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Abstract. An assignment problem is the optimization problem of finding, in an m by n
matrix of nonnegative real numbers, k entries, no two in the same row or column, such that
their sum is minimal. Such an optimization problem is called a random assignment problem
if the matrix entries are random variables. We give a formula for the expected value of the
optimal k-assignment in a matrix where some of the entries are zero, and all other entries
are independent exponentially distributed random variables with mean 1. Thereby we prove
the formula 1 + 1/4 + 1/9 + · · · + 1/k2 conjectured by G. Parisi for the case k = m = n,
and the generalized conjecture of D. Coppersmith and G. B. Sorkin for arbitrary k, m and n.

1. Introduction

The problem of minimizing the sum of k entries in a matrix of nonnegative real
numbers under the condition that no two of them may be in the same row or column
is called an assignment problem. A set of matrix positions no two in the same row
or column is called an independent set. An independent set of k matrix positions
will also be called a k-assignment.

A random assignment problem is given by a number k, and an m by n matrix
(min(m, n) ≥ k) of random variables. If P is a random matrix, we denote by Fk(P )

the expected value of the minimal sum of an independent set of k matrix entries.
We use this notation even if P is a deterministic matrix.

In this article we prove the following.

Theorem 1.1 (Parisi’s Conjecture [P98]). Let P be a k by k matrix with indepen-
dent exp(1) entries. Then

Fk(P ) = 1 + 1

4
+ 1

9
+ · · · + 1

k2 .

We also prove the following two generalizations.

Theorem 1.2 (Conjectured by D. Coppersmith and G. B. Sorkin [CS98]). Let P

be an m by n matrix with independent exp(1) entries. Then

Fk(P ) =
∑

i,j≥0
i+j<k

1

(m − i)(n − j)
. (1)
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Theorem 1.3 (Conjectured in [LW00]). Let P be an m × n matrix where some
entries are zero and the other entries are independent exp(1)-variables. Then

Fk(P ) = 1

mn

∑

i,j

di,j,k(P )
(
m−1

i

)(
n−1
j

) . (2)

Here di,j,k(P ) is an integer coefficient defined in terms of the combinatorics of the
set of zeros in P , see Section 2.2. The identity (2) will be referred to as the cover
formula. When P has no zeros,

di,j,k(P ) =
(

m

i

)(
n

j

)
.

Hence Theorem 1.3 ⇒ Theorem 1.2. To see the implication Theorem 1.2 ⇒ The-
orem 1.1 (proved in [CS98]), note that if we put m = n = k in (1), then the terms
for which gcd(k − i, k − j) = d sum to 1/d2 for d = 1, . . . , k.

As a consequence of Theorem 1.1 we also obtain a new and completely different
proof of the following theorem, conjectured by M. Mézard and G. Parisi [MP85].

Theorem 1.4 (D. Aldous [A92, A01]). Let Pk be a k by k matrix with independent
exp(1) entries. Then

lim
k→∞

Fk(Pk) = π2

6
.

In Section 7 we mention some other corollaries of Theorem 1.3.

Note: Within a few hours of the announcement of our proof of Theorem 1.1, we
were contacted by C. Nair, B. Prabhakar and M. Sharma, who told us that they
too had a proof of this theorem [NPS03a, NPS03b], and that they were about to
finish a paper on it! Interestingly, these authors use a completely different approach,
building on results from [N02].

1.1. Outline of the proof

A key result, Theorem 4.1, is a formula for the probability that a certain row in a
random matrix is used in the optimal k-assignment. From [LW00] we know that
the probability that an exponentially distributed entry in a matrix P is used in the
optimal k-assignment can be written Fk(P )−Fk(P

′), where P ′ is obtained from P

by setting the matrix entry in question to zero, see Theorem 2.2. Therefore, the for-
mula for the probability that a row (or column) is used gives certain linear equations
for the values of the random assignment problems. Provided m or n is sufficiently
large compared to k, this system of linear equations has a unique solution given by
(2), see Section 5. Finally in Section 6 we prove that for fixed k, fixed m, and a
fixed set of zeros, Fk(P ) is given by a rational function in n, which must then agree
with (2).
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1.2. Background

Random assignment problems have attracted the attention of researchers from phys-
ics, optimization, and probability. There are experimental results in [O92, PR93].
Constructive upper and lower bounds on Fk(P ) have been given in [W79, O92,
CS98, L93, K87, GK93]. M. Mézard and G. Parisi [MP85, MP87] used the non-
rigorous replica method and arrived at the conjectured limit π2/6. This limit was
subsequently established rigorously by D. Aldous [A92, A01] using the weak con-
vergence method on a weighted infinite tree model. In this paper we continue the
exact formulas-approach inspired by [P98] and developed further in [AS02, BCR02,
CS98, CS02, LW00, EES01].

There are also interesting results on similar problems such as finding a minimal
spanning tree in a graph with random edge weights [BFM98, FM89, F85, EES01].
An intriguing question is why the Riemann ζ -function appears in the limit of both
the spanning tree and bipartite matching problems.

A tool that we believe can be useful to a wider range of problems is Theorem
2.2 below and its generalization Theorem 7.3 of [LW00].

2. Preliminaries

2.1. Probabilistic preliminaries

We say that a random variable X is exponentially distributed with rate a if Pr(X >

t) = e−at for t ≥ 0. This is sometimes written X ∼ exp(a). The rate of X is
denoted I (X). We have E(X) = 1/I (X).

A random matrix P is called standard if the matrix entries are either zero or
independent exp(1) random variables. A standard random assignment problem is
thus determined by the numbers k, m, n, and the set Z of zero entries.

The following is a well-known lemma.

Lemma 2.1. Let a1, . . . , an be positive real numbers, and let X1, . . . Xn be inde-
pendent random variables with Xi ∼ exp(ai) for i = 1, . . . , n. Then the probability
that Xi is minimal among X1, . . . Xn is

ai

a1 + · · · + an

.

If we let Y be the minimum, then Y ∼ exp(a1 + · · · + an), and Y is independent of
which variable is minimal. Under the condition that Xi is minimal, Xi = Y , and
for j �= i, we can write Xj = Y + X′

j , where X′
j ∼ exp(aj ), and the variables Y

and X′
j for j �= i are all independent.

We say that a (deterministic) matrix is generic if no two sums of nonzero matrix
entries are equal. In a standard matrix, the nonzero matrix entries are independent
and have continuous distributions. Such a matrix is generic with probability 1. In
the generic case, a nonzero entry belongs either to every optimal k-assignment, or
to none. Hence without ambiguity we can speak of the probability that a certain
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nonzero entry is used in the optimal k-assignment, without specifying whether we
take this to mean some optimal k-assignment, or every optimal k-assignment.

