Lemma 3,
Lemma 5 and Proposition 6 in [7]. Namely one has the decomposition

∀t � 0, ut = ξ +
∫ t

0
Lusds −

∫ t

0
f (s) −

d∑

i=1

∫ t

0
∂igi(s) ds

+
d1∑

j=1

∫ t

0
hj (s) dB

j
s ds,

where each term makes sense because in this case u ∈ L2([0, T ] × �; D(A))

for all T > 0.
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2) For the second part of the Lemma, by Theorem 9 in [7], there exists a constant
K > 0 which does not depend on f, h, ξ and such that, for each T > 0,

E(‖ u ‖2
T ) � KE

(‖ξ‖2 +
∫ T

0
‖f (s)‖2 +

d∑

i=1

‖gi(s)‖2 +
d1∑

j=1

‖hj (s)‖2 ds
)
.

Consider now sequences (f k)k∈N∗ , (hk
j )k∈N∗ , 1 � j � d1 in C∞

c ([0, ∞)) ⊗
L2(�) ⊗ D(A) which converge in L2

loc

(
[0, ∞) × � × O

)
to f and (hj ),

1 � j � d1 respectively; for each i ∈ {1 · · · d} a sequence (gk
i )k∈N∗ in

C∞
c ⊗ L2(�) ⊗ D(A3/2) which converges to gi in L2

loc

(
R+; L2(� × O)

)
and

a sequence (ξk)k∈N∗ in L2(�) ⊗ D(A) which converges to ξ in L2
(
� × O

)
.

We set

∀k ∈ N
∗, uk := U(ξk, f k, gk, hk),

and then, thanks to the first part of this proposition and the inequality we have
just recalled, it is easy to conclude. ��

Lemma 7. Assume that f , h1 · · · hd1 , g1, · · · , gd belong to L2
loc

(
R+; L2(�×O

)
)

and ξ ∈ L2
(
� × O

)
and consider u := U(ξ, f, g, h). Let ϕ : R −→ R be a twice

differentiable function with continuous and bounded second order derivative. Then
P -a.s. for all t ∈ [0, T ]

∫

O
ϕ(ut (x)) dx +

∫ t

0
E
(
ϕ′(us), us

)
ds

=
∫

O
ϕ(ξ) dx −

∫ t

0

(
ϕ′(us), fs

)
ds

+
d∑

i=1

∫ t

0

∫

O
ϕ′′(us(x))∂ius(x) gi(s, x) dx ds

+
d1∑

j=1

∫ t

0

(
ϕ′(us), hj (s)

)
dB

j
s

+1

2

d1∑

j=1

∫ t

0

∫

O
ϕ′′(us(x))h2

j (s, x) dx ds , (12)

where the term t → ∑d1
j=1

∫ t

0

(
ϕ′(us), hj (s)

)
dB

j
s is a well-defined martingale

hence integrable.

Proof. Assume first that f, h1, · · · , hd1 ∈ C∞
c ⊗L2(�)⊗D(A), g1, · · · , gd belong

to C∞
c ⊗ L2(�) ⊗ D(A3/2) and ξ ∈ L2(�) ⊗ D(A), then u is a semimartingale
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and one has

∀t � 0, ut = ξ +
∫ t

0
Lusds −

∫ t

0
f (s) ds −

d∑

i=1

∫ t

0
∂igi(s) ds

+
d1∑

j=1

∫ t

0
hj (s) dB

j
s .

Ito’s formula for Hilbert-valued semimartingales (see [5] for example) yields

∫

O
ϕ(ut (x)) dx =

∫

O
ϕ(ξ(x)) dx +

∫ t

0

(
ϕ′(us), Lus

)
ds −

∫ t

0

(
ϕ′(us), fs

)
ds

−
d∑

i=1

∫ t

0

∫

O
ϕ′(us(x))∂i gi(s, x) dx ds

+
d1∑

j=1

∫ t

0

(
ϕ′(us), hj (s)

)
dB

j
s

+ 1

2

d1∑

j=1

∫ t

0

∫

O
ϕ′′(us(x))hj (s, x)2 dx ds . (13)

Then, as

(
ϕ′(us), Lus

) = −E
(
ϕ′(us), us

)
, ∀s � 0,

and

d∑

i=1

∫

O
ϕ′(us(x))∂i gi(s, x) dx = −

d1∑

j=1

∫

O
ϕ′′(us(x))∂ius(x) gi(s, x) dx,

we get the desired equality.
For the martingale part, let us remark that the square root of its brackets is

dominated as follows

( d1∑

j=1

∫ T

0

(
ϕ′(us), hj (s)

)2
ds
) 1

2 �
( d1∑

j=1

∫ T

0
‖ ϕ′(us) ‖2‖ hj (s) ‖2 ds

) 1
2

� sup
s∈[0,T ]

‖ ϕ′(us) ‖2 +
d1∑

j=1

∫ T

0
‖ hj (s) ‖2 ds.

Since ϕ′′ is bounded, the first derivative ϕ′ has at most linear growth, and since u ∈
H it follows that sups∈[0,T ]

∥∥ϕ′(us)
∥∥2 belongs to L1 (�) . Therefore the square root

of the bracket belongs L1 (�) , so that, by the Burkholder-Davis-Gundy inequality
we deduce that t → ∑d1

j=1

∫ t

0

(
ϕ′(us), hj (s)

)
dB

j
s is a martingale.
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The general case is obtained by approximation thanks to the previous
lemma. ��

Lemma 8. Assume that hypothesis of section 2.2 and (11) hold. We denote by

K = ‖ξ‖L∞(�×O) ∨ ‖f 0‖L∞(R+×�×O)

∨‖h0‖L∞(R+×�×O) ∨ ‖g0‖L∞(R+×�×O;Rd ) .

