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Abstract. Using two new measures of non-compactness βτ (P ) and βw(P ) for a positive
kernel P on a Polish space E, we obtain a new formula of Nussbaum-Gelfand type for the
essential spectral radius ress(P ) on bB. Using that formula we show that different known
sufficient conditions for geometric ergodicity such as Doeblin’s condition, drift condition
by means of Lyapunov function, geometric recurrence etc lead to variational formulas of
the essential spectral radius. All those can be easily transported on the weighted space buB.
Some related results onL2(µ) are also obtained, especially in the symmetric case. Moreover
we prove that for a strongly Feller and topologically transitive Markov kernel, the large
deviation principle of Donsker-Varadhan for occupation measures of the associated Markov
process holds if and only if the essential spectral radius is zero; this result allows us to show
that the sufficient condition of Donsker-Varadhan for the large deviation principle is in fact
necessary. The knowledge of ress(P ) allows us to estimate eigenvalues of P in L2 in the
symmetric case, and to estimate the geometric convergence rate by means of that in the
metric of Wasserstein. Applications to different concrete models are provided for illustrating
those general results.

1. Introduction and questions

Let P(x, dy) be a Markov kernel on some Polish spaceE. Regarding it as an oper-
ator acting on some Banach lattice B of measurable functions on E via Pf (x) :=∫
E
f (y)P (x, dy), we are mainly interested in estimating the essential radius

ress(P |B) := sup{|λ|; λ ∈ σess(P |B)} (convention: sup∅ := 0)

where σess(P |B) denotes the Wolf essential spectrum of P |B, i.e., the set of λ ∈ C

such that λ − P is not a Fredholm operator in B (a bounded linear operator A :
B → B is said Fredholm if its range Ran(A) is closed and, its kernel KerA and
the quotient space B/RanA are both finite dimensional). Here B, in this paper may
be one of

1) bB, the space of all real measurable and bounded functions equipped with sup-
norm ‖f ‖ := supx∈E |f (x)|;
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2) Cb(E), the space of all real continuous and bounded functions equipped with
the sup-norm; or

3) Lp(µ) := Lp
R
(E,B, µ) equipped with theLp-norm ‖f ‖p, whereµ is an invari-

ant probability measure µ of P .

Much more popular objects in probability than ress(P |B) are

Gap(P |B) := inf{|λ− 1|; 1 �= λ ∈ σ(P |B)} (1.1)

rexp(P |B) := sup{|λ|; 1 �= λ ∈ σ(P |B)} (1.2)

where σ(P |B) is the spectrum of P |B. For an irreducible (in the probabilistic sense
defined in [39], [34], [31]) Markov kernel P , Gap(P |B) > 0 if and only if (iff
in short) ress(P |B) < 1, and iff rexp(P |B) < 1 in the case where P is moreover
aperiodic (for B being one of the three spaces above, see Section 2 for explanation).
Recall that for an irreducible Markov kernel P ,

rexp(P |B) = lim
n→∞

(

sup
‖f ‖B≤1

‖Pnf − µ(f )‖B
)1/n

= inf{r > 0; ∃C > 0,∀n ≥ 1 : ‖Pn − µ‖B→B ≤ Crn} (1.3)

(where µ(f ) := ∫
f dµ) is the geometric convergence rate of Pn to the invariant

probability measure µ in the geometric ergodicity.
When does ress(P |B) < 1 (or equivalently the spectral gap exists for P |B)? It

is a basic question both in Analysis and Probability, whose answer depends sen-
sibly on the choice of B. For example, the finite dimensional Ornstein-Uhlenbeck
semigroup (Pt )t>0 on R

d (generated by �− x · ∇) verifies ress(Pt |L2(µ)) = 0 but
ress(Pt |bB) = 1 for each t > 0 (see Example 3.4 below).

Quite surprisingly in probability the first study was realized on the “bad” space
bB, due to the pioneering work of Doeblin [14], [15] (see Doob [17] or Revuz [39]
for still updated treatment):

Theorem 1.1 (Doeblin). Assume that P is an irreducible and aperiodic Markov
kernel. If there exist some N ≥ 1, some probability ν on E and some η > 0 such
that

sup
A∈B: ν(A)<η

PN(x,A) < 1. (1.4)

Then ress(P |bB) < 1 or equivalently rexp(P |bB) < 1.
In particular condition (1.4) is fulfilled if

PN(x, dy) ≥ cν(dy) (1.5)

for some N ≥ 1, c > 0 and probability measure ν.

Under (1.5) (which implies also the irreducibility and the aperiodicity), it is
even known that

rexp(P |bB) = sup{|λ|; λ ∈ σ(P |bB)\{1}} ≤ (1− c)1/N
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see Meyn and Tweedie [31], Theorem 16.0.2, (16.11) and for the exact references.
In that theorem, condition (1.5) is shown even to be necessary to ress(P |bB) < 1
for an irreducible and aperiodic Markov kernel.

In other words (1.4), (1.5), rexp(P |bB) < 1 and ress(P |bB) < 1 are all equiv-
alent (called often “uniform geometric ergodicity) for an irreducible and aperiodic
Markov kernel P . If P is irreducible but not necessarily aperiodic, ress(P |bB) <
1 is equivalent to the Doeblin recurrence. And for an arbitrary Markov kernel,
ress(P |bB) < 1 is equivalent to the quasi-compactness of P |bB, developed in
Revuz [39].

That raises a very natural

Question 1. how to estimate ress(P |bB) by means of the data given by Doeblin’s
condition (1.4)?

A very useful criterion for the Doeblin recurrence is by means of the so called
Lyapunov function:

Theorem 1.2. Assume that the Markov kernel P is Feller, topologically transitive
(see (A3) in Section 4) and PN is strongly Feller (i.e., PN(bB) ⊂ Cb(E)) for some
N ≥ 1. If there is some 1 ≤ u ∈ bB such that

Pu

u
≤ r1Kc + b1K (1.6)

for some compact K ⊂ E, some 0 ≤ r < 1 and some b ≥ 0, then ress(P |bB) < 1.
Moreover condition (1.6) is equivalent to

sup
x∈E

E
x

(
1

r

)σK
< +∞ (1.7)

for some 0 < r < 1 and compact K ⊂ E, where σK := inf{n ≥ 0;Xn ∈ K} is
the first hitting time to K of the Markov process (�, (Fn)n≥0, (Xn)n≥0, (Px)x∈E)
associated with transition probability kernel P .

That is contained in [31], Chap.15 and 16 (much more general results are known
under the only assumption of irreducibility). Indeed by the assumption of the theo-
rem above,P is irreducible (see Lemma 6.2 in this paper) and every compact subset
K is “P -petite” in the language therein by [31], Proposition 6.2.8.

Both (1.6) and (1.7) are necessary to the Doeblin recurrence. Condition (1.6)
is also called “drift condition” in [31]. Most known Doeblin recurrent Markov
processes are verified by means of (1.6). That leads to

Question 2. how to estimate ress(P |bB) by means of the data given by (1.6) or
(1.7)?

In most concrete situation, the Lyapunov function u in (1.6) fails to be bounded.
That leads to a modified theory (developed in Nummelin [34] and Meyn and Twee-
die [31]). The main instrument is to introduce a new Banach space

buB :=
{

f : E→ R; ‖f ‖u := sup
x∈E
|f (x)|
u(x)

< +∞
}

.

It is known that



258 L. Wu

Theorem 1.3. Let P be a Markov kernel satisfying the same assumption as in The-
orem 1.2, and aperiodic. If the drift condition (1.6) is verified by some measurable
function u : E → [1,+∞), then P has an invariant probability measure µ such
that µ(u) < +∞ and there exist some C > 0, 0 < r < 1 such that

‖Pnf − µ(f )‖u ≤ Crn‖f ‖u, ∀n ≥ 0, f ∈ buB. (1.8)

See [31], Chap. 15 and 16 (and the references therein) for a complete theory
about this type of geometric ergodicity, and especially for abundant examples. The
key tool for proving it is the Kendall renewal theorem ([24], see [31] Theorem
15.1.1).

In the same way we may ask

Question 3. How to estimate ress(P |buB) by means of the data given by the drift
condition (1.6) for unbounded u ?

If ress(P |bB) < 1, then ress(P |L∞(µ)) < 1 where µ is an invariant probability
measure of P . By Riesz-Thorin’s theorem, ress(P |Lp(µ)) < 1 for every 1 < p <

+∞. But in the context of Theorem 1.3, it is unknown whether ress(P |Lp(µ)) < 1,
where 1 < p < +∞, which is of great importance too. By Riesz-Thorin’s theo-
rem, ress(P |Lp(µ)) < 1 for each 1 < p < ∞ is equivalent to that for p = 2. And
Chen [3] obtains this spectral gap in L2(µ) in the context of Theorem 1.3 in sev-
eral important situations covering the symmetric case. That leads to the following
natural

Question 4. how to estimate ress(P |L2(µ)) by means of the data given by the drift
condition (1.6) with unbounded u or geometric recurrence?

Our main purpose is to show that probabilistic tools such as Doeblin’s condi-
tion (1.4), drift condition (1.6) and geometric recurrence condition (1.7) yield very
useful information or even characterization on ress(P ); and inversely knowledge
on ress(P ) is very helpful for estimating rexp(P ) or even eigenvalues of P .

This paper is organized as follows. In the next section we recall several known
facts about σess(P ), its analytic meaning and the famous Nussbaum formula of
ress(P ) (for convenience of probabilist reader). Section 3, the central one, is devoted
to the study of Questions 1, 2 and 3 both on bB and buB, and contains the main
new results of this paper. Some complementary results are presented in Section
4 without the topological hypothesis (A1) in Section 3. Especially we obtain the
equivalence between ress(P |bB) < 1 and βτ (PN) < 1 for some N for a Harris
recurrent Markov kernel P , basing on a deep result of Horowitz [20], and explain
the asymptotic behavior of a Markov kernel P on buB if its essential spectral radius
is < 1.

The counterparts in Lp of some results in Section 3 are presented in Section 5,
where Question 4 is solved (only) in the symmetric case. Sections 6, 7 and 8 are
devoted to applications of estimates of ress(P ) obtained previously.

In Section 6, for a strong Feller and topologically transitive Markov chain, we
prove the equivalence between ress(P ) = 0 and the large deviation principle (LDP
in short) of Donsker and Varadhan, and especially the classical sufficient condition
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of Lyapunov function type found by Donsker and Varadhan for LDP is shown to
be necessary. In Section 7 we show at first that the eigenvalues λ of a symmetric
Markov kernel P on discrete space E with |λ| > ress(P ) can be estimated by
the degrees of geometric recurrence to finite subsets of E, and next establish that
the geometric convergence in the metric of Wasserstein implies that in buB, or in
L2(µ) in the symmetric case (under some topological assumption), by following
the important works of Chen [1], [2] concerning sharp estimates of spectral gap.

As applications of general results, a sequence of widely used concrete models
are studied in Section 8: 1) forward recurrence time model, 2) reflected random
walk, 3) random perturbed linear systems, 4) auto-regressive model, 5) non-linear
random dynamical systems on R

d etc (a critical case is treated also). For them
explicit estimates of the essential spectral radius and even the geometric conver-
gence rate rexp(P ) are obtained.

To keep the continuity of presentation the proofs of several results in Sections 3,
4 and 6 are left to Sections 9 and 10. Throughout this paper, we speak “decreasing”,
“increasing” instead of “non-increasing” and “non-decreasing”.

2. Analytic preparation

In this section we recall several useful known facts from the spectral theory of
(nonnegative) operators (see [22], [30], [40] and [33]) for probabilist reader’s con-
venience.

Let B be a real Banach lattice (e.g. bB, buB, Cb(E), Lp(µ) (p ∈ [1,+∞]) or
one of their dual Banach spaces) and P a nonnegative, linear and bounded operator
on B. A complex number λ ∈ C does not belong to the (Wolf) essential spectrum
σess(P |B) of P |B, iff λ − P is a Fredholm operator on the complexified Banach
space BC of B, by definition. For a pointλ0 in the spectrum σ(P |B),λ0 /∈ σess(P |B)
iff λ0 is isolated in σ(P |B) and the associated eigen-projection

Eλ0 := 1

2πi

∫




(λ− P)−1dλ

(Dunford integral in the counter-clockwise way) is finite dimensional, where 

is a circumference of sufficiently small radius: |λ − λ0| = δ such that the disk
|λ− λ0| ≤ δ contains no other spectral point than λ0. Recall that the dimension of
the range Range(Eλ0) of Eλ0 is the algebraic multiplicity of λ0, denoted by ma .
Hence by Jordan’s decomposition of finite matrix,

P · Eλ0 = λ0Eλ0 +Nλ0

(Nλ0)
m = 0 for some 1 ≤ m ≤ ma. (2.1)

An explicit expression of Eλ0 is given as follows: let (fk)1≤k≤ma be a basis of
Range(Eλ0), and (φk)1≤k≤ma a basis of the range of the adjoint eigen-projection
E∗λ0

acting on the dual Banach space (BC)
∗ such that 〈φk, fl〉 = φk(fl) = δkl

(Kronecker’s notation) (such a basis (φk)1≤k≤ma is called a dual basis). Then

Eλ0f =
ma∑

k=1

〈φk, f 〉fk, ∀f ∈ BC. (2.2)



260 L. Wu

The essential spectral radius ress(P |B) := sup{|λ|; λ ∈ σess(P |B)} of P |B can be
characterized as the smallest r ∈ R

+ such that any λ ∈ σ(P |B) with |λ| > r is
an isolated eigenvalue of P with finite algebraic multiplicity. In particular for any
r > ress(P |B) such that 
r := {λ ∈ C| |λ| = r} contain no spectral point, the
spectral points λ ∈ σ(P |B) with |λ| > r constitute a finite set {λj }0≤j≤N . Let r
be the sum of all eigenprojections Eλj associated with those λj , j = 0, 1, · · · , N .
Then

lim sup
n→∞

‖Pn(I −r)‖B→B

rn
= 0 and

lim sup
n→∞

‖Pnrf ‖B
rn

= +∞ if rf �= 0. (2.3)

This furnishes a very clear analytical meaning to ress(P ).
An equivalent characterization ofσess(P |B) is obtained through the Calkin alge-

bra (L(BC)/K(BC), ‖ · ‖Calkin), where L(BC) (resp. K(BC)) is the Banach space
of all linear and bounded (resp. and compact) operators on BC, and ‖P ‖Calkin :=
infC∈K(BC) ‖P −C‖. Indeed σess(P |B) coincides with the spectrum of the canoni-
cal image of P in the Calkin algebra ([33], A-III, p73-74). That yields immediately
three useful (and well known) consequences:

Lemma 2.1. (i) If C is a compact operator on B, then σess((P + C)|B) =
σess(P |B) (Weyl’s lemma).

(ii) The essential spectral radius of P |B is given by (Gelfand’s formula)

ress(P |B) = lim
n→∞

(‖Pn‖Calkin
)1/n = inf

n≥1

(

inf
C∈K(B)

‖Pn − C‖
)1/n

. (2.4)

(iii) (essential spectral mapping theorem) σess(f (P )|B) = {f (λ); λ ∈
σess(P |B)} for any holomorphic function f : D→ C where the open domain
D contains σ(P |B).

Nussbaum [37](1970) found a very useful improvement over formula (2.4). The
crucial point is the introduction of the following notion:

Definition 2.1 ([37]). Let P : B→ B be a bounded operator on the Banach space
B. The measure of non-compactness of P is defined as

β(P ) := inf{r > 0; ∃x1, · · · , xn ∈ B, P (B(1)) ⊂ {xi, 1 ≤ i ≤ n} + r · B(1)}
(2.5)

where B(1) is the unit ball in B centered at 0 with radius 1.

It is known that ([37] or [30], p274)

β(P ) ≤ ‖P ‖B; β(PQ) ≤ β(P )β(Q). (2.6)

Now the Nussbaum formula for essential spectral radius is read as (see also
[30], Theorem 4.3.13)
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Theorem 2.2 (Nussbaum [37](1970)). For a bounded linear operatorA : B→ B,

ress(A) = lim
n→+∞

[
β(An)

]1/n = inf
n≥1

[
β(An)

]1/n
. (2.7)

It is the starting point of this work.
We turn now to some special features of nonnegative operators: a linear bounded

operator is said nonnegative on B, if Pf ≥ 0 for any 0 ≤ f ∈ B.

Proposition 2.3. Let P be a nonnegative linear and bounded operator on the Ba-
nach lattice B.

(a) The spectral radius rsp(P |B) is in the spectrum σ(P |B) ([40], Chap.V, Prop-
osition 4.1).

(b) If rsp(P |B) > 0 and rsp(P |B) is a pole of the resolventR(λ, P ) := (λ−P)−1,
then it corresponds to a positive eigenvector f ∈ B ([30], Theorem 4.1.4 and
its note), and the peripherical spectrum {λ ∈ σ(P |B); |λ| = rsp(P |B)} con-
sists entirely of poles of the resolvent R(λ, P ) := (λ− P)−1, and it is a finite
union of finite groups of roots of unity. ([40], Chap.V, Theorem 5.5). Moreover
the pole rsp(P |B) > 0 is of maximal order among the peripherical spectrum
([30], Proposition 4.1.3).

(c) If rsp(P |B) = 1 and it does not belong to σess(P |B), then the peripherical
spectrum is contained in σ(P |B)\σess(P |B). In particular ress(P |B) < 1.

Here (c) is an easy consequence of (b). Indeed by part (b) about the cyclic
property of the peripherical spectrum of P , for someN ≥ 1, the peripherical spec-
trum of PN is reduced to the singleton {1} and 1 does not belong to σess(PN |B)
by Lemma 2.1(iii). Hence the eigenprojection of PN associated with 1 is finite
dimensional, but it is also the sum of all eigenprojections Eλj of P associated with
the peripherical spectral points λj . In other words the peripherical spectral points
of P are all of finite algebraic multiplicity, the desired conclusion.

Given now a Markov kernel P and let B be one of bB, Cb(E), Lp(µ) (p ∈
[1,+∞] andµP = µ) such thatGap(P |B) = sup{|λ−1|; 1 �= λ ∈ σ(P |B)} > 0.
As {(λ−1)(λ−P)−1; λ > 1} are still Markov, then uniformly bounded on B. Devel-
oping (λ−P)−1 in terms of series of Laurent, we see that 1 is a pole of (λ−P)−1 of
order 1. Thus (1−P)E1 = 0 (by [50], Chap.9, §8), i.e., the geometric multiplicity
dim(Ker(1−P)) of 1 coincides with the algebraic multiplicity dim(Range(E1))

(consequently the Markov property is a sufficient condition for the diagonalization
of the peripherical spectrum). When dim(Ker(1− P)) is finite (equal to 1 if P is
irreducible), we have ress(P ) < 1: a remark in Introduction.

The above argument does not work on B = buB, because {(λ−1)(λ−P)−1; λ >
1} are not necessarily uniformly bounded on buB.

3. Several formulas of essential spectral radius on bB and on buB

We now go to the job. This section, the central one, is devoted to the study of
Questions 1,2 and 3. The key tool is two new parameters βw, βτ for measure of
non-compactness of P . A great difference from the framework in the Introduction
is here we do not impose neither the Markov property, nor the irreducibility.
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3.1. Two new parameters

We introduce several necessary notations. Our states space E is Polish with a
compatible metric d (i.e., (E, d) is complete and separable), whose Borel σ -field
is denoted by B. The notation “K ⊂⊂ E” means that K is compact in E. Let
Mb(E) (resp.M+b (E),M1(E)) be the space of allσ -additive (resp. and nonnegative;
probability) measures of bounded variation on (E,B). The pair relation between
ν ∈ Mb(E) and f ∈ bB is

〈ν, f 〉 := ν(f ) :=
∫

E

f (x)dν(x).

Using the pair above, Mb(E) is a subspace of the dual Banach space (bB)∗. For
a nonnegative kernel P(x, dy), bounded on bB, its adjoint operator P ∗ on (bB)∗
keeps Mb(E) stable, i.e., for each ν ∈ Mb(E),

P ∗ν(·) = (νP )(·) :=
∫

E

ν(dx)P (x, ·) ∈ Mb(E).

Besides the variation norm ‖ν‖var -topology, we shall also consider the follow-
ing two weak topologies on Mb(E). The weak topology σ(Mb(E), bB) (i.e., the
weakest topology on Mb(E) for which ν �→ ν(f ) is continuous for all f ∈ bB),
according to the usual language ([13]), will be called τ−topology, denoted sim-
ply by τ . And the weak topology σ(Mb(E), Cb(E)) (the usual weak convergence
topology) will be denoted by “w”. The following result is well known for “w”,
perhaps less for τ :

Lemma 3.1. Let M ⊂ M+b (E) be bounded (i.e., supν∈M ‖ν‖var = supν∈M ν(E)

< +∞).

(a) These properties are equivalent:
(a.i) M is relatively compact for the weak convergence topology;

(a.ii) for any sequence (fn)n≥0 in Cb(E) decreasing pointwise to zero over
E,

lim
n→∞ sup

ν∈M
ν(fn) = 0;

(a.iii) infK⊂⊂E supν∈M ν(Kc) = 0 (Prokohov’s criterion).
(b) M is relatively compact for the τ -topology if and only if for any sequence

(An) ⊂ B decreasing to empty set ∅, limn→∞ supν∈M ν(An) = 0.

