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Abstract. In an important recent paper, [2], S. Franz and M. Leone prove rigorous lower
bounds for the free energy of the diluted p-spin model and the K -sat model at any temper-
ature. We show that the results for these two models are consequences of a single general
principle. Our calculations are significantly simpler than those of [2], even in the replica-
symmetric case.

1. Introduction

Let p > 2 be an even integer that will be fixed throughout this paper. For N > 1
let =y = {—1, +1}. Consider a random function 6 : {—1,+1}”? — R and a
sequence (6x)x>1 of independent copies of 6. Consider an i.i.d. sequence of indices

(i1,10)1,k>1 with uniform distributionon {1, ... , N}, and let M be a Poisson r.v. with
mean EM = aN. Let us define the Hamiltonian Hy (¢) on Xy by
—HN(@) = Y O(0iry. .- . 0i,,) + Hy(0), (1.1)
k<M

where Hj, (o) is an arbitrary random function on X independent of all other r.v.
in (1.1). The main goal of this paper is to prove upper bounds for

1
Fy = N]Elog Z exp(—Hy(0)).
oeXy

We will make the following assumptions on the random function 6. We assume that
there exists a random function f : {—1, 41} — R such that

expb (a1, ... ,0,) =a(l +bfi(01)... f(0p), (1.2)

where f1, ..., fp areindependent copies of f, bis ar.v.independentof fi, ..., f)
that satisfies the condition

vn>1 E(-b)" >0, (1.3)
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and a is an arbitrary r.v. Finally, we assume that

bfi(01) ... fp(op)| < 1as. (1.4)

Let us consider two examples when the conditions (1.2), (1.3) and (1.4) are
satisfied.

Example 1 (p-spin model). Consider 8 > 0 and a symmetric r.v. J. The p-spin
model corresponds to the choice of

O(o1,...,0p) =BJoy...0p.

(1.2) holds witha = ch(B8J), b = th(BJ) and f (o) = o and condition (1.3) holds
since we assume that the distribution of J is symmetric.

Example 2 (K-sat model). Consider 8 > 0 and a sequence of i.i.d. Bernoulli r.v.
(J1)1>1 with P(J; = £1) = 1/2. The K-sat model corresponds to

1 4 Jio
0(o1.....op) =—B[] R
I<p

(1.2) holds witha = 1, b = ¢ # — 1 and fi(or) = (1 4 Jo7)/2 and (1.3) holds
since b < 0.

We now introduce certain quantities that will play a fundamental role in the
paper. Given a function f : R” — R and a vector X = (x1, ..., X,) let us define

-1
<f>7 B Zsl,...,sp,lzil fle, ... ,gp)epr:lp:1 X8

p—1
X ZS],.‘.,‘SP,]::EI €xp Zl:l Xiel

(so that < f ) implicitly depends on the last coordinate ¢,) and
X

<f> Zsh,,,,gp:i] f(gla »8p) eXPle:l X1€]
X ZE],...,8p=:|:1 exp lezl X1€l .
Let us define

Eer, ..., ep) =expl(er, ..., ep).

If the condition (1.2) holds then

<5)_ - (exp9>; - <a(1 T+ bfier). ..f,,(e,,)))

p—1

= a(] + bfp(ep) 1_[ ZSII:EI fien) eXpS;xl)

e D ej=+1 EXP E1X]

p—1
Av fi(e) exp ex;
= a(l +bfp(ep) E W)’

X

(1.5)
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where Av means average over ¢ = £1 and, similarly,

<5>X =a<1+bg W) (1.6)

Finally, let us define

U@, x1,... . xp_1.8) = 1og(5> (1.7)

x lep=¢

In the case of the p-spin model, we have

() = en(1+m(ane, T tipm)

I<p—1

and

<5)x - ch(ﬂJ)(l +th(gn) [ th(ﬁx,)).
I<p
In the case of the K-sat model, we have
- _ 1+ J,e 1+ Jith(Bx;)
_ B _ pep _ T AE
<5>X_1+(e D= 1n1 2
<p-—

and

2. The replica-symmetric bound

Given an arbitrary probability measure { on R consider an i.i.d. sequence xll 7

i, j,1 > 1 with distribution ¢ and consider U; ;j(¢) = U(6; j, xll’J, cxn ),
where 6; ; are independent copies of 6. Let us consider the Hamiltonian

