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Abstract. Sharp two-sided estimates for Green functions of censored α-stable process Y
in a bounded C1,1 open set D are obtained, where α ∈ (1, 2). It is shown that the Mar-
tin boundary and minimal Martin boundary of Y can all be identified with the Euclidean
boundary ∂D of D. Sharp two-sided estimates for the Martin kernel of Y are also derived.

1. Introduction

Markov processes with discontinuous sample paths constitute an important fam-
ily of stochastic processes in probability theory. It is well known that (cf. e.g.,
Janicki and Weron [14], Samorodnitsky and Taqqu [18]) many physical and eco-
nomic systems should be and in fact have been successfully modeled by discontin-
uous processes, such as stable processes.

Although a lot is known about symmetric stable as well as general Markov pro-
cesses and their potential theory (see, e.g., Bliedtner and Hansen [1], Blumenthal
and Getoor [2], Landkof [17], and Sharpe [19]), some fine properties for symmetric
stable processes, such as Green function estimates, Martin boundary, and condi-
tional gauge theorem, have only been recently studied. See Chen [7] for a recent
survey on these.

Very recently, another class of discontinuous Markov processes, namely cen-
sored stable processes, has been studied by Bogdan, Burdzy and Chen [6]. Roughly
speaking, for α ∈ (0, 2), a censored α-stable process Y in an open set D ⊂ Rn is
a process obtained from a symmetric α-stable Lévy process by restricting its Lévy
measure to D. The censored process is repelled from the complement of the open
setD because it is prohibited to make jumps outsideD. In this sense, the censored
stable process is analogous to the reflecting Brownian motion in a domain. The
last process plays a prominent role in stochastic analysis. It was shown in Bogdan,
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Burdzy and Chen [6] that when D is a bounded Lipschitz open set, the censored
α-stable process Y in D is recurrent if α ≤ 1 and is transient with finite lifetime ζ
when α > 1. In the latter case, with probability one, the process Yt approaches to
a boundary point of D as t ↑ ζ .

The main objective of this paper is to obtain the following two-sided sharp
estimates for the Green function of Y .

Theorem 1.1. Let D be a bounded C1,1 open set in Rn and Y be the censored
α-stable process in D with α ∈ (1, 2). There is a unique positive continuous func-
tion G(x, y) on D ×D except along the diagonal such that∫

D

G(x, y)f (y)dy = Ex

[∫ ζ

0
f (Ys)ds

]

for every Borel function f ≥ 0 on D. Moreover there exists a constant c =
c(D, α) > 1 such that for x, y ∈ D,

1

c
min

{
1

|x − y|n−α ,
δD(x)

α−1δD(y)
α−1

|x − y|n−2+α

}
≤ G(x, y)

≤ cmin

{
1

|x − y|n−α ,
δD(x)

α−1δD(y)
α−1

|x − y|n−2+α

}
.

Here δD(x) denotes the Euclidean distance between x and the Euclidean boundary
∂D of D. Furthermore, the constant c = c(D, α) can be chosen to be domain
translation and dilation invariant.

The main difficulty in deriving the above two-sided estimate for Green func-
tion is its interior estimate. Note that unlike the Green functionsGD for symmetric
stable processes in D, Green functions for censored stable processes do not have
domain monotonicity property and no formula is known even whenD is a unit ball
in Rn. So even the upper bound G(x, y) ≤ c |x − y|α−n is not trivial at all. We
get around these difficulties using a capacity argument. For this, we use the Hardy
inequality, Harnack principle and boundary Harnack principle for censored stable
processes recently established in Chen and Song [11] and in Bogdan, Burdzy and
Chen [6] respectively.

We further identify the Martin boundary and minimal Martin boundary of Y
when α > 1. Fix x0 ∈ D and define

M(x, y) = G(x, y)

G(x0, y)
, x, y ∈ D.

Theorem 1.2. Let D and Y be as in Theorem 1.1. For each z ∈ ∂D, M(x, z) :=
limy→z M(x, y) exists andM(x, z) is jointly continuous onD× ∂D. The function
M(x, z) is called the Martin kernel of Y . For each z ∈ ∂D, x 
→ M(x, z) is a
minimal harmonic function of Y and there is a constant c = c(x0,D, α) > 1 such
that

1

c

δD(x)
α−1

|x − z|n−2+α ≤ M(x, z) ≤ c
δD(x)

α−1

|x − z|n−2+α .

This implies that the Martin boundary and the minimal Martin boundary of Y can
all be identified with the Euclidean boundary ∂D of D.
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The remaining of the paper is organized as follows. In section 2 we collect
the basic definition and properties of censored stable processes, including Harnack
principle and boundary Harnack principle and Hardy inequality. The proofs for
Theorems 1.1 and 1.2 are given in sections 3 and 4 respectively.

In this paper, we use “:=” as a way of definition, which is read as “is defined
to be”. For functions f and g, notation “f ≈ g” means that there exist constants
c2 > c1 > 0 such that c1 g ≤ f ≤ c2 g. We will use c to denote positive constants
whose values are insignificant and may change from line to line.