Then the solution u of the equation (6) belongs to
⋂

p � 2 Lp
(
[0, T ] × O × �

)
,

for each T > 0. Moreover there exist constants c, c′ > 0 which only depend on
K, C, α and β such that, for all real l � 2, one has

E

∫

O
|ut (x)|l dx � cK2l(l − 1)ec l(l−1)t (14)

and

E

∫ t

0

∫

O
|ut (x)|l−2|∇ut (x)|2 dx � c′K2l(l − 1)ec l(l−1)t . (15)

Proof. Notice first that if u is a solution of the equation (6), then

f (u, ∇u) , gi (u, ∇u) , hi (u, ∇u) ∈ L2
loc

(
R+; L2 (� × O)

)

and consequently we may apply Lemma 7 to u.
We fix a real l � 2, T > 0 and introduce the sequence (ϕn)n∈N∗ of functions

such that for all n ∈ N
∗:

∀x ∈ R, ϕn(x) =
{ | x |l if | x | � n

nl−2
[

l(l−1)
2 (|x| − n)2 + l n(|x| − n) + n2

]
if | x |> n

One can easily verify that for fixed n, ϕn is twice differentiable with bounded sec-
ond derivative, ϕ′′

n(x) � 0, and as n → ∞ one has ϕn(x) −→ |x|l , ϕ′
n(x) −→

lsgn(x)|x|l−1, ϕ′′
n(x) −→ l(l − 1)|x|l−2. Moreover, the following relations hold,

for all x ∈ R and n � l:

1. | xϕ′
n(x) | � lϕn(x).

2. | ϕ′
n(x) | � | xϕ′′

n(x) |.
3. | x2ϕ′′

n(x) | � l(l − 1)ϕn(x).
4. |ϕ′

n(x)| � l(ϕn(x) + 1).

5. |ϕ′′
n(x)| � l(l − 1)(ϕn(x) + 1).
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From Lemma 7 we have P -a.s. for all t ∈ [0, T ]
∫

O
ϕn(ut (x)) dx +

∫ t

0
E
(
ϕ′

n(us), us

)
ds

=
∫

O
ϕn(ξ) dx −

∫ t

0

∫

O
ϕ′

n(us)f (s, x, us, ∇us) dxds

+
d∑

i=1

∫ t

0

∫

O
ϕ′′

n(us(x))∂ius(x) gi(s, x, us, ∇us) dx ds

+
d1∑

j=1

∫ t

0

∫

O
ϕ′

n(us) hj (s, x, us, ∇us) dxdB
j
s

+1

2

d1∑

j=1

∫ t

0

∫

O
ϕ′′

n(us(x))h2
j (s, x, us, ∇us) dx ds . (16)

By the uniform ellipticity of the operator A we get

E
(
ϕ′

n(us), us

)
� λ

∫

O
ϕ′′

n(us)|∇us |2 dx.

Let ε > 0 be fixed. Using the Lipschitz condition on f and the properties of the
functions (ϕn)n we get

|ϕ′
n(us)| |f (s, x, us, ∇us)|
� |ϕ′

n(us)|
(|f 0(s, x)| + C (|us | + |∇us |)

)

� |ϕ′
n(us)||f 0(s, x)| + |us ||ϕ′′

n(us)| (C|us | + C|∇us |) )

� l(ϕn(us) + 1) |f 0(s, x)| + C|us |2|ϕ′′
n(us)| + C|us ||∇us ||ϕ′′

n(us)|
� l(ϕn(us) + 1) |f 0(s, x)| + (C + cε) |us |2ϕ′′

n(us) + εϕ′′
n(us)|∇us |2.

Now using Cauchy-Schwarz inequality and the Lipschitz condition on g we get

d∑

i=1

ϕ′′
n(us)∂iusgi(s, x, us, ∇us)

� ϕ′′
n(us)|∇us |

(|g0(s, x)| + C|us | + α|∇us |
)

� εϕ′′
n(us)|∇us |2 + 2cεϕ

′′
n(us)

(
K2 + C2|us |2

)+ αϕ′′
n(us)|∇us |2

� l(l − 1)cεK
2 + 2cε(K

2 + C2)l(l − 1)|ϕn(us)| + (α + ε)ϕ′′
n(us)|∇us |2

In the same way as before

d1∑

j=1

ϕ′′
n(us)h

2
j (s, us, ∇us)

� ϕ′′
n(us)

(
c′
ε(|h0(s, x)| + C|us |)2 + (1 + ε)β2|∇us |2

)

� ϕ′′
n(us)

(
2c′

εK
2 + 2c′

εC
2|us |2 + (1 + ε)β2|∇us |2

)

� 2c′
ε l(l − 1)K2 + 2c′

ε(K
2 + C2)l(l − 1)ϕn(us) + (1 + ε)β2ϕ′′

n(us)|∇us |2
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Thus taking the expectation (one has to remember that, as a consequence of the
previous lemma, the expectation of the martingale part is null), we deduce

E

∫

O
ϕn(ut (x))dx+(λ − 1

2
(1 + ε)β2−(α + 2ε))E

∫ t

0

∫

O
ϕ′′

n(us(x))|∇us |2dxds

� l(l − 1)c′′
ε K2+c′′

ε l(l − 1)
(
K2+ C2 + C +cε

)
E

∫ t

0

∫

O
ϕn(us(x))dxds

(17)

On account of the condition (8), one can choose ε > 0 small enough such that

λ − 1

2
(1 + ε)β2 − (α + 2ε) > 0

and then

E

∫

O
ϕn(ut (x)) dx � cK2l(l − 1) + cl(l − 1)E

∫ t

0

∫

O
ϕn(us(x)) dx ds .

We obtain by Gronwall’s Lemma, that

E

∫

O
ϕn(ut (x)) dx � c K2l(l − 1) exp

(
c l(l − 1) t

)

and so it is now easy from (17) to get

E

∫ t

0

∫

O
ϕ′′

n(us(x)) |∇us |2 dx ds � c′ K2l (l − 1) exp
(
cl(l − 1) t

)

Finally, letting n → ∞ by Fatou’s lemma we deduce (14) and (15). ��

First we use the above estimates to get uniqueness of solutions under the general
conditions (9) without (11).

