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Abstract. We study the fundamental solutions to time-fractional telegraph equations of
order 2α. We are able to obtain the Fourier transform of the solutions for any α and to give
a representation of their inverse, in terms of stable densities. For the special case α = 1/2,
we can show that the fundamental solution is the distribution of a telegraph process with
Brownian time. In a special case, this becomes the density of the iterated Brownian motion,
which is therefore the fundamental solution to a fractional diffusion equation of order 1/2
with respect to time.

1. Introduction

Fractional diffusion equations have been considered and solved by several authors
such as Wyss (1986), Schneider and Wyss (1989), Fujita (1990, I-II). More recently
fractional diffusion equations with random initial conditions have been analyzed
by Anh and Leonenko (2000). Angulo et al. (2000) have studied diffusion equations
with space-fractional derivatives (in the sense of Riesz inverse operator). Fractional
equations of different type, like the Black and Scholes one (see Wyss (2000)) and the
space-fractional telegraph equation (see Orsingher and Zhao (2003)) have recently
been considered.

The study of fractional diffusion equations has been motivated by the analy-
sis of thermal diffusion in fractal media by Nigmatullin (1986) and Saichev and
Zaslavsky (1997). One of the aim of this paper is to show that the law of some
processes (the iterated Brownian motion and the telegraph process with Brownian
time) are governed by time-fractional telegraph equations.

We examine here the solutions to the time-fractional telegraph equation

∂2αu

∂t2α
+ 2λ

∂αu

∂tα
= c2 ∂2u

∂x2 , for 0 < α ≤ 1 (1.1)
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subject, for 0 < α ≤ 1/2, to the initial condition

u(x, 0) = δ(x) (1.2a)

while, for 1/2 < α ≤ 1, besides condition (1.2a), also

ut (x, 0) = 0 (1.2b)

is assumed.
The fractional derivatives appearing in (1.1) must be understood in the sense of

Dzherbashyan-Caputo (see Dzherbashyan and Nersesian (1968)), that is as

(Dαf )(t) = dα

dtα
f (t) =

{
1

�(m−α)

∫ t

0
f (m)(z)

(t−z)1+α−m dz, for m − 1 < α < m

dm

dtm
f (t), for α = m

,

(1.3)

where m − 1 = �α� (�α� denoting the integer part of the real number α) and
f ∈ Cm (for general reference on fractional calculus, see the encyclopedic volume
by Samko et al. (1993)).

We consider solutions to equation (1.1) in the class C2(R × [0, ∞)) of func-
tions u = u(x, t) such that lim|x|→∞ u(x, t) = lim|x|→∞ ∂

∂x
u(x, t) = 0 (see Fujita

(1990, I)).
We are able to obtain the general expression of the Fourier transform of the

solutions to problem (1.1)–(1.2) in terms of the Mittag-Leffler functions

Eα,β(x) =
∞∑

k=0

xk

�(αk + β)
, α, β > 0, x ∈ C (1.4)

that is

Uα(β, t) =
∫ +∞

−∞
eiβxuα(x, t)dx

= Eα,1(η1t
α) + (2λ + η2)t

α

η1 − η2
[η1Eα,α+1(η1t

α) − η2Eα,α+1(η2t
α)]

= 1

2

[(
1 + λ√

λ2 − c2β2

)
Eα,1(η1t

α)

+
(

1 − λ√
λ2 − c2β2

)
Eα,1(η2t

α)

]
, (1.5)

where

η1 = −λ +
√

λ2 − c2β2 , η2 = −λ −
√

λ2 − c2β2 .

We prove that the inverse of (1.5) is a non-negative, symmetric (with respect to x)
density function which integrates to one. This means that, for any 0 < α ≤ 1, the
solutions (which we show to be unique) uα = uα(x, t) to the fractional equations
(1.1) can be viewed as probability density functions. We denote by Xα = Xα(t),
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t > 0 the process whose distribution, at time t , coincides with uα. The solution to
problem (1.1) can be expressed as convolution of stable laws for all 0 < α ≤ 1
(excluding the case α = 1/2).

Because of the complicated structure of (1.5) the inverse Fourier transform can-
not be determined for any 0 < α ≤ 1. However we are able to obtain the explicit
distribution emerging from (1.5) for the case α = 1/2.

The case α = 1 is related to the well-known telegraph process, which is defined
as

T (t) = V (0)

∫ t

0
(−1)N(s)ds

where V (0) is a two-valued random variable (with values ±c taken with probability
1/2) and N(t) is the number of events in [0, t] of a homogeneous Poisson process,
independent of V (0).