2. Preliminaries

We recall the definition of censored stable process and its equivalent characteriza-
tions. Let X = {Xt } denote a symmetric α-stable process in Rn with α ∈ (0, 2)
and n ≥ 1, that is, let Xt be a Lévy process whose transition density p(t, y − x)

relative to the Lebesgue measure is given by the following Fourier transform,∫
Rn

eix·ξp(t, x)dx = e−t |ξ |
α

.

It is well known (cf. (1.2.20) of Blumenthal and Getoor [2] and Example 1.4.1 of
Fukushima, Oshima and Takeda [13]) that the Dirichlet form (C,FRn

) associated
with X is given by

C(u, v) = 1

2
A(n, −α)

∫
Rn

∫
Rn

(u(x)− u(y))(v(x)− v(y))

|x − y|n+α dxdy, (2.1)

FRn =
{
u ∈ L2(Rn) :

∫
Rn

∫
Rn

(u(x)− u(y))2

|x − y|n+α dxdy < ∞
}
, (2.2)

where

A(n, −α) = α2α−1"(α+n
2 )

πn/2"(1 − α
2 )
.

Here " is the Gamma function defined by "(λ) = ∫ ∞
0 tλ−1e−t dt for λ > 0. Every

function u in FRn
has a quasi-continuous version and it is this version that will be

used hereafter for u ∈ FRn
.

Given an open set D ⊂ Rn, define τD = inf{t > 0 : Xt /∈ D}. Let XDt (ω) =
Xt(ω) if t < τD(ω) and set XDt (ω) = ∂ if t ≥ τD(ω), where ∂ is a coffin state
added to Rn. The process XD , i.e., the process X killed upon leaving D, is called
the symmetric α-stable process in D. Note that XD is irreducible even when D is
disconnected. The Dirichlet form of XD on L2(D, dx) is (C,FD), where

FD = {f ∈ FRn

: f = 0 q.e. on Dc}.
Here q.e. is the abbreviation for quasi-everywhere (cf. Fukushima, Oshima and
Takeda [13]). For u, v ∈ FD , by (2.1),

C(u, v) = 1

2
A(n, −α)

∫
D

∫
D

(u(x)− u(y))(v(x)− v(y))

|x − y|n+α dxdy

+
∫
D

u(x)v(x)κD(x)dx,
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where

κD(x) = A(n, −α)
∫
Dc

1

|x − y|n+α dy (2.3)

is the density of the killing measure ofXD . We will use Cc(D) (C∞
c (D)) to denote

the space of continuous (smooth) functions in D with compact support. It is well
known that FD is the C1-closure of C∞

c (D), where C1 = C + ( · , · )L2(D). Note
that typically, limt↑τD Xt exists and belongs to D.

Define a bilinear form E on C∞
c (D):

E(u, v) = 1

2
A(n, −α)

∫
D

∫
D

(u(x)− u(y))(v(x)− v(y))

|x − y|n+α dxdy,

u, v ∈ C∞
c (D).

(2.4)

Using Fatou’s lemma, it is easy to check that the bilinear form (C∞
c (D), E) is

closable in L2(D, dx) Let

F be the closure of C∞
c (D) under the Hilbert inner product E1 = E+( · , · )L2(D).

As it is noted in Bogdan, Burdzy and Chen [6], (E,F) is Markovian and hence a
regular Dirichlet form onL2(D, dx) (cf. Theorem 3.1.1 of Fukushima, Oshima and
Takeda [13]) and therefore there is a Hunt process Y associated with it. This process
Y is called the censored α-stable process inD. There are other ways to construct a
censored stable processes. The following was proved in Bogdan, Burdzy and Chen
[6].

Theorem 2.1. (Theorem 2.1 of [6]) The following processes have the same distri-
bution.

(1) The symmetric Hunt process Y associated with the regular Dirichlet form
(E,F) on L2(D, dx);

(2) The strong Markov process Y obtained from the symmetric α-stable process
XD inD through the Ikeda–Nagasawa–Watanabe piecing together procedure;

(3) The process Y obtained from XD through the Feynman-Kac transform

e
∫ t

0 κD(X
D
s )ds .

The Ikeda–Nagasawa–Watanabe piecing together procedure mentioned in (2)
goes as follows. Let Yt (ω) = XDt (ω) for t < τD(ω). If XDτD−(ω) /∈ D, set
Yt (ω) = ∂ for t ≥ τD(ω). If XDτD−(ω) ∈ D, let YτD(ω) = XDτD−(ω) and glue
an independent copy of XD starting from XDτD−(ω) to YτD(ω). Iterating this pro-
cedure countably many times, we obtain a process on D which is a version of the
strong Markov process Y ; the procedure works for every starting point in D.

The following theorem is a special case of Theorem 2.9 of Bogdan, Burdzy and
Chen [6].

Theorem 2.2. Suppose that D ⊂ Rn is a bounded Lipschitz open set, i.e., ∂D lies
above the graph of a Lipschitz function in a neighborhood of every boundary point.



Green function estimate for censored stable processes 599

(1) If α ≤ 1 then the censored symmetric α-stable process Y in D is conservative
and will never approach ∂D;

(2) If α > 1 then the process Y in D is transient with finite lifetime ζ . Moreover,
Px(limt↑ζ Yt ∈ ∂D, ζ < ∞) = 1 for all x ∈ D.

