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Abstract. In this paper we prove L? estimates (p > 2) for the uniform norm of the paths
of solutions of quasilinear stochastic partial differential equations (SPDE) of parabolic type.
Our method is based on a version of Moser’s iteration scheme developed by Aronson and
Serrin in the context of non-linear parabolic PDE.

1. Introduction

The aim of this paper is to study the following Stochastic Partial Differential Equa-
tion :

d
dus(x)+Au(x)dt+ f (¢, x, ur(x), Vus (x)) dt—i—z 0;gi (t, x,ur(x), Vus(x)) dt
i=1

dp )
= hj(t. x,u;(x), Vu, (x)) dB/, (1)
j=1

where A is a second order symmetric differential operator defined in some domain
O c R?. We are interested in studying the behavior of the weak solution. More
precisely, if Hé (O) denotes the standard Sobolev space with zero Dirichlet con-
dition, then under suitable Lipschitz hypotheses on the coefficients f, g, h, we get
the following estimate
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Theorem 1. Letu bea HO1 (O)-valued predictable process which is a weak solution
of the equation (1) in the variational sense with initial condition & € LP (2; L*°(0))
for some p > 2. Then the following estimate holds

*p *p/2 *p/2
E )l e sk(r)E(||5||£o+ ad s (PR I [T )
e 0t 0t 0t
where
lu(@)lloo,c0r = sup  fu(s, w, )],

0<s<t,xeO

k is a function which only depends on the structure constants of the SPDE ,

Ot %)= f(t,0,x,0,0), gt w,x) =g, v x,0,0),
ho(t, , x) = h(t, w, x, 0, 0)

and |- ”;-z is a certain norm which will be defined in the next section.

This result implies in particular that P-almost surely, u(¢, x) is uniformly
bounded in ¢ and x.

Motivated by numerical problems, Krylov proved in [10] some fundamental
results concerning the L? -estimates of solutions of SPDE’s. His approach is based
on the theory of Sobolev spaces, in particular, the classical Sobolev embeding
theorem ensures L? -estimates for the uniform norm. His method requires the
coefficients to have some smoothness. In the present paper we introduce Moser’s
iteration technique in the context of SPDE’s. This method allows us to obtain L”
estimates for the uniform norm of the paths of solutions under weaker conditions
on the coefficients (all the coefficients are only assumed to be measurable). We
should also mention that Gyongy and Rovira [9] derived L” -estimates by deriving
first L? -estimates for the Green kernel. They assume that the coefficients of the
elliptic operator are smooth and, in particular, deduce that the solution is pathwise
continuous. However their method does not produce L?” estimates for the uniform
norm of the paths.

This paper is divided as follows: in the next section, we recall some facts con-
cerning L7 4-spaces and set the hypotheses and notations for the rest of the paper.
Next we establish 1t6’s formula for the spacial integral of solution of the SPDE
which permits to obtain L”-estimates. In the fourth section we prove the desired
estimates. Finally, in an appendix we give a technical lemma on L”9-norm.

2. Preliminaries
2.1. The L?9- spaces

Let © C RY be an open domain with finite Lebesgue measure in R? and L*(O)
the set of square integrable functions with respect to the Lebesgue measure on O .
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We shall recall some preliminary facts from Aronson Serrin [1] in a slightly
modified form. For each ¢ > 0 and for all real numbers p, ¢ > 1, we denote by
LP4([0, t] x O) the space of measurable functions u : [0, t] x O — R such that

= ([ ([ s az)” as) "

is finite. The limiting cases with p or g taking the value co are also considered
with the obvious use of the essential sup norm. In our analysis of solutions of
SPDE’s we need the following interpolation result between the spaces L?>¢ which
is a consequence of Holder’s inequality (see [1]), as well as the classical Sobolev
inequality.

Lemma 2. I[fu € LPV9 (\LP>9, thenu € LP9 where p;, q; € [1, 00], i =
1,2 and

1 v 1 v
— M..._ _=ﬁ+—, w,v=20 and p+v=1.

p o op2 9 @ @

Moreover we have

"
lallpagie < Ml oo Nl g @)

Lemma 3 (Sobolev’s inequality). Assume d > 2. Let u € Hd (O), then u €
LY (O) where 2* = 2d /d — 2 and there exists a constant ¢ > 0 which depends
only on the dimension d such that

lull2x < cllVullz.
Ifd = 1, 2, then 2* may be any finite real greater than 2.

A consequence of Sobolev’s inequality which will be used in our context is the
following

Nulllze ., < clVulPliae, Yu € L2011 Hy(©)). ()

Now we introduce the following sets associated to a fixed 6 € [0, 1) :

, d 1 d
F9= (P’Q)G[l,oo] ) +_=_+9 5
2p g 2

Ij={(p.q)ell,0]", —+—-—=1-06¢.
2p ¢
It is easy to check the following properties:

1. The relations % + # =1and é + % = 1 imply that the pair (p, g) belongs

to I'g if and only if the pair (p’, ¢’) belongs to I'};.
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2. If (pi,qi) € T, i = 1,2 and u,v > 0, u+ v = 1, then the pair (p, ¢q)
defined by

1 v 1 %
w ’oy

P o opma @ @

is in ' too. A similar property is valid for T'}.
3. The pair (p, g) belongs to I'g if and only if there exists w,v >0, u+v =1
such that

1 v 1 v
(R
L T ) q ]

This means that the pair of inverses (%, ql) belongs to the segment in the plane

with end points < ;, , 1) and (1,0).
a—2(1-0)

4. If (p,q) e Tgand u : [0, t] x O — R, one has

el g < Nl gy v Ml

Therefore one has

lullg, e :=Null__a__ . v luly 1., = sup Alull, g
’ S 13 ST ,q,[
d-2(1-0) 0 (p.q)€Ty