Notice that this is not the case for zero entries. Even in a generic matrix, there
may be several different optimal k-assignments, that differ in the choice of zero
entries.

The following theorem, Theorem 2.10 of [LW00], is essential for the recursion
equations in Section 5.

Theorem 2.2. Suppose P is a standard matrix. Suppose that the entry P(i, j) is
exponentially distributed. Let P ′ be as P except that P ′(i, j) is set to zero. Then the
probability that (i, j) belongs to the optimal k-assignment in P is Fk(P )−Fk(P

′).

We include a proof for completeness.

Proof. We condition on the values of all matrix elements except P(i, j). Let X be
the value of the minimal k-assignment in P which does not use P(i, j). Let Y be the
value of the minimal k − 1-assignment in P which does not use row i or column j .
The optimal k-assignment in P either contains (i, j) and has value Y + P(i, j), or
does not contain (i, j) and has value X. Hence the probability that P(i, j) belongs
to the optimal k-assignment in P is equal to the probability that P(i, j) < X − Y .

We wish to show that this is equal to

Fk(P ) − Fk(P
′) = E(max(0, min(X − Y, P (i, j)))).

If X ≤ Y , then both are zero. If X > Y , then we let δ = X − Y . Then the
probability that P(i, j) is used in the optimal k-assignment in P is 1 − e−δ . We
compare this to

E(min(δ, P (i, j))) = δe−δ +
∫ δ

0
te−t dt = δe−δ + 1 − (δ + 1)e−δ = 1 − e−δ.

This proves the theorem. 	


2.2. Covers

We will consider sets of rows and columns in the matrices. A set λ of rows and
columns is said to cover a set Z of matrix positions if every matrix position in Z is
either in a row or in a column that belongs to λ. A cover with N rows and columns
will be called an N -cover. The k − 1-covers will be of particular importance. By a
partial k − 1-cover of Z, we mean a set of rows and columns which is a subset of
a k − 1-cover of Z.

When we speak of a cover of a matrix we mean a cover of its zeros. The cover
coefficient di,j,k(P ) is the number of partial k − 1-covers of P with i rows and
j columns. For this to be nonzero, i and j have to be nonnegative integers with
i + j < k. It is convenient to regard the cover coefficient as well-defined, but zero,
for integers i, j outside this range.
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Example. Let P be an m by n standard matrix with zeros in positions (1, 1) and
(1, 2).

P =




0 0 P(1, 3) . . .

P (2, 1) P (2, 2) P (2, 3) . . .
...

...
...





Then the cover coefficients di,j,3(P ) are given by

j = 0 1 2
i = 0 1 n 1

1 m n

2 m − 1

According to Theorem 1.3, we have

F3(P ) = 1

mn

(
1

(
m−1

0

)(
n−1

0

) + m
(
m−1

1

)(
n−1

0

)

+ m − 1
(
m−1

2

)(
n−1

0

) + n
(
m−1

0

)(
n−1

1

)

+ n
(
m−1

1

)(
n−1

1

) + 1
(
m−1

0

)(
n−1

2

)

)

which simplifies to

1

mn
− 2

m(n − 1)
+ 1

m(n − 2)
+ 1

(m − 1)n
+ 1

(m − 1)(n − 1)
+ 1

(m − 2)n
.

We say that a set λ of rows and columns is an optimal cover of P , if λ covers
P , and λ has minimal cardinality among all covers of P . The following lemma is
well-known. For a general introduction to matching theory we refer to [LP86].

Lemma 2.3 (Lattice structure of optimal covers). The set of optimal covers of a
matrix forms a lattice, where one of the lattice operations consists in taking union
of row sets and intersection of column sets, and the opposite lattice operation is
taking intersection of row sets and union of column sets.

In particular, there is a row-maximal optimal cover containing every row that
belongs to some optimal cover, and similarly a column-maximal optimal cover
containing every column that belongs to some optimal cover.

Let us also recall a famous theorem of D. König and E. Egerváry, see e.g.
[LP86].
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Theorem 2.4. If a matrix has no k − 1-cover, then it has a zero-cost k-assignment.
	


We need the following lemmas.

Lemma 2.5. Let k ≤ m, n be positive integers. Let P be an m by n matrix, with
zeros in a certain set Z of positions, and (possibly random) positive values outside
Z. Suppose that Z does not contain a k + 1-assignment. Let λ be an optimal cov-
ering of Z. Then every row and every column of λ contains an element of every
optimal k-assignment of P .

Proof. Suppose that λ contains rows 1, . . . , r and no other rows. Since λ is optimal
it follows by the König-Egerváry theorem that there is an r-assignment ν in Z

containing no element from the columns in λ. Suppose (for a contradiction) that
there is an optimal k-assignment µ which does not use row 1.

We now construct a sequence of matrix positions (all with zeros) as follows:
Let ν0 be the element of ν which is in the first row. Suppose that we have defined
ν0, . . . , νh and µ1, . . . , µh. Then if there is an element of µ∩Z in the same column
as νh, let this element be µh+1, and let νh+1 be the element of ν which is in the
same row as µh+1. Since µ does not contain any element from the first row, the
sequences ν0, ν1, ν2, . . . and µ1, µ2, . . . cannot contain any repetitions of the same
element. Hence the sequence must end with an element νh such that there is no
element of µ ∩ Z in the same column.

We now consider two cases. Suppose first that no element in the column of
νh belongs to µ. Since Z does not contain a k + 1-assignment, the cardinality
of λ is at most k. Each row and column of λ covers at most one element of µ,
and row 1 does not cover any element of µ. Consequently there is an element
(i, j) of µ which is not covered by λ, hence does not belong to Z. Then µ \
{µ1, . . . , µh−1, (i, j)} ∪ {ν0, . . . , νh} is a k-assignment of smaller cost than µ, a
contradiction. If on the other hand there is an element (i′, j ′) of µ in the column
of νh, then µ \ {µ1, . . . , µh−1, (i

′, j ′)} ∪ {ν0, . . . , νh} is a k-assignment of smaller
cost than µ. This contradiction proves the lemma. 	


Lemma 2.6. If λ is an optimal cover of a subset of Z, then there is an optimal
k-assignment which intersects every row and every column of λ.