Proof of Part (b). Necessity: The functionals Fn(ν) := ν(An) on the τ−closure
M̄τ of M is τ -continuous, decreasing to 0 (as n goes to infinity) for each ν ∈ M̄τ .
Since M̄τ is τ -compact, that convergence is uniform over M̄τ by Dini’s monotone
convergence theorem.

Sufficiency: Let R := supν∈M ‖ν‖var , which is finite by assumption. Let
B̄ ′(0, R) be the closed ball of radius R (centered at 0) in the topological dual space
(bB)′. It is compact w.r.t. the weak*-topology σ((bB)′, bB), which, restricted to
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Mb(E) ⊂ (bB)′, coincides with the τ -topology. Consequently to show the τ -rela-
tive compactness of M, it is enough to show that each element φ belonging to the
closure of M in ((bB)′, σ ((bB)′, bB)) is a measure.

Indeed, a such continuous linear form φ on bB is finite additive, nonnegative.
And by our sufficiency assumption,φ(1An)→ 0 for each sequence (An) decreasing
to empty. Thus φ is well a σ -additive measure of bounded variation. ��

That motivates us to introduce

Definition 3.1. (a) For a bounded sub-family M of M+b (E), define

βw(M) := inf
K⊂⊂E

sup
ν∈M

ν(Kc)

βτ (M) := sup
(An)

lim
n→∞ sup

ν∈M
ν(An) (3.1)

where sup(An) is taken over all sequences (An) ⊂ B decreasing to ∅.
(b) Let P(x, dy) be a nonnegative kernel on E such that supx∈EP (x,E) =
‖P1‖ < +∞ (i.e., the boundedness of kernel P ). We call

βw(P ) := βw(M); βτ (P ) := βτ (M) (3.2)

where M = {P(x, ·); x ∈ E}, measure of non-τ -compactness and measure
of non-“w”-compactness of P , respectively.

The following proposition, whose proof is postponed to §9, summarizes several
elementary properties of βw and βτ : the last part (g) is the less obvious but crucial
for our basic result, Theorem 3.5 below.

Proposition 3.2. Let P and Q be two nonnegative bounded kernels on E. Then

(a) βw(P ) ≤ 2β(P |bB); and

βw(P ) ≥ sup
(fn)

lim
n→∞‖Pfn‖ (3.3)

where sup(fn) is taken over all sequences (fn)n∈N ⊂ Cb(E) decreasing point-
wise to zero over E with ‖f0‖ ≤ 1. The equality in (3.3) is true if moreover E
is locally compact.

(b) βτ (P ) = sup(fn) limn→∞ ‖Pfn‖ where sup(fn) is taken over all sequences
(fn)n∈N ⊂ bB tending pointwise to zero over E with supn ‖fn‖ ≤ 1.

(c)

βτ (P ) ≤ 2β(P |bB).
(d) Let β̃ = βw or βτ . For any a, b ≥ 0,

β̃(aP + bQ) ≤ aβ̃(P )+ bβ̃(Q).
(e) It is always true that

βτ (QP) ≤ βτ (Q)βτ (P ).
If βw(1KP ) = 0, ∀K ⊂⊂ E, then

βw(QP) ≤ βw(Q)βw(P ).
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(f) If βτ (1KP ) = 0 for all K ⊂⊂ E (it is true if P is strongly Feller), then

βτ (QP) ≤ βw(Q)βτ (P );
(g) If βτ (1KP ) = 0 = βτ (Q) for all K ⊂⊂ E, then QP is compact in bB.

By part (a), we give at first a contrary result.

Corollary 3.3. Let P be a Markov kernel. Assume that (E, d) is locally compact
and unbounded. If for eachN ≥ 1 andK ⊂⊂ E, there is a sequence (xk) ⊂ E such
that limk→∞ PN(xk,K) = 0, then ress(P |bB) = 1. In particular ress(P |bB) = 1
if

P(x, B(x, r)c) ≤ h(r), ∀x ∈ E, r ≥ 0 (3.4)

where h(r) : R
+ → [0, 1] decreases to zero as r goes to infinity with h(0) = 1,

and B(x, r) := {y ∈ E; d(x, y) < r}.
Condition (3.4) means that P is of asymptotically bounded range.

Proof. For the first claim, notice that for each N ≥ 1 and K ⊂⊂ E,
supx∈E PN(x,Kc) = 1 − infx∈E PN(x,K) = 1. Then βw(PN) = 1. Thus by
Proposition 3.2(a),

2β(PN |bB) ≥ βw(PN) = 1.

Consequently the Nussbaum formula (2.7) implies that ress(P |bB) ≥ 1.
For the second claim, we show at first that under (3.4),

Pn(x, B(x, nr)) ≥ (1− h(r))n, ∀n ≥ 1, x ∈ E, r > 0.

Indeed it is true for n = 1 by (3.4). Assume it for n. Then for n + 1, noting that
d(x, y) < r implies B(y, nr) ⊂ B(x, (n+ 1)r), we have

Pn+1(x, B(x, (n+ 1)r)) ≥
∫

y∈B(x,r)
P (x, dy)P n(y, B(x, (n+ 1)r))

≥
∫

y∈B(x,r)
P (x, dy)P n(y, B(y, nr))

≥ P(x, B(x, r))(1− h(r))n (recurrence assumption)

≥ (1− h(r))n+1,

the desired result.
Let now K ⊂⊂ E be arbitrary but fixed. For any N ≥ 1, r > 0, pick points

xk ∈ E (k ≥ 1) such that d(xk,K) > Nk. Thus B(xk,Nk) ⊂ Kc. We get so
PN(xk,K) ≤ 1 − PN(xk, B(xk,Nk)) ≤ 1 − (1 − h(k))N . Letting k tend to
infinity, we see that the condition in the first claim is verified. ��

Example 3.4. Let Ptf (x) := ∫
R
f
(
e−t x +√1− e−2t y

)
µ(dy) be the Ornstein-

Uhlenbeck operators on E = R, where µ is the standard Gaussian law N (0, 1).
For each t > 0, it is well known that ress(Pt |L2(µ)) = 0. But ress(Pt |bB) = 1 by
the Corollary above for lim|x|→∞ Pt(x,K) = 0 for each compact K ⊂⊂ R.
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3.2. Gelfand-Nussbaum type formula on bB

A meta-physical feeling is that the essential spectrum of P comes from “what
happens very far away”. It may be true only if one imposes a condition which
excludes the influence of “what happens locally” over the essential spectrum. For
this purpose, we shall choose the following assumption

βw(1KP ) = 0 and ∃N ≥ 1 : βτ (1KP
N) = 0, ∀K ⊂⊂ E. (A1)

That is justified by the following Gelfand-Nussbaum type formula for the essen-
tial spectral radius.

Theorem 3.5. Let P be a bounded nonnegative kernel on E.

(a) Assume (A1). Then

ress(P |bB) = lim
n→∞

[
βw(P

n)
]1/n = inf

n≥1

[
βw(P

n)
]1/n

= inf
K⊂⊂E

rsp (1KcP1Kc |bB) . (3.5)

(b) Without (A1), we have always

ress(P |bB) ≥ max{ lim
n→∞[βτ (P

n)]1/n, lim sup
n→∞

[
βw(P

n)
]1/n}

≥ inf
K⊂⊂E

rsp (1KcP1Kc |bB) . (3.6)

It is basic for the whole paper and its proof will be given in §9.

Remarks (3.i). Without our extra condition (A1), (3.5) is false. For instance for any
Markov Feller kernel P on a compact metric space E, we have βw(P ) = 0 but
in general ress(P |bB) is not zero, as well as ress(P |Cb(E)) which coincides with
ress(P |bB), as shown in §4. A typical example is given by P(x, dy) := δx2 on the
circle S1 of the complex plane C, for which βw(P ) = 0, but ress(P |bB) = 1 by
Theorem 3.5(b) since βτ (P n) = 1 for all n.

Condition (A1) is satisfied if

(A2) P is Feller and PN is strongly Feller for some N ≥ 1,

a very current situation. Here P is said Feller if P(Cb(E)) ⊂ Cb(E), i.e., x →
P(x, ·) is continuous fromE to (M1(E),w); strongly Feller, if PN(bB) ⊂ Cb(E),
i.e., x → P(x, ·) is continuous from E to (M1(E), τ ).

Remarks (3.ii). The last equality in (3.5) is an extension of Persson’s principle,
well known in the L2-theory of Schrödinger operators ([7], Theorem 3.12).

The measure of non-“w”-compactness βw(P ) is smaller than 2β(P |bB). Unlike
the parameter β(P |bB) of Nussbaum, it can be estimated by means of the Lyapunov
function method or other probabilistic methods.

We present now two immediate corollaries. The first is a partial answer to
Question 1:
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Corollary 3.6. Assume that the nonnegative bounded kernel P satisfies (A1). Then

ress(P |bB) ≤ inf
N≥1

(

inf
ν∈M1(E)

inf
η>0

sup
A: ν(A)<η

sup
x∈E

PN(x,A)

)1/N

.

Proof. Notice that for any probability measure ν and η > 0 and N ≥ 1,

βw(P
N |bB) ≤ lim sup

ν(A)→0
‖PN1A‖ ≤ sup

A: ν(A)<η
sup
x∈E

PN(x,A),

then the desired formula follows immediately from (3.5). ��
Corollary 3.7. Let 0 ≤ P ≤ Q. Assume that P satisfies (A1) and the kernel Q is
bounded. Then

ress(P |bB) ≤ ress(Q|bB).
Even under (A1), a such comparison result is false for

rexp(P |bB) := sup{|λ|; λ �= rsp(P |bB), λ ∈ σ(P |bB)}, (3.7)

where σ(P |bB) denotes the spectrum, rsp(P |bB) := sup{|λ|; λ ∈ σ(P |bB)} is the
spectral radius of P |bB.

Proof. By Theorem 3.5, we have

ress(P |bB) = lim
n→∞

[
βw(P

n)
]1/n ≤ lim sup

n→∞
[
βw(Q

n)
]1/n ≤ ress(Q|bB). ��

Remarks (3.iii). A complete answer to Question 1 should be

Conjecture. For any bounded nonnegative kernel P(x, dy) on a general Polish
space E,

ress(P |bB) = rτ (P ) := lim
n→∞

[
βτ (P

n)
]1/n = inf

n≥1

[
βτ (P

n)
]1/n

. (3.8)

In the locally compact case, we have by Proposition 3.2(a) and (b) that βw(P ) ≤
βτ (P ). Thus in that case and under (A1), the formula (3.8) holds true. We shall
present some partial results supporting this conjecture in Sections 4 and 6.

We now present two examples to illustrate the power of formula (3.5).

Example 3.8 (the so called basic example in [23] ).A sequence of tasks is performed
in a certain order indexed by N. At step k, success, with probability pk ∈ (0, 1),
means that the process goes to the next step k + 1; but failure, of probability
qk = 1− pk , signifies that the process must start over at state 0.

This example is modelled as: E = N and P(k, k + 1) = pk , P(k, 0) = qk for
all k ≥ 0. It is obvious that

inf
N≥1
‖ (1[0,N ]cP1[0,N ]c

)n ‖ = inf
N≥1

sup
k>N

n−1∏

j=0

pk+j .

Thus by Theorem 3.5, we have for this Markov process,

ress(P |l∞(N)) = inf
n≥1

lim sup
k→∞

(pkpk+1 · · ·pk+n−1)
1/n .
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Example 3.9 (taken from [31], p400 and [47] ). LetE = N. The Markov transition
kernel is given by

P(0, i) = ai (∀i ≥ 0), P (j, j) = pj , P (j, 0) = 1− pj =: qj ,∀j ≥ 1.

For this example we see that for each N ≥ 1

‖ (1[0,N ]cP1[0,N ]c
)n ‖ = sup

j>N

pnj .

Hence by Theorem 3.5,

ress(P |l∞(N)) = lim sup
j→+∞

pj .

3.3. Lyapunov function type criteria for ress(P |bB)

The following result, being an easy consequence of Theorem 3.5, answers Question
2 in the framework of (A1).

Theorem 3.10. LetP be a nonnegative bounded kernel onE satisfying (A1). Given
r > 0, the following properties (a), (b), (c) are equivalent

(a) ress(P |bB) < r;
(b) there are 1 ≤ u ∈ bB and K ⊂⊂ E such that

sup
x /∈K

P (1Kcu)

u
(x) < r. (3.9)

(c) there exist some 1 ≤ u ∈ bB and K ⊂⊂ E such that

sup
x /∈K

Pu

u
(x) < r. (3.10)

In particular we have

ress(P |bB) = inf
K⊂⊂E

inf
1≤u∈bB

sup
x /∈K

P (1Kcu)(x)

u(x)

= inf
K⊂⊂E

inf
1≤u∈bB

sup
x /∈K

Pu(x)

u(x)
. (3.11)

Proof. (c) �⇒ (b). Obvious.
(b) �⇒ (a). Consider the kernel operator

Puf = 1

u
P (uf ), P u(x, dy) = u(y)

u(x)
P (x, dy).

It is similar to P on bB. Pu satisfies again (A1). Thus by Theorem 3.5,

ress(P |bB) = ress(P u|bB) ≤ ‖1KcP u1Kc‖ < r

where the last inequality is exactly our condition (3.9).
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(a) ⇒ (c)(without (A1)). Fix some λ : ress(P |bB) < λ < r . By Theorem
3.5(b), there exists some compact K ⊂⊂ E such that

rsp(1KcP1Kc) = lim
n→∞‖(1KcP1Kc)

n‖1/n < λ.

Hence

hλ := 1Kc +
∞∑

k=1

λ−n(1KcP1Kc)
n1 ∈ bB.

Notice that 1KcPhλ = (1KcP1Kc)hλ ≤ λhλ. Now for any ε > 0 so that λ+ε < r ,
letting u(x) = 1+ Lhλ where L ≥ ‖P ‖/ε, we have

1KcPu

u
≤ 1Kc

‖P ‖ + L1KcPhλ
u

≤ 1Kc
‖P ‖ + Lλhλ

1+ L · hλ ≤ ε + λ < r,

the desired claim (c).
It remains to show (3.11). By (b) �⇒ (a), we have

ress(P |bB) ≤ inf
K⊂⊂E

inf
1≤u∈bB

sup
x /∈K

P (1Kcu)(x)

u(x)
≤ inf
K⊂⊂E

inf
1≤u∈bB

sup
x /∈K

Pu(x)

u(x)
.

And by (a) �⇒ (c), the last term at the r.h.s. above is smaller than ress(P |bB).
The proof is completed. ��
Remarks (3.iv). Without assumption (A1), then by the proof of (a) ⇒ (c) above,
we have

ress(P |bB) ≥ inf
K⊂⊂E

inf
1≤u∈bB

sup
x /∈K

Pu(x)

u(x)
. (3.12)

3.4. Essential spectral radius on bUB: variational formula

Given a nonnegative kernel P(x, dy), let

A(P ) :=
{

U : E→ [1,+∞) is measurable and locally bounded and
supx∈E

PU(x)
U(x)

< +∞
}

. (3.13)

Here U is said “locally bounded”, if supx∈K |U(x)| < +∞ for all K ⊂⊂ E. In
other words for a measurable locally bounded function U ≥ 1 on E, U ∈ A(P ) iff
P : bUB→ bUB is bounded w.r.t. the norm ‖ · ‖U , where

bUB :=
{

f : E→ R measurable such that ‖f ‖U := sup
x∈E
|f (x)|
U(x)

< +∞
}

.

Theorem 3.11. Let P be a nonnegative bounded kernel on E satisfying (A1).

(a) Let U ∈ A(P ). Assume moreover that PU(x, dy) := (U(y)/U(x))P (x, dy)
satisfies again (A1), or in particular

Up ∈ A(P ) for some p > 1. (3.14)
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Given r > 0, the following properties are equivalent:
(a.i) ress(P |bUB) < r;

(a.ii) There exist some measurable function V ∼ U (i.e., c−1U ≤ V ≤ cU
for some c > 1) and some compact K ⊂⊂ E such that

sup
x /∈K

P (1KcV )(x)

V (x)
< r; (3.15)

(a.iii) There exist some measurable functionV ∼ U and some compactK ⊂⊂
E such that

sup
x /∈K

PV (x)

V (x)
< r; (3.16)

In particular,

ress(P |bUB) = inf
K⊂⊂E

inf
V∼U

sup
x /∈K

P (1KcV )(x)

V (x)

= inf
K⊂⊂E

inf
V∼U

sup
x /∈K

PV (x)

V (x)
. (3.17)

(b) It holds that

inf
U∈A(P )

ress(P |bUB) = inf
K⊂⊂E

inf
u∈A(P )

sup
x /∈K

P (1Kcu)(x)

u(x)

= inf
K⊂⊂E

inf
u∈A(P )

sup
x /∈K

Pu(x)

u(x)
. (3.18)

The quantity infU∈A(P ) ress(P |bUB) will be crucial in our investigation of
locally uniform large deviation principle in §6.

Proof. (a) Notice that

PUf (x) = 1

U(x)
P (Uf )(x) = (MU)

−1PMUf, ∀f ∈ bB

where MU(f ) := Uf is an isomorphism from (bB, ‖ · ‖) to (bUB, ‖ · ‖U). Thus
ress(P |bUB) = ress(PU |bB).

1) At first let us show that (3.14) implies PU satisfies (A1). We begin with
showing that βτ (1K(PU)N) = 0 for each K ⊂⊂ E, where N is fixed in (A1).
Indeed for any sequence (An) ⊂ B decreasing to ∅, we have by Hölder’s inequality
(1/p + 1/p′ = 1),

sup
x∈K

(PU)N1An(x) = sup
x∈K

PN(U1An)(x)

U(x)

≤ sup
x∈K

(
PN(Up)(x)

)1/p
sup
x∈K

PN(x,An)
1/p′ .

By assumption (3.14), it follows that limn→∞ supx∈K(PU)N1An(x) = 0, the de-
sired claim by Lemma 3.1.
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In the same way we have βw(1KPU) = 0 for any K ⊂⊂ E. In summary PU

satisfies (A1).
2) Since 1 ≤ u ∈ bB satisfies (3.9) or (3.10) in Theorem 3.10 with respect

to PU (instead of P ) iff V = uU ∼ U satisfies (3.15) or (3.16), the equivalence
between (a.i), (a.ii), (a.iii) follows from Theorem 3.10 applied to PU on bB. Those
equivalences entail (3.17).

(b) To establish (3.18), the key is to remove the technical condition (3.14). At
first by (3.12) in Remarks (3.iv) and the proof above, we always have (without
condition (3.14))

ress(P |bUB) ≥ inf
K⊂⊂E

sup
x /∈K

PU(x)

U(x)
, ∀U ∈ A(P ). (3.19)

Now for (3.18), it remains to show that for any U ∈ A(P ) and r satisfying

inf
K⊂⊂E

sup
x /∈K

P (1KcU)(x)

U(x)
< r,

and for any ε > 0, there exists some V ∈ A(P ) such that ress(PbVB) ≤ r + ε.
Indeed choose some compactK such that supx /∈K

P(1KcU)(x)
U(x)

< r . Put V = Ua
where 0 < a < 1. We have by Hölder’s inequality that for any x /∈ K ,

P(1KcV )(x) ≤ [P(1KcU)(x)]
a ‖P1‖1−a ≤ ra‖P1‖1−aV (x).

The same argument shows that V ∈ A(P ). Hence for a sufficiently close to 1 (but
fixed), we have

sup
x /∈K

P (1KcV )(x)

V (x)
≤ r + ε

where it follows by part (a) (as V 1/a = U ∈ A(P )),

ress(P |bVB) ≤ r + ε

the desired claim. ��

Remarks (3.v). Without assumption (A1), then by the proof above and by Remarks
(3.iv), we always have

ress(P |bUB) ≥ inf
K⊂⊂E

inf
V∼U

sup
x /∈K

PV (x)

V (x)
, ∀U ∈ A(P ). (3.20)

Remarks (3.vi). The technical condition (3.14) is used to guarantee that PU satis-
fies again (A1) once does P . Another useful observation is the following:

if P is Feller and PN is strongly Feller, and if U ∈ A(P ) and U,PU are
continuous, then PU is Feller and (PU)N is strongly Feller.

Its proof, based on Dini’s monotone convergence theorem, is omitted.
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3.5. ress(P ) by means of degree of geometric recurrence

In this paragraph we assume that P(x, dy) is a Markov kernel (i.e., P ≥ 0 and
P1=1).

Let (� := EN, (Xn(ω) = ωn)n≥0,Fn := σ(Xm; m ≤ n), (Px)x∈E) be the
associated Markov chain. For any measurable non-empty subset A of E, define

σA := inf{n ≥ 0; Xn ∈ A}; τA := inf{n ≥ 1; Xn ∈ A}
where (θω)n = ωn+1 is the shift on � = EN. Note that τA = σA ◦ θ + 1 and if
x /∈ A, then τA = σA, Px − a.s..