The case α = 1/2 gives the following fine expression for the distribution

u 1
2
(x, t) = 1

2c
√

πt

∫ ∞

0
e− w2

4t
−λw{[λI0(

λ

c

√
c2w2 − x2)

+ ∂

∂w
I0(

λ

c

√
c2w2 − x2)]1{|x|<cw}

+c[δ(x − cw) + δ(x + cw)]}dw (1.6)

where

I0(x) =
∞∑

k=0

(
x
2

)2k

(k!)2

is the zero-order modified Bessel function of the first kind (see Tranter (1968)
pag.16, formula 1.51).

The law (1.6) coincides with that of the composition of the telegraph process
T = T (t), t > 0 with a reflecting Brownian motion |B| = |B(t)|, t > 0 (indepen-
dent of T ). This means that u 1

2
(x, t) coincides with the distribution of the telegraph

process with a Brownian time, that is

W(t) = T (|B(t)|), t > 0. (1.7)

The process W can be thought of as the random motion of a particle moving
with alternating velocities ±c (changing at Poisson times) during an interval of
length |B(t)|. In other words the particle is located at time t in the random space
interval (−c|B(t)|, c|B(t)|). This shows that the distribution related to equation

∂u

∂t
+ 2λ

∂1/2u

∂t1/2 = c2 ∂2u

∂x2 (1.8)

covers the whole real line and differs substantially from the case of the telegraph
process, where the distribution is concentrated on a finite interval (spreading as
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time passes) because of the finite velocity of motion. We recall that, analogously,
the law of the process

W(t) =
{

B(T (t)), when T (t) > 0
iB(−T (t)), when T (t) < 0

. (1.9)

satisfies the fourth-order equation

∂2u

∂t2 + 2λ
∂u

∂t
= c2 ∂4u

∂x4 , (1.10)

as proved by Hochberg and Orsingher (1996).
As a consequence of our analysis we also show that the law of the iterated

Brownian motion

I (t) = B1(|B2(t)|), t > 0

is a solution to the fractional equation

∂1/2u

∂t1/2 = 1

2

∂2u

∂x2 , (1.11)

where B1 and B2 are independent Brownian motions. Equation (1.11) can be ob-
tained from (1.1) either for λ = 0, c2 = 1/2, α = 1/4 or for λ, c → ∞, in such a
way that c2/λ → 1 and α = 1/2.

In Funaki (1979) it is proved that the process related to I (t), namely

I (t) =
{

B1(B2(t)) when B2(t) > 0
iB1(−B2(t)) when B2(t) < 0

,

has a law satisfying the fourth-order equation

∂u

∂t
= ∂4u

∂x4 .

The fractional telegraph equation in the case α = 1/2 can be interpreted as a
heat equation subject to a damping effect, represented by the 1/2-order time-deriv-
ative, involving the values of u in the whole interval [0, t] .

We are also able to obtain from (1.5) the general expression of the distributions
related to the heat-wave fractional equations (as particular case when λ = 0). These
laws can be expressed either in terms of the Wright functions

Wα,β(x) =
∞∑

k=0

xk

k!�(αk + β)
,

or by means of integrals on Hankel paths (see Mainardi (1996)).
Moreover we give a representation of the solution to the heat-wave fractional

equation as fractional integrals of space-symmetric stable distributions (see formula
(3.5)).
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Finally the general expression of the variance of the processes Xα = Xα(t), t >

0 with characteristic function (1.5) is

EX2
α(t) = 2c2t2αEα,2α+1(−2λtα). (1.12)

We show that, for the special cases α = 1, α = 1/2, the asymptotic behavior
of the variance is

EX2
1(t) ∼ c2

λ
t as t → ∞

EX2
1/2(t) ∼ 2c2

λ
√

π

√
t .

A general information on the behavior of EX2
α(t), as t → ∞, for any α seems

not possible.

2. The Fourier transform of the solutions

In order to find the solution to equation

∂2αu

∂t2α
+ 2λ

∂αu

∂tα
= c2 ∂2u

∂x2 , 0 < α ≤ 1 (2.1a)

with initial conditions{
u(x, 0) = δ(x)

ut (x, 0) = 0
, for

1

2
< α ≤ 1 (2.1b)

and

u(x, 0) = δ(x), for 0 < α ≤ 1

2
, (2.1c)

we consider the Fourier transform

U(β, t) =
∫ +∞

−∞
eiβxu(x, t)dx (2.2)

which satisfies

∂2αU

∂t2α
+ 2λ

∂αU

∂tα
+ c2β2U = 0 (2.3a)

with initial conditions{
U(β, 0) = 1
Ut(β, 0) = 0.

, for
1

2
< α ≤ 1 (2.3b)

and

U(β, 0) = 1, for 0 < α ≤ 1

2
. (2.3c)
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The integration of (2.3a) with conditions (2.3b) or (2.3c) can be performed by
resorting to the Laplace transform

LU(β, t)(s) =
∫ ∞

0
e−stU(β, t)dt. (2.4)

We remark here that the assumption that the fractional derivatives are of the
form (1.3) permits us to impose initial conditions in terms of integer-order deriva-
tives. This clearly emerges from the following formula for the Laplace transform
of the α-order derivatives:

LDαU(β, t)(s) = sαLU(β, t)(s) −
m−1∑
k=0

sα−1−kDkU(β, t)

∣∣∣
t=0

(2.5)

where �α� = m − 1.