Proof. This follows by a continuity argument. Let the values in the positions of Z

not covered by λ be ε, and let ε tend to zero. Since there are only finitely many
k-assignments, there has to be an assignment which is optimal for all sufficiently
small ε, which by Lemma 2.5 has to intersect every row and column of λ. This
assignment is also optimal for ε = 0. 	


Note that it is not true that every optimal k-assignment has to intersect the rows
and columns of an optimal covering of a subset of Z.
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2.3. Recursions

If P is an m by n matrix, and µ is an assignment, then we let costP (µ) be the cost
of µ, that is,

costP (µ) =
∑

(i,j)∈µ

P (i, j).

To recursively compute Fk(P ) we need Theorem 2.7 and Theorem 2.8 below
from [LW00]. For completeness we include proofs here.

Theorem 2.7. Let P be a nonnegative real matrix with no set of k independent
zeros. Let λ be an optimal cover, and let x be a positive real number smaller than
or equal to the minimum of the entries not covered by λ. Let P ′ be obtained from
P by subtracting x from the entries not covered by λ, and adding x to the doubly
covered entries. Then

Fk(P ) = (k − |λ|)x + Fk(P
′).

Proof. Let µ be an optimal k-assignment of P ′ intersecting every row and column
of λ. Such an optimal assignment exists by Lemma 2.6. Note that subtracting x

from every entry not covered by λ, and adding x to every doubly covered entry is
the same thing as first subtracting x from all entries not covered by the rows of λ,
and then adding x to all the entries covered by the columns of λ. Let i and j be the
number of rows and columns in λ, respectively. Then

costP (µ) = costP ′(µ) + x · (k − i) − x · j

= x · (k − |λ|) + costP ′(µ) = x · (k − |λ|) + Fk(P
′). (3)

For every k-assignment ν we have

costP (ν) ≥ x · (k − |λ|) + costP ′(ν) ≥ x · (k − |λ|) + Fk(P
′).

Hence µ is an optimal k-assignment also in P , and Fk(P ) is given by (3). 	

In the typical use of the theorem, x is the minimum of all the non-covered

entries, which gives a new zero when we subtract x. The theorem will be used for
random assignment problems, by conditioning on the location of the minimal non-
covered entry. The special case of this theorem where all doubly covered entries
are known not to be in the optimal k-assignment was treated in [CS02] and [AS02],
where it was used in the proof of Theorem 1.2 for k ≤ 4.

The next theorem is a special case of Theorem 2.9 in [LW00].

Theorem 2.8. Let P be a nonnegative random matrix. Suppose that a column c has
at least k zero entries. Let P \c be the matrix obtained from P by deleting column c.
Then

Fk(P ) = Fk−1(P \c). (4)

Similarly, if a row r conatins k zero entries, then Fk(P ) = Fk−1(P \r).
Proof. Every k-assignment in P contains a k − 1-assignment in P \c. Hence
Fk(P ) ≥ Fk−1(P \c). Conversely, since every k − 1-assignment in P \c can be
extended with a zero in column c to a k-assignment in P , Fk(P )≤Fk−1(P \c). 	
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3. Combinatorics of two optimal k-assignments

In this section we prove two results, Lemmas 3.2 and 3.4, which are used in
Section 4.

An assignment problem can be rephrased in a setting of bipartite graphs with
weighted edges. In this setting, an assignment is a matching, and a cover of rows
and columns is a vertex cover of the edges. When speaking of sets of matrix posi-
tions, we will borrow some terminology from graph theory. When we speak of a
component of a set of matrix positions, we mean a maximal subset which is con-
nected by rook moves, that is, a position is connected to positions in the same row
and in the same column.

Consider a deterministic assignment problem. If µ and ν are two different
k-assignments, their symmetric difference (µ\ν) ∪ (ν\µ) is denoted µ�ν. By a
(µ, ν)-alternating path we mean a sequence (i1, j1), (i2, j2), . . . , (ir , jr ) of matrix
positions, where positions belonging to µ alternate with positions belonging to ν

and ix = ix+1 or jx = jx+1, for all x = 1, . . . , r − 1. The parameter r will be
called the length of the path. Each component of µ�ν is a (µ, ν)-alternating path
(possibly cyclic).

If all matrix entries in µ�ν are zero, we say that µ and ν are equivalent, µ ≡ ν.

Lemma 3.1. Let A be a nonnegative matrix, and let µ be an optimal k-assign-
ment. Let a be a position which does not belong to µ. Suppose that there is another
optimal k-assignment ν that contains a. Then there is an optimal k-assignment ν′
containing a, such that µ�ν′ has at most two components. Moreover, if there are
two components, then both are paths of odd length, and one of them starts and ends
in µ, and the other starts and ends in ν′.

Proof. Let T be the component of µ�ν that contains a. If T is of even length,
then we let ν′ = µ�T . Since T is an alternating path, it contains equally many
elements from µ and ν. Therefore ν′ has size k. Moreover, since T is a com-
ponent, ν′ is an assignment. Similarly, µ′ = ν�T is a k-assignment, and since
cost(µ′) + cost(ν′) = cost(µ) + cost(ν), both µ′ and ν′ are optimal.

If on the other hand T has odd length, then it contains one more element of
one of µ and ν than of the other. Since µ and ν have the same size, there must
be another component T ′ of µ�ν that balances, so that T ∪ T ′ has equally many
elements from µ and ν. Then we let ν′ = µ�(T ∪ T ′). By the same argument, ν′
is an optimal k-assignment. 	

Lemma 3.2. Let P be a nonnegative matrix. Let r1 and r2 be rows, and let c1 and
c2 be columns. Suppose that P(r1, c1) = 0, P(r2, c1) > 0, and P(r2, c2) > 0. Sup-
pose further that there is an optimal k-assignment that contains (r2, c2), but does
not intersect row r1. Then there is no optimal k-assignment that contains (r2, c1).

Proof. Let µ be an optimal k-assignment that contains (r2, c2) but no entry in row
r1. Suppose for contradiction that there is an optimal k-assignment ν that con-
tains (r2, c1). By Lemma 3.1, we may assume that µ�ν consists of at most two
components, and that if there are two, both are of odd length.
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There must be a zero element (s1, c1) ∈ µ, otherwise (r2, c2) could be replaced
by (r1, c1) in µ. Let S be the path of (µ�ν) \ {(r2, c1)} that contains (s1, c1). In
other words, S is the set of matrix positions in the (µ, ν)-alternating path that starts
at (s1, c1) and continues in the direction opposite to that of (r2, c1).