The following lemma exhibits a close relation between the drift condition and
the geometric recurrence of (Xn) (it is a variant of some well known results, see
[31] and [34]):

Lemma 3.12. Let P be a Markov kernel and K ⊂⊂ E.

(a) Given U ∈ A(P ).

inf
V∼U

sup
x /∈K

PV (x)

V (x)
= lim sup

n→∞

(

sup
x∈E

1

U(x)
E
x1[σK>n]U(Xn)

)1/n

= rsp(1KcP1Kc |bUB). (3.21)

(b)

inf
V∈A(P )

sup
x /∈K

PV (x)

V (x)
= sup
K ′⊂⊂E

lim sup
n→∞

(

sup
x∈K ′

Px(τK > n)

)1/n

. (3.22)

A quite delicate point here is that in (3.22), τK can not be replaced by σK (see
the example in §8.1).

The main bridge connecting the recurrence property and rsp(1KcP1Kc) is the
following simple but crucial fact:

1

U(x)
E
x1[σK>n]U(Xn) = 1

U(x)

[
(1KcP1Kc)

n U
]
(x). (3.23)

Proof. (a). 1) We begin with the proof of the equality

r0 := inf
V∼U

sup
x /∈K

PV (x)

V (x)
= lim sup

n→∞

(

sup
x∈E

1

U(x)
E
x1[σK>n]U(Xn)

)1/n

=: r1.

For any r > r0, there is some V ∼ U such that

sup
x /∈K

PV (x)

V (x)
< r.

Consider the martingale

M0 := 1, Mn :=
n∏

k=1

V (Xk)

PV (Xk−1)
= V (Xn)

V (X0)
·
n−1∏

k=0

V

PV
(Xk), n ≥ 1. (3.24)
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Noting that V
PV
(Xk) ≥ 1/r on [k < σK ], we have for n ≥ 1,

1

V (x)
E
xV (Xn)1[σK>n−1]

(
1

r

)n
≤ E

xMn = 1

where it follows by using the equivalence V ∼ U ,

r1 ≤ lim sup
n→∞

(

sup
x∈E

1

V (x)
E
x1[σK>n−1]V (Xn)

)1/n

≤ r.

As r > r0 is arbitrary, we have shown r1 ≤ r0.
We now prove the inverse inequality r0 ≤ r1. Notice at first that

r1 = lim sup
n→∞

(

sup
x∈E

1

U(x)
E
x1[σK≥n]U(Xn)

)1/n

because E
x1[σK≥n]U(Xn) = E

x1[σK>n−1]PU(Xn−1) ≤ CE
x1[σK>n−1]U(Xn−1)

where C = ‖PU/U‖. For any r > r1, put

V (x) :=
∞∑

n=0

r−nEx1[σK≥n]U(Xn).

By the definition of r1, V ∼ U . For initial point x ∈ Kc, noting that 1[σK≥n] ◦ θ =
1[σK≥n+1], Px − a.s., we have for all x ∈ Kc,

PV (x) =
∞∑

n=0

r−nEx1[σK≥n] ◦ θ · U(Xn+1)

=
∞∑

n=0

r−nEx1[σK≥n+1]U(Xn+1) ≤ rV (x).

i.e., supx∈Kc(PV/V )(x) ≤ r . Thus r0 ≤ r , the desired inequality.
2) It remains to prove the second equality in (3.21). Indeed,

lim sup
n→∞

(

sup
x∈E

1

U(x)
E
x1[σK>n]U(Xn)

)1/n

= lim sup
n→∞

(

sup
x∈E

1

U(x)

[
(1KcP1Kc)

n U
]
(x)

)1/n

(by (3.23))

= lim sup
n→∞

(∥
∥(1KcP1Kc)

n
∥
∥
bUB

)1/n = rsp(1KcP1Kc |bUB).

(b). We show at first that for any V ∈ A(P ) fixed,

sup
x /∈K

PV (x)

V (x)
≥ sup
K ′⊂⊂E

lim sup
n→∞

(

sup
x∈K ′

Px(τK > n)

)1/n

. (3.25)
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For any r strictly greater than the l.h.s. above, the martingale (Mn) constructed in
(3.24) verifies

Mn :=
n∏

k=1

V (Xk)

PV (Xk−1)
= PV (Xn)

PV (X0)
·
n∏

k=1

V

PV
(Xk) ≥ 1

PV (X0)
1[τK>n]

(
1

r

)n
.

Then

sup
x∈K ′

Px(τK > n) ≤ sup
x∈K ′

PV (x)ExMn · rn ≤ sup
x∈K ′

PV (x) · rn

where the above desired inequality (3.25) follows for supx∈K ′ PV (x) < +∞.
We now establish the inverse inequality of (3.22). For any r strictly greater than

the r.h.s. of (3.22), consider

V (x) := E
x

(
1

r

)σK
.

Then V ≥ 1 over E and V is bounded on any K ′ ⊂⊂ E. Moreover, using σK ◦
θ + 1 = τK and σK = τK, Px − a.s. for x /∈ K , we have

PV (x) = E
x

(
1

r

)σK◦θ
= rEx

(
1

r

)τK
= r1x∈KcV (x)+ r1x∈K sup

z∈K
E
z

(
1

r

)τK
.

It follows that V ∈ A(P ) and supx∈Kc(PV/V )(x) ≤ r . Therefore the inverse
inequality of (3.22) is proved. The equality (3.22) is established. ��

From the previous lemma and Theorem 3.11(b), we immediately obtain

Corollary 3.13. Assume that the Markov kernel satisfies (A1). Then

inf
U∈A(P )

ress(P |bUB)

= inf{r > 0; ∃K ⊂⊂ E, sup
x∈K ′

E
x

(
1

r

)τK
< +∞, ∀K ′ ⊂⊂ E} (3.26)

Formula (3.26) will be the basis for applying the comparison technique to estimates
of ress(P ), see §8.3 and §8.4.

3.6. ress(P ) and concentration of invariant measure

Proposition 3.14. Let P be a Markov kernel such that r0 :=
infU∈A(P ) ress(P |bUB) < 1. Assume the following near-neighbor condition

P(x, {y; d(y, x) > 1}) = 0, ∀x ∈ E. (3.27)

Then for any invariant probability measure µ of P , i.e., µP = µ, (whose existence
is assured by Theorem 4.6 below) and each fixed x0 ∈ E,

lim sup
N→∞

[µ({x; d(x, x0) > N})]1/N ≤ r0. (3.28)
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Proof. (following that of [31], Theorem 16.3.2) For any r ∈ (r0, 1), by Lemma
3.12(3.21) and Remarks (3.v), there are some compact K ⊂⊂ E, U ∈ A(P ) and
V ∼ U such that

lim sup
n→∞

(

sup
x∈E

1

U(x)
E
x1[σK>n]U(Xn)

)1/n

≤ sup
x /∈K

PV (x)

V (x)
< r. (3.29)

Fix an invariant probability measure µ of P . Let us show that V is µ-integrable by
following a classical argument.

Indeed since
(∑n

k=1(V (Xk)− PV (Xk−1))
)
n≥1 is a Px-martingale for each

x ∈ E, we have by Doob’s stopping time theorem that for any n ≥ 1,

0 = E
x

τK∧n∑

k=1

(V (Xk)− PV (Xk−1))

= E
x(PV )(XτK∧n)− PV (x)+ E

x

τK∧n∑

k=1

(V (Xk)− PV (Xk))

≥ −PV (x)+ (1− r)Ex
τK∧n∑

k=1

V (Xk)

where it follows by letting n→∞,

E
x

τK∑

k=1

V (Xk) ≤ 1

1− r PV (x), ∀x ∈ E. (3.30)

The compactK is then Harris recurrent ([31], p200), hence by [31], Theorem 10.4.7
(in the notation there,

∑
n≥1 Px(τK ≥ n, Xn ∈ B) =K U(x, B) and K̄ = E),

µ(B) =
∫

K

µ(dx)
∑

n≥1

Px(τK ≥ n, Xn ∈ B) =
∫

K

µ(dx)

τK∑

k=1

1B(Xk), ∀B ∈ B.

This implies by (3.30)
∫

E

V dµ =
∫

K

µ(dx)Ex
τK∑

k=1

V (Xk) ≤ 1

1− r sup
x∈K

PV (x) < +∞.

Since U ∼ V , U is µ-integrable too. Hence by (3.29),
lim supn→∞

(
Pµ(σK > n)

)1/n
< r . Then by Jensen’s inequality,

∫

E

(
1

r

)E
xσK

dµ(x) ≤ E
µ

(
1

r

)σK
< +∞.

But by the near-neighbor condition (3.27), with Px-probability one, σK ≥
d(x,K) := infy∈K d(x, y) (distance between x and K). Thus for each x0 ∈ E
fixed, using d(x, x0) ≤ d(x,K)+ supy∈K d(x0, y), we have

∫

E

(
1

r

)d(x,x0)

dµ(x) < +∞
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where it follows lim supN→∞[µ(B(x0, N))]1/N ≤ r . As r > r0 is arbitrary, (3.28)
is proved. ��

Remarks (3.vii). For an irreducible and geometric recurrent Markov kernel satisfy-
ing (3.27), it is known that lim supN→∞[µ(B(x0, N)

c)]1/N < 1 by [31], Theorem
16.3.2. In other words (3.28) gives a quantitative exponential estimate of the tail
probability of µ. Moreover the lower bound (3.28) of ress(P |buB) is almost sharp
by Example 8.3.

A partial inverse implication holds too, see [31], Theorem 16.3.1 in which
another function is used in the near-neighbor condition (3.27) instead of the dis-
tance d(x, x0) (such important inverse result was at first obtained by Malyshev and
Men’sikov [29](1982), see historical comments in Chap. 16 in [31]). Then it is very
interesting to investigate whether lim supN→∞[µ(B(x0, N)

c)]1/N < 1 together
with (3.27) implies infU∈A(P ) ress(P |bUB) < 1 (and estimate of the last quantity).

4. Several complementary results without (A1)

4.1. A partial answer to the conjecture

We give at first a translation of a deep probabilistic result due to Horowitz [20].

Theorem 4.1. Let P be a Harris recurrent ([39], p75) Markov kernel. Then
ress(P |bB) < 1 iff rτ (P ) = infn≥(βτ (P n))1/n < 1.

Proof. The necessity follows from Theorem 3.5(b). The important sufficient part
follows from Proposition 4.2(a) below, by [39], Chap.VI, Theorem 3.10 due to
Horowitz [20] (see Revuz [39] page 179, and historical comments in p320). ��

This is a partial answer to the conjecture in Remarks (3.iii). As βτ (PN) ≤
limν(A)→0 ‖PN1A‖, the condition that rτ (P ) < 1 might be easier to verify than
Doeblin’s condition (1.4).

Proposition 4.2. LetP be a nonnegative bounded kernel onE with rsp(P |bB) = 1
such that rτ (P ) = limn→∞(βτ (P n))1/n < 1.

(a) Let λ0 ∈ σ(P |bB) with |λ0| > rτ (P ). If φ ∈ (bCB)∗ (the dual Banach space
of bCB) is a generalized eigenvector of the adjoint operator P ∗, i.e., (P ∗ −
λ0)

mφ = 0 for somem ≥ 1, then φ is a (complex valued) measure of bounded
variation on E.

(b) (existence of invariant measure) There is ν ∈ M1(E) such that νP = ν.

Proof. (a) Let φ be a non-zero (complex) valued linear and continuous form on
bCB such that (P ∗ − λ0)

mφ = 0 where |λ0| > rτ (P ). Put φk := (P ∗ −
λ0)

m−kφ. We have φ0 = 0 and

P ∗φk = λ0φk + φk−1, k = 1, · · · ,m.
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Hence for proving that φ is a measure, by induction we need only to prove

Claim. if φ ∈ (bCB)∗ with ‖φ‖∗ = 1 verifiesP ∗φ = λ0φ+ν where ν is a complex
valued measure of bounded variation, then φ is also a measure.

To this end, notice that for each N ≥ 1,

(P ∗)Nφ = λN0 φ +
n−1∑

k=0

(λ0)
k(P ∗)kν,

where (P ∗)kν = νP k , k ≥ 1 are again measure. Now for any sequence (An)n≥0 ⊂
B decreasing to empty set, we obtain by the expression above,

lim sup
n→∞

|λ0|N |〈φ, 1An〉| = lim sup
n→∞

|〈(P ∗)Nφ, 1An〉|

= lim sup
n→∞

|〈φ, PN1An〉|

≤ lim sup
n→∞

‖PN1An‖ ≤ βτ (PN).

Consequently for all N ≥ 1,

lim sup
n→∞

|〈φ, 1An〉| ≤
βτ (P

N)

|λ0|N
where it follows lim supn→∞ |〈φ, 1An〉| = 0 by lettingN →∞ and using that fact
that |λ0| > rτ (P ). Hence φ is a measure, the desired claim.

We prove now part (b). By [30], Theorem 4.1.5, there is a nonnegative linear
continuous form φ ∈ (bB)∗ with 〈φ, 1〉 = 1 such that P ∗φ = φ. Hence φ is a
probability measure by part (a). ��

With the same proof as above, we have

Proposition 4.3. Let P be a Feller nonnegative bounded kernel on E with
rsp(P |Cb(E)) = 1 such that rw(P ) = limn→∞(βw(P n))1/n < 1.

(a) Let λ0 ∈ σ(P |Cb(E)) with |λ0| > rw(P ). If φ ∈ (Cb(E))∗ (the dual Banach
space of the space Cb(E;C) of all bounded complex valued continuous func-
tions onE) is a generalized eigenvector of the adjoint operator P ∗, i.e., (P ∗ −
λ0)

mφ = 0 for somem ≥ 1, then φ is a (complex valued) measure of bounded
variation on E.

(b) (existence of invariant measure) There is ν ∈ M1(E) such that νP = ν.

4.2. What means ress(P ) < 1 in buB?

We have evaluated ress(P |bUB) by means of different formulas. But whether does,
rsp(P |bUB) = 1 for a Markov kernel? It may seem very easy or obvious, but it
is in reality a quite delicate matter. Indeed there may exist some U ≥ 1 such that
PU = rU for some r > 1, and hence rsp(bUB) ≥ r > 1. A positive answer can
be given by means of rτ (PU). To this end we prepare
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Lemma 4.4 (sub-invariant function principle). Let P be a positive bounded kernel
such that rτ (P ) ≤ λ and there is some everywhere strictly positive function f ∈ bB
such that Pf ≤ λf . Then λ ≥ rsp(P |bB).
Proof. Assume in contrary that λ < rsp(P |bB) =: r0. Then r0 > λ ≥ rτ (P ).
Thus by Proposition 4.2, there would be some probability measure ν such that
P ∗ν = νP = r0ν. We get so

λν(f ) ≥ ν(Pf ) = (νP )(f ) = r0ν(f ).
As ν(f ) > 0, we obtain λ ≥ r0, a contradiction. ��
Proposition 4.5. Let P be a positive kernel, bounded on bUB where U ≥ 1 is a
measurable function, and PU(x, dy) = (U(y)/U(x))P (x, dy). Then

rsp(P |bUB) = max{rτ (PU), lim sup
n→∞

(‖Png‖U
)1/n} (4.1)

for every strictly positive g ∈ bUB. In particular if P is moreover Markov, and
ress(P |bUB) ≤ 1, then rsp(P |bUB) = 1.

The quantity “lim supn→∞ (‖Png‖U)1/n” is called “individual spectral radius
of P at g” in [30]. There are Banach lattice and positive operator A on it such that
every individual spectral radius of A is zero, but the spectral radius of A is > 0,
see [30], Chap.4.

Proof. Since rsp(P |bUB) ≥ ress(P |bUB) = ress(PU |bB) ≥ rτ (PU), the inequality
“≥” in (4.1) is true. For the inverse inequality for each strictly positive g ∈ bUB
fixed, let r be an arbitrary number strictly greater than the r.h.s. of (4.1). Put

h :=
∞∑

k=0

1

rn
P ng.

It belongs again to bUB and Ph ≤ rh. By Lemma 4.4 (applied to PU and f :=
h/U ), r ≥ rsp(P |bUB), where follows the inverse inequality. The last claim follows
from (4.1) with g = 1 by noting that rτ (PU) ≤ ress(P |bUB) ≤ 1. ��

We now extend a known difficult result, Theorem 3.7 in Revuz [39], Chap.6
from bB to bUB, whose proof is given in Section 9.

Theorem 4.6. Let P be a Markov kernel bounded on bUB, where U ≥ 1 is a
measurable function. Assume that ress(P |bUB) < 1. There exist k ≥ 1, and for
each j = 1, · · · , k, dj ≥ 1 nonnegative functions Ui,j ∈ bB (i = 1, · · · , dj ) such

that
∑k
j=1

∑dj
i=1 Ui,j = 1 over E, and probability measures µi,j carried by the

pairwise disjoint sets Ei,j := [Ui,j = 1] such that, if d denotes the least common
multiple of the dj (j = 1, · · · , k), then for every l ∈ N,

∥
∥
∥
∥
∥
∥
Pnd+l −

k∑

j=1

dj∑

i=1

Ui−l(mod dj ),j ⊗ µi,j

∥
∥
∥
∥
∥
∥
bUB→bUB

→ 0 (as n→∞) (4.2)



278 L. Wu

and this convergence is geometric. The sets Ej =
⋃dj
i=1 Ei,j is P -absorbing (i.e.,

P(x,Ej ) = 1 for every x ∈ Ej ), and P restricted to Ej is Harris recurrent with

invariant measure µj :=∑dj
i=1 µi,j .

4.3. Coincidence of ress(P ) on Cb(E) and on bB

For a Feller nonnegative bounded kernelP(x, dy), it might be more natural or more
fruitful to study its essential spectral radius as an operator on Cb(E). More natural,
perhaps; more fruitful? No, as claimed by

Proposition 4.7. Let P(x, dy) be a Feller nonnegative bounded kernel on E.
Then ress(P |Cb(E)) = ress(P |bB), and for λ ∈ C with |λ| > ress(P |Cb(E)),
λ ∈ σ(P |Cb(E)) iff λ ∈ σ(P |bB), and in the last case the eigenprojection Eλ
of P |Cb(E) is a (complex valued) Feller kernel coinciding with that of P |bB.

Proof. At first by Nussbaum formula (2.7) and the obvious fact that β(P |Cb(E)) ≤
β(P |bB), we have ress(P |Cb(E)) ≤ ress(P |bB).

For λ ∈ σ(P |Cb(E)) with |λ| > ress(P |Cb(E)), let Eλ be the associated eigen-
projection. By Proposition 3.2(a), rw(P ) ≤ ress(P |Cb(E)) (equality is false by the
example in Remarks (3.i)). Hence |λ| > rw(P ). By Proposition 4.3(a), every ele-
ment in the range of the adjoint eigenprojection E∗λ acting on Cb(E,C)∗, being a
generalized eigenvector of P ∗, is a complex valued measure of bounded variation.
Then by the expression (2.2), Eλ is a Feller kernel on E.

Now for any r > ress(P |Cb(E)) such that 
r := {z ∈ C; |z| = r} contains no
spectral point of P |Cb(E), let r be the sum of all eigenprojections Eλ associated
with λ ∈ σ(P |Cb(E)) such that |λ| > r .r is again a finite dimensional projection,
given by a Feller kernel, and there is some constant C > 0 such that

‖[P(I −r)]n‖Cb(E;C) ≤ Crn, ∀n ≥ 1.

The key remark is: for a Feller kernel such as [P(I −r)]n, its norm on Cb(E;C)
coincides with that on bCB. Consequently

‖[P(I −r)]n‖bCB ≤ Crn, ∀n ≥ 1.

This implies not only ress(P |bB) ≤ r (then the desired inverse inequality
“ress(P |Cb(E)) ≥ ress(P |bB)”), but also all other conclusions of this proposition. ��
Remarks (4.i). The above result is largely inspired by a well known result in [39]:
a Feller kernel is compact inCb(E) iff it is so on bB. It explains also why our study
is concentrated on bB and buB, for the structure of Cb(E) hidden the role of the
parameter βτ (and (A1)), basic in the investigation of ress(P ) by Theorem 3.5 and
Theorem 4.1 (and again more if our conjecture in Remark (3.iii) is true).

Let AC(P ) := {u ∈ A(P ); u, Pu are continuous on E} and Cu(E) the sub-
space of all f ∈ buB which are continuous. Given u ∈ AC(P ), using the similarity
of P |Cu(E) and Pu|Cb(E) (Pu is still Feller by Remarks (3.vi)), one can transport
the above result to Cu(E).
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5. Essential spectral radius on Lp(µ)

5.1. A general formula: Persson type’s principle

We begin with Persson type’s principle ([7], Theorem 3.12), corresponding to The-
orem 3.5.