Corollary 9. Assume all the hypotheses of section 2.2. Then the uniqueness of the
weak solution in H of SPDE in the sense (10) holds.

Proof. Let u and u′ be two weak solutions in H of the SPDE (10) associated to
(ξ, f, g, h). Let us define

ū = u − u′, f̄ (t, ω, x, y, z) = f (t, ω, x, y + u′
t , z + ∇u′

t ) − f (t, ω, x, u′
t , ∇u′

t )

in the same way we define ḡ and h̄. Then ū is a weak solution in H of the SPDE
(10) associated to (0, f̄ , ḡ, h̄) with f̄ 0 = ḡ0 = h̄0 = 0. Then by (14) we have that
ū = 0, a.e. which gives our uniqueness result. ��
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Proposition 10. Assume the hypotheses of the previous lemma. Let u = u(t, x) be
the solution of the SPDE (6). Then for l � 2, we get the following Itô’s formula,
P -almost surely, for all t � 0

∫

O
|ut (x)|l dx +

∫ t

0
E
(
l (us)

l−1 sgn(us), us

)
ds

=
∫

O
|ξ(x)|l dx − l

∫ t

0

∫

O
sgn(us)|us(x)|l−1f (s, x, us, ∇us) dxds

+ l(l − 1)

d∑

i=1

∫ t

0

∫

O
|us(x)|l−2∂ius(x) gi(s, x, us, ∇us) dx ds

+ l

d1∑

j=1

∫ t

0

∫

O
sgn(us)|ut (x)|l−1hj (s, x, us, ∇us) dxdB

j
s

+ l(l − 1)

2

d1∑

j=1

∫ t

0

∫

O
|ut (x)|l−2h2

j (s, x, us, ∇us) dx ds . (18)

where

E
(
l (us)

l−1 sgn(us), us

) = l(l − 1)

d∑

i,j=1

∫

O
|us(x)|l−2aij (x) ∂ius(x) ∂jus(x) dx.

Proof. From Lemma 7 with the same notations, we have P -almost surely, and for
all t � 0 and n ∈ N

∫

O
ϕn(ut (x)) dx +

∫ t

0
E
(
ϕ′

n(us), us

)
ds

=
∫

O
ϕn(ξ(x)) dx −

∫ t

0

∫

O
ϕ′

n(us(x))f (s, x, us, ∇us) dxds

+
d∑

i=1

∫ t

0

∫

O
ϕ′′

n(us(x))∂ius(x) gi(s, x, us, ∇us) dx ds

+
d1∑

j=1

∫ t

0

∫

O
ϕ′

n(us(x)) hj (s, x, us, ∇us) dxdB
j
s

+1

2

d1∑

j=1

∫ t

0

∫

O
ϕ′′

n(us(x))h2
j (s, x, us, ∇us) dx ds .

Passing to the limit as n → ∞, thanks to the Lemma 8 and the the dominated
convergence theorem, we obtain the desired result. ��
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4. The main result

We will need the following stronger hypothesis :

α + 1

2
β2 + 72β2 < λ . (19)

Then we choose a constant ε ∈ (0, 1) such that

λ > α + εl

l − 1
+ 1 + ε

2
β2 + 36 (1 + ε)

(1 − 6ε)2

l

l − 1
β2,

for all l � 2.
The constants λ, C, α, β, θ, p and |O| , the volume of the open set O, represent

the structure parameters of our SPDE and are considered fixed from now on. The
constant ε, chosen above, will be considered fixed too. The estimates of solutions
will be expressed only in terms of this constants and the norms of the random
variables ξ, f 0, g0, h0. Our main theorem is the following:

Theorem 11. Assume that hypotheses of section 2.2 and (19) hold. Then the equa-
tion (6) admits a unique solution u in H. Moreover, there exists a function k2 :
R+ → R+, which involves only the structure constants, such that the following
estimate holds for all p � 2

E ‖u‖p

∞,∞;t ≤ k2 (t) E

(
‖ξ‖p

∞ +
∥∥∥f 0

∥∥∥
∗p

θ;t
+
∥∥∥|g0|2

∥∥∥
∗p/2

θ;t
+
∥∥∥|h0|2

∥∥∥
∗p/2

θ;t

)
. (20)

The proof of this result is rather lengthy so we will go on in several steps.
First we will assume that the hypothesis (11) of section 3.1 is fulfilled and in the

next subsection prove several lemmas. We have in mind to get estimates in which
the constants depend on C, ‖ξ‖L∞(�×O), ‖f 0‖∗

θ;t , ‖|g0|2‖∗
θ;t , ‖|h0|2‖∗

θ;t , α and β

which will allow us to consider the general case by an approximation argument.

4.1. Preliminary estimates

For each l � 2, we define the processes v and v′ by

vt := sup
s � t

(∫

O
|us |l dx + γ l (l − 1)

∫ s

0

∫

O
|ur |l−2 |∇ur |2 dx dr

)

v′
t :=

∫

O
|ξ |l dx + l2c1

∥∥∥|u|l
∥∥∥

1,1;t
+ l

∥∥∥f 0
∥∥∥

∗
θ;t

∥∥∥|u|l−1
∥∥∥

θ;t

+ l2
(

c2

∥∥∥|g0|2
∥∥∥

∗
θ;t

+ c3

∥∥∥|h0|2
∥∥∥

∗
θ;t

)∥∥∥|u|l−2
∥∥∥

θ;t
,

where the constants are given by

γ = λ − α − εl

l − 1
− 1 + ε

2
β2

c1 = C

2

(
1 + C

4ε

)
+ 3 + 2ε

2ε
C2 + 3

1 + ε

ε2 C2

c2 = 1

2ε
and c3 = (3 + ε) (1 + ε)

ε
(21)
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We start with an estimate of the bracket of the local martingale appearing in (18),
expressed by

Mt := l

d1∑

j=1

∫ t

0

∫

O
sgn(us)|us(x)|l−1hj (s, x, us, ∇us) dxdB

j
s

Lemma 12. For arbitrary ε > 0, one has

〈M〉
1
2
t ≤ εvt + l2

2ε

(
1 + ε

ε

∥∥∥|h0|2
∥∥∥

∗
θ;t

∥∥∥|u|l−2
∥∥∥

θ;t
+ 1 + ε

ε
C2
∥∥∥|u|l

∥∥∥
1,1;t

)

+√
1 + ε

√
l

l − 1

β√
γ

vt . (22)

Proof. The Lipschitz conditions (7) imply

|h (s, x, us, ∇us)|2

≤ 2

(
1 + 1

ε

) ∣∣∣h0
s

∣∣∣
2 + 2

(
1 + 1

ε

)
C2 |us |2 + (1 + ε) β2 |∇us |2 .