. J — 1
and this represents a norm on the space Ly := Ld-20-9) TALY. Foro =0
one has <%, 1) = (C%, 1) , (1, 00) € I'p and
eelloss = el a_ .,V el o -

5. On the space defined as the algebric sum

L= Y L",

(p.q)eTy

we introduce the norm

lull},, =
n

inf{Z il py -
i=1

This space represents the dual of Ly in the sense of the following inequality

n
MIZM:'JM e LP9 (pi,q)ely, i=1,..n;n € N}
i=1

t
/0 /Ou(s,X)v(s,x)dxds < llullg;, Ivllg., “4)

which holds for u € Ly and v € Lj.
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6. Settingo =1+ %, it is easy to see that (op, oq) € I'g if and only if (p, q) €
I'g. Therefore one has

1 1
[t 15, = swp Wl = swp lullopogs <l
(p,q)€ly (p.9)€Ty

In order to understand the main point of the above facts related to the L?-7-
spaces one should have in mind the following remark. In the theory of parabolic
PDE:s the norms of the type

t
121 + 1 / /O Vi, Pdxds
0

with some positive constant ¢ appear naturally. From the Sobolev inequality (3)
we have

t
c/ / \VusPdxds = |ulll a_ .,
0 JoO a-2"

Therefore one has
2 ! 2 2 L
o+ < /me dxdis > Nl g,
0

foro =1+ %. This is the main point which allows one to apply Moser’s iteration
scheme.

2.2. Hypotheses and definitions

Let {B; := (B,j)je{l,i.. .d1} }r > 0 be a dj-dimensional Brownian motion defined on
a standard filtered probability space (Q F,(F)i>o0, P )
Let A be a symmetric second order differential operator expressed by

d
A=—L=- 8" )
i,j=1

with zero Dirichlet boundary conditions. We assume that a is a measurable and
symmetric matrix defined on O which satisfies the uniform ellipticity condition

MEP < D a" (g E < Mg, VxeO, §eR?, )

ij

where A and A are positive constants.

Let (F, £) be the associated Dirichlet form given by F := D(AYV?) = H(} 0)
which implies

Eu,v) := (AY%u, AV?v) and Eu,u) = |V Aull?, Yu,v € F

where (-, -) and || .|| are respectively the inner product and the norm on L*(0).
HO1 (O) is the first order Sobolev space of functions vanishing at the boundary . For
the notion of Dirichlet form we refer to [8] or [4].
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We consider the quasilinear stochastic partial differential equation (in short
SPDE) for the real-valued random field u, (x)

d
du;(x)+ Aus (x)dt+ f (¢, x, u; (x), Vu,(x))dt—l—z 0; gi (t, x, ur(x), Vus (x))dt
i=1

d .
= Zhj(t, x, us(x), Vuy(x))dBj, ©)
j=1

with initial condition u (0, .) =: £(.) and Dirichlet boundary condition
u;(x) =0, forall (t,x) € (0, +00) x 00.
We assume that we have predictable random functions

f R+xQxOxRde—>R,
g:(g1,...,gd):R+xQxOxRde—>Rd
h iRy xQ2xOxRxR! - RN,

which satisfy the following Lipschitz conditions with respect to the last two vari-
ables

lf(t,0,x,9,2) — flt,w,x,y,2) < C(ly—yl+lz—z]),
d 1
roo 2 ’ ’
(Zlgi(t,a),x,y,z)—gi(t,w,x,y,z)lz) S Cly-yl+alz—z],
i=1
a roo % ’ ’
(Yt oxy 0 —hi@oxy DP) < Cly=y1+Blz=21. @
j=1

where C, o, § are non negative constants.

For the existence of solutions we will make use of the result from [7] and, in
order to ensure the validity of the result, we assume that the constants « and B
satisfy the condition

2
o+ ﬂ— <A. ®)
2
This last condition means that the size of the second order perturbation and the first
order perturbation associated with the Brownian motion, should be small. Moreover
we define

fCon 0,00 = f°
h(.v'v" ()7 0) = h0= (ho,...,hgl)
g('v"" 07 O) = gO:(g?,...,gg).
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We also assume that & is a Fy-measurable, L°°(QO)-valued random variable. The
coefficient f 0 |g0|2, IhOI2 are L} -valued random variable, for a certain 0 € [0, 1),
and for each ¢t > 0 one has
L) (e
0t

(

for a certain number p > 2.

)7 e LP(Q,P).
9

0*
6loo. |
o;t

2.3. Weak solutions

Let L} (Ry4; Hy (O)) be the space of all measurable functions u : Ry — Hj (O)

such that

T 1/2
(f <||ut||2 +& (ut)) dt) < 00, forany 7 > 0.
0

'H is the space of Hé (O)-valued predictable processes (u;); > o such that
172

T T
<E/ ||ul||2dt+/ EE(ut)dt) < 0o, foreachT > 0.
0

Of special interest is the subspace FclL? Toc (R+; HO1 (O)) consisting of functions

u € Lloc (R+, H0 (O)) ,which admit a continuous version in L2 (). On this
space we have the natural seminorms expressed by

nmw—(wwuw /mswow),T>0

The space of test functions in our study will be D = C2° ([0, 00)) ® Cf(O), where
C2° ([0, 00)) denotes the space of functions with compact support definde on [0, co)
which admit an extention as an infinity differentiable function on (—oo, co) and
CZ(O) the set of C2-functions with compact support on O. Since C ([0, o0)) is
dense in leoc (R4) and Cz((’)) is dense in HO1 (0) and in L?(O) respectively, it
follows that D is bothly dense in Lloc (R+; HO1 (O)) and in leoC (R+; LZ(O)) .
Definition 4. We say that u € H is a weak solution of equation (6) with initial
condition € € L*(Q x ), if the following relation holds almost surely, for each
¢ €D,