There must be an element (r1, d) of ν since otherwise (r2, c1) could be replaced
by (r1, c1) in ν. Since µ does not use row r1, the element (r1, d) is in a component
of µ�ν which is a path with one end belonging to ν. If the other end belongs to
µ, the path has an even number of elements, and must therefore be the same as the
path containing (r2, c1). Otherwise the other end too belongs to ν. Then the other
path has both ends in µ. In either case, S must end with an element of µ in a row
which is not used by ν.

If cost(µ ∩ S) > cost(ν ∩ S), then cost ((µ�S) ∪ {(r1, c1)}) < cost(µ). Since
(µ�S)∪{(r1, c1)} is a k-assignment, this contradicts the optimality of µ. Otherwise
cost(µ ∩ S) ≤ cost(ν ∩ S). Then cost ((ν�S) \ {(r2, c1)}) < cost(ν), again a con-
tradiction. 	


Lemma 3.3. Let P be a matrix with exactly two equivalence classes of optimal
k-assignments, and suppose that µ �≡ ν are optimal k-assignments. Then µ�ν has
at most two components with some nonzero entry, and if there are two, then both
are paths of odd length, and one of them starts and ends in µ, and the other starts
and ends in ν.

Proof. Suppose that T is a component of µ�ν which has even length and contains
at least one nonzero entry. Then ν′ = µ�T and µ′ = ν�T are k-assignments.
Since

cost(µ′) + cost(ν′) = cost(µ) + cost(ν),

both µ′ and ν′ must be optimal. We have assumed that P has exactly two equiva-
lence classes of optimal k-assignments, and therefore ν ≡ ν′. Consequently T is
the only component with nonzero entries in µ�ν.

Suppose instead that S is a component of µ�ν which has odd length and con-
tains at least one nonzero entry. Then there must be another component S′ of µ�ν

that balances, so that T = S ∪ S′ has equally many elements from µ and ν. With
the same argument as above we can conclude that T contains all nonzero entries
of µ�ν. 	


Lemma 3.4. Let P be a nonnegative matrix. Suppose that there are exactly two
equivalence classes of optimal k-assignments, and that µ �≡ ν are two inequivalent
optimal k-assignments. Suppose further that

(1) µ has a nonzero entry in the last row and
(2) ν does not use the last row.

Then there is a unique row s such that

(1) ν has a nonzero entry in row s

(2) There is a k-assignment µ′ ≡ µ that does not use row s.
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Proof. Existence: Choose a k-assignment µ′ ≡ µ which has as many matrix posi-
tions as possible in common with ν. Since the last row is used by µ′ but not by ν,
there has to be a row s which is used by ν but not by µ′. If ν has a zero entry in row
s, then µ′ must contain a zero entry in the same column. By replacing this zero by
the zero in row s, we would obtain a k-assignment µ′′ ≡ µ′ which has one more
element in common with ν, a contradiction. Therefore, the entry in row s which
belongs to ν must be nonzero.

Uniqueness: Assume on the contrary that there are two different rows s and
t that contain nonzero entries of ν, say (s, c1) and (t, c2), and two equivalent k-
assignments µ ≡ µ′ such that µ does not use row s and µ′ does not use row t . If
µ would not use row t either, then µ�ν would have two distinct paths (one path
is impossible since it would have even length, starting and ending in ν) both with
one end in a nonzero entry of ν, in the positions (s, c1) and (t, c2). This contradicts
Lemma 3.3.

Hence there is a zero entry (s, c3) of µ′, and similarly a zero entry (t, c4) of
µ. Note that the symmetric difference µ�µ′ contains only zeros and therefore it
must consist of a number of (µ, µ′)-alternating paths, all of even length. Let U

be the one that contains (t, c4). Unless U ends at row s, µ�U will be a k-assign-
ment equivalent to µ avoiding both rows s and t . We have already seen that this is
impossible.

We may therefore assume that µ�µ′ consists of a single path U from (t, c4) to
(s, c3). Note that for every row r which is used in this path, there is a k-assignment
µ′′ ≡ µ that avoids row r . This is obtained by choosing the zeros from µ in the
part of U that goes towards (t, c4), and choosing them from µ′ in the part that goes
towards (s, c3).

Let (m, d) be the position in the last row used by µ and let L be the (µ, ν)-
alternating path containing (m, d). First note that if L contains (s, c1), it has to end
there and thus be of even length, which means that it has passed through (t, c2)

first.
Case 1. L intersects U . In this case, the first element of L (starting from (m, d))

that belongs to U must be an element of µ. Suppose that this element is in row
r . Then let µ′′ ≡ µ avoid row r . It follows that µ′′�ν contains a path of even
length starting at (m, d), and another path containing the nonzero element (s, c1),
contradicting Lemma 3.3.

Case 2. L does not intersect U . Let S be the path in µ�ν containing (s, c1),
(t, c4) and (t, c2) in this order.

We know that U and S intersect in (t, c4). Of the positions in U ∩ S, let (r, c)

be the one which is closest to (s, c3) in U , and let µ′′ ≡ µ avoid row r . Then µ′′�ν

will consist of a cycle containing the nonzero position (s, c1), and two other paths,
one containing (t, c2) and one containing (m, d), contradicting Lemma 3.3. 	


4. The probability that a row is used in the optimal assignment

Crucial for our proof is the following formula for the probability that a certain row
without zeros intersects an optimal k-assignment. Let ρk(P ) denote this probability.
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Theorem 4.1 (Row Inclusion Theorem). Let P be a standard matrix, and let r be
a row without zeros. The probability that some entry in r belongs to the optimal
k-assignment is

ρk(P ) = 1

m

∑

i

d̃i,0,k(P )
(
m−1

i

) , (5)

where d̃i,0,k(P ) is the number of partial k − 1-covers of i rows not containing the
row r .

Remarkably, ρk(P ) is independent of the number of columns in the matrix.
Another consequence of (5) is that the probability of using a certain row without
zeros in an optimal k-assignment does not change if further zeros are introduced in
a row which belongs to an optimal cover. This observation turns out to be sufficient
for the proof of the formula.

Lemma 4.2. Let P be a standard matrix, and let r be a row that belongs to an
optimal cover. Let P ′ be a matrix obtained from P by setting an entry in row r to
zero. Suppose there is a row without zeros in P . Then

ρk(P ) = ρk(P
′).

Proof. Suppose that P is a standard matrix where the first row belongs to an opti-
mal cover, and that there is an entry in the first row, say (1, 1), which is not zero.
Suppose further that the last row contains no zeros. We want to show that if we
replace the entry in position (1, 1) by zero, the probability that the last row is used
in the optimal k-assignment does not change.