It is well known that whenD is a bounded Lipschitz open set, there is a positive
continuous functionGD(x, y) on (D×D) \ d , where d denotes the diagonal, such
that for any Borel function f ≥ 0,

Ex

[∫ τD

0
f (Xs)ds

]
=

∫
D

GD(x, y)f (y) dy.

FunctionGD(x, y) is called the Green function of XD , or the Green function of X
in D. When D is a bounded C1,1-smooth open set in Rn, sharp estimates on GD
were obtained in Chen and Song [9] and in Kulczycki [15]:

GD(x, y) ≈ min

{
1

|x − y|n−α ,
δD(x)

α/2δD(y)
α/2

|x − y|n
}

for x, y ∈ D. (2.5)

Recall that a bounded open set D in Rn is said to be C1,1 if there is a localization
radius r0 > 0 and a constant+ > 0 such that for everyQ ∈ ∂D, there is aC1,1-func-
tion φ = φQ : Rn−1 → R satisfying φ(0) = 0, ‖∇φ‖∞ ≤ +, |∇φ(x)−∇φ(z)| ≤
+|x−z|, and an orthonormal coordinate system y = (y1, · · · , yn−1, yn) := (ỹ, yn)

such that B(Q, r0) ∩D = B(Q, r0) ∩ {y : yn > φ(ỹ)}. The pair (r0,+) is called
the characteristics of the C1,1 open set D.

The construction of the censored α-stable process Y inD via Ikeda–Nagasawa–
Watanabe piecing together procedure in Theorem 2.1, Theorem 2.2(2) above and
Theorem 1 in Kunita and Watanabe [16] imply that for α ∈ (1, 2) there is a unique
Borel measurable functionG(x, y) on (D×D)\d such that (i)G(x, y) = G(y, x)

for x, y ∈ D, (ii) x 
→ G(x, y) is an excessive function of Y for each fixed y ∈ D,
(iii) for any Borel f ≥ 0,

Ex

[∫ ζ

0
f (Ys)ds

]
=

∫
D

G(x, y)f (y) dy.

Function G(x, y) is called the Green function of Y .

Remark 2.3. It follows from Theorem 2.1 that for any r > 0, {r−1Yrαt ,Px} has the
same distribution as the censored α-stable process in the open set r−1D starting
from r−1x. Consequently, function (x, y) 
→ rn−α G(rx, ry) is the Green function
for censored α-stable process in open set r−1D.

One of the main results of this paper is a two-sided Green function estimate
for Y when D is a bounded C1,1 open set. For this, we need the Hardy inequality,
Harnack principle and boundary Harnack principle for censored stable processes
recently established in Chen and Song [11] and in Bogdan, Burdzy and Chen [6]
respectively.
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Theorem 2.4. (Corollary 2.4 of Chen and Song [11]) Suppose thatD is a bounded
Lipschitz open set in Rn and α �= 1. Then there is a constant c(D, α) > 0 such that

∫
D

u(x)2

δD(x)α
dx ≤ c(D, α)

∫
D

∫
D

(u(x)− u(y))2

|x − y|n+α dxdy for u ∈ F . (2.6)

The above Hardy inequality implies that the domain F of the Dirichlet form
(F, E) for the censored α-stable process Y in D is the same as FD for the killed
symmetric α-stable process XD in D for bounded Lipschitz open set D and for
α �= 1.

To state Harnack principle and boundary Harnack principle for Y , we need the
following definition.

Definition 2.5. Let O be an open subset of D. An integrable Borel function f
defined on D taking values in (−∞, ∞] is said to be

1) harmonic in O with respect to Y if f is continuous in O and for each x ∈ O

and each ball B(x, r) with B(x, r) ⊂ O,

f (x) = Ex[f (YτB(x,r) ); τB(x,r) < ζ ];
2) superharmonic in O with respect to Y if f is lower semicontinuous in O and

for each x ∈ O and each ball B(x, r) with B(x, r) ⊂ O,

f (x) ≥ Ex[f (YτB(x,r) ); τB(x,r) < ζ ].

Remark 2.6. (1) If we define f = 0 on Dc, clearly

Ex[f (YτB(x,r) ); τB(x,r) < ζ ] = Ex[f (YτB(x,r) )]

and so the definition of harmonicity or superharmonicity can be rephrased in terms
of the relation between f (x) and Ex[f (YτB(x,r) )]. The latter are consistent with the
definitions given in Landkof [17] for symmetric α-stable processes. It is shown in
Bogdan, Burdzy and Chen [6] that such a continuous function f in O is harmonic
with respect to Y if and only if (−(−0)α/2 + κD)f = 0 in O, where κD is given
by (2.3).