(L[wham—smh%»wf@mvax%>

d

+ > (8i (s, 1y, Vug) , ipy)lds
i=1

1 o0 X
+Zﬁ(mm%wm%MM+@m=a (10)
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3. LP-estimates of the solution and It6’s formula
3.1. A stronger Hypothesis

Concerning existence of solutions we shall rely on the result from [7]. Since the
condition (9) does not ensure applicability of the existence theorem (Theorem 8
from [7]), in the first stage we will strengthen it and assume that

£eL®Qx0)), 12, 8% e LRy x Q@ x 0) (11)

We point out that we always denote by ¢ > 0 a constant whose value may change
from line to line and that, for any € > 0, we denote by c, a constant which depends
on ¢ like the one appearing in the following typical inequality

ab < eaz—i-cebz, a,b eR.
The proof of the next theorem may be found in [7].

Theorem 5. Under hypotheses (7), (8) and (11), the SPDE (6) admits a unique
solution u € H and this solution has L*(O)-continuous trajectories.

3.2. Ité’s formula for the LP-norm

We will denote by u := U(§, f, g, h) the solution of the equation (6) with initial
condition £ and coefficients f, g, h. In order to prove an Itd type formula with
respect to the p -integral over O we first study solutions of the equation (6) with
&, f, g, h of a particular type. In the next lemma we consider the linear case, that
is we assume that f, g, 4 do not depend on the last two variables.
Lemma 6. 1)Iff, hi, -, hg, belongtoC® ([0, 00))RL*(Q)®D(A), g1, , ga
belong to C ([0, 00)) ® L*(Q2) @ D(A3/?) and if € belongs to L*(Q2) @ D(A) then
u:=UE, f, g, h)is an L*(O)-valued square integrable semimartingale.

2)If f, hi, -+  hay, g1, , ga belong to LIZOC(R+; L3(Q2 x (9)) and £ €
LZ(Q X C’)), then there exists a sequence (u*)ren of L*(O)-valued square inte-

grable semimartingales which approximates u := U(&, f, g, h) in the sense that
limg o0 E [[u* — ull3 = 0 forall T > 0.

Proof. 1) The fact that u is a semi-martingale is a consequence of Lemma 3,
Lemma 5 and Proposition 6 in [7]. Namely one has the decomposition

t t d t
vVt >0, u; ="§+/ Lusds—/ f(s)—Z/ 0;gi(s)ds
0 0 = Jo

di g .
+Zf0 hj(s)dB] ds,
j=1

where each term makes sense because in this case u € L2([0, T] x 2; D(A))
forall T > 0.
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2) For the second part of the Lemma, by Theorem 9 in [7], there exists a constant
K > 0 which does not depend on f, i, & and such that, for each T > 0,

T d dy
E(lulf) < KE(IIEII2+/0 LF@OIZ+ Y lgiI + D 1) ds).
i=1

j=1

Consider now sequences (f*)ren (h';)keN*, 1 <j<dinC® ([0, 0)) ®
L*(2) ® D(A) which converge in L7 ([0, 00) x @ x O) to f and (h;),
1 < j < dj respectively; for each i € {1-.--d} a sequence (g,k)keN* in
CXQ® L%(Q) ® D(A3/?) which converges to g; in LIQOC(RJF; L?(Q2 x (’))) and

a sequence (%) in L2(R2) ® D(A) which converges to & in L2(Q x O).
We set

Yk e N*, uk = UER, 5, g% n"),

and then, thanks to the first part of this proposition and the inequality we have
just recalled, it is easy to conclude. O

Lemma 7. Assume that f, hy---hg,, 81, - , ga belong to L? (R+; L%(Q x (’)))

loc
and & € LZ(Q X (’)) and consider u :==U(&, f, g, h). Let ¢ : R —> R be a twice
differentiable function with continuous and bounded second order derivative. Then
P-a.s. forallt € [0, T]

t
/(ﬂ(uz(X))dx + / E(¢'(uy), ug)ds
o 0

t
=/ co(é)dx—/ (¢'(uy), fs)ds
o 0
d 13
+Z/ f @" (us(x))djug(x) gi (s, x)dx ds
i=1 70 @
d .
+Z./0 (¢'(us), hj(s))dBy
j=1
13y
+§]§/0 /;Q‘P//(Mx(x))h%(S,X)dxds, (12)

Where the term t — 2?1:1 fé (¢'(uy), hj(s)) dB! isa well-defined martingale
hence integrable.

Proof. Assume firstthat f, by, -+, hg, € C§°®L2(Q)®D(A),g1, -+, g4 belong
to C*° ® L*(Q) ® D(A¥?) and £ € L*(Q) ® D(A), then u is a semimartingale



446 L. Denis et al.

and one has

t t d t
V>0, u =,§+/ Lusds—/ f(s)ds—Z/ digi(s)ds
0 0 = Jo

di _
+Z/ hj(s)dB .
j=1"°

Ito’s formula for Hilbert-valued semimartingales (see [5] for example) yields

t t
/ @y (x)) dx = / P(E()) dx + f (¢ (uy). Luy) ds — f (¢ (uy). fs) ds
O (@] 0 0
d
-> f / ¢/ (1 (x)); gi (s, x) dx ds
i—1Y0 (@]
di _
+Z/O (¢'(us), hj(s))dB]
j=I

4
+%;/o /C)wl/(us(x))hj(&x)zdxds. (13)