—Hyi(@) =Y k00,0 + Y > Uijloi) + Hy(e),  (2.1)
k<M, i<N j<ki,

where M; is aPoissonr.v. withmean EM; = taN, and k; ;, i < N arei.i.d. Poisson
r.v. with mean Ek; ; = (1 — f)ap. Let us define

1
¢(0) = SElog 3 exp(—Hy (@),

ogEXN
Clearly, Fy = ¢(1). The following Theorem holds.
Theorem 1 (RS bound). If conditions (1.2), (1.3) and (1.4) hold then

Fy = @) = ¢(0) — a(p — DElog(€) 2.2)

I
X

where X = (x1, ... , X)) is a vector of i.i.d. r.v. with the distribution .
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First of all, since Fy does not depend on ¢, Theorem 1 implies

Fy < ®g = ilgf D(2). (2.3)
Even though Theorem 1 holds for any H) (o), it is particularly interesting when
Hy(o) =Y hio;, 2.4)
i<N

where (h;);<y is a sequence of i.i.d. random variables. With this choice we can

write
¢(0) %Elog e (D Ui+ hicy)

oeXy i<N j<kii

%E]ogn Z exp(Z Ui,j(Gi)-i-hiUi)

i<Noj=%x1 J<ki1

= log2 + Elog Av exp(z Uj(e) + he),
J<k

where Av mean average over ¢ = %1, and (U}), h and k are copies of (Uy ), hy
and k1,1 correspondingly. In this case the bound (2.2) is usually written in Physics
in terms of the functions B(x1, ... ,xp—1) and u(xy, ... , xp—1) defined by

Ve, = +£1 Ber' = <5>_. (2.5)
X
In the case of the p-spin model (2.5) defines
u=th! (1 +th(g)) ] th(ﬂx;))
I<p—1
and B = ch(BJ)/ch(Bu). In the case of the K-sat model
_ b 1+ Jith(Bx;) b 1 4+ Jith(Bx;)
th”‘(ij” [ 2 )/(1+§ [ 2 )
I<p-1 I=p—1

and

2
I<p—1

1 b 1+ Jith(Bx;)
b= @(1 [ 2 ) ’

To write ¢ (0) in terms of these functions B and u, we observe that
¢(0) = log2 + ElogAv exp(z Uj(e) + hs)
j<k
=log2 + Elog H BjAvexp<Z uje + hs),
J=k i<k
= log2 + apElog B + Elogch() u;j + h), (2.6)
<k

using that Ek = ap in the last line.



Bounds for diluted mean-fields spin glass models 323

In the case when H //\, (o) = 0, it was proved in [9] (see Chapter 7, [10]) that for
o small enough,

lim Fy = ®(¢y) = inf ®(¢)
N—o00 ¢
where ¢, is the unique solution of the equation
X~ ) uj,
Jj=<k
where u; = uj(x],..., xlf;_l) is defined in (2.5), x and x/ are i.i.d. with the
distribution ¢y, k is Poisson with Ek = ap and ~ means equality in distribution.

Proof of Theorem 1. Let us consider the partition function

Z= ) exp(—Hy(0))

UEEN

(for simplicity of notations we omit the dependence of Z on N and ¢) and define

Zn=Z|y_, ad Zip=Z| _.
If we denote the Poisson p.f. as (A, k) = (Ak/k!)e’k then

ElogZ =Y m(taN.m)Elog Z,,

m>0

and, forany i < N,

ElogZ = Z 7((1 = Hap, k)Elog Z; .
k>0

Using the notation I/ (m > 1) = 1ifm > land I (m > 1) = 0 if m = 0, we have

00 N oo
o (taN,m) 1 or((1 —tap, k) 1
! — - — .
© (1) = E o1 N]E lOg L + E E Y NE]Og Z,’k
m=0 i=1 k=0
'S}

=« Z(n(totN, m—DIm > 1) —x(taN, m))Elog Z,
m=0

1 N oo
—ap; 3> (= Dap. k= DIk = 1)

i=1 k=0
- ((1 —tap, k))Elog Zik
o
= a(z m(taN,m)Elog Z,,+1 — Elog Z)
m=0
1 N 00
—ap; Z(Zn((l — Hap, OElog Zi k41 — Elog z). .7)

i=1 k=0
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If we denote by { - ) the averaging w.r.t. the Gibbs measure corresponding to the
Hamiltonian (2.1) for a fixed M, = m then