Let �P be the probability space of all assignments of values to the random vari-
ables in P , that is, the space of all real nonnegative m by n matrices that have zeros
in the positions where P has zeros. If A ∈ �P , we let 	k(A) be 1 if the last row is
used by an optimal k-assignment, and 0 otherwise. We let Ax , for nonnegative real
x, denote the matrix obtained from A by setting the entry in position (1, 1) to x.

We construct a measure preserving involution ϕ on �P with the property that
(except possibly on a subset of probability zero) if A ∈ �P is a matrix where the
last row changes between being used and not being used in the optimal k-assign-
ment when A(1, 1) is set to zero, then in ϕ(A), the change goes the other way. In
other words,

	k(A) − 	k(A0) = 	k(ϕ(A)0) − 	k(ϕ(A)). (6)

Let A ∈ �P . If 	k(A) = 	k(A0), we let ϕ(A) = A. Otherwise notice that if
we decrease the entry in position (1, 1) continuously down to zero, there can be at
most one point at which the location of the optimal k-assignment changes, and at
this point, the entry in position (1, 1) goes from not being used to being used.

At the point Af where the change occurs, the matrix has exactly two equiva-
lence classes of optimal k-assignments. Let µ be one that contains an entry of the
last row, and let ν be one that doesn’t. By Lemma 3.4, there is a unique row s such
that ν contains a nonzero entry in row s, and so that there is a k-assignment µ′ ≡ µ
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that contains no entry of row s. Notice that s cannot be the first row, since the first
row is used by every optimal k-assignment.

We let ϕ(A) be the matrix obtained from A by swapping the entries in row s

with the corresponding entries (entries in the same column) in the last row, except
in the columns where row s has zeros.

In the analysis of this mapping, we introduce some auxiliary matrices. Let A′
f

be obtained from Af by setting the entries in the last row that are in columns where
row s has zeros, to zero. By Lemma 3.2, we can set these entries as small as we
please without changing the location of the optimal assignments. Hence there will
be no k-assignment of smaller cost than µ and ν in A′

f . Then since neither µ nor
ν uses any zero entry in row s, these can of course be increased without changing
the optimality of µ and ν. We let A′′

f be the matrix obtained from A′
f by changing

the zero positions in row s to the values of the corresponding entries in the last row
of A. If A is generic, every optimal k-assignment in A′′

f is equivalent either to µ or
to ν.

Now ϕ(A)f is obtained from A′′
f by swapping row s with the last row. This

means that in ϕ(A)f , there are exactly two equivalence classes of optimal k-assign-
ments, one that includes position (1, 1) and one that doesn’t. But since the last row
has been swapped with another row, we have, for x �= f ,

	k(ϕ(A)x) = 1 − 	k(Ax),

which implies (6).
In ϕ(A)f , row s has the property expressed in the conclusion of Lemma 3.4,

but with the roles of µ and ν interchanged. It follows that ϕ(ϕ(A)) = A, and in
particular that ϕ is invertible. The mapping ϕ is piecewise linear, and on each piece,
it is a permutation of variables. Hence it is measure preserving. 	


Proof of Theorem 4.1. We now establish the Row Inclusion Theorem by an induc-
tive argument. Let P be a standard matrix, and suppose the last row contains no
zero entry. Notice that by the König-Egerváry theorem, the formula holds whenever
P has a k-assignment of only zeros. Suppose that the formula has been established
for k − 1-assignments and for every standard matrix with fewer nonzero entries
than P .

Case 1: Some optimal cover of P contains a row r with at least one nonzero
entry. Then every optimal k-assignment must use row r . Let P ′ be as P but with
another zero in row r . By Lemma 4.2, the probability that the last row is used is
the same in P as in P ′. Hence we only have to show that d̃i,0,k(P ) = d̃i,0,k(P

′)
for i = 0, . . . , k − 1. We have to show that if a set of rows can be extended to a
k−1-cover of P , then it is possible to use row r in this k−1-cover. This will follow
if we can show that row r belongs to the optimal cover of the remaining zeros.

It suffices to show that if a row s �= r is deleted from the matrix, row r still
belongs to the optimal cover of the remaining zeros. If the deletion of s does
not decrease the maximal number of independent zeros, this is obvious. Suppose
therefore that the deletion of s decreases the number of independent zeros. Then
s belongs to an optimal cover of P . Hence the row-maximal optimal cover of P
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contains both r and s. When row s is deleted, the remaining rows and columns
including r will constitute an optimal cover of the remaining zeros.

Case 2: There is a row in P with only zeros. Let P ′ be the m − 1 by n matrix
obtained from P by deleting this row. Then ρk(P ) = ρk−1(P

′). By induction,
ρk−1(P

′) is equal to

1

m − 1

∑

i

d̃i,0,k−1(P
′)

(
m−2

i

) .

We have

d̃i,0,k(P ) = d̃i,0,k−1(P
′) + d̃i−1,0,k−1(P

′),

for every i. Hence

1

m

∑

i

d̃i,0,k(P )
(
m−1

i

) = 1

m

∑

i

d̃i,0,k−1(P
′) + d̃i−1,0,k−1(P

′)
(
m−1

i

)

= 1

m

∑

i

d̃i,0,k−1(P
′)

(
m−1

i

) + 1

m

∑

i

d̃i,0,k−1(P
′)

(
m−1
i+1

)

=
∑

i

d̃i,0,k−1(P
′)

(
1

m
(
m−1

i

) + 1

m
(
m−1
i+1

)

)

= 1

m − 1

∑

i

d̃i,0,k−1(P
′)

(
m−2

i

) = ρk−1(P
′) = ρk(P ). (7)

Case 3: There is a unique optimal cover λ consisting of only columns. Then
these columns will be used by the optimal k-assignment. Therefore the number of
entries not covered by λ in the optimal k-assignment is independent of the random
variables in the matrix. We condition on the position of the minimal entry not cov-
ered by λ. If in each case we subtract this minimum from all entries not covered
by λ, the same nonzero entries will be used in the optimal k-assignments. Here
we are using Theorem 2.7 in the special case of no doubly covered entries. Let P t

be the matrix obtained by conditioning on the minimal entry in P not covered by
λ being in row t , and subtracting this minimum from all entries not covered by
λ. Then P t is a standard matrix, and the new zero occurring in row t means that
row t belongs to an optimal cover of P t . Hence in case the new zero is in the last
row, that row must be used in the optimal k-assignment, while if it is not, we can
find the probability that the last row is used by induction. We let P \t be the matrix
obtained by deleting row t from P . Cases 1 and 2 imply that ρk(P

t ) = ρk−1(P \t).
It follows that ρk(P ) is given by

1

m
+ 1

m(m − 1)