Then, as

(‘p/(us)’ Lu.&) = _5 ((p/(us), MS) 3 VS 2 O,

and
d di
3 / ¢/ (s (2D gi(5, ¥ dx = — 3 / ¢ (15 () (x) gi (s, x) dx,
i=1 o j=1 o

we get the desired equality.
For the martingale part, let us remark that the square root of its brackets is
dominated as follows

dy T ) % dy T %
(Z/O (¢ ). () ds) < (Z/O ' Ges) 120 By (s) 1 ds )
Jj=1 j=I1

dy T

< sup [l ') 117 +Z/ I hjs) |1 ds.
5€[0,T] =170

Since ¢” is bounded, the first derivative ¢’ has at most linear growth, and since u €

H it follows that sup (o 7 || @' (ug) || 2 belongs to L! () . Therefore the square root

of the bracket belongs L! (€2) , so that, by the Burkholder-Davis-Gundy inequality

we deduce that t — Z‘f‘:l Ot ((p’(us), hj(s)) dBSj is a martingale.
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The general case is obtained by approximation thanks to the previous
lemma. |

Lemma 8. Assume that hypothesis of section 2.2 and (11) hold. We denote by

K = |EllLo@xo) V ||f0||L°°(R+xs2xO)

0 0
VAT oo R+ x2x0) V 187 | Lo R+ x@x O:RY) -

Then the solution u of the equation (6) belongs to ﬂp >0 LP([O, Tl x O x Q),
for each T > 0. Moreover there exist constants c, ¢’ > 0 which only depend on
K, C, a and B such that, for all real | > 2, one has

E/ lug ()" dx < K21 — 1)ect=D1 (14)
(@]
and

t
E/ / it O 72V, ()P dx < KA — 1)ectt=Dr (15)
0 JO

Proof. Notice first that if u is a solution of the equation (6), then
f (@, Vu), gi Ga, V)b (, Vi) € Lo (Rys 12 (@ x )

and consequently we may apply Lemma 7 to u.
We fix areal/ > 2, T > 0 and introduce the sequence (¢;,),en+ of functions
such that for all n € N*:

| x| if |x| <n
Vx € R, = _ .
x€R, gnl) {nl—Z[—l(’2‘>(|x| — ) +In(x| —n) +n2] if [x|>n

One can easily verify that for fixed n, ¢, is twice differentiable with bounded sec-
ond derivative, ¢//(x) > 0, and as n — 00 one has ¢, (x) —> [x|’, ¢} (x) —>
Isgn(x)|x|'—1, o) (x) — I — 1)|x|'~2. Moreover, the following relations hold,

forallx e Randn > I:

Lol xgp(0) | < lgn(x).

2. 1gh(x) | < | xgl(x) |

301 X2 (x) | <1 — Dy (x).
4. |l ()] < L(gn(x) + 1).

5. 19l 0] < 1A — D(ga(x) + 1).
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From Lemma 7 we have P-a.s. forall ¢t € [0, T']
t
./o @n(u(x)) dx + /0 E(g (uy), ug)ds

t
=/ %(E)dx—/ / @ (ug) f (s, x, us, Vug) dxds
o 0 Jo

d t
+> @y (s (X)) Bius (x) 8i (5. x. 5, Vuty) dx ds
i=170 JO

d '
+§ //‘P;,(Mx)hj(s,x,us,Vus)ddesj
; 0o JO

Jj=1

di '

1

+§§ //(p;[(us(x))h%(s,x,us,Vus)dxds. (16)
; 0 JO ’
Jj=1

By the uniform ellipticity of the operator A we get
g((p;,(us)y us) > A /;9 (p;,/(us)|vus|2dx-

Let € > 0 be fixed. Using the Lipschitz condition on f and the properties of the
functions (¢, ), we get

| )| | f (s, x, us, V)|
< lop @] (106, 01 + C (lus| + | Vug)) )
< 1ep )L Ol 01 + Jus gy (us)| (Clug] + C|Vug)))
< Upa(us) + D 1£0(s, )| + Clus Plo) ()| + Clug| | Vuyllg) ()]
< Ugn(ug) + D105, )|+ (C + co) lus @), (uy) + €@y (us) Vs .
Now using Cauchy-Schwarz inequality and the Lipschitz condition on g we get

d
Zwﬁ[(us)aiusgi (s, x, us, Vuy)

i=1
< @) ()| Vug) (18°Cs, 1)| + Clug| + | V|
< ) (uy) Vgl + 2ceq) (us) (K> + C?lug|?) + o)) (uy)| Vg |
S = DeeK? 4 2ce(K* + CHIA — 1)lgn (us)| + (@ + €)@l (us) | Vug |

In the same way as before
di
> @ (ug)h3 (s, ug, V)
j=1

< g (us) (cL (1R (s, )| + ClusD? + (1 4 €)% Vu, )
< @ () (2c, K2 +2¢,C*ug | + (1 + €)% |Vuy )
<210 = DK? + 2L (K* + CHIU — Daluy) + (1 + €) B (us)| Vus |
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Thus taking the expectation (one has to remember that, as a consequence of the
previous lemma, the expectation of the martingale part is null), we deduce

t
E/ (p,,(u,(x))dx—i—(k—l(l+e)ﬂ2—(a+2€))E//(p;l’(us(x))|Vus|2dxds
o 2 0Jo

t
<I(U = D/ K>+ — D(K*+ C*+C —i—ce)E/ / @n (s (x))dxds
0JO
(17)

On account of the condition (8), one can choose € > 0 small enough such that

k—%(1+e)ﬂ2—(a+26)>0

and then

t
E/ On(us(x))dx < cKzl(l —1) + cl(l - 1)E/ / on(us(x))dxds .
@ 0 JO

We obtain by Gronwall’s Lemma, that

E / on(us(x)) dx < cKzl(l — 1) exp (cl(l — l)t)
O

and so it is now easy from (17) to get

1t
E/ / o (us(x)) |Vus*dxds < ¢ K*1(I — 1) exp (cl(l — 1)1)
0 JO

Finally, letting n — oo by Fatou’s lemma we deduce (14) and (15). |

First we use the above estimates to get uniqueness of solutions under the general
conditions (9) without (11).