Tt = Zm<exp Oy 101y s e a,-pymﬂ))m
and, therefore,
o0
> w(taN, m)Elog Zy4
m=0
o0
=Y w(taN,m)Elog Z,,
m=0
o0
+Y x(aN, m)]E10g<9m+1(o,~LmH, o ai,),mﬂ))m
m=0
1 N
=ElogZ + NP . Z Elog(exp@(ml, e, O’,'p)>,

i1,esip=1

where < . ) now denotes averaging w.r.t. the Gibbs measure corresponding to the

Hamiltonian (2.1) and 6 is independent of the randomness in < . > Similarly,

o0
Y (1 = Nap. bElog Zi 41 = Elog Z + Elog<exp U(oi)>,
k=0
where U(o0;) = U(xy, ... ,xp_1,0;) and where x1, ... , x,_ are independent of

randomness in < . ) Finally, (2.7) implies

o) = O[(NL Z Elog<exp6(a,~l, e ,oip)> — p% XN:Elog(exp U(Ui)>>-
i=1

N
p
SN

ip=1

2.8)

Since ¢ (1) = ¢(0)+ fol ¢'(1)dt and since E log <5> does not depend on ¢, to prove
X

Theorem 1 it suffices to show that

N
1
W Z Elog(exp@(ail,...,oip)>
i1y sip=1
N

—p% Z]Elog(exp U(cr,-)> +(p— DElog (5) <. (2.9)

X
i=1
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By assumptions (1.2) and (1.3) we can write

log<exp6’(al-l,... ,o,-p)> loga —|—log<1 +b<f1(o” fp(0i) >)
o0
(=b)" "
—loga—Y <f1(a,-l) . ..fp(aip)> .
n=1 n
Using replicas al, , 0" we have
(A fp)) =([ThE - f0])
I<n
and, thus,
(I n
w5 2 (A s@) = (T 4%m)
il,...,ipzl j<p
where {
Ajn=Ajne! oM =23 T
i<NlI<n
Denote by g the expectationin fi, ..., fpandxy, ..., xp only(ther.v.xl, R
are not present here and will appear in the terms below). Since fi, ... , f, arei.i.d.

and independent of the randomness in < . ) ]Eo< ]_[j<p Aj > <Eo ]_[j<p i, ,,> =

(B,{’ > where B, = EgA ,. Therefore, since we also assumed that b is independent
of fi,..., fp,

N

Ep— 1 0 (o; ) = Eol —OO(_WB” 2.10
05 2. loelexpbioi.... . 0i,)) =Eologa— Y (B!} (2.10)

iy i p=1 n=1

A similar analysis applies to the second term in (2.9). First of all, (1.5) implies that

expU(o) = (expt) | =a(1+bfp(00) 1‘[ W)
and, therefore,
00 in p—1 )
s ) = tosa - 3 S (o) [T 452

n=1 =1

n p—1 n
—oza -3 1001 pton) [T(Rpepeny”
=1

n=1

where in the last equality we used replicas. Now,

LS pton)<tosa - 57 8o | T (A0

i—1 il =1 ch(x;)
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and taking the expectation w.r.t. f,..., fp and x1, ..., x, we get
1 N o0 (—b)n
Eox Z log<exp U(o,»)> — Egloga — Y <Bn>(C,,)1’_1 .11
i=1 n=1
where A
n
c, — ]E()( v fi(€) expexl) .
ch(xy)
Finally, in absolutely similar manner
o (=)"
E, 1og<5> —Egloga — Y (C)P. (2.12)
X n

n=

Combining (2.10), (2.11) and (2.12) we see that (2.9) can be written as

e X e P 1(<8 T I CRE)
n=1

which holds true using condition (1.3) and the fact that x? — pxy?~ !+ (p—1)y? > 0
for all x, y € R. This finishes the proof of Theorem 1. O