(2) For anyC2-smooth open setU withU ⊂ D, letGYU be the Green function of
Y inU . From Theorem 2.1(3), we see thatGYU is the Green function for the process
obtained from the symmetric α-stable process killed upon leaving U through the

Feynman-Kac transform e
∫ t

0 κD(X
U
s )ds . As the potential 1UκD is bounded, it is in

the Kato class of XU . By Theorem 3.3 and Lemma 3.5 in Chen [8], we have

GYU(x, y) ≈ GU(x, y) ≈ min

{
1

|x − y|n−α ,
δU (x)

α/2δU (y)
α/2

|x − y|n
}

for x, y ∈ U,
(2.7)

where δU (y) = dist(y, ∂U) is the Euclidean distance from point y to the set ∂U .
It can be shown in a similar way as those in Chung and Zhao [12] that the Green
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function (x, y) 
→ GYU(x, y) is continuous off the diagonal. Using the Lévy system
for Y , we conclude that

Ex[φ(YτU )] =
∫
D\U

φ(z)KU(x, z)dz

for any bounded Borel measurable function φ in D, where

KU(x, z) = A(n,−α)
∫
U

GYU(x, y)

|y − z|n+α dy for x ∈ U and z ∈ D \ U. (2.8)

It follows from (2.7) and the calculations done in Chen [7] and Chen and Song [9]
that

KU(x, z) ≈ δU (x)
α/2

δU (z)α/2 |x − z|n for x ∈ U and z ∈ D \ U. (2.9)

(3) If f is a lower semicontinuous function defined on O taking values in
(−∞, ∞], then f is bounded from below on any open subset whose closure is
contained inO. Thus for such kind of function f that is integrable onD, it follows
from (2.9) that Ex[f−(YτB(x,r) )] < ∞ for any ball B(x, r) with B(x, r) ⊂ D.
Therefore the expectations in Definition 2.5 are well defined.

(4) Using a similar argument as that for Theorems 2.1 and 2.2 in Chen and Song
[10], it can be shown by using Theorem 2.1(3) that an integrable Borel function f
onD that is lower semicontinuous inO is superharmonic (harmonic, respectively)
in O with respect to Y if and only if for any relatively compact open subset U of
O, f (x) ≥ Ex[f (YτU ); τU < ζ ] (f (x) = Ex[f (YτU ); τU < ζ ], respectively) for
every x ∈ U .

Theorem 2.7. (Theorem 1.2 of Bogdan, Burdzy and Chen [6]) Let D be a bound-
ed C1,1 open set in Rn with characteristics r0 ≤ 1 and +. Let Y be the censored
stable process inD with index of stability α ∈ (1, 2). LetQ ∈ ∂D and r ∈ (0, r0).
Assume that u is a nonnegative function on D which vanishes continuously on
∂D ∩ B(Q, r) and is harmonic in D ∩ B(Q, r) for Y . Then there is a constant
K = K(n, α,+) > 1 such that

u(x)

u(y)
≤ K

δD(x)
α−1

δD(y)α−1 for x, y ∈ D ∩ B(Q, r/2). (2.10)

We will also need the following scale-invariant version of Harnack inequali-
ty for nonnegative harmonic functions of the censored process Y from Bogdan,
Burdzy and Chen [6].

Theorem 2.8. (Theorem 3.2 in [6]) Let D ⊂ Rn be an open set and let Y be the
censored process on D. Let x1, x2 ∈ D, r > 0 with B(x1, r) ∪ B(x2, r) ⊂ D

and k ∈ {1, 2, . . . }, such that |x1 − x2| < 2kr . If u ≥ 0 is harmonic for Y in
B(x1, r)∪B(x2, r), then there exists a constant J depending only on n and α, such
that

J−12−k(n+α)u(x2) ≤ u(x1) ≤ J2k(n+α)u(x2) . (2.11)
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3. Green function estimate

Throughout this section D is a bounded C1,1 open set and α ∈ (1, 2). The key
to establish the Green function estimate in Theorem 1.1 is the following interior
estimate, which is obtained through a capacity argument. We point out that our
capacity argument is different from Stampacchia’s approach in [20] for the Green
function-capacity comparison result, since the sample paths of the censored stable
process Y are discontinuous and therefore the first exit distribution from a smooth
domain, unlike that of diffusion processes, does not concentrate on the boundary
of the domain.

Theorem 3.1. The Green function G(x, y) is continuous on D ×D except along
the diagonal. For k > 0, there is a constant c = c(D, α, k) > 1 such that

c−1 |x − y|α−n ≤ G(x, y) ≤ c |x − y|α−n (3.1)

for x, y ∈ D satisfying |x − y| ≤ kmin{δD(x), δD(y)}.

Proof. By the scaling property of symmetric α-stable process X and the 3G-esti-
mate in Chen and Song [9],

GB(x, y)GB(y, z)

GB(x, z)
≤ c(n, α)(|x − y|α−n + |y − z|α−n), x, y, z ∈ B,

for any ball B ⊂ D, where GB is the Green function of X in B. As κD(x) ≈
δD(x)

−α , there is a constant λ = λ(D, α) ∈ (0, 1/2) such that for any w ∈ D and
ball B = B(w, λδD(w)),

sup
x,z∈D

∫
B

GB(x, y)GB(y, z)

GB(x, z)
κD(y) dy < 1/2. (3.2)

For any ball B ⊂ D, we will use GYB to denote the Green function of Y in B; that
is, ∫

B

GYB(x, y)f (y)dy = Ex

[∫ τB

0
f (Yt )dt

]

for Borel f ≥ 0. Here τB := inf{t > 0 : Yt /∈ B} is the exit time of Y from B.
It follows from Theorem 2.1, (3.2) above, Khasminskii’s inequality (cf. [12]) and
Lemma 3.5 in Chen [8] that

1

2
GB(x, y) ≤ GYB(x, y) ≤ 2GB(x, y) (3.3)

for anyB = B(w, λδD(w)) and x, y ∈ B. It can be shown in a similar way as those
in Chung and Zhao [12] that the Green function (x, y) 
→ GYB(x, y) is continuous
off the diagonal.