Formula (2.5) can be obtained by considering the definition of Dzherbashyan-
Caputo derivative as follows

LDαU(β, t)(s) = 1

�(m − α)

∫ ∞

0
e−st

{∫ t

0

∂m

∂zm U(β, z)

(t − z)1+α−m
dz

}
dt

= 1

�(m − α)

∫ ∞

0

∂m

∂zm
U(β, z)

{∫ ∞

z

e−st

(t − z)1+α−m
dt

}
dz

= sα−m

∫ ∞

0
e−sz ∂m

∂zm
U(β, z)dz.

By inserting now the well-known formula for the Laplace transform of integer
derivatives ∫ ∞

0
e−sz ∂m

∂zm
U(β, z)dz

= smLU(β, t)(s) −
m−1∑
k=0

sm−1−k ∂k

∂tk
U(β, t)

∣∣∣∣
t=0

,

we obtain (2.5).
Formula (2.5) shows that, since Ut(β, 0) = 0, there is no difference between

the cases where 0 < α ≤ 1/2 and 1/2 < α ≤ 1.

After some calculations based on (2.5) we see that the Laplace transform of the
solution to (2.3a), equipped with the initial conditions, reads

LUα(β, t)(s) = s2α−1 + 2λsα−1

s2α + 2λsα + c2β2 = F(β, s), (2.6)

for all 0 < α ≤ 1.

We remark that, if the derivatives appearing in equations (2.1a) and (2.3a) were
meant in the sense of Riemann-Liouville, initial conditions should be considered
in the fractional form and the expression of the Fourier-Laplace transform of the
solutions would be consequently different from (2.6).

The task of finding the inverse Laplace transform of (2.6) is carried out in the
next theorem.
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Theorem 2.1. The Fourier transform of the solutions of problems (2.1a)–(2.1b)
and (2.1a)–(2.1c) can be written in the following equivalent forms:

Uα(β, t) = Eα,1(η1t
α) + (2λ + η2)t

α

η1 − η2
[η1Eα,α+1(η1t

α) − η2Eα,α+1(η2t
α)]

= 1

2

[(
1 + λ√

λ2 − c2β2

)
Eα,1(η1t

α)

+
(

1 − λ√
λ2 − c2β2

)
Eα,1(η2t

α)

]
, t > 0, (2.7)

where Eα,β(x) is the Mittag-Leffler function defined in (1.4) and

η1 = −λ +
√

λ2 − c2β2 , η2 = −λ −
√

λ2 − c2β2 . (2.8)

Proof. It is convenient to write (2.6) as follows

LUα(β, t)(s) = s
sα−1

sα − η1

sα−1

sα − η2
+ 2λ

sα−1

sα − η1

1

sα − η2
(2.9)

and then apply the following relationships∫ ∞

0
e−stEα,1(ηj t

α)dt = sα−1

sα − ηj

j = 1, 2 (2.10)∫ ∞

0
e−st tα−1Eα,α(ηj t

α)dt = 1

sα − ηj

, j = 1, 2 (2.11)

valid for s > η
1/α
j .

The reader can easily check result (2.10) in the following manner∫ ∞

0
e−stEα,1(ηj t

α)dt =
∞∑

k=0

ηk
j

�(αk + 1)

∫ ∞

0
e−st tαkdt

= 1

s

∞∑
k=0

(ηj

sα

)k = sα−1

sα − ηj

.

From the last step it is clear why formulas (2.10) and (2.11) are valid for
s > η

1/α
j . Similar calculations yield (2.11).

In order to invert the first term in (2.9) we write

s
sα−1

sα − η1

sα−1

sα − η2
=
∫ ∞

0
se−st

[∫ t

0
Eα,1(η1z

α)Eα,1(η2(t − z)α)dz

]
dt

= −e−st

∫ t

0
Eα,1(η1z

α)Eα,1(η2(t − z)α)dz

∣∣∣∣
t=∞

t=0

+
∫ ∞

0
e−stEα,1(η1t

α)dt +
∫ ∞

0
e−st dt

×
∫ t

0
Eα,1(η1z

α)
d

dt
Eα,1(η2(t − z)α)dz (2.12)
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To realize that the second line of (2.12) is equal to zero it is necessary to take into
account the following formula (see Podlubny (1999), page 26, formula (1.108)):∫ t

0
zγ−1Eα,γ (yzα)(t − z)β−1Eα,β(w(t − z)α)dz

= tβ+γ−1

y − w

∞∑
k=0

tαk(yk+1 − wk+1)

�(αk + β + γ )

= tβ+γ−1

y − w
[yEα,β+γ (ytα) − wEα,β+γ (wtα)], (2.13)

for β, γ > 0 and y 	= w, which for γ = β = 1, y = η1, w = η2 yields∫ t

0
Eα,1(η1z

α)Eα,1(η2(t − z)α)dz

= t

η1 − η2
[η1Eα,2(η1t

α) − η2Eα,2(η2t
α)].