First the bracket of M is estimated by

〈M〉t = l2
d1∑

j

∫ t

0

(∫

O
|us |l−1 sign (us) hj (s, x, us, ∇us) dx

)2

ds

≤ l2
∫ t

0

(∫

O
|us |l dx

)(∫

O
|us |l−2 |h (s, x, us, ∇us) |2dx

)
ds

≤ l2
(

sup
s≤t

∫

O
|us |l dx

)∫ t

0

∫

O
|us |l−2 |h (s, x, us, ∇us) |2dxds

Now using the Hölder’s inequality (4)

〈M〉t � l2
(

sup
s≤t

∫

O
|us |l dx

)(
2

1 + ε

ε

∥∥∥|h0|2
∥∥∥

∗
θ;t

∥∥∥|u|l−2
∥∥∥

θ;t

)

+l2
(

sup
s≤t

∫

O
|us |l dx

)(
2

1 + ε

ε
C2
∥∥∥|u|l

∥∥∥
1,1;t

+ (1 + ε) β2
∫ t

0

∫

O
|us |l−2 |∇us |2 ds

)
.

Thus we may write the estimate of the bracket as follows

〈M〉t ≤ l2vt

(
2

1 + ε

ε

∥∥∥|h0|2
∥∥∥

∗
θ;t

∥∥∥|u|l−2
∥∥∥

θ;t

+2
1 + ε

ε
C2
∥∥∥|u|l

∥∥∥
1,1;t

+ (1 + ε) β2

l (l − 1) γ
vt

)
,

which yields the result thanks to the trivial inequalities:
√

a + b �
√

a +
√

b and
√

ab � εa + b

4ε
, a, b > 0.

��
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In what follows we will use the notion of domination as a technical tool. We
recall the definition from Revuz and Yor [18].

Definition 13. A non-negative, adapted right continuous process X is dominated
by an increasing process A, if

E
[
Xτ ] � E

[
Aτ ]

for any bounded stopping time, τ .

One important result related to this notion is the following domination inequal-
ity (see Proposition IV.4.7 in Revuz-Yor, p. 163), for any k ∈]0, 1[,

E
[
(X∗

∞)k
]

� Ck E
[
(A∞)k

]
(23)

where Ck is a positive constant and X∗
t := sups � t |Xs |.

We will also use the fact that if A, A′ are increasing processes, then the domi-
nation of a process X by A is equivalent to the domination of X + A′ by A + A′.

Lemma 14. The Process τv is dominated by the process v′ where

τ = 1 − 6ε − 6
√

1 + ε

√
l

l − 1

β√
γ

.

In other words, we have

τ E sup
0 � s � t

(∫

O
|us |l dx + γ l (l − 1)

∫ s

0

∫

O
|ur |l−2 |∇ur |2 dxdr

)

� E

∫

O
|ξ |l dx + l2c1E

∥∥∥|u|l
∥∥∥

1,1;t
+ lE

∥∥∥f 0
∥∥∥

∗
θ;t

∥∥∥|u|l−1
∥∥∥

θ;t

+ l2E

(
c2

∥∥∥|g0|2
∥∥∥

∗
θ;t

+ c3

∥∥∥|h0|2
∥∥∥

∗
θ;t

)∥∥∥|u|l−2
∥∥∥

θ;t
, (24)

where γ, c1, c2 and c3 are the constants given above.

Proof. One starts with the relation (18) :

∫

O
|ut |l dx + l (l − 1)

∫ t

0




∫

O
|us |l−2

∑

i,j

aij ∂ius∂jus dx



 ds

=
∫

O
|ξ |l dx − l

∫ t

0

(∫

O
|us |l−1 sign (us) f (s, x, us, ∇us) dx

)
ds

+ l (l − 1)

∫ t

0

(∫

O
|us |l−2

∑

i

∂iusgi (s, x, us, ∇us) dx

)
ds

+ l(l − 1)

2

∫ t

0




∫

O
|us |l−2

d1∑

j

h2
j (s, x, us, ∇us) dx



 ds

+ l

d1∑

j=1

∫ t

0

(∫

O
|us |l−1 sign (us) hj (s, x, us, ∇us) dx

)
dB

j
s .
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Using the uniform ellipticity condition (5) one has

∑

i,j

aij ∂ius∂jus ≥ λ |∇us |2

and the Lipschitz conditions (7) imply

|f (s, x, us, ∇us)| ≤
∣∣∣f 0

s

∣∣∣+ C |us | + C |∇us |

|g (s, x, us, ∇us)| ≤
∣∣∣g0

s

∣∣∣+ C |us | + α |∇us |

|h (s, x, us, ∇us)|2 ≤ 2
(
1 + 1

ε

) ∣∣∣h0
s

∣∣∣
2 + 2

(
1 + 1

ε

)
C2 |us |2 + (

1 + ε
)
β2 |∇us |2 ,

for all ε > 0. This leads to
∫

O
|ut |l dx + l (l − 1) λ

∫ t

0

∫

O
|us |l−2 |∇us |2 dxds

≤
∫

O
|ξ |l dx + l

∫ t

0

∫

O
|us |l−1

∣∣∣f 0
s

∣∣∣ dxds

+ l

(
C + C2

4ε

)∫ t

0

∫

O
|us |l dxds + lε

∫ t

0

∫

O
|us |l−2 |∇us |2 dxds

+ l (l − 1)

∫ t

0

∫

O
|us |l−2

(
1

2ε

∣∣∣g0
s

∣∣∣
2 + 1

2ε
C2 |us |2 + (α + ε) |∇us |2

)
dxds

+ l (l − 1)

∫ t

0

∫

O
|us |l−2

((
1 + 1

ε

) ∣∣∣h0
s

∣∣∣
2 +

(
1 + 1

ε

)
C2 |us |2

+ 1

2
(1 + ε) β2 |∇us |2

)
dxds + Mt .