We now show that the theorem holds for k = λ/2 and for x0, y0 ∈ D satisfying
|x0 −y0| ≤ kmin{δD(x0), δD(y0)}. In this case there is a ballB := B(w, λδD(w))
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for some w ∈ D such that x0, y0 ∈ B1/2 := B(w, λδD(w)/2). By the strong
Markov property of Y , we have

G(x, y) = GYB(x, y)+ Ex
[
G(YτB , y)

]
for x, y ∈ B. (3.4)

By (3.3), (2.5) and the scaling property ofX, there is a constant c1 = c1(D, α) > 1
such that

c−1
1 |x − y|α−n ≤ GYB(x, y) ≤ c1 |x − y|α−n for x, y ∈ B1/2. (3.5)

Note that h(x, y) := Ex
[
G(YτB , y)

]
has the property that for each fixed x ∈ B,

y 
→ h(x, y) is harmonic in B2/3 := B(w, 2λδD(w)/3) with respect to process
Y and for each fixed y ∈ B, x 
→ h(x, y) is harmonic in B2/3 with respect to
process Y . So it follows from Harnack inequality, h is bounded and is continuous
on B2/3 × B2/3 (cf. (3.25) of Bogdan, Burdzy and Chen [6]) and this implies that
Green function G(x, y) is continuous on D × D except along the diagonal. By
Theorem 2.8 there is a universal constant c > 1 such that

c−1h(x1, y1) ≤ h(x, y) ≤ ch(x1, y1)

for any x1, y1, x, y ∈ B2/3 and so

max
x,y∈B2/3

h(x, y) ≤ c min
x,y∈B2/3

h(x, y) ≤ c min
x,y∈B2/3

G(x, y). (3.6)

We know from Theorem 2.4 there is a constant c3 = c3(D, α) > 1 such that

c−1
3 C(u, u) ≤ E(u, u) ≤ c3 C(u, u) for u ∈ FD.

Therefore

c−1
3 CapXD(A) ≤ CapY (A) ≤ c3CapXD(A) for open set A. (3.7)

Here CapY (A) is the capacity of the set A with respect to censored stable process
Y in D; that is, for open set A,

CapY (A) = inf
{
E(u, u) : u ∈ FD and u ≥ 1 m-a.e. on A

}

(cf. Fukushima, Oshima and Takeda [13]). CapXD(A) is defined similarly in terms
of the Dirichlet form (C,FD) of the killed symmetric α-stable process XD in D.
Let CapX denote the capacity for the symmetric α-stable process X in Rn; that is,
for open set A:

CapX(A) = inf
{
C(u, u) : u ∈ FRn

and u ≥ 1 m-a.e. on A
}
.

Clearly for any ball B = B(w0, r) ⊂ D, by scaling

CapXD(B) ≥ CapX(B) = c1(n, α)r
n−α. (3.8)
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On the other hand, for ball B = B(w0, r) with B2 = B(w0, 2r) ⊂ D, again by
scaling we have

CapXD(B) ≤ CapXB2 (B) = c2(n, α)r
n−α. (3.9)

By (3.7)–(3.9), there is a constant c4 = c4(D, α) > 1 such that

c−1
4 rn−α ≤ CapY (B) ≤ c4 r

n−α (3.10)

for any ball B = B(w0, r) with B(w0, 2r) ⊂ D. For such ball B, by Theorem
2.1.5 and (2.2.13) of Fukushima, Oshima and Takeda [13] there is an equilibrium
measure µB supported on B such that GµB ∈ FD , GµB = 1 on B and

CapY (B) =
∫
B

GµB(x)µB(dx) = µB(B)

Now applying above to ball B1/2 := B(w, λδD(w)/2), we have

CapY (B1/2) =
∫
D

GµB1/2(x)µB1/2(dx)

≥ min
x,y∈B1/2

G(x, y)
(
µB1/2(B1/2)

)2 = min
x,y∈B1/2

G(x, y)CapY (B1/2)
2.