By considering now the asymptotic expansion of the Mittag-Leffler function
(see Podlubny (1999), Theorem 1.4, page 33), it is straightforward that the second
step in (2.12) holds.

Since

d

dt
Eα,1(η2(t − z)α) =

∞∑
k=0

(η2(t − z)α)k−1

�(αk + 1)
αkη2(t − z)α−1

=
∞∑

k=1

(η2(t − z)α)k−1

�(αk)
η2(t − z)α−1

=
∞∑

k=0

(η2(t − z)α)k

�(αk + α)
η2(t − z)α−1

= η2(t − z)α−1Eα,α(η2(t − z)α).

we have that

s
sα−1

sα − η1

sα−1

sα − η2
=
∫ ∞

0
e−stEα,1(η1t

α)dt + η2

∫ ∞

0
e−st dt

×
∫ t

0
(t − z)α−1Eα,1(η1z

α)Eα,α(η2(t − z)α)dz. (2.14)

Therefore the inverse Laplace transform of (2.9) reads

Uα(β, t) = Eα,1(η1t
α) + (2λ + η2)

∫ t

0
(t − z)α−1Eα,1(η1z

α)Eα,α(η2(t − z)α)dz

= Eα,1(η1t
α) + (2λ + η2)t

α

η1 − η2

[
η1Eα,α+1(η1t

α) − η2Eα,α+1(η2t
α)
]
.

(2.15)
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In the last step we have applied formula (2.13) for γ = 1, β = α, y = η1 and
w = η2.

Taking into account that

Eα,α+1(x) = 1

x

[
Eα,1(x) − 1

]
we obtain the second expression in (2.7). 
�
Remark 2.1. For α = 1, considering that E1,1(x) = ex and E1,2(x) = 1

x
(ex − 1),

from (2.7) we obtain

U1(β, t) =2λ + η1

η1 − η2
eη1t − 2λ + η2

η1 − η2
eη2t

=e−λt

2

[(
1 + λ√

λ2 − c2β2

)
et

√
λ2−c2β2

+
(

1 − λ√
λ2 − c2β2

)
e−t

√
λ2−c2β2

]
. (2.16)

Formula (2.16) represents the well-known characteristic function of the tele-
graph process.

Remark 2.2. For λ = 0, formula (2.7) coincides with the Fourier transform of the
solution to the fractional heat-wave equation

∂2αu

∂t2α
= c2 ∂2u

∂x2 , 0 < α ≤ 1 (2.17)

with the suitable initial conditions.
Indeed, in this case, η1 = icβ, η2 = −icβ and thus the Fourier transform (2.7),

denoted by Vα, becomes

Vα(β, t) = Eα,1(icβtα) − icβtα

2
[Eα,α+1(icβtα) + Eα,α+1(−icβtα)]

=
∞∑

k=0

(icβtα)k

�(αk + 1)
− icβtα

∞∑
k=0

(icβtα)2k

�(2αk + α + 1)

=
∞∑

k=0

(−c2β2t2α)k

�(2αk + 1)
= E2α,1(−c2β2t2α). (2.18)

We note that, for α = 1/2, (2.18) gives

V 1
2
(β, t) = e−c2β2t

which is the characteristic function of a Gaussian distribution with variance 2c2t.

If α = 1 we obtain from (2.16) (for λ = 0) and alternatively from the first line of
(2.18)

V1(β, t) = 1

2
(eicβt + e−icβt )
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which is the Fourier transform of

v1(x, t) = 1

2
{δ(x − ct) + δ(x + ct)}, (2.19)

that is the D’Alembert solution to the wave equation.

3. First properties of the solutions

By taking first the inverse Fourier transform of (2.6) we immediately obtain that

∫ ∞

0
e−stuα(x, t)dt =

√
s2α + 2λsα

2sc
e− |x|

c

√
s2α+2λsα

. (3.1)

The Laplace transform (3.1) can be further inverted in a simple way only when
λ = 0.