Theorem 5.1. LetP(x, dy)be a nonnegative bounded kernel, bounded onLp(µ) =
Lp(E,B, µ), where 1 < p ≤ +∞. Assume that for any K ⊂⊂ E, βτ (1KP ) = 0
and ‖P ‖a < +∞ for some 1 ≤ a < p . Then

ress
(
P |Lp(µ)

) = inf
K⊂⊂E

rsp
(
1KcP1Kc |Lp(µ)

)
. (5.1)

Remarks (5.i). For continuous time and symmetric Markov semigroups (Pt ), under
the strong Feller condition, Grillo [19] (1998) proved the above Persson principle
in L2 (with an extra condition on the metric generated by the Dirichlet form),
and F.Y. Wang [41] (2000) found an infinitesimal criterion for exactly evaluating
ress

(
Pt |L2(µ)

)
. We shall return to extend their works in the sequel paper.

Remarks (5.ii). Let

‖P ‖tail(Lp(µ)) := lim
L→+∞

sup
f :‖f ‖p≤1

‖1[|Pf |>L]Pf ‖p, ∀p ∈ [1,+∞)

‖P ‖tail(L∞(µ)) := lim sup
µ(A)→0

‖P1A‖∞ := lim
ε→0+

sup
A∈B,µ(A)<ε

‖P1A‖∞

be the tail norm of P (see [18], [49]). For 1 < p < +∞, it coincides with the
measure of non-semi-compactness given by de Pagter-Schep [12](1988) (see [18]).
Weis [43](1984) and de Pagter-Schep [12](1988) proved the following Nussbaum
formula of essential spectral radius:

Let Pf (x) := ∫
E
p(x, y)f (y)µ(dy) be a nonnegative absolute continuous

kernel operator, bounded on Lp(µ), where 1 < p < +∞. Then

ress(P |Lp(µ)) := lim
n→∞(‖P

n‖tail(Lp(µ)))1/n.

Here the absolute continuity of P is crucial (otherwise the infinite dimensional
Ornstein-Uhlenbeck semigroup provides such a counter-example).

Remarks (5.iii). Without assumption of Theorem 5.1, the following inequality

ress(P |Lp(µ)) ≥ inf
K⊂⊂E

rsp
(
1KcP1Kc |Lp(µ)

)
(5.2)

holds always. Indeed, it is obvious that the measure of non-compactness defined in
(2.5) verifies β(P n) ≥ ‖Pn‖tail(Lp(µ)). But by [18] or [49](Lemma 3.1),

‖Pn‖tail(Lp(µ)) = lim sup
µ(A),µ(B)→0

‖1AP (1B ·)‖p
≥ inf
K⊂⊂E

‖1KcP n1Kc‖p ≥ inf
K⊂⊂E

‖(1KcP1Kc)
n‖p.

Hence (5.2) follows by Nussbaum’s formula (2.7).
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Proof of Theorem 5.1. Denote the measure of non-compactness of P in Lp by
β(P ). For each compact K ⊂⊂ E and any n ≥ 2,

Pn = (1KP + 1KcP )
n

= (1KcP )n + (1KcP )n−11KP +
∑

j∈{0,1}n: jk=0 for some k≤n−1

Aj1 · · ·Ajn

where A0 := 1KP and A1 := 1KcP . By Proposition 3.2(g), if jk = 0 for some
1 ≤ k ≤ n − 1, product Aj1 · · ·Ajn is compact on bB, then on L∞, hence on Lp

by interpolation of compact operator (and its boundedness on La). In other words
β(Aj1 · · ·Ajn) = 0. Consequently by β(P ) ≤ ‖P ‖p, we have

β(P n) = β
(
(1KcP )

n + (1KcP )n−11KP )
)
≤ 2‖(1KcP1Kc)

n−1‖p · ‖P ‖p.

Hence by Nussbaum’s formula (2.7),

ress
(
P |Lp(µ)

) ≤ lim
n→∞

(
2‖(1KcP1Kc)

n−1‖p · ‖P ‖p
)1/n = rsp

(
1KcP1Kc |Lp(µ)

)
.

This, together with (5.2), yields (5.1). ��
For a Markov kernel P with invariant and ergodic probability measure µ, a

quite natural question is to determine whether the spectral radius of 1KcP1Kc (the
transition kernel killed at K) in Lp(µ) is < 1. The previous theorem yields a
satisfactory answer:

Corollary 5.2. Let P be a Markov kernel with invariant probability measure µ.
Assume that P is ergodic w.r.t.µ, i.e., if f ∈ bB verifies Pf = f , then f isµ−a.s.
constant. Assume that βτ (1KP ) = 0 for any K ⊂⊂ E.

LetA ∈ B be a relatively compact subset ofE charged byµ and 1 < p ≤ +∞.
Then rsp(1AcP1Ac |Lp(µ)) < 1 iff ress(P |Lp(µ)) < 1.

Proof. P is contractive on Lq(µ) for every q ∈ [1,+∞]. Since the closure A is
compact, we can apply Theorem 5.1 and get

rsp(1AcP1Ac |Lp(µ)) ≥ rsp(1AcP1
A
c |Lp(µ)) ≥ ress(P |Lp(µ)).

Then the necessity is true.
For the sufficiency, we observe by the inequality above that there are only two

possibilities: either rsp(1AcP1Ac |Lp(µ)) = ress(P |Lp(µ)) or rsp(1AcP1Ac |Lp(µ)) >
ress(P |Lp(µ)). In the first case rsp(1AcP1Ac |Lp(µ)) < 1 by the sufficiency’s assump-
tion. It remains to treat the second case.

In such case r(Ac) := rsp(1AcP1Ac |Lp(µ)) is strictly greater than
ress(1AcP1Ac |Lp(µ)), because

ress(1AcP1Ac |Lp(µ)) = ress(P |Lp(µ))
by Theorem 5.1. Thus r(Ac) is an isolated eigenvalue of 1AcP1Ac corresponding to
some nonnegative eigenfunction h ∈ Lp(µ) with ‖h‖p = 1 by Proposition 2.3(b).
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If in contrary r(Ac) = 1, we would get

Ph ≥ 1AcP1Ach = h.
Since µ(Ph) = µ(h), Ph = h, µ− a.s.. But by the assumed ergodicity, h should
be µ-a.s. a positive constant. This is in contradiction with the fact that h = 0,
µ− a.e. on A. ��
5.2. Symmetric case.

Lemma 5.3. Let P : L2(µ)→ L2(µ) be a nonnegative, bounded and symmetric
operator.

(a) Then for any two f, g > 0, µ− a.e. in L2(µ), we have

‖P ‖2 = rsp(P |L2(µ)) = lim sup
n→∞

〈Pnf, g〉1/n. (5.3)

(b) If moreover P is µ-essentially irreducible (i.e., for some λ > rsp(P |L2(µ)),
Rλ1A := ∑∞

k=0 λ
−n−1Pn1A > 0, µ − a.e. for any A ∈ B with µ(A) > 0),

then (5.3) holds for any 0 ≤ f, g ∈ L2(µ) such that µ(f ) ∧ µ(g) > 0.

Proof. (a) The first equality is an immediate consequence of spectral decomposi-
tion.
Let r0 be the quantity at the r.h.s. of (5.3). Obviously ‖P ‖2 ≥ r0. Below we

show the inverse inequality which is the core of this lemma.
If ‖P ‖2 = 0, it is obviously true. In the case where ‖P ‖2 > 0, we may assume

that ‖P ‖2 = 1 without loss of generality. By absurd assume that r0 < 1. Put

D := {h ∈ L2(µ); |h| ≤ C · (f ∧ g), µ− a.e. for some C > 0}.
Then D is dense in L2(µ) for f, g > 0, µ − a.e.. By the definition of r0 and the
non-negativeness of P , we have for each r ∈ (r0, 1) fixed,

lim
n→∞ r

−n〈Pnh, h〉 = 0, ∀h ∈ D.

Now write the spectral decomposition:P 2 = ∫
[0,1] λ

2dEλ. We have for eachh ∈ D,

‖(E1 − Er)h‖22 ≤ r−2n
∫

(r,1]
λ2nd〈Eλh, h〉 ≤ r−2n〈P 2nh, h〉 → 0.

As D is dense in L2 and E1 − Er is bounded on L2(µ), we obtain E1 = Er ,
which means that ‖P 2‖2 ≤ r2 < 1, a contradiction with our assumption that
‖P 2‖2 = ‖P ‖22 = 1.

(b) Instead of D given above, take

D′ := {h ∈ L2(µ); |h| ≤ CN · (QNf ∧QNg), µ− a.e.
for some N ≥ 1, CN > 0}

where QN = I + P + · · · + PN . By the essential irreducibility, D′ is dense in
L2(µ). Moreover for any r strictly greater than the r.h.s. r0 of (5.3),

lim
n→∞ r

−n〈Pnh, h〉 = 0, ∀h ∈ D′.
The remained proof is the same as that of part (a), so omitted. ��
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With exactly the same proof of part (a) above, we also have the following result
for not-necessarily nonnegative operator, which will be crucial for our investigation
of spectral gap (a similar result is proved by the author in [44], Proposition 2.9 in
the continuous time case):

Lemma 5.4. Let P be a symmetric bounded operator on L2(µ). Assume that
there is a dense subset D ⊂ L2(µ) and some constant r0 > 0 such that ∀f ∈
D, ∃C(f ) > 0:

|〈Pnf, f 〉| ≤ C(f )rn0 , ∀n ≥ 1,

then rsp(P ) ≤ r0.

The following result answers completely Question 4 in the Introduction in the
symmetric case, but leaves it open in the non-symmetric case.

Theorem 5.5. Let P be a nonnegative kernel satisfying (A1), symmetric and
bounded on L2(µ) (µ being a probability measure on E).

(a) For each measurable subset A ⊂ E,

rsp
(
1AcP 1Ac |L2(µ)

) = inf
{
r; ∃1 ≤ u ∈ L2(µ), 1AcPu ≤ ru, µ− a.s.

}

= inf
{
r; ∃u ∈ B+µ (Ac), 1AcP1Acu ≤ ru, µ− a.s.

}

(5.4)

where B+µ (Ac) := {u : Ac → [0,+∞] measurable; 0 < u <∞, µ− a.e.}.
In particular

ress(P |L2(µ)) = inf
K⊂⊂E

inf
1≤u∈L2(µ)

esssupx∈Kc
Pu(x)

u(x)

= inf
K⊂⊂E

inf
u∈B+µ (Kc)

esssupx∈Kc
P (1Kcu)(x)

u(x)
(5.5)

≤ inf
U∈A(P )

ress(P |bUB)

and the last inequality becomes equality in one of the following cases:
(a.i) E is countable (discrete) and µ charges every point of E;

(a.ii) P(x, dy) = p(x, y)µ(dy) where p(x, y) is B × B-measurable, and∫
E
p(x, y)2µ(dy) < +∞, ∀x ∈ E.

(b) If P is moreover Markov, then for any A ∈ B,

rsp
(
1AcP1Ac |L2(µ)

) = esssupx∈Ac lim sup
n→∞

[Px(σA = n)]1/n . (5.6)

ress(P |L2(µ)) = inf

{

r > 0; ∃K ⊂⊂ E, E
x

(
1

r

)σK

< +∞, µ− a.e. x
}

= inf
K⊂⊂E

esssupx∈Kc lim sup
n→∞

[Px(σK = n)]1/n .

(5.7)
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Proof. (a) Denote the three terms of (5.4) by r0, r1, r2 respectively. Obviously
r1 ≥ r2. We show at first r2 ≥ r0 = rsp

(
1AcP1Ac |L2(µ)

)
.

For any r > r2, there is some u ∈ B+µ (Ac) such that 1AcP1Acu ≤ ru, µ−a.s..
Now put v := u/(1+ u)2. We have

(1AcP1Ac)
n v ≤ (1AcP1Ac)

n u ≤ rnu, µ− a.e.
Consequently

〈v, (1AcP1Ac)
n v〉µ ≤ rn〈v, u〉µ ≤ rn.

Thus by Lemma 5.3, rsp
(
1AcP1Ac |L2(µ)

) ≤ r , then ≤ r2 for r > r2 is arbitrary.
It remains to show that r0 ≥ r1 by a similar argument in (a)⇒ (c) of Theorem

3.10. For any r > r0 = rsp
(
1AcP1Ac |L2(µ)

)
, let

h := 1Ac +
∞∑

n=1

r−n (1AcP1Ac)
n 1 ∈ L2(µ).

Then h ∈ L2(µ) and 1AcPh ≤ rh. Now for any ε > 0, consider u(x) = 1+Lh(x)
where L ≥ ‖P ‖2/ε, we have µ− a.s.,

1AcPu

u
≤ 1Ac

‖P ‖2 + L1AcPh

u
≤ 1Ac

‖P ‖2 + Lrh
1+ L · h ≤ r + ε

which entails r1 ≤ r + ε. As r > r0 and ε > 0 are arbitrary, we obtain the desired
claim “r1 ≤ r0”. So (5.4) is established.

The first and second equalities in (5.5) follow immediately from (5.4) and
Theorem 5.1, and the third inequality in (5.5) by Remark (3.v). Theorem 3.11(b)
implies that the third inequality in (5.5) becomes equality in the case (a.i), for
esssupKc = supKc . In case (a.ii), let r > ress(P |L2(µ)) be arbitrary. Then by The-
orem 5.1, there is some compact K ⊂⊂ E such that r > rsp(1KcP1Kc |L2(µ)). Put
as above

h := 1Kc +
∞∑

n=1

r−n (1KcP1Kc)
n 1 ∈ L2(µ).

By assumption in (a.ii), Ph(x) < +∞ for every x ∈ E. Then h(x) ≤ 1Kc(x) +
Ph(x)/r < +∞, ∀x ∈ E. Now letting u(x) := 1+Lh(x), for any ε > 0, we have
as in the proof of r0 ≥ r1 above that for L large enough,

1Kc
Pu(x)

u(x)
≤ r + ε.

This entails by Theorem 3.11(b) that infU∈A(P ) ress(P |bUB) ≤ r + ε, the desired
inverse inequality.

(b) For (5.6), let r be any number strictly greater than the r.h.s. of (5.6), put

u(x) := E
x

(
1

r

)σA
.
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Then µ-a.s., 0 < u(x) < ∞, i.e., u ∈ B+µ (Ac), and (1AcP1Ac) u ≤ ru on Ac.
Hence by part (a), rsp

(
1AcP1Ac |L2(µ)

) ≤ r . That proves “≤” in equality (5.6).
Inversely for any r > rsp

(
1AcP1Ac |L2(µ)

)
, by part (a), there is some u ∈ L2(µ)

such that u(x) ≥ 1 on E and (1AcP1Ac) u ≤ ru, µ − a.e. on Ac. Thus for
µ− a.e. x ∈ Ac,

Px(σA > n) ≤ E
x1[σA>n]u(Xn) = (1AcP1Ac)

n u(x) ≤ rnu(x)

where it follows that r is not smaller than the r.h.s. of (5.6). In other words (5.6) is
established.

The second equality in (5.7) is elementary. By Theorem 5.1, the first equality
in (5.7) follows from (5.6). ��

Remarks (5.iv). Whether infU∈A(P ) ress(P |bUB) < 1 does imply ress(P |L2(µ)) <

1 for a nonsymmetric Markov kernel P with invariant measure µ is a very inter-
esting open question (see however Chen [3] for a confirmative answer for several
important situations). Of course it is again more difficult to extend Theorem 5.5 to
the non-symmetric case.

Remarks (5.v). Let P be a nonsymmetric Markov kernel with invariant measureµ.
Then PP ∗ is Markov, symmetric in L2(µ). By following the general spectral the-
ory ([38], Vol.IV), one can show that ress(P |L2(µ)) ≤

√
ress(PP ∗|L2(µ)). And one

can apply Theorem 5.5 to estimate ress(PP ∗|L2(µ)). But the range of this approach
is limited: in general µ is unknown in practice and then the adjoint operator P ∗,
depending on µ, is difficult to calculate.

L. Miclo [32], by exploring this approach, has investigated the logarithmic
Sobolev inequality of P .

6. Relations with the large deviation principles

In this section we assume that P(x, dy) is a Markov kernel (i.e., P ≥ 0 and P1=1).
We apply the previous results to large deviations.

6.1. An extension of a result of de Acosta

The purpose of this paragraph is to give applications of the two parameters βτ and
βw to large deviations, without assumption (A1). Let

Ln(ω) := 1

n

n∑

k=1

δXn(ω), n ≥ 1

be the empirical measures of our Markov process (Xn)n≥1. It is a random element
in M1(E) equipped with the σ−field σ(ν → ν(f ); f ∈ bB) (which is smaller
than the σ -field generated by the τ -open subsets). A subset in M1(E) is called
measurable, if it is an element in the last σ−field.
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The Donsker-Varadhan entropy J : M1(E)→ [0,+∞] is given by

J (ν) := sup
1≤u∈bB

∫

E

log
u

Pu
dν. (6.1)

de Acosta [8] showed that if βτ (PN) = 0 (resp. P is Feller and βw(PN) = 0)
for some N ≥ 1, then the empirical occupation measures (Ln) satisfies a uniform
large deviation upper bound with good rate function given by J , on M1(E) w.r.t.
the τ -topology (resp. “w”-topology). The following is an extension of his result,
which supports our conjecture after Theorem 3.5.

Theorem 6.1. Let P be a Markov kernel and (�, (Xn)n≥0, (Px)x∈E) be the asso-
ciated Markov process.

(a) If

rτ (P ) := lim
n→∞

[
βτ (P

n)
]1/n = inf

n≥1

[
βτ (P

n)
]1/n = 0, (6.2)

then (Ln) satisfies the uniform good upper bound of large deviation on
(M1(E), τ ), more precisely,

(τ -GRF) J is a Good Rate Function on (M1(E), τ ), i.e., [J ≤ L] is τ -compact
for each L ≥ 0;

(uniform τ -ULD) (uniform Upper bound of Large Deviation) For each closed
measurable set F ⊂ (M1(E), τ ),

lim sup
n→∞

1

n
log sup

x∈E
Px(Ln ∈ F) ≤ − inf

ν∈F
J (ν).

If moreover P is irreducible w.r.t. some maximal probability measure µ (i.e.,
µ � ∑∞

k=1 2−n−1Pn(x, ·) for any x ∈ E (µ-irreducibility) and µP � µ

(maximality)), such that

J (ν) < +∞ �⇒ ν � µ; (6.3)

then
(uniform τ -LLD) (uniform Lower bound of Large Deviation) For each open

measurable set G ⊂ (M1(E), τ ),

lim inf
n→∞

1

n
log inf

x∈E
Px(Ln ∈ G) ≥ − inf

ν∈G
J(ν).

When those three properties hold, we say that (Ln) satisfies the uniform large
deviation principle w.r.t. τ -topology (uniform τ -LDP in short).

(b) Assume that P is Feller. If

rw(P ) := lim
n→∞

[
βw(P

n)
]1/n = inf

n≥1

[
βw(P

n)
]1/n = 0, (6.4)

then (Ln) satisfies the uniform good upper bound of large deviation on
(M1(E),w), i.e., satisfying (w-GRF) and (uniform w-ULD) which are defined
as above with the τ -topology replaced by the weak convergence topology “w”.
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Its proof is postponed to §10.

Remarks (6.i). The study of large deviations of Markov processes was openned by
Donsker-Varadhan [16], see Deuschel-Stroock [13] and Dembo-Zeitouni [11] for
historical comments and references.

The existence and uniqueness of invariant probability measure µ and the
µ-irreducibility, together with (6.3) are all necessary to the LDP of (Ln) w.r.t.
τ -topology, uniform or pointwise, see [47]. To see it more clearly let us consider
a two-points Markov chain with P(1, 1) = P(1, 2) = 1/2 and P(2, 2) = 1. Of
course ress(P ) = 0. It is obvious that

Px=2(Ln = δ0) = 0

But J (δ0) = log 2, the lower bound of large deviation with rate function J above
is not true.

Condition (6.3) was isolated by de Acosta [9] and Jain [21] for the lower bound
of large deviations with rate function given by the Donsker-Varadhan entropy J .
In the general irreducible case (or even µ-essentially irreducible case), the rate
function governing the lower bound is given by the modified Donsker-Varadhan
entropy

Jµ(ν) :=
{
J (ν) if ν � µ

+∞ otherwise.

See [9], [21] for the irreducible case and [46] for the µ-essentially irreducible case.
Condition (6.3) just means Jµ = J . A simple sufficient condition isolated in [9],
[21] for (6.3) is: for some N ≥ 1, PN(x, dy)� µ(dy) for every x ∈ E.

Remarks (6.ii). As the τ−topology is much stronger than “w”, then the uniform
τ -LDP is stronger than that w.r.t. “w”.

Now we turn to a particular case where (6.2) and (6.4) can be shown to be
equivalent to the uniform τ -LDP.

6.2. Equivalence between LDP and ress(P ) = 0

Consider the following assumptions:

(A2) P is Feller and PN is strongly Feller for some N ≥ 1;
(A3) P is topologically transitive.

Here the topological transitivity means that for each x ∈ E and for each non-empty
open subset G ⊂ E, there is some n ≥ 0 such that Pn(x,G) > 0.