3. A general weighting scheme

The use of weighting scheme as considered in this section is directly motivated by
the paper [1]. It is a very useful device, see e.g. [11].
We consider a countable index set I', an arbitrary sequence of r.v. (x”), <r and

let (xli’j ’y),,er fori, j, 1 > 1 be its independent copies of this sequence. We define
Ul &) = U@ 77 xp e
where 0; ; are independent copies of ¢ and consider the Hamiltonian
—HY (@)=Y 0(0i ... 0i,)+ Y Y UL+ Hy(o), (3.1
k<M, i<N j<ki;

where M; and k; ;,i < N are defined as in (2.1).
Consider an arbitrary random sequence (vy, ), <r independent of all r.v. in (3.1)

and such that Zy <r vy = 1 and define the Gibbs measure on Xy x I' by

G({o, ¥} = v, exp(—H} ,(0))/Zn
where the partition function Zy is given by Zy = ZV’U vy exp(—H;\', ,(0)). Fora
function f(o,y)on Xy x T, < . > will now denote the average with respect to the

Gibbs measure G

(f):zi 3" f@.y)vy exp(—H (@) (32)

N yel,oeXy
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Let
1
p(t) = NIElog Z Z vy exp(—H}Gyt(a)).

yeloeXy

Clearly, Fy = ¢(1). The following Theorem holds.
Theorem 2. If conditions (1.2), (1.3) and (1.4) hold then

Fy < ¢(0) —a(p—1) /01 Elog(<€>xy>dt. (3.3)

where XV = (xr, ... ,xZ) and where (xly)yer are independent copies of (x),er
forl < p.

Of course, the integrand E log <<5 > V> in the last term of (3.3) depends on ¢ through

X

( . > since <6’) , is a function of y.
X

Proof. The proof follows that of Theorem 1 with almost no changes. (2.8) now
becomes

o) = a(% XN: Elog<exp0(ail, . ,aip)> - p% iElog(exp UV(G,')»
i=1

i1y sip=1

34

where < : > is given by (3.2). Similarly to (2.9) we will now show that

1 N
Wl. Xl: 1Elog<exp9(o,~1, e, aip)>
Lreesip=
- p% ﬁ:Elog<exp Uy(oi)> +(p— 1)E10g<<5>xy> <0. (35

i=1

This clearly implies the statement of Theorem 2 since if we denote c(¢) = a(p —
1)Elog <<8> v> then equation (3.5) yields ¢’(¢) + ¢(¢) < 0 and therefore
X

1
o(1) < p(0) /0 c(t)dt

which is precisely the statement of the Theorem.
In the proof of Theorem 1 we showed that (2.9) is equivalent to (2.13). Following
the same arguments one can show that (3.5) can be written as

o0

E(—b)" _
=Y (B — pB.CE T 1 )+ (P = DCE () 0

n=1
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where now

Av fi(e) expsx
Cotyt, ..., vn) =Eg l_[ Tl
X

The one difference with the case of Theorem 1 is the fact that using replicas to
n

represent < . > now involves both ¢ and y. For instance, in the calculations leading

to (2.11) there will appear a term

Avf(s)expex
(£t )H ~aoh

where (xly)yer, [ = 1 are independent copies of (x?), cr independent of the ran-

domness in < . > Using replicas (al, Y1), ..., (6", yp), this term can be written
as

(b o [T ] 2000

Vi
j=11=1 chx; ™)

Averaging for i and taking expectation Eg w.r.t. f1,..., f, and (xly ) yields

EoAp.n ]"[ [ M) = (Bl 1)

I=1 j=I ch(x
Similarly, the calculations leading to (2.12) will produce <C,Il7 (G2 yp)>. The
rest of the argument is the same. O

4. The 1-step of replica-symmetry breaking bound

In the context and with the notations of the previous section we will now make
specific choices of the random sequences (v,) and (x;”). From now on we will
also assume that HI’\, (o) is given by (2.4).