Corollary 9. Assume all the hypotheses of section 2.2. Then the uniqueness of the
weak solution in H of SPDE in the sense (10) holds.

Proof. Let u and u’ be two weak solutions in H of the SPDE (10) associated to
(&, f, g, h). Let us define

i=u—u, ft,wxy2)=ftwx,y+u,z+Vu)—ft o x u, Vu)
in the same way we define g and /. Then i is a weak solution in  of the SPDE

(10) associated to (0, f, g, h) with f0 = g% = A% = 0. Then by (14) we have that
u = 0, a.e. which gives our uniqueness result. O
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Proposition 10. Assume the hypotheses of the previous lemma. Let u = u(t, x) be
the solution of the SPDE (6). Then for 1 > 2, we get the following It6’s formula,
P-almost surely, forallt > 0

t
f lu ()| dx + f E (I (us) " sgn(uy), us)ds
O 0
t
=/ |&(x) " dx — l/ / sgn(us)|us ()" £ (s, x, ug, Vug) dxds
O 0o JO

d
+1(z—1)2/ /O|us(x)|’*2a,-us(x)gi(s,x,us,vmdxds
i=1 0

d t .
+ZZ/ / sgn(ug)|uy ()" (s, x, us, Vug) dxd B}

. 0o JO

j=1

(-1 <& [ 12,2
+ > E //|u,(x)|_hj(s,x,us,Vus)dxds. (18)
; 0 JO
j=1

where

d
E (L us) ™" sgnuy), us) =10 —=1) Y / lus ()| 2a (x) Bius (x) Djus (x) dx.
(@]

i,j=1

Proof. From Lemma 7 with the same notations, we have P-almost surely, and for
allt >0andn e N

'
/(pn(ut(x))dx + / 5((/3,/!(145), us)ds
O 0

t
=f <Pn($(X))dx—/ / @, (s () f (5, %, us, Vuuy) dxds
(@] 0 JO

d t
+3 / /O 0! (15 (1)) i1t () g (5. %o s, Viy) dx dis

. 0

i=1

A _
+3 / f @ (s (X)) (5, X g, Vitg) dxd B

; 0o JO

J=1

di t
1
+5 2 fo fo @y (s (D5 (s, x, us, Vug) dx ds .
j=1

Passing to the limit as n — o0, thanks to the Lemma 8 and the the dominated
convergence theorem, we obtain the desired result. O
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4. The main result

We will need the following stronger hypothesis :
1 2
a—l—zﬂ +728° < A. (19)

Then we choose a constant € € (0, 1) such that

At el +1+6 , 36(1+4+¢€) I 2
-1 2 (1—-6e)1—1

foralll > 2.

The constants A, C, «, 8, 6, p and |O|, the volume of the open set O, represent
the structure parameters of our SPDE and are considered fixed from now on. The
constant €, chosen above, will be considered fixed too. The estimates of solutions
will be expressed only in terms of this constants and the norms of the random
variables &, f 0 go, h0. Our main theorem is the following:

Theorem 11. Assume that hypotheses of section 2.2 and (19) hold. Then the equa-
tion (6) admits a unique solution u in H. Moreover, there exists a function ky :
R4+ — Ry, which involves only the structure constants, such that the following
estimate holds for all p > 2
*p/2
> . (20)

0;t

*p/2
T ”|h0|2
0;t

*p
0,2
+ 1
0;t

ENul?, o <k () (nsnﬁ’.o + s

The proof of this result is rather lengthy so we will go on in several steps.

First we will assume that the hypothesis (11) of section 3.1 is fulfilled and in the
next subsection prove several lemmas. We have in mind to get estimates in which
the constants depend on C, [I§ | L(@x ). If0l5.,» 18°F 115, 1A, & and B
which will allow us to consider the general case by an approximation argument.

4.1. Preliminary estimates

For each [ > 2, we define the processes v and v’ by

s
v 1= sup (/ |us|ldx+yl(l—1)/ / lup |72 |V, |? dxdr)
s <t (@] 0o JO
/ I 2 ! of* -1
= [, e v et et |
i [lelax+ et | wr] s ]
2 0.2]* 0.2]* 1-2
+1 <62 %2, +es|1n )H'“' ..
0t 0t 0t
where the constants are given by
€l I+e ,
=A—a— -
v L
c C\ 342 , l+e ,
“ 2( +4e)+ 2¢ + €2

1 B+e)(1+¢)
cp=— and 3= —-"——=

2¢ € h
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We start with an estimate of the bracket of the local martingale appearing in (18),
expressed by

d t .
M, ;:12/ / sgn(ug)|us ()"~ h (s, x, us, Vuy) dxd B}
—Jo Jo
Lemma 12. For arbitrary ¢ > 0, one has

L 12 1+ *
(M)F < v+ 3 (—‘9 inep
&

-

1+¢
w2 ], )
2¢e & 1,1;¢

~— [ Il B
+ 1+8 mﬁvt. (22)

Proof. The Lipschitz conditions (7) imply
|h (S, X, uSa V1'{3)'2

1
52<1+—>
&

First the bracket of M is estimated by

d t 2
M), = 122/0 </(’) |us|l_1 sign (us) hj (s, x, us, Vus)dx> ds
J

t
< 12/ (f |u5|ldx> (/ |us|172 |h (s, x, ug, Vuy) |2dx) ds
(@]
'
<P (sup / |us|’dx) f / s 2 1 (5. . 05, Vitg) Pelxds
s<t 0o JO

Now using the Holder’s inequality (4)

on, < 2 (sup [t ) (2555 i) 2], )
s<t 0t
+1? <sup/ lus| dx)( C2 H| | H
s<t
+ +£)ﬂ2/ f lug|' 2 |ws|2ds).
0o JO

Thus we may write the estimate of the bracket as follows
(M), < lzv,( 2|
0t

2l lum A,

which yields the result thanks to the trivial inequalities:

b
Va+b<ﬁ+\/5andVab<8a+4—, a,b>0.
&

0t

1
(1 + g) C? lug|> + (1 + &) B2 |Vuy|?