Lemma 6.2. Assume (A2) and (A3). Fix some x0 ∈ E and define µ(A) :=
R(x0, A) := ∑∞

k=0 2−k−1PN+k(x0, A) for any A ∈ B. Then for any x ∈ E,
R(x, ·) is equivalent to R(x0, ·). In particular P is µ-irreducible and J = Jµ, i.e.,
(6.3) holds.
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Proof. It is enough to show that Pn(x, dy)� R(x0, dy) for all x ∈ E and n ≥ N .
Indeed, that implies R(x, dy) � R(x0, dy) and also R(x0, dy) � R(x, dy) by
changing role of x and x0. And (6.3) follows by the last sentence in Remarks (6.i).

For the claim above, it suffices to establish that Pn(x,A) = 0, ∀x ∈ E for
any A ∈ B verifying R(x0, A) = 0. To that end assume in contrary that Pn1A is
not identically zero over E. Since Pn (n ≥ N ) is strongly Feller by (A2), Pn1A is
continuous. Hence by (A3),

R(x0, A) ≥ 2N−n
∞∑

k=0

2−k−1
(
P kP n1A

)
(x0) > 0

a contraction with the assumption R(x0, A) = 0, proving the desired claim. ��
Theorem 6.3. Given a Markov kernelP satisfying (A2) and (A3). These properties
are equivalent:

(a) (Ln) satisfies the uniform τ -LDP.
(b) (uniform hyper-exponential recurrence) For any r > 0, there is some compact

K ⊂⊂ E such that

sup
x∈E

E
x

(
1

r

)σK
< +∞.

(c) ress(P |bB) = 0.
(d) infK⊂⊂E inf1≤u∈bB supx∈Kc

Pu(x)
u(x)

= 0.
(e) rw(P ) = 0.
(f) rτ (P ) = 0.

Proof. In [47], we have proved the equivalence between (a) and (b) under (A2)+(A3).
By Lemma 3.12(a) and (3.11) in Theorem 3.10, we have the equivalence between
(b) and (c). The equivalence between (c) and (d) follows from Theorem 3.10.

The equivalence between (c) and (e) follows from Theorem 3.5, as well as
(c)⇒ (f ). Finally (f )⇒ (a) follows from Theorem 6.1. ��
Theorem 6.4. Given a Markov kernelP satisfying (A2) and (A3). These properties
are equivalent:

(a) Px(Ln ∈ ·) satisfies uniformly for initial states in the compacts, the large
deviation principle of Donsker-Varadhan (called locally uniform LDP simply)
on (M1(E), τ ) . More precisely in the statement of Theorem 6.1(a), (τ -GJF)
is true, and the upper bound (resp. the lower bound) of large deviation hold
true with supx∈E (resp. infx∈E) replaced by supx∈K (resp. infx∈K ) for each
K ⊂⊂ E.

(b) (hyper-exponential recurrence) For any r > 0, there is some compactK ⊂⊂ E
such that for any compact K ′ ⊂⊂ E,

sup
x∈K ′

E
x

(
1

r

)τK
< +∞.
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(c) infu∈A(P ) ress(P |buB) = 0;

(d) (Donsker-Varadhan’s condition) infK⊂⊂E infu∈A(P ) supx /∈K
Pu(x)
u(x)

= 0.

If E is locally compact, then they are equivalent to

(e) (Ln) satisfies the locally uniform LDP w.r.t. the weak convergence topology
(defined similarly as in (a)).

Proof. We have proved in [47] the equivalence between (a) and (b) (and (e) in the
locally compact case). By Corollary 3.13, parts (b) and (c) here are equivalent. The
equivalence between (c) and (d) follows from Theorem 3.11(b). ��
Remarks (6.iii). Under the assumption that E is locally compact, P(x, dy) =
p(x, y)µ(dy) such that p(x, ·) > 0, µ − a.s. and x → p(x, ·) is continuous
from E to L1(E,µ) where µ is the invariant probability measure of P (which are
stronger than (A2)+(A3)), Donsker and Varadhan proved in their pioneering work
[16] that condition (d) is enough to the locally uniform LDP w.r.t. the weak conver-
gence topology in part (e). It is a happy thing that their sufficient condition found
26 years ago is indeed necessary, showing the deepness of their work.

7. Applications to estimates of geometric convergence rate

In this section two applications are given: 1) estimate of eigenvalues of a symmetric
Markov kernel on a countable space by means of the degrees of geometric recur-
rence; 2) geometric convergence in the metric of Wasserstein implies that in bUB
and in Lp(µ).

7.1. Estimate of eigenvalues of a symmetric Markov kernel by means of the
degree of geometric recurrence

In this paragraph we suppose that E is at most countable, and P is an irreducible
Markov kernel onE such that its invariant measureµ is a probability and charges all
points of E, and P is symmetric on L2(µ). In that case (A2) and (A3) are satisfied.
The spectrum of P |L2(µ) is contained in [−1, 1]. Assume that ress(P |L2(µ)) < 1.

Let (λ+j )j=0,1,··· ,m+ (m+ ∈ N ∪ {∞}) be the sequence in the non-increasing
order of the eigenvalues counted up to multiplicity of P |L2(µ) above

λ+ess(P ) := sup{λ; λ ∈ σess(P |L2(µ))} ∨ 0;
and (λ−)j=0,1,··· ,m− (m− ∈ N∪ {∞}) be the sequence in the non-decreasing order
of the eigenvalues counted up to multiplicity of P |L2(µ) below

λ−ess(P ) := inf{λ; λ ∈ σess(P |L2(µ))} ∧ 0.

We adopt the following convention: if the sequence (λ+j )0≤j≤m+ (resp. (λ−j )0≤j≤m− )

is finite, then we set λ+j := λ+ess(P |L2(µ)) (resp. λ−j := λ−ess(P |L2(µ))) for j > m+

(resp. j > m−).
Using the famous min-max principle, we can controlλ±m by means of the degrees

of geometric recurrence in the following way:
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Proposition 7.1. Let E,P,µ, (λ±m) be as above such that ress(P |L2(µ)) < 1. For
each 1 ≤ m ≤ #(E)(the cardinal of E), define the m−th degree of geometric
recurrence by

dm := inf
K⊂E: #(K)=m

sup
x∈Kc

lim sup
n→∞

(Px(σK > n))1/n (7.1)

Then with the convention above, |λ±m| ≤ dm for all m ∈ [1, #(E)]
⋂

N.

Proof. We prove it only for E infinite. By the min-max principle ([38], Theorem
XIII.1), for each m ≥ 1,

µ+m := inf
f1,··· ,fm∈L2(µ)

sup
f : ‖f ‖2=1,f⊥{f1,··· ,fm}

〈f, Pf 〉µ

is either the m-th eigenvalue (counted with multiplicity) of P above sup{λ; λ ∈
σess(P |L2(µ))}, or coincides with the last quantity. Then by our convention about
the definition of λ+j , for any finite subset K = {xk| 1 ≤ k ≤ m} of m-elements,
setting fk = 1xk , k = 1, · · · ,m, we have

λ+m ≤ sup
f : ‖f ‖2=1,f |K=0

〈f, Pf 〉µ ≤ rsp
(
1KcP1Kc |L2(µ)

)
.

But by (5.6) in Theorem 5.5,

rsp
(
1KcP1Kc |L2(µ)

) = sup
x∈Kc

lim sup
n→∞

(Px(σK > n))1/n .

Since the subset K of m-elements is arbitrary, we obtain λ+m ≤ dm.
Similarly

µ−m := inf
f1,··· ,fm∈L2(µ)

sup
f : ‖f ‖2=1,f⊥{f1,··· ,fm}

〈f,−Pf 〉µ

is either the m-th eigenvalue (counted with multiplicity) of −P above sup{λ; λ ∈
σess(−P |L2(µ))}, or coincides with the last quantity. With the same argument as
above, for each subset K of m-elements,

−λ−m = µ−m ≤ sup
f : ‖f ‖2=1,f |K=0

〈f,−Pf 〉µ ≤ rsp
(
1KcP1Kc |L2(µ)

)

and we can conclude in the same way. ��

Remarks (7.i). An omitted point in the proposition above is the control of λ−0 : it
can not, in fact, be estimated by means of the degrees of geometric recurrence. For
example let P(1, 2) = P(2, 1) = 1 be a Markov kernel on E = {1, 2}. The two
eigenvalues of P are 1 and −1, and ress(P ) = 0 (its essential spectrum is empty).
Then λ−0 = −1 but dm = 0 for all m ≥ 1.

To remedy this defective point, one can apply the above result to P 2 which is
nonnegative definite.
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7.2. Exponential convergence rate in buB and Lp(µ) by means of that in the
metric of Wasserstein

Recall at first the Lp-Wasserstein distance between two probability measures µ
and ν on the Polish space E with a compatible metric ρ:

Wρ
p (µ, ν) = inf

(X,Y )
‖ρ(X, Y )‖p (p ∈ [1,+∞])

where the infimum is taken over all couples of E-valued random variables (X, Y )
such that the law ofX, Y are respectively µ and ν (the law of the couple (X, Y ) on
E × E is called a coupling of µ and ν).

Coupling technique was used by Nummelin and Tuominen [35], [36], Lindvall
[28] (see also [31], Chap.15 and 16) etc to prove the geometric ergodicity by means
of the Kendall renewal theorem. By using both coupling method and the Wasser-
stein distance (which depends on an ingenious construction of the metric ρ), Chen
[1], [2], Chen and Wang [4], [5] etc obtained sharp estimates of the spectral gap in
L2 for the continuous time symmetric Markov semigroups. The following result,
largely inspired by the last works, extends e.g. Theorems 6.1 and 6.2 in [1] or
Theorem 1.7 in [4].

Proposition 7.2. Let E be moreover locally compact and ρ a metric compatible
with the topology of E, and P a Markov kernel on E satisfying (A2). Assume that
there are constants p ∈ [1,+∞), R ≥ 1, r0 ∈ (0, 1) such that for all x, y ∈ E,

Wρ
p (P

n(x, ·), P n(y, ·)) ≤ ρ(x, y)Rrn0 , ∀n ≥ 1. (7.2)

If u(x) := 1+ρ(x, x0)
p (x0 ∈ E is fixed) is Pn(x0, ·)-integrable for all n, then

u ∈ A(P ) and

ress(P |buB) ≤ (r0)p, (7.3)

and there is a unique invariant probability measure µ such that µ(u) < +∞.
Moreover

rexp(P |buB) := lim
n→∞

(‖Pn − µ(·)‖buB
)1/n ≤ r0, (7.4)

rexp(P |Lp(µ)) := lim
n→∞

(‖Pn − µ(·)‖Lp(µ)
)1/n ≤ max{r0, ress(P |Lp(µ))}.

(7.5)

Remarks (7.ii). In the context of this proposition, if P is moreover symmetric w.r.t.
µ, then

rexp(P |L2(µ)) ≤ r0
by Theorem 5.5, (7.5) and (7.3).

Remarks (7.iii). Indeed (7.5) holds under (7.2) and the existence of invariant prob-
ability measure µ such that ρ(x, x0) ∈ Lp(µ) (uniqueness of µ is guaranteed by
(7.2)), without (A2). This follows from the proof below.

An open question is to remove ress(P |Lp(µ)) in (7.5) in the non-symmetric case.
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Remarks (7.iv). Compared with the geometric convergence (7.2) in the metric of
Wasserstein, (7.4) implies that for any r > r0, there is constant C ≥ 1 such that

‖Pnf − µ(f )‖u ≤ C‖f ‖urn, ∀n ≥ 1

for all f ∈ buB. Similar geometric convergence can be derived from (7.2) only
for f Lipchitzian. This gain is largely due to the assumption (A2) as seen for the
following example: let P(x, ·) = δθ(x) onE = R

d where θx = rx with r ∈ (0, 1).
It satisfies (7.2) but does not verify (7.4) (indeed infu∈A(P ) ress(P |buB) = 1 by
Theorem 4.6).

Proof. We prove (7.3) by two steps.

1) Let n ≥ 1 be arbitrary but fixed. For any ε > 0 and x, y ∈ E, there are two
E-valued random variables Xn(x),Xn(y) of laws Pn(x, ·), P n(y, ·) respectively,
defined on a same probability space (�,F,P)), such that

Eρ(Xn(x),Xn(y))
p ≤ [ρ(x, y)R(r0 + ε)n]p.

Using (a+ b)p ≤ (1+ ε)p−1ap + ((1+ ε)/ε)p−1bp (∀a, b ≥ 0), we get from the
estimation above (with y = x0) that for u(x) = 1+ ρ(x, x0)

p,

Pnu(x) ≤ 1+
(

1+ ε
ε

)p−1

Eρ(Xn(x0), x0)
p + (1+ ε)p−1

Eρ(Xn(x),Xn(x0))
p

≤
(

1+ ε
ε

)p−1 ∫

E

u(x)P n(x0, dx)+ (1+ ε)p−1[ρ(x, x0)R(r0 + ε)n]p.

The first term at the last line above is a finite constant. Hence u ∈ A(P n). Moreover
letting KL := {x; ρ(x, x0) ≤ L} which is compact, we have for L sufficiently
large,

1KcL(x)
P nu(x)

u(x)
≤ ε + (1+ ε)p−1Rp(r0 + ε)np.

Since |ap − bp| ≤ p|a − b|(ap−1 + bp−1) (a, b ≥ 0), we have

|Pnu(x)− Pnu(y)|
≤ pEρ(Xn(x),Xn(y))

(
ρ(Xn(x), x0)

p−1 + ρ(Xn(y), x0)
p−1

)

≤ p‖ρ(Xn(x),Xn(y))‖p ·
(
‖ρ(Xn(x), x0)‖p−1

p + ‖ρ(Xn(y), x0)‖p−1
p

)

and ‖ρ(Xn(x), x0)‖p is locally bounded (a consequence of u ∈ A(P )),Pnu is con-
tinuous (for all n ≥ 1). Hence by Remarks (3.vi), Pu(x, dy) :=
[u(y)/u(x)]P(x, dy) satisfies (A2). We can thus apply Theorem 3.11(a) to con-
clude that

ress(P |buB) =
(
ress(P

n|buB)
)1/n ≤

(
ε + (1+ ε)p−1Rp(r0 + ε)np

)1/n
.

Letting at first ε→ 0+ and next n→∞, we obtain (7.3).
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This implies that P has an invariant probability measure µ such that µ(u) <
+∞, by Proposition 4.2(b) (applied to Pu) or Theorem 4.6. By condition (7.2),
invariant probability measure of P is unique.
2) Note that rexp(P |buB) ≥ ress(P |buB). If rexp(P |buB) = ress(P |buB), then (7.4)
follows by (7.3). Assume then rexp(P |buB) > ress(P |buB).

Fix r ∈ (ress(P |buB), rexp(P |buB)) such that 
r := {λ ∈ C : |λ| = r} does
not contain spectral point of P |buB. Consider the sum r of the eigen-projections
Eλj where {λj ; j} = {λ ∈ σ(P |buB); |λ| > r}.

By rexp(P |buB) > r > ress(P |buB), the dimension of the range ofr , denoted
by m + 1, is finite and not less than 2, i.e., m ∈ [1,+∞). Now by (2.3) and
Proposition 4.2 (applied to Puf := (1/u)P (uf )), there are

• a basis {fk}0≤k≤m of the range of r where f0 = 1 and,
• a basis (νk)0≤k≤m of the range of ∗r composed of complex valued measures

with
∫
E
udνk well defined, where ν0 = µ,

such that 〈νk, fl〉 = δkl (i.e., 1 if k = l and 0 otherwise) for all 0 ≤ k, l ≤ m and

rf =
m∑

k=0

〈νk, f 〉fk = µ(f )+
m∑

k=1

〈νk, f 〉fk, ∀f ∈ buB.

A crucial consequence of the fact above is: there exists some h : E→ R ρ-Lip-
chitzian such thatrh−µ(h) �= 0 (otherwise for each k = 1, · · · ,m, 〈νk, f 〉 = 0
for any ρ-Lipchitzian function f , which would imply νk = 0, a contradiction with
the fact that “m ≥ 1”).

Now we can conclude easily: on one hand we have by (2.3)

lim
n→∞

‖Pn(rh− µ(h))‖u
rn

= +∞,

and on the other hand, by condition (7.2), for all n ≥ 1, x, y ∈ E,

|Pnh(x)− Pnh(y)| ≤ ‖h‖Lip ·Wρ
1 (P

n(x, ·), P n(y, ·)) ≤ ‖h‖Lipρ(x, y)Rrn0 ,

(where ‖h‖Lip := supx �=y |h(x)− h(y)|/ρ(x, y)) which implies that

lim sup
n→∞

‖Pn(rh− µ(h))‖u
rn0

≤ ‖r‖u · lim sup
n→∞

sup
x∈E
|Pnh(x)− ∫

E
Pnh(y)dµ(y)|

[1+ ρ(x, x0)p]rn0
< +∞

where ‖r‖u is the operator norm in buB. Combining those two facts we have
limn→∞ rn0 /r

n = +∞, i.e., r < r0. Since there is a sequence of such (r = rm)

increasing to rexp(P |buB), we get hence rexp(P |buB) ≤ r0.
The proof of (7.5) is similar to Step 2 above (Note: we have no longer control

(7.3) about ress(P |Lp(µ)), that explains why ress(P |Lp(µ)) appears in the r.h.s. of
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(7.5)). Indeed we may assume that rexp(P |Lp(µ)) > ress(P |Lp(µ)) (trivial other-
wise). For r strictly between ress(P |Lp(µ)) and rexp((P |Lp(µ)) such that 
r does
not contain spectral point of P |Lp(µ), define r in the same way as above. Now

rf = µ(f )+
m∑

k=1

〈gk, f 〉µfk

where (fk)1≤k≤m (resp. (gk)1≤k≤m) is a basis of the range of r − µ (resp. of
(r)

∗ −µ acting on the dual Lp
′
(µ) of Lp(µ)), andm ≥ 1. Now for the argument

in Step 2 above works, it suffices to notice that every ρ-Lipchitzian function h
belongs to Lp(µ) (for ρ(x, x0)

p ∈ L1(µ(dx))). ��
Coupling method produces the geometric convergence of type (7.2), as shown

by the following simple observation which should be well known.

Proposition 7.3. Let P be a Markov kernel on E with a compatible metric ρ, and
p ∈ [1,+∞). Assume that there is a coupling of P , i.e., a Markov kernel Q on
E × E verifying: for all A,B ∈ B and (x, y) ∈ E × E,

(i) Q((x, y), A× E) = P(x,A) and Q((x, y), E × A) = P(y,A)
(ii) Q((x, x), A× B) = P(x,A⋂

B),

such that for some r0 ∈ (0, 1),

Qρp(x, y) ≤ (r0)pρ(x, y)p, ∀(x, y) ∈ E × E, x �= y. (7.6)

Then (7.2) is satisfied with the same r0 and R = 1.

Proof. Let (Zn(x, y) = (Xn(x), Yn(y)))n≥0 be the Markov chain defined on (� =
(E × E)N,P) with initial point (x, y) and transition kernel Q (that determines
the law P). Then (Xn(x)), (Yn(y)) are respectively a Markov chain with the same
transition kernel P , but with initial point x, y respectively (by condition (i) onQ).

Note that (7.6) is indeed valid for x = y too, by condition (ii) on Q. Thus

Eρ(Xn(x), Yn(y))
p = Qnρp(x, y) ≤ (r0)npρ(x, y)p

where (7.2) follows. ��
Remarks (7.v). The geometric convergence of type (7.2) can be naturally derived
from Lyapunov exposant in the point of view of random dynamical systems, too.
See examples in the next section.

8. Applications: several concrete models

8.1. Forward recurrence time chain

This model (see [31], Chap.2) is given as:E = N
∗ and the Markov transition kernel

P(1, j) = pj , j ≥ 1(regeneration distribution), P (k, k − 1) = 1, ∀k ≥ 2.
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It is known ([31], Chap.16) that P is geometrically ergodic iff
∑
j r
−jpj < +∞

for some r < 1. Assume then

r0 := inf{r > 0;
∑

j

r−jpj < +∞} = lim sup
j→∞

(pj )
1/j < 1. (8.1)

Let us show that

ress(P |burB) ≤ r,∀r > r0

where ur(x) := (1/r)x . It follows simply from

Pur(x) = 1x=1

∑

j≥1

r−jpj + 1x>1rur(x)

and Theorem 3.11(a).
On the other hand, notice that for each N ≥ 2,

E
x=1

(
1

r

)τ[1,N ]

= 1

r

N∑

j=1

pj +
∑

j>N

pj r
−(j−N)

which is infinite if 0 ≤ r < r0. Hence by Corollary 3.13, we have

r0 ≤ inf
u∈A(P )

ress(P |buB) ≤ ress(P |burB) ≤ r, ∀r > r0. (8.2)

Thus for this model, r0 = infu∈A(P ) ress(P |buB). Assume moreover that the num-
ber of j : pj > 0 is infinite, the locally uniform LDP holds for (Ln) iff r0 = 0 (by
Theorem 6.4).

Remarks (8.i). This simple example serves as a counter-example to remarks already
done in §3. Indeed, without any condition on (P (1, j) = pj ), we have

1. For ur(x) := (1/r)x where r > 0 is arbitrary, we see that P(1[2,+∞)ur )(x) =
rur(x) for allx ≥ 2. One might applyTheorem 3.11(a.ii) to derive ress(P |burB) =
0, a false fact once if r0 > 0. Where is the question? The answer resides in the
condition that ur ∈ A(P ), required for applying Theorem 3.11(a.ii).