We denote by M the set of probability measures on R, and M the set of prob-
ability measures on M. Consider { € My, our basic parameter on which will
depend the bound we are going to obtain. We consider a sequence (1, x;);>1 with
the following properties. The sequence (1) is an i.i.d sequence of M distributed
according to ¢. Conditionally on this sequence, the sequence (x;) is independent
and x; is distributed like 1;. We consider i.i.d. copies (nlj , xl] ) of the sequence
(1, x1).

Theorem 3. Suppose that (1.2), (1.3) and (1.4) hold and H/ (0) is given by (2.4).

Let Uj(e) = U(0;, xl ... [J)_l, &), where 0 are independent copies of 6,x =
(x1,...,xp) and let k be a Poisson r.v. with mean Bk = ap. Then, form € (0, 1)
we have
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1
Fy < ®1(¢,m) =log2 + —ElogE(Avexp(Z Uj(e) + hs))m
m
Jj<k

1
_a(p— l)n—1]ElogE/(<5>x)m, (4.1)

where E is the expectation w.r.t. (x;) and (xlj ) for fixed (n;) and (nlj ) and IE denotes
the expectation w.r.t. (n;), (nl]), ), kand h.

Of course, Theorem 3 implies that

Fy <inf ®((¢, m).
¢,m

It should also be noted that Theorem 3 is a generalization of Theorem 1, as is seen
by taking m — 0 and ¢ concentrated at one point of M.

The terms E'(-)™ will magically appear with the proper choice of the sequence
vy, that we explain first. Let I" be a set of natural numbers N. We consider a non-
increasing enumeration (u, ), > of the points generated by Poisson process on R*
of intensity measure x !, To avoid repetition, we will say that such a sequence
has distribution E,,. We define a sequence (vy, ), >1 by

uy

Vy = ———.
Y
Zy’eF L%

With the notation of [10], this sequence has the Poisson-Dirichlet distribution A,,.
This key property is as follows (see e.g. Proposition 6.5.15 in [10]).

Proposition 1. Consider a rv. € > 0, EE2 < 0o and independent copies &y)y=1-
Then the sequences (u,&,)y>1 and (uy (Eél’”)l/ ’”)y>1 have the same distribution
and, therefore, -

1
El = -~ =— " :
og Y vy& =Elogy u,& —Elogy u, — log g 4.2)
yz1 y=1 y=1

Proof of Theorem 3. We consider an element 1 of M that is distributed according
to ¢ and a sequence (x”), > that, given 7, is i.i.d distributed according to 7. For

i, j,1 > 1 we consider independent copies (nf’j ) and (xli’j "7 of these variables. We
also consider other independent copies (1;) and (xly ) of these variables. We denote

by F the o-algebra generated by the variables 7;, nf"/ Jhi ki jand 6; ;.
Let us first consider the integrand E 10g(<5 ) y) in the last term of (3.3). Let us
X
denote

Zi(y) =) _exp(—H} (o))

and e(y) = <E> i Note that e(y) depends on xly,l > 1 and Z;(y) depends on
X

x; "1, j,1 > 1 through the Hamiltonian HI}\/,J. By construction, given F, the
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sequences (Z;(y))y>1 and (e(y)),>1 are i.i.d. and independent of each other. If
we denote by E’ conditional expectation given JF then, using Proposition 1, we get

E'log(e) )= %' log —Zgjjg(z;gw

=E'log ) vye(y)Zi(y) —E'log Y v, Z(y)

1 1
—logE/(ez,)" — — logE'Z}"
m m

1 1
= —log(E'¢"E'Z") — — logE'Z}"
m m

1
— logE/e™,
m

which is independent of ¢ and, therefore, this yields the last term of (4.1).
Next let us consider the first term in (3.3), ¢(0). First of all,

9(0) = —Elog > vy Zo().
yzl
where

Zo(y) = Zexp( HY o)) = 2NHAvexp( Y Ul +hie>

J=<kio

=2N]"[F,»<y>,

i=1

and where we introduced the notation F;(y) = Av exp(Z i<kio Ul?,/j (e) + h,-s).