It is well known (see Samorodnitsky and Taqqu (1994), page 15) that for a
stable random variable X ∼ S(σ, 1, 0) we have that

Ee−γX = e
− σα

cos(πα/2)
γ α

0 < α ≤ 2, α 	= 1, (3.2)

where σ, γ > 0. Therefore (3.1) can be written (for λ = 0) as∫ ∞

0
e−st vα(x, t)dt = sα−1

2c
e− |x|sα

c for 0 < α < 1 (3.3)

where

e− |x|sα
c = Ee−sX((

|x|
c

cos πα
2 )

1
α ,1,0). (3.4)

Denoting by pα(|x|, t) the probability law of X((
|x|
c

cos πα
2 )

1
α , 1, 0), we can

write the inverse Laplace transform of (3.3) as

vα(x, t) = 1

2c�(1 − α)

∫ t

0

pα(|x|, s)
(t − s)α

ds for 0 < α < 1. (3.5)

Clearly (3.5) shows that the solution to (2.17) is non-negative.
For α = 1/2 we can invert (3.3) by means of the relationship

e− |x|s1/2

c =
∫ ∞

0
e−st |x|√

2c

1√
2πt3

e
− |x|2

4c2 t dt. (3.6)

Therefore the Laplace inverse transform of (3.3) is

v 1
2
(x, t) = 1

2c

∫ t

0

1√
π(t − s)

|x|√
2c

1√
2πs3

e
− x2

4c2s ds

= 1√
4πc2t

e
− x2

4c2 t . (3.7)
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The last step in (3.7) is due to the following result

1

π

∫ t

0

e− x2
2s√

s3(t − s)
ds = 2

|x|√2πt
e− x2

2t , (3.8)

which can be easily checked.
In the case where λ 	= 0, 0 < α ≤ 1, bearing in mind the identity

a

π(a2 + x2)
=
∫ ∞

0

a√
2πs3

e− a2
2s

e− x2
2s√

2πs
ds, (3.9)

the Fourier-Laplace transform (2.6) can be written as

F(β, s) = (s2α−1 + 2λsα−1)
1

2c2

∫ ∞

0

1

w2 e
− s2α+2λsα

2c2w e− β2

2w dw. (3.10)

In view of (3.2) we have that

e
− s2α

2c2w = Ee
−sX

(
( cos πα

2c2w
)

1
2α ,1,0

)
(3.11)

e
− λsα

c2w = Ee
−sX

(
(

λ cos πα/2
c2w

)
1
α ,1,0

)
,

(3.12)

for any 0 < α < 1, α 	= 1/2. The distribution connected with (3.11) will be
denoted by q2α(w, t) and that related to (3.12) will be indicated by qα(w, t).

By considering that

1

�(1 − 2α)

∫ ∞

0
e−st dt

t2α
= s2α−1 for α < 1/2, (3.13a)

1

�(1 − α)

∫ ∞

0
e−st dt

tα
= sα−1 for α < 1, (3.13b)

the Fourier-Laplace inverse transform of (3.10) reads

uα(x, t) = 1

2c2�(1 − 2α)

∫ ∞

0

e− wx2
2√

2πw3
dw

∫ t

0

ds

(t − s)2α

×
∫ s

0
q2α(w, z)qα(w, s − z)dz + λ

c2�(1 − α)

∫ ∞

0

e− wx2
2√

2πw3
dw

×
∫ t

0

ds

(t − s)α

∫ s

0
q2α(w, z)qα(w, s − z)dz. (3.14)

Clearly the second term of (3.14) is non-negative for any 0 < α < 1. The first
term of (3.14) is non-negative for 0 < α < 1/2; by a different argument we show
that it is non-negative also for 1/2 < α < 1.
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If we consider the first term of (3.10) and use the mean-value theorem we have:

s2α−1

2c2

∫ ∞

0

1

w2 e
− s2α+2λsα

2c2w e− β2

2w dw

= e
− λsα

c2w

{
s2α−1

2c2

∫ ∞

0

1

w2 e
− s2α

2c2w e− β2

2w dw

}
(3.15)

for a suitable w ∈ (0, ∞). While the first factor of (3.15) coincides with (3.12)
and refers to a stable distribution of order α, the second one represents the Fou-
rier-Laplace transform of the solution to the fractional heat-wave equation (2.17),
which we proved to be non-negative by means of the representation (3.5).

From (2.7) we can argue that Uα(0, t) = 1, for any α, since for β = 0 we get
η1 = 0, η2 = −2λ and Eα,1(0) = 1.

In conclusion the solutions to the initial value problem of the fractional tele-
graph equation (2.1a) can be interpreted as true probability distributions for any
0 < α ≤ 1.

Remark 3.1. The uniqueness of the solution to the initial-value problems consid-
ered here can be proved by means of arguments similar to those appearing in Fujita
(1990, I).

Let u1, u2 be two different solutions to (2.1a) with initial condition (2.1c)
(0 < α ≤ 1/2, m = 1); therefore w = u1 − u2 satisfies equation (2.1a) with
w(x, 0) = 0.