∑

t

∑

i

d̃i,0,k−1(P \t)
(
m−2

i

) . (8)

Note that if α is a partial k − 2-cover with i − 1 rows of P \t then α ∪ {row t} is a
partial k − 1-cover with i rows of P . Hence we have

∑

t

d̃i,0,k−1(P \t) = (i + 1)d̃i+1,0,k(P ),
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since both sides are equal to the sum, taken over all t , of the number of partial
k − 1-covers with i rows of P that use row t (and not the last row). It follows that
(8) equals

1

m
+ 1

m(m − 1)

∑

i

(i + 1)d̃i+1,0,k(P )
(
m−2

i

)

= 1

m
+ 1

m

∑

i

d̃i+1,0,k(P )
(
m−1
i+1

) = 1

m

∑

i

d̃i,0,k(P )
(
m−1

i

) . (9)

This completes the proof of Theorem 4.1. 	


5. Proof of the cover formula for large m or large n

The results of the previous section enable us to prove that the cover formula (2)
holds for standard matrices whenever either m or n is sufficiently large compared
to k. We first prove that the cover formula is consistent with the Row Inclusion
Theorem.

Theorem 5.1. Let P be a standard matrix where the last row contains no zeros,
and let Pc be obtained from P by setting the entry in column c of the last row to
zero. If the cover formula (2) holds for every Pc, then it holds for P .

Proof. By Theorem 2.2 the probability that the entry in column c in the last row
belongs to an optimal k-assignment in P is equal to Fk(P ) − Fk(Pc). Hence

nFk(P ) −
∑

c

Fk(Pc) = 1

m

∑

i

d̃i,0,k(P )
(
m−1

i

) .

Suppose that the cover formula holds for each Pc. Then

nFk(P ) = 1

mn

∑

c

∑

i,j

di,j,k(Pc)(
m−1

i

)(
n−1
j

) + 1

m

∑

i

d̃i,0,k(P )
(
m−1

i

) .

In order to prove that the cover formula holds for P , it is sufficient to prove that

∑

i,j

di,j,k(P )
(
m−1

i

)(
n−1
j

) = 1

n

∑

c

∑

i,j

di,j,k(Pc)(
m−1

i

)(
n−1
j

) +
∑

i

d̃i,0,k(P )
(
m−1

i

) . (10)

Let d̃i,j,k(P ) be the number of partial k − 1-covers of P with i rows, not
containing the last row, and j columns. If we write

d̃i,0,k(P ) =
∑

j

(
d̃i,j,k(P )(

n
j

) − d̃i,j+1,k(P )(
n

j+1

)
)

,

and fix i and j , we see that (10) will follow from the identity
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di,j,k(P )
(
n−1
j

) = d̃i,j,k(P )(
n
j

) − d̃i,j+1,k(P )(
n

j+1

) + 1

n
(
n−1
j

)
∑

c

di,j,k(Pc).

Here, partial covers that contain the last row will contribute 1/
(
n−1
j

)
to both

sides. It only remains to show that

d̃i,j,k(P )
(
n−1
j

) = d̃i,j,k(P )(
n
j

) − d̃i,j+1,k(P )(
n

j+1

) + 1

n
(
n−1
j

)
∑

c

d̃i,j,k(Pc),

or equivalently

j d̃i,j,k(P ) + (j + 1)d̃i,j+1,k(P ) =
∑

c

d̃i,j,k(Pc).

Here the first term of the left hand side counts the partial k − 1-covers of Pc

that contain column c, summing over all c. If a partial k − 1-cover of Pc does not
contain the column c or the last row it must be a subset of a k − 1-cover that does.
Since there is only one zero in the last row of Pc we may always add the column c

and still have a partial k − 1-cover. Hence the second term can be seen to count the
covers of Pc that do not contain column c. Thus (10) holds. 	


Next we show that the cover formula is consistent with removing a column that
has at least k zeros.

Theorem 5.2. Let P be a standard m×n-matrix, and suppose that the first column
has at least k zeros. Let P ′ be the m by n − 1 matrix obtained from P by deleting
the first column. If the cover formula holds for P ′, then it holds for P .

Proof. By Theorem 2.8 Fk(P ) = Fk−1(P
′). We have

1

mn

∑

i,j

di,j,k(P )
(
m−1

i

)(
n−1
j

) = 1

mn

∑

i,j

di,j−1,k−1(P
′) + di,j,k−1(P

′)
(
m−1

i

)(
n−1
j

)

= 1

mn

∑

i,j

(
di,j,k−1(P

′)
(
m−1

i

)(
n−1
j

) + di,j,k−1(P
′)

(
m−1

i

)(
n−1
j+1

)

)

= 1

m(n − 1)

∑

i,j

di,j,k−1(P
′)

(
m−1

i

)(
n−2
j

) = Fk−1(P
′) = Fk(P ). (11)

	


Theorem 5.3. If P is a standard m by n matrix and max(m, n) > (k − 1)2, then

Fk(P ) = 1

mn

∑

i,j

di,j,k(P )
(
m−1

i

)(
n−1
j

) .
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Proof. Suppose without loss of generality that m > (k − 1)2. We argue by induc-
tion on the number of nonzero entries of P . By Theorems 5.1 and 5.2, it suffices
to consider the case that P has at least one zero in each row, and no column with k

or more zeros.
However, these conditions together imply that P must have a zero cost k-assign-

ment. In this case the cover formula clearly holds, since the cover coefficients are
zero. 	


6. Rationality of Fk(P ) as a function of n

We know from Section 5 that for fixed k, whenever m or n is large, the cover for-
mula (2) for standard matrices holds. In order to prove that the formula holds for
smaller values of m and n, it is therefore sufficient to show that if k, m and the zero
positions are fixed, and we let Pn be the standard matrix with n columns, then there
is a rational function in the variable n that gives the value of Fk(Pn) for every n

which is at least as large as k and the number of columns with zeros. This rational
function must then be equal to the one given by the cover formula. We prove this
by induction over a class of matrices which includes the class of standard matrices
as a special case.

In an exponential matrix, all entries are linear combinations with nonnegative
rational coefficients of a set X1, . . . , Xp of independent exponentially distributed
random variables (not necessarily of rate 1). If a variable Xi in an exponential
matrix has rate 1, and occurs in one and only one matrix position, and this matrix
entry is equal to Xi , then the variable is called a standard variable, and the matrix
position where it occurs is called a standard position.