This further leads to
∫

O
|ut |l dx + l (l − 1) γ

∫ t

0

∫

O
|us |l−2 |∇us |2 dxds

≤
∫

O
|ξ |l dx + l (l − 1) c4

∫ t

0

∫

O
|us |l dxds

+ l

∫ t

0

∫

O
|us |l−1

∣∣∣f 0
s

∣∣∣ dxds + l (l − 1)

2ε

∫ t

0

∫

O
|us |l−2

∣∣∣g0
s

∣∣∣
2
dxds

+ l (l − 1) (1 + ε)

ε

∫ t

0

∫

O
|us |l−2

∣∣∣h0
s

∣∣∣
2
dxds + Mt

≤
∫

O
|ξ |l dx + l (l − 1) c4

∥∥∥|u|l
∥∥∥

1,1;t
+ +l

∥∥∥|u|l−1
∥∥∥

θ;t

∥∥∥f 0
∥∥∥

∗
θ;t

+ l (l− 1)

2ε

∥∥∥|u|l−2
∥∥∥

θ;t

∥∥∥|g0|2
∥∥∥

∗
θ;t

+ l (l − 1) (1 + ε)

ε

∥∥∥|u|l−2
∥∥∥

θ;t

∥∥∥|h0|2
∥∥∥

∗
θ;t

+ Mt
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where

c4 := C

(l − 1)

(
1 + C

4ε

)
+ 3 + 2ε

2ε
C2.

Taking the supremum one deduces

vt ≤
∫

O
|ξ |l dx + l (l − 1) c4

∥∥∥|u|l
∥∥∥

1,1;t
+ l

∥∥∥f 0
∥∥∥

∗
θ;t

∥∥∥|u|l−1
∥∥∥

θ;t

+
(

l (l − 1)

2ε

∥∥∥|g0|2
∥∥∥

∗
θ;t

+ l (l − 1) (1 + ε)

ε

∥∥∥|h0|2
∥∥∥

∗
θ;t

)∥∥∥|u|l−2
∥∥∥

θ;t
+ M∗

t .

Since the process M∗
t is dominated by 6 〈M〉

1
2
t we deduce that the process v is

dominated by
∫

O
|ξ |l dx + l (l − 1) c4

∥∥∥|u|l
∥∥∥

1,1;t
+ l

∥∥∥f 0
∥∥∥

∗
θ;t

∥∥∥|u|l−1
∥∥∥

θ;t

+
(

l (l − 1)

2ε

∥∥∥|g0|2
∥∥∥

∗
θ;t

+ l (l − 1) (1+ε)

ε

∥∥∥|h0|2
∥∥∥

∗
θ;t

)∥∥∥|u|l−2
∥∥∥

θ;t
+6 〈M〉

1
2
t .

We may finally use the estimate (22) to get the result of the lemma with ε = ε

choosen as it is required in the statement. ��
Lemma 15. The process v satisfies the estimate

vt ≥ δ

∥∥∥|u|l
∥∥∥

0;t

with δ = 1 ∧ (2c−1γ
)
, where c is the constant in the Sobolev inequality of Lemma

3.

Proof. Denote by y := |u|l/2, then ∂iy = (l/2)∂iu sign(u) |u|(l−2)/2 and so
|∇y|2 = (l/2)2|u|l−2|∇u|2. Making the change of variables in the second term
of the left hand side of the last equation and using the Sobolev’s inequality (3) we
get

l(l − 1)γ

∫ t

0

∫

O
|us |l−2 |∇us |2 dxds = 4γ (l − 1)

l

∫ t

0

∫

O
|∇ys |2 dxds

� 4γ (l − 1)

cl

∫ t

0

( ∫

O
|ys |2∗

dx
)2/2∗

ds

= 4γ (l − 1)

cl
‖|u|‖ 2∗

2 ,1;t
� δ ‖|u|‖ 2∗

2 ,1;t

where 2∗ := 2d

d − 2
for d > 2 and 2∗ = 4 for d = 1, 2. It is now easy to conclude

our lemma. ��
The next lemma is a key technical ingredient for our purposes.
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Lemma 16. The process

wt :=
[∥∥∥|u|σ l

∥∥∥
1
σ

θ;t
∨ ‖ξ‖l

∞ ∨
∥∥∥f 0

∥∥∥
l

θ;t
∨
∥∥∥|g0|2

∥∥∥
∗ l

2

θ;t
∨
∥∥∥|h0|2

∥∥∥
∗ l

2

θ;t

]

is dominated by the process

w′
t := 6k (t) l2

[∥∥∥|u|l
∥∥∥

θ;t
∨ ‖ξ‖l

∞ ∨
∥∥∥f 0

∥∥∥
l

θ;t
∨
∥∥∥|g0|2

∥∥∥
∗ l

2

θ;t
∨
∥∥∥|h0|2

∥∥∥
∗ l

2

θ;t

]
,

where σ = d+2θ
d

and k : R+ → R+ is a function independent of l, depending only
on the structure constants.

Proof. The main problem is to dominate ‖|u|σ l‖
1
σ

θ;t , because the other factors par-
ticipating in the expression of w are repeated in the expression of w′. Thanks
to the property 6. from the preliminaries and the preceding lemma, we deduce

that δ‖|u|σ l‖
1
σ

θ;t ≤ vt . Then we apply Lemma 14 and deduce that the process

t → δτ‖|u|σ l‖
1
σ

θ;t is dominated by v′. So the problem that remains is the estimation
of the process v′.