We note that for the Riemann-Liouville integral of order 2α (0 < α < 1) ,

denoted by I 2α (see Samko et al. (1993), definition 2.1, page 33), and the Dzher-
bashyan-Caputo derivative of order α we have, for the Fourier transform W of w,

that

I 2α ∂α

∂tα
W (β, t)

= 1

�(2α)

∫ t

0
(t − s)2α−1 ds

�(1 − α)

∫ s

0

∂

∂z
W (β, z)

dz

(s − z)α

= 1

�(2α)�(1 − α)

∫ t

0

∂

∂z
W (β, z) dz

∫ t

z

(t − s)2α−1 ds

(s − z)α

= 1

�(1 + α)

∫ t

0

∂

∂z
W (β, z) (t − z)αdz

= 1

�(α)

∫ t

0
W (β, z) (t − z)α−1dz

= IαW (β, t) ,

since W(β, 0) = 0.

Analogously, after some calculations, it is easy to show that

I 2α ∂2α

∂t2α
W (β, t) = W (β, t) .
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By performing now the Riemann-Liouville integral of order 2α with respect to
t in equation (2.3a), we get

W (β, t) + 2λ

�(α)

∫ t

0
W (β, s) (t − s)α−1ds

= c2β2

�(2α)

∫ t

0
W (β, s) (t − s)2α−1ds. (3.16)

From (3.16) it turns out that

|W (β, t)| ≤ 2λ

�(α)

∫ t

0
|W (β, s)| |t − s|α−1 ds

+ c2β2

�(2α)

∫ t

0
|W (β, s)| |t − s|2α−1 ds

≤
{

2λtα−1

�(α)
+ c2β2t2α−1

�(2α)

}∫ t

0
|W (β, s)| ds

≤
{

2λT α−1

�(α)
+ c2β2T 2α−1

�(2α)

}∫ t

0
|W (β, s)| ds,

for t ∈ [0, T ] , T > 0. By the Gronwall’s inequality we conclude that W (β, t) = 0
and thus w = u1 − u2 = 0. The same arguments extend to equation (2.1a) with
initial conditions (2.1b).

4. The explicit solution for α = 1/2 as the law of a telegraph process with
Brownian time

We consider here the case α = 1/2 for which it is possible to obtain the explicit
form of the solution to (2.1a) with initial condition (2.1c); we start by writing the
Fourier transform (2.7) in a more suitable form.

Theorem 4.1. For α = 1/2, we obtain the following Fourier transform of the
solution

U 1
2
(β, t) = λ

2
√

πt

∫ ∞

0
e− z2

4t
−λz

{
ez

√
λ2−c2β2 − e−z

√
λ2−c2β2√

λ2 − c2β2

}
dz

+ 1

2
√

πt

∫ ∞

0
e− z2

4t
−λz

{
ez

√
λ2−c2β2 + e−z

√
λ2−c2β2

}
dz. (4.1)

Proof. In order to pass from the first form of (2.7) to formula (4.1) we need explicit
expressions for the Mittag-Leffler functions E 1

2 , 3
2
(x) and E 1

2 ,1(x). We have
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E 1
2 , 3

2
(x) =

∞∑
k=0

xk

�
(

k+3
2

) =
∞∑

k=0

xk

k+1
2 �

(
k+1

2

)
= (by the duplication formula of the Gamma function)

=
∞∑

k=0

xk2k+1�
(

k
2 + 1

)
√

π(k + 1)!

=
∞∑

k=0

xk2k+1

√
π(k + 1)!

∫ ∞

0
e−ww

k
2 dw

= 2√
πx

∫ ∞

0
e−w2

(e2wx − 1)dw (4.2)

and analogously

E 1
2 ,1(x) =

∞∑
k=0

xk

�
(

k
2 + 1

) =
∞∑

k=0

xk2k�
(

k+1
2

)
√

πk!

= 2√
π

∫ ∞

0
e−w2+2xwdw. (4.3)

With this at hand we readily have

U 1
2
(β, t)

= 2√
π

∫ ∞

0
e−w2−2λ

√
tw+2

√
tw

√
λ2−c2β2

dw +

+ λ√
π

∫ ∞

0
e−w2−2λ

√
tw

{
e2w

√
t
√

λ2−c2β2 − e−2w
√

t
√

λ2−c2β2√
λ2 − c2β2

}
dw

− 1√
π

∫ ∞

0
e−w2−2λ

√
tw
{
e2w

√
t
√

λ2−c2β2 − e−2w
√

t
√

λ2−c2β2
}

dw, (4.4)

which coincides with (4.1), after having introduced the change of variable 2
√

tw =
z.