Hence

min
x,y∈B1/2

G(x, y) ≤ CapY (B1/2)
−1 ≤ c4(λδD(w)/2)

α−n. (3.11)

Putting (3.4)–(3.6) and (3.11) together yields that there is a constant c5 = c5(D, α)

> 1 such that

c−1
5 |x0 − y0|α−n ≤ G(x0, y0) ≤ c5|x0 − y0|α−n (3.12)

for any x0, y0 ∈ D satisfying |x0 −y0| ≤ k0 min{δD(x0), δD(y0)} with k0 := λ/2.
Now for general k > k0 and x, y ∈ D satisfying

k0 min{δD(x), δD(y)} < |x − y| ≤ kmin{δD(x), δD(y)},
without loss of generality, assume that δD(x) ≥ δD(y) and thus |x−y| ≥ k0δD(y).
Choose y0 ∈ D such that

k0 |x − y|/(2k) ≤ |x − y0| ≤ k0 min{δD(x), δD(y0)}.
Then by Theorem 2.8, there is a constant c6 = c6(D, α, k) > 1 such that

c−1
6 G(x, y0) ≤ G(x, y) ≤ c6G(x, y0).

Thus by (3.12) there is a constant c = c(D, k) such that (3.1) holds. ��
Lemma 3.2. For each fixed y ∈ D, there is a constant c = c(D, α, y) > 1,

c−1 δD(x)
α−1 ≤ G(x, y) ≤ c δD(x)

α−1 for x ∈ D \ B(y, δD(y)/2).
In particular, x 
→ G(x, y) vanishes continuously on ∂D.
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Proof. Let U := D \ B(y, 1
4δD(y)). For x ∈ U , clearly

G(x, y) = Ex
[
G(YτU , y)

]
.

The conclusion of this theorem now follows directly from Theorem 1.2 and Remark
6.2 in Bogdan, Burdzy and Chen [6]. ��
Proof of Theorem 1.1. Note that

min
{

1
|x−y|n−α ,

δD(x)
α−1δD(y)

α−1

|x−y|n−2+α

}
= 1

|x−y|n−α
(

min
{

1, δD(x)δD(y)|x−y|2
})α−1

. (3.13)

As δD(x) ≤ δD(y)+ |x − y| for any x, y ∈ D, it is easy to see that

δD(x)δD(y)

(max{δD(x), δD(y), |x − y|})2 ≈ min

{
1,
δD(x)δD(y)

|x − y|2
}

(3.14)

Define r(x, y) = max {δD(x), δD(y), |x − y|}. Choose z0 ∈ D and 0 < R < r0
so that B(z0, R) ∈ D and B(z0, R) is disjoint from any interior tangential ball in
D with radius less than R. Fix x1 ∈ ∂B(z0, R/2) and define

A(x, y) ={
B(x0 + r(x, y)nx0 , r(x, y)/2)∪B(y0 + r(x, y)ny0 , r(x, y)/2), if r(x, y) < R/5
{x1}, otherwise.

where nQ is unit inward normal vector atQ ∈ ∂D, x0 and y0 are points in ∂D such
that δD(x) = |x0 − x| and δD(y) = |y0 − y|. It is clear that

r(x, y)

2
≤ δD(z) ≤ 3r(x, y)

2
(3.15)

for every z ∈ A(x, y). On the other hand, by Lemma 3.2,

φ(x) := min

{
G(z0, x), max

y∈D: |y−z0|≥R
G(z0, y)

}
≈ δD(x)

α−1. (3.16)

In particular, by (3.15), for z ∈ A(x, y),
φ(z) ≈ r(x, y)α−1 = (max {δD(x), δD(y), |x − y|})α−1 for z ∈ A(x, y).

(3.17)

In view of (3.13)–(3.17), it suffices to show that

G(x, y) ≈ φ(x)φ(y)

φ2(z)
|x − y|α−n, where z ∈ A(x, y). (3.18)

Thanks to Theorems 2.7, 2.8 and 3.1, the proof of (3.18) is almost the same as the
proof of Proposition 6 and Theorem 2 in Bogdan [5]. In fact here the proof can
be simplified quite a bit due to the fact that D is a C1,1 open set and the stronger
version of boundary Harnack principle and Harnack principle in Theorems 2.7 and
2.8. Clearly the Green function of Y is domain translation invariant. By Remark
2.3, the constant c = c(D, α) can be chosen to be domain dilation invariant. ��

The following is a direct consequence of Theorem 1.1.

Corollary 3.3.
lim
x→∂D

G(x, y) = 0

uniformly on Dr = {y ∈ D : δD(y) ≥ r}.
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4. Martin boundary and Martin kernel estimates

Throughout this section D is a bounded C1,1 open set in Rn, α ∈ (1, 2), and Y is
the censored α-stable process in D. We will show in this section that the Martin
boundary and the minimal Martin boundary of Y can all be identified with the Eu-
clidean boundary ∂D of D. Our approach in this section is similar to the one used
in Chen and Song [10] for symmetric α-stable processes.

Fix x0 ∈ D and define

M(x, y) = G(x, y)

G(x0, y)
x, y ∈ D.

Recall that r0 is the characteristic radius of D defined at the end of the paragraph
following Theorem 2.2.

Theorem 4.1. For every x ∈ D and z ∈ ∂D, M(x, z) := limy→z M(x, y) exists,
which is called the Martin kernel of Y . The Martin kernel M(x, z) is a continuous
function on D × ∂D. Furthermore there exists c := c(x0,D, α) such that

1

c

δD(x)
α−1

|x − z|n−2+α ≤ M(x, z) ≤ c
δD(x)

α−1

|x − z|n−2+α .