2. For anyN ≥ 1 and x ∈ N
∗, we have Px(σ[1,N ] > n) = 0 for all n large enough.

Hence the r.h.s. of (3.22) in Lemma 3.12 with σK in place of τK equals to zero.
In other words, equality (3.22) in Lemma 3.12 with σK in place of τK is in
general false.

8.2. (Reflected) Random Walk on R
+ or N.

In this model, E = R
+ or N, and our Markov process, given X0 = x ∈ E, is

defined recursively by

Xn+1(x) = (Xn(x)+Wn)
+
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where (Wn)n≥1 is a sequence of i.i.d.r.v. valued in R or Z, defined on some proba-
bility space (�,F,P). Write always W = W1. Assume that

EW < 0 and the distribution of W is absolutely continuous if E = R
+. (8.3)

It entails that its transition kernelP(x, dy) is strongly Feller (indeed x → P(x, ·) is
continuous fromE to (M1(E), ‖·‖var )). Under that condition and the irreducibility,
the chain is positive recurrent (this positive recurrence implies also EW < 0).

Consider the log-Laplace transform�W(λ) := log EeλW valued in (−∞,+∞].

Proposition 8.1. For the reflected random walk described above, assume (8.3).

(a) we have

inf
u∈A(P )

ress(P |buB) = exp(−�∗W(0)) = inf
a≥0

EeaW . (8.4)

where �∗W(z) := sup{λz−�W(λ); λ ∈ R} is the Fenchel-Legendre transfor-
mation of �W . In particular,

inf
u∈A(P )

ress(P |buB) < 1⇐⇒ ∃a > 0 : EeaW < +∞;
inf

u∈A(P )
ress(P |buB) = 0⇐⇒ P(W > 0) = 0. (8.5)

(b) If a > 0 is such that EeaW < 1, then for ua(x) := eax ,

rexp(P |buaB) ≤ EeaW (8.6)

and the equality holds for a = a0 if Eea0W = infa≥0 EeaW < 1.

Proof. We shall prove it only in the case where E = R
+.

(a) Its proof is divided into three points.
1) We first prove (8.5) by assuming that (8.4) is true.

Since �W(λ) is convex on R, we always have

�W(λ) ≥ λEW.
Since EW < 0, that implies �∗W(0) = − infλ≥0�W(λ) and �∗(EW) = 0. Con-
sequently �∗W(0) > 0 iff ∃λ > 0 : EeλW < 1 iff ∃a > 0 : EeaW < ∞ (by
“EW < 0”), the first claim in (8.5).

Let us show �∗W(0) = +∞ iff P(W > 0) = 0. Indeed �∗W(0) = +∞ iff
infa≥0 EeaW = 0. If P(W > 0) = 0 = P(W ≥ 0) (by the absolute continuity),
then 0 ≤ infa≥0 EeaW ≤ lima→+∞ EeaW = 0.

Inversely note that if infa≥0 EeaW = 0, that infimum can not be attained at
any finite a ∈ R

+. Then by the convexity of a → EeaW , 0 = infa≥0 EeaW =
lima→+∞ EeaW which implies eaW → 0 in probability as a→+∞. Thus P(W ≥
0) = 0.
2) Let us show

inf
u∈A(P )

ress(P |buB) ≤ exp(−�∗W(0)).
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The inequality above holds trivially when �∗W(0) = 0 or equivalently A = 0,
where A := sup{a ≥ 0;EeaW < +∞} (by Step 1). Assume then A > 0. In that
case, for each 0 < a < A, ua(x) := eax verifies

P(1(0,+∞)ua)(x) = Eea(x+W)1[x+W>0] ≤ ua(x)EeaW ,
P (ua)(x) = Eea(x+W)

+ ≤ ua(x)
(
EeaW + 1

)
.

The second control above implies ua ∈ A(P ) as well as u1+ε
a ∈ A(P ) (condi-

tion (3.14)). The first inequality above is the checked drift condition in Theorem
3.11(a.ii). We obtain consequently by Theorem 3.11(a),

ress(PbuaB) ≤ EeaW . (8.7)

Since a → EeaW is convex on [0, A], inf0<a<A EeaW = inf0≤a≤A EeaW =
exp(−�∗W(0)), we obtain the desired inequality.
3) We show now the inverse inequality infu∈A(P ) ress(P |buB) ≥ exp(−�∗W(0)).
Assume without loss of generality that�∗W(0) < +∞ or equivalently P(W > 0) >
0. For any N ≥ 0 and each x > N fixed, letting Sn := W1 + · · · +Wn, we have

Px(τ[0,N ] > n) = P(x + Sk > N; ∀k = 1, · · · , n)
≥ P (Sk > 0, ∀k = 1, · · · , n)

for all n ≥ 1. By Lemma 8.2 below, and noting that �∗W is non-decreasing on
[EW,+∞), we obtain for all x > N ,

lim sup
n→∞

[
Px(τ[0,N ] > n)

]1/n ≥ e−�∗W (0).

Now by Corollary 3.13, we get

inf
u∈A(P )

ress(P |buB) ≥ exp(−�∗W(0))

the desired inverse inequality.
(b) Construct a coupling Markov kernel Q((x, y); ·) of P by

Q((x, y) ∈ A× B) := P((X1(x),X1(y)) ∈ A× B), ∀A,B ∈ B
whereX1(x) (recalling it) is x+W for all x ∈ E. Put ρ(x, y) = |eay − eax | which
defines a compatible metric on E = R

+, where a > 0 is such that EeaW < 1.
Noting that

0 ≤ ea(y+w)+ − ea(x+w)+ ≤ (eay − eax)eaw, ∀w ∈ R, x < y

(easy if one divides its verification into three cases: w ≤ −y or w ≥ −x or
w ∈ (−y,−x)), we have for 0 ≤ x < y,

(Qρ)(x, y) = Eea(y+W)
+ − Eea(x+W)

+ ≤ ρ(x, y)EeaW

and same for x > y ≥ 0. In other words condition (7.6) in Proposition 7.3 is
verified. Hence (8.6) follows by Propositions 7.3 and 7.2. ��
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The following lemma, used in the proof of part (a) above, reinforces the classical
Cramer theorem.

Lemma 8.2. Let (Wn)n≥0 be a sequence of real i.i.d.r.v. defined on (�,F,P) with
P(W > 0) > 0, and Sn :=∑n

k=1Wk . Then

lim
n→∞

1

n
log P (Sk > 0,∀k = 1, · · · , n) = − inf

x≥0
�∗W(x). (8.8)

Proof. 1) The “≤” is known. Indeed, by the Cramer theorem without moment
condition in [11], we have

lim sup
n→∞

1

n
log P (Sk ≥ 0,∀k = 1, · · · , n)

≤ lim sup
n→∞

1

n
log P

(
Sn

n
≥ 0

)

≤ − inf
x≥0

�∗W(x).

2) We prove now

lim inf
n→∞

1

n
log P (Sk > 0,∀k = 1, · · · , n) ≥ − inf

x>0
�∗W(x).

In Sanov theorem’s approach of Cramer’s theorem developed in [45], we have
proved that for any open G ⊂ R,

inf
x∈G

�∗W(x) = inf

{

h(ν, µ);
∫

R

|x|dν(x) < +∞,
∫

R

xdν(x) ∈ G
}

(8.9)

where µ = L(W) (the law of W = W1), and for any probability measure ν,

h(ν;µ) :=
{∫

R

dν
dµ

log dν
dµ
dµ, if ν � µ

+∞ otherwise

is the relative entropy. Thus it is sufficient to show that

lim inf
n→∞

1

n
log P (Sk > 0,∀k = 1, · · · , n) ≥ −h(ν;µ) (8.10)

for any probability measure ν such that
∫
R
|x|dν(x) < +∞ and

∫
R
xdν(x) > 0 and

h(ν;µ) < +∞. The following method is standard in the theory of large deviation
for treating lower bound.

Without loss of generality assume that (� = R
N
∗
,P = µ⊗N

∗
) and (Wn(ω) =

ωn) is the system of coordinates. Let Q = νN
∗
. On Fn = σ(Wk; 1 ≤ k ≤ n), we

have

dQ

dP
|Fn
= exp

(
n∑

k=1

log
dν

dµ
(Wk)

)

.
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Putting

An := [Sk > 0,∀k = 1, · · · , n] ,

Bn,ε :=
[

n∑

k=1

log
dν

dµ
(Wk) ≤ n(h(ν;µ)+ ε)

]

,

where ε > 0 is arbitrary (independent of n), we get thus

P (An) ≥
∫

�

exp

(

−
n∑

k=1

log
dν

dµ
(Wk)

)

1AndQ ≥ e−n(h(ν;µ)+ε)Q(An
⋂
Bn,ε).

Consequently for (8.10), it remains to show that Q(Bn,ε) → 1 and
limn→∞Q(An) > 0. The first is a consequence of the law of large number. The
second is a well known fact in random walks (for E

QW > 0), see e.g. [6], §5.4,
Theorem 2.
3) It remains to establish infx≥0�

∗
W(x) ≥ infx>0�

∗
W(x). It is obviously true

if �∗W(0) = +∞. Assume then �∗W(0) < +∞. Note that condition P(W >

0) > 0 implies that �∗(a) < +∞ for some a > 0 by (8.9) (taking ν(dx) =
1(0,L)(x)µ(dx)/µ((0, L)) with µ((0, L)) > 0). Then �∗W < +∞ on [0, a] (by
convexity), and consequently �∗W is continuous on [0, a] (by the convexity and
lower semi-continuity of �∗W ). The proof is completed. ��

Let us present three explicit examples:

Example 8.3. LetE = N, P(W = 1) = p = 1−P(W = −1) =: 1−q with q > p.
By a simple calculus, infa≥0 EeaW = 2

√
pq, and it is attainted at a0 = log

√
q/p.

Thus by Proposition 8.1 and (8.7),

inf
u∈A(P )

ress(P |buB) = ress(P |bu0B) = rexp(P |bu0B) = 2
√
pq

where u0(x) = (
√
q/p)x for all x ∈ E = N. This model is moreover symmetric

w.r.t. its unique invariant probability measure µ given by µ(k) = (p/q)kc. Thus

ress(P |L2(µ)) = rexp(P |L2(µ)) = 2
√
pq,

by Remarks (7.ii) (for rexp(P |L2(µ))) and Theorem 5.5 (for ress(P |L2(µ))).
For this example limN→∞(µ([N,+∞)))1/N = p/q, then when p < 1/2 is

sufficiently close to 1/2, the last quantity p/q is close to 2
√
pq =

infu∈A(P ) ress(P |buB). This shows that the lower bound (3.28) of
infu∈A(P ) ress(P |buB) by means of the concentration of invariant measure µ in
Proposition 3.14 (with d(x, y) := |x − y| on N) becomes almost sharp.

Example 8.4. Let E = N, and P(W = 1) = p,P(W = 0) = r,P(W = −1) = q
where 0 < p < q < 1 and p + r + q = 1.

We have that infa≥0 EeaW = 2
√
pq + r , and it is attainted at a0 = log

√
q/p.

Thus by Proposition 8.1 and (8.7),

inf
u∈A(P )

ress(P |buB) = ress(P |bu0B) = rexp(P |bu0B) = 2
√
pq + r
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where u0(x) = (
√
q/p)x for all x ∈ E = N. P is reversible w.r.t. the same

geometric law µ given in the precedent example. Thus for the same reason,

ress(P |L2(µ)) = rexp(P |L2(µ)) = 2
√
pq + r.

Example 8.5. In the above model, let E = R
+, and the law of W is N (m, σ 2)

with m < 0, σ 2 > 0. Then infa≥0 EeaW = exp
(−m2/2σ 2

)
, and it is attained at

a0 = −m/σ 2. Thus by Proposition 8.1 and (8.7),

inf
u∈A(P )

ress(P |buB) = ress(P |bu0B) = rexp(P |bu0B) = exp

(

− m
2

2σ 2

)

where u0(x) = exp
(−mx/σ 2

)
for all x ∈ E = R

+.

8.3. Linear iteration under random perturbation.

We now study a Markov chain with values in R
d (taken from [31], Chap.4), given

by

X0(x) = x, Xn+1(x) = AXn(x)+ BWn+1, ∀n ≥ 0

where (Wn)n∈Z is a sequence of i.i.d.r.v. valued in R
m,A is a matrix d× d and B a

matrix of d ×m(d,m ≥ 1). We assume that (taken from [31], Chap.4, Prop.4.4.3)

[Ad−1B|Ad−2B| · · · |AB|B] is of (full) rank d (8.11)

the law of W is absolutely continuous on R
m. (8.12)

Here [A1|A2| · · · |Ad ] where Ai is of form d × ni , denotes the matrix d × (n1 +
· · · + nd) whose i-th line is the union in order of the i-th lines of A1, · · · , Ad .
They entail (A2) for N = d . Indeed P is obviously Feller. Let us show that PN is
strongly Feller for N = d . Notice that

PN(x, dy) = law of ANx + AN−1BW1 + · · · + ABWN−1 + BWN.

Write YN :=∑N
j=1A

N−jBWj . The idea is to compare it with the Gaussian model
well studied in [31], Chap.4, Prop.4.4.3..

Let (W̃j ) be a sequence of i.i.d.r.v. valued in R
k with the standard Gaussian law

N (0, I ) and ỸN :=∑N
j=1A

N−jBW̃j . It is easy to check that the variance matrix

of ỸN is

N∑

j=1

AN−jBBt (AN−j )t = [AN−1B| · · · |AB|B] · [AN−1B| · · · |AB|B]t

(At denotes the transposition of A). It is non-degenerate once if N ≥ d by (8.11).
Hence the law of ỸN is equivalent to the Lebesgue measure dy on R

d .
In further by assumption (8.12), the law of YN is absolutely continuous w.r.t.

the law of ỸN , then w.r.t. dy too.
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Consequently for N ≥ d , PN(x, dy) = hYN (y − ANx)dy where hYN is the
probability density of YN . But it is well known that x → f (·−ANx) is continuous
from R

d to L1(dy) for any f ∈ L1(dy). Thus PN is strongly Feller.
From the expression of PN(x, dy) above, we see that under (8.13) below, as

N →∞, PN(x, ·) (∀x) converges weakly to the law µ of

∞∑

j=0

AjBW−j .

(this series converges in law, then a.s.). In other words µ is the unique invariant
measure of this Markov chain, and when µ is equivalent to dx, (A3) is verified.

To estimate ress(P ), we begin with a simple observation. If

‖A‖2 := sup{|Ax|; |x| ≤ 1} < 1, E|W | < +∞,
where | · | denotes the Euclidean norm of R

d , then for u1(x) := |x|+1, we see that

Pu1(x) ≤ ‖A‖2u1(x)+ ‖B‖2E|W |
where follows ress(P |bu1B) ≤ ‖A‖2. But this is too rough.

Proposition 8.6. Assume (8.11), (8.12), and

rsp(A) := sup{|λ|; λ is an eigenvalue of A} < 1. (8.13)

(a) Given 1 ≤ p < +∞. If E|W |p < +∞, then for up(x) := 1+ |x|p,

ress(P |bupB) ≤ (rsp(A))p and rexp(P |bupB) = rsp(A). (8.14)

(b) If E|W |p < +∞ for all p ∈ [1,+∞), then

inf
u∈A(P )

ress(P |buB) = 0.

In particular when the density function of
∑∞
j=0 A

jBW−j is moreover dx −
a.e.-positive on R

k , then the empirical occupation measures (Ln) satisfies the
local τ -LDP (stated in Theorem 6.4(a)).

Proof. (a) Note that for any initial point x, y ∈ R
d ,

Xn(x) = ANx +
N∑

j=1

AN−jBWj = ANx + YN, Xn(x)−Xn(y) = AN(x − y).

Then |Xn(x) − Xn(y)| = |AN(x − y)| ≤ ‖AN‖2|x − y|, which implies (7.2)
w.r.t. the Euclidean metric ρ(x, y) = |x − y|. Since E|W |p < +∞, we can apply
Proposition 7.2 and get

rexp(P |bupB) ≤ lim sup
N→∞

(‖AN‖2)1/N = rsp(A)

ress(P |bupB) ≤ lim sup
N→∞

(‖AN‖2)p/N = (rsp(A))p.
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Now for (8.14), it remains to prove that rexp(P |bupB) ≥ rsp(A). This follows from

rexp(P |bupB) ≥ lim sup
n→∞

sup
|x|,|y|≤1

|EXn(x)− EXn(y)|1/n

= lim sup
n→∞

sup
|x|,|y|≤1

|An(x − y)|1/n = rsp(A).

(b) Lettingp→∞ in the first inequality in (8.14), we get infu∈A(P ) ress(P |buB) =
0. Finally the local τ -LDP follows by Theorem 6.4. ��

8.4. Autoregressive Model.

It is given by

Yn := a1Yn−1 + a2Yn−2 + · · · + adYn−d +Wn

where d ≥ 1, aj ∈ R and (Wn)n∈Z is a sequence of real i.i.d.r.v. Then Xn :=
(Yn, · · · , Yn−d+1)

t is R
d -valued Markov chain. Moreover it satisfies

Xn+1 = AXn + BWn

where A = (aij )n×n with a1j = aj , aj1 = 1 for j ≥ 2 and aij = 0 otherwise, and
B = (1, 0, · · · , 0)t . In other words, it is a particular case of the previous model.

In Meyn and Tweedie [31], Prop.4.4.2, it is shown that A,B satisfies the full
rank condition (8.11). And the eigenvalues of A are just a1 and 0 (the algebraic
multiplicity of 0 is d − 1).

Thus Proposition 8.6 applies for (Xn) once if the law ofW = W1 is absolutely
continuous w.r.t. dx and

rsp(A) = |a1| < 1, E|W |p < +∞, for some or for all p ≥ 1.

8.5. A random non-linear dynamical system

Now we study the following non-linear model in R
d (d ≥ 1):

X0(x) = x ∈ R
d , Xn+1(x) = F(Xn(x),Wn+1), n ≥ 0, (8.15)

where

(8.15a) The noise (Wn)n∈Z is a sequence of R
m (m ≥ 1)-valued i.i.d.r.v. defined

on some probability space (�,F,P), such that the law of W = W1 is
absolutely continuous w.r.t. the Lebesgue measure dw on R

m;
(8.15b) F(x,w) ∈ C1(Rd × R

k).

It is the so called nonlinear state space model in [31], Chap.7, where properties
such as irreducibility and periodicity are characterized from the point of view of
topological dynamical system.

Following [31], set F1(x,w1) := F(x,w1) and for k ≥ 2,

Fk(x;w1, · · · , wk) = F (Fk−1(x,w1, · · · , wk−1), wk) : R
d × (Rm)k → R

d .
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The transition probability kernel of this Markov chain is given by

Pnf (x) = Ef (Xn(x)) = Ef (Fn(x;W1, · · · ,Wn)) .

It is obviously Feller.

Lemma 8.7. If for some N ≥ 1,

(
Dw1FN | · · · |DwN−1FN |DwNFN

)
is of full rank d over R

d × (Rm)N (8.16)

where DwkFN is the differential w.r.t. the variable wk (represented as a matrix
d ×m), then PN(x, dy) = pN(x, y)dy and it is strongly Feller.

When F(x,w) = Ax + Bw, we re-find the model in the preceding para-
graph and

(
Dw1FN | · · · |DwNFN

) = (
AN−1B| · · · |AB|B). In other words (8.16)

is exactly an extension of (8.11). But condition (8.16) here is stronger than [31],
Chap.7, (CM3), p156 (because we want the strong Feller property which is stronger
than “T-chain” checked there).

Proof. For each x ∈ R
d , XN(x) = FN(x;W1, · · · ,WN). As the law of

(W1, · · · ,WN), being the product measure of the law ofW , is absolutely continuous
w.r.t. the Lebesgue measure on (Rm)N , then the law of XN(x) =
FN(x;W1, · · · ,WN) is absolutely continuous w.r.t. the Lebesgue measure dy on
R
d by the full rank assumption (8.16). Denote this density by y → pN(x, y).

If xn→ x, we also have pN(xn, y) converges in measure dy to p(x, y). Since∫
Rd
pN(xn, y)dy =

∫
Rd
pN(x, y)dy = 1, we have indeed pN(xn, y)→ pN(x, y)

in L1(dy). Hence x → PN(x, dy) = pN(x, y)dy is continuous from R
d to

(Mb(E), ‖ · ‖var ), which is stronger than the strong Feller property of PN . ��
We are now ready to prove

Proposition 8.8. For the model (8.15), assume (8.16).