To estimate v′ we shall use the following consequence of Hölder’s inequality

∥∥uκ
∥∥

p,q;t ≤ |O| 1−κ
p |t | 1−κ

q ‖u‖κ
p,q;t ,

where κ ∈ (0, 1) . So, we first use the definition of Lθ,t -norm and apply this
inequality with κ = l−1

l
and then Young’s inequality, obtaining

∥∥∥f 0
∥∥∥

∗
θ;t

∥∥∥|u|l−1
∥∥∥

θ;t
≤
(
|O| ∨ |O| d−2(1−θ)

d

) 1
l (

t ∨ tθ
) 1

l

∥∥∥f 0
∥∥∥

∗
θ;t

∥∥∥|u|l
∥∥∥

l−1
l

θ;t

≤ 1

l

(
|O| ∨ |O| d−2(1−θ)

d

) (
t ∨ tθ

) ∥∥∥f 0
∥∥∥

∗l

θ;t
+ l − 1

l

∥∥∥|u|l
∥∥∥

θ;t
.

In the same way, by taking κ = l−2
l

, one has

∥∥∥|g0|2
∥∥∥

∗
θ;t

∥∥∥|u|l−2
∥∥∥

θ;t
≤ 2

l

(
|O| ∨ |O| d−2(1−θ)

d

) (
t ∨ tθ

) ∥∥∥|g0|2
∥∥∥

∗ l
2

θ;t
+ l − 2

l

∥∥∥|u|l
∥∥∥

θ;t
,

∥∥∥|h0|2
∥∥∥

∗
θ;t

∥∥∥|u|l−2
∥∥∥

θ;t
≤ 2

l

(
|O| ∨ |O| d−2(1−θ)

d

) (
t ∨ tθ

) ∥∥∥|h0|2
∥∥∥

∗ l
2

θ;t
+ l − 2

l

∥∥∥|u|l
∥∥∥

θ;t
.

Further, still from the definition of the Lθ,t -norm and Hölder’s inequality, one gets

∥∥∥|u|l
∥∥∥

1,1;t
�
(
|O| 2

d ∨ t
)1−θ ∥∥∥|u|l

∥∥∥
θ;t

.
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Now we may treat each term in the expresion of v′ and the preceding estimates lead
to the following one

v′
t � |O| ‖ξ‖l

∞ +
[
l2c1

(
|O| 2

d ∨ t
)1−θ + l − 1 + l (l − 2) (c2 + c3)

] ∥∥∥|u|l
∥∥∥

θ;t

+
(
|O| ∨ |O| d−2(1−θ)

d

) (
t ∨ tθ

) (∥∥∥f 0
∥∥∥

∗l

θ;t
+ 2lc2

∥∥∥|g0|2
∥∥∥

∗ l
2

θ;t

+ 2lc3

∥∥∥|h0|2
∥∥∥

∗ l
2

θ;t

)
. (25)

Then we write

wt ≤
[∥∥∥|u|σ l

∥∥∥
1
σ

θ;t
+ ‖ξ‖l

∞ +
∥∥∥f 0

∥∥∥
∗l

θ;t
+
∥∥∥|g0|2

∥∥∥
∗ l

2

θ;t
+
∥∥∥|h0|2

∥∥∥
∗ l

2

θ;t

]

and conclude that w is dominated by

k (t) l2
[∥∥∥|u|l

∥∥∥
θ;t

+ ‖ξ‖l
∞ +

∥∥∥f 0
∥∥∥

∗l

θ;t
+
∥∥∥|g0|2

∥∥∥
∗ l

2

θ;t
+
∥∥∥|h0|2

∥∥∥
∗ l

2

θ;t

]
≤ w′

t

where the function k may be choosen to have the expression

k (t) = (δτ )−1
(

1 + |O| ∨ |O| d−2(1−θ)
d ∨ |O| 2(1−θ)

d

) (
1 + t ∨ tθ ∨ t1−θ

)

× (1 + c1 + c2 + c3) .

The proof is complete. ��
Lemma 17. There exists a function k1 : R+ × R+ → R+ which involves only the
structure constants of our SPDE and such that the following estimate holds

Evt ≤ k1 (l, t) E

(∫

O
|ξ |l dx +

∥∥∥f 0
∥∥∥

∗l

θ;t
+
∥∥∥|g0|2

∥∥∥
∗ l

2

θ;t
+
∥∥∥|h0|2

∥∥∥
∗ l

2

θ;t

)
.

Proof. We start with the calculation done in the proof of the preceding lemma.
Namely, the same procedure that has been employed to establish the relation (25)
leads to

v′
t ≤ St + l2c1

∥∥∥|u|l
∥∥∥

1,1;t
+ b (l)

∥∥∥|u|l
∥∥∥

θ;t
, (26)

where

St :=
∫

O
|ξ |l dx + a (t)

(∥∥∥f 0
∥∥∥

∗l

θ;t
+ 2lc2

∥∥∥|g0|2
∥∥∥

∗ l
2

θ;t
+ 2lc3

∥∥∥|h0|2
∥∥∥

∗ l
2

θ;t

)
,

and a (t) =
(
|O| ∨ |O| d−2(1−θ)

d

) (
t ∨ tθ

)
, b (l) = l − 1 + l (l − 2) (c2 + c3) .

On the other hand, by Lemma 15 we know that τvt ≥ τ
2 vt + τδ

2

∥∥|u|l∥∥0;t , and
by Lemma 18 in the appendix, one further deduces

τvt ≥ τ

2
vt + τδ

2ε

(∥∥∥|u|l
∥∥∥

θ;t
− C (θ, ε, t)

∥∥∥|u|l
∥∥∥

1,1;t

)
.
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Taking ε = τδ
2b(l)

, with any ε > 0 in this inequality and using it in conjunction with
Lemma 14 and the above relation (26), we obtain that the process

St +
(
l2c1 + b (l) C (θ, ε, t)

) ∥∥∥|u|l
∥∥∥

1,1;t
dominates the process τ

2 v. In particular, setting a1 (l, t) = l2c1 + b (l) C (θ, ε, t) ,

we have

τ

2
E

∫

O
|ut |l dx ≤ ESt + a1 (l, t)

∫ t

0
E

∫

O
|us |l dx ds.