Proof. For every 0 < ε < (r0 ∧ δD(x0))/4, define Dε := {y ∈ D : δD(y) < ε}
and Uε := {x ∈ D : δD(x) > 2ε}. By Theorem 1.1, for x ∈ Uε, both function
y 
→ G(x, y) and function y 
→ G(x0, y) are bounded and harmonic in Dε with
respect to Y , and vanish continuously on ∂D. So by Remark 6.4 in Bogdan, Burdzy
and Chen [6], M(x, z) := limy→z M(x, y) exists for every z ∈ ∂D and x ∈ Uε,
and there are positive constants σ = σ(D, α, x0, ε) and c = c(D, α, x0, ε) such
that

|M(x, y)−M(x, z)| ≤ c |y − z|σ (4.1)

for every x ∈ Uε, z ∈ ∂D and y ∈ D∩B(z, ε). This implies thatM(x, z) is jointly
continuous on Uε × ∂D, and hence on D × ∂D after letting ε ↓ 0. The Martin
kernel estimate is an immediate consequence of the Green function estimate in
Theorem 1.1. ��

Theorem 4.1 in particular implies that M(·, z1) differs from M(·, z2) if z1 and
z2 are two different points on ∂D.

Theorem 4.2. For every z ∈ ∂D, function x 
→ M(·, z) is harmonic in D with
respect to Y .

Proof. According to Chen and Song [10], it suffices to show that for every x ∈ D
there exists R0 = R0(x) < δD(x) such that

M(x, z) = Ex[M(YτB(x,r) , z)] for every 0 < r < R0. (4.2)
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Let R0 := λδD(x), where λ < 1/2 is the constant in (3.2), and for r ∈ (0, R0), let
r1 := δD(x)−r

3 . For m ≥ 1, set zm := z + r1
m

nz. As D is bounded and C1,1 smooth
with characteristics (r0,+), there is an integer m0 > 1 such that

B (zm, r1/(2m)) ⊂ B (z, 3r1/(2m)) ∩D ⊂ B (z, 3r1/m) ∩D �⊆⊂ B(z, r0) ∩D
⊂ D \ B(x, r)

for allm ≥ m0. SinceM(·, zm) is harmonic inD \ {zm} with respect to Y for every
m ≥ m0, we have

M(x, zm) = Ex[M(YτB(x,r) , zm)].

By Fatou’s lemma,

Ex[M(YτB(x,r) , z)] = Ex
[

lim
m→∞M(YτB(x,r) , zm)

]
≤ lim inf

m→∞ M(x, zm)

= M(x, z) < ∞.

Hence M(YτB(x,r) , z) is Px-integrable.
On the other hand, by the boundary Harnack principle in Theorem 2.7 with

B(z, 3r1/m) in place of B(Q, r) there, there is a constant c1 > 0 such that for
every w ∈ D \ B(z, 3r1/m) and y ∈ D ∩ B(z, 3r1/(2m)),

M(w, zm) = G(w, zm)

G(x0, zm)
≤ c1

G(w, y)

G(x0, y)
= c1M(w, y), m ≥ m0.

Letting y → z ∈ ∂D yields

M(w, zm) ≤ c1M(w, z) m ≥ m0, (4.3)

for every w ∈ D \ B(z, 3r1/m).
To prove (4.2), it suffices to show that {M(YτB(x,r) , zm) : m ≥ m0} is Px-uni-

formly integrable. Since M(YτB(x,r) , z) is Px-integrable, for any ε > 0, there is an
N0 > 1 such that

Ex
[
M(YτB(x,r) , z);M(YτB(x,r) , z) > N0/c1

]
< ε/4c1. (4.4)

Note that by (4.3) and (4.4)

Ex[M(YτB(x,r) , zm); M(YτB(x,r) , zm) > N0 and YτB(x,r) ∈ D \ B(z, 3r1/m)]

≤ c1Ex[M(YτB(x,r) , z); c1M(YτB(x,r) , z) > N0]

< c1ε/4c1 = ε/4.

It follows from the Lévy system for process Y , that the distribution of YτB(x,r) under
Py is absolutely continuous with respect to the Lebesgue measure on D \ B(x, r)
and its density function KY

B(x,r)(y, z) is

KY
B(x,r)(y, z) =

∫
B(x,r)

GYB(x,r)(y, w)

|w − z|n+α dw, y ∈ B(x, r), z ∈ D \ B(x, r),
(4.5)
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whereGYB(x,r) is the Green function of Y in B(x, r). Similarly, the densityKB(x,r)
(y, z) for the exit distribution XDτB(x,r) for symmetric α-stable process XD in D
starting from y ∈ B(x, r) is given by

KB(x,r)(y, z) =
∫
B(x,r)

GB(x,r)(y, w)

|w − z|n+α dw, z ∈ D \ B(x, r), (4.6)

It follows from Chen and Song [9] and Chen [7] that

KB(x,r)(y, z) ≤ c
δB(x,r)(y)

α/2

δB(x,r)(z)α/2(1 + δB(x,r)(z)/r)α/2|y − z|n (4.7)

for y ∈ B(x, r) and z ∈ D\B(x, r). Note that r < λ δD(x). So by (3.3), (4.5)–(4.7),
for m ≥ 2,

Ex[M(YτB(x,r) , zm); YτB(x,r) ∈ D ∩ B(z, 3r1/m)]

≤ 2Ex[M(XDτB(x,r) , zm)1D∩B(z,3r1/m)(X
D
τB(x,r)

)]

≤ c

∫
B(z,3r1/m)

M(w, zm)dw

= cG(x0, zm)
−1

∫
B(z,3r1/m)

G(w, zm)dw

≤ c (r1/m)
1−α

∫
B(z,3r1/m)

|w − zm|α−ndw

≤ c r1/m.