(a) Assume that for some p ∈ [1,+∞),

E

(

sup
x∈Rd
|DxF(x;W)|p + |F(0,W)|p

)

< +∞, (8.17)

where |A| := ‖A‖2 for a matrix A. If for some k ≥ 1 and some L > 0,

E sup
|x|≥L

|DxFk(x;W1, · · · ,Wk)|p < 1, (8.18)

then up(x) := 1+ |x|p ∈ A(P ) and

ress(P |bupB) ≤
(

E sup
|x|≥L

|DxFk(x;W1, · · · ,Wk)|p
)1/k

< 1. (8.19)
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(b) If F(0,W) ∈ ⋂
1≤p<+∞ Lp(P), supx∈Rd |DxF(x,W)| ∈ L∞(�,P) and for

some L > 0, k ≥ 1,

‖ sup
|x|≥L

|DxFk(x;W1, · · · ,Wk)‖L∞(�,P) < 1 (8.20)

then

inf
u∈A(P )

ress(P |buB) = 0. (8.21)

Proof. (a) Write simply �k(x) := DxFk(x,W1, · · · ,Wk) = DxXk(x). It is easy
to see that up ∈ A(p) under (8.17). Since |X1(x) − X1(y)| ≤ |x − y| supz∈Rd
|DzF(z,W)|, we see by (8.17) that when |x − y| → 0,

‖X1(x)−X1(y)‖p ≤ |x − y|‖ sup
z∈Rd
|DzF(z,W)|‖p → 0.

Hence Pup is continuous. By Remarks (3.vi), Pup satisfies (A1) as P .
Noting that for |x| ≥ L, |Xk(x) − Xk(Lx/|x|)| ≤ sup|z|≥L |�k(z)| · |x|, we have
for any ε > 0 (using (a + b)p ≤ (1+ ε)p−1ap + [(1+ ε)/ε]p−1bp for a, b ≥ 0),

P kup(x) = 1+ E|Xk(x)|p ≤ 1+ E

(

sup
|z|≥L
|�k(z)| · |x| + sup

|y|≤L
|Xk(y)|

)p

≤ 1+ (1+ ε)p−1
E

(

sup
|z|≥L
|�k(z)|

)p

· up(x)

+
(

1+ ε
ε

)p−1

E sup
|y|≤L

|Xk(y)|p.

Hence by Theorem 3.11(a) applied to P k ,

ress(P
k|bupB) ≤ (1+ ε)p−1

E

(

sup
|z|≥L
|�k(z)|

)p

.

Using the fact that ress(P k|bupB) = ress(P |bupB)k and since ε > 0 is arbitrary, we
so obtain (8.19).

(b) By (8.19), we have for any p ∈ [1,+∞),

ress(P |bupB) ≤
(

‖ sup
|x|≥L

|DxFk(x;W1, · · · ,Wk)|‖L∞(�,P)
)p/k

where (8.21) follows by assumption (8.20) and by letting p→+∞. ��
Remarks (8.iii). In the linear model treated previously, F(x,w) = Ax +BW , we
have DxFk(x,W1, · · · ,Wk) = Ak which does not depend on (Wj ). Hence con-
ditions (8.18) and (8.20) are identical to (8.13), and part (b) extends Proposition
8.6(b).
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Remarks (8.iv). Let us compare this result with Meyn and Tweedie [31], Theorem
16.2.7. Assume that the density hW of W , is lower semi-continuous. Let

A+(x) = {Fk(x,w1, · · · , wk); k ≥ 1, (w1, · · · , wk) ∈ Ok
w}

where Ow := {hW > 0}. Suppose that there is a unique closed set M ⊂ R
d such

that

A+(x) = M, ∀x ∈ M (8.22)

(the so calledM-irreducibility, which is equivalent to the µ- irreducibility of (Xn),
see [31], Theorem 7.2.6). With all assumptions above and (CM3) in [31] mentioned
before (instead of the stronger (8.16) here), Theorem 16.2.7 in [31] says that when
M is compact (i.e., the Lagrange stability there), then P |M is Doeblin recurrent
(under our strong condition (8.16), (P |M)k becomes compact for k sufficiently
large by Lemma 8.7 and Proposition 3.2(g)).

The main gains in our proposition are

• removedness of the irreducibility assumption;
• the compactness of M is substituted by (8.18) or (8.20);
• an explicit estimate of ress(P );
• in the irreducible (8.22) and aperiodic case, our result says that the geometrical

ergodicity holds for every initial state x in the whole space R
d , not restricted to

M . The last point is interesting because a priori M is unknown (but I believe
that this is known to specialists).

Corollary 8.9. Suppose that the conditions in Proposition 8.8(b) are satisfied, and
the density function hW ofW is lower semi-continuous. Assume theM-irreducibil-
ity. Then restricted our process (Xn) to M , the empirical measures (Ln) satisfies
the locally uniform LDP on (M1(M), τ ) with rate function JM(ν) = J (ν), ∀ν ∈
M1(M).

Proof. Restricted to M , P |M satisfies (A3) too. Then the locally uniform LDP on
(M1(M), τ ) follows by Theorem 6.4 and Proposition 8.8(b). ��

We now present a direct corollary of Theorem 3.5 to the uniform ergodicity.

Corollary 8.10. For the model (8.15), assume (8.16). If for some k ≥ 1,
∫ +∞

0

k(r)dr < +∞, P − a.s. (8.23)

where 
k(r) := sup|x|=r |Fk(x,W1, · · · ,Wk)|, then ress(P |bB) = 0. In particular
if (Xn) is M-irreducible, then it is Doeblin recurrent, and restricted to M , (Xn)
satisfies the uniform τ -LDP.

Proof. For any L > 0, if |x| > L, then

|Xk(x)−Xk(Lx/|x|)| ≤
∫ |x|

L


k(r)dr
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where it follows

sup
|x|>L

|Xk(x)| ≤ sup
|z|≤L
|Xk(z)| +

∫ +∞

L


k(r)dr.

Consequently

sup
x∈Rd

P k(x;B(0, 2N)c) ≤ P

(

sup
|z|≤L
|Xk(z)| ≥ N

)

+P

(∫ +∞

L


k(r)dr ≥ N
)

−→ 0

as N goes to infinity. In other words βw(P k) = 0. Then the desired result follows
from Theorem 3.5.

Finally restricted to the irreducible set M , (A3) is satisfied. Thus the uniform
τ -LDP follows from Theorem 6.3. ��

We turn now to estimate the geometric convergence rate of this model. Using
the notations of the proof of Proposition 8.8, we have

|Xn(x)−Xn(y)| ≤ sup
z∈Rd
|�n|(z)|x − y|.

Thus ‖Xn(x) − Xn(y)‖p ≤ ‖ supz∈Rd |�n|(z)‖p · |x − y|. Consequently for and
the usual Euclidean metric ρ on E = R

d , we have

Wp

(
Pn(x, ·), P n(y, ·)) ≤ E‖ sup

z∈Rd
|�n|(z)‖p · |x − y|, ∀n ≥ 1, x, y ∈ R

d .

(8.24)

In further noting that

�n+m(x;W1, · · · ,Wn+m) = DxFm(Xn(x);Wn+1, · · · ,Wn+m)
= �m(Xn(x);Wn+1, · · · ,Wn+m)
·�n(x;W1, · · · ,Wn)

we have by independence

‖ sup
z∈Rd
|�n+m|(z)‖p ≤ ‖ sup

z∈Rd
|�n|(z)‖p · ‖ sup

z∈Rd
|�m|(z)‖p

i.e., this quantity is sub-multiplicative. By Proposition 7.2, we obtain thus

Proposition 8.11. For the model (8.15), if moreover E|F(0,W)|p < +∞ for some
p ∈ [1,+∞), then up(x) := 1+ |x|p ∈ A(P ) and

rexp(P |bupB) ≤ inf
n≥1

(

‖ sup
x∈Rd
|DxXn(x)|‖p

)1/n

. (8.25)

The quantity at the r.h.s. of (8.25) is the largest Lyapunov exposant.
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8.6. A bordline case

Consider now the random perturbed dynamical system

X0(x) := 0, Xn+1(x) = f (Xn(x))+Wn+1, n ≥ 0, (8.26)

where

(8.26a) (Wn)n≥0 is a sequence of i.i.d.r.v. valued in R
d , such that the law of

W = W1 is absolutely continuous w.r.t. the Lebesgue measure and EW = 0;
(8.26b) f : R

d → R
d is measurable and locally bounded.

It is a particular case of the preceding model with F(x,w) = f (x) + w (except
that “f ∈ C1” is not imposed here). Once if f ∈ C1 and

sup
|x|≥L

|Dxf (x)| < 1, for some L > 0, (8.27)

Condition (8.18) and (8.20) are satisfied, and infu∈A(P ) ress(P |buB) = 0 by Prop-
osition 8.8(b). We now treat a bordline case where f (x) ∼ x for large |x|.
Proposition 8.12. For the model (8.26), assume that d = 1. Set

v++ := lim sup
x→+∞

(f (x)− x); v+− := lim inf
x→+∞(f (x)− x);

v−+ := lim sup
x→−∞

(f (x)− x); v−− := lim inf
x→−∞(f (x)− x)

which take values in [−∞,+∞]. Let �∗W be as in Proposition 8.1.

(a) If v+− > −∞ and v−+ < +∞,

inf
u∈A(P )

ress(P |buB) ≥ max
{
e− infz>−v+− �∗W (z); e− infz<−v−+ �∗W (z)

}
.

(8.28)

In particular if v+− ≥ 0 or v−+ ≤ 0, then infu∈A(P ) ress(P |buB) = 1.
(b) Assume moreover that −1x>0f (x), 1x<0f (x) ≤ C, i.e., upper bounded. If
−v++, v−− > 0 (may be infinite), then

inf
u∈A(P )

ress(P |buB) ≤ exp
(−�∗W(−v++−) ∧�∗W(−v−−+)

)
(8.29)

where �∗W(a+) := limz→a+�∗W(z) and �∗W(a−) := limz→a−�∗W(z).
(c) If v++ = v+− ∈ (−∞, 0) and v−+ = v−− ∈ (0,+∞), then

inf
u∈A(P )

ress(P |buB) = exp
(−�∗W(−v++) ∧�∗W(−v−−)

)
. (8.30)

We leave the verification of the following elementary remarks to the reader.

Remarks (8.v). By part (a) of this proposition, we have infu∈A(P ) ress(P |buB) = 1
in each of the following cases:

(i) v+− ≥ 0 or v−+ ≤ 0;
(ii) v+− < 0 and v−+ > 0, but 0 is not an interior point of {a : EeaW < +∞}.

In particular if 0 /∈ {a; EeaW < +∞}0, then infu∈A(P ) ress(P |buB) = 1.
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Remarks (8.vi). In case (c) above, intuitively−v++ (resp. v−−) is the mean asymp-
totic velocity of (Xn(x)) to the direction of the origin when x → +∞ (resp.
x → −∞). In case (c), infu∈A(P ) ress(P |buB) < 1 iff EeaW < +∞ for a belong-
ing in some neighborhood of 0.

In case (b) of this proposition, infu∈A(P ) ress(P |buB) < 1 if EeaW < +∞ for
a belonging in some neighborhood of 0.

Remarks (8.vii). In case of part (b) of this proposition, if 0 is an interior point of
{a : EeaW < +∞}, we have infu∈A(P ) ress(P |buB) = 0 in each of the following
cases:

(i) v++ = −∞ and v−− = +∞;
(ii) v++ ∈ (−∞, 0) and v−− = +∞, and P(W > −v++) = 0 (see the proof in

Step 4) below).
(iii) v++ = +∞ and v−− ∈ (0,+∞) and P(W < −v−−) = 0;
(iv) v++ ∈ (−∞, 0), v−− ∈ (0,+∞) and P(W > −v++) = P(W < −v−−) =

0.

From the remarks above, we see that the exponential integrability ofW plays an
essential role in the estimate of ress(P ) in the actual critical case: that is completely
different from the situation of Proposition 8.8.

Proof of Proposition 8.12. First of all notice that (A1) is satisfied by this model
(but not (A2) for f may be non-continuous).

1) Our trick is to use comparison technique. Given constant c ∈ R, consider a new
Markov chain Xc(x) = (Xcn(x))n≥0 given by

Xc0(x) = x, Xcn+1(x) = Xcn(x)+ c +Wn+1, ∀n ≥ 0. (8.31)

Denote by (Xn(x)) our chain given by (8.26) with X0(x) = x. We shall prove the
following simple facts.

(1) If f (x) ≤ x + c for all x ≥ N > 0, then for all x > N ,

Xn(x) ≤ Xcn(x), ∀0 ≤ n < σ(−∞,N ](X(x)).

(2) If f (x) ≥ x + c for all x ≥ N > 0, then for all x > N ,

Xn(x) ≥ Xcn(x), ∀0 ≤ n < σ(−∞,N ](X
c(x)).

(3) If f (x) ≤ x + c for all x ≤ −N < 0, then for all x < −N ,

Xn(x) ≤ Xcn(x), ∀0 ≤ n < σ[−N,+∞)(Xc(x)).

(4) If f (x) ≥ x + c for all x ≤ −N < 0, then for all x < −N ,

Xn(x) ≥ Xcn(x), ∀0 ≤ n < σ[−N,∞)(X(x)).
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Here we give only the proof of (1). Indeed it is obviously true for n = 0. By
recurrence assume that Xn(x) ≤ Xcn(x) where 0 ≤ n < σ(−∞,N ](X(x)). Then
Xn(x) > N and we have

Xn+1(x) = f (Xn(x))+Wn+1 ≤ Xn(x)+ c +Wn+1

≤ Xcn(x)+ c +Wn+1 = Xcn+1(x),

the desired result.
2) We show now part (a). For any c < v+−, there is some N > 0 such that
f (x) > x + c for all x ≥ N . By point (2) above, we have for all x > N ,

P
(
σ(−∞,N ](X(x)) > n

) ≥ P
(
σ(−∞,N ](X

c(x)) > n
)
.

Note that Xcn(x) = x +
∑n
k=1(Wk + c) and

[
σ(−∞,N ](X

c(x)) > n
] ⊃

[
m∑

k=1

(Wk + c) ≥ 0, ∀m = 1, . . . , n

]

.

By Lemma 8.2 and its proof (2) (without condition P(W > 0) > 0 there), we have

lim inf
n→∞

1

n
log P

(
σ(−∞,N ](X

c(x)) > n
) ≥ − inf

z>0
�∗W+c(z) = − inf

z>0
�∗W(z− c).

Hence for any c < v+−, we have

lim inf
n→∞

1

n
log P

(
σ[−N,N](X(x)) > n

) ≥ lim inf
n→∞

1

n
log P

(
σ(−∞,N ](X(x)) > n

)

≥ − inf
z>−c �

∗
W(z)

where it follows by Corollary 3.13,

inf
u∈A(P )

ress(P |buB) ≥ exp

(

− inf
z>−c �

∗
W(z)

)

.

Letting c ↑ v+−, we obtain

inf
u∈A(P )

ress(P |buB) ≥ exp

(

− inf
z>−v+−

�∗W(z)
)

.

Similarly using point (3), we get

inf
u∈A(P )

ress(P |buB) ≥ exp

(

− inf
z<−v−+

�∗W(z)
)

.

Hence (8.28) is proved. For the last claim, we prove it only in the case where
v+− ≥ 0.

• If v+− > 0, then − infz>−v+− �∗W(z) ≥ −�∗W(0) = 0 (for EW = 0).
• If v+− = 0, then by the proof (3) of Lemma 8.2 and the fact that P(W > 0) > 0,

we have − infz>−v+− �∗W(z) = − infz≥0�
∗
W(z) ≥ −�∗W(0) = 0.
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3) We prove now part (b). At first if 0 is not an interior point of [�W < +∞],
then the r.h.s. of (8.29) is 1 (verification left to the reader), i.e., (8.29) holds true
automatically in that case. Assume then 0 is an interior point of [�W < +∞].

Let ua(x) := eax where a > 0 verifies EeaW < +∞. For any 0 > c1 > v++,
there is some N1 > 0 such that for all x > N1, f (x) < x + c1. We have

Pua(x) = Eea(f (x)+W) ≤ 1[x>N1]ua(x)e
ac1+�W(a) + 1[x≤N1]Ee

a(f (x)+W).

Similarly let u−b(x) := e−bx where b > 0 verifies Ee−bW < +∞. For any
0 < c2 < v−−, there is some N2 > 0 such that for all x < −N2, f (x) > x + c2.
We have

Pu−b(x) = Ee−b(f (x)+W)

≤ 1[x<−N2]u−b(x)e−bc2+�W(−b) + 1[x≥−N2]Ee
−b(f (x)+W).

By our extra assumption on f (x) and our choices of a, b,

1[x≤N1]Ee
a(f (x)+W) + 1[x≥−N2]Ee

−b(f (x)+W) ≤ L
(L depends on C, a, b,N1, N2 etc). Consequently

P(ua(x)+ ub(x)) ≤ 1x /∈[−N2,N1](ua(x)+ ub(x))
× max{eac1+�W(a), e−bc2+�W(−b)} + L

where it follows by Theorem 3.11 that

inf
u∈A(P )

ress(P |buB) ≤ max{eac1+�W(a), e−bc2+�W(−b)}

for any 0 < a ∈ [�W < +∞], any 0 > −b ∈ [�W < +∞]. Taking the infimum
of the r.h.s. above over all such a, b, we obtain (by noting that−c1, c2 > 0 = EW )

inf
u∈A(P )

ress(P |buB) ≤ max{e−�∗W (−c1), e−�
∗
W (−c2)}.

Letting c1 ↓ v++ and c2 ↑ v−−, we obtain the desired result.
4) It remains to show part (c). Since v++ = v+− < 0 and v−+ = v−− > 0
(and finite), we see that−1x>0f (x), 1x<0f (x) are upper bounded. By part (b) and
the lower semi-continuity of �∗W , we have

inf
u∈A(P )

ress(P |buB) ≤ max{e−�∗W (−v++), e−�∗W (−v−−)}.

Thus by part (a), for (8.30), we have only to show that

�∗W(−v++) = inf
z>0

�∗W(−v++ + z), �∗W(−v−−) = inf
z>0

�∗W(−v−− − z).

Here only the first will be proved. For it notice that if P(W > −v++) > 0, this fact
is proved in part (3) of the proof of Lemma 8.2 (for�∗W(−v+++z) = �∗W+v++(z)).
Assume then P(W > −v++) = 0.
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In that case infz>0�
∗
W(−v++ + z) = +∞ by (8.9). Assume by absurd that

�∗W(−v++) < +∞. By the continuity of�∗W on [0,−v++] and (8.9), there exists
a sequence of probability measures (νn) on R such that

∫
R
xdνn(x)→−v++ and

h(νn;µ)→ �∗W(−v++) (whereµ, recalling it, is the law ofW ). Hence νn � µ and
{dνn/dµ} is µ-uniformly integrable. Therefore there is a sub-sequence (nk) such
that {dνnk/dµ} converges to h ∈ L1(R, µ) in the topology σ(L1(µ), L∞) (hmust
be a probability density function). Noting that P(W > −v++) = 0 (assumption),
we have

∫

R

xh(x)dµ(x) =
∫

(−∞,−v++]
xh(x)dµ(x)

= inf
L>0

∫

(−∞,−v++]
[x ∨ (−L)]h(x)dµ(x)

= inf
L>0

lim
k→∞

∫

(−∞,−v++]
[x ∨ (−L)]dνnk (x)

≥ lim sup
k→∞

∫

(−∞,−v++]
xdνnk (x) = −v++.

That is impossible by the absolute continuity of the law µ of W and
µ([−v++,+∞)) = P(W > −v++) = 0. In other words we have shown
�∗W(−v++) = +∞ as desired. The proof is completed. ��

We now present an example to illustrate the results obtained previously.

Example 8.13. In the model (8.26) with d = 1, let f (x) := (a|x|α + b)sgn(x) for
|x| ≥ 1 and f ∈ C1(R), where a > 0 and b, α are real constants. Assume that
Eeδ|W | < +∞ for some δ > 0.

(i) If α < 0, then ress(P |bB) = 0 by Corollary 8.10.
(ii) If α = 0, then βw(P ) = 0, then ress(P |bB) = 0 by Theorem 3.5.

(iii) If α > 0, then lim|x|→∞ |Xn(x)| = +∞ and consequently ress(P |bB) = 1
by Corollary 3.3.

(iv) Ifα < 1, or ifα = 1 but a < 1, then infu∈A(P ) ress(P |buB) = 0 by Proposition
8.8(b).

(v) If α = 1 and a = 1, then

inf
u∈A(P )

ress(P |buB) =
{

1, if b ≥ 0

exp
(−�∗W(−b) ∧�∗W(b)

)
, if b < 0

where the first case and the second follow respectively by part (a) and (c) of
Proposition 8.12.

(vi) Ifα = 1 and a > 1 or ifα > 1, then infu∈A(P ) ress(P |buB) = 1 by Proposition
8.12(a).

Assume moreover that the density function of the law of W is dx-a.e. positive,
(A3) is verified in such case. Then by the table above, the uniform τ -LDP holds iff
α ≤ 0 by Theorem 6.3; and the local τ -LDP holds iff α < 1, or α = 1 but b < 0
with �∗W(−b) ∧�∗W(b) = +∞ (which is equivalen to P(W /∈ [b,−b]) = 0), by
Theorem 6.4.
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9. Proof of results of Sections 3 and 4

9.1. Proof of Proposition 3.2.

In this paragraph, β(P ) := β(P |bB), the measure of non-compactness given in
(2.5), ‖f ‖ = supx∈E |f (x)|, and ‖P ‖ denotes the norm of P on bB.