Moreover, it is clear that the functions t → a1 (l, t) and t → ESt are increasing.
So, for all t ′ ∈ [0, t],

τ

2
E

∫

O
|ut ′ |l dx ≤ ESt + a1 (l, t)

∫ t ′

0
E

∫

O
|us |l dx ds.

Thanks to the Gronwall’s lemma, we get

E

∫

O
|ut |l ≤ 2

τ
ESt exp

2

τ
ta1 (l, t) .

Then we deduce
∥∥∥|u|l

∥∥∥
1,1;t

≤ 2

τ
ESt

∫ t

0
exp

2

τ
sa1 (l, s) ds.

Returning back to the domination obtained for τ
2 v, we use it again and get

τ

2
Evt ≤ ESt

(
1 + 2

τ
a1 (l, t)

∫ t

0
exp

2

τ
sa1 (l, s) ds

)
.

The estimate of the lemma is obtained with

k1 (l, t) = 4la (l) c3

τ

(
1 + 2

τ
a1 (l, t)

∫ t

0
exp

2

τ
sa1 (l, s) ds

)
.

��

4.2. Proof of Theorem 11

The uniqueness of the solution is ensured by Corollary 9. Next we will prove the
existence and the asserted estimate. This will be done in two steps.
Step 1 : We first assume that hypotheses of section 2.2, (11) and (19) hold.

We set l = pσn, with some n ∈ N. By Lemma 16 and the domination inequality
(23) we deduce, for n ≥ 1,

E

(∥∥∥|u|σ l
∥∥∥

1
σ

θ;t
∨ ‖ξ‖l

∞ ∨
∥∥∥f 0

∥∥∥
∗l

θ;t
∨
∥∥∥|g0|2

∥∥∥
∗ l

2

θ;t
∨
∥∥∥|h0|2

∥∥∥
∗ l

2

θ;t

) 1
σn

� Cσ−n

(
6k (t) l2

) 1
σn

E

(∥∥∥|u|l
∥∥∥

θ;t
∨ ‖ξ‖l

∞ ∨
∥∥∥f 0

∥∥∥
∗l

θ;t

∨
∥∥∥|g0|2

∥∥∥
∗ l

2

θ;t
∨
∥∥∥|h0|2

∥∥∥
∗ l

2

θ;t

) 1
σn

,



Lp estimates for the uniform norm of solutions of quasilinear SPDE’s 459

where Cσ−n is the constant in the domination inequality. This constant is estimated
by

Cσ−n ≤ σ
n

σn

(
1 − 1

σn

)−1

.

(See the exercise IV.4.30 in Revuz -Yor, p. 171). So let us denote by

an :=
∥∥∥|u|pσn

∥∥∥
1

σn

θ;t
∨ ‖ξ‖p

∞ ∨
∥∥∥f 0

∥∥∥
∗p

θ;t
∨
∥∥∥|g0|2

∥∥∥
∗ p

2

θ;t
∨
∥∥∥|h0|2

∥∥∥
∗ p

2

θ;t

and deduce from the above inequality the following one

Ean+1 ≤ σ
n

σn

(
1 − 1

σn

)−1 (
6k (t)

(
pσn

)2) 1
σn

Ean.

Iterating this relation n times we get

Ean+1 ≤ σ 3
∑n

m=1
m

σm

n∏

m=1

(
1 − 1

σm

)−1 (
6k (t) p2

)∑n
m=1

1
σm

Ea1.

Now we shall let n tend to infinity in this relation. Since in general one has

lim
q,q ′→∞

‖F‖q,q ′;t = ‖F‖∞,∞;t ,

for any function F : R+ × O → R, it is easy to see that limn→∞
∥∥∥|u|pσn

∥∥∥
1

σn

θ;t
=

‖u‖p

∞,∞;t .

Therefore we have

lim
n→∞ an = ‖u‖p

∞,∞;t ∨ ‖ξ‖p
∞ ∨

∥∥∥f 0
∥∥∥

∗p

θ;t
∨
∥∥∥|g0|2

∥∥∥
∗ p

2

θ;t
∨
∥∥∥|h0|2

∥∥∥
∗ p

2

θ;t
,

which implies

E ‖u‖p

∞,∞;t ≤ ρ (t) Ea1,

with

ρ (t) = σ 3
∑∞

m=1
m

σm

∞∏

m=1

(
1 − 1

σm

)−1 (
5k (t) p2

)∑∞
m=1

1
σm

.

Now we estimate Ea1 by using the fact that δ
∥∥|u|pσ

∥∥ 1
σ

θ;t ≤ vt , with p replacing l

in the expression of v. So we have

Ea1 = E

(∥∥|u|pσ
∥∥ 1

σ

θ;t ∨ ‖ξ‖p
∞ ∨

∥∥∥f 0
∥∥∥

∗p

θ;t
∨
∥∥∥|g0|2

∥∥∥
∗ p

2

θ;t
∨
∥∥∥|h0|2

∥∥∥
∗ p

2

θ;t

)

� E

(
δ−1vt + ‖ξ‖p

∞ +
∥∥∥f 0

∥∥∥
∗p

θ;t
+
∥∥∥|g0|2

∥∥∥
∗ p

2

θ;t
∨
∥∥∥|h0|2

∥∥∥
∗ p

2

θ;t

)
.
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Finally one deduces our estimate (20) by applying Lemma 17 with l = p.