Result (4.1) can also be obtained by working on the second expression of (2.7)
and applying formula (4.3). 
�

Theorem 4.2. The distribution obtained by inverting the Fourier transform (4.1)
is

u 1
2
(x, t) = 1

2c
√

πt

∫ ∞

0
e− w2

4t
−λw{[λI0(

λ

c

√
c2w2 − x2)

+ ∂

∂w
I0(

λ

c

√
c2w2 − x2)]1{|x|<cw}

+c[δ(x − cw) + δ(x + cw)]}dw. (4.5)
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Proof. If we write (4.1) as

1√
πt

∫ ∞

0
e− z2

4t

{
e−λz

2

[(
1 + λ√

λ2 − c2β2

)
ez

√
λ2−c2β2

+
(

1 − λ√
λ2 − c2β2

)
e−z

√
λ2−c2β2

]}
dz, (4.6)

we see that, inside the integral (4.6), the characteristic function (2.16) of the tele-
graph process appears.

The distribution related to (2.16) is known to be

p(x, w) =e−λw

2c
[λI0(

λ

c

√
c2w2 − x2) + ∂

∂w
I0(

λ

c

√
c2w2 − x2)]1{|x|<cw}

+ e−λw

2
[δ(x − cw) + δ(x + cw)]. (4.7)


�
Remark 4.1. We can verify that

∫ +∞
−∞ u 1

2
(x, t)dx = 1. Since∫ cw

−cw

I0(
λ

c

√
c2w2 − x2)dx = c

λ
(eλw − e−λw)∫ cw

−cw

∂I0

∂w
(
λ

c

√
c2w2 − x2)dx = c(eλw + e−λw − 2)

we have that∫ +∞

−∞
u 1

2
(x, t)dx = 1

2c
√

πt

∫ ∞

0
e− w2

4t
−λw

× [
c(eλw − e−λw) + c(eλw + e−λw − 2) + 2c

]
dw

= 1√
πt

∫ ∞

0
e− w2

4t dw = 1.

Remark 4.2. The probability density (4.5) coincides with the distribution of the
telegraph process T = T (t), t > 0 with a Brownian time, that is

W(t) = T (|B(t)|). (4.8)

This means that the fundamental solution to the fractional equation

∂u

∂t
+ 2λ

∂1/2u

∂t1/2 = c2 ∂2u

∂x2 (4.9)

can be interpreted as the distribution of a particle moving back and forth on the
real line with velocities ±c (switching at Poisson-paced times) for a random time
interval of length |B(t)|. Clearly T and B are assumed independent of each other.

Equation (4.9) is a heat equation with a damping term depending on all values
of u in [0, t] and assigning an overwhelming weight to those close to t (because of
definition (1.3)). The damping effect of ∂1/2u/∂t1/2 reverberates on the distribution
(4.5), where the governing term (solution to the heat equation) is weighted by the
telegraph distribution (representing the impact of the fractional derivative).
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Remark 4.3. If λ = 0, formula (4.5) reduces to

v 1
2
(x, t) = 1

2
√

πt

∫ ∞

0
e− w2

4t [δ(x − cw) + δ(x + cw)] dw

= 1

2c
√

πt

∫ ∞

0
e
− w2

4c2 t [δ(x − w) + δ(x + w)] dw

= e
− x2

4c2 t

2c
√

πt
for x ∈ R. (4.10)

The Gaussian density is clearly the fundamental solution to the heat equation ∂u
∂t

=
c2 ∂2u

∂x2 .

Remark 4.4. It is very interesting to point out that the density (4.5) converges to

v 1
2
(x, t) = 1√

πt

∫ ∞

0
e− w2

4t
e− x2

2w√
2πw

dw (4.11)

as λ, c → ∞ in such a way that (c2/λ) → 1. This can be established considering
that the distribution (4.7) of the telegraph process converges to the transition func-
tion of Brownian motion (as can be checked by means of the asymptotic formulas
of Bessel function, see Tranter (1968), formula 3.30, p.50, and Orsingher (1990)).
This can be proved in a different way by starting from the relationship (3.10).
Indeed from (3.10) as λ, c → ∞ (in such a way that (c2/λ) → 1) we obtain (when
α = 1/2) that

F(β, s) = s− 1
2

∫ ∞

0

1

w2 e−
√

s
w e− β2

2w dw. (4.12)

The inverse Laplace-Fourier transform of (4.12) reads

v 1
2
(x, t) =

∫ ∞

0

dw

w2

∫ t

0

1√
π

√
t − s

e
− 1

4sw2

√
2w

√
2πs3

e− x2w
2√

2π

√
wds

= (on the basis of (3.8))

=
∫ ∞

0

1

w2

1

2w

√
w

e− x2w
2√

2π

2
√

2w√
2πt

e
− 1

4tw2 dw

=
∫ ∞

0

e− x2w
2√

2πw3

e
− 1

4tw2

√
πt

dw

= (by means of
1

w
= z)

=
∫ ∞

0

e− x2
2z√

2πz

e− z2
4t√

πt
dz. (4.13)
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We note that (4.11) is the law of the iterated Brownian motion

I (t) = B1(|B2(t)|) (4.14)

where B1 and B2 are independent Brownian motions and B2 possesses variance
parameter equal to 2.