In the second to last inequality we used the Green function estimate in Theorem
1.1; in particular its lower bound estimate implies that

G(x0, zm) ≥ c−1 min

{
1

|x0 − zm|n−α ,
δD(x0)

α−1δD(zm)
α−1

|x0 − zm|n−2+α

}
≥ c−1 (r1/m)

α−1

Therefore by taking N large enough we have for m ≥ N ,

Ex[M(YτB(x,r) , zm); M(YτB(x,r) , zm) > N ]

≤ Ex[M(YτB(x,r) , zm); YτB(x,r) ∈ D ∩ B(z, 3r1/m)]

+Ex[M(YτB(x,r) , zm); M(YτB(x,r) , zm) > N and YτB(x,r) ∈ D \ B(z, 3r1/m)]

< c r1/m+ ε/4

< ε.

As each M(YτB(x,r) , zm) is Px-integrable, we conclude that
{
M(YτB(x,r) , zm) :

m ≥ 1
}

is uniformly integrable under Px . ��

Lemma 4.3. If h is positive harmonic function with respect to Y and continuous
on D, then supx∈D h(x) = supx∈∂D h(x).
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Proof. Take an increasing sequence of smooth domain {Dm}m≥1 such that Dm ⊂
Dm+1 and ∪∞

m=1Dm = D. By bounded convergence theorem, we have

h(x) = lim
m→∞ Ex

[
h(YτDm )

] = Ex

[
h
(

lim
t↑ζ

Yt
)]
.

Therefore, supx∈D h(x) = supx∈∂D h(x). ��
As process Y satisfies Hypothesis (B) in Kunita and Watanabe [16], the process

Y has a Martin boundary. A consequence of Theorem 4.1 is that the Martin bound-
ary of Y can be identified with the Euclidean boundary ∂D of D. We know from
the general theory in Kunita and Watanabe [16] that non-negative superharmonic
functions with respect to Y admit a Martin representation. That is, for every super-
harmonic function u ≥ 0 with respect to Y , there is a unique Radon measure µ in
D and a finite measure ν on ∂D such that

u(x) =
∫
D

G(x, y)µ(dy)+
∫
∂D

M(x, z)ν(dz). (4.8)

Furthermore, u is harmonic if and only if the measure µ = 0. The above can also
be proved directly by adapting the proofs in Bass [3] for the Martin representation
of the classical superharmonic functions for Brownian motions.

Theorem 4.4. For each z ∈ ∂D, M(x, z) is minimal harmonic. That is, if h is a
harmonic function with respect to Y and h(x) ≤ M(x, z), then h(x) = cM(x, z)

for some constant c ≤ 1.

Proof. Suppose that Martin kernel x 
→ M(x, z0) is not minimal for some z0 ∈
∂D. Then there is a non-trivial harmonic function h ≥ 0 of Y in D such that
h(x) ≤ M(x, z0) but h is not a constant multiple ofM(x, z0). By Martin represen-
tation (4.8), there is a finite measure µ on ∂D which is not concentrated at z0 such
that

h(x) =
∫
∂D

M(x,w)µ(dw) for x ∈ D.
Thus there exists ε > 0 such thatµε := µ|∂D\B(z0,ε) is non-trivial. By Theorem 4.2
and Fubini Theorem,

∫
M(x,w)µε(dw) is a harmonic function ofY that is bounded

by h(x) and hence by M(x, z0). By the Martin kernel estimate in Theorem 4.1,

lim
x→z

∫
M(x,w)µε(dw) = 0 for z ∈ ∂D ∩ B(z0, ε/2).

On the other hand, for z ∈ ∂D \ B(z0, ε/2),

lim
x→z

∫
M(x,w)µε(dw) ≤ lim

x→z

∫
M(x,w)µ(dw) = lim

x→z
h(x)

≤ lim
x→z

M(x, z0) = 0.

Thus the harmonic function x 
→ ∫
∂D
M(x,w)µε(dw) vanishes continuously on

∂D so by Lemma 4.3,∫
∂D

M(x,w)µε(dw) = 0 for x ∈ D.



610 Z-Q Chen, P. Kim

This is impossible as µε is non-trivial and M(x,w) > 0. So x 
→ M(x, z0) has to
be a minimal harmonic function of Y in D. ��

The above theorem implies that every boundary point z ∈ ∂D is a minimal
Martin boundary point of Y , which completes the proof of Theorem 1.2.
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