Step 2 : The general case
We now assume that ξ and the coefficients f, g, h satisfy the hypothesis (9). We

are going to prove Theorem 11 by using an approximation argument. For this, for
all n ∈ N

∗, 1 � i � d, 1 � j � d1 and all (t, w, x, y, z) in R
+ ×�×O×R×R

d ,
we set

fn(t, w, x, y, z)=f (t, w, x, y, z)−f 0(t, w, x)+f 0(t, w, x) · 1{|f 0(t,w,x)| �n}
gi,n(t, w, x, y, z) =gi(t, w, x, y, z)−g0

i (t, w, x)+ g0
i (t, w, x) · 1{|g0

i (t,w,x)| � n}
hj,n(t, w, x, y, z) =hj (t, w, x, y, z)− h0

j (t, w, x)+ h0
j (t, w, x) · 1{|h0

j (t,w,x)| � n}
ξn(w, x) = ξ(w, x) · 1{|ξ(ω,x)| � n}

Define now for each n ∈ N
∗, un, the solution of the following s.p.d.e:

dun
t (x) + Aun

t (x) + fn(t, x, un
t (x), ∇un

t (x)) +
d∑

i=1

∂igi,n(t, x, un
t (x), ∇un

t (x))

=
d1∑

j=1

hj,n(t, x, un
t (x), ∇un

t (x)) dB
j
t ,

with initial condition un
0 = ξn.

Let us remark that un is well-defined and satisfies all the estimates of the two
preceding sub-sections because the coefficients of the previous s.p.d.e. satisfy the
hypotheses we first made at the beginning of subsection 3.1.

We are now going to prove that un converges to a solution of the equation (6).
Let us fix n � m in N

∗ and put un,m := un − um.
We first note that un,m satisfies the equation

du
n,m
t (x) + Au

n,m
t (x) dt + fn,m

(
t, x, u

n,m
t (x) , ∇u

n,m
t (x)

)
dt

+
d∑

i=1

∂igi,n,m

(
t, x, u

n,m
t (x) , ∇u

n,m
t (x)

)
dt

=
d1∑

j=1

hj,n,m

(
t, x, u

n,m
t (x) , ∇u

n,m
t (x)

)
dB

j
t

where

fn,m (t, w, x, y, z) = f
(
t, w, x, y + um

t (x) , z + ∇um
t (x)

)

−f
(
t, w, x, um

t (x) , ∇um
t (x)

)

+f 0
n (t, w, x) − f 0

m (t, w, x)

and gi,n,m, hj,n,m have similar expressions. Clearly one has

fn,m (t, w, x, 0, 0) = f 0
n (t, w, x) − f 0

m (t, w, x) := f 0
n,m (t, w, x)
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and some similar relations for gi,n,m (t, w, x, 0, 0) and hj,n,m (t, w, x, 0, 0) . On
the other hand, one easily verifies that

E ‖ξn − ξ‖p
∞ −→ 0, E

∥∥∥f 0
n − f 0

∥∥∥
∗p

θ;T
−→ 0,

E

∥∥∥g0
n − g0

∥∥∥
∗p

θ;T
−→ 0, E

∥∥∥h0
n − h0

∥∥∥
∗p

θ;T
−→ 0.

By Lemma 17 with l = 2 we deduce that

E
∥∥un − um

∥∥2
T

−→ 0, ∀ T > 0,

as n, m → ∞. Therefore un has a limit u and it is easy to check that it is a solution
of the equation (6).

On the other hand, the first step of the proof ensures the validity of the relation
(20) for each un and un,m with n ≤ m, n, m ∈ N

∗. As a consequence, one has

E
∥∥un − um

∥∥p

∞,∞;T −→ 0, ∀ T > 0,

as n, m → ∞. In the limit one obtains the relation (20) for u. ��

5. Appendix

Lemma 18. Assume that θ ∈ (0, 1), then for each ε > 0, there exists a constant
C (θ, ε, t) such that the following inequality holds for any function u ∈ L0,

‖u‖θ;t ≤ ε ‖u‖0:t + C (θ, ε, t) ‖u‖1,1;t . (27)

Proof. First we need the following interpolation inequality : Let (U, T , µ) be a
measure space and p ≥ 1, σ > 1, ε > 0, then there exists a constant C such that

‖X‖p ≤ ε ‖X‖σp + C ‖X‖1 (28)

for each X ∈ Lσp (µ) ∩ L1 (µ) .

In order to check this, one starts with Hölder’s inequality and then applies the
Young’s one

‖X‖p ≤ ‖X‖ν
σp ‖X‖1−ν

1 ≤ νδ
1
ν ‖X‖σp + (1 − ν) δ− 1

1−ν ‖X‖1

with ν = σ(p−1)
σp−1 and δ > 0. Then one sets ε = νδ

1
ν and gets the constant C =

(1 − ν) ν
ν

1−ν ε− ν
1−ν , which gives the inequality (28).

We now prove the inequality of the lemma. We first apply the inequality (28)
with respect to the space variable with p = d

d−2(1−θ)
, σ = 1 + 2θ

d
, and then

integrate with respect to the time variable obtaining

‖u‖ d
d−2(1−θ)

,1;t ≤ ε ‖u‖ σd
d−2(1−θ)

,1;t + C1 ‖u‖1,1;t ,

which, on account of Hölder’s inequality, is further dominated by

≤ εt
σ−1
σ ‖u‖ σd

d−2(1−θ)
,σ ;t + C1 ‖u‖1,1;t .
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Then we apply the inequality (28) for the measure space ((0, t) , dt) with p = 1
θ

and integrate with respect to variable space x obtaining

‖u‖1, 1
θ
;t ≤ ε ‖u‖1, σ

θ
;t + C2 ‖u‖1,1;t ≤ ε |O| σ−1

σ ‖u‖σ, σ
θ
;t + C2 ‖u‖1,1;t .

The inequality asserted by the lemma is then deduced taking into account the

fact that ‖u‖θ;t = ‖u‖ d
d−2(1−θ)

,1;t ∨‖u‖1, 1
θ
;t and that

(
σd

d−2(1−θ)
, σ
)

,
(
σ, σ

θ

)
belong

to �0. ��
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