By construction, given F, the sequences F;(y),y > 1 are i.i.d. and independent
for different indices i. Therefore, application of Proposition 1 gives

E/ log2" Y v, ]"[ Fi(y) =log2 + —l logIE/(l_[ F; (1))

y>1 i=1 i=1

N
_ L N TN
_10g2+N;m10gE(Fz(1)) :

and taking expectation w.r.t. all the other r.v. implies
1 , m
©(0) =1log2 + EElogE (Fi(D)™,

which is precisely the first two terms in (4.1). O
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5. The r-step of replica-symmetry breaking bound

We will first explain the choice of weights (v, ) and r.v. (x¥') in Theorem 2 that will
yield the r-step of replica symmetry breaking bound of Theorem 4 below.
We take ' = N and define a sequence (vy),er using Derrida-Ruelle cas-

cades (see [8]). Consider arbitrary parameters 0 < m; < ... < m, < 1. Letus
consider sequences (Uy, )y, >1, - - - , (Uy,)y,>1 With the distributions Ey,,, ... , Ep,
correspondingly. For 2 <[ < r let us consider a sequence (i, ... .y;)y,,...,y;>1 that
for any fixed (y1, ..., ¥/—1) is an independent copy of the sequence (uy,),,>1. We
— r
define ity ., =[]/ 4y...,y and
i
Y15 ¥r
Uyl,yr = - . 5.1
2ot W]

Next we define the set of r.v. x,,(y1, ..., ) foro € Qand yy, ...,y > 1.

Let M be a set of probability measures on R, and by induction for [ < r we
define M4 as a set of probability measures on M;. Let us fix { € M, (our
basic parameter) and define a random sequence (1, n(¥1), ... , (Y15 -+ » Yr—1),
x(y1,...,vr)) as follows. The element n of M, is distributed according to ¢.
Given 7, the sequence (17(y1))y,>1 of elements of M, _; is i.i.d distributed like
n.For 1 <[ <r — 1, given all the elements n(ay, ... , ay) for all values of the
integersay, ... ,asand all s <[ —1, the sequence (7(y1, ..., ¥1))y,>1 of elements
of M,_; is i.i.d distributed like n(yy, ..., y—1), and these sequences are inde-
pendent of each other for different values of (y1, ..., y1—1). Finally, given all the
elements n(ay, ... , as) for all values of the integers aj, ... ,a; andalls <r — 1
the sequences x(y1, ..., ¥r), ¥ = 1is an i.i.d. sequence on R with the distribu-
tion n(y1, ..., ¥r—1) and these sequences are independent for different values of
(Y1, ..., ¥r—1). The process of generating x’s can be represented schematically as

C=>n—=>ny)—> ...> W, V=) > XYL V). (5.2)

For simplicity of notations instead of writing various combination of indices
i, j, 1 let us first consider an arbitrary countable index set Q2. For w € €2, we con-
sider independent copies (1w, N (Y1), -+ » No(V1s « -« s Vie1)s Xos(V15 - - -, V7)) Of
M)W s V=1 XYL e V).

For0 < j < r—1, letusdenote by F; the o -algebra generated by 74, (1, ... , ¥1)
forwe Q2,1 <j,yi,...,y = 1,and by ther.v h;, 6; j and k; ;. Let us denote by
[E; the expectation given F; or, in other words, w.r.t. n,(y1, ..., y) forw € Q,
I>j,yt,...,yp>landxy(yq, ...,y ) forw € 2, vy, ...,y > 1. Inparticular
Fo is generated by the variables n,, A;, 6; ;j and k; ;.

For a random variable U > 0 we define 7,U = U and by induction, for
0 <! < r we define the r.v. U; by

)1/m1+1

U = (EATZHU)"”“ (5.3)

Let us consider a function V : R® — R, V > 0, and the .v.