We introduce the concept of a matrix sequence. The idea is to treat a set of
similar matrices with different number of columns in a uniform way, in order to
prove that there is a rational expression in the number of columns that gives the
value of Fk(P ) for each matrix P in the set.

We consider k and m to be fixed numbers throughout this section.

Definition 6.1. We say that a linear function f (x) = ax + b in one variable is
k-positive, iff f (x) > 0 whenever x ≥ k, or equivalently, if a ≥ 0 and b > −ak.

Obviously, the sum of two or more k-positive functions is k-positive.

Definition 6.2. A matrix sequence is a sequence Pn (n ≥ n0) of exponential matri-
ces satisfying the following:

(1) Pn is an exponential m by n matrix in a set of variables Xn,1, . . . , Xn,p(n).
(2) In the first n0 columns, the matrix entries of the matrices Pn differ only in that

the first index of the variables is changed. In other words, the coefficient of
Xn,i in a matrix entry in the first n0 columns of Pn is equal to the coefficient of
Xn0,i in the same position in Pn0 .

(3) Beyond column n0, Pn has only standard entries.

Note that it follows that the function p(n) is linear of the form constant+m(n−
n0). Moreover, we say that the matrix sequence is well-behaved if
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(1) For each i such that the variables Xn,i occur in the first n0 columns, there is a
k-positive linear polynomial fi(n) such that I (Xn,i) = fi(n).

(2) Nonzero nonstandard entries occur only in columns that belong to the column-
maximal optimal cover of the zeros, or equivalently, columns that intersect
every maximal set of independent zeros.

Theorem 6.3 (Rationality Theorem). Suppose P is a well-behaved matrix se-
quence. Then there is a rational function f (x) in one variable such that

(1) If x is a zero of the denominator of f , then x < k.
(2) Fk(Pn) = f (n) for every n ≥ n0.

Definition 6.4. If u1 and u2 are linear combinations of a set X1, . . . , Xp of expo-
nential variables, we say that u1 ≤ u2 or that u1 < u2 etc whenever such a
statement holds with probability 1. In other words, u1 ≤ u2 iff the corresponding
inequality holds for the coefficient of each variable.

Two such linear combinations u1 and u2 are incomparable if each of them is
greater than the other with positive probability.

We say that ui is potentially minimal among u1, . . . , up if for no j , uj < ui .

Let λ be the row-maximal optimal cover of P . We prove the rationality theorem
by induction on a number of parameters, in the following order:

(1) The size of the largest independent set of zeros.A matrix sequence is considered
simpler if it has a larger set of independent zeros.

(2) The number of rows in λ. If the number of independent zeros are equal, the
matrix sequence with fewer rows belonging to the row-maximal optimal cover
is simpler.

(3) The set of potentially minimal nonstandard entries not covered by λ. If two
matrix sequences are equal by 1 and 2, then one of them is considered simpler
than the other if its set of potentially minimal nonstandard entries not covered
by λ is a subset of the corresponding set for the other one.

(4) If 1–3 are equal, and there are two incomparable nonstandard entries not cov-
ered by λ, then a matrix sequence is simpler if there are fewer variables with
different coefficients in the first two (in lexicographic order, say) incomparable
potentially minimal nonstandard entries not covered by λ.

(5) If 1–3 are equal, and there is a minimal non-covered nonstandard entry, then a
matrix sequence is simpler if the number of variables occurring in this entry is
smaller.

Let P be a well-behaved matrix sequence, and suppose that the rationality the-
orem holds for every simpler well-behaved matrix sequence (with the values of m

and k under consideration). We may of course assume that |λ| < k. Since P is
well-behaved, in each row not in λ, all but at most k − 1 entries are standard and
not covered by λ.

We show that Fk(P ) can be expressed in terms of rational functions in n, and
values of simpler well-behaved matrix sequences.

Case 1: There are two or more non-covered incomparable nonstandard entries.
Let u1 and u2 be the first two (in lexicographic order). We choose i and j such that
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the coefficient of Xn,i is greater in u1, and the coefficient of Xn,j is greater in u2.
Let the coefficients be a1, a2, b1 and b2 so that u1 = a1Xn,i + b1Xn,j + . . . and
u2 = a2Xn,i + b2Xn,j + . . ..

Let Q and R be the matrix sequences obtained by conditioning on (a1 −a2)Xn,i

being smaller or greater than (b2 − b1)Xn,j , respectively.
The rates of (a1−a2)Xn,i and (b2−b1)Xn,j are fi(n)/(a1−a2) and fj (n)/(b2−

b1) respectively. The probability of (a1 −a2)Xn,i being smaller than (b2 −b1)Xn,j

is

fi(n)/(a1 − a2)

fi(n)/(a1 − a2) + fj (n)/(b2 − b1)
,

and similarly, the probability of (b2 − b1)Xn,j being smaller than (a1 − a2)Xn,i is

fj (n)/(b2 − b1)

fi(n)/(a1 − a2) + fj (n)/(b2 − b1)
.

Therefore,

Fk(Pn) = fi(n)Fk(Qn)/(a1 − a2) + fj (n)Fk(Rn)/(b2 − b1)

fi(n)/(a1 − a2) + fj (n)/(b2 − b1)
. (12)

We show that Q and R can be regarded as well-behaved matrix sequences. If we
condition on (a1 − a2)Xn,i being smaller than (b2 − b1)Xn,j , then we can write
(a1 − a2)Xn,i = Yn and (b2 − b1)Xn,j = Yn + Zn, where

Yn ∼ exp

(
fi(n)

a1 − a2
+ fj (n)

b2 − b1

)
,

and

Zn ∼ exp

(
fj (n)

b2 − b1

)
.

Yn and Zn are independent, and the rates are k-positive.
When replacing Xn,i and Xn,j by the new variables Yn and Zn, only the non-

standard entries are affected. Either u1 is smaller than u2 in Q, or at least the number
of variables with distinct coefficients is smaller than in P , since u1 and u2 will get
the same coefficient for Yn.

Hence Q, and similarly R, are simpler than P . By induction, it follows that (12)
gives a rational expression for Fk(P ), where the denominator is nonzero for n ≥ k.

Case 2: There are no two non-covered incomparable nonstandard entries. Then
either there is among the non-covered nonstandard entries a minimal one, or there
are no non-covered nonstandard entries. We can treat these slightly different cases
in the same way.