1+e¢ tho
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In what follows we will use the notion of domination as a technical tool. We
recall the definition from Revuz and Yor [18].

Definition 13. A non-negative, adapted right continuous process X is dominated
by an increasing process A, if

E[X.]1< E[A]
for any bounded stopping time, T.

One important result related to this notion is the following domination inequal-
ity (see Proposition IV.4.7 in Revuz-Yor, p. 163), for any k €]0, 1],

E[(X2)"] < CLE[(Ax)" ] (23)

where Cy is a positive constant and X; := sup; <, | X;|.
We will also use the fact that if A, A’ are increasing processes, then the domi-
nation of a process X by A is equivalent to the domination of X + A’ by A + A’.

Lemma 14. The Process tv is dominated by the process v’ where

[
T=1—06€ —6+4/1+¢€ —i
-1y

In other words, we have

s
TE sup (/ Jug ! dx+yl(l—1)/ / |u,|1—2|w,|2dxdr>
0<s<r \JO 0o Jo

< E/ el dx + 1ciE H'“'IH Iull_l‘
(@)
+’E (cz H|g0|2

where y, c1, ¢y and c3 are the constants given above.

*
+E| 1]
A3

1,1t 01

* *
+ e |17 ) 2| 24)
0t 6t 0t

Proof. One starts with the relation (18) :

t
/ lug|' dx +1( — 1)/ / Iusll_ZZa”Biusajusdx ds
o o \Jo Py

t
= o|g|’dx—1/ (fo |us|’—1sign(us)f(s,x,us,ws)dx>ds
0

t
+1( - 1)/ </ lug |72 Zaiusgi (s, x, ug, Vus)dx) ds
0 O p
d
(-1 (7 -
+ B /(; A |us|[ 2 Xj:hi (S,)C, Uug, VI/LV) dx | ds

di t |
l Z/ (/ | S|l : Slg}’l (MY) h/ (S, X, Us, Vuv) ) BAJ
J_]
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Using the uniform ellipticity condition (5) one has

Za”aiusajus > A |V |?
ij

and the Lipschitz conditions (7) imply

Lf (5, %, ug, Vug)| < | f2

g

+ Clug| + C |Vuy|

+ Clus| + a [Vug]

|g (ss-xs uSv VMS)' S

1\ 1,02 1
i (s, x, ug, Vug) > < 2(1+ 2 h)l +2(1+ g)c2 lug)? + (1+ ) B [Vuy|*

for all £ > 0. This leads to

t
/|ut|ldx+l(l—1)A/ f lus|'=% |Vuy)? dxds
O 0 JO
t
S/ I dx+l/ / Iusllfl‘fsoldxds
O 0o JO
C2 t t
+1<c+—>/ / Iuslldxds—i—le/ / lug|'=% |Vu,|? dxds
de ) Jo Jo o Jo
iy 1)/t/| -2 (2 1
_ " _ _
0JO ! 2¢e 2¢e
t 1
+1<1—1)/ / |us|”<<1+—)
0 JO &

1
+5 (1 +e) B> |Vus|2> dxds + M, .

2
g +

C? lug|> + (@ + ¢) IVus|2> dxds

2 1
RO + (1 + g) C? |ug|?

This further leads to

t
/|u,|ldx+1(z—1)y/ / lus|'=% |Vuy)? dxds
O 0o JO

'
5/ |$|ldx+l(l—l)c4//|us|ldxds
O 0o JO

: Ia—1) (! 2
+z/ / lus "= | £ dxds + ( )/ / lus |2 |g2| dxds
0 Jo 2e 0 Jo
1d-1( t 2
L=hd+e +8)/ / lus =2 R0 dxds + M,
2 0o JO
! ! -1 of*
5/ €| dx+l(l—l)C4H|u| H ++1H|u| ‘ 7
O 1,1;¢ 0t 0;t

= ], e,

+l(l—1)(1+a)

-2 0.2]*
[ WO TS W
& 0t 0t
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where

C 1+C +3+28C2
Cqp im —— — .
YTUC 4e 2¢

Taking the supremum one deduces

1 -1
u jul' 1|

*
vt§/ el dx +1(—1)cq ‘ +l”f0H
@) 1,15t 0;t 9t

LA=D, opnll*  U=1)(1+e) * H z—zH *

ARSI 2 M.

+( 2¢e H|g | + 0;t |M| 6;t+ !
1

€
Since the process M} is dominated by 6 (M)} we deduce that the process v is
dominated by

H |h0|2

etassiavaur],, sl o],
& 11 9:1
B e S T W

We may finally use the estimate (22) to get the result of the lemma with ¢ = €
choosen as it is required in the statement. O

Lemma 15. The process v satisfies the estimate

v = 8|l
0;t

withd = 1 A (2c’1 )/) , Where c is the constant in the Sobolev inequality of Lemma
3.

Proof. Denote by y := |u|'/?, then d;y = (I/2)0;usign(u)|u|*=/? and so
|Vy|? = (1/2)*|u|'~2|Vu|>. Making the change of variables in the second term
of the left hand side of the last equation and using the Sobolev’s inequality (3) we
get

; dyd—1) [!
1(1—1);// / g =2 |V, |2 dxds = M/ / IVys|? dxds
0 JO

4y (-1 * /2"
> 2C )f fmzdx ds
4y(l
= Tmmnz* o
> Sllulllz .,
where 2* 1= 5 ford > 2 and 2* =4 ford = 1, 2. It is now easy to conclude
our lemma. m]

The next lemma is a key technical ingredient for our purposes.
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Lemma 16. The process

!
ol [ 0 0,2
= \Y h”|
B[ 1 T P e I T
is dominated by the process
1
o=k ], Vet o], v ] fuee]].

where 0 = d+29 and k : Ry — Ry is a function independent of |, depending only

on the structure constants.

1

Proof. The main problem is to dominate || |u 14| g.» because the other factors par-

ticipating in the expression of w are repeated in the expression of w’. Thanks

to the property 6. from the preliminaries and the preceding lemma, we deduce
1

that 8|||u|"l | 9;, , < v;. Then we apply Lemma 14 and deduce that the process

1
t — 8t|||ul’! ll5., is dominated by v’. So the problem that remains is the estimation
of the process v’.
To estimate v” we shall use the following consequence of Holder’s inequality

||MK ”p,q;t = |O| |t| q ”u”[) q; 1t

where k € (0,1). So, we first use the definition of Ly ; -norm and apply this

inequality with k = % and then Young’s inequality, obtaining
of* HH <(Ov0d2(19)> tvif)t
|2°),,, 1], = (lo1viol (rve)
d— 2(1 0) *l [—1
<-(10o1vi0 )tvre‘o —H IH :
<7 (ov o == ) vy | o+ ],

. _ 12
In the same way, by taking x = 7=, one has
l
?, Ju 2], <701V ior ) vty fip ]+ 5 |
], ), =2(erv i) v ey ] 52 ],
l
* d— 2(la9) 2
e, 2, =5 (01102 vty fnee] ) + 5= ar],
0t 0t l 0t 0t

Further, still from the definition of the Ly ; -norm and Holder’s inequality, one gets

< (10 ve)™

1
ul'|

1,1;t
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Now we may treat each term in the expresion of v’ and the preceding estimates lead
to the following one
|
0;t

|ue]

I 2 2 1=6
v < 10N, + | ey (|(9|dv¢) Fl—141(0—=2)(cr+c3)
d— 2( —0)
+ (101 V1017 ) (1 v o) < N
2). (25)
0:t

*l sk
+ 2lco

+2lc3

e

Then we write

< ol||@ ! H o2 *3
w,_[Hw v gl +| o
and conclude that w is dominated by
*/ - x5
kO | ], + e+ £° o e, ] =
") [|u| o, HIET + | 0] I (L Il

where the function k£ may be choosen to have the expression

k() = (57)"! (1 +lolvio =Tty |(9|2“J”) (1 IPAVELRY tH’)

X(14+c14+cr+c3).

The proof is complete. O

Lemma 17. There exists a function k1 : Ry x Ry — Ry which involves only the
structure constants of our SPDE and such that the following estimate holds

i
2|*2
6t ’

Proof. We start with the calculation done in the proof of the preceding lemma.
Namely, the same procedure that has been employed to establish the relation (25)
leads to

*[

Evt§k1(l,t)E</O|§|ldx+Hf09 2:%+Hh

v <8+ P |l | +o@ || 26)
1,1;¢ 0t
where
*l *L *L
S :=/ |s|ldx+a(z)(Hf° +2es [[18°P] 4 2es 110 )
o 0t 0t 0t
anda(t):( d’”)(tw@),b(n:1—1+1(1—2)(cZ+C3).

On the other hand, by Lemma 15 we know that tv, > %v, + % H Iull ||0,t , and
by Lemma 18 in the appendix, one further deduces ’

T
> — J— —
o= th+ <”|u| H C®.e0 HM Hl 1;1)'
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Taking ¢ = #fl)’ with any ¢ > 0 in this inequality and using it in conjunction with
Lemma 14 and the above relation (26), we obtain that the process

S, + <12c1 +b()C @O, e, r))

1
|ua]

‘l,l;t

dominates the process %v. In particular, setting a; (I, t) = Pei+b()C 0, 8,1),

we have
t
EE/ ;' dx < ES; + a; (l,t)f Ef lus|! dx ds.
2 Jo 0 16)

Moreover, it is clear that the functions t — aj (I, t) and t — ES; are increasing.
So, forall ¢’ € [0, ],

—E/ |u,u| dx < ES; +a (I, t)/ / lug | dxds.

Thanks to the Gronwall’s lemma, we get
;2 2
E lu;|" < —ES;exp—tay (I, 1).
o T T
Then we deduce
/ 2 ! 2
H |u| H < —-ES; exp —sap (I, s)ds.
1,15t T 0 T

Returning back to the domination obtained for v, we use it again and get

T 2 ! 2
—Ev, <ES |1+ —ai(,1) exp—say (I,s)ds ).
2 T 0 T

The estimate of the lemma is obtained with

4la () c3 2 ! 2
ki(l,t) = — 1+ ;a1 (1) A exp ;sal (,s)ds ).

4.2. Proof of Theorem 11

The uniqueness of the solution is ensured by Corollary 9. Next we will prove the

existence and the asserted estimate. This will be done in two steps.

Step 1 : We first assume that hypotheses of section 2.2, (11) and (19) hold.
Weset! = po”, withsomen € N. By Lemma 16 and the domination inequality

(23) we deduce, forn > 1,

E( e R T W e e ,>

<6k<r>ﬂ>“"E(\\wuwvnsnaovMfou;

/| 5

v
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where C,-» is the constant in the domination inequality. This constant is estimated
by

(See the exercise IV.4.30 in Revuz -Yor, p. 171). So let us denote by

and deduce from the above inequality the following one

oy

2
ap = HIMI”"

"l vIglg v |

v lver

6; 0;t

. 1\ =
Eayi1 <o (1 - F) (6k @) (po™)*)™" Ea.

Iterating this relation n times we get

1

n —1 n
n m 1 m= oim
Eapy < o3 T (1 _ —m) (6k (t) pz) " Eay.
o

m=1

Now we shall let  tend to infinity in this relation. Since in general one has

q’q,_)ooll lg.q':t = 1F loo,00: »

0;t

for any function F : Ry x O — R, it is easy to see that lim,_, H |u|Po"

llu ||OO ooit *
Therefore we have

v lwer,

i ay =l o, v 1815V [ 2] v |1
which implies
E Nl o, < p (1) Ear,
with

o w2 1\ ! Yot g
pw =¥ ] (1= 5) (s )™ 7

m=1

1
Now we estimate Eaj by using the fact that § H |u|P? H5~t < v, with p replacing /
in the expression of v. So we have

1 0 *p g 0,2 g
Eay = E (“"’”pa ”g;t Vg% v ”f Hg ’ H|h )

v )4'h°'2UZi)-

— *p
< E (6 Yo+ g+ | ),
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Finally one deduces our estimate (20) by applying Lemma 17 with [ = p.
Step 2 : The general case

We now assume that £ and the coefficients f, g, & satisfy the hypothesis (9). We
are going to prove Theorem 11 by using an approximation argument. For this, for
alln e N*, 1 <i <d,1<j<d andall(t,w,x,y,z)inR+xQxOxRde,
we set

fl’l(tv U),X, yv Z):f(t, w,x, y’ Z)_fo(tv wv x)+f0([’ w’x) ' 1{|f0(t,w,x)\ gn}
Gin (1, w, X, y,2) =gi(t, w, %, . 2) =g (1, w, )+ g (1w, ) - Lyye0, o) < oy
hj,n(t’ w, X, Yy, Z) Zhj(t’ w, X, y, Z)_ h?(h w, x)+ h(])(ta w, -x) . 1{\h?(l,w,x)| <n}
E(w, x) =Ew, x) - Yjgw,x)| <n)
Define now for each n € N*, u”, the solution of the following s.p.d.e:

d
dul (x) + Auy (x) + fu@, x, u} (x), Vuj (x)) + Z 3igin(t, x,ul (x), Vuy (x))

i=1

d
= hjn(t, x, ul(x), Vu}(x))dB/,
j=1

with initial condition ug = &,.

Let us remark that u,, is well-defined and satisfies all the estimates of the two
preceding sub-sections because the coefficients of the previous s.p.d.e. satisfy the
hypotheses we first made at the beginning of subsection 3.1.

We are now going to prove that u, converges to a solution of the equation (6).

Let us fix n < m in N* and put ™" := u" — u™.

We first note that ™™ satisfies the equation

duf™ (x) + Aug™ ) dt + fum (¢, x, 0™ (x), Vui™ (x)) dt
d
+ > digim (tx.u" (), Vu " (x)) dt

i=1
d )
= Z Bjnm (8, x,ud™ (x), Vui™ (x)) dB]
j=1

where

fom (w,x,y,2) = f(t,w,x,y +u) (x), 2+ Vu]' (x))
—f (t, w, x, uf' (x), Vu}' (x))
+ 10, w,x) — f2 (1, w, x)

and g; ,m, 1 j n,m have similar expressions. Clearly one has

Fam (€ w,x,0,0) = (1, w,x) = £ (t, w,x) = £, (t, w,x)
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and some similar relations for g; n.m (f, w,x,0,0) and h; 4 » (t, w, x,0,0). On
the other hand, one easily verifies that

p 0 oll*?
E& —&llco — O, E|\f, —f oy 0,
*p *p
Elgo =" — o, E’ho—ho 0.
=8|, p oy

By Lemma 17 with [ = 2 we deduce that
E|u" —u"|2 —0, VT >0,

asn, m — oo. Therefore u” has a limit « and it is easy to check that it is a solution
of the equation (6).
On the other hand, the first step of the proof ensures the validity of the relation
(20) for each " and u™™ with n < m, n, m € N*. As a consequence, one has
E|u" —u™|” —0, VT >0,

00,00;T

as n, m — o0. In the limit one obtains the relation (20) for u. |
5. Appendix

Lemma 18. Assume that 6 € (0, 1), then for each ¢ > 0, there exists a constant
C (9, &, t) such that the following inequality holds for any function u € Ly,

lullg;r < & llullo +C (@, &, 1) lully 1 - 27)

Proof. First we need the following interpolation inequality : Let (U, 7, u) be a
measure space and p > 1,0 > 1, ¢ > 0, then there exists a constant C such that

X1, < ellXllyp +CIXIH (28)

foreach X € L°? (u) N L' (n).
In order to check this, one starts with Holder’s inequality and then applies the
Young’s one

- 1 _ L
X1, < IX02, 1IXI7 < v8% [ Xllpp + (1 —v) 87T [|1X]];

. — 1
with v = % and § > 0. Then one sets ¢ = v§v and gets the constant C =

v

(1 — v) vT=5 &~ T, which gives the inequality (28).

We now prove the inequality of the lemma. We first apply the inequality (28)
with respect to the space variable with p = m, o =1+ %, and then
integrate with respect to the time variable obtaining

u <e¢llu Ci|lu .
bl g e < ellull_ga i+ Collulln e

which, on account of Holder’s inequality, is further dominated by

o—1
<et o |u Cillu .
< bl i s+ C Ml 1
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Then we apply the inequality (28) for the measure space ((0, ¢) , dt) with p = é
and integrate with respect to variable space x obtaining

o=l
lully 1., < ellully g+ Collullyy; <€lO1 7 Nully 2. + Callully 1 -

4
The inequality asserted by the lemma is then deduced taking into account the
fact that gy = lull__a 1. Vlull 1., andthat (=545, o) , (0. §) belong

a—2(1=0)°
to Ip. O
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