Vo) = V() yeg ) (54)
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The distribution of the r.v. V (y1, . .. , ¥+) is independent of the value (y1, ... , ),
and the r.v. T;(V(y1, ..., ¥)) depends only on y1, ... , y.

The following key property is based on iterative application of Proposition 1.
It should be obvious to a reader familiar with Derrida-Ruelle cascades ([8]). In
fact the essential ideas of the present scheme of proof are apparently known to the
authors of [1], but for lack of references, it seems appropriate to give complete
details.

Proposition 2. If V is defined by (5.4) and EV? < oo then

Elog > vy Vi.....7) =ElogTyV. (5.5)
VissVr21
Proof. Let E' denote the expectation w.r.t. (Vyy,... ) and (xo(y1, ..., ¥r)) given

Fo, i.e. for a fixed sequence (7). Let us first consider

E'log Y ity VWiee ).
Vi ¥r21

By the definition of i, ., we can write

Z Uy VLo ¥)

Y1se-e ,}/rzl

- Z 1_[ Uyioeom (Z Uy VYL - )/r)>.

Vi Vr—1211<r—1 yr=1

For a fixed (y1, ..., ¥»—1), and given F,_1, the sequence V(y1, ...,y ), vr > 1
is i.i.d. while the sequence (uy,,... y,)y,>1 has distribution E,,, . Therefore, writing
for simplicity 7—1V rather than 7,1V (y1, - - - , ¥»), Proposition 1 implies that

Z ﬁyl,...,y,V(Vl, oY)~ (T V) Z Uy,....yr

yr=1 yr>1
= (GaV)S—1(vs - ve-1), (5.6)

where ~ means equality in distribution and where we introduced the notation

Sr—1(Vty e Y1) = Z Uy, .. ¥r—17r
yr=>1

Of course, 7,1V depends on (y1, ..., ¥+—1), although this is not explicit in the
notation.

Moreover, given F,_1, both sides of (5.6) are by construction independent for
different indices (y1, ... , ¥r—1) and, thus,
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S iy V)

VisesVr=1

~ Z l_[ uyl,...,yl(Tr—lV)Sr—l(yl» e V1)

= Z l_[ uyl,.“,)q( Z Uy, .yr—1 (T V)Sr =11y - - Vr—l))-

Vise s Vr—2211<r=2 yr—121
5.7
For a fixed (yy, ... , ¥r—2), and given F,_», the sequences

(V)1 .oy and Sy (Y1, ..., Y1) fory g > 1

arei.i.d. and by construction the sequence (i, ... .y,_,)y,_,>1 hasdistribution E,,, _,.
Therefore, Proposition 1 now implies that

Dty GV Ve DS (e Yee)

yr—lzl
~ (Tr—ZV)Cm,,mr,l Z Uy,....yr1
yr—121
= (Tr—2V)Cmr,m,l Sr2(1s o Vr—2)s (5.8)
where S, 2(y1, ..., ¥r—2) = 3., 51Uy, and
B l/mr_| r— l/mr—]
Conramrs = (E(S—1 0o oyem) ™) = (B )™ )

Ver

where (u,,),,>1 has distribution E,,,. One can easily check that Cy,, j,_, < 00
due to the fact that m,_; < m,..
Given F,_», both sides of (5.8) are independent for different (yy, ..., yr—2)

and, therefore, (5.7) implies

Y ey VO )

Vlw-aVer
~ Z 1_[ u)/],..‘,yl(TerV)Cmr,m,l Sr—2(1, -, Yr—2)

Vi Vr—2211<r=2

= 2 Ilwiw

Viseos Vr—3>11<r-3

X ( Z Myl,...,y,,g(Tr—ZV)Cmr,mr,lSr—2(yl, cee s Vr—Z))-

)’r7221

Conjomjy = (E(Z ”Vf)mjil>

yi=1

Let us define
l/m_,-_|

where the sequence (u},j)yjzl has distribution Em/. and let

Ci—1=Cm,m, ‘..ijamjfl'
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Denote
S](yh?J/]): Z ul/lw-,}’jﬁ'

Yi+1=1

Repeating the same argument as above one can show by decreasing induction over
Jj that

Z Uyp oy VLo W)