If there is a minimal non-covered nonstandard entry, let aXn,i be a term occur-
ring in this matrix entry. We let Sn be a set of random variables consisting of aXn,i

and all the non-covered standard variables (if there is no non-covered nonstandard
entry, we let Sn consist only of the non-covered standard entries). There are at least
n − k + 1 non-covered standard entries in each non-covered row. By grouping



A proof of Parisi’s conjecture on the random assignment problem 437

together the standard entries in each row, we can write the total rate of Sn in a
uniform way as a sum of k-positive terms. Therefore the rate of the minimum Yn

of the terms in Sn is k-positive as a function of n.
We condition on the minimal entry in Sn. We can then replace the terms in Sn

by new variables Yn and Zn,i , where Yn = min(Sn) and Zn,i are the differences
between the remaining terms in Sn and the minimum.

Since all non-covered nonstandard entries contain the variable Xn,i with a coef-
ficient of at least a, we can (by Theorem 2.7) subtract the minimum of Sn from
every non-covered matrix entry, and add it to the doubly covered entries.

We get

Fk(Pn) = k − |λ|
I (Yn)

+ 1

I (Yn)

∑

t∈Sn

I (t)Fk(Qn(t)), (13)

where Qn(t) are the new matrices obtained by conditioning on the term t being
smallest, and performing the change of variables and subtraction of the minimum,
and I (t)/I (Yn) is the corresponding probability. In order to write this in a uniform
way for the different values of n, we group together the cases where the minimum
occurs in a particular row and beyond column n0.

By permuting columns, we may assume that in those cases, the minimum always
occurs in column n0 + 1. The probability for each such case is (n − n0)/I (Yn). In
this way, (13) will contain the same terms for each n > n0.

If we let S′
n be the subset of Sn consisting of variables occurring in the first n0

columns, and we let S′′
n be the set of standard variables in column n0 + 1, we get

Fk(Pn) = k − |λ|
I (Yn)

+ 1

I (Yn)

∑

t∈S′
n

I (t)Fk(Qn(t)) + n − n0

I (Yn)

∑

t∈S′′
n

I (t)Fk(Qn(t)).

(14)

For n = n0, the second sum will be empty. However, provided we can show that
Q(t) is a well-behaved matrix sequence simpler than P , it will follow by induction
that the denominator of Fk(Q(t)) does not vanish for n ≥ k. Hence the rational
expression that occurs when multiplying the probability (n − n0)/I (Sn) with the
expression for Fk(Q(t)) will vanish for n = n0. Therefore the rational expression
that results will give the correct value of Fk(P ) also for n = n0.

It remains to show that Q(t) is a well-behaved matrix sequence, and that it is
simpler than P . We first show that Q(t) is well-behaved. We have already seen
that the rates of the variables occurring in Q(t) are k-positive. We therefore turn
to the distribution of nonstandard entries. Possibly there are some new nonstan-
dard entries among the doubly covered entries. If there is no new zero among the
non-covered entries, the columns of the doubly covered positions of course belong
to the column-maximal optimal cover. Suppose that a new zero occurs among the
non-covered entries. If the new zero is in a column that belongs to the column-
maximal cover of P , then this is still the column-maximal cover of the new set of
zeros. If the new zero is in a column that does not belong to the column-maximal
cover of P , then since it is also in a row that does not belong to the row-maximal
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cover, there must be an independent set of zeros in Q(t) which is larger than the
largest independent set of zeros in P . Therefore, the column-maximal cover in P ,
extended with the column where the new zero has occurred, will be an optimal
cover in Q(t). Hence in any case, the columns of the column-maximal cover in P

belong to the column-maximal cover of Q(t).
We now show that Q(t) is simpler than P . If Q(t) contains a new zero, then

either it gives a larger independent set of zeros, or it has to be covered by a column
in the row-maximal cover in Q(t). In either case, Q(t) is simpler than P . If no new
zero occurs, this must be because the minimal term in Sn was a term occurring in
the minimal non-covered nonstandard entry. In this case, the number of variables
in this entry will decrease, again making Q(t) simpler than P .

Hence (13) gives a rational expression for Fk(Pn) whose denominator is non-
vanishing for n ≥ k. This completes the proof of Theorem 6.3.

We are finally able to give a proof of Theorem 1.3, which we restate.

Theorem 1.3. If P is a standard matrix, then

Fk(P ) = 1

mn

∑

i,j

di,j,k(P )
(
m−1

i

)(
n−1
j

) .

Proof. A standard matrix with n0 columns can be extended to a well-behaved matrix
sequence Pn, (n ≥ n0) by inserting more columns without zeros. Hence Theorem
6.3 shows that there is a rational function f such that Fk(Pn) = f (n) for n ≥ n0.
Since the cover coefficient di,j,k(Pn) can be expressed uniformly as a polynomial
in n, the cover formula gives a rational function in n which takes the same values as
f on the infinitely many integers n > max(n0, (k − 1)2). Hence the cover formula
must agree with f , and give the value of Fk(P ). 	


7. Some corollaries of the cover formula

Besides giving a new proof of Aldous’ζ(2)-limit theorem, Theorem 1.3 also makes
the conjectured limits of [LW00] rigorous. It follows already from the conjecture
of Coppersmith and Sorkin, now Theorem 1.2, that if α, β ≥ 1, then as k → ∞,
the value of the optimal k-assignment in a [αk] by [βk]-matrix of exp(1)-variables
converges to

∫



dxdy

(α − x)(β − y)
,

where  is the triangle with vertices in (0, 0), (1, 0) and (0, 1). For instance, when
α = 1 and β = 2 the limit is equal to

π2

12
− (log 2)2

2
.

It also follows that the value of a standard matrix with zeros in a region which
is scaled up with k, m and n will converge to a similar integral. In particular it
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is shown in [LW00] that (assuming the cover formula) if Pk is a standard k by k

matrix with zeros outside an inscribed circle, then

lim
k→∞

Fk(Pk) = π2

24
.

A result presented as a conjecture in [O92], and proved in [A01], states that in
the case k = m = n with no zeros, as n → ∞, the probability that the smallest
entry in a row belongs to the optimal assignment converges to 1/2. We can now
give an exact formula for this probability for finite k,

1

2
+ 1

2k
.

In the case k = m, the probability that the smallest entry in a particular row belongs
to the optimal assignment is equal to the probability that the smallest entry in the
entire matrix does. For arbitrary k, m, and n, the probability that the smallest entry
in the matrix belongs to the optimal k-assignment is

1 − k(k − 1)

2mn
.

These theorems are obtained by combining the results of [LW00] and Theorem
1.3.
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