This shows that the well-known process I (t) is a fractional diffusion governed
by the equation

∂1/2u

∂t1/2 = 1

2

∂2u

∂x2 .

5. About the variance of the processes Xα

By means of the Fourier transform (2.7) it is straightforward to ascertain that the
mean value of processes Xα(t), t > 0 related to the fractional telegraph equation
(1.1) is zero, for any 0 < α ≤ 1.

In order to obtain the explicit expression of the variance EX2
α(t) we prefer a

different approach, based on (2.6).
Since

∂2

∂β2 LUα(β, t)(s)

∣∣∣∣
β=0

= −
∫ ∞

0
e−stEX2

α(t)dt, (5.1)

from (2.6) we obtain

∂2

∂β2 LUα(β, t)(s)

∣∣∣∣
β=0

= − 2c2

sα+1(sα + 2λ)
. (5.2)

By taking profit of formula (2.11) and of the fact that

1

�(1 + α)

∫ ∞

0
e−st tαdt = 1

sα+1 ,

we have that

EX2
α(t) = 2c2

�(1 + α)

∫ t

0
sα−1(t − s)αEα,α(−2λsα)ds

= 2c2

�(1 + α)

∞∑
k=0

(−2λ)k

�(αk + α)

∫ t

0
sα−1(t − s)αsαkds

= 2c2t2αEα,2α+1(−2λtα). (5.3)

Remark 5.1. We examine now some special cases of (5.3).
When α = 1, λ = 0, it is clearly E1,3(0) = 1/2 and thus (5.3) yields

EX2
1(t) = c2t2

as can be also inferred directly from (2.19).



158 E. Orsingher, L. Beghin

When α = 1, λ 	= 0, since

E1,3(x) = 1

x2 (ex − 1 − x), x 	= 0 (5.4)

we obtain that

EX2
1(t) = c2

λ

(
t + e−2λt − 1

2λ

)
= ET 2(t), (5.5)

which coincides with formula (28) of Orsingher (1990).
When considering the case α = 1/2 we need to evaluate E1/2,2(x). Some

calculations show that

1

�(k
2 + 2)

= 2k+1(k + 1)�( k+1
2 )√

π(k + 2)!
(5.6)

so that

E 1
2 ,2(x) =

∞∑
k=0

xk

�(k
2 + 2)

=
∞∑

k=0

xk2k+1(k + 1)√
π(k + 2)!

∫ ∞

0
e−ww

k+1
2 −1dw

=
∞∑

k=0

xk2k+2

√
π(k + 2)!

∫ ∞

0
e−ww

k+1
2 dw

= 1

x2
√

π

∫ ∞

0

e−w

√
w

∞∑
k=0

xk+22k+2w
k+2

2

(k + 2)!
dw

= 1

x2
√

π

∫ ∞

0

e−w

√
w

(e2
√

wx − 1 − 2x
√

w)dw

= 2ex2

x2
√

π

∫ ∞

−x

e−w2
dw − 1

x2 − 2

x
√

π
, x 	= 0. (5.7)

It can be easily checked that formula (5.7) (as well as (5.4)) holds, by continuity,
also for x = 0. By applying (5.7) to (5.3) we obtain

EX2
1
2
(t) = c2

λ2
√

π

(
e4λ2t

∫ ∞

2λ
√

t

e−w2
dw −

√
π

2
+ 2λ

√
t

)
. (5.8)
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Result (5.8) can also be derived by taking profit of the representation (4.8) as
follows

EX2
1
2
(t) = ET 2(|B(t)|)

= E
{

ET 2(|B(t)|)
∣∣∣ |B(t)|

}

=
∫ ∞

0

e− w2
4t√

πt
ET 2(w)dw

=
∫ ∞

0

e− w2
4t√

πt

c2

λ

(
w + e−2λw − 1

2λ

)
dw, (5.9)

where, in the last step, we have applied (5.5). Formula (5.9) coincides with (5.8)
after some calculations.

We can see from (5.8) that, for large values of t ,

EX2
1
2
(t) ∼ 2c2

λ
√

π

√
t . (5.10)

By taking the limit of (5.10) for c, λ → ∞ (c2/λ → 1) we obtain, as expected,
the variance of the iterated Brownian motion, that is

EI 2(t) = EB2
1 (|B2(t)|) = 2√

π

√
t .

Result (5.10) must be compared with

EX2
1(t) ∼ c2

λ
t, for large t. (5.11)

An intuitive explanation of the fact that EX2
1
2
(t) increases more slowly than

EX2
1(t) is that the distribution of X 1

2
can be looked at as the distribution of X1 in

a space interval whose length takes small values with large probability.
In principle, it is possible to evaluate EX2

α(t), for α = 1/k, k ∈ N, when
k > 2, by successively applying the multiplication formula of Gamma function.
However, in general, it is not possible to obtain fine, explicit expressions like (5.5)
and (5.8).
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