Proof of Part (a). • βw(P ) ≤ 2β(P ): By the definition (2.5) of β(P |bB), for any
r > 2β(P |bB), there exist a finite number of compacts K1, · · · ,KN such that

min
1≤j≤N

sup
K⊂⊂E

‖P1Kc − P1Kcj ‖ ≤ r.

Setting C = ⋃
j Kj which is again compact, we get from the above relation and

the nonnegativeness of P ,

sup
K: C⊂K⊂⊂E

‖P1Cc − P1Kc‖ ≤ r.

Hence for any x ∈ E,

P(x, Cc) ≤ r + inf
K: C⊂K⊂⊂E

P (x,Kc) = r

by the tightness of the measure P(x, dy). As that inequality holds for all x ∈ E,
we get βw(P ) ≤ ‖P1Cc‖ ≤ r , which is desired inequality for r > 2β(P |bB) is
arbitrary.

We turn now to show (3.3). For any sequence (fn)n≥0 ⊂ Cb(E) decreasing
pointwise to zero over E, with ‖f0‖ ≤ 1 and for any K ⊂⊂ E, we have by
Dini’s monotone convergence theorem that fn converges to zero uniformly over
K . Consequently

lim
n→∞‖Pfn‖ ≤ lim

n→∞‖P(1Kfn)‖ + lim
n→∞‖P(1Kcfn)‖ ≤ ‖P1Kc‖.

As (fn) and K ⊂⊂ E are arbitrary, the desired inequality follows.
We prove the inverse inequality for (3.3) in the locally compact case. Take a

sequence of compacts (Kn) such that Kn ↑ E and Kn ⊂ (Kn+1)
0 (interior). We

may construct continuous fn : E → [0, 1] such that fn|Kn = 0 and fn(x) = 1
for x belonging to (?) the closed setE\(Kn+1)

0. Such sequence (fn) is necessarily
decreasing to 0 pointwise over E. Thus

βw(P ) = lim
n→∞ sup

x∈E
P (x,Kc

n+1) ≤ lim
n→∞‖Pfn‖. ��

Proof of Part (b). Obviously βτ (P ) ≤ sup(fn) limn→∞ ‖Pfn‖. For the inverse
inequality, let (fn)n≥0 be an arbitrary sequence in bB converging pointwise to
zero over E with supn ‖fn‖ ≤ 1. For any ε > 0, let An =

⋃
k≥n[|fk| > ε]. Then

(An) decreases to ∅. Consequently

lim
n→∞‖Pfn‖ ≤ lim

n→∞‖P(1An)‖ + ε‖P ‖ ≤ βτ (P )+ ε‖P ‖

where the desired result follows. ��
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Proof of Part (c). We show now βτ (P ) ≤ 2β(P |bB). Let (An) be an arbitrary
sequence in B decreasing to ∅. By the definition (2.5) of β(P |bB), for any r >
2β(P |bB), there exists some N ≥ 1 such that

min
0≤j≤N

sup
n≥0
‖P1An − P1Aj ‖ ≤ r.

But by the nonnegativeness of P we obtain

sup
n≥N
‖P1AN − P1An‖ ≤ r.

It implies that for any x ∈ E,P1AN (x) ≤ r+ limn→∞ P1An(x) = r (by monotone
convergence). Thus

lim
n→∞‖P1An‖ ≤ ‖P1AN ‖ ≤ r

where the desired inequality follows. ��
Proof of Part (d). They are obvious. ��
Proof of Part (e). The case βτ : For any sequence (An)n≥0 ⊂ B decreasing to ∅,
fn := P1An decreases pointwise to zero over E. For any r > βτ (P ), there exists
some N ≥ 1 such that ‖fN‖ ≤ r . Set gn := fN+n/r ∈ bB, which decreases to
zero with g0 ≤ 1. We have by part (b),

lim
n→∞‖QP1An‖ ≤ r lim

n→∞‖Qgn‖ ≤ r · βτ (Q)

where follows βτ (QP) ≤ βτ (Q)βτ (P ).
The case βw: For any K ⊂⊂ E, since βw(1KP ) = 0 (assumption), by Proko-

rov’s tightness criterion, for any ε > 0, there is some K1 ⊂⊂ E such that

‖1KP1Kc1‖ < ε.

Now for any compact K2 ⊃ K1,

βw(QP) ≤ ‖Q1KP1Kc2‖ + ‖Q1KcP1Kc2‖ ≤ ‖Q‖ε + ‖Q1Kc‖ · ‖P1Kc2‖.
Taking the infimum at first for all compact K2 ⊃ K1 and next over all compact K ,
we obtain

βw(QP) ≤ ‖Q‖ε + βw(Q) · βw(P ).
As ε > 0 is arbitrary, the desired inequality follows. ��
Proof of Part (f). For any sequence (An)n≥0 ⊂ B decreasing to ∅, fn := P1An
decreases pointwise to zero overE, and that convergence is uniform on eachK ⊂⊂
E by the assumption βτ (1KP ) = 0. Consequently

lim
n→∞‖(QP )1An‖ = lim

n→∞‖Q1KcP1An‖ ≤ ‖Q1Kc‖ · βτ (P ).

As (An) and K ⊂⊂ E are arbitrary, part (f) follows. ��
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Proof of Part (g). By Lemma 9.1 below, for anyK ⊂⊂ E, β(Q1KP ) = 0. Hence

β(QP) ≤ β(Q1KP )+ β(Q1KcP ) = β(Q1KcP ) ≤ ‖Q1Kc‖ · ‖P ‖
where it follows β(QP) ≤ βw(Q)‖P ‖. But βτ (Q) = 0 implies βw(Q) = 0, by
Lemma 3.1. Thus β(QP) = 0, the desired result. ��

In the proof of part (g) of Proposition 3.2 above, we have used

Lemma 9.1. If βτ (P ) = 0 = βτ (Q), then QP is a compact operator on bB.

Proof. 1) Claim: if βτ (P ) = 0, then P is a Dunford-Pettis operator (see [30], Def.
3.7.6., p219), i.e., if fn ∈ bB weakly converges to zero, then ‖Pfn‖ → 0.

Indeed, for such sequence (fn), supn ‖fn‖ ≤ C < +∞, and fn(x) → 0 for
every x ∈ E (for δx belongs to the topological dual space (bB)′ of bB). Thus by
Proposition 3.2(a) and our assumption, ‖Pfn‖ → 0.
2) By 1) and [30], Prop. 3.7.11.(i), p221, the image P(B(0, 1)) of the unit ball
B(0, 1) in bB is weakly compact in bB. In other words, P is weakly compact on
bB, and so does Q. But bB is a so called (abstract) M-space, by Schaefer [40]
(Chap. II, §9, Corollary 1, p.128), product QP of two weakly compact operators
on bB is compact. ��

I believe that “βw(P ) ≤ βτ (P )” holds on a Polish space.

9.2. Proof of Theorem 3.5

Proof of Part (b). By Proposition 3.2(a) and (c),

max{βτ (P n), βw(P n)} ≤ 2β(P n|bB).
Then by Nussbaum’s formula (2.7),

max{lim sup
n→∞

[βτ (P
n)]1/n, lim sup

n→∞
[
βw(P

n)
]1/n} ≤ ress(P |bB).

Moreover by Proposition 3.2(e), βτ (Pm+n) ≤ βτ (P
m)βτ (P

n) for all m, n ∈ N.
Thus

lim sup
n→∞

[βτ (P
n)]1/n = lim

n→∞[βτ (P
n)]1/n = inf

n≥1
[βτ (P

n)]1/n.

Hence the first inequality in (3.6) is proved. To prove the second inequality in (3.6),
noting that 1KcP n1Kc ≥ (1KcP1Kc)n, we have

βw(P
n) = inf

K⊂⊂E
‖Pn1Kc‖ ≥ inf

K⊂⊂E
‖1KcP n1Kc‖

≥ inf
K⊂⊂E

‖ (1KcP1Kc)
n ‖. (9.1)

Thus by Gelfand’s formula of spectral radius,

lim sup
n→∞

[βw(P
n)]1/n ≥ inf

n≥1
inf

K⊂⊂E
‖ (1KcP1Kc)

n ‖1/n = inf
K⊂⊂E

rsp (1KcP1Kc)

which is the desired second inequality in (3.6). ��
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Proof of Part (a). At first by Proposition 3.2(e) for βw and by (A1), βw(Pm+n) ≤
βw(P

m)βw(P
n) for all m, n ∈ N. Then

rw(P ) := lim
n→∞[βw(P

n)]1/n = inf
n≥1

[βw(P
n)]1/n.

Let us show ress(P |bB) = rw(P ). By part (b) proved above, ress(P |bB) ≥ rw(P ).
To prove the crucial inverse inequality, notice that for each K ⊂⊂ E, 1KP 2N is
a compact operator on bB by Proposition 3.2(g). Hence from P 2N = 1KP 2N +
1KcP 2N and the invariance of the essential spectrum by compact perturbation (well
known, see Lemma 2.1), we have

σess

(
P 2N |bB

)
= σess

(
1KcP

2N |bB
)
, ∀K ⊂⊂ E.

Consequently

ress (P |bB) =
[
ress

(
P 2N |bB

)]1/2N ≤ inf
K⊂⊂E

[
rsp

(
1KcP

2N |bB
)]1/2N

= inf
K⊂⊂E

inf
k≥1
‖
(

1KcP
2N

)k ‖1/2Nk = inf
k≥1

inf
K⊂⊂E

‖
(

1KcP
2N

)k ‖1/2Nk

≤ lim sup
k→∞

(
‖P 2N‖ · βw(P 2N(k−1))

)1/2Nk

where the last inequality follows from
(
1KcP 2N

)k
1 ≤ P 2N(k−1)(1KcP 2N1) for

k ≥ 2 and the definition of βw. Thus the last inequality above implies

ress (P |bB) ≤ lim sup
n→∞

(
βw(P

n)
)1/n = rw(P )

the desired result. Hence the first equality in (3.5) is proved.
It remains to show: lim supn→∞ (βw(P n))

1/n = infK⊂⊂E rsp(1KcP1Kc). The
“≥” is already proved in part (b). For the inverse inequality, notice that for each
K ⊂⊂ E,

Pn = (1KP + 1KcP )
n = (1KcP )n +

∑

j∈{0,1}n:jk=0 for some k

Aj1 · · ·Ajn

where A0 := 1KP and A1 := 1KcP . Hence By Proposition 3.2(e) for βw and by
(A1), βw(Aj1 · · ·Ajn) = 0 if jk = 0 for some 1 ≤ k ≤ n. Consequently

βw(P
n) = βw

(
(1KcP )

n
) = βw

(
(1KcP1Kc)

n−1 · P
)
≤ ‖(1KcP1Kc)

n−1‖ · ‖P ‖

where it follows

lim sup
n→∞

(
βw(P

n)
)1/n ≤ lim sup

n→∞

(
‖(1KcP1Kc)

n−1‖ · ‖P ‖
)1/n = rsp(1KcP1Kc)

for all K ⊂⊂ E. So the last equality in (3.5) is shown. ��
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9.3. Proof of Theorem 4.6

The classical proof of this theorem in the “U = 1” case given in Revuz [39] is
based on the one-to-one correspondence between bounded space-time harmonic
functions and the tail σ -field of the associated Markov chain. This correspondence
is no longer available because of non-boundedness of functions in bUB. Our proof
below is based on representation of finite Markov matrix.

At first by Proposition 4.5, rsp(P |bUB) = 1. We divide the proof of (4.2) into
three steps.

Step 1. By Proposition 2.3, there is some minimal integer d ≥ 1 such that the
peripherical spectrum {λ ∈ σ(P d); |λ| = 1} is reduced to the singleton {1}. Let
 be the eigenprojection of Q := Pd associated with 1. Since 1 /∈ σess(PN) by
assumption, L := dimRange() < +∞. Let us show that Pd = , i.e., the
algebraic and geometric multiplicities of the eigenvalue 1 ofQ = Pd coincide. To
this end consider the Laurent series of (λI −Q)−1 near 1,

(λ−Q)−1 = A−m(λ− 1)−m + · · · + A−1(λ− 1)−1 +
∞∑

k=0

Ak(λ− 1)k

where A−1 =  and A−k−1 = (Q − I )k ([50], Chap. VIII, §8). We should
prove thatm = 1. Assume in contrary thatA−m �= 0 form ≥ 2 in the development
above. Hence there would be some continuous functional φ on the complexification
of bUB such thatψ := (A−m)∗φ �= 0. Since (Q∗−I )ψ = 0, by Proposition 4.2(a)
(applied to QUf = (1/U)Q(Uf ) on bB), ψ is a nonzero measure ν.

By the Markov property of Q = Pd , for each λ > 1,

(λ− 1)(λ−Q)−1 = (λ− 1)
∞∑

k=0

λ−k−1Qk

is again Markov. Hence A−mf = limλ→1+(λ − 1)m(λ − Q)−1f = 0 for any
bounded f ≥ 0. Consequently for any 0 ≤ f ∈ bB,

〈ν, f 〉 = 〈ψ, f 〉 = 〈φ,A−mf 〉 = 0.

Hence ν = 0 (for ν is a measure), a contradiction.

Step 2. Since Pd =  (proved in the Step above) and rsp(P d −) < 1, there
are C > 0 and r ∈ (0, 1) such that

‖Pnd −‖bUB→bUB ≤ Crn, ∀n ≥ 0. (9.2)

As Qn is nonnegative,  is nonnegative on bUB. Hence there is a basis of
Range() constituted of nonnegative nonzero functions {f1, . . . , fL} ⊂ bUB
such that for any 0 ≤ f ∈ bUB, Ck(f ) ≥ 0, k = 1, . . . , L where Ck(f ), k =
1, . . . , L are determined by

f =
L∑

k=1

Ck(f )fk.
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As1 = limn→∞Qn1 = 1, we may choose (fk) in such a way that
∑L
k=1 fk(x) =

1 for any x ∈ E.
Now note that Pfl = Pfl = Pfl ∈ Range(), then

Pfl =
L∑

k=1

fkakl, akl ≥ 0.

Moreover from

1 = P
L∑

l=1

fl =
L∑

k=1

fk

(
L∑

l=1

akl

)

and the linear independence of (fk),
∑L
l=1 akl = 1 for each k. In other words

A = (Akl) is a Markov matrix, similar to P restricted to Range(). Hence d ≥ 1
is the minimal positive integer such that the only eigenvalue of Ad is 1.

Such Markov matrix A can be represented in the following way: there are
dj ≥ 1 (j = 1, . . . , k) vectors zi,j = (zi,j1 , · · · , zi,jL )t (t means the transposition),
i = 1, . . . , dj such that

(i) (zi,j ; 1 ≤ i ≤ dj , 1 ≤ j ≤ k) is a basis of R
L;

(ii) zi,jl ≥ 0,
∑
i,j z

i,j
l = 1 for each l = 1, . . . , L;

(iii) for all i, j , Azi,j = zi−1,j (for each j fixed, i − l is calculated modulo dj );
(iv) d is the least common multiple of dj , j = 1, . . . , k.

Now set

Ui,j =
L∑

l=1

z
i,j
l fl, 1 ≤ i ≤ dj , 1 ≤ j ≤ k

which constitute a new basis of Range(). We have

PUi,j =
L∑

l=1

z
i,j
l

L∑

k=1

fkakl =
L∑

k=1

fkz
i−1,j
k = Ui−1,j .

In particular, PdUi,j = Ui,j . Moreover
∑
i,j Ui,j = 1 over E.

Step 3. Now for any f ∈ bUB,

f =
∑

i,j

Ci,j (f )Ui,j ,

where φi,j (f ) = Ci,j (f ) defines a nonnegative continuous functional on bUB.
Since 〈φi,j , P df 〉 = 〈φi,j ,P df 〉 = 〈φi,j , f 〉, applying Proposition 4.2 to
QUf := (1/U)Q(Uf ) acting on bB, we see that φi,j must be a nonnegative
measure µi,j such that µi,j (U) < +∞ and µi,jP d = µi,j . Moreover by

1 = 1 =
∑

i,j

µi,j (1)Ui,j ,
∑

i,j

Ui,j = 1
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we get µi,j (1) = 1, and Ei,j = [Ui,j = 1], i, j are pairwise disjoint. By
µi,j (Ui,j ) = 1, µi,j is supported on Ei,j . In summary we have proved

 =
k∑

j=1

dj∑

i=1

Ui,j ⊗ µi,j , P l =
k∑

j=1

dj∑

i=1

Ui−l,j ⊗ µi,j .

Consequently by (9.2), for any l = 0, 1, . . . , d − 1,

‖Pnd+l − P l‖bUB→bUB ≤ ‖Pnd −‖bUB→bUB · max
0≤l≤d−1

‖P l‖bUB→bUB

where (4.2) follows.
The proof of the last claim is the same as in Revuz [39], Chap.6, Theorem 3.7,

so omitted. ��

10. Proof of Theorem 6.1

Part (a). 1) Upper Bound. For anyV ∈ bB, considerPV (x, dy) := eV (x)P (x, dy)
and the Feynman-Kac formula says that

(PV )
n f (x) := E

xf (Xn) exp

(
n−1∑

k=0

V (Xk)

)

.

As in [13] and [46] (Appendix B), introduce the uniform (upper) Cramer functional

�(V ) := lim sup
n→∞

1

n
log sup

x∈E
E
x exp

(
n−1∑

k=0

V (Xk)

)

= lim sup
n→∞

1

n
log ‖(PV )n‖

= log rsp (PV |bB) . (10.1)

By a generalized Ellis-Gärtner theorem, Theorem B.5 in [46], for the good upper
bound of large deviations in part (a) w.r.t. the τ -topology, it suffices to establish the
following monotone continuity of � on bB:

(MC) For any (Vn)n∈N ⊂ bB such that Vn(x) ↓ 0 for all x ∈ E, then�(Vn)→ 0.

To relate that property with the parameter βτ , we note the following simple
inequality

�(V ) ≤ 1

N
log ‖PN(eNV )‖, ∀N ≥ 1. (10.2)
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Indeed, write
∑nN−1
k=0 V (Xk) =

∑N−1
j=0 Sj where Sj := ∑n−1

k=0 V (XkN + j). We
have by Jensen’s inequality

log E
x exp

(
nN−1∑

k=0

V (Xk)

)

= log E
x exp



 1

N

N−1∑

j=0

NSj





≤ 1

N

N−1∑

j=0

log E
x exp

(
NSj

)

≤ 1

N

N−1∑

j=0

log eN‖V ‖
[

sup
x∈E

PN(eNV )(x)

]n−1

where it follows

�(V ) = lim sup
n→∞

1

nN
log sup

x∈E
E
x exp

(
nN−1∑

k=0

V (Xk)

)

≤ 1

N
log ‖PN(eNV )‖,

the desired inequality (10.2).
Having it let us verify (MC). Fix N ≥ 1. For any sequence (Vn) specified

in (MC), fn := eNVn − 1 ≤ eN‖V0‖ decreases pointwise to 0 over E. Thus by
Proposition 3.2(b),

lim
n→∞‖P

N(eNVn)‖ ≤ 1+ eN‖V0‖βτ (PN).

Consequently by (10.2) we have

lim
n→∞�(Vn) ≤ lim

n→∞
1

N
log ‖PN(eNVn)‖

≤ 1

N
log

(
1+ eN‖V0‖βτ (PN)

)
≤ 1

N
eN‖V0‖βτ (PN)

where the desired property (MC) follows by letting N →+∞ and by assumption
rτ (P ) = 0.

2) Lower Bound. By the argument in the proof of Theorem 5.1 in [46] and our
assumption (6.3), it is enough to show that for any A ∈ B with µ(A) > 0, there is
some N ≥ 1 such that

inf
x∈E

Px(LN(A) > 0) > 0.

Indeed by the upper bound in (a) and theµ-irreducibility, there is a unique invariant
probability measure α ∼ µ, and for any δ ∈ (0, α(A)),

lim sup
N→∞

1

N
log sup

x∈E
Px(|LN(A)− α(A)| > δ) ≤ − inf{J (ν); |ν(A)− α(A)| ≥ δ}
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and the last infimum must be attained by some ν0 with |ν0(A)− α(A)| ≥ δ. Such
ν0 is different from α, hence J (ν0) > 0 (otherwise ν0 is an invariant probability
measure, then coincides with α by the uniqueness of invariant probability measure).
In other words we have derived

lim sup
N→∞

1

N
log sup

x∈E
Px(|LN(A)− α(A)| > δ) ≤ −J (ν0) < 0,

where the desired property above follows immediately.
Part (b). For the good upper bound of large deviations w.r.t. the “w”-topology,

by Theorem II.3.3 in [45], it is enough to establish the monotone continuity of �
on Cb(E), i.e., �(Vn)→ 0 for any sequence (Vn) ⊂ Cb(E) decreasing pointwise
to zero over E. Its verification is completely parallel to that of (MC) in part (a), so
omitted. ��
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