Vl.m,)/rzl

~ Y Mo (@NCasion . ovp). 659

Vi V2 LIS

In particular, for j = 0, (5.9) reads

Do iy Vv ~ (TV)CL Yy,

VisesVr 21 y1>1

which yields

E logz Vo VWL V)

=T log Z Uy, V21, ...,v) —E'log Z T
=E'log(ToV)C1 Y _ uy, —E'logC1 Y uy, =log TyV.
711 y1=1
Taking the expectation gives (5.5). O

Let Q2 be a set of different combinations (i, j, ), (j, /), ! that appear as indi-
ces of all different r.v. in Section 3. We consider i.i.d copies (6,),ecq of 6. Let
X1, ..., y) and vy, ,, be defined by (5.2) and (5.1) and let (x,)wes be an
independent copy of (x, (1, ..., 1))peq. The following Theorem is a consequence
of Theorem 2.

Theorem 4. Suppose that (1.2), (1.3) and (1.4) hold and Hy, (o) is given by (2.4).

LetUj(e) = U(Gj,xlj, o ,xéfl,s), X = (x1,...,xp) and let k be a Poisson r.v.
with mean Ek = ap. Then

Fy < ®,(¢,my, ..., my) = log2 + Elog TO(Avexp(Z Uj(e) —i—hs))
j<k
—a(p — DElog To<€) : (5.10)

where Ty is defined in (5.3) and & denotes the expectation w.r.t. (n;), (r]lj), 0;), k
and h.

Of course, the Theorem implies that

Fy <&, = inf &, (¢, my, ..., my).
gomiy,.

seee s My
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One expects that as in the Sherrington-Kirkpatrick (SK) model ([12]) these bounds

are always exact, i.e.
lim Fy = inf ®,,
N—oo r>0

where ®( was defined in (2.3). Probably, this is going to be much harder to prove
than the Parisi formula in the SK model. The hope that these bounds are exact is not
based on anything concrete but rather on what may be called the generalized Parisi
conjecture that the Replica Symmetry Breaking scheme, when properly applied,
always yields the correct free energy.

Proof of Theorem 4. The proof is almost identical to the proof of Theorem 3 with
Proposition 2 now playing the role of Proposition 1. To simplify the notations we
will write y = (y1, ..., ¥r), and to match the notations of Theorem 2 we write

xc); = Xo(¥1, -+, ¥r). Let us first consider the integrand ]Elog<<5> y) in the last
X
term of (3.3). Let us denote

Z(y) =) _exp(—H} (o))

and e(y) = <5> L Note that e(y) depends on x;(y),/ > 1 and Z;(y) depends
X

on x;’j’y = xli’j(yl, -+, ¥). i, j,1 > 1 through the Hamiltonian H}, ,. By con-

struction, given Fy, the sequences (Z;(y)) and (e(y)) are defined as in (5.4) and
independent of each other. Using Proposition 2, we get

=Elog ) vye(y)Zi(y) —Elog ) v, Z(y)
= [ElogTo(eZ;) — Elog Ty Z;

= Elog(Tpe)(ToZ;) — Elog Ty Z;

= Elog Tpe,

which is independent of ¢ and, therefore, this yields the last term of (5.10).
Next let us consider the first term in (3.3), ¢(0). First of all,

1
v(0) = Elog } v, Zo(y),
14
where

N
Zoy) = Y exp(—H} o)) = 2" [TAvexp( 3 U7(e) + hie)
o i=1

J=<kio

N
=2"[TF.

i=1
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and where we introduced the notation F;(y) = Av eXp(ngk,«o Ui)‘/j (e) + hie).
Given Fy, the sequences (F;(y)),enr are independent for different indices i.
Therefore, the application of Proposition 2 gives, writing F;(1) = F;(y) for
J/:(ly"‘ 91)’

N N
1 N 1
NIElogZ ZUVHFZ'()/) =log2 + NElogTOHFi(l)
)4 i=1 i=1
1 N
=log2 + N;ElogToFi(l)
1=

=log2 + Elog ToF1(1),

which is precisely the first two terms in (5